# Example: Brette_Guigon_2003¶

## Reliability of spike timing¶

Adapted from Fig. 10D,E of Brette R and E Guigon (2003). Reliability of Spike Timing Is a General Property of Spiking Model Neurons. Neural Computation 15, 279-308.

This shows that reliability of spike timing is a generic property of spiking neurons, even those that are not leaky. This is a non-physiological model which can be leaky or anti-leaky depending on the sign of the input I.

All neurons receive the same fluctuating input, scaled by a parameter p that varies across neurons. This shows:

1. reproducibility of spike timing
2. robustness with respect to deterministic changes (parameter)
3. increased reproducibility in the fluctuation-driven regime (input crosses the threshold)
from brian2 import *

N = 500
tau = 33*ms
taux = 20*ms
sigma = 0.02

eqs_input = '''
dx/dt = -x/taux + (2/taux)**.5*xi : 1
'''

eqs = '''
dv/dt = (v*I + 1)/tau + sigma*(2/tau)**.5*xi : 1
I = 0.5 + 3*p*B : 1
B = 2./(1 + exp(-2*x)) - 1 : 1 (shared)
p : 1
x : 1 (linked)
'''

input = NeuronGroup(1, eqs_input)
neurons = NeuronGroup(N, eqs, threshold='v>1', reset='v=0')
neurons.p = '1.0*i/N'
neurons.v = 'rand()'
neurons.x = linked_var(input, 'x')

M = StateMonitor(neurons, 'B', record=0)
S = SpikeMonitor(neurons)

run(1000*ms, report='text')

subplot(211)  # The input
plot(M.t/ms, M.B)
xticks([])
title('shared input')
subplot(212)
plot(S.t/ms, neurons.p[S.i], '.')
plot([0, 1000], [.5, .5], 'r')
xlabel('time (ms)')
ylabel('p')
title('spiking activity')
show() 