Example: Tsodyks_Pawelzik_Markram_1998

Note

You can launch an interactive, editable version of this example without installing any local files using the Binder service (although note that at some times this may be slow or fail to open): launchbinder

Fig. 1 from:

M. Tsodyks, K. Pawelzik, H. Markram Neural Networks with Dynamic Synapses Neural Computation 10, 821–835 (1998)

https://doi.org/10.1162/089976698300017502

Sebastian Schmitt, 2022

import numpy as np
import matplotlib.pyplot as plt

from brian2 import (
    NeuronGroup,
    Synapses,
    SpikeGeneratorGroup,
    SpikeMonitor,
    StateMonitor,
)
from brian2 import ms, mV, pA, Mohm, Gohm, Hz
from brian2 import run


def get_neuron(tau_mem, R_in):
    """
    tau_mem -- membrane time constant
    R_in -- input resistance
    """
    neuron = NeuronGroup(1,
                         """
                         tau_mem : second
                         I_syn : ampere
                         R_in : ohm
                         dv/dt = -v/tau_mem + (R_in*I_syn)/tau_mem : volt
                         """,
                         method="exact")

    neuron.tau_mem = tau_mem
    neuron.R_in = R_in

    return neuron


def get_synapses(stimulus, neuron, tau_inact, A_SE, U_SE, tau_rec, tau_facil=None):
    """
    stimulus -- input stimulus
    neuron -- target neuron
    tau_inact -- inactivation time constant
    A_SE -- absolute synaptic strength
    U_SE -- utilization of synaptic efficacy
    tau_rec -- recovery time constant
    tau_facil -- facilitation time constant (optional)
    """

    synapses_eqs = """
    dx/dt =  z/tau_rec   : 1 (clock-driven) # recovered
    dy/dt = -y/tau_inact : 1 (clock-driven) # active
    A_SE : ampere
    U_SE : 1
    tau_inact : second
    tau_rec : second
    z = 1 - x - y : 1 # inactive
    I_syn_post = A_SE*y : ampere (summed)
    """

    if tau_facil:
        synapses_eqs += """
        du/dt = -u/tau_facil : 1 (clock-driven)
        tau_facil : second
        """

        synapses_action = """
        u += U_SE*(1-u)
        y += u*x # important: update y first
        x += -u*x
        """
    else:
        synapses_action = """
        y += U_SE*x # important: update y first
        x += -U_SE*x
        """

    synapses = Synapses(stimulus,
                        neuron,
                        model=synapses_eqs,
                        on_pre=synapses_action,
                        method="exponential_euler")
    synapses.connect()

    # start fully recovered
    synapses.x = 1

    synapses.tau_inact = tau_inact
    synapses.A_SE = A_SE
    synapses.U_SE = U_SE
    synapses.tau_rec = tau_rec

    if tau_facil:
        synapses.tau_facil = tau_facil

    return synapses


def get_stimulus(start, stop, frequency):
    """
    start -- start time of stimulus
    stop -- stop time of stimulus
    frequency -- frequency of stimulus
    """

    times = np.arange(start / ms, stop / ms, 1 / (frequency / Hz) * 1e3) * ms
    stimulus = SpikeGeneratorGroup(1, [0] * len(times), times)

    return stimulus


parameters = {
    "A": {
        "neuron": {"tau_mem": 40 * ms,
                   "R_in": 100*Mohm},
        "synapse": {
            "tau_inact": 3 * ms,
            "A_SE": 250 * pA,
            "tau_rec": 800 * ms,
            "U_SE": 0.6, # 0.5 from publication does not match plot
        },
        "stimulus": {"start": 100 * ms,
                     "stop": 1100 * ms,
                     "frequency": 20 * Hz},
        "simulation": {"duration": 1200 * ms},
        "plot": {
            "title": "A) D - 20 Hz",
            "ylim": [0, 1],
            "xlim": [0, 1200],
            "xtickstep": 200,
        },
    },
    "B": {
        "neuron": {"tau_mem": 60 * ms,
                   "R_in": 1*Gohm},
        "synapse": {
            "tau_inact": 1.5 * ms,
            "A_SE": 1540 * pA,
            "tau_rec": 130 * ms,
            "U_SE": 0.03,
            "tau_facil": 530 * ms,
        },
        "stimulus": {"start": 100 * ms,
                     "stop": 1100 * ms,
                     "frequency": 20 * Hz},
        "simulation": {"duration": 1200 * ms},
        "plot": {
            "title": "B) F - 20 Hz",
            "ylim": [0, 14.9],
            "xlim": [0, 1200],
            "xtickstep": 200,
        },
    },
    "C": {
        "neuron": {"tau_mem": 60 * ms,
                   "R_in": 1*Gohm},
        "synapse": {
            "tau_inact": 1.5 * ms,
            "A_SE": 1540 * pA,
            "tau_rec": 130 * ms,
            "U_SE": 0.03,
            "tau_facil": 530 * ms,
        },
        "stimulus": {"start": 100 * ms,
                     "stop": 375 * ms,
                     "frequency": 70 * Hz},
        "simulation": {"duration": 500 * ms},
        "plot": {
            "title": "C) F - 70 Hz",
            "ylim": [0, 20],
            "xlim": [0, 500],
            "xtickstep": 50,
        },
    },
}

fig, axes = plt.subplots(3)

for ax, (panel, p) in zip(axes, parameters.items()):

    neuron = get_neuron(**p["neuron"])
    stimulus = get_stimulus(**p["stimulus"])
    synapses = get_synapses(stimulus, neuron, **p["synapse"])

    state_monitor_neuron = StateMonitor(neuron, ["v"], record=True)

    run(p["simulation"]["duration"])

    ax.plot(
        state_monitor_neuron.t / ms,
        state_monitor_neuron[0].v / mV,
        label=p["plot"]["title"],
    )

    ax.set_xlim(*p["plot"]["xlim"])
    ax.set_ylim(*p["plot"]["ylim"])
    ax.set_ylabel("mV")
    ax.set_xlabel("Time (ms)")

    ax.set_xticks(
        np.arange(
            p["plot"]["xlim"][0],
            p["plot"]["xlim"][1] + p["plot"]["xtickstep"],
            p["plot"]["xtickstep"],
        )
    )

    ax.legend()

plt.show()
../_images/frompapers.Tsodyks_Pawelzik_Markram_1998.1.png