Example: Maass_Natschlaeger_Markram_2002

Note

You can launch an interactive, editable version of this example without installing any local files using the Binder service (although note that at some times this may be slow or fail to open): launchbinder

Fig. 2 from:

Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations

Neural Computation 14, 2531–2560 (2002)

by Maass W., Natschläger T. and Markram H.

Sebastian Schmitt, 2022

from collections import defaultdict
import multiprocessing

import numpy as np
import matplotlib.pyplot as plt

from brian2 import (
    NeuronGroup,
    Synapses,
    SpikeGeneratorGroup,
    SpikeMonitor,
    Network,
    prefs,
)
from brian2 import ms, mV, Mohm, nA, second, Hz
from brian2 import defaultclock, prefs

N_NEURONS = 135
V_THRESH = 15 * mV
V_RESET = 13.5 * mV

STIMULUS_POISSON_RATE = 20 * Hz
TARGET_DISTANCES = [0.4, 0.2, 0.1]
N_PAIRS = 200

DT = 0.1 * ms
DURATION = 500 * ms
TS = np.arange(0, DURATION / ms, DT / ms)


def exponential_convolution(t, spikes, tau):
    """Convolute spikes with exponential kernel
    t -- numpy array of times to evaluate the convolution
    spikes -- iterable of spike times
    tau -- exponential decay constant
    """
    if len(spikes):
        return sum([np.exp(-((t - st) / tau)) * (t >= st) for st in spikes])
    else:
        return np.zeros(len(TS))


def gaussian_convolution(t, spikes, tau):
    """Convolute spikes with Gaussian kernel
    t -- numpy array of times to evaluate the convolution
    spikes -- iterable of spike times
    tau -- exponential decay constant
    """
    if len(spikes):
        return sum([np.exp(-(((t - st) / tau) ** 2)) for st in spikes])
    else:
        return np.zeros(len(TS))


def euclidian_distance(liquid_states_u, liquid_states_v):
    """Euclidian distance between liquid states
    liquid_states_u -- liquid states
    liquid_states_v -- other liquid states

    To match the numbers in the paper, the square root is omitted
    """

    return np.mean((liquid_states_u - liquid_states_v) ** 2, axis=0)


def distance(conv_a, conv_b, dt):
    """Difference of convolutions in the L2-norm
    conv_a -- convolutions
    conv_b -- other convolutions
    dt -- time step

    To match the numbers in the paper, the square root is omitted
    """

    return sum((conv_a - conv_b) ** 2) * dt


def generate_poisson(duration, rate):
    """Generate Poisson spike train
    duration -- duration of spike train
    rate -- rate of spike train

    Return only spike trains that do not have multiple spikes per time bin
    """
    while True:
        N = np.random.poisson(rate * duration)
        spikes = np.random.uniform(0, duration, N)

        spikes_orig = np.sort(spikes)
        shift = 1e-3 * (DT / ms)
        timebins = ((spikes_orig + shift) / (DT / ms)).astype(np.int32)

        if not any(np.diff(timebins) == 0):
            return spikes_orig


def collect_stimulus_pairs():
    """Collect pairs of input stimuli close in target distance"""
    DELTA_DISTANCE = 0.01
    collected_pairs = defaultdict(list)

    while True:

        spikes_u = generate_poisson(DURATION / ms, STIMULUS_POISSON_RATE / Hz / 1e3)
        spikes_v = generate_poisson(DURATION / ms, STIMULUS_POISSON_RATE / Hz / 1e3)

        conv_u = gaussian_convolution(TS, spikes_u, tau=5)
        conv_v = gaussian_convolution(TS, spikes_v, tau=5)

        normed_distance = distance(conv_u, conv_v, DT / ms) / (DURATION / ms)

        for target_distance in TARGET_DISTANCES:
            if (
                abs(normed_distance - target_distance) < DELTA_DISTANCE
                and len(collected_pairs[target_distance]) < N_PAIRS
            ):
                collected_pairs[target_distance].append((spikes_u, spikes_v))

        # stop if we have enough pairs collected
        if len(collected_pairs) == len(TARGET_DISTANCES) and all(
            np.array(list(map(len, collected_pairs.values()))) == N_PAIRS
        ):
            break

    return collected_pairs


def get_neurons():
    neurons = NeuronGroup(
        N_NEURONS,
        """
        tau_mem : second (shared, constant)
        tau_refrac : second (constant)
        v_reset : volt (shared, constant)
        v_thresh : volt (shared, constant)
        I_b : ampere (shared, constant)
        tau_stimulus : second (constant)
        I_syn_ee_synapses : ampere
        I_syn_ei_synapses : ampere
        I_syn_ie_synapses : ampere
        I_syn_ii_synapses : ampere
        dI_stimulus/dt = -I_stimulus/tau_stimulus : ampere
        R_in : ohm
        dv/dt = -v/tau_mem + (I_syn_ee_synapses +
                              I_syn_ei_synapses +
                              I_syn_ie_synapses +
                              I_syn_ii_synapses)*R_in/tau_mem
                           + I_b*R_in/tau_mem
                           + I_stimulus*R_in/tau_mem: volt (unless refractory)
        x_pos : 1 (constant)
        y_pos : 1 (constant)
        z_pos : 1 (constant)
        """,
        threshold="v>v_thresh",
        reset="v=v_reset",
        refractory="tau_refrac",
        method="exact",
        name="neurons",
    )

    neurons.tau_mem = 30 * ms
    neurons.v_thresh = V_THRESH
    neurons.v_reset = V_RESET

    neurons.I_b = 13.5 * nA

    neurons.v[:] = (
        np.random.uniform(V_RESET / mV, V_THRESH / mV, size=len(neurons)) * mV
    )

    neurons.R_in = 1 * Mohm

    # to randomly assign excitatory and inhibitory neurons later
    indices = np.arange(len(neurons))
    np.random.shuffle(indices)

    # a column of 15x3x3 neurons
    neurons.x_pos = indices % 3
    neurons.y_pos = (indices // 3) % 3
    neurons.z_pos = indices // 9

    return neurons


def get_synapses(name, source, target, C, l, tau_I, A, U, D, F, delay):
    synapses_eqs = """
    A : ampere (constant)
    U : 1 (constant)
    tau_I : second (shared, constant)
    D : second (constant)
    dx/dt =  z/D       : 1 (clock-driven) # recovered
    dy/dt = -y/tau_I   : 1 (clock-driven) # active
    z = 1 - x - y      : 1                # inactive
    I_syn_{}_post = A*y : ampere (summed)
    """.format(name)

    if F:
        synapses_eqs += """
        du/dt = -u/F : 1 (clock-driven)
        F : second (constant)
        """

        synapses_action = """
        u += U*(1-u)
        y += u*x # important: update y first
        x += -u*x
        """
    else:
        synapses_action = """
        y += U*x # important: update y first
        x += -U*x
        """

    synapses = Synapses(
        source,
        target,
        model=synapses_eqs,
        on_pre=synapses_action,
        method="exact",
        name=name,
        delay=delay,
    )

    synapses.connect(
        p=f"{C} * exp(-((x_pos_pre-x_pos_post)**2 + (y_pos_pre-y_pos_post)**2 + (z_pos_pre-z_pos_post)**2)/{l}**2)"
    )

    N_syn = len(synapses)

    synapses.tau_I = tau_I

    synapses.A[:] = np.sign(A / nA) * np.random.gamma(1, abs(A / nA), size=N_syn) * nA

    synapses.U[:] = np.random.normal(U, 0.5, size=N_syn)
    # paper samples from uniform, we take the mean
    synapses.U[:][synapses.U < 0] = U

    synapses.D[:] = np.random.normal(D / ms, 0.5 * D / ms, size=N_syn) * ms
    # paper samples from uniform, we take the mean
    synapses.D[:][synapses.D / ms <= 0] = D

    # start fully recovered
    synapses.x = 1

    if F:
        synapses.F[:] = np.random.normal(F / ms, 0.5 * F / ms, size=N_syn) * ms
        # paper samples from uniform, we take the mean
        synapses.F[:][synapses.F / ms <= 0] = F

    return synapses


def sim(net, spike_times):
    """Run network with given stimulus

    Redraws initial membrane voltages

    net -- the network to simulate
    spike_times -- the stimulus to inject
    """
    net.restore()

    net["neurons"].v = (
        np.random.uniform(V_RESET / mV, V_THRESH / mV, size=len(neurons)) * mV
    )
    net["stimulus"].set_spikes([0] * len(spike_times), spike_times * ms)

    net.run(DURATION)

    spikes = list(net["spike_monitor_exc"].spike_trains().values()) + list(
        net["spike_monitor_inh"].spike_trains().values()
    )

    liquid_states = np.array(
        [exponential_convolution(TS, st / ms, tau=30) for st in spikes]
    )

    return liquid_states

if __name__ == '__main__':
    neurons = get_neurons()

    N_exc = int(0.8 * len(neurons))

    exc_neurons = neurons[:N_exc]
    exc_neurons.tau_refrac = 3 * ms
    exc_neurons.tau_stimulus = 3 * ms

    inh_neurons = neurons[N_exc:]
    inh_neurons.tau_refrac = 2 * ms
    inh_neurons.tau_stimulus = 6 * ms

    l_lambda = 2

    ee_synapses = get_synapses(
        "ee_synapses",
        exc_neurons,
        exc_neurons,
        C=0.3,
        l=l_lambda,
        tau_I=3 * ms,
        A=30 * nA,
        U=0.5,
        D=1.1 * second,
        F=0.05 * second,
        delay=1.5 * ms,
    )
    ei_synapses = get_synapses(
        "ei_synapses",
        exc_neurons,
        inh_neurons,
        C=0.2,
        l=l_lambda,
        tau_I=3 * ms,
        A=60 * nA,
        U=0.05,
        D=0.125 * second,
        F=1.2 * second,
        delay=0.8 * ms,
    )
    ie_synapses = get_synapses(
        "ie_synapses",
        inh_neurons,
        exc_neurons,
        C=0.4,
        l=l_lambda,
        tau_I=6 * ms,
        A=-19 * nA,
        U=0.25,
        D=0.7 * second,
        F=0.02 * second,
        delay=0.8 * ms,
    )
    ii_synapses = get_synapses(
        "ii_synapses",
        inh_neurons,
        inh_neurons,
        C=0.1,
        l=l_lambda,
        tau_I=6 * ms,
        A=-19 * nA,
        U=0.32,
        D=0.144 * second,
        F=0.06 * second,
        delay=0.8 * ms,
    )

    # place holder for stimulus
    stimulus = SpikeGeneratorGroup(1, [], [] * ms, name="stimulus")

    spike_monitor_stimulus = SpikeMonitor(stimulus)

    static_synapses_exc = Synapses(
        stimulus,
        exc_neurons,
        "A : ampere (shared, constant)",
        on_pre="I_stimulus += A"
    )
    static_synapses_exc.connect(p=1)
    static_synapses_exc.A = 18 * nA

    static_synapses_inh = Synapses(
        stimulus,
        inh_neurons,
        "A : ampere (shared, constant)",
        on_pre="I_stimulus += A"
    )
    static_synapses_inh.connect(p=1)
    static_synapses_inh.A = 9 * nA

    spike_monitor_exc = SpikeMonitor(exc_neurons, name="spike_monitor_exc")
    spike_monitor_inh = SpikeMonitor(inh_neurons, name="spike_monitor_inh")

    defaultclock.dt = DT

    net = Network(
        [
            neurons,
            ee_synapses,
            ei_synapses,
            ie_synapses,
            ii_synapses,
            static_synapses_exc,
            static_synapses_inh,
            stimulus,
            spike_monitor_exc,
            spike_monitor_inh,
        ]
    )
    net.store()

    collected_pairs = collect_stimulus_pairs()

    # add only jittered pairs
    collected_pairs[0] = [
        [generate_poisson(DURATION / ms, STIMULUS_POISSON_RATE / Hz / 1e3)] * 2
        for _ in range(N_PAIRS)
    ]

    def map_sim(spike_times):
        """Wrapper to sim for multiprocessing
        """
        return sim(net, spike_times)

    result = defaultdict(list)
    # loop over all distances and Poisson stimulus pairs
    for d, pairs in collected_pairs.items():

        with multiprocessing.Pool() as p:
            states_u = p.map(map_sim, [p[0] for p in pairs])
            states_v = p.map(map_sim, [p[1] for p in pairs])

        for liquid_states_u, liquid_states_v in zip(states_u, states_v):
            ed = euclidian_distance(liquid_states_u, liquid_states_v)
            result[d].append(ed)
    # plot
    fig, ax = plt.subplots(figsize=(5, 5))

    linestyles = ["dashed", (0, (8, 6, 1, 6)), (0, (5, 10)), "solid"]

    for d, ls in zip(TARGET_DISTANCES + [0], linestyles):

        eds = result[d]
        eds = np.array(eds)

        ax.plot(
            TS / 1000, np.mean(eds, axis=0), label=f"d(u,v)={d}", linestyle=ls, color="k"
        )

    ax.set_xlabel("time [sec]")
    ax.set_ylabel("state distance")

    ax.set_xlim(0, 0.5)
    ax.set_ylim(0, 2.5)

    ax.legend(loc="upper center", fontsize="x-large", frameon=False)

    plt.show()
../_images/frompapers.Maass_Natschlaeger_Markram_2002.1.png