Brian 2 Documentation
Release 2.3

Brian authors

Jan 15, 2020

Contents

1 Introduction 3
.1 Inmstallation e e e e e e 3
1.2 Running Brianscripts L e 6
1.3 Release notes L i e e e e e e e e e e e 7
1.4 Changes for Brian 1 users e e 32
L5 KnOownissues o v vt i ittt e e e e e e e e e e e 63
1.6 SUPPOTL . . . o o o e e e e e e e e e e e e e e 65
1.7 Contributor Covenant Code of Conduct 65
2 Tutorials 67
2.1 Introduction to Brian part I: Neurons o i it e e e 67
2.2 Introduction to Brian part 2: Synapses e 84
2.3 Introduction to Brian part 3: Simulations 0oL 0oL 100
3 User’s guide 117
3.1 Importing Briano e e 117
3.2 Physicalunits e 118
3.3 Models and neuron groups e e i e e e e e e e e e e e e 121
3.4 Numerical Integration o i e e e e e e e e e e e e e e e e 127
3.5 EqUations i e e e e e e e e e e e e e e e e e e 129
3.6 Refractoriness L e e 134
37 SYNapses . . oL .o e e e e e 136
3.8 Inputstimuli e 145
3.9 Recording during asimulation L e e e e e e e e e 150
3.10 Runningasimulation o e e e e e e e e e e e e e e 154
3.11 Multicompartment models L e e 160
3.12 Computational methods and efficiency oo Lo 168
3.13 Converting from integrated formto ODEs L o o 172
4 Advanced guide 175
4.1 Functions v i e e e e e e e e e e e e e e e e 175
4.2 Preferences e e e e 181
43 LOogEING . . . o i e e e e e e e e e e e e e e e 187
4.4 NAMESPACES + v v v v v e 188
4.5 Custom progress TePOTLING . .« . v v v v v v v v e v e e e e e e e e e e e e e e e e e e e 189
4.6 Randomnumbers e e e e e e e e e e 190
47 CuStOM BVENLS . .« v v v v e et e 191

4.8 Stateupdate e e e e e e e e e e e e e e e e e e e
49 HowBrianworks
4.10 Interfacing withexternalcode L
Examples

5.1 Example: COBAHH e e e e e
5.2 Example: CUBA e e e e e e
5.3 Example: IF_curve_Hodgkin_Huxley
5.4 Example: IF_curve _LIF 0 e
5.5 Example: adaptive_threshold
5.6 Example: non_reliability L. e e e e
5.7 Example: phase_locking L e e e e e
5.8 Example: reliability e
5.9 advanced L. L e e e e
5.10 compartmental e e e e e e
ST frompapers o o e e e e e e e e e e e e e e e e e e
5.12 frompapers/Brette_2012 L. e e e e e e e e
5.13 frompapers/Stimberg_et_al 2018 L
5.14 standaloneo e e e e e e e e
S5 SyNapses .. oo oo .. e e e e e e e e e e
brian2 package

6.1 check_cache function e
6.2 clear_cache function e e e
6.3 hearsmodule L e e e e e e
6.4 numpy_module L e e
6.5 onlymodule e e e
6.6 Subpackages e e e e
Developer’s guide

7.1 Coding guidelines e
T2 UNIS .« . oo ot e e e e e e e e e e e e e e
7.3 Equations and NamMeSPACES e e e e e e e e e e e e e e e e e e e
7.4 Variablesandindiceso e e
7.5 Preferences SyStem i it i e
7.6 Adding support for new functions L. oL
7.7 Code generation i it e
T8 DEVICES . . o o v o i e e e
7.9 Multi-threading with OpenMP e e e e
7.10 Solving differential equations with the GNU Scientific Library

8 Indices and tables

Bibliography

Python Module Index

Index

199
199
201
203
204
205
207
208
209
211
226
245
298
308
343
347

363
363
363
364
367
367
367

691
691
705
708
708
712
718
719
725
726
729

735

737

739

741

Brian 2 Documentation, Release 2.3

Brian is a simulator for spiking neural networks. It is written in the Python programming language and is available
on almost all platforms. We believe that a simulator should not only save the time of processors, but also the time of
scientists. Brian is therefore designed to be easy to learn and use, highly flexible and easily extensible.

To get an idea of what writing a simulation in Brian looks like, take a look at a simple example, or run our interactive
demo.

Once you have a feel for what is involved in using Brian, we recommend you start by following the installation
instructions, and in case you are new to the Python programming language, having a look at Running Brian scripts.
Then, go through the futorials, and finally read the User Guide.

While reading the documentation, you will see the names of certain functions and classes are highlighted links (e.g.
PoissonGroup). Clicking on these will take you to the “reference documentation”. This section is automatically
generated from the code, and includes complete and very detailed information, so for new users we recommend
sticking to the User’s guide. However, there is one feature that may be useful for all users. If you click on, for example,
PoissonGroup, and scroll down to the bottom, you’ll get a list of all the example code that uses PoissonGroup.
This is available for each class or method, and can be helpful in understanding how a feature works.

Finally, if you’re having problems, please do let us know at our support page.
Please note that all interactions (e.g. via the mailing list or on github) should adhere to our Code of Conduct.

Contents:

Contents 1

http://mybinder.org/repo/brian-team/brian2-binder/notebooks/demo.ipynb
http://mybinder.org/repo/brian-team/brian2-binder/notebooks/demo.ipynb

Brian 2 Documentation, Release 2.3

2 Contents

CHAPTER 1

Introduction

1.1 Installation

* [Installation with Anaconda
* Installation with pip
* Requirements for C++ code generation

* Development version

e Testing Brian

We recommend users to use the Anaconda distribution by Continuum Analytics. Its use will make the installation of
Brian 2 and its dependencies simpler, since packages are provided in binary form, meaning that they don’t have to be
build from the source code at your machine. Furthermore, our automatic testing on the continuous integration services
travis and appveyor are based on Anaconda, we are therefore confident that it works under this configuration.

However, Brian 2 can also be installed independent of Anaconda, either with other Python distributions (Enthought
Canopy, Python(x,y) for Windows, ...) or simply based on Python and pip (see Installation with pip below).

1.1.1 Installation with Anaconda

Installing Anaconda

Download the Anaconda distribution for your Operating System. Note that the choice between Python 2.7 and Python
3.x is not very important at this stage, Anaconda allows you to create a Python 3 environment from Python 2 Anaconda
and vice versa.

After the installation, make sure that your environment is configured to use the Anaconda distribution. You should
have access to the conda command in a terminal and running python (e.g. from your IDE) should show a header
like this, indicating that you are using Anaconda’s Python interpreter:

https://www.anaconda.com/distribution/#download-section
https://travis-ci.org/brian-team/brian2
https://ci.appveyor.com/project/brianteam/brian2
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
http://python-xy.github.io
https://www.anaconda.com/distribution/#download-section

Brian 2 Documentation, Release 2.3

Python 2.7.10 |Anaconda 2.3.0 (64-bit)| (default, May 28 2015, 17:02:03)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux2
Type "help", "copyright", "credits" or "license" for more information.

Here’s some documentation on how to set up some popular IDEs for Anaconda: https://docs.anaconda.com/anaconda/
user-guide/tasks/integration

Installing Brian 2

Note: The provided Brian 2 packages are only for 64bit systems. If you want to install Brian 2 in a 32bit environment,
please use the Installation with pip instead.

You can either install Brian 2 in the Anaconda root environment, or create a new environment for Brian 2 (https:
/Iconda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html). The latter has the advantage that you
can update (or not update) the dependencies of Brian 2 independently from the rest of your system.

Brian 2 is not part of the main Anaconda distribution, but built using the community-maintained conda-forge project.
You will therefore have to to install it from the conda-forge channel. To do so, use:

’conda install -c¢ conda-forge brian2

You can also permanently add the channel to your list of channels:

’conda config —--add channels conda-forge

This has only to be done once. After that, you can install and update the brian2 packages as any other Anaconda
package:

conda install brian2

Installing other useful packages

There are various packages that are useful but not necessary for working with Brian. These include: matplotlib (for
plotting), nose (for running the test suite), ipython and jupyter-notebook (for an interactive console). To install them
from anaconda, simply do:

conda install matplotlib nose ipython notebook

You should also have a look at the brian2tools package, which contains several useful functions to visualize Brian 2
simulations and recordings. You can install it with pip or anaconda, similar to Brian 2 itself (but as of now, it is not
included in the conda—-forge channel, you therefore have to install it from our own brian—team channel), e.g.
with:

conda install -c brian-team brian2tools

1.1.2 Installation with pip

If you decide not to use Anaconda, you can install Brian 2 from the Python package index: https://pypi.python.org/
pypi/Brian2

To do so, use the pip utility:

4 Chapter 1. Introduction

https://docs.anaconda.com/anaconda/user-guide/tasks/integration
https://docs.anaconda.com/anaconda/user-guide/tasks/integration
https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://conda-forge.org/
https://anaconda.org/conda-forge
http://matplotlib.org/
https://pypi.python.org/pypi/nose
http://ipython.org/
http://jupyter.org/
https://brian2tools.readthedocs.io
https://pypi.python.org/pypi/Brian2
https://pypi.python.org/pypi/Brian2

Brian 2 Documentation, Release 2.3

pip install brian2

You might want to add the ——user flag, to install Brian 2 for the local user only, which means that you don’t need
administrator privileges for the installation.

Note that when installing brian2 from source with pip, support for using numerical integration with the GSL requires
a working installation of the GSL development libraries (e.g. the package 1ibgs1l-dev on Debian/Ubuntu Linux).

1.1.3 Requirements for C++ code generation

C++ code generation is highly recommended since it can drastically increase the speed of simulations (see Compu-
tational methods and efficiency for details). To use it, you need a C++ compiler and either Cython or weave (only
available for Python 2.x). Cython/weave will be automatically installed if you perform the installation via Anaconda,
as recommended. Otherwise you can install them in the usual way, e.g. using pip install cython or pip
install weave.

Linux and OS X

On Linux and Mac OS X, the conda package will automatically install a C++ compiler. But even if you install Brian
from source, you will most likely already have a working C++ compiler installed on your system (try calling g++
——version in a terminal). If not, use your distribution’s package manager to install a g++ package.

Windows
On Windows, the necessary steps to get Runtime code generation (i.e. Cython/weave) to work depend on the Python
version you are using (also see the notes in the Python wiki):
* Python >= 3.5
— Install the Microsoft Build Tools for Visual Studio 2017.

— Make sure that your setuptools package has at least version 34.4.0 (use conda update setuptools whe
pip install —--upgrade setuptools when using pip).

* Python 2.7
— Download and install the Microsoft Visual C++ Compiler for Python 2.7

For Standalone code generation, you can either use the compiler installed above or any other version of Visual Studio
— in this case, the Python version does not matter.

Try running the test suite (see Testing Brian below) after the installation to make sure everything is working as ex-
pected.

1.1.4 Development version

To run the latest development code, you can directly clone the git repository at github (https://github.com/brian-team/
brian2) and then run pip install —e .,toinstall Brian in “development mode”. With this installation, updating
the git repository is in general enough to keep up with changes in the code, i.e. it is not necessary to install it again.

Another option is to use pip to directly install from github:

pip install https://github.com/brian-team/brian2/archive/master.zip

1.1. Installation 5

http://cython.org/
https://github.com/scipy/weave
https://wiki.python.org/moin/WindowsCompilers#Compilers_Installation_and_configuration
https://www.visualstudio.com/downloads/#build-tools-for-visual-studio-2017
http://www.microsoft.com/en-us/download/details.aspx?id=44266
https://github.com/brian-team/brian2
https://github.com/brian-team/brian2

Brian 2 Documentation, Release 2.3

1.1.5 Testing Brian

If you have the nose testing utility installed, you can run Brian’s test suite:

import brian2
brian2.test ()

It should end with “OK”, showing a number of skipped tests but no errors or failures. For more control about the tests
that are run see the developer documentation on testing.

1.2 Running Brian scripts

Brian scripts are standard Python scripts, and can therefore be run in the same way. For interactive, explorative work,
you might want to run code in a jupyter notebook or in an ipython shell; for running finished code, you might want to
execute scripts through the standard Python interpreter; finally, for working on big projects spanning multiple files, a
dedicated integrated development environment for Python could be a good choice. We will briefly describe all these
approaches and how they relate to Brian’s examples and tutorial that are part of this documentation. Note that none of
these approaches are specific to Brian, so you can also search for more information in any of the resources listed on
the Python website.

* Jupyter notebook
* [Python shell

* Python interpreter

o Integrated development environment (IDE)

1.2.1 Jupyter notebook

The Jupyter Notebook is an open-source web application that allows you to create and share documents
that contain live code, equations, visualizations and narrative text.

(from jupyter.org)

Jupyter notebooks are a great tool to run Brian code interactively, and include the results of the simulations, as well as
additional explanatory text in a common document. Such documents have the file ending . ipynb, and in Brian we
use this format to store the Turorials. These files can be displayed by github (see e.g. the first Brian tutorial), but in
this case you can only see them as a static website, not edit or execute any of the code.

To make the full use of such notebooks, you have to run them using the jupyter infrastructure. The easiest option is to
use the free mybinder.org web service, which allows you to try out Brian without installing it on your own machine.
Links to run the tutorials on this infrastructure are provided as “launch binder” buttons on the Tutorials page, and
also for each of the Examples at the top of the respective page (e.g. Example: COBAHH). To run notebooks on your
own machine, you need an installation of the jupyter notebook software on your own machine, as well as Brian itself
(see the Installation instructions for details). To open an existing notebook, you have to download it to your machine.
For the Brian tutorials, you find the necessary links on the Tutorials page. When you have downloaded/installed
everything necessary, you can start the jupyter notebook from the command line (using Terminal on OS X/Linux,
Command Prompt on Windows):

jupyter notebook

6 Chapter 1. Introduction

https://pypi.python.org/pypi/nose
https://www.python.org/about/gettingstarted/
https://jupyter.org
https://github.com/brian-team/brian2/blob/master/tutorials/1-intro-to-brian-neurons.ipynb
https://mybinder.org

Brian 2 Documentation, Release 2.3

this will open the “Notebook Dashboard” in your default browser, from which you can either open an existing notebook
or create a new one. In the notebook, you can then execute individual “code cells” by pressing SHIFT+ENTER on
your keyboard, or by pressing the play button in the toolbar.

For more information, see the jupyter notebook documentation.

1.2.2 IPython shell

An alternative to using the jupyter notebook is to use the interactive Python shell IPython, which runs in the Termi-
nal/Command Prompt. You can use it to directly type Python code interactively (each line will be executed as soon
as you press ENTER), or to run Python code stored in a file. Such files typically have the file ending .py. You can
either create it yourself in a text editor of your choice (e.g. by copying&pasting code from one of the Examples), or
by downloading such files from places such as github (e.g. the Brian examples), or ModelDB. You can then run them
from within [Python via:

srun filename.py

1.2.3 Python interpreter

The most basic way to run Python code is to run it through the standard Python interpreter. While you can also use
this interpreter interactively, it is much less convenient to use than the IPython shell or the jupyter notebook described
above. However, if all you want to do is to run an existing Python script (e.g. one of the Brian Examples), then you
can do this by calling:

python filename.py

in a Terminal/Command Prompt.

1.2.4 Integrated development environment (IDE)

Python is a widely used programming language, and is therefore support by a wide range of integrated development
environments (IDE). Such IDEs provide features that are very convenient for developing complex projects, e.g. they
integrate text editor and interactive Python console, graphical debugging tools, etc. Popular environments include
Spyder, PyCharm, and Visual Studio Code, for an extensive list see the Python wiki.

1.3 Release notes

1.3.1 Brian 2.3

This release contains the usual mix of bug fixes and new features (see below), but also makes some important changes
to the Brian 2 code base to pave the way for the full Python 2 -> 3 transition (the source code is now directly compatible
with Python 2 and Python 3, without the need for any translation at install time). Please note that this release will be the
last release that supports Python 2, given that Python 2 reaches end-of-life in January 2020. Brian now also uses pytest
as its testing framework, since the previously used nose package is not maintained anymore. Since brian2hears has
been released as an independent package, using brianZ2. hears as a “bridge” to Brian 1’sbrian.hears package
is now deprecated.

Finally, the Brian project has adopted the “Contributor Covenant” Contributor Covenant Code of Conduct, pledging
“to make participation in our community a harassment-free experience for everyone”.

1.3. Release notes 7

https://jupyter-notebook.readthedocs.io
https://ipython.readthedocs.io/
https://github.com/brian-team/brian2/tree/master/examples
https://senselab.med.yale.edu/modeldb/
https://www.spyder-ide.org/
https://www.jetbrains.com/pycharm/
https://code.visualstudio.com/
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://docs.pytest.org
https://brian2hears.readthedocs.io

Brian 2 Documentation, Release 2.3

New features
* The restore () function can now also restore the state of the random number generator, allowing for exact
reproducibility of stochastic simulations (#1134)
¢ The functions expml (), Lloglp (), and exprel () can now be used (#1133)

* The system for calling random number generating functions has been generalized (see Functions with context-
dependent return values), and a new poisson function for Poisson-distrubted random numbers has been added
#1111)

* New versions of Visual Studio are now supported for standalone mode on Windows (#1135)

Selected improvements and bug fixes
* run_regularly operations are now included in the network, even if they are created after the parent object
was added to the network (#1009). Contributed by Vigneswaran Chandrasekaran.

* No longer incorrectly classify some equations as having “multiplicative noise” (#968). Contributed by Vi-
gneswaran Chandrasekaran.

* Brian is now compatible with Python 3.8 (#1130), and doctests are compatible with numpy 1.17 (#1120)
* Progress reports for repeated runs have been fixed (#1116), thanks to Ronaldo Nunes for reporting the issue.

* SpikeGeneratorGroup now correctly works with restore () (#1084), thanks to Tom Achache for re-
porting the issue.

* An indexing problem in PopulationRateMonitor has been fixed (#1119).
* Handling of equations referring to —inf has been fixed (#1061).

* Long simulations recording more than ~2 billion data points no longer crash with a segmentation fault (#1136),
thanks to Rike-Benjamin Schuppner for reporting the issue.

Backward-incompatible changes

* The fix for run_regularly operations (#1009, see above) entails a change in how objects are stored within
Network objects. Previously, Network.objects stored a complete list of all objects, including objects
such as StateUpdater that — often invisible to the user — are a part of major objects such as NeuronGroup.
Now, Network. object s only stores the objects directly provided by the user (NeuronGroup, Synapses,
StateMonitor,...), the dependent objects (StateUpdater, Thresholder,...) are taken into account
at the time of the run. This might break code in some corner cases, e.g. when removing a StateUpdater
from Network.objects via Network.remove ().

e The brian2. hears interface to Brian 1’s brian.hears package has been deprecated.

Infrastructure and documentation improvements

* The same code base is used on Python 2 and Python 3 (#1073).
¢ The test framework uses pytest (#1127).
* We have adapoted a Code of Conduct (#1113), thanks to Tapasweni Pathak for the suggestion.

8 Chapter 1. Introduction

https://github.com/brian-team/brian2/issues/1134
https://github.com/brian-team/brian2/issues/1133
https://github.com/brian-team/brian2/issues/1111
https://github.com/brian-team/brian2/issues/1135
https://github.com/brian-team/brian2/issues/1009
https://github.com/Vigneswaran-Chandrasekaran
https://github.com/brian-team/brian2/issues/968
https://github.com/Vigneswaran-Chandrasekaran
https://github.com/Vigneswaran-Chandrasekaran
https://github.com/brian-team/brian2/issues/1130
https://github.com/brian-team/brian2/issues/1120
https://github.com/brian-team/brian2/issues/1116
https://github.com/brian-team/brian2/issues/1084
https://github.com/brian-team/brian2/issues/1119
https://github.com/brian-team/brian2/issues/1061
https://github.com/brian-team/brian2/issues/1136
https://github.com/brian-team/brian2/issues/1009
https://github.com/brian-team/brian2/issues/1073
https://github.com/brian-team/brian2/issues/1127
https://github.com/brian-team/brian2/issues/1113

Brian 2 Documentation, Release 2.3

Contributions

Github code, documentation, and issue contributions (ordered by the number of contributions):

Marcel Stimberg (@mstimberg)

Dan Goodman (@thesamovar)

Vigneswaran Chandrasekaran (@ Vigneswaran-Chandrasekaran)

Moritz Orth (@morth)

Tristan Stober (@tristanstoeber)
@ulyssek

Wilhelm Braun (@wilhelmbraun)
@flomlo

Rike-Benjamin Schuppner (@ Debilski)
@sdeiss

Ben Evans (@bdevans)

Tapasweni Pathak (@tapaswenipathak)
@jonathanoesterle

Richard C Gerkin (@rgerkin)
Christian Behrens (@chbehrens)
Romain Brette (@romainbrette)
XiaoquinNUDT (@ XiaoquinNUDT)
Dylan Muir (@DylanMuir)
Aleksandra Teska (@alTeska)

Felix Z. Hoffmann (@felix11h)
@baixiaotian63648995

Carlos de la Torre (@c-torre)

Sam Mathias (@sammosummo)
@Marghepano

Simon Brodeur (@sbrodeur)

Alex Dimitrov (@adimitr)

Other contributions outside of github (ordered alphabetically, apologies to anyone we forgot. . .):

Ronaldo Nunes

Tom Achache

1.3.2 Brian 2.2.2.1

This is a bug-fix release that fixes several bugs and adds a few minor new features. We recommend all users of Brian
2 to upgrade.

1.3. Release notes

https://github.com/mstimberg
https://github.com/thesamovar
https://github.com/Vigneswaran-Chandrasekaran
https://github.com/morth
https://github.com/tristanstoeber
https://github.com/ulyssek
https://github.com/wilhelmbraun
https://github.com/flomlo
https://github.com/Debilski
https://github.com/sdeiss
https://github.com/bdevans
https://github.com/tapaswenipathak
https://github.com/jonathanoesterle
https://github.com/rgerkin
https://github.com/chbehrens
https://github.com/romainbrette
https://github.com/XiaoquinNUDT
https://github.com/DylanMuir
https://github.com/alTeska
https://github.com/felix11h
https://github.com/baixiaotian63648995
https://github.com/c-torre
https://github.com/sammosummo
https://github.com/Marghepano
https://github.com/sbrodeur
https://github.com/adimitr

Brian 2 Documentation, Release 2.3

As always, please report bugs or suggestions to the github bug tracker (https://github.com/brian-team/brian2/issues)
or to the brian-development mailing list (brian-development @ googlegroups.com).

[Note that the original upload of this release was version 2.2.2, but due to a mistake in the released archive, it has been
uploaded again as version 2.2.2.1]

Selected improvements and bug fixes

* Fix an issue with the synapses generator syntax (#1037).

* Fix an incorrect error when using a SpikeGeneratorGroup with a long period (#1041). Thanks to Kévin
Cuallado-Keltsch for reporting this issue.

* Improve the performance of SpikeGeneratorGroup by avoiding a conversion from time to integer time
step (#1043). This time step is now also available to user code as t_in_timesteps.

* Function definitions for weave/Cython/C++ standalone can now declare additional header files and libraries.
They also support a new sources argument to use a function definition from an external file. See the Functions
documentation for details.

 For convenience, single-neuron subgroups can now be created with a single index instead of with a slice (e.g.
neurongroup [3] instead of neurongroup[3:41]).

* Fix an issue when —inf is used in an equation (#1061).

Contributions

Github code, documentation, and issue contributions (ordered by the number of contributions):
¢ Marcel Stimberg (@mstimberg)
¢ Dan Goodman (@thesamovar)
¢ Felix Z. Hoffmann (@Felix11H)
« @wjx0914
¢ Kévin Cuallado-Keltsch (@kevincuallado)
¢ Romain Cazé (@rcaze)
* Daphne (@daphn3cor)
* Erik (@parenthetical-e)
e @RahulMaram
» Eghbal Hosseini (@eghbalhosseini)
e Martino Sorbaro (@martinosorb)
¢ Mihir Vaidya (@MihirVaidya94)
* @hellolingling
* Volodimir Slobodyanyuk (@vslobody)
* Peter Duggins (@psipeter)

10 Chapter 1. Introduction

https://github.com/brian-team/brian2/issues
mailto:brian-development@googlegroups.com
https://github.com/brian-team/brian2/issues/1037
https://github.com/brian-team/brian2/issues/1041
https://github.com/brian-team/brian2/issues/1043
https://github.com/brian-team/brian2/issues/1061
https://github.com/mstimberg
https://github.com/thesamovar
https://github.com/Felix11H
https://github.com/wjx0914
https://github.com/kevincuallado
https://github.com/rcaze
https://github.com/daphn3cor
https://github.com/parenthetical-e
https://github.com/RahulMaram
https://github.com/eghbalhosseini
https://github.com/martinosorb
https://github.com/MihirVaidya94
https://github.com/hellolingling
https://github.com/vslobody
https://github.com/psipeter

Brian 2 Documentation, Release 2.3

1.3.3 Brian 2.2.1
This is a bug-fix release that fixes a few minor bugs and incompatibilites with recent versions of the dependencies. We
recommend all users of Brian 2 to upgrade.

As always, please report bugs or suggestions to the github bug tracker (https://github.com/brian-team/brian2/issues)
or to the brian-development mailing list (brian-development @ googlegroups.com).

Selected improvements and bug fixes

e Work around problems with the latest version of py—cpuinfo on Windows (#990, #1020) and no longer
require it for Linux and OS X.

* Avoid warnings with newer versions of Cython (#1030) and correctly build the Cython spike queue for Python
3.7 (#1026), thanks to Fleur Zeldenrust and Ankur Sinha for reporting these issues.

* Fix error messages for SyntaxError exceptions in jupyter notebooks (##964).
Dependency and packaging changes

* Conda packages in conda-forge are now avaible for Python 3.7 (but no longer for Python 3.5).

* Linux and OS X no longer depend on the py—cpuinfo package.

* Source packages on pypi now require a recent Cython version for installation.
Contributions

Github code, documentation, and issue contributions (ordered by the number of contributions):

Marcel Stimberg (@mstimberg)

Dan Goodman (@thesamovar)

Christopher (@ Chris-Currin)

Peter Duggins (@psipeter)

Paola Sudrez (@psrmx)

Ankur Sinha (@sanjayankur31)
@JingjinW

Denis Alevi (@denisalevi)
@lemonadel17

@wjx0914

Sven Leach (@SvennoNito)

svadams (@svadams)

@ghaessig

Varshith Sreeramdass (@ varshiths)

1.3. Release notes 11

https://github.com/brian-team/brian2/issues
mailto:brian-development@googlegroups.com
https://github.com/brian-team/brian2/issues/990
https://github.com/brian-team/brian2/issues/1020
https://github.com/brian-team/brian2/issues/1030
https://github.com/brian-team/brian2/issues/1026
https://github.com/brian-team/brian2/issues/#964
https://conda-forge.org/
https://pypi.org/
https://github.com/mstimberg
https://github.com/thesamovar
https://github.com/Chris-Currin
https://github.com/psipeter
https://github.com/psrmx
https://github.com/sanjayankur31
https://github.com/JingjinW
https://github.com/denisalevi
https://github.com/lemonade117
https://github.com/wjx0914
https://github.com/SvennoNito
https://github.com/svadams
https://github.com/ghaessig
https://github.com/varshiths

Brian 2 Documentation, Release 2.3

1.3.4 Brian 2.2

This releases fixes a number of important bugs and comes with a number of performance improvements. It also makes
sure that simulation no longer give platform-dependent results for certain corner cases that involve the division of
integers. These changes can break backwards-compatiblity in certain cases, see below. We recommend all users of
Brian 2 to upgrade.

As always, please report bugs or suggestions to the github bug tracker (https://github.com/brian-team/brian2/issues)
or to the brian-development mailing list (brian-development@ googlegroups.com).

Selected improvements and bug fixes

Divisions involving integers now use floating point division, independent of Python version and code generation
target. The // operator can now used in equations and expressions to denote flooring division (#984).

Simulations can now use single precision instead of double precision floats in simulations (#981, #1004). This
is mostly intended for use with GPU code generation targets.

The t imestep, introduced in version 2.1.3, was further optimized for performance, making the refractoriness
calculation faster (#996).

The lastupdate variable is only automatically added to synaptic models when event-driven equations are
used, reducing the memory and performance footprint of simple synaptic models (#1003). Thanks to Denis
Alevi for bringing this up.

A from brian2 import = imported names unrelated to Brian, and overwrote some Python builtins such
as dir (#969). Now, fewer names are imported (but note that this still includes numpy and plotting tools:
Importing Brian).

The exponential_euler state updater is no longer failing for systems of equations with differential equa-
tions that have trivial, constant right-hand-sides (#1010). Thanks to Peter Duggins for making us aware of this
issue.

Backward-incompatible changes

* Code that divided integers (e.g. N/10) with a C-based code generation target, or with the numpy target on

Python 2, will now use floating point division instead of flooring division (i.e., Python 3 semantics). A warning
will notify the user of this change, use either the flooring division operator (N//10), or the int function
(int (N/10)) to make the expression unambiguous.

¢ Code that directly referred to the lastupdate variable in synaptic statements, without using any event-driven

variables, now has to manually add lastupdate : second to the equations and update the variable at the
end of on_pre and/or on_post with lastupdate = t.

* Code that relied on from brian2 import = also importing unrelated names such as sympy, now has to

import such names explicitly.

Documentation improvements

* Various small fixes and additions (e.g. installation instructions, available functions, fixes in examples)

* A new example, Izhikevich 2007, provided by Guillaume Dumas.

12

Chapter 1. Introduction

https://github.com/brian-team/brian2/issues
mailto:brian-development@googlegroups.com
https://github.com/brian-team/brian2/issues/984
https://github.com/brian-team/brian2/issues/981
https://github.com/brian-team/brian2/issues/1004
https://github.com/brian-team/brian2/issues/996
https://github.com/brian-team/brian2/issues/1003
https://github.com/brian-team/brian2/issues/969
https://github.com/brian-team/brian2/issues/1010
https://github.com/deep-introspection

Brian 2 Documentation, Release 2.3

Contributions

Github code, documentation, and issue contributions (ordered by the number of contributions):
e Marcel Stimberg (@mstimberg)
¢ Dan Goodman (@thesamovar)
¢ Denis Alevi (@denisalevi)
* Thomas Nowotny (@tnowotny)
* @neworderofjamie
 Paul Brodersen (@paulbrodersen)
* @matrec4
¢ svadams (@svadams)
* XiaoquinNUDT (@ XiaoquinNUDT)
* Peter Duggins (@psipeter)
e @nh17937
¢ Patrick Nave (@pnave95)
e @Al-pha
* Guillaume Dumas (@deep-introspection)
* @godelicbach
* @galharth

1.3.5 Brian 2.1.3.1

This is a bug-fix release that fixes two bugs in the recent 2.1.3 release:
* Fix an inefficiency in the newly introduced t imestep function when using the numpy target (#965)

* Fix inefficiencies in the unit system that could lead to slow operations and high memory use (#967). Thanks to
Kaustab Pal for making us aware of the issue.

1.3.6 Brian 2.1.3

This is a bug-fix release that fixes a number of important bugs (see below), but does not introduce any new features.
We recommend all users of Brian 2 to upgrade.

As always, please report bugs or suggestions to the github bug tracker (https://github.com/brian-team/brian2/issues)
or to the brian-development mailing list (brian-development @ googlegroups.com).

Selected improvements and bug fixes

* The Cython cache on disk now uses significantly less space by deleting unnecessary source files (set the code-
gen.runtime.cython.delete_source_files preference to False if you want to keep these files for debugging).
In addition, a warning will be given when the Cython or weave cache exceeds a configurable size (code-
gen.max_cache_dir_size). The clear_cache function is provided to delete files from the cache (#914).

1.3. Release notes 13

https://github.com/mstimberg
https://github.com/thesamovar
https://github.com/denisalevi
https://github.com/tnowotny
https://github.com/neworderofjamie
https://github.com/paulbrodersen
https://github.com/matrec4
https://github.com/svadams
https://github.com/XiaoquinNUDT
https://github.com/psipeter
https://github.com/nh17937
https://github.com/pnave95
https://github.com/AI-pha
https://github.com/deep-introspection
https://github.com/godelicbach
https://github.com/galharth
https://github.com/brian-team/brian2/issues/965
https://github.com/brian-team/brian2/issues/967
https://github.com/brian-team/brian2/issues
mailto:brian-development@googlegroups.com
https://github.com/brian-team/brian2/issues/914

Brian 2 Documentation, Release 2.3

e The C++ standalone mode now respects the profile option and therefore no longer collects profiling infor-
mation by default. This can speed up simulations in certain cases (#935).

* The exact number of time steps that a neuron stays in the state of refractoriness after a spike could vary by up
to one time step when the requested refractory time was a multiple of the simulation time step. With this fix,
the number of time steps is ensured to be as expected by making use of a new t imestep function that avoids
floating point rounding issues (#949, first reported by @zhouyanasd in issue #943).

* When restore () was called twice for a network, spikes that were not yet delivered to their target were not
restored correctly (#938, reported by @zhouyanasd).

* SpikeGeneratorGroup now uses a more efficient method for sorting spike indices and times, leading to a
much faster preparation time for groups that store many spikes (#948).

* Fix a memory leak in TimedArray (#923, reported by Wilhelm Braun).
* Fix an issue with summed variables targetting subgroups (#9235, reported by @ Al-pha).
¢ Fix the use of run_regularly on subgroups (#922, reported by @ Al-pha).

* Improve performance for SpatialNeuron by removing redundant computations (#910, thanks to Moritz
Augustin for making us aware of the issue).

¢ Fix linked variables that link to scalar variables (#916)
¢ Fix warnings for numpy 1.14 and avoid compilation issues when switching between versions of numpy (#913)

* Fix problems when using logical operators in code generated for the numpy target which could lead to issues
such as wrongly connected synapses (#901, #900).

Backward-incompatible changes

* No longer allow delay as a variable name in a synaptic model to avoid ambiguity with respect to the synaptic
delay. Also no longer allow access to the delay variable in synaptic code since there is no way to distinguish
between pre- and post-synaptic delay (#927, reported by Denis Alevi).

* Due to the changed handling of refractoriness (see bug fixes above), simulations that make use of refractoriness
will possibly no longer give exactly the same results. The preference legacy.refractory_timing can be set to
True to reinstate the previous behaviour.

Infrastructure and documentation improvements

* From this version on, conda packages will be available on conda-forge. For a limited time, we will copy over
packages to the brian—team channel as well.

» Conda packages are no longer tied to a specific numpy version (PR #954)

* New example (Brunel & Wang, 2001) contributed by Teo Stocco and Alex Seeholzer.

Contributions

Github code, documentation, and issue contributions (ordered by the number of contributions):

* Marcel Stimberg (@mstimberg)
¢ Dan Goodman (@thesamovar)
¢ Teo Stocco (@zifeo)

* Dylan Muir (@DylanMuir)

14

Chapter 1. Introduction

https://github.com/brian-team/brian2/issues/935
https://github.com/brian-team/brian2/issues/949
https://github.com/zhouyanasd
https://github.com/brian-team/brian2/issues/943
https://github.com/brian-team/brian2/issues/938
https://github.com/zhouyanasd
https://github.com/brian-team/brian2/issues/948
https://github.com/brian-team/brian2/issues/923
https://github.com/brian-team/brian2/issues/925
https://github.com/AI-pha
https://github.com/brian-team/brian2/issues/922
https://github.com/AI-pha
https://github.com/brian-team/brian2/issues/910
https://github.com/moritzaugustin
https://github.com/moritzaugustin
https://github.com/brian-team/brian2/issues/916
https://github.com/brian-team/brian2/issues/913
https://github.com/brian-team/brian2/issues/901
https://github.com/brian-team/brian2/issues/900
https://github.com/brian-team/brian2/issues/927
https://conda-forge.org/
https://github.com/brian-team/brian2/issues/954
https://github.com/zifeo
https://github.com/flinz
https://github.com/mstimberg
https://github.com/thesamovar
https://github.com/zifeo
https://github.com/DylanMuir

Brian 2 Documentation, Release 2.3

e scarecrow (@zhouyanasd)

* @fuadfukhasyi

* Aditya Addepalli (@Dyex719)

* Kapil kumar (@kapilkd13)

¢ svadams (@svadams)

* Vafa Andalibi (@ Vafa-Andalibi)

¢ Sven Leach (@SvennoNito)
e @matrec4

* @jarishna

e @AI-pha

e @xdzhangxuejun

e Denis Alevi (@denisalevi)

* Paul Pfeiffer (@pfeffer90)

¢ Romain Brette (@romainbrette)

* @hustyanghui

¢ Adrien F. Vincent (@afvincent)

e @ckemere

* @evearmstrong

» Pawel Kopeé (@pawelkopec)

* Moritz Augustin (@moritzaugustin)

¢ Bart (@louwers)
e @amarsdd

¢ @ttxtea

e Maria Cervera (@MariaCervera)

* ouyangxinrong (@longzhixin)

Other contributions outside of github (ordered alphabetically, apologies to anyone we forgot. . .):

¢ Wilhelm Braun

1.3.7 Brian 2.1.2

This is another bug fix release that fixes a major bug in Equations’ substitution mechanism (#896). Thanks to Teo

Stocco for reporting this issue.

1.3.8 Brian 2.1.1

This is a bug fix release that re-activates parts of the caching mechanism for code generation that had been erroneously

deactivated in the previous release.

1.3. Release notes

15

https://github.com/zhouyanasd
https://github.com/fuadfukhasyi
https://github.com/Dyex719
https://github.com/kapilkd13
https://github.com/svadams
https://github.com/Vafa-Andalibi
https://github.com/SvennoNito
https://github.com/matrec4
https://github.com/jarishna
https://github.com/AI-pha
https://github.com/xdzhangxuejun
https://github.com/denisalevi
https://github.com/pfeffer90
https://github.com/romainbrette
https://github.com/hustyanghui
https://github.com/afvincent
https://github.com/ckemere
https://github.com/evearmstrong
https://github.com/pawelkopec
https://github.com/moritzaugustin
https://github.com/louwers
https://github.com/amarsdd
https://github.com/ttxtea
https://github.com/MariaCervera
https://github.com/longzhixin
https://github.com/brian-team/brian2/issues/896

Brian 2 Documentation, Release 2.3

1.3.9 Brian 2.1

This release introduces two main new features: a new “GSL integration” mode for differential equation that offers to
integrate equations with variable-timestep methods provided by the GNU Scientific Library, and caching for the run
preparation phase that can significantly speed up simulations. It also comes with a newly written tutorial, as well as
additional documentation and examples.

As always, please report bugs or suggestions to the github bug tracker (https://github.com/brian-team/brian2/issues)
or to the brian-development mailing list (brian-development@ googlegroups.com).

New features

* New numerical integration methods with variable time-step integration, based on the GNU Scientific Library
(see Numerical integration). Contributed by Charlee Fletterman, supported by 2017°s Google Summer of Code
program.

* New caching mechanism for the code generation stage (application of numerical integration algorithms, anal-
ysis of equations and statements, etc.), reducing the preparation time before the actual run, in particular for
simulations with multiple run () statements.

Selected improvements and bug fixes

* Fix a rare problem in Cython code generation caused by missing type information (#893)

* Fix warnings about improperly closed files on Python 3.6 (#892; reported and fixed by Teo Stocco)

* Fix an error when using numpy integer types for synaptic indexing (#888)

« Fix an error in numpy codegen target, triggered when assigning to a variable with an unfulfilled condition (#887)
* Fix an error when repeatedly referring to subexpressions in multiline statements (#880)

 Shorten long arrays in warning messages (#874)

* Enable the use of if in the shorthand generator syntax for Synapses.connect () (#873)

* Fix the meaning of i and j in synapses connecting to/from other synapses (#854)

Backward-incompatible changes and deprecations
* In C++ standalone mode, information about the number of synapses and spikes will now only be displayed when
built with debug=True (#882).

e The 1linear state updater has been renamed to exact to avoid confusion (#877). Users are encouraged to use
exact, but the name 1inear is still available and does not raise any warning or error for now.

* The independent state updater has been marked as deprecated and might be removed in future versions.

Infrastructure and documentation improvements
* A new, more advanced, futorial “about managing the slightly more complicated tasks that crop up in research
problems, rather than the toy examples we’ve been looking at so far.”

¢ Additional documentation on Custom events and Converting from integrated form to ODEs (including example
code for typical synapse models).

* New example code reproducing published findings (Platkiewicz and Brette, 2011; Stimberg et al., 2018)

16 Chapter 1. Introduction

https://github.com/brian-team/brian2/issues
mailto:brian-development@googlegroups.com
https://github.com/CharleeSF
https://summerofcode.withgoogle.com
https://github.com/brian-team/brian2/issues/893
https://github.com/brian-team/brian2/issues/892
https://github.com/zifeo
https://github.com/brian-team/brian2/issues/888
https://github.com/brian-team/brian2/issues/887
https://github.com/brian-team/brian2/issues/880
https://github.com/brian-team/brian2/issues/874
https://github.com/brian-team/brian2/issues/873
https://github.com/brian-team/brian2/issues/854
https://github.com/brian-team/brian2/issues/882
https://github.com/brian-team/brian2/issues/877

Brian 2 Documentation, Release 2.3

* Fixes to the sphinx documentation creation process, the documentation can be downloaded as a PDF once again
(705 pages!)

» Conda packages now have support for numpy 1.13 (but support for numpy 1.10 and 1.11 has been removed)

Contributions

Github code, documentation, and issue contributions (ordered by the number of contributions):

* Marcel Stimberg (@mstimberg)

¢ Charlee Fletterman (@ CharleeSF)
¢ Dan Goodman (@thesamovar)

¢ Teo Stocco (@zifeo)

e @k47h4

Other contributions outside of github (ordered alphabetically, apologies to anyone we forgot. . .):

* Chaofei Hong

e Lucas (“lucascdst™)

1.3.10 Brian 2.0.2.1

Fixes a bug in the tutorials’ HMTL rendering on readthedocs.org (code blocks were not displayed). Thanks to Flora
Bouchacourt for making us aware of this problem.

1.3.11 Brian 2.0.2

New features

molar and liter (as well as 1itre, scaled versions of the former, and a few useful abbreviations such as
mM) have been added as new units (#574).

A new module brian2.units.constants provides physical constants such as the Faraday constants or
the gas constant (see Constants for details).

SpatialNeuron now supports non-linear membrane currents (e.g. Goldman—Hodgkin—Katz equations) by
linearizing them with respect to v.

Multi-compartmental models can access the capacitive current via Ic in their equations (#677)

¢ A new function scheduling_summary () that displays information about the scheduling of all objects (see

Scheduling for details).

Introduce a new preference to pass arguments to the make/nmake command in C++
standalone mode (devices.cpp_standalone.extra_make_args_unix ~ for Linux/OS X and de-
vices.cpp_standalone.extra_make_args_windows for Windows). For Linux/OS X, this enables parallel
compilation by default.

Anaconda packages for Brian 2 are now available for Python 3.6 (but Python 3.4 support has been removed).

1.3.

Release notes 17

https://github.com/mstimberg
https://github.com/CharleeSF
https://github.com/thesamovar
https://github.com/zifeo
https://github.com/k47h4
https://github.com/brian-team/brian2/issues/574
https://github.com/brian-team/brian2/issues/677

Brian 2 Documentation, Release 2.3

Selected improvements and bug fixes

Work around low performance for certain C++ standalone simulations on Linux, due to a bug in glibc (see
#803). Thanks to Oleg Strikov (@xj8z) for debugging this issue and providing the workaround that is now in
use.

Make exact integration of event—driven synaptic variables use the 1 i near numerical integration algorithm
(instead of independent), fixing rare occasions where integration failed despite the equations being linear
(#801).

Better error messages for incorrect unit definitions in equations.

Various fixes for the internal representation of physical units and the unit registration system.
Fix a bug in the assignment of state variables in subtrees of SpatialNeuron (#822)

Numpy target: fix an indexing error for a SpikeMonitor that records from a subgroup (#824)

Summed variables targeting the same post-synaptic variable now raise an error (previously, only the one exe-
cuted last was taken into account, see #7606).

Fix bugs in synapse generation affecting Cython (#781) respectively numpy (#835)

C++ standalone simulations with many objects no longer fail on Windows (#787)

Backwards-incompatible changes

celsius has been removed as a unit, because it was ambiguous in its relation to kelvin and gave wrong
results when used as an absolute temperature (and not a temperature difference). For temperature differences,
you can directly replace celsius by kelvin. To convert an absolute temperature in degree Celsius to Kelvin,
add the zero_celsius constant from brian2.units.constants (#817).

State variables are no longer allowed to have names ending in _pre or _post to avoid confusion with refer-
ences to pre- and post-synaptic variables in Synapses (#818)

Changes to default settings

In C++ standalone mode, the c1ean argument now defaults to False, meaning that make clean will not be
executed by default before building the simulation. This avoids recompiling all files for unchanged simulations
that are executed repeatedly. To return to the previous behaviour, specify clean=True in the device.
buildcall (orin set_device if your script does not have an explicit device.build).

Contributions

Github code, documentation, and issue contributions (ordered by the number of contributions):

Marcel Stimberg (@mstimberg)
Dan Goodman (@thesamovar)
Thomas McColgan (@phreeza)
Daan Sprenkels (@dsprenkels)
Romain Brette (@romainbrette)
Oleg Strikov (@xj8z)

Charlee Fletterman (@ CharleeSF)

18

Chapter 1. Introduction

https://github.com/brian-team/brian2/issues/803
https://github.com/xj8z
https://github.com/brian-team/brian2/issues/801
https://github.com/brian-team/brian2/issues/822
https://github.com/brian-team/brian2/issues/824
https://github.com/brian-team/brian2/issues/766
https://github.com/brian-team/brian2/issues/781
https://github.com/brian-team/brian2/issues/835
https://github.com/brian-team/brian2/issues/787
https://github.com/brian-team/brian2/issues/817
https://github.com/brian-team/brian2/issues/818
https://github.com/mstimberg
https://github.com/thesamovar
https://github.com/phreeza
https://github.com/dsprenkels
https://github.com/romainbrette
https://github.com/xj8z
https://github.com/CharleeSF

Brian 2 Documentation, Release 2.3

* Meng Dong (@whenov)
¢ Denis Alevi (@denisalevi)
* Mihir Vaidya (@MihirVaidya94)
¢ Adam (@ffa)
* Sourav Singh (@souravsingh)
* Nick Hale (@nik849)
* Cody Greer (@Cody-G)
¢ Jean-Sébastien Dessureault (@jsdessureault)
* Michele Giugliano (@mgiugliano)
* Teo Stocco (@zifeo)
¢ Edward Betts (@ EdwardBetts)
Other contributions outside of github (ordered alphabetically, apologies to anyone we forgot. ..):
* Christopher Nolan
* Regimantas Jurkus

* Shailesh Appukuttan

1.3.12 Brian 2.0.1

This is a bug-fix release that fixes a number of important bugs (see below), but does not introduce any new features.
We recommend all users of Brian 2 to upgrade.

As always, please report bugs or suggestions to the github bug tracker (https://github.com/brian-team/brian2/issues)
or to the brian-development mailing list (brian-development @ googlegroups.com).

Improvements and bug fixes

* Fix PopulationRateMonitor for recordings from subgroups (#772)
 Fix SpikeMonitor for recordings from subgroups (#777)
 Check that string expressions provided as the rates argument for PoissonGroup have correct units.

* Fix compilation errors when multiple run statements with different report arguments are used in C++ stan-
dalone mode.

* Several documentation updates and fixes

Contributions

Code and documentation contributions (ordered by the number of commits):
e Marcel Stimberg (@mstimberg)
¢ Dan Goodman (@thesamovar)
¢ Alex Seeholzer (@flinz)
* Meng Dong (@whenov)

Testing, suggestions and bug reports (ordered alphabetically, apologies to anyone we forgot. . .):

1.3. Release notes 19

https://github.com/whenov
https://github.com/denisalevi
https://github.com/MihirVaidya94
https://github.com/ffa
https://github.com/souravsingh
https://github.com/nik849
https://github.com/Cody-G
https://github.com/jsdessureault
https://github.com/mgiugliano
https://github.com/zifeo
https://github.com/EdwardBetts
https://github.com/brian-team/brian2/issues
mailto:brian-development@googlegroups.com
https://github.com/brian-team/brian2/issues/772
https://github.com/brian-team/brian2/issues/777
https://github.com/mstimberg
https://github.com/thesamovar
https://github.com/flinz
https://github.com/whenov

Brian 2 Documentation, Release 2.3

e Myung Seok Shim

e Pamela Hathway

1.3.13 Brian 2.0 (changes since 1.4)

Major new features

Much more flexible model definitions. The behaviour of all model elements can now be defined by arbitrary
equations specified in standard mathematical notation.

Code generation as standard. Behind the scenes, Brian automatically generates and compiles C++ code to
simulate your model, making it much faster.

“Standalone mode”. In this mode, Brian generates a complete C++ project tree that implements your model.
This can be then be compiled and run entirely independently of Brian. This leads to both highly efficient code,
as well as making it much easier to run simulations on non-standard computational hardware, for example on
robotics platforms.

Multicompartmental modelling.

Python 2 and 3 support.

New features

Installation should now be much easier, especially if using the Anaconda Python distribution. See Installation.

Many improvements to Synapses which replaces the old Connection object in Brian 1. This includes:
synapses that are triggered by non-spike events; synapses that target other synapses; huge speed improvements
thanks to using code generation; new ‘“‘generator syntax” when creating synapses is much more flexible and
efficient. See Synapses.

New model definitions allow for much more flexible refractoriness. See Refractoriness.

SpikeMonitorand StateMonitor are now much more flexible, and cover a lot of what used to be covered
by things like MultiStateMonitor, etc. See Recording during a simulation.

Multiple event types. In addition to the default spike event, you can create arbitrary events, and have these
trigger code blocks (like reset) or synaptic events. See Custom events.

New units system allows arrays to have units. This eliminates the need for a lot of the special casing that was
required in Brian 1. See Physical units.

Indexing variable by condition, e.g. you might write G.v['x>0"] to return all values of variable v in
NeuronGroup G where the group’s variable x>0. See State variables.

Correct numerical integration of stochastic differential equations. See Numerical integration.

“Magic” run () system has been greatly simplified and is now much more transparent. In addition, if there
is any ambiguity about what the user wants to run, an erorr will be raised rather than making a guess. This
makes it much safer. In addition, there is now a store ()/restore () mechanism that simplifies restarting
simulations and managing separate training/testing runs. See Running a simulation.

Changing an external variable between runs now works as expected, i.e. something like tau=1+ms;
run (100*ms); tau=5+ms; run (100+ms). In Brian 1 this would have used t au=1+ms for both runs.
More generally, in Brian 2 there is now better control over namespaces. See Namespaces.

New “shared” variables with a single value shared between all neurons. See Shared variables.

20

Chapter 1. Introduction

Brian 2 Documentation, Release 2.3

* New Group.run_regularly () method for a codegen-compatible way of doing things that used to be done
with network_operation () (which can still be used). See Regular operations.

* New system for handling externally defined functions. They have to specify which units they accept in their ar-
guments, and what they return. In addition, you can easily specify the implementation of user-defined functions
in different languages for code generation. See Functions.

« State variables can now be defined as integer or boolean values. See Equations.

» State variables can now be exported directly to Pandas data frame. See Storing state variables.

* New generalised “flags” system for giving additional information when defining models. See Flags.

* TimedArray now allows for 2D arrays with arbitrary indexing. See Timed arrays.

 Better support for using Brian in IPython/Jupyter. See, for example, start_scope ().

» New preferences system. See Preferences.

¢ Random number generation can now be made reliably reproducible. See Random numbers.

* New profiling option to see which parts of your simulation are taking the longest to run. See Profiling.
* New logging system allows for more precise control. See Logging.

* New ways of importing Brian for advanced Python users. See Importing Brian.

 Improved control over the order in which objects are updated during a run. See Custom progress reporting.
e Users can now easily define their own numerical integration methods. See State update.

* Support for parallel processing using the OpenMP version of standalone mode. Note that all Brian tests pass
with this, but it is still considered to be experimental. See Multi-threading with OpenMP.

Backwards incompatible changes

See Detailed Brian 1 to Brian 2 conversion notes.

Behind the scenes changes

¢ All user models are now passed through the code generation system. This allows us to be much more flexible
about introducing new target languages for generated code to make use of non-standard computational hardware.
See Code generation.

* New standalone/device mode allows generation of a complete project tree that can be compiled and built inde-
pendently of Brian and Python. This allows for even more flexible use of Brian on non-standard hardware. See
Devices.

» All objects now have a unique name, used in code generation. This can also be used to access the object through
the Net work object.

Contributions

Full list of all Brian 2 contributors, ordered by the time of their first contribution:
¢ Dan Goodman (@thesamovar)
e Marcel Stimberg (@mstimberg)
¢ Romain Brette (@romainbrette)

 Cyrille Rossant (@rossant)

1.3. Release notes 21

https://github.com/thesamovar
https://github.com/mstimberg
https://github.com/romainbrette
https://github.com/rossant

Brian 2 Documentation, Release 2.3

¢ Victor Benichoux (@victorbenichoux)
* Pierre Yger (@yger)

* Werner Beroux (@wernight)

¢ Konrad Wartke (@ Kwartke)

* Daniel Bliss (@dabliss)

¢ Jan-Hendrik Schleimer (@ttxtea)

¢ Moritz Augustin (@moritzaugustin)

¢ Romain Cazé (@rcaze)

¢ Dominik Krzeminski (@dokato)

e Martino Sorbaro (@martinosorb)

* Benjamin Evans (@bdevans)

1.3.14 Brian 2.0 (changes since 2.0rc3)

New features

* A new flag constant over dt can be applied to subexpressions to have them only evaluated once per
timestep (see Models and neuron groups). This flag is mandatory for stateful subexpressions, e.g. expressions
using rand () or randn (). (#720, #721)

Improvements and bug fixes
e Fix EventMonitor.values () and SpikeMonitor.spike trains() to always return sorted
spike/event times (#725).
* Respect the act ive attribute in C++ standalone mode (#718).
* More consistent check of compatible time and dt values (#730).

* Attempting to set a synaptic variable or to start a simulation with synapses without any preceding connect call
now raises an error (#737).

* Improve the performance of coordinate calculation for Morphology objects, which previously made plotting
very slow for complex morphologies (#741).

* Fix a bug in SpatialNeuron where it did not detect non-linear dependencies on v, introduced via point
currents (#743).

Infrastructure and documentation improvements

* An interactive demo, tutorials, and examples can now be run in an interactive jupyter notebook on the mybinder
platform, without any need for a local Brian installation (#736). Thanks to Ben Evans for the idea and help with
the implementation.

* A new extensive guide for converting Brian 1 simulations to Brian 2 user coming from Brian 1: Changes for
Brian I users

* A re-organized User’s guide, with clearer indications which information is important for new Brian users.

22 Chapter 1. Introduction

https://github.com/victorbenichoux
https://github.com/yger
https://github.com/wernight
https://github.com/Kwartke
https://github.com/dabliss
https://github.com/ttxtea
https://github.com/moritzaugustin
https://github.com/rcaze
https://github.com/dokato
https://github.com/martinosorb
https://github.com/bdevans
https://github.com/brian-team/brian2/issues/720
https://github.com/brian-team/brian2/issues/721
https://github.com/brian-team/brian2/issues/725
https://github.com/brian-team/brian2/issues/718
https://github.com/brian-team/brian2/issues/730
https://github.com/brian-team/brian2/issues/737
https://github.com/brian-team/brian2/issues/741
https://github.com/brian-team/brian2/issues/743
http://mybinder.org/
https://github.com/brian-team/brian2/issues/736

Brian 2 Documentation, Release 2.3

Contributions

Code and documentation contributions (ordered by the number of commits):

Marcel Stimberg (@mstimberg)
Dan Goodman (@thesamovar)

Benjamin Evans (@bdevans)

Testing, suggestions and bug reports (ordered alphabetically, apologies to anyone we forgot.. .):

Chaofei Hong
Daniel Bliss
Jacopo Bono

Ruben Tikidji-Hamburyan

1.3.15 Brian 2.0rc3

This is another “release candidate” for Brian 2.0 that fixes a range of bugs and introduces better support for random
numbers (see below). We are getting close to the final Brian 2.0 release, the remaining work will focus on bug fixes,
and better error messages and documentation.

As always, please report bugs or suggestions to the github bug tracker (https://github.com/brian-team/brian2/issues)
or to the brian-development mailing list (brian-development @ googlegroups.com).

New features

Brian now comes with its own seed () function, allowing to seed the random number generator and thereby
to make simulations reproducible. This function works for all code generation targets and in runtime and stan-
dalone mode. See Random numbers for details.

Brian can now export/import state variables of a group or a full network to/from a pandas DataFrame and
comes with a mechanism to extend this to other formats. Thanks to Dominik Krzeminski for this contribution
(see #3006).

Improvements and bug fixes

Use a Mersenne-Twister pseudorandom number generator in C++ standalone mode, replacing the previously
used low-quality random number generator from the C standard library (see #222, #671 and #706).

Fix a memory leak in code running with the weave code generation target, and a smaller memory leak related to
units stored repetitively in the UnitRegistry.

Fix a difference of one timestep in the number of simulated timesteps between runtime and standalone that could
arise for very specific values of dt and t (see #695).

Fix standalone compilation failures with the most recent gcc version which defaults to C++14 mode (see #701)

Fix incorrect summation in synapses when using the (summed) flag and writing to pre-synaptic variables (see
#704)

Make synaptic pathways work when connecting groups that define nested subexpressions, instead of failing with
a cryptic error message (see #707).

1.3.

Release notes 23

https://github.com/mstimberg
https://github.com/thesamovar
https://github.com/bdevans
https://github.com/brian-team/brian2/issues
mailto:brian-development@googlegroups.com
http://pandas.pydata.org
https://github.com/brian-team/brian2/issues/306
https://github.com/brian-team/brian2/issues/222
https://github.com/brian-team/brian2/issues/671
https://github.com/brian-team/brian2/issues/706
https://github.com/brian-team/brian2/issues/695
https://github.com/brian-team/brian2/issues/701
https://github.com/brian-team/brian2/issues/704
https://github.com/brian-team/brian2/issues/707

Brian 2 Documentation, Release 2.3

Contributions

Code and documentation contributions (ordered by the number of commits):
e Marcel Stimberg (@mstimberg)
¢ Dominik Krzeminski (@dokato)
¢ Dan Goodman (@thesamovar)
e Martino Sorbaro (@martinosorb)
Testing, suggestions and bug reports (ordered alphabetically, apologies to anyone we forgot. . .):
* Craig Henriquez
* Daniel Bliss
 David Higgins
* Gordon Erlebacher
* Max Gillett
* Moritz Augustin
Sami Abdul-Wahid

1.3.16 Brian 2.0rc1

This is a bug fix release that we release only about two weeks after the previous release because that release introduced
a bug that could lead to wrong integration of stochastic differential equations. Note that standard neuronal noise models
were not affected by this bug, it only concerned differential equations implementing a “random walk”. The release
also fixes a few other issues reported by users, see below for more information.

Improvements and bug fixes
* Fix a regression from 2.0b4: stochastic differential equations without any non-stochastic part (e.g. dx/dt =
xi/sqgrt (ms)) were not integrated correctly (see #686).
* Repeatedly calling restore () (or Network. restore ()) no longer raises an error (see #681).
* Fix an issue that made PoissonTInput refuse to run after a change of dt (see #684).

 If the rates argument of PoissonGroup is a string, it will now be evaluated at every time step instead of
once at construction time. This makes time-dependent rate expressions work as expected (see #660).

Contributions

Code and documentation contributions (ordered by the number of commits):
¢ Marcel Stimberg (@mstimberg)
Testing, suggestions and bug reports (ordered alphabetically, apologies to anyone we forgot. . .):
¢ Cian O’Donnell
* Daniel Bliss
¢ Ibrahim Ozturk

¢ Olivia Gozel

24 Chapter 1. Introduction

https://github.com/mstimberg
https://github.com/dokato
https://github.com/thesamovar
https://github.com/martinosorb
https://github.com/brian-team/brian2/issues/686
https://github.com/brian-team/brian2/issues/681
https://github.com/brian-team/brian2/issues/684
https://github.com/brian-team/brian2/issues/660
https://github.com/mstimberg

Brian 2 Documentation, Release 2.3

1.3.17 Brian 2.0rc

This is a release candidate for the final Brian 2.0 release, meaning that from now on we will focus on bug fixes and
documentation, without introducing new major features or changing the syntax for the user. This release candidate
itself does however change a few important syntax elements, see “Backwards-incompatible changes” below.

As always, please report bugs or suggestions to the github bug tracker (https://github.com/brian-team/brian2/issues)
or to the brian-development mailing list (brian-development @ googlegroups.com).

Major new features
* New “generator syntax” to efficiently generate synapses (e.g. one-to-one connections), see Creating synapses
for more details.

* For synaptic connections with multiple synapses between a pair of neurons, the number of the synapse can now
be stored in a variable, allowing its use in expressions and statements (see Creating synapses).

* Synapses can now target other Synapses objects, useful for some models of synaptic modulation.

e The Morphology object has been completely re-worked and several issues have been fixed. The new
Section object allows to model a section as a series of truncated cones (see Creating a neuron morphology).

 Scripts with a single run () call, no longer need an explicit device.build () call to run with the C++
standalone device. A set__device () in the beginning is enough and will trigger the build call after the run
(see Standalone code generation).

 All state variables within a Net work can now be accessed by Network.get_states () and Network.
set_states () and the store ()/restore () mechanism can now store the full state of a simulation to
disk.

* Stochastic differential equations with multiplicative noise can now be integrated using the Euler-Heun method
(heun). Thanks to Jan-Hendrik Schleimer for this contribution.

» Error messages have been significantly improved: errors for unit mismatches are now much clearer and error
messages triggered during the intialization phase point back to the line of code where the relevant object (e.g. a
NeuronGroup) was created.

* PopulationRateMonitor now provides a smooth_rate method for a filtered version of the stored rates.

Improvements and bug fixes

* In addition to the new synapse creation syntax, sparse probabilistic connections are now created much faster.
* The time for the initialization phase at the beginning of a run () has been significantly reduced.

* Multicompartmental simulations with a large number of compartments are now simulated more efficiently and
are making better use of several processor cores when OpenMP is activated in C++ standalone mode. Thanks to
Moritz Augustin for this contribution.

 Simulations will use compiler settings that optimize performance by default.

* Objects that have user-specified names are better supported for complex simulation scenarios (names no longer
have to be unique at all times, but only across a network or across a standalone device).

* Various fixes for compatibility with recent versions of numpy and sympy

1.3. Release notes 25

https://github.com/brian-team/brian2/issues
mailto:brian-development@googlegroups.com

Brian 2 Documentation, Release 2.3

Important backwards-incompatible changes

The argument names in Synapses.connect () have changed and the first argument can no longer be
an array of indices. To connect based on indices, use Synapses.connect (i=source_indices,
j=target_indices). See Creating synapses and the documentation of Synapses.connect () for more
details.

The actions triggered by pre-synaptic and post-synaptic spikes are now described by the on_pre and on_post
keyword arguments (instead of pre and post).

The Morphology object no longer allows to change attributes such as length and diameter after its creation.
Complex morphologies should instead be created using the Sect ion class, allowing for the specification of all
details.

Morphology objects that are defined with coordinates need to provide the start point (relative to the end point
of the parent compartment) as the first coordinate. See Creating a neuron morphology for more details.

For simulations using the C++ standalone mode, no longer call Device .build (if using a single run () call),
oruse set_device () withbuild_on_run=False (see Standalone code generation).

Infrastructure improvements

Our test suite is now also run on Mac OS-X (on the Travis CI platform).

Contributions

Code and documentation contributions (ordered by the number of commits):

Marcel Stimberg (@mstimberg)
Dan Goodman (@thesamovar)
Moritz Augustin (@moritzaugustin)
Jan-Hendrik Schleimer (@ttxtea)
Romain Cazé (@rcaze)

Konrad Wartke (@ Kwartke)

Romain Brette (@romainbrette)

Testing, suggestions and bug reports (ordered alphabetically, apologies to anyone we forgot. ..):

Chaofei Hong
Kees de Leeuw
Luke Y Prince
Myung Seok Shim
Owen Mackwood

Github users: @epaxon, @flinz, @mariomulansky, @martinosorb, @neuralyzer, @oleskiw, @prcastro, @su-
doankit

26

Chapter 1. Introduction

https://travis-ci.org/
https://github.com/mstimberg
https://github.com/thesamovar
https://github.com/moritzaugustin
https://github.com/ttxtea
https://github.com/rcaze
https://github.com/Kwartke
https://github.com/romainbrette

Brian 2 Documentation, Release 2.3

1.3.18 Brian 2.0b4

This is the fourth (and probably last) beta release for Brian 2.0. This release adds a few important new features
and fixes a number of bugs so we recommend all users of Brian 2 to upgrade. If you are a user new to Brian, we also
recommend to directly start with Brian 2 instead of using the stable release of Brian 1. Note that the new recommended
way to install Brian 2 is to use the Anaconda distribution and to install the Brian 2 conda package (see Installation).

This is however still a Beta release, please report bugs or suggestions to the github bug tracker (https://github.com/
brian-team/brian2/issues) or to the brian-development mailing list (brian-development @ googlegroups.com).

Major new features

* In addition to the standard threshold/reset, groups can now define “custom events”. These can be recorded with
the new EventMonitor (a generalization of SpikeMonitor)and Synapses can connect to these events
instead of the standard spike event. See Custom events for more details.

e SpikeMonitor and EventMonitor can now also record state variable values at the time of spikes (or
