"""
TODO: rewrite this (verbatim from Brian 1.x), more efficiency
"""
import numpy as np
__all__ = ["DynamicArray", "DynamicArray1D"]
[docs]def getslices(shape, from_start=True):
if from_start:
return tuple(slice(0, x) for x in shape)
else:
return tuple(slice(x, None) for x in shape)
[docs]class DynamicArray:
"""
An N-dimensional dynamic array class
The array can be resized in any dimension, and the class will handle
allocating a new block of data and copying when necessary.
.. warning::
The data will NOT be contiguous for >1D arrays. To ensure this, you will
either need to use 1D arrays, or to copy the data, or use the shrink
method with the current size (although note that in both cases you
negate the memory and efficiency benefits of the dynamic array).
Initialisation arguments:
``shape``, ``dtype``
The shape and dtype of the array to initialise, as in Numpy. For 1D
arrays, shape can be a single int, for ND arrays it should be a tuple.
``factor``
The resizing factor (see notes below). Larger values tend to lead to
more wasted memory, but more computationally efficient code.
``use_numpy_resize``, ``refcheck``
Normally, when you resize the array it creates a new array and copies
the data. Sometimes, it is possible to resize an array without a copy,
and if this option is set it will attempt to do this. However, this can
cause memory problems if you are not careful so the option is off by
default. You need to ensure that you do not create slices of the array
so that no references to the memory exist other than the main array
object. If you are sure you know what you're doing, you can switch this
reference check off. Note that resizing in this way is only done if you
resize in the first dimension.
The array is initialised with zeros. The data is stored in the attribute
``data`` which is a Numpy array.
Some numpy methods are implemented and can work directly on the array object,
including ``len(arr)``, ``arr[...]`` and ``arr[...]=...``. In other cases,
use the ``data`` attribute.
Examples
--------
>>> x = DynamicArray((2, 3), dtype=int)
>>> x[:] = 1
>>> x.resize((3, 3))
>>> x[:] += 1
>>> x.resize((3, 4))
>>> x[:] += 1
>>> x.resize((4, 4))
>>> x[:] += 1
>>> x.data[:] = x.data**2
>>> x.data
array([[16, 16, 16, 4],
[16, 16, 16, 4],
[ 9, 9, 9, 4],
[ 1, 1, 1, 1]])
Notes
-----
The dynamic array returns a ``data`` attribute which is a view on the larger
``_data`` attribute. When a resize operation is performed, and a specific
dimension is enlarged beyond the size in the ``_data`` attribute, the size
is increased to the larger of ``cursize*factor`` and ``newsize``. This
ensures that the amortized cost of increasing the size of the array is O(1).
"""
def __init__(
self, shape, dtype=float, factor=2, use_numpy_resize=False, refcheck=True
):
if isinstance(shape, int):
shape = (shape,)
self._data = np.zeros(shape, dtype=dtype)
self.data = self._data
self.dtype = dtype
self.shape = self._data.shape
self.factor = factor
self.use_numpy_resize = use_numpy_resize
self.refcheck = refcheck
[docs] def resize(self, newshape):
"""
Resizes the data to the new shape, which can be a different size to the
current data, but should have the same rank, i.e. same number of
dimensions.
"""
datashapearr = np.array(self._data.shape)
newshapearr = np.array(newshape)
resizedimensions = newshapearr > datashapearr
if resizedimensions.any():
# resize of the data is needed
minnewshapearr = datashapearr # .copy()
dimstoinc = minnewshapearr[resizedimensions]
incdims = np.array(dimstoinc * self.factor, dtype=int)
newdims = np.maximum(incdims, dimstoinc + 1)
minnewshapearr[resizedimensions] = newdims
newshapearr = np.maximum(newshapearr, minnewshapearr)
do_resize = False
if self.use_numpy_resize and self._data.flags["C_CONTIGUOUS"]:
if sum(resizedimensions) == resizedimensions[0]:
do_resize = True
if do_resize:
self.data = None
self._data.resize(tuple(newshapearr), refcheck=self.refcheck)
else:
newdata = np.zeros(tuple(newshapearr), dtype=self.dtype)
slices = getslices(self._data.shape)
newdata[slices] = self._data
self._data = newdata
elif (newshapearr < self.shape).any():
# If we reduced the size, set the no longer used memory to 0
self._data[getslices(newshape, from_start=False)] = 0
# Reduce our view to the requested size if necessary
self.data = self._data[getslices(newshape, from_start=True)]
self.shape = self.data.shape
[docs] def resize_along_first(self, newshape):
new_dimension = newshape[0]
if new_dimension > self._data.shape[0]:
new_size = np.maximum(self._data.shape[0] * self.factor, new_dimension + 1)
final_new_shape = np.array(self._data.shape)
final_new_shape[0] = new_size
if self.use_numpy_resize and self._data.flags["C_CONTIGUOUS"]:
self.data = None
self._data.resize(tuple(final_new_shape), refcheck=self.refcheck)
else:
newdata = np.zeros(tuple(final_new_shape), dtype=self.dtype)
slices = getslices(self._data.shape)
newdata[slices] = self._data
self._data = newdata
elif newshape < self.shape:
# If we reduced the size, set the no longer used memory to 0
self._data[new_dimension:] = 0
# Reduce our view to the requested size if necessary
self.data = self._data[:new_dimension]
self.shape = newshape
[docs] def shrink(self, newshape):
"""
Reduces the data to the given shape, which should be smaller than the
current shape. `resize` can also be used with smaller values, but
it will not shrink the allocated memory, whereas `shrink` will
reallocate the memory. This method should only be used infrequently, as
if it is used frequently it will negate the computational efficiency
benefits of the DynamicArray.
"""
if isinstance(newshape, int):
newshape = (newshape,)
shapearr = np.array(self.shape)
newshapearr = np.array(newshape)
if (newshapearr <= shapearr).all():
newdata = np.zeros(newshapearr, dtype=self.dtype)
newdata[:] = self._data[getslices(newshapearr)]
self._data = newdata
self.shape = tuple(newshapearr)
self.data = self._data
def __getitem__(self, item):
return self.data.__getitem__(item)
def __setitem__(self, item, val):
self.data.__setitem__(item, val)
def __len__(self):
return len(self.data)
def __str__(self):
return self.data.__str__()
def __repr__(self):
return self.data.__repr__()
[docs]class DynamicArray1D(DynamicArray):
"""
Version of `DynamicArray` with specialised ``resize`` method designed
to be more efficient.
"""
[docs] def resize(self, newshape):
(datashape,) = self._data.shape
if newshape > datashape:
(shape,) = self.shape # we work with int shapes only
newdatashape = max(newshape, int(shape * self.factor) + 1)
if self.use_numpy_resize and self._data.flags["C_CONTIGUOUS"]:
self.data = None
self._data.resize(newdatashape, refcheck=self.refcheck)
else:
newdata = np.zeros(newdatashape, dtype=self.dtype)
newdata[:shape] = self.data
self._data = newdata
elif newshape < self.shape[0]:
# If we reduced the size, set the no longer used memory to 0
self._data[newshape:] = 0
# Reduce our view to the requested size if necessary
self.data = self._data[:newshape]
self.shape = (newshape,)