Example: Brunel_2000

Note

You can launch an interactive, editable version of this example without installing any local files using the Binder service (although note that at some times this may be slow or fail to open): launchbinder

Fig. 8 from:

Brunel, N. Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons. J Comput Neurosci 8, 183–208 (2000). https://doi.org/10.1023/A:1008925309027

Inspired by http://neuronaldynamics.epfl.ch

Sebastian Schmitt, 2022

import random
from brian2 import *
import matplotlib.pyplot as plt


def sim(g, nu_ext_over_nu_thr, sim_time, ax_spikes, ax_rates, rate_tick_step):
    """
    g -- relative inhibitory to excitatory synaptic strength
    nu_ext_over_nu_thr -- ratio of external stimulus rate to threshold rate
    sim_time -- simulation time
    ax_spikes -- matplotlib axes to plot spikes on
    ax_rates -- matplotlib axes to plot rates on
    rate_tick_step -- step size for rate axis ticks
    """

    # network parameters
    N_E = 10000
    gamma = 0.25
    N_I = round(gamma * N_E)
    N = N_E + N_I
    epsilon = 0.1
    C_E = epsilon * N_E
    C_ext = C_E

    # neuron parameters
    tau = 20 * ms
    theta = 20 * mV
    V_r = 10 * mV
    tau_rp = 2 * ms

    # synapse parameters
    J = 0.1 * mV
    D = 1.5 * ms

    # external stimulus
    nu_thr = theta / (J * C_E * tau)

    defaultclock.dt = 0.1 * ms

    neurons = NeuronGroup(N,
                          """
                          dv/dt = -v/tau : volt (unless refractory)
                          """,
                          threshold="v > theta",
                          reset="v = V_r",
                          refractory=tau_rp,
                          method="exact",
    )

    excitatory_neurons = neurons[:N_E]
    inhibitory_neurons = neurons[N_E:]

    exc_synapses = Synapses(excitatory_neurons, target=neurons, on_pre="v += J", delay=D)
    exc_synapses.connect(p=epsilon)

    inhib_synapses = Synapses(inhibitory_neurons, target=neurons, on_pre="v += -g*J", delay=D)
    inhib_synapses.connect(p=epsilon)

    nu_ext = nu_ext_over_nu_thr * nu_thr

    external_poisson_input = PoissonInput(
        target=neurons, target_var="v", N=C_ext, rate=nu_ext, weight=J
    )

    rate_monitor = PopulationRateMonitor(neurons)

    # record from the first 50 excitatory neurons
    spike_monitor = SpikeMonitor(neurons[:50])

    run(sim_time, report='text')

    ax_spikes.plot(spike_monitor.t / ms, spike_monitor.i, "|")
    ax_rates.plot(rate_monitor.t / ms, rate_monitor.rate / Hz)

    ax_spikes.set_yticks([])

    ax_spikes.set_xlim(*params["t_range"])
    ax_rates.set_xlim(*params["t_range"])

    ax_rates.set_ylim(*params["rate_range"])
    ax_rates.set_xlabel("t [ms]")

    ax_rates.set_yticks(
        np.arange(
            params["rate_range"][0], params["rate_range"][1] + rate_tick_step, rate_tick_step
        )
    )

    plt.subplots_adjust(hspace=0)


parameters = {
    "A": {
        "g": 3,
        "nu_ext_over_nu_thr": 2,
        "t_range": [500, 600],
        "rate_range": [0, 6000],
        "rate_tick_step": 1000,
    },
    "B": {
        "g": 6,
        "nu_ext_over_nu_thr": 4,
        "t_range": [1000, 1200],
        "rate_range": [0, 400],
        "rate_tick_step": 100,
    },
    "C": {
        "g": 5,
        "nu_ext_over_nu_thr": 2,
        "t_range": [1000, 1200],
        "rate_range": [0, 200],
        "rate_tick_step": 50,
    },
    "D": {
        "g": 4.5,
        "nu_ext_over_nu_thr": 0.9,
        "t_range": [1000, 1200],
        "rate_range": [0, 250],
        "rate_tick_step": 50,
    },
}

for panel, params in parameters.items():

    fig = plt.figure(figsize=(4, 5))
    fig.suptitle(panel)

    gs = fig.add_gridspec(ncols=1, nrows=2, height_ratios=[4, 1])

    ax_spikes, ax_rates = gs.subplots(sharex="col")

    sim(
        params["g"],
        params["nu_ext_over_nu_thr"],
        params["t_range"][1] * ms,
        ax_spikes,
        ax_rates,
        params["rate_tick_step"],
    )

plt.show()
../_images/frompapers.Brunel_2000.1.png ../_images/frompapers.Brunel_2000.2.png ../_images/frompapers.Brunel_2000.3.png ../_images/frompapers.Brunel_2000.4.png