Example: Clopath_et_al_2010_no_homeostasis

Note

You can launch an interactive, editable version of this example without installing any local files using the Binder service (although note that at some times this may be slow or fail to open): launchbinder

This code contains an adapted version of the voltage-dependent triplet STDP rule from: Clopath et al., Connectivity reflects coding: a model of voltage-based STDP with homeostasis, Nature Neuroscience, 2010 (http://dx.doi.org/10.1038/nn.2479)

The plasticity rule is adapted for a leaky integrate & fire model in Brian2. In particular, the filters v_lowpass1 and v_lowpass2 are incremented by a constant at every post-synaptic spike time, to compensate for the lack of an actual spike in the integrate & fire model. Moreover, this script does not include the homeostatic metaplasticity.

As an illustration of the Rule, we simulate a plot analogous to figure 2b in the above article, showing the frequency dependence of plasticity as measured in: Sjöström et al., Rate, timing and cooperativity jointly determine cortical synaptic plasticity. Neuron, 2001. We would like to note that the parameters have been chosen arbitrarily to qualitatively reproduce the behavior of the original works, but need additional fitting.

We kindly ask to cite both articles when using the model presented below.

This code was written by Jacopo Bono, 12/2015

from brian2 import *
################################################################################
# PLASTICITY MODEL
################################################################################

#### Plasticity Parameters

V_rest = -70.*mV        # resting potential
V_thresh = -50.*mV      # spiking threshold
Theta_low = V_rest      # depolarization threshold for plasticity
x_reset = 1.            # spike trace reset value
taux = 15.*ms           # spike trace time constant
A_LTD = 1.5e-4          # depression amplitude
A_LTP = 1.5e-2          # potentiation amplitude
tau_lowpass1 = 40*ms    # timeconstant for low-pass filtered voltage
tau_lowpass2 = 30*ms    # timeconstant for low-pass filtered voltage



#### Plasticity Equations


# equations executed at every timestep
Syn_model = '''
            w_ampa:1                # synaptic weight (ampa synapse)
            '''

# equations executed only when a presynaptic spike occurs
Pre_eq = '''
         g_ampa_post += w_ampa*ampa_max_cond                                                             # increment synaptic conductance
         w_minus = A_LTD*(v_lowpass1_post/mV - Theta_low/mV)*int(v_lowpass1_post/mV - Theta_low/mV > 0)  # synaptic depression
         w_ampa = clip(w_ampa-w_minus,0,w_max)                                                           # hard bounds
         '''

# equations executed only when a postsynaptic spike occurs
Post_eq = '''
          v_lowpass1 += 10*mV                                                                                        # mimics the depolarisation by a spike
          v_lowpass2 += 10*mV                                                                                        # mimics the depolarisation by a spike
          w_plus = A_LTP*x_trace_pre*(v_lowpass2_post/mV - Theta_low/mV)*int(v_lowpass2_post/mV - Theta_low/mV > 0)  # synaptic potentiation
          w_ampa = clip(w_ampa+w_plus,0,w_max)                                                                       # hard bounds
          '''

################################################################################
# I&F Parameters and equations
################################################################################

#### Neuron parameters

gleak = 30.*nS                  # leak conductance
C = 300.*pF                     # membrane capacitance
tau_AMPA = 2.*ms                # AMPA synaptic timeconstant
E_AMPA = 0.*mV                  # reversal potential AMPA

ampa_max_cond = 5.e-10*siemens  # Ampa maximal conductance
w_max = 1.                      # maximal ampa weight


#### Neuron Equations

eqs_neurons = '''
dv/dt = (gleak*(V_rest-v) + I_ext + I_syn)/C: volt      # voltage
dv_lowpass1/dt = (v-v_lowpass1)/tau_lowpass1 : volt     # low-pass filter of the voltage
dv_lowpass2/dt = (v-v_lowpass2)/tau_lowpass2 : volt     # low-pass filter of the voltage
I_ext : amp                                             # external current
I_syn = g_ampa*(E_AMPA-v): amp                          # synaptic current
dg_ampa/dt = -g_ampa/tau_AMPA : siemens                 # synaptic conductance
dx_trace/dt = -x_trace/taux :1                          # spike trace
'''



################################################################################
# Simulation
################################################################################

#### Parameters

defaultclock.dt = 100.*us                           # timestep
Nr_neurons = 2                                      # Number of neurons
rate_array = [1., 5., 10., 15., 20., 30., 50.]*Hz   # Rates
init_weight = 0.5                                   # initial synaptic weight
reps = 15                                           # Number of pairings

#### Create neuron objects

Nrns = NeuronGroup(Nr_neurons, eqs_neurons, threshold='v>V_thresh',
                   reset='v=V_rest;x_trace+=x_reset/(taux/ms)', method='euler')#

#### create Synapses

Syn = Synapses(Nrns, Nrns,
               model=Syn_model,
               on_pre=Pre_eq,
               on_post=Post_eq
               )

Syn.connect('i!=j')

#### Monitors and storage
weight_result = np.zeros((2, len(rate_array)))               # to save the final weights

#### Run

# loop over rates
for jj, rate in enumerate(rate_array):

    # Calculate interval between pairs
    pair_interval = 1./rate - 10*ms
    print('Starting simulations for %s' % rate)

    # Initial values
    Nrns.v = V_rest
    Nrns.v_lowpass1 = V_rest
    Nrns.v_lowpass2 = V_rest
    Nrns.I_ext = 0*amp
    Nrns.x_trace = 0.
    Syn.w_ampa = init_weight

    # loop over pairings
    for ii in range(reps):
        # 1st SPIKE
        Nrns.v[0] = V_thresh + 1*mV
        # 2nd SPIKE
        run(10*ms)
        Nrns.v[1] = V_thresh + 1*mV
        # run
        run(pair_interval)
        print('Pair %d out of %d' % (ii+1, reps))

    #store weight changes
    weight_result[0, jj] = 100.*Syn.w_ampa[0]/init_weight
    weight_result[1, jj] = 100.*Syn.w_ampa[1]/init_weight

################################################################################
# Plots
################################################################################

stitle = 'Pairings'
scolor = 'k'

figure(figsize=(8, 5))
plot(rate_array, weight_result[0,:], '-', linewidth=2, color=scolor)
plot(rate_array, weight_result[1,:], ':', linewidth=2, color=scolor)
xlabel('Pairing frequency [Hz]', fontsize=22)
ylabel('Normalised Weight [%]', fontsize=22)
legend(['Pre-Post', 'Post-Pre'], loc='best')
subplots_adjust(bottom=0.2, left=0.15, right=0.95, top=0.85)
title(stitle)
show()
../_images/frompapers.Clopath_et_al_2010_no_homeostasis.1.png