import sympy as sp
from brian2.parsing.sympytools import str_to_sympy, sympy_to_str
from .base import (
StateUpdateMethod,
UnsupportedEquationsException,
extract_method_options,
)
__all__ = ["exponential_euler"]
[docs]def get_conditionally_linear_system(eqs, variables=None):
"""
Convert equations into a linear system using sympy.
Parameters
----------
eqs : `Equations`
The model equations.
Returns
-------
coefficients : dict of (sympy expression, sympy expression) tuples
For every variable x, a tuple (M, B) containing the coefficients M and
B (as sympy expressions) for M * x + B
Raises
------
ValueError
If one of the equations cannot be converted into a M * x + B form.
Examples
--------
>>> from brian2 import Equations
>>> eqs = Equations('''
... dv/dt = (-v + w**2.0) / tau : 1
... dw/dt = -w / tau : 1
... ''')
>>> system = get_conditionally_linear_system(eqs)
>>> print(system['v'])
(-1/tau, w**2.0/tau)
>>> print(system['w'])
(-1/tau, 0)
"""
diff_eqs = eqs.get_substituted_expressions(variables)
coefficients = {}
for name, expr in diff_eqs:
var = sp.Symbol(name, real=True)
s_expr = str_to_sympy(expr.code, variables).expand()
if s_expr.has(var):
# Factor out the variable
s_expr = sp.collect(s_expr, var, evaluate=False)
if len(s_expr) > 2 or var not in s_expr:
raise ValueError(
f"The expression '{expr}', defining the variable "
f"'{name}', could not be separated into linear "
"components."
)
coefficients[name] = (s_expr[var], s_expr.get(1, 0))
else:
coefficients[name] = (0, s_expr)
return coefficients
[docs]class ExponentialEulerStateUpdater(StateUpdateMethod):
"""
A state updater for conditionally linear equations, i.e. equations where
each variable only depends linearly on itself (but possibly non-linearly
on other variables). Typical Hodgkin-Huxley equations fall into this
category, it is therefore the default integration method used in the
GENESIS simulator, for example.
"""
[docs] def __call__(self, equations, variables=None, method_options=None):
extract_method_options(method_options, {})
if equations.is_stochastic:
raise UnsupportedEquationsException(
"Cannot solve stochastic equations with this state updater."
)
# Try whether the equations are conditionally linear
try:
system = get_conditionally_linear_system(equations, variables)
except ValueError:
raise UnsupportedEquationsException(
"Can only solve conditionally linear systems with this state updater."
)
code = []
for var, (A, B) in system.items():
s_var = sp.Symbol(var)
s_dt = sp.Symbol("dt")
if A == 0:
update_expression = s_var + s_dt * B
elif B != 0:
BA = B / A
# Avoid calculating B/A twice
BA_name = f"_BA_{var}"
s_BA = sp.Symbol(BA_name)
code += [f"{BA_name} = {sympy_to_str(BA)}"]
update_expression = (s_var + s_BA) * sp.exp(A * s_dt) - s_BA
else:
update_expression = s_var * sp.exp(A * s_dt)
# The actual update step
code += [f"_{var} = {sympy_to_str(update_expression)}"]
# Replace all the variables with their updated value
for var in system:
code += [f"{var} = _{var}"]
return "\n".join(code)
# Copy doc from parent class
__call__.__doc__ = StateUpdateMethod.__call__.__doc__
exponential_euler = ExponentialEulerStateUpdater()