Units
Casting rules
In Brian 1, a distinction is made between scalars and numpy arrays (including scalar arrays): Scalars could be multiplied with a unit, resulting in a Quantity object whereas the multiplication of an array with a unit resulted in a (unitless) array. Accordingly, scalars were considered as dimensionless quantities for the purpose of unit checking (e.g.. 1 + 1 * mV raised an error) whereas arrays were not (e.g. array(1) + 1 * mV resulted in 1.001 without any errors). Brian 2 no longer makes this distinction and treats both scalars and arrays as dimensionless for unit checking and make all operations involving quantities return a quantity.:
>>> 1 + 1*second
Traceback (most recent call last):
...
DimensionMismatchError: Cannot calculate 1. s + 1, units do not match (units are second and 1).
>>> np.array([1]) + 1*second
Traceback (most recent call last):
...
DimensionMismatchError: Cannot calculate 1. s + [1], units do not match (units are second and 1).
>>> 1*second + 1*second
2. * second
>>> np.array([1])*second + 1*second
array([ 2.]) * second
As one exception from this rule, a scalar or array 0
is considered as having
“any unit”, i.e. 0 + 1 * second
will result in 1 * second
without a
dimension mismatch error and 0 == 0 * mV
will evaluate to True
. This
seems reasonable from a mathematical viewpoint and makes some sources of error
disappear. For example, the Python builtin sum
(not numpy’s version) adds
the value of the optional argument start
, which defaults to 0, to its
main argument. Without this exception, sum([1 * mV, 2 * mV])
would therefore
raise an error.
The above rules also apply to all comparisons (e.g. ==
or <
) with one
further exception: inf
and -inf
also have “any unit”, therefore an
expression like v <= inf
will never raise an exception (and always return
True
).
Functions and units
ndarray methods
All methods that make sense on quantities should work, i.e. they check for the correct units of their arguments and return quantities with units were appropriate. Most of the methods are overwritten using thin function wrappers:
wrap_function_keep_dimension
:Strips away the units before giving the array to the method of
ndarray
, then reattaches the unit to the result (examples: sum, mean, max)wrap_function_change_dimension
:Changes the dimensions in a simple way that is independent of function arguments, the shape of the array, etc. (examples: sqrt, var, power)
wrap_function_dimensionless
:Raises an error if the method is called on a quantity with dimensions (i.e. it works on dimensionless quantities).
List of methods
all
, any
, argmax
, argsort
, clip
, compress
, conj
, conjugate
,
copy
, cumsum
, diagonal
, dot
, dump
, dumps
, fill
, flatten
, getfield
,
item
, itemset
, max
, mean
, min
, newbyteorder
, nonzero
, prod
, ptp
,
put
, ravel
, repeat
, reshape
, round
, searchsorted
, setasflat
, setfield
,
setflags
, sort
, squeeze
, std
, sum
, take
, tolist
, trace
, transpose
,
var
, view
Notes
Methods directly working on the internal data buffer (
setfield
,getfield
,newbyteorder
) ignore the dimensions of the quantity.The type of a quantity cannot be int, therefore
astype
does not quite work when trying to convert the array into integers.choose
is only defined for integer arrays and therefore does not worktostring
andtofile
only return/save the pure array data without the unit (but you can usedump
ordumps
to pickle a quantity array)resize
does not work:ValueError: cannot resize this array: it does not own its data
cumprod
would result in different dimensions for different elements and is therefore forbiddenitem
returns a pure Python float by definitionitemset
does not check for units
Numpy ufuncs
All of the standard numpy ufuncs (functions that operate element-wise on numpy
arrays) are supported, meaning that they check for correct units and return
appropriate arrays. These functions are often called implicitly, for example
when using operators like <
or **
.
- Math operations:
add
,subtract
,multiply
,divide
,logaddexp
,logaddexp2
,true_divide
,floor_divide
,negative
,power
,remainder
,mod
,fmod
,absolute
,rint
,sign
,conj
,conjugate
,exp
,exp2
,log
,log2
,log10
,expm1
,log1p
,sqrt
,square
,reciprocal
,ones_like
- Trigonometric functions:
sin
,cos
,tan
,arcsin
,arccos
,arctan
,arctan2
,hypot
,sinh
,cosh
,tanh
,arcsinh
,arccosh
,arctanh
,deg2rad
,rad2deg
- Bitwise functions:
bitwise_and
,bitwise_or
,bitwise_xor
,invert
,left_shift
,right_shift
- Comparison functions:
greater
,greater_equal
,less
,less_equal
,not_equal
,equal
,logical_and
,logical_or
,logical_xor
,logical_not
,maximum
,minimum
- Floating functions:
isreal
,iscomplex
,isfinite
,isinf
,isnan
,floor
,ceil
,trunc
,fmod
Not taken care of yet: signbit
, copysign
, nextafter
, modf
, ldexp
, frexp
Notes
Everything involving
log
orexp
, as well as trigonometric functions only works on dimensionless array (forarctan2
andhypot
this is questionable, though)Unit arrays can only be raised to a scalar power, not to an array of exponents as this would lead to differing dimensions across entries. For simplicity, this is enforced even for dimensionless quantities.
Bitwise functions never works on quantities (numpy will by itself throw a
TypeError
because they are floats not integers).All comparisons only work for matching dimensions (with the exception of always allowing comparisons to 0) and return a pure boolean array.
All logical functions treat quantities as boolean values in the same way as floats are treated as boolean: Any non-zero value is True.
Numpy functions
Many numpy functions are functional versions of ndarray methods (e.g. mean
,
sum
, clip
). They therefore work automatically when called on quantities,
as numpy propagates the call to the respective method.
There are some functions in numpy that do not propagate their call to the
corresponding method (because they use np.asarray instead of np.asanyarray,
which might actually be a bug in numpy): trace
, diagonal
, ravel
,
dot
. For these, wrapped functions in unitsafefunctions.py
are provided.
Wrapped numpy functions in unitsafefunctions.py
These functions are thin wrappers around the numpy functions to correctly check for units and return quantities when appropriate:
log
, exp
, sin
, cos
, tan
, arcsin
, arccos
, arctan
, sinh
,
cosh
, tanh
, arcsinh
, arccosh
, arctanh
, diagonal
, ravel
, trace
,
dot
numpy functions that work unchanged
This includes all functional counterparts of the methods mentioned above (with the exceptions mentioned above). Some other functions also work correctly, as they are only using functions/methods that work with quantities:
numpy functions that return a pure numpy array instead of quantities
arange
cov
random.permutation
histogram
,histogram2d
cross
,inner
,outer
where
numpy functions that do something wrong
insert
,delete
(return a quantity array but without units)correlate
(returns a quantity with wrong units)histogramdd
(raises aDimensionMismatchError
)
other unsupported functions
Functions in numpy
’s subpackages such as linalg
are not supported and will
either not work with units, or remove units from their inputs.
User-defined functions and units
For performance and simplicity reasons, code within the Brian core does not use Quantity objects but unitless numpy arrays instead. See Adding support for new functions for details on how to make use user-defined functions with Brian’s unit system.