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Brian is a simulator for spiking neural networks. It is written in the Python programming language and is available
on almost all platforms. We believe that a simulator should not only save the time of processors, but also the time of
scientists. Brian is therefore designed to be easy to learn and use, highly flexible and easily extensible.

To get an idea of what writing a simulation in Brian looks like, take a look at a simple example, or run our interactive
demo.

Once you have a feel for what is involved in using Brian, we recommend you start by following the installation
instructions, then going through the rutorials, and finally reading the User Guide.

While reading the documentation, you will see the names of certain functions and classes are highlighted links (e.g.
PoissonGroup). Clicking on these will take you to the “reference documentation”. This section is automatically
generated from the code, and includes complete and very detailed information, so for new users we recommend
sticking to the User’s guide. However, there is one feature that may be useful for all users. If you click on, for example,
PoissonGroup, and scroll down to the bottom, you’ll get a list of all the example code that uses PoissonGroup.
This is available for each class or method, and can be helpful in understanding how a feature works.

Finally, if you’re having problems, please do let us know at our support page.

Contents:
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CHAPTER 1

Introduction

1.1 Installation

We recommend users to use the Anaconda distribution by Continuum Analytics. Its use will make the installation of
Brian 2 and its dependencies simpler, since packages are provided in binary form, meaning that they don’t have to be
build from the source code at your machine. Furthermore, our automatic testing on the continuous integration services
travis and appveyor are based on Anaconda, we are therefore confident that it works under this configuration.

However, Brian 2 can also be installed independent of Anaconda, either with other Python distributions (Enthought
Canopy, Python(x,y) for Windows, ...) or simply based on Python and pip (see Installation from source below).

1.1.1 Installation with Anhaconda

Installing Anaconda

Download the Anaconda distribution for your Operating System. For Windows users that want to use Python 3.x, we
strongly recommend installing the 32 Bit version even on 64 Bit systems, since setting the compilation environment
(see Requirements for C++ code generation below) is less complicated in that case. Note that the choice between
Python 2.7 and Python 3.x is not very important at this stage, Anaconda allows you to create a Python 3 environment
from Python 2 Anaconda and vice versa.

After the installation, make sure that your environment is configured to use the Anaconda distribution. You should
have access to the conda command in a terminal and running python (e.g. from your IDE) should show a header
like this, indicating that you are using Anaconda’s Python interpreter:

Python 2.7.10 |Anaconda 2.3.0 (64-bit)| (default, May 28 2015, 17:02:03)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux2

Type "help", "copyright", "credits" or "license" for more information.
Anaconda is brought to you by Continuum Analytics.

Please check out: http://continuum.io/thanks and https://binstar.org

Here’s some documentation on how to set up some popular IDEs for Anaconda: https://docs.continuum.io/anaconda/
ide_integration



https://www.continuum.io/downloads
https://travis-ci.org/brian-team/brian2
https://ci.appveyor.com/project/brianteam/brian2
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
https://code.google.com/p/pythonxy/
https://continuum.io/downloads
https://docs.continuum.io/anaconda/ide_integration
https://docs.continuum.io/anaconda/ide_integration
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Installing Brian 2

You can either install Brian 2 in the Anaconda root environment, or create a new environment for Brian 2 (http://conda.
pydata.org/docs/using/envs.html). The latter has the advantage that you can update (or not update) the dependencies
of Brian 2 independently from the rest of your system.

Since Brian 2 is not part of the main Anaconda distribution, you have to install it from the brian-team channel. To do
SO, USse:

’conda install -c brian-team brian2

You can also permanently add the channel to your list of channels:

’conda config ——add channels brian-team

This has only to be done once. After that, you can install and update the brian2 packages as any other Anaconda
package:

conda install brian2

Installing other useful packages

There are various packages that are useful but not necessary for working with Brian. These include: matplotlib (for
plotting), nose (for running the test suite), ipython and jupyter-notebook (for an interactive console). To install them
from anaconda, simply do:

’conda install matplotlib nose ipython jupyter-notebook

You should also have a look at the brian2tools package, which contains several useful functions to visualize Brian 2
simulations and recordings. You can install it with pip or anaconda, in the same way as Brian 2 itself, e.g. with:

conda install -c brian-team brian2tools

1.1.2 Installation from source

If you decide not to use Anaconda, you can install Brian 2 from the Python package index: https://pypi.python.org/
pypi/Brian2

To do so, use the pip utility:

pip install brian2

You might want to add the ——user flag, to install Brian 2 for the local user only, which means that you don’t need
administrator privileges for the installation.

In principle, the above command also install Brian’s dependencies. Unfortunately, this does not work for numpy,
it has to be installed in a separate step before all other dependencies (pip install numpy), if it is not already
installed.

If you have an older version of pip, first update pip itself:

# On Linux/MacOsX:
pip install -U pip

# On Windows
python -m pip install -U pip
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If you don’t have pip but you have the easy_install utility, you can use it to install pip:

easy_install pip

If you have neither pip nor easy_install, use the approach described here to install pip: https://pip.pypa.io/en/
latest/installing/

Alternatively, you can download the source package directly and uncompress it. You can then either run python
setup.py install or python setup.py develop to install it, or simply add the source directory to your
PYTHONPATH (this will only work for Python 2.x).

1.1.3 Requirements for C++ code generation

C++ code generation is highly recommended since it can drastically increase the speed of simulations (see Computa-
tional methods and efficiency for details). To use it, you need a C++ compiler and either Cython or weave (only for
Python 2.x). Cython/weave will be automatically installed if you perform the installation via Anaconda, as recom-
mended. Otherwise you can install them in the usual way, e.g. using pip install cythonorpip install
weave.

Linux and OS X

On Linux and Mac OS X, you will most likely already have a working C++ compiler installed (try calling g++
—-—version in a terminal). If not, use your distribution’s package manager to install a g++ package.

Windows
On Windows, the necessary steps to get Runtime code generation (i.e. Cython/weave) to work depend on the Python
version you are using:
Python 2.7
* Download and install the Microsoft Visual C++ Compiler for Python 2.7
This should be all you need.
Python 3.4
* Download and install the Microsoft NET Framework 4
* Download and install the Microsoft Windows SDK for Windows 7 and .NET Framework 4

For 64 Bit Windows with Python 3.4, you have to additionally set up your environment correctly every time you
run your Brian script (this is why we recommend against using this combination on Windows). To do this, run the
following commands (assuming the default installation path) at the CMD prompt, or put them in a batch file:

setlocal EnableDelayedExpansion
CALL "C:\Program Files\Microsoft SDKs\Windows\v7.1\Bin\SetEnv.cmd" /x64 /release
set DISTUTILS_USE_SDK=1

Python 3.5

e Download and install Visual Studio Community 2015. Do not chose the default install but instead customize it,
the only necessary option is “Programming Languages / Visual C++ / Common Tools for Visual C++ 2015

For Standalone code generation, you can either use the compiler installed above or any other version of Visual Studio
— in this case, the Python version does not matter.

1.1. Installation 5
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Try running the test suite (see Testing Brian below) after the installation to make sure everything is working as ex-
pected.

1.1.4 Development version

To run the latest development code, you can install from brian-team’s “dev” channel with Anaconda. Note that if you
previously added the brian—team channel to your list of channels, you have to first remove it:

conda config —-remove channels brian-team -f

Also uninstall any version of Brian 2 that you might have previously installed:

’conda remove brian2

Finally, install the brian?2 package from the development channel:

’conda install -c¢ brian-team/channel/dev brian2

If this fails with an error message about the py—-cpuinfo package (a dependency that we provide in the main brian-
team channel), install it from the main channel:

’conda install -c¢ brian-team py-cpuinfo

Then repeat the command to install Brian 2 from the development channel.

You can also directly clone the git repository at github (https://github.com/brian-team/brian2) and then run
python setup.py install or python setup.py develop or simply add the source directory to your
PYTHONPATH (this will only work for Python 2.x).

Finally, another option is to use pip to directly install from github:

pip install https://github.com/brian-team/brian2/archive/master.zip

1.1.5 Testing Brian

If you have the nose testing utility installed, you can run Brian’s test suite:

import brian2
brian2.test ()

It should end with “OK”, possibly showing a number of skipped tests but no warnings or errors. For more control
about the tests that are run see the developer documentation on testing.

1.2 Release notes

1.2.1 Brian 2.1

This release introduces two main new features: a new “GSL integration” mode for differential equation that offers to
integrate equations with variable-timestep methods provided by the GNU Scientific Library, and caching for the run
preparation phase that can significantly speed up simulations. It also comes with a newly written tutorial, as well as
additional documentation and examples.

As always, please report bugs or suggestions to the github bug tracker (https://github.com/brian-team/brian2/issues)
or to the brian-development mailing list (brian-development@ googlegroups.com).
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New features

* New numerical integration methods with variable time-step integration, based on the GNU Scientific Library
(see Numerical integration). Contributed by Charlee Fletterman, supported by 2017’s Google Summer of Code
program.

e New caching mechanism for the code generation stage (application of numerical integration algorithms, anal-
ysis of equations and statements, etc.), reducing the preparation time before the actual run, in particular for
simulations with multiple run () statements.

Selected improvements and bug fixes

¢ Fix a rare problem in Cython code generation caused by missing type information (#893)

* Fix warnings about improperly closed files on Python 3.6 (#892; reported and fixed by Teo Stocco)

* Fix an error when using numpy integer types for synaptic indexing (#888)

* Fix an error in numpy codegen target, triggered when assigning to a variable with an unfulfilled condition (#887)
* Fix an error when repeatedly referring to subexpressions in multiline statements (#880)

 Shorten long arrays in warning messages (#874)

» Enable the use of i f in the shorthand generator syntax for Synapses.connect () (#873)

* Fix the meaning of i and j in synapses connecting to/from other synapses (#854)

Backward-incompatible changes and deprecations
¢ In C++ standalone mode, information about the number of synapses and spikes will now only be displayed when
built with debug=True (#882).

* The 1inear state updater has been renamed to exact to avoid confusion (#877). Users are encouraged to use
exact, but the name 1inear is still available and does not raise any warning or error for now.

* The independent state updater has been marked as deprecated and might be removed in future versions.

Infrastructure and documentation improvements
* A new, more advanced, tfuforial “about managing the slightly more complicated tasks that crop up in research
problems, rather than the toy examples we’ve been looking at so far.”

* Additional documentation on Custom events and Converting from integrated form to ODEs (including example
code for typical synapse models).

* New example code reproducing published findings (Platkiewicz and Brette, 2011; Stimberg et al., 2018)

* Fixes to the sphinx documentation creation process, the documentation can be downloaded as a PDF once again
(705 pages!)

* Conda packages now have support for numpy 1.13 (but support for numpy 1.10 and 1.11 has been removed)
Contributions

Github code, documentation, and issue contributions (ordered by the number of contributions):

* Marcel Stimberg (@mstimberg)
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¢ Charlee Fletterman (@ CharleeSF)
¢ Dan Goodman (@thesamovar)
¢ Teo Stocco (@zifeo)
e @k47h4
Other contributions outside of github (ordered alphabetically, apologies to anyone we forgot.. . ):
» Chaofei Hong

¢ Lucas (“lucascdst™)

1.2.2 Brian 2.0.2.1

Fixes a bug in the tutorials’ HMTL rendering on readthedocs.org (code blocks were not displayed). Thanks to Flora
Bouchacourt for making us aware of this problem.

1.2.3 Brian 2.0.2

New features
e molar and liter (as well as 1itre, scaled versions of the former, and a few useful abbreviations such as
mM) have been added as new units (#574).

* A new module brian2.units.constants provides physical constants such as the Faraday constants or
the gas constant (see Constants for details).

* SpatialNeuron now supports non-linear membrane currents (e.g. Goldman—Hodgkin—Katz equations) by
linearizing them with respect to v.

* Multi-compartmental models can access the capacitive current via Ic in their equations (#677)

* A new function scheduling_ summary () that displays information about the scheduling of all objects (see
Scheduling for details).

e Introduce a new preference to pass arguments to the make/nmake command in C++
standalone  mode (devices.cpp_standalone.extra_make_args_unix ~ for Linux/OS X and de-
vices.cpp_standalone.extra_make_args_windows for Windows). For Linux/OS X, this enables parallel
compilation by default.

* Anaconda packages for Brian 2 are now available for Python 3.6 (but Python 3.4 support has been removed).

Selected improvements and bug fixes

* Work around low performance for certain C++ standalone simulations on Linux, due to a bug in glibc (see
#803). Thanks to Oleg Strikov (@xj8z) for debugging this issue and providing the workaround that is now in
use.

* Make exact integration of event —driven synaptic variables use the 1 inear numerical integration algorithm
(instead of independent), fixing rare occasions where integration failed despite the equations being linear
(#801).

* Better error messages for incorrect unit definitions in equations.
* Various fixes for the internal representation of physical units and the unit registration system.

* Fix a bug in the assignment of state variables in subtrees of SpatialNeuron (#822)
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Numpy target: fix an indexing error for a SpikeMonitor that records from a subgroup (#824)

Summed variables targeting the same post-synaptic variable now raise an error (previously, only the one exe-

cuted last was taken into account, see #7606).

Fix bugs in synapse generation affecting Cython (#781) respectively numpy (#835)

C++ standalone simulations with many objects no longer fail on Windows (#787)

Backwards-incompatible changes

* celsius has been removed as a unit, because it was ambiguous in its relation to kelvin and gave wrong
results when used as an absolute temperature (and not a temperature difference). For temperature differences,
you can directly replace celsius by kelvin. To convert an absolute temperature in degree Celsius to Kelvin,
add the zero_celsius constant from brian2.units.constants (#817).

* State variables are no longer allowed to have names ending in _pre or _post to avoid confusion with refer-

ences to pre- and post-synaptic variables in Synapses (#818)

Changes to default settings

* In C++ standalone mode, the c1ean argument now defaults to False, meaning that make clean will not be
executed by default before building the simulation. This avoids recompiling all files for unchanged simulations
that are executed repeatedly. To return to the previous behaviour, specify clean=True in the device.
buildcall (orin set_device if your script does not have an explicit device.build).

Contributions

Github code, documentation, and issue contributions (ordered by the number of contributions):

Marcel Stimberg (@mstimberg)
Dan Goodman (@thesamovar)
Thomas McColgan (@phreeza)
Daan Sprenkels (@dsprenkels)
Romain Brette (@romainbrette)
Oleg Strikov (@xj8z)

Charlee Fletterman (@ CharleeSF)
Meng Dong (@whenov)

Denis Alevi (@denisalevi)
Mihir Vaidya (@MihirVaidya94)
Adam (@ffa)

Sourav Singh (@souravsingh)
Nick Hale (@nik849)

Cody Greer (@Cody-G)

Jean-Sébastien Dessureault (@jsdessureault)

Michele Giugliano (@mgiugliano)

1.2
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¢ Teo Stocco (@zifeo)
¢ Edward Betts (@EdwardBetts)
Other contributions outside of github (ordered alphabetically, apologies to anyone we forgot. .. ):
¢ Christopher Nolan
* Regimantas Jurkus

* Shailesh Appukuttan

1.2.4 Brian 2.0.1

This is a bug-fix release that fixes a number of important bugs (see below), but does not introduce any new features.
We recommend all users of Brian 2 to upgrade.

As always, please report bugs or suggestions to the github bug tracker (https://github.com/brian-team/brian2/issues)
or to the brian-development mailing list (brian-development @ googlegroups.com).

Improvements and bug fixes

* Fix PopulationRateMonitor for recordings from subgroups (#772)
* Fix SpikeMonitor for recordings from subgroups (#777)
* Check that string expressions provided as the rates argument for PoissonGroup have correct units.

* Fix compilation errors when multiple run statements with different report arguments are used in C++ stan-
dalone mode.

» Several documentation updates and fixes

Contributions

Code and documentation contributions (ordered by the number of commits):
* Marcel Stimberg (@mstimberg)
¢ Dan Goodman (@thesamovar)
¢ Alex Seeholzer (@flinz)
* Meng Dong (@whenov)
Testing, suggestions and bug reports (ordered alphabetically, apologies to anyone we forgot.. . ):
e Myung Seok Shim

* Pamela Hathway
1.2.5 Brian 2.0 (changes since 1.4)

Major new features

* Much more flexible model definitions. The behaviour of all model elements can now be defined by arbitrary
equations specified in standard mathematical notation.

e Code generation as standard. Behind the scenes, Brian automatically generates and compiles C++ code to
simulate your model, making it much faster.
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» “Standalone mode”. In this mode, Brian generates a complete C++ project tree that implements your model.
This can be then be compiled and run entirely independently of Brian. This leads to both highly efficient code,
as well as making it much easier to run simulations on non-standard computational hardware, for example on
robotics platforms.

¢ Multicompartmental modelling.

e Python 2 and 3 support.

New features

¢ Installation should now be much easier, especially if using the Anaconda Python distribution. See Installation.

e Many improvements to Synapses which replaces the old Connection object in Brian 1. This includes:
synapses that are triggered by non-spike events; synapses that target other synapses; huge speed improvements
thanks to using code generation; new “generator syntax” when creating synapses is much more flexible and
efficient. See Synapses.

¢ New model definitions allow for much more flexible refractoriness. See Refractoriness.

e SpikeMonitorand StateMonitor are now much more flexible, and cover a lot of what used to be covered
by things like MultiStateMonitor, etc. See Recording during a simulation.

* Multiple event types. In addition to the default spike event, you can create arbitrary events, and have these
trigger code blocks (like reset) or synaptic events. See Custom events.

* New units system allows arrays to have units. This eliminates the need for a lot of the special casing that was
required in Brian 1. See Physical units.

* Indexing variable by condition, e.g. you might write G.v['x>0"] to return all values of variable v in
NeuronGroup G where the group’s variable x>0. See State variables.

 Correct numerical integration of stochastic differential equations. See Numerical integration.

* “Magic” run () system has been greatly simplified and is now much more transparent. In addition, if there
is any ambiguity about what the user wants to run, an erorr will be raised rather than making a guess. This
makes it much safer. In addition, there is now a store ()/restore () mechanism that simplifies restarting
simulations and managing separate training/testing runs. See Running a simulation.

* Changing an external variable between runs now works as expected, i.e. something like tau=1xms;
run (100*ms); tau=5+ms; run (100*ms). In Brian 1 this would have used t au=1+ms for both runs.
More generally, in Brian 2 there is now better control over namespaces. See Namespaces.

* New “shared” variables with a single value shared between all neurons. See Shared variables.

e New Group. run_regularly () method for a codegen-compatible way of doing things that used to be done
with network_operation () (which can still be used). See Regular operations.

* New system for handling externally defined functions. They have to specify which units they accept in their ar-
guments, and what they return. In addition, you can easily specify the implementation of user-defined functions
in different languages for code generation. See Functions.

» State variables can now be defined as integer or boolean values. See Equations.

» State variables can now be exported directly to Pandas data frame. See Storing state variables.

* New generalised “flags” system for giving additional information when defining models. See Flags.
* TimedArray now allows for 2D arrays with arbitrary indexing. See Timed arrays.

 Better support for using Brian in IPython/Jupyter. See, for example, start_scope ().

* New preferences system. See Preferences.

1.2. Release notes 11



Brian 2 Documentation, Release 2.1

Random number generation can now be made reliably reproducible. See Random numbers.

New profiling option to see which parts of your simulation are taking the longest to run. See Profiling.
New logging system allows for more precise control. See Logging.

New ways of importing Brian for advanced Python users. See /mporting Brian.

Improved control over the order in which objects are updated during a run. See Custom progress reporting.
Users can now easily define their own numerical integration methods. See State update.

Support for parallel processing using the OpenMP version of standalone mode. Note that all Brian tests pass
with this, but it is still considered to be experimental. See Multi-threading with OpenMP.

Backwards incompatible changes

See Detailed Brian 1 to Brian 2 conversion notes.

Behind the scenes changes

All user models are now passed through the code generation system. This allows us to be much more flexible
about introducing new target languages for generated code to make use of non-standard computational hardware.
See Code generation.

New standalone/device mode allows generation of a complete project tree that can be compiled and built inde-
pendently of Brian and Python. This allows for even more flexible use of Brian on non-standard hardware. See
Devices.

All objects now have a unique name, used in code generation. This can also be used to access the object through
the Net work object.

Contributions

Full list of all Brian 2 contributors, ordered by the time of their first contribution:

Dan Goodman (@thesamovar)
Marcel Stimberg (@mstimberg)
Romain Brette (@romainbrette)
Cyrille Rossant (@rossant)

Victor Benichoux (@victorbenichoux)
Pierre Yger (@yger)

Werner Beroux (@wernight)
Konrad Wartke (@ Kwartke)

Daniel Bliss (@dabliss)
Jan-Hendrik Schleimer (@ttxtea)
Moritz Augustin (@moritzaugustin)
Romain Cazé (@rcaze)

Dominik Krzeminski (@dokato)

Martino Sorbaro (@martinosorb)
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* Benjamin Evans (@bdevans)

1.2.6 Brian 2.0 (changes since 2.0rc3)

New features

* A new flag constant over dt can be applied to subexpressions to have them only evaluated once per
timestep (see Models and neuron groups). This flag is mandatory for stateful subexpressions, e.g. expressions
using rand () or randn (). (#720, #721)

Improvements and bug fixes
e Fix EventMonitor.values () and SpikeMonitor.spike trains() to always return sorted
spike/event times (#725).
* Respect the act ive attribute in C++ standalone mode (#718).
* More consistent check of compatible time and dt values (#730).

* Attempting to set a synaptic variable or to start a simulation with synapses without any preceding connect call
now raises an error (#737).

* Improve the performance of coordinate calculation for Morphology objects, which previously made plotting
very slow for complex morphologies (#741).

* Fix a bug in SpatialNeuron where it did not detect non-linear dependencies on v, introduced via point
currents (#743).

Infrastructure and documentation improvements

* An interactive demo, tutorials, and examples can now be run in an interactive jupyter notebook on the mybinder
platform, without any need for a local Brian installation (#736). Thanks to Ben Evans for the idea and help with
the implementation.

* A new extensive guide for converting Brian 1 simulations to Brian 2 user coming from Brian 1: Changes for
Brian I users

* A re-organized User’s guide, with clearer indications which information is important for new Brian users.

Contributions

Code and documentation contributions (ordered by the number of commits):
* Marcel Stimberg (@mstimberg)
¢ Dan Goodman (@thesamovar)
¢ Benjamin Evans (@bdevans)
Testing, suggestions and bug reports (ordered alphabetically, apologies to anyone we forgot. . . ):
» Chaofei Hong
* Daniel Bliss
 Jacopo Bono

* Ruben Tikidji-Hamburyan
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1.2.7 Brian 2.0rc3

This is another “release candidate” for Brian 2.0 that fixes a range of bugs and introduces better support for random
numbers (see below). We are getting close to the final Brian 2.0 release, the remaining work will focus on bug fixes,
and better error messages and documentation.

As always, please report bugs or suggestions to the github bug tracker (https://github.com/brian-team/brian2/issues)
or to the brian-development mailing list (brian-development @ googlegroups.com).

New features

* Brian now comes with its own seed () function, allowing to seed the random number generator and thereby
to make simulations reproducible. This function works for all code generation targets and in runtime and stan-
dalone mode. See Random numbers for details.

* Brian can now export/import state variables of a group or a full network to/from a pandas DataFrame and
comes with a mechanism to extend this to other formats. Thanks to Dominik Krzeminski for this contribution
(see #3006).

Improvements and bug fixes
e Use a Mersenne-Twister pseudorandom number generator in C++ standalone mode, replacing the previously
used low-quality random number generator from the C standard library (see #222, #671 and #7006).

* Fix a memory leak in code running with the weave code generation target, and a smaller memory leak related to
units stored repetitively in the UnitRegistry.

* Fix a difference of one timestep in the number of simulated timesteps between runtime and standalone that could
arise for very specific values of dt and t (see #695).

* Fix standalone compilation failures with the most recent gcc version which defaults to C++14 mode (see #701)

* Fix incorrect summation in synapses when using the (summed) flag and writing to pre-synaptic variables (see
#704)

* Make synaptic pathways work when connecting groups that define nested subexpressions, instead of failing with
a cryptic error message (see #707).

Contributions

Code and documentation contributions (ordered by the number of commits):
* Marcel Stimberg (@mstimberg)
¢ Dominik Krzeminski (@dokato)
¢ Dan Goodman (@thesamovar)
¢ Martino Sorbaro (@martinosorb)
Testing, suggestions and bug reports (ordered alphabetically, apologies to anyone we forgot.. . ):
* Craig Henriquez
¢ Daniel Bliss
 David Higgins
* Gordon Erlebacher
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* Max Gillett
* Moritz Augustin

e Sami Abdul-Wahid

1.2.8 Brian 2.0rc1

This is a bug fix release that we release only about two weeks after the previous release because that release introduced
a bug that could lead to wrong integration of stochastic differential equations. Note that standard neuronal noise models
were not affected by this bug, it only concerned differential equations implementing a “random walk”. The release
also fixes a few other issues reported by users, see below for more information.

Improvements and bug fixes
 Fix a regression from 2.0b4: stochastic differential equations without any non-stochastic part (e.g. dx/dt =
x1/sqgrt (ms) ') were not integrated correctly (see #686).
* Repeatedly calling restore () (or Network.restore ()) no longer raises an error (see #681).
* Fix an issue that made PoissonInput refuse to run after a change of dt (see #684).

 If the rates argument of PoissonGroup is a string, it will now be evaluated at every time step instead of
once at construction time. This makes time-dependent rate expressions work as expected (see #660).

Contributions

Code and documentation contributions (ordered by the number of commits):
* Marcel Stimberg (@mstimberg)
Testing, suggestions and bug reports (ordered alphabetically, apologies to anyone we forgot. .. ):
 Cian O’Donnell
¢ Daniel Bliss
¢ Ibrahim Ozturk

¢ Olivia Gozel

1.2.9 Brian 2.0rc

This is a release candidate for the final Brian 2.0 release, meaning that from now on we will focus on bug fixes and
documentation, without introducing new major features or changing the syntax for the user. This release candidate
itself does however change a few important syntax elements, see ‘“Backwards-incompatible changes” below.

As always, please report bugs or suggestions to the github bug tracker (https://github.com/brian-team/brian2/issues)
or to the brian-development mailing list (brian-development @ googlegroups.com).

Major new features

¢ New “generator syntax” to efficiently generate synapses (e.g. one-to-one connections), see Creating synapses
for more details.

* For synaptic connections with multiple synapses between a pair of neurons, the number of the synapse can now
be stored in a variable, allowing its use in expressions and statements (see Creating synapses).
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Synapses can now target other Synapses objects, useful for some models of synaptic modulation.

The Morphology object has been completely re-worked and several issues have been fixed. The new
Section object allows to model a section as a series of truncated cones (see Creating a neuron morphology).

Scripts with a single run () call, no longer need an explicit device.build () call to run with the C++
standalone device. A set_device () in the beginning is enough and will trigger the build call after the run
(see Standalone code generation).

All state variables within a Net work can now be accessed by Network.get_states () and Network.
set_states () and the store ()/restore () mechanism can now store the full state of a simulation to
disk.

Stochastic differential equations with multiplicative noise can now be integrated using the Euler-Heun method
(heun). Thanks to Jan-Hendrik Schleimer for this contribution.

Error messages have been significantly improved: errors for unit mismatches are now much clearer and error
messages triggered during the intialization phase point back to the line of code where the relevant object (e.g. a
NeuronGroup) was created.

PopulationRateMonitor now providesa smooth rate method for a filtered version of the stored rates.

Improvements and bug fixes

In addition to the new synapse creation syntax, sparse probabilistic connections are now created much faster.
The time for the initialization phase at the beginning of a run () has been significantly reduced.

Multicompartmental simulations with a large number of compartments are now simulated more efficiently and
are making better use of several processor cores when OpenMP is activated in C++ standalone mode. Thanks to
Moritz Augustin for this contribution.

Simulations will use compiler settings that optimize performance by default.

Objects that have user-specified names are better supported for complex simulation scenarios (names no longer
have to be unique at all times, but only across a network or across a standalone device).

Various fixes for compatibility with recent versions of numpy and sympy

Important backwards-incompatible changes

The argument names in Synapses.connect () have changed and the first argument can no longer be
an array of indices. To connect based on indices, use Synapses.connect (i=source_indices,
j=target_indices). See Creating synapses and the documentation of Synapses.connect () for more
details.

The actions triggered by pre-synaptic and post-synaptic spikes are now described by the on_pre and on_post
keyword arguments (instead of pre and post).

The Morphology object no longer allows to change attributes such as length and diameter after its creation.
Complex morphologies should instead be created using the Sect ion class, allowing for the specification of all
details.

Morphology objects that are defined with coordinates need to provide the start point (relative to the end point
of the parent compartment) as the first coordinate. See Creating a neuron morphology for more details.

For simulations using the C++ standalone mode, no longer call Device .build (if using a single run () call),
oruse set_device () withbuild_on_run=False (see Standalone code generation).
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Infrastructure improvements

* Qur test suite is now also run on Mac OS-X (on the Travis CI platform).

Contributions

Code and documentation contributions (ordered by the number of commits):
* Marcel Stimberg (@mstimberg)
¢ Dan Goodman (@thesamovar)
* Moritz Augustin (@moritzaugustin)
¢ Jan-Hendrik Schleimer (@ttxtea)
* Romain Cazé (@rcaze)
¢ Konrad Wartke (@Kwartke)
* Romain Brette (@romainbrette)
Testing, suggestions and bug reports (ordered alphabetically, apologies to anyone we forgot.. . ):
¢ Chaofei Hong
* Kees de Leeuw
e Luke Y Prince
* Myung Seok Shim
¢ Owen Mackwood

* Github users: @epaxon, @flinz, @mariomulansky, @martinosorb, @neuralyzer, @oleskiw, @prcastro, @su-
doankit

1.2.10 Brian 2.0b4

This is the fourth (and probably last) beta release for Brian 2.0. This release adds a few important new features
and fixes a number of bugs so we recommend all users of Brian 2 to upgrade. If you are a user new to Brian, we also
recommend to directly start with Brian 2 instead of using the stable release of Brian 1. Note that the new recommended
way to install Brian 2 is to use the Anaconda distribution and to install the Brian 2 conda package (see Installation).

This is however still a Beta release, please report bugs or suggestions to the github bug tracker (https://github.com/
brian-team/brian2/issues) or to the brian-development mailing list (brian-development @ googlegroups.com).

Major new features

* In addition to the standard threshold/reset, groups can now define “custom events”. These can be recorded with
the new EventMonitor (a generalization of SpikeMonitor)and Synapses can connect to these events
instead of the standard spike event. See Custom events for more details.

* SpikeMonitor and EventMonitor can now also record state variable values at the time of spikes (or
custom events), thereby offering the functionality of StateSpikeMonitor from Brian 1. See Recording
variables at spike time for more details.

e The code generation modes that interact with C++ code (weave, Cython, and C++ standalone) can now be
more easily configured to work with external libraries (compiler and linker options, header files, etc.). See the
documentation of the cpp_prefs module for more details.
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Improvemements and bug fixes

Cython simulations no longer interfere with each other when run in parallel (thanks to Daniel Bliss for reporting
and fixing this).

The C++ standalone now works with scalar delays and the spike queue implementation deals more efficiently
with them in general.

Dynamic arrays are now resized more efficiently, leading to faster monitors in runtime mode.

The spikes generated by a SpikeGeneratorGroup can now be changed between runs using the
set_spikes method.

Multi-step state updaters now work correctly for non-autonomous differential equations
PoissonInput now correctly works with multiple clocks (thanks to Daniel Bliss for reporting and fixing this)

The get_states method now works for St ateMonitor. This method provides a convenient way to access
all the data stored in the monitor, e.g. in order to store it on disk.

C++ compilation is now easier to get to work under Windows, see Installation for details.

Important backwards-incompatible changes

The custom_operation method has been renamed to run_regularly and can now be called without
the need for storing its return value.

StateMonitor will now by default record at the beginning of a time step instead of at the end. See Recording
variables continuously for details.

Scalar quantities now behave as python scalars with respect to in-place modifications (augmented assignments).
This means that x = 3+mV; y = x; y += 1+mV will no longer increase the value of the variable x as
well.

Infrastructure improvements

We now provide conda packages for Brian 2, making it very easy to install when using the Anaconda distribution
(see Installation).

Contributions

Code and documentation contributions (ordered by the number of commits):

Marcel Stimberg (@mstimberg)
Dan Goodman (@thesamovar)
Daniel Bliss (@dabliss)

Romain Brette (@romainbrette)

Testing, suggestions and bug reports (ordered alphabetically, apologies to everyone we forgot. .. ):

Daniel Bliss
Damien Drix
Rainer Engelken

Beatriz Herrera Figueredo
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¢ Owen Mackwood
e Augustine Tan

* Ot de Wiljes

1.2.11 Brian 2.0b3

This is the third beta release for Brian 2.0. This release does not add many new features but it fixes a number of
important bugs so we recommend all users of Brian 2 to upgrade. If you are a user new to Brian, we also recommend
to directly start with Brian 2 instead of using the stable release of Brian 1.

This is however still a Beta release, please report bugs or suggestions to the github bug tracker (https://github.com/
brian-team/brian2/issues) or to the brian-development mailing list (brian-development @ googlegroups.com).

Major new features

* Anew PoissonInput class for efficient simulation of Poisson-distributed input events.

Improvements

* The order of execution for pre and post statements happending in the same time step was not well defined
(it fell back to the default alphabetical ordering, executing post before pre). It now explicitly specifies the
order attribute so that pre gets executed before post (as in Brian 1). See the Synapses documentation for
details.

* The default schedule that is used can now be set via a preference (core.network.default_schedule). New auto-
matically generated scheduling slots relative to the explicitly defined ones can be used, e.g. before_resets
or after_synapses. See Scheduling for details.

¢ The scipy package is no longer a dependency (note that weave for compiled C code under Python 2 is now
available in a separate package). Note that multicompartmental models will still benefit from the scipy package
if they are simulated in pure Python (i.e. with the numpy code generation target) — otherwise Brian 2 will fall
back to a numpy-only solution which is significantly slower.

Important bug fixes
* Fix SpikeGeneratorGroup which did not emit all the spikes under certain conditions for some code gen-
eration targets (#429)

» Fix an incorrect update of pre-synaptic variables in synaptic statements for the numpy code generation target
(#435).

* Fix the possibility of an incorrect memory access when recording a subgroup with SpikeMonitor (#454).

* Fix the storing of results on disk for C++ standalone on Windows — variables that had the same name when
ignoring case (e.g. 1 and I) where overwriting each other (#455).

Infrastructure improvements

* Brian 2 now has a chat room on gitter: https://gitter.im/brian-team/brian2

* The sphinx documentation can now be built from the release archive file
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» After a big cleanup, all files in the repository have now simple LF line endings (see https://help.github.com/
articles/dealing-with-line-endings/ on how to configure your own machine properly if you want to contribute to
Brian).

Contributions

Code and documentation contributions (ordered by the number of commits):
* Marcel Stimberg (@mstimberg)
* Dan Goodman (@thesamovar)
¢ Konrad Wartke (@kwartke)
Testing, suggestions and bug reports (ordered alphabetically, apologies to everyone we forgot. .. ):
* Daniel Bliss
¢ Owen Mackwood
e Ankur Sinha

¢ Richard Tomsett

1.2.12 Brian 2.0b2

This is the second beta release for Brian 2.0, we recommend all users of Brian 2 to upgrade. If you are a user new to
Brian, we also recommend to directly start with Brian 2 instead of using the stable release of Brian 1.

This is however still a Beta release, please report bugs or suggestions to the github bug tracker (https://github.com/
brian-team/brian2/issues) or to the brian-development mailing list (brian-development@ googlegroups.com).

Major new features
* Multi-compartmental simulations can now be run using the Standalone code generation mode (this is not yet
well-tested, though).

* The implementation of TimedArray now supports two-dimensional arrays, i.e. different input per neuron (or
synapse, etc.), see Timed arrays for details.

* Previously, not setting a code generation target (using the codegen.target preference) would mean that the
numpy target was used. Now, the default target is auto, which means that a compiled language (weave
or cython) will be used if possible. See Computational methods and efficiency for details.

* The implementation of SpikeGeneratorGroup has beenimproved and it now supports a period argument
to repeatedly generate a spike pattern.

Improvements
* The selection of a numerical algorithm (if none has been specified by the user) has been simplified. See Numer-
ical integration for details.

» Expressions that are shared among neurons/synapses are now updated only once instead of for every neu-
ron/synapse which can lead to performance improvements.

* On Windows, The Microsoft Visual C compiler is now supported in the cpp_standalone mode, see the
respective notes in the Installation and Computational methods and efficiency documents.
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 Simulation runs (using the standard “runtime” device) now collect profiling information. See Profiling for
details.

Infrastructure and documentation improvements
e Tutorials for beginners in the form of ipython notebooks (currently only covering the basics of neurons and
synapses) are now available.

* The Examples in the documentation now include the images they generated. Several examples have been adapted
from Brian 1.

* The code is now automatically tested on Windows machines, using the appveyor service. This complements the
Linux testing on travis.

» Using a version of a dependency (e.g. sympy) that we don’t support will now raise an error when you import
brian2 —see Dependency checks for more details.

* Test coverage for the cpp_standalone mode has been significantly increased.

Important bug fixes

* The preparation time for complicated equations has been significantly reduced.
 The string representation of small physical quantities has been corrected (#361)

* Linking variables from a group of size 1 now works correctly (#383)

Contributions

Code and documentation contributions (ordered by the number of commits):
* Marcel Stimberg (@mstimberg)
¢ Dan Goodman (@thesamovar)
¢ Romain Brette (@romainbrette)
* Pierre Yger (@yger)
Testing, suggestions and bug reports (ordered alphabetically, apologies to everyone we forgot. .. ):
* Conor Cox
* Gordon Erlebacher

» Konstantin Mergenthaler

1.2.13 Brian 2.0beta

This is the first beta release for Brian 2.0 and the first version of Brian 2.0 we recommend for general use. From
now on, we will try to keep changes that break existing code to a minimum. If you are a user new to Brian, we’d
recommend to start with the Brian 2 beta instead of using the stable release of Brian 1.

This is however still a Beta release, please report bugs or suggestions to the github bug tracker (https://github.com/
brian-team/brian2/issues) or to the brian-development mailing list (brian-development@ googlegroups.com).
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Major new features

» New classes Morphology and SpatialNeuron for the simulation of Multicompartment models
* A temporary “bridge” for brian.hears that allows to use its Brian 1 version from Brian 2 (Brian Hears)

* Cython is now a new code generation target, therefore the performance benefits of compiled code are now also
available to users running simulations under Python 3.x (where scipy .weave is not available)

» Networks can now store their current state and return to it at a later time, e.g. for simulating multiple trials
starting from a fixed network state (Continuing/repeating simulations)

e C++ standalone mode: multiple processors are now supported via OpenMP (Multi-threading with OpenMP),
although this code has not yet been well tested so may be inaccurate.

* C++ standalone mode: after a run, state variables and monitored values can be loaded from disk transparently.
Most scripts therefore only need two additional lines to use standalone mode instead of Brian’s default runtime
mode (Standalone code generation).

Syntax changes

* The syntax and semantics of everything around simulation time steps, clocks, and multiple runs have been
cleaned up, making reinit obsolete and also making it unnecessary for most users to explicitly generate
Clock objects — instead, a dt keyword can be specified for objects such as NeuronGroup (Running a simu-
lation)

* The scalar flag for parameters/subexpressions has been renamed to shared

* The “unit” for boolean variables has been renamed from bool to boolean

* C++ standalone: several keywords of CPPStandaloneDevice.build have been renamed
* The preferences are now accessible via prefs instead of brian_prefs

¢ The runner method has been renamed to custom operation

Improvements

¢ Variables can now be linked across NeuronGroups (Linked variables)

* More flexible progress reporting system, progress reporting also works in the C++ standalone mode (Progress
reporting)

« State variables can be declared as integer (Equation strings)

Bug fixes

57 github issues have been closed since the alpha release, of which 26 had been labeled as bugs. We recommend all
users of Brian 2 to upgrade.

Contributions

Code and documentation contributions (ordered by the number of commits):
e Marcel Stimberg (@mstimberg)
¢ Dan Goodman (@thesamovar)

¢ Romain Brette (@romainbrette)
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* Pierre Yger (@yger)
* Werner Beroux (@wernight)
Testing, suggestions and bug reports (ordered alphabetically, apologies to everyone we forgot. .. ):
¢ Guillaume Bellec
* Victor Benichoux
* Laureline Logiaco
¢ Konstantin Mergenthaler
* Maurizio De Pitta
* Jan-Hendrick Schleimer
* Douglas Sterling

¢ Katharina Wilmes

1.3 Changes for Brian 1 users

* Physical units

* Unported packages

* Removed classes/functions and their replacements

In most cases, Brian 2 works in a very similar way to Brian 1 but there are some important differences to be aware of.
The major distinction is that in Brian 2 you need to be more explicit about the definition of your simulation in order
to avoid inadvertent errors. In some cases, you will now get a warning in other even an error — often the error/warning
message describes a way to resolve the issue.

Specific examples how to convert code from Brian 1 can be found in the document Detailed Brian I to Brian 2
conversion notes.

1.3.1 Physical units

The unit system now extends to arrays, e.g. np.arange (5)  mV will retain the units of volts and not discard them
as Brian 1 did. Brian 2 is therefore also more strict in checking the units. For example, if the state variable v uses the
unit of volt, the statement G.v = np.rand(len(G)) / 1000. will now raise an error. For consistency, units
are returned everywhere, e.g. in monitors. If mon records a state variable v, mon . t will return a time in seconds and
mon . v the stored values of v in units of volts.

If you need a pure numpy array without units for further processing, there are several options: if it is a state variable or
arecorded variable in a monitor, appending an underscore will refer to the variable values without units, e.g. mon.t__
returns pure floating point values. Alternatively, you can remove units by diving by the unit (e.g. mon.t / second)
or by explicitly converting it (np.asarray (mon.t)).

Here’s an overview showing a few expressions and their respective values in Brian 1 and Brian 2:
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Expression Brian 1 Brian 2

1 *mV 1.0 * mvolt 1.0 * mvolt

np.array(1l) * mV 0.001 1.0 * mvolt

np.array([1]) * mV array([ 0.001]) array([1.]) * mvolt
np.mean(np.arange(5) * mV) 0.002 2.0 * mvolt

np.arange(2) * mV array([ 0. , 0.001]) array([ 0., 1.]) * mvolt
(np.arange(2) * mV) >=1 * mV array([False, True], dtype=bool) | array([False, True], dtype=bool)
(np.arange(2) * mV)[0] >=1 * mV | False False

(np.arange(2) * mV)[1] >=1 * mV | DimensionMismatchError True

1.3.2 Unported packages
The following packages have not (yet) been ported to Brian 1. If your simulation critically depends on them, you
should consider staying with Brian 1 for now.

* brian.tools

* brian.hears (the Brian 1 version can be used via brian2. hears, though, see Brian Hears)

* brian.library.modelfitting

* brian.library.electrophysilogy

1.3.3 Removed classes/functions and their replacements

In Brian 2, we have tried to keep the number of classes/functions to a minimum, but make each of them flexible enough
to encompass a large number of use cases. A lot of the classes and functions that existed in Brian 1 have therefore
been removed. The following table lists (most of) the classes that existed in Brian 1 but do no longer exist in Brian 2.
You can consult it when you get a NameError while converting an existing script from Brian 1. The third column
links to a document with further explanation and the second column gives either:

1. the equivalent class in Brian 2 (e.g. StateMonitor can record multiple variables now and therefore replaces
MultiStateMonitor);

2. the name of a Brian 2 class in square brackets (e.g. [Synapses] for STDP), this means that the class can be
used as a replacement but needs some additional code (e.g. explicitly specified STDP equations). The “More
details” document should help you in making the necessary changes;

3. “string expression”, if the functionality of a previously existing class can be expressed using the general
string expression framework (e.g. threshold=VariableThreshold('Vt', 'V') can be replaced by
threshold='V > Vt');

4. alink to the relevant github issue if no equivalent class/function does exist so far in Brian 2;

5. aremark such as “obsolete” if the particular class/function is no longer needed.

Brian 1 Brian 2 More details

AdEx [Equations] Library models (Brian 1 —> 2 conversion)
aEIF [Equations] Library models (Brian I —> 2 conversion)
AERSpikeMonitor #298 Monitors (Brian 1 —> 2 conversion)
alpha_conductance [Equations] Library models (Brian I —> 2 conversion)
alpha_current [Equations] Library models (Brian 1 —> 2 conversion)
alpha_synapse [Equations] Library models (Brian I —> 2 conversion)
AutoCorrelogram [SpikeMonitor] Monitors (Brian 1 —> 2 conversion)

Continued on next pe
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Table 1.1 — continued from previous page

Brian 1 Brian 2 More details

biexpr_conductance [Equations] Library models (Brian I —> 2 conversion)
biexpr_current [Equations] Library models (Brian 1 —> 2 conversion)
biexpr_synapse [Equations] Library models (Brian I —> 2 conversion)
Brette_Gerstner [Equations] Library models (Brian 1 —> 2 conversion)
CoincidenceCounter [SpikeMonitor] Monitors (Brian 1 —> 2 conversion)
CoincidenceMatrixCounter [SpikeMonitor] Monitors (Brian 1 —> 2 conversion)
Compartments #443 Multicompartmental models (Brian 1 —> 2 conversi
Connection Synapses Synapses (Brian 1 —> 2 conversion)

Current #443 Multicompartmental models (Brian 1 —> 2 conversi
CustomRefractoriness [string expression] Neural models (Brian 1 —> 2 conversion)
DefaultClock Clock Networks and clocks (Brian 1 —> 2 conversion)
EmpiricalThreshold string expression Neural models (Brian 1 —> 2 conversion)
EventClock Clock Networks and clocks (Brian 1 —> 2 conversion)
exp_conductance [Equations] Library models (Brian I —> 2 conversion)
exp_current [Equations] Library models (Brian 1 —> 2 conversion)
exp_IF [Equations] Library models (Brian I —> 2 conversion)
exp_synapse [Equations] Library models (Brian 1 —> 2 conversion)
FileSpikeMonitor #298 Monitors (Brian 1 —> 2 conversion)
FloatClock Clock Networks and clocks (Brian I —> 2 conversion)
FunReset [string expression] Neural models (Brian 1 —> 2 conversion)
FunThreshold [string expression] Neural models (Brian I —> 2 conversion)
hist_plot no equivalent —

HomogeneousPoissonThreshold

string expression

Neural models (Brian I —> 2 conversion)

IdentityConnection Synapses Synapses (Brian 1 —> 2 conversion)
IonicCurrent #443 Multicompartmental models (Brian I —> 2 conversi
ISIHistogramMonitor [SpikeMonitor] Monitors (Brian 1 —> 2 conversion)

Izhikevich [Equations] Library models (Brian 1 —> 2 conversion)
K_current_HH [Equations] Library models (Brian 1 —> 2 conversion)
leak_current [Equations] Library models (Brian 1 —> 2 conversion)
leaky_IF [Equations] Library models (Brian 1 —> 2 conversion)
MembraneEquation #443 Multicompartmental models (Brian 1 —> 2 conversi
MultiStateMonitor StateMonitor Monitors (Brian 1 —> 2 conversion)
Na_current_HH [Equations] Library models (Brian I —> 2 conversion)
NaiveClock Clock Networks and clocks (Brian 1 —> 2 conversion)
NoReset obsolete Neural models (Brian 1 —> 2 conversion)
NoThreshold obsolete Neural models (Brian 1 —> 2 conversion)
OfflinePoissonGroup [SpikeGeneratorGroup] Inputs (Brian 1 —> 2 conversion)
OrnsteinUhlenbeck [Equations] Library models (Brian 1 —> 2 conversion)
perfect_IF [Equations] Library models (Brian I —> 2 conversion)
PoissonThreshold string expression Neural models (Brian 1 —> 2 conversion)
PopulationSpikeCounter SpikeMonitor Monitors (Brian 1 —> 2 conversion)

PulsePacket

[SpikeGeneratorGroup]

Inputs (Brian 1 —> 2 conversion)

quadratic_IF

[Equations]

Library models (Brian 1 —> 2 conversion)

raster_plot

plot_raster (brian2tools)

brian2tools documentation

RecentStateMonitor

no direct equivalent

Monitors (Brian 1 —> 2 conversion)

Refractoriness string expression Neural models (Brian 1 —> 2 conversion)
RegularClock Clock Networks and clocks (Brian 1 —> 2 conversion)
Reset string expression Neural models (Brian 1 —> 2 conversion)

SimpleCustomRefractoriness

[string expression]

Neural models (Brian 1 —> 2 conversion)

Continued on next pe
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Table 1.1 — continued from previous page

Brian 1 Brian 2 More details

SimpleFunThreshold [string expression] Neural models (Brian 1 —> 2 conversion)
SpikeCounter SpikeMonitor Monitors (Brian 1 —> 2 conversion)
StateHistogramMonitor [StateMonitor] Monitors (Brian 1 —> 2 conversion)
StateSpikeMonitor SpikeMonitor Monitors (Brian 1 —> 2 conversion)
STDP [Synapses] Synapses (Brian I —> 2 conversion)

STP [Synapses] Synapses (Brian 1 —> 2 conversion)
StringReset string expression Neural models (Brian 1 —> 2 conversion)
StringThreshold string expression Neural models (Brian 1 —> 2 conversion)
Threshold string expression Neural models (Brian 1 —> 2 conversion)
VanRossumMetric [SpikeMonitor] Monitors (Brian 1 —> 2 conversion)
VariableReset string expression Neural models (Brian 1 —> 2 conversion)
VariableThreshold string expression Neural models (Brian 1 —> 2 conversion)

List of detailed instructions

Detailed Brian 1 to Brian 2 conversion notes

These documents are only relevant for former users of Brian 1. If you do not have any Brian 1 code to convert, go
directly to the main User’s guide.

Neural models (Brian 1 —> 2 conversion)

Brian 2 documentation

For the main documentation about defining neural models, see the document Models and neuron groups.

e Threshold and Reset
* Refractoriness

* Subgroups

e Linked Variables

The syntax for specifying neuron models in a NeuronGroup changed in several details. In general, a string-based
syntax (that was already optional in Brian 1) consistently replaces the use of classes (e.g. VariableThreshold)
or guessing (e.g. which variable does threshold=50+mV check).

Threshold and Reset

String-based thresholds are now the only possible option and replace all the methods of defining threshold/reset in
Brian 1:

Brian 1 Brian 2
group = NeuronGroup (N, 'dv/dt = -v / tau_ group = NeuronGroup (N,Continded-on next page
—: volt', —: volt',
threshold=-50+mV, threshold="'v > —-50+mV
26 reset=-70+mV) "',
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Table 1.2 — continued from previous page

Brian 1 Brian 2
group = NeuronGroup (N, 'dv/dt = -v / tau_ | group = NeuronGroup (N, 'dv/dt = -v / tau
—: volt', —: volt',

threshold=Threshold (- threshold="'v > —-50+mV
—50+mV, state='v'), "',

reset=Reset (-70+mV, reset='v = —70xmV")

—~state="w'))

group = NeuronGroup (N, '''dv/dt = -v /| group = NeuronGroup (N, '''dv/dt = -v /_
—tau : volt —tau : volt

dvt/dt = -vt /_ dvt/dt = -vt /_
—tau : volt —tau : volt

vr : volt''', vr : volt''',

o threshold='v > vt',

—threshold=VariableThreshold(state="'v", reset='v = vr'")
— threshold_state='vt'"),

—reset=VariableThreshold(state="'v",

- resetvaluestate="vr'))
group = NeuronGroup (N, 'rate : Hz', group = NeuronGroup (N, 'rate : Hz',

. threshold="rand ()
—threshold=PoissonThreshold (state="rate —~<ratexdt')

="))

There’s no direct equivalent for the “functional threshold/reset” mechanism from Brian 1. In simple cases, they can
be implemented using the general string expression/statement mechanism (note that in Brian 1, reset=myreset is
equivalent to reset=FunReset (myreset)):
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Brian 1

Brian 2

def myreset (P, spikes):

P.v_[spikes] = -
—70+mV+rand (len (spikes) ) «5+*mV
group = NeuronGroup (N, 'dv/dt =
—: volt',

-v / tau,

threshold=-50+mVv,
reset=myreset)

group = NeuronGroup (N, 'dv/dt =

—: volt',

-v / tau,
threshold='v > —-50xmV

reset="-70xmV +
—rand () *5xmV")

def mythreshold(v):

return (v > -50xmV) & (rand(N) > 0.5)

group = NeuronGroup (N, 'dv/dt =

—: volt',

-v / tau,
—~threshold=SimpleFunThreshold (mythreshold
—

— state='v"),
reset=-70+mV)

group = NeuronGroup (N, 'dv/dt =

—: volt',

-v / tau,

threshold='v > -
> 0.5"',
reset="'v =

—50+*mV and rand ()
=70xmV")

For more complicated cases, you can use the general mechanism for User-provided functions that Brian 2 provides.
The only caveat is that you’d have to provide an implementation of the function in the code generation target language
which is by default C++ or Cython. However, in the default Runtime code generation mode, you can chose different
code generation targets for different parts of your simulation. You can thus switch the code generation target for the
threshold/reset mechanism to numpy while leaving the default target for the rest of the simulation in place. The details
of this process and the correct definition of the functions (e.g. global_reset needs a “dummy” return value) are
somewhat cumbersome at the moment and we plan to make them more straightforward in the future. Also note that if
you use this kind of mechanism extensively, you’ll lose all the performance advantage that Brian 2’s code generation
mechanism provides (in addition to not being able to use Standalone code generation mode at all).
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Brian 1

Brian 2

def single_threshold(v) :
# Only let a single neuron spike
crossed_threshold = np.nonzero (v > -
—50+mV) [0]
should_spike = np.zeros(len(P),
—dtype=np.bool)
if len(crossed_threshold):
choose = np.random.
—randint (len (crossed_threshold))
should_spike[crossed_
—threshold[choose]] = True
return should_spike

def global_reset (P, spikes):
# Reset everything
if len(spikes):

P.v_[:] = —70+mV
neurons = NeuronGroup (N, 'dv/dt = -v /_
—tau volt',

—threshold=SimpleFunThreshold (single_
—threshold,

— state="'v"),
reset=global_reset)

@check_units (v=volt, result=bool)
def single_threshold(v):
pass # (identical to Brian 1)
@check_units (spikes=1, result=1)
def global_reset (spikes):
# Reset everything
if len(spikes):
neurons.v_J[:] = -0.070
neurons = NeuronGroup (N, 'dv/dt = -v /
—tau volt',
threshold="'single_
—threshold(v) ',
reset="dummy =_
—global_reset (i) ")
# Set the code generation target for,
—threshold/reset only:
neuron.thresholder(['spike'].codeobj_
—~class = NumpyCodeObject
neuron.resetter['spike'].codeobj_class =

—NumpyCodeObject

For an example how to translate EmpiricalThreshold, see the section on “Refractoriness” below.

Refractoriness

For a detailed description of Brian 2’s refractoriness mechanism see Refractoriness.

In Brian 1, refractoriness was tightly linked with the reset mechanism and some combinations of refractoriness and
reset were not allowed. The standard refractory mechanism had two effects during the refractoriness: it prevented
the refractory cell from spiking and it clamped a state variable (normally the membrane potential of the cell). In
Brian 2, refractoriness is independent of reset and the two effects are specified separately: the refractory keyword
specifies the time (or an expression evaluating to a time) during which the cell does not spike, and the (unless
refractory) flag marks one or more variables to be clamped during the refractory period. To correctly translate
the standard refractory mechanism from Brian 1, you’ll therefore need to specify both:

Brian 1

Brian 2

group = NeuronGroup (N, 'dv/dt = (I - v)/
—tau volt',
threshold=-50+mV,
reset=-70*mV,

refractory=3+ms)

group = NeuronGroup (N, 'dv/dt = (I - v)/
volt (unless refractory)',
threshold='v > -50xmV

—tau

reset="'v = -70xmV"',
refractory=3+ms)

1.3. Changes for Brian 1 users
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More  complex refractoriness mechanisms based on SimpleCustomRefractoriness  and
CustomRefractoriness can be translatated using string expressions or user-defined functions, see the
remarks in the preceding section on “Threshold and Reset”.

Brian 2 no longer has an equivalent to the EmpiricalThreshold class (which detects at the first threshold cross-
ing but ignores all following threshold crossings for a certain time after that). However, the standard refractoriness
mechanism can be used to implement the same behaviour, since it does not reset/clamp any value if not explicitly
asked for it (which would be fatal for Hodgkin-Huxley type models):

Brian 1 Brian 2
group = NeuronGroup (N, ''' group = NeuronGroup (N, '"''

dv/dt = (I_L - I_Na - dv/dt = (I_L - I_Na -
< I_K + I)/Cm : volt < I_K 4+ I)/Cm : volt

’ ’

o threshold='v > -20+mV
—threshold=EmpiricalThreshold (threshold=2p ',

N refractory=1~+ms)
— refractory=1+ms,
— state="'v"))

Subgroups

The class NeuronGroup in Brian 2 does no longer provide a subgroup method, the only way to construct sub-
groups is therefore the slicing syntax (that works in the same way as in Brian 1):

Brian 1 Brian 2

group = NeuronGroup (4000, ...) group = NeuronGroup (4000, ...)
group_exc = group.subgroup (3200) group_exc = group[:3200]
group_inh = group.subgroup (800) group_inh = group[3200:]

Linked Variables

For a description of Brian 2’s mechanism to link variables between groups, see Linked variables.

Linked variables need to be explicitly annotated with the (1inked) flagin Brian 2:
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Brian 1 Brian 2
groupl = NeuronGroup (N, groupl = NeuronGroup (N,

'dv/dt = -v / tau : 'dv/dt = -v / tau :
—volt"') —volt!'")
group2 = NeuronGroup (N, group2 = NeuronGroup (N,

'rrdv/dt = (-v o+ w) "rrdv/dt = (-v o+ w)_,
—/ tau : volt —/ tau : volt

w : volt''") w : volt (linked)
group2.w = linked_var (groupl, 'v') -
group2.w = linked_var (groupl, 'v')

Synapses (Brian 1 —> 2 conversion)

Brian 2 documentation

For the main documentation about defining and creating synapses, see the document Synapses.

* Converting Brian 1’s Connection class

* Converting Brian 1’s Synapses class

Converting Brian 1’s Connection class

In Brian 2, the Synapses class is the only class to model synaptic connections, you will therefore have to convert
all uses of Brian 1’s Connection class. The Connection class increases a post-synaptic variable by a certain
amount (the “synaptic weight”) each time a pre-synaptic spike arrives. This has to be explicitly specified when using
the Synapses class, the equivalent to the basic Connection usage is:

Brian 1 Brian 2

conn = Connection(source, target, 'ge') conn = Synapses (source, target, 'w :_

—siemens',

on_pre='ge += w')

Note that he variable w, which stores the synaptic weight, has to have the same units as the post-synaptic variable (in
this case: ge) that it increases.

Creating synapses and setting weights

With the Connection class, creating a synapse and setting its weight is a single process whereas with the
Synapses class those two steps are separate. There is no direct equivalent to the convenience functions
connect_full, connect_randomand connect_one_to_one, but you can easily implement the same func-
tionality with the general mechanism of Synapses.connect ():

1.3. Changes for Brian 1 users 31



Brian 2 Documentation, Release 2.1

Brian 1

Brian 2

connl = Connection(source, target, 'ge')
connl[3, 5] = 3%xnS

connl = Synapses (source, target, 'w:

—siemens',
on_pre='ge += w')

connl.connect (1i=3, j=5)

connl.w[3, 5] = 3*xnS # (or connl.w =,
KAS*I’IS)
conn2 = Connection(source, target, 'ge') conn2 = # see above
conn2.connect_full (source, target, 5%nS) conn2.connect ()
conn2.w = 5%nS
conn3 = Connection(source, target, 'ge') conn3 = # see above

conn3.connect_random (source, target,

conn3.connect (p=0.02)

sparseness=0.02, conn3.w = 2%nS
weight=2+ns)
conn4 = Connection(source, target, 'ge') conn4d = # see above

conn4.connect_one_to_one (source, target,

conn4.connect (j="1i")

weight=4+nS3) conn4.w = 4%nS
connb5 = IdentityConnection (source, connb5 = Synapses (source, target,
—target, 'w : siemens (shared)')
weight=3+nS3) conn5.w = 3%nS

Weight matrices

Brian 2’s Synapses class does not support setting the weights of a neuron with a weight matrix. However,
Synapses.connect () creates the synapses in a predictable order (first all synapses for the first pre-synaptic
cell, then all synapses for the second pre-synaptic cell, etc.), so a reshaped “flat” weight matrix can be used:
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Brian 1 Brian 2

# len(source) == 20, len(target) == 30 # len(source) == 20, len(target) == 30
conn6 = Connection(source, target, 'ge') conn6 = Synapses (source, target, 'w:_
W = rand (20, 30)=*nS —~siemens',

connb6.connect (source, target, weight=W) on_pre='ge += w')

W = rand (20, 30)=*nS
conn6.connect ()
conn6.w = W.flatten ()

However note that if your weight matrix can be described mathematically (e.g. random as in the example above),
then you should not create a weight matrix in the first place but use Brian 2’s mechanism to set variables based on
mathematical expressions (in the above case: conn5.w = 'rand () '). Especially for big connection matrices this
will have better performance, since it will be executed in generated code. You should only resort to explicit weight
matrices when there is no alternative (e.g. to load weights from previous simulations).

In Brian 1, you can restrict the functions connect, connect_random, etc. to subgroups. Again, there is no direct
equivalent to this in Brian 2, but the general string syntax allows you to make connections conditional on logical
statements that refer to pre-/post-synaptic indices and can therefore also used to restrict the connection to a subgroup
of cells. When you set the synaptic weights, you can however use subgroups to restrict the subset of weights you want
to set.

Brian 1 Brian 2

conn7 = Connection(source, target, 'ge') conn’7 = Synapses (source, target, 'w:_
conn7.connect_full (source[:5], —siemens',

—target[5:10], 5%nS) on_pre='ge += w')

conn7.connect ('i < 5 and j >=5 and J <10
=)

# Alternative (more efficient):

# conn?7.connect (j='k in range (5, 10) if_
—1 < 57)

conn’/.w[source[:5], target[5:10]] = 5%xnS

Connections defined by functions

Brian 1 allowed you to pass in a function as the value for the weight argument in a connect call (and also for
the sparseness argument in connect_random). You should be able to replace such use cases by the the general,
string-expression based method:
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weight=lambda i,
—J:(l+cos(i—j)) *2*nS)

Brian 1 Brian 2
conn8 = Connection(source, target, 'ge') conn8 = Synapses (source, target, 'w:_
conn8.connect_full (source, target, —~siemens',

on_pre='ge += w')
conn8.connect ()

—~1i,Jjrexp(-abs(i-j)*.1),
weight=2+ns)

conn8.w = '"(1 + cos(i — J))*2xnS'

conn9 = Connection(source, target, 'ge') conn9 = # see above
conn9.connect_random (source, target, conn9.connect (p=0.02)

sparseness=0.02, conn9.w = 'rand () *nS'
—weight=lambda:rand () *nS)
connl0 = Connection (source, target, 'ge') connl0 = # see above
connl0.connect_random(source, target, connl0.connect (p='exp (-abs (i - J)x.1)")

sparseness=lambda connl0.w = 2%nS

Delays

The specification of delays changed in several aspects from Brian 1 to Brian 2: In Brian 1, delays where homogeneous
by default, and heterogeneous delays had to be marked by delay=True, together with the specification of the
maximum delay. In Brian 2, homogeneous delays are the default and you do not have to state the maximum delay.
Brian 1’s syntax of specifying a pair of values to get randomly distributed delays in that range is no longer supported,

instead use Brian 2’s standard string syntax:

Brian 1 Brian 2
connll = Connection(source, target, 'ge', connll = Synapses (source, target, 'w :
— delay=True, —siemens',

max_delay=5*ms) on_pre='ge += w')
connll.connect_full (source, target, connll.connect ()
—weight=3%nS, connll.w = 3%nS

delay=(0*ms, 5*ms)) connll.delay = 'rand()*5*ms'

Modulation

In Brian 2, there’s no need for the modulation keyword that Brian 1 offered, you can describe the modulation as

part of the on_pre action:
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Brian 1 Brian 2
connl2 = Connection(source, target, 'ge', connl2 = Synapses (source, target, 'w :
modulation="'u'") —~siemens',
on_pre='ge += w x u_pre
o)
Structure

There’s no equivalen for Brian 1’s structure keyword in Brian 2, synapses are always stored in a sparse data
structure. There is currently no support for changing synapses at run time (i.e. the “dynamic” structure of Brian 1).

Converting Brian 1’s Synapses class

Brian 2’s Synapses class works for the most part like the class of the same name in Brian 1. There are however
some differences in details, listed below:

Synaptic models

The basic syntax to define a synaptic model is unchanged, but the keywords pre and post have been renamed to
on_pre and on_post, respectively.

Brian 1 Brian 2
stdp_syn = Synapses (inputs, neurons, stdp_syn = Synapses (inputs, neurons,
—model=""" —model="""
w:l w:l
dApre/dt = —-Apre/ dApre/dt = -Apre/
—taupre : 1 (event-driven) —taupre : 1 (event-driven)
dApost/dt = —-Apost/ dApost/dt = -Apost/
—taupost : 1 (event-driven)''', —taupost : 1 (event-driven)''',
pre='"''ge + =w on_pre='"""'ge + =w
Apre += delta_ Apre += delta_
—Apre —Apre
w = clip(w +_ w = clip(w +_
—Apost, 0, gmax)''"', —Apost, 0, gmax)''',
post="'"'"'Apost +=_ on_post="""Apost +=_
—~delta_Apost —delta_Apost
w = clip(w +_ w = clip(w +_
—Apre, 0, gmax)''") —Apre, 0, gmax)''")

Lumped variables (summed variables)

The syntax to define lumped variables (we use the term “summed variables” in Brian 2) has been changed: instead
of assigning the synaptic variable to the neuronal variable you’ll have to include the summed variable in the synaptic
equations with the flag (summed) :
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Brian 1

Brian 2

# a non-linear synapse (e.g. NMDA)

neurons = NeuronGroup(l, model="""
dv/dt = (gtot - wv)/
— (10*ms) : 1
gtot rrn)
syn = Synapses (inputs, neurons,
model="""
dg/dt = —axgt+bxx*(1l-g) : 1
dx/dt = —-cxx : 1
w : 1 # synaptic weight''

pre='x += w'")
neurons.gtot=S.g

# a non-linear synapse (e.g. NMDA)

neurons = NeuronGroup(l, model="""
dv/dt = (gtot - wv)/
— (10*ms) : 1
gtot rvrn)
syn = Synapses (inputs, neurons,
model="""
dg/dt = —a*gtb*xx (1l-g) : 1
dx/dt = -c*x : 1
w : 1 # synaptic weight
gtot_post = g : 1 (summed)

on_pre='x += w')

Creating synapses

In Brian 1, synapses were created by assigning True or an integer (the number of synapses) to an indexed Synapses
object. In Brian 2, all synapse creation goes through the Synapses.connect () function. For examples how to
create more complex connection patterns, see the section on translating Connections objects above.

Brian 1 Brian 2

syn = Synapses(...) syn = Synapses(...)

# single synapse # single synapse
syn[3, 5] True syn.connect (i=3, Jj=5)

# all-to-all connections
syn[:, :]

True

# all-to-all connections
syn.connect ()

# all to neuron number 1
syn[:, 1] True

# all to neuron number 1
syn.connect (j="'1")

# multiple synapses
syn[4, 7] = 3

# multiple synapses

syn.connect (i=4, 3j=7, n=3)

# connection probability 2%
synl[:, :] 0.02

# connection probability 2%
syn.connect (p=0.02)

Multiple pathways

As Brian 1, Brian 2 supports multiple pre- or post-synaptic pathways, with separate pre-/post-codes and delays. In
Brian 1, you have to specify the pathways as tuples and can then later access them individually by using their index.
In Brian 2, you specify the pathways as a dictionary, i.e. by giving them individual names which you can then later
use to access them (the default pathways are called pre and post):
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Brian 1 Brian 2
S = Synapses (..., S = Synapses (...,
pre=('ge + =w', pre={'pre_transmission':
""'w = clip(w + Apost, 'ge += w',
—0, 1inf) 'pre_plasticity':
Apre += delta_Apre'' '"'"'w = clip(w + Apost,
"), —0, 1inf)
post="'"''Apost += delta_Apost Apre += delta_ Apre'’
w = clip(w + Apre, — "},
-0, inf)''") post="'"''Apost += delta_Apost
w = clip(w + Apre,
S[:, :] = True —0, inf)''")

S.delay[1][:, :] = 3*ms # delayed trace

S.connect ()
S.pre_plasticity.delayl:,
—delayed trace

:] = 3+ms #_,

Monitoring synaptic variables

Both in Brian 1 and Brian 2, you can record the values of synaptic variables with a StateMonitor. You no longer
have to call an explicit indexing function, but you can directly provide an appropriately indexed Synapses object.
You can now also use the same technique to index the StateMonitor object to get the recorded values, see the

respective section in the Synapses documentation for details.

Brian 1 Brian 2

syn = Synapses(...) syn = Synapses(...)

# record all synapse targetting neuron 3 # record all synapse targetting neuron 3
indices = syn.synapse_index((slice (None), mon = StateMonitor (S, 'w', record=S[:,
— 3)) —31)

mon = StateMonitor(s, 'w',

—record=indices)

Inputs (Brian 1 — 2 conversion)

Brian 2 documentation

For the main documentation about adding external stimulation to a network, see the document Input stimuli.

* Poisson Input

* Spike generation

* Arbitrary time-dependent input (TimedArray)

1.3. Changes for Brian 1 users
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Poisson Input

Brian 2 provides the same two groups that Brian 1 provided: PoissonGroup and PoissonInput. The mechanism
for inhomogoneous Poisson processes has changed: instead of providing a Python function of time, you’ll now have
to provide a string expression that is evaluated at every time step. For most use cases, this should allow a direct
translation:

Brian 1 Brian 2
rates = lambda rates = '(1l + cos(2#pixt*1xHz)*10xHz)"'
—t:(l+tcos (2xpixt*1+Hz))*x10xHz group = PoissonGroup (100, rates=rates)

group = PoissonGroup (100, rates=rates)

For more complex rate modulations, the expression can refer to User-provided functions and/or you can replace the
PoissonGroup by a general NeuronGroup with a threshold condition rand () <ratesxdt (which allows you
to store per-neuron attributes).

There is currently no direct replacement for the more advanced features of PoissonInput (record, freeze,
copies, jitter, and reliability keywords), but various workarounds are possible, e.g. by directly using
a BinomialFunction in the equations. For example, you can get the functionality of the freeze keyword
(identical Poisson events for all neurons) by storing the input in a shared variable and then distribute the input to all
neurons:

Brian 1 Brian 2

group = NeuronGroup (10, group = NeuronGroup (10, '''dv/dt = -v /_
'dv/dt = -v/ (10*ms) — (10*ms) : 1

e 1) shared_input,,

input = PoissonInput (group, N=1000, «: 1 (shared)''"'")

—rate=1+Hz, poisson_input = BinomialFunction(n=1000,
weight=0.1, state='v —p=1l+xHzxgroup.dt)

'y group.run_regularly ('''shared input =_
freeze=True) —poisson_input () *x0.1

v += shared_input'
='")

Spike generation

SpikeGeneratorGroup provides mostly the same functionality as in Brian 1. In contrast to Brian 1, there is only
one way to specify which neurons spike and when — you have to provide the index array and the times array as separate
arguments:
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Brian 1 Brian 2
genl = SpikeGeneratorGroup (2, [(0, Oxms), genl = SpikeGeneratorGroup (2, [0, 1], [0,
— (1, 1xms)]) < 1]+ms)
gen2 = SpikeGeneratorGroup (2, [(array ([0, gen2 = SpikeGeneratorGroup (2, [0, 1, 0,
- 11), Oxms), —1],

(array ([0, [0, 0, 1,.
— 11), 1l*ms)] —1]+*ms)
gen3 = SpikeGeneratorGroup (2, (array ([0, gen3 = SpikeGeneratorGroup (2, [0, 11, [0,
11), < 1]ms)

array ([0,
—1]) *xms)) gend4 = SpikeGeneratorGroup (2, [0, 1], [0,
gen4 = SpikeGeneratorGroup (2, array([[0, — 1]+*ms)
—~0.0],

(1,

—0.001717)

Note: For large arrays, make sure to provide a Quant ity array (e.g. [0, 1, 2]xms)andnotalistof Quantity
values (e.g. [0+~ms, 1lxms, 2+ms]). A list has first to be translated into an array which can take a considerable
amount of time for a list with many elements.

There is no direct equivalent of the Brian 1 option to use a generator that updates spike times online. The easiest
alternative in Brian 2 is to pre-calculate the spikes and then use a standard SpikeGeneratorGroup. If this is not
possible (e.g. there are two many spikes to fit in memory), then you can workaround the restriction by using custom
code (see User-provided functions and Arbitrary Python code (network operations)).

Arbitrary time-dependent input (TimedArray)

For a detailed description of the TimedArray mechanism in Brian 2, see Timed arrays.

In Brian 1, timed arrays where special objects that could be assigned to a state variable and would then be used to
update this state variable at every time step. In Brian 2, a timed array is implemented using the standard Functions
mechanism which has the advantage that more complex access patterns can be implemented (e.g. by not using t as
an argument, but something like t - delay). This syntax was possible in Brian 1 as well, but was disadvantageous
for performance and had other limits (e.g. no unit support, no linear integration). In Brian 2, these disadvantages
no longer apply and the function syntax is therefore the only available syntax. You can convert the old-style Brian 1
syntax to Brian 2 as follows:

Warning:  The example below does not correctly translate the changed semantics of TimedArray re-
lated to the time. In Brian 1, TimedArray ([0, 1, 2], dt=10xms) will return 0 for t<5%ms, 1 for
5xms<=t<15*ms, and 2 for t>=15+ms. Brian 2 will return 0 for t<10xms, 1 for 10*ms<=t<20=*ms, and 2
for t>=20+ms.
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Brian 1 Brian 2
# same input for all neurons # same input for all neurons
egs = "' I = TimedArray (linspace (0*mV, 20xmV,
dv/dt = (I - v)/tau : volt -100),
I : volt dt=10+ms)
v egs = '
group = NeuronGroup (l, model=egs, dv/dt = (I(t) - v)/tau : volt
reset=0*mV, v
—threshold=15+mV) group = NeuronGroup (l, model=egs,
group.I = TimedArray (linspace (0*mV, reset='v = 0xmV',
—20+*mVv, 100), threshold='v > 15+mV
dt=10+ms) ")
# neuron-specific input # neuron-specific input
egqs = "' values = (linspace (0*mV, 20+mV, 100)[:,
dv/dt = (I - v)/tau : volt —None] =«
I : volt linspace (0, 1, 5))
ree I = TimedArray(values, dt=10x*ms)
group = NeuronGroup (5, model=egs, egqs = '"'
reset=0+mV, dv/dt = (I(t, i) - v)/tau : volt
—threshold=15+mV) ree
values = (linspace (0xmV, 20+mV, 100)[:, group = NeuronGroup (5, model=egs,
—None] = reset="'v = 0xmV"',
linspace (0, 1, 5)) threshold="v > 15+mV
group.I = TimedArray(values, dt=10*ms) ")

Monitors (Brian 1 —> 2 conversion)

Brian 2 documentation

For the main documentation about recording network activity, see the document Recording during a simulation.

* Monitoring spiking activity

* Monitoring variables

Monitoring spiking activity

The main class to record spiking activity is SpikeMonitor which is created in the same way as in Brian 1. However,
the internal storage and retrieval of spikes is different. In Brian 1, spikes were stored as a list of pairs (i, t), the
index and time of each spike. In Brian 2, spikes are stored as two arrays i and t, storing the indices and times. You
can access these arrays as attributes of the monitor, there’s also a convenience attribute it that returns both at the
same time. The following table shows how the spike indices and times can be retrieved in various forms in Brian 1
and Brian 2:
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Brian 1

Brian 2

mon = SpikeMonitor (group)
#... do the run
list_of_pairs =

index_1list,

mon.spikes
time_list = zip(*xlist_of__
—pairs)

index_array =

time_array =

array (index_list)
array (time_list)
# time_array is unitless in Brian 1

mon = SpikeMonitor (group)
#... do the run
list_of_pairs =
index_list =
time_list = list (mon.t)
index_array, time_array = mon.i,
# time_array has units in Brian 2

zip (»mon.it)
list (mon.1i)

mon.t

You can also access the spike times for individual neurons.

In Brian 1, you could directly index the monitor which is

no longer allowed in Brian 2. Instead, ask for a dictionary of spike times and index the returned dictionary:

Brian 1

Brian 2

# dictionary of spike times for each,,

—neuron:
spike_dict = mon.spiketimes
2

# all spikes for neuron 3:

spikes_3 = spike_dict[3] # (no units)
spikes_3 = mon[3] # alternative (no_
—units)

# dictionary of spike times for each,,
—neuron:

spike_dict = mon.spike_trains()

# all spikes for neuron 3:

spikes_3 = spike_dict[3] # with units

In Brian 2, SpikeMonitor also provides the functionality of the Brian 1 classes SpikeCounter and
PopulationSpikeCounter. If you are only interested in the counts and not in the individual spike events,

use record=False to save the memory of storing them:

Brian 1

Brian 2

counter = SpikeCounter (group)
pop_counter =
—PopulationSpikeCounter (group)
#... do the run

# Number of spikes for neuron 3:
count_3 = counter[3]

# Total number of spikes:

total_spikes = pop_counter.nspikes

counter = SpikeMonitor (group,
—record=False)

#... do the run

# Number of spikes for neuron 3
count_3 = counter.count[3]

# Total number of spikes:

total_spikes = counter.num_spikes

Currently Brian 2 provides no functionality to calculate statistics such as correlations or histograms online, there
is no equivalent to the following classes that existed in Brian 1: AutoCorrelogram, CoincidenceCounter,

CoincidenceMatrixCounter, ISIHistogramMonitor, VanRossumMetric

You will therefore have

to be calculate the corresponding statistiacs manually after the simulation based on the information stored in the
SpikeMonitor. If you use the default Runtime code generation, you can also create a new Python class that
calculates the statistic online (see this example from a Brian 2 tutorial).

1.3. Changes for Brian 1 users
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Monitoring variables

Single variables are recorded with a St ateMonitor in the same way as in Brian 1, but the times and variable values

are accessed differently:

# plot the trace of neuron 3:

plot (mon.times/ms, mon[3]/mV)

# plot the traces of all neurons:
plot (mon.times/ms, mon.values.T/mV)

Brian 1 Brian 2

mon = StateMonitor (group, 'v', mon = StateMonitor (group, 'v',
record=True) record=True)

# ... do the run # ... do the run

# plot the trace of neuron 3:
plot (mon.t/ms, mon[3].v/mV)

# plot the traces of all neurons:
plot (mon.t/ms, mon.v.T/mV)

Further differences:

e StateMonitor now records in the 'start' scheduling slot by default. This leads to a more intuitive
correspondence between the recorded times and the values: in Brian 1 (where St ateMonitor recorded in the
"end' slot) the recorded value at Oms was not the initial value of the variable but the value after integrating
it for a single time step. The disadvantage of this new default is that the very last value at the end of the last
time step of a simulation is not recorded anymore. However, this value can be manually added to the monitor
by calling StateMonitor.record _single_timestep().

* To not record every time step, use the dt argument (as for all other classes) instead of specifying a number of
timesteps.

* Using record=False does no longer provide mean and variance of the recorded variable.

In contrast to Brian 1, StateMonitor can now record multiple variables and therefore replaces Brian 1’s
MultiStateMonitor:

Brian 1 Brian 2

mon = MultiStateMonitor (group, ['Vv', 'w mon = StateMonitor (group, ['Vv', 'w'],

'], record=True)
record=True) # do the run

# ... do the run # plot the traces of v and w for neuron,

# plot the traces of v and w for neuron —3:

—3: plot (mon.t/ms, mon[3].v/mV)

plot (mon['v'].times/ms, mon['v'][3]/mV) plot (mon.t/ms, mon[3].w/mV)

plot (mon['w'].times/ms, mon['w'][3]/mV)

To record variable values at the times of spikes, Brian 2 no longer provides a separate class as Brian 1 did
(StateSpikeMonitor). Instead, you can use SpikeMonitor to record additional variables (in addition to the
neuron index and the spike time):
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Brian 1 Brian 2

# We assume that "group" has a varying, # We assume that "group" has a varying,
—threshold —threshold

mon = StateSpikeMonitor (group, 'v') mon = SpikeMonitor (group, variables='v')
# ... do the run # ... do the run

# plot the mean v at spike time for each,, # plot the mean v at spike time for each,,

—neuron —neuron
mean_values = [mean (mon.values('v', idx)) values = mon.values('v')
for idx in mean_values = [mean(values[idx])
—range (len (group)) ] for idx in
—range (len (group)) ]
plot (mean_values/mv, 'o') plot (mean_values/mvV, 'o')

Note that there is no equivalent to StateHistogramMonitor, you will have to calculate the histogram from the
recorded values or write your own custom monitor class.

Networks and clocks (Brian 1 —> 2 conversion)

Brian 2 documentation

For the main documentation about running simulations, controling the simulation timestep, etc., see the document
Running a simulation.

* Clocks and timesteps

e Networks

Clocks and timesteps

Brian’s system of handling clocks has substantially changed. For details about the new system in place see Setting the
simulation time step. The main differences to Brian 1 are:

There is no more “clock guessing” — objects either use the defaultclock or a dt/clock value that was
explicitly specified during their construction.

In Brian 2, the time step is allowed to change after the creation of an object and between runs — the relevant
value is the value in place at the point of the run () call.

It is rarely necessary to create an explicit C1ock object, most of the time you should use the defaultclock
or provide a dt argument during the construction of the object.

There’s only one Clock class, the (deprecated) FloatClock, RegularClock, etc. classes that Brian 1
provided no longer exist.

It is no longer possible to (re-)set the time of a clock explicitly, there is no direct equivalent of Clock . reinit
and reinit_default_clock. To start a completely new simulation after you have finished a previous one,
either create a new Network oruse the start_scope () mechanism. To “rewind” a simulation to a previous
point, use the new store ()/restore () mechanism. For more details, see below and Running a simulation.
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Networks

Both Brian 1 and Brian 2 offer two ways to run a simulation: either by explicitly creating a Net work object, or by
using a MagicNetwork,i.e. asimple run () statement.

Explicit network

The mechanism to create explicit Net work objects has not changed significantly from Brian 1 to Brian 2. However,
creating a new Network will now also automatically reset the clock back to Os, and stricter checks no longer allow
the inclusion of the same object in multiple networks.

Brian 1 Brian 2

group = ... group =

mon = ... mon = ...

net = Network (group, mon) net = Network (group, mon)
net.run (l+ms) net.run (l*ms)

reinit () # new network starts at 0s
group = ... group =

mon = ... mon = ...

net = Network (group, mon) net = Network (group, mon)
net.run (l*ms) net.run (l*ms)

“Magic” network

For most simple, “flat”, scripts (see e.g. the Examples), the run () statement in Brian 2 automatically collects all
the Brian objects (NeuronGroup, etc.) into a “magic” network in the same way as Brian 1 did. The logic behind
this collection has changed, though, with important consequences for more complex simulation scripts: in Brian 1,
the magic network includes all Brian objects that have been created in the same execution frame as the run () call.
Objects that are created in other functions could be added using magic_return and magic_register. In Brian
2, the magic network contains all Brian objects that are visible in the same execution frame as the run () call. The
advantage of the new system is that it is clearer what will be included in the network and there is no danger of including
previously created, but no longer needed, objects in a simulation. E.g. in the following example, a common mistake in
Brian 1 was to not include the clear (), which meant that each run not only simulated the current objects, but also
all objects from previous loop iterations. Also, without the reinit_default_clock (), each run would start at
the end time of the previous run. In Brian 2, this loop does not need any explicit clearing up, each run () will only
simulate the object that it “sees” (groupl, group2, syn, and mon) and start each simulation at Os:

Brian 1 Brian 2
for r in range (100): for r in range (100):
reinit_default_clock ()
clear ()
groupl = NeuronGroup(...) groupl = NeuronGroup(...)
group2 = NeuronGroup(...) group2 = NeuronGroup(...)
syn = Synapses (groupl, group2, ...) syn = Synapses (groupl, group2, ...)
mon = SpikeMonitor (group?2) mon = SpikeMonitor (group?2)
run (1 +second) run (1 xsecond)
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There is no replacement for the magic_return and magic_register functions. If the returned object is stored
in a variable at the level of the run () call, then it is no longer necessary to use magic_return, as the returned

object is “visible” at the level of the run () call:

Brian 1

Brian 2

@magic_return
def f():

return PoissonGroup (100,
—rates=100+Hz)

pg = f£() # needs magic_return
mon = SpikeMonitor (pg)
run (100+ms)

def f():
return PoissonGroup (100,
—~rates=100+Hz)

pg = £() # is "visible" and will be_
—included

mon = SpikeMonitor (pg)

run (100+ms)

The general recommendation is however: if your script is complex (multiple functions/files/classes) and you are not
sure whether some objects will be included in the magic network, use an explicit Net work object.

Note that one consequence of the “is visible” approach is that objects stored in containers (lists, dictionaries, . ..) will
not be automatically included in Brian 2. Use an explicit Net work object to get around this restriction:

Brian 1

Brian 2

groups = {'exc': NeuronGroup(...),
'inh': NeuronGroup(...)}

run (5*ms)

groups = {'exc': NeuronGroup(...)
'inh': NeuronGroup(...)

— N

net = Network (groups)
net.run (5+ms)

External constants

In Brian 2, external constants are taken from the surrounding namespace at the point of the run () call and not when
the object is defined (for other ways to define the namespace, see External variables and functions). This allows to
easily change external constants between runs, in contrast to Brian 1 where the whether this worked or not depended
on details of the model (e.g. whether linear integration was used):

1.3. Changes for Brian 1 users
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Brian 1 Brian 2
tau = 10xms tau = 10xms
# to be sure that changes between runs,,
—are taken into # The value for I will be updated at,_,
# account, define "I" as a neuronal_ —each run
—parameter group = NeuronGroup (10, 'dv/dt = (-v +_
group = NeuronGroup (10, '''dv/dt = (-v +_ —I) / tau : 1")
—I) / tau : 1
T = 1'"") group.v = linspace (0, 1, 10)
group.v = linspace (0, 1, 10) I =20.0
group.I = 0.0 mon = StateMonitor (group, 'v',
mon = StateMonitor (group, 'v',. —record=True)
—record=True) run (5*ms)
run (5+ms) I =20.5
group.I = 0.5 run (5xms)
run (5*ms) I =20.0
group.I = 0.0 run (5+ms)

run (5*ms)

Preferences (Brian 1 —> 2 conversion)

Brian 2 documentation

For the main documentation about preferences, see the document Preferences.

In Brian 1, preferences were set either with the function set_global_preferences or by creating a module
somewhere on the Python path called brian_global_config.py.

Setting preferences

The function set_global_preferences no longer exists in Brian 2. Instead, importing from brian?2 gives you
a variable prefs that can be used to set preferences. For example, in Brian 1 you would write:

set_global_preferences (weavecompiler="gcc')

In Brian 2 you would write:

’prefs.codegen.cpp.compiler = 'gcc' ‘

Configuration file

The module brian_global_config.py is not used by Brian 2, instead we search for configuration files in the
current directory, user directory or installation directory. In Brian you would have a configuration file that looks like
this:

from brian.globalprefs import =«
set_global_preferences (weavecompiler="gcc')
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In Brian 2 you would have a file like this:

codegen.cpp.compiler = 'gcc'

Preference name changes

e defaultclock: removed because it led to unclear behaviour of scripts.

* useweave_linear_diffeq: removed because it was no longer relevant.

* useweave: now replaced by codegen.target.

* weavecompiler: now replaced by codegen.cpp.compiler.

* gcc_options: now replaced by codegen.cpp.extra_compile_args_gcc.

* openmp: now replaced by devices.cpp_standalone.openmp_threads.

* usecodegenx*: removed because it was no longer relevant.

* usenewpropagate: removed because it was no longer relevant.

* usecstdp: removed because it was no longer relevant.

e brianhears_usegpu: removed because Brian Hears doesn’t exist in Brian 2.

* magic_useframes: removed because it was no longer relevant.

Multicompartmental models (Brian 1 —> 2 conversion)

Brian 2 documentation

Support for multicompartmental models is now an integral part of Brian 2 (an early version of it was included as an
experimental module in Brian 1). See the document Multicompartment models.

Brian 1 offered support for simple multi-compartmental models in the compartment s module. This module allowed
you to combine the equations for several compartments into a single Equations object. This is only a suitable
solution for simple morphologies (e.g. “ball-and-stick” models) but has the advantage over using SpatialNeuron
that you can have several of such neurons in a NeuronGroup.

If you already have a definition of a model using Brian 1’s compartments module, then you can simply print out
the equations and use them directly in Brian 2. For simple models, writing the equations without that help is rather
straightforward anyway:
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Brian 1 Brian 2
VO = 10*mV VO = 10*mV
C = 200+*pF C = 200*pF
Ra = 150+kohm Ra = 150+kohm
R = 50+xMohm R = 50xMohm
soma_eqgs = (MembraneEquation(C) + neuron_eqgs = "''
IonicCurrent ('I=(vm-V0) /R : dvm_soma/dt = (I_soma + I_soma_dend)/C :
—amp')) —volt
dend_eqgs = MembraneEquation (C) I_soma = (VO - vm_soma)/R amp
neuron_eqs = Compartments ({'soma': soma_ I_soma_dend = (vm_dend - vm_soma)/Ra :
—eqgs, —amp
'dend': dend_ dvm_dend/dt = -I_soma_dend/C volt'!'"'
—eqgs})
neuron = NeuronGroup (N, neuron_egs)
neuron = NeuronGroup (N, neuron_eds)

Library models (Brian 1 —> 2 conversion)

e Neuron models

* [onic currents

* Synapses

Neuron models

The neuron models in Brian 1’s brian.library. IF package are nothing more than shorthands for equations. The
following table shows how the models from Brian 1 can be converted to explicit equations (and reset statements in
the case of the adaptive exponential integrate-and-fire model) for use in Brian 2. The examples include a “current” I
(depending on the model not necessarily in units of Ampere) and could e.g. be used to plot the f-I curve of the neuron.

Perfect integrator

Brian 1 Brian 2
egs = (perfect_IF (tau=10+ms) + tau = 10*ms
Current ('I volt')) egqs = '''dvm/dt = I/tau volt
group = NeuronGroup (N, egs, I : volt'"!
threshold='v > -50xmV | group = NeuronGroup (N, edgs,

reset="'v = -70xmV")

threshold='v > -50xmV

reset='v = =70xmV")
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Leaky integrate-and-fire neuron

Brian 1 Brian 2
egs = (leaky_IF (tau=10+ms, El=-70*mV) + tau = 10+ms; E1 = —70+mV
Current ('I : volt')) eqgs = '"''dvm/dt = ((E1 - vm) + I)/tau :_
group = ... # see above —volt
I : volt'"!'
group = ... # see above
Exponential integrate-and-fire neuron
Brian 1 Brian 2
eqgs = (exp_IF(C=1lxnF, gL=30%nS, EL=- C = 1#nF; gL = 30%*nS; EL = —-70xmV; VT = -
—70*mV, —50+mV; DeltaT = 2+mV
VI=-50+mV, DeltaT=2+mV) + eqs = '"''dvm/dt = (gL* (EL-
Current ('I : amp')) —vm) +gL*DeltaT+exp ( (vm-VT) /DeltaT) + I)/
group = ... # see above —C : volt
I : amp'''
group = ... # see above
Quadratic integrate-and-fire neuron
Brian 1 Brian 2
eqs = (quadratic_IF(C=1+nF, a=5%nS/mv, C = 1#nF; a=5*nS/mV; EL=-70*mV; VT = —
EL=-70+mV, VT=-50+mV) + —50+mV
Current ('I : amp')) egs = '''dvm/dt = (a_gx (vm-EL) x (vm-VT) +_,
group = ... # see above —I)/C : volt
I : amp'''
group = ... # see above
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Izhikevich neuron

Brian 1 Brian 2
eqgqs = (Izhikevich(a=0.02/ms, b=0.2/ms) + a=0.02/ms; b= 0.2/ms
Current ('I : volt/second')) egs = '"''dvm/dt = (0.04/ms/mV) «vm**2+ (5/
group = ... # see above —ms) »vm+140+mV/ms-w + I : volt
dw/dt = a_Ix (b_I*xvm-w) : volt/
—second
I : volt/second'"'
group = ... # see above

Adaptive exponential integrate-and-fire neuron (“Brette-Gerstner model”)

Brian 1 Brian 2
# AdEx, aEIF, and Brette_Gerstner all_, C = 1%nF; gL = 30%nS; EL = —-70*xmV; VT = -
—refer to the same model —50+mV; DeltaT = 2xmV; tauw = 150*ms; a_
egs = (aEIF (C=1xnF, gL=30xnS, EL=-70*mV, —= 4xnS
VI=-50+«mV, DeltaT=2xmV, egs = '''dvm/dt = (gL* (EL-
—tauw=150+ms, a=4+nS) + —vm) +gL+«DeltaT+exp ( (vm—VT) /DeltaT) -w +_
Current ('IT:amp')) —~I)/C : volt
group = NeuronGroup (N, egs, dw/dt=(a_BG* (vm-EL) -w) /tauw :
threshold='v > -20+mV —amp
', I : volt/second'''

. group = NeuronGroup (N, egs,
—reset=AdaptiveReset (Vr=-70+*mV, b=0. threshold='"'v > -20+mV
—08+%nA)) o',

reset="'vm=-70xmV; w,_
—+= 0.08xnA")

lonic currents

Brian 1’s functions for ionic currents, provided inbrian.library.ionic_currents correspond to the follow-
ing equations (note that the currents follow the convention to use a shifted membrane potential, i.e. the membrane
potential at rest is OmV):
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Brian 1 Brian 2
from brian.library.ionic_currents import | defaultclock.dt = 0.0lxms
sk gl = 60%*nS; E1 = 10.6*mV
defaultclock.dt = 0.01+*ms egs_leak = Equations('I_leak = gl*(ELl —
egs_leak = leak_current (gl=60xnS, E1=10. —vm) : amp')
—6+xmV, current_name='I_leak") g K = 7.2xuS; EK = —-12xmV
egs_K = Equations('''I_K = g Kxn**4x (EK-
eqgs_K = K_current_HH (gmax=7.2xuS, EK=- —Vvm) : amp
—12+mV, current_name='I_K'") dn/dt = alphanx* (1-
—n)-betanxn : 1
egs_Na = Na_current_HH (gmax=24+*uS, alphan = .01x (10xmV-
—ENa=115+mV, current_name='I_Na') —vm) / (exp (1-.1xvm/mV)-1) /mV/ms : Hz
betan = .125xexp(-.
eqs = (MembraneEquation (C=200+pF) + —0125%«vm/mV) /ms : Hz''")
egs_leak + egs_K + egs+Na + g_Na = 24xuS; ENa = 115+xmV
Current ('I_in7j : amp')) egs_Na = Equations('''I_Na = g_
—Naxm**3xhx (ENa-vm) : amp
dm/dt=alpham* (1-m) -
—betamsm : 1

dh/dt=alphah* (1-h) -
—betahxh : 1

alpham=.1x% (25 mV—
—vm) / (exp (2.5-.1+xvm/mV)-1) /mV/ms : Hz

betam=4xexp (—.
—~0556*vm/mV) /ms : Hz

alphah=.07*exp (-.
—05xvm/mV) /ms : Hz

betah=1./ (1l+exp(3.-

—.lxvm/mV))/ms : Hz''")
C = 200%pF
eqgs = Equations('''dvm/dt = (I_leak + I_
—K + I_Na + I_inj)/C : volt
I_inj : amp''') + egs_

—leak + egs_K + egs_Na

Synapses

Brian 1’s synaptic models, provided in brian.library.synpases can be converted to the equivalent Brian 2
equations as follows:
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Current-based synapses

Brian 1 Brian 2

syn_eqgs = exp_current ('s', tau=5xms, tau = 5xms

—current_name='"'I_syn') syn_eqgs = Equations ('dI_syn/dt = -I_syn/

egs = (MembraneEquation (C=1xnF) + —~tau amp')

—Current ('Im = glx (El-vm) amp') + eqgqs = (Equations('dvm/dt = (glx(E1 - wvm)_,
syn_eqgs) —+ I_syn)/C volt') +

group = NeuronGroup (N, egs, threshold= syn_edgs)

< 'vm>-50+mV', reset='vm=-70+xmV")
syn = Synapses (source, group, pre='s +=_

group = NeuronGroup (N,
—'vm>-50+mV"',

egs, threshold=
reset="vm=-70+mV")

—1%nA'") syn = Synapses (source, group, pre='I_syn,
# ... connect synapses, etc. —+= 1xnA'")

# ... connect synapses, etc.
syn_eqgs = alpha_current('s', tau=2.5*ms, tau = 2.5+ms

—current_name="I_syn')

syn_eqgs = Equations('''dI_syn/dt = (s -

eqgs = # remaining code as above —I_syn)/tau amp
ds/dt = -s/tau :
—amp''")
group = NeuronGroup (N, eqgs, threshold=
—'vm>-50+mV"', reset="'vm=-70+mV")
syn = Synapses (source, group, pre='s +=_
—1xnA'")
# ... connect synapses, etc.
syn_eqgs = biexp_current ('s', taul=2.5xms, taul = 2.5xms; tau2 = 10xms; invpeak =
— tau2=10+ms, current_name='I_syn') < (tau2 / taul) %% (taul / (tau2 - taul))
egs = # remaining code as above syn_eqgs = Equations('''dI_syn/dt =
— (invpeak*s - I_syn)/taul amp
ds/dt = -s/tau2 :
—amp''")
eqgs = # remaining code as above
Conductance-based synapses
Brian 1 Brian 2
syn_egs = exp_conductance('s', tau=5*ms, , | tau = 5S5*ms; E = 0+mV
—E=0+mV, conductance_name='g_syn') syn_eqgs = Equations ('dg_syn/dt = -g_syn/
egs = (MembraneEquation (C=1xnF) + —tau siemens')
—Current ('Im = glx (El-vm) amp') + egs = (Equations('dvm/dt = (gl*(E1l - vm)_
syn_eqs) <+ g_synx (E - vm))/C volt') +
group = NeuronGroup (N, egs, threshold= syn_edqgs)
—'vm>-50*xmV"', reset='vm=-70xmV"') group = NeuronGroup (N, egs, threshold=
syn = Synapses (source, group, pre='s +=_ —'vm>-50+mV', reset='vm=-70xmV"')
—~10%nS") syn = Synapses (source, group, pre='g_syn_
# ... connect synapses, etc. —+= 10%nSsS")
# ... connect synapses, etc.
Continued on next page
52 Chapter 1. Introduction




Brian 2 Documentation, Release 2.1

Table 1.4 — continued from previous page

Brian 1 Brian 2

syn_eqgs = alpha_conductance('s', tau=2. tau = 2.5xms; E = 0xmV

—~5xms, E=0xmV, conductance_name='g_syn') syn_eqgs = Equations('''dg_syn/dt = (s —_
egs = ... # remaining code as above —g_syn)/tau : siemens

ds/dt = -s/tau :_
—~siemens'''")
group = NeuronGroup (N, egs, threshold=

= 'vm>-50+«mV', reset='vm=-70xmV")

syn = Synapses (source, group, pre='s +=_
—10xnS")
# ... connect synapses, etc.
syn_edgs = biexp_conductance('s', taul=2. taul = 2.5xms; tau2 = 10+ms; E = 0+mV
—5+ms, tau2=10+ms, E=0xmV, invpeak = (tau2 / taul) =* (taul / (tau2
conductance__ —— taul))
—name="g_syn') syn_eqgs = Equations('''dg_syn/dt =
eqgs = ... # remaining code as above — (invpeak*s - g_syn)/taul : siemens
ds/dt = -s/tau2

—~siemens'''")
eqgs = ... # remaining code as above

Brian Hears

This module is designed for users of the Brian 1 library “Brian Hears”. It allows you to use Brian Hears with Brian 2
with only a few modifications (although it’s not compatible with the “standalone” mode of Brian 2). The way it works
is by acting as a “bridge” to the version in Brian 1. To make this work, you must have a copy of Brian 1 installed
(preferably the latest version), and import Brian Hears using:

from brian2.hears import =

Many scripts will run without any changes, but there are a few caveats to be aware of. Mostly, the problems are due to
the fact that the units system in Brian 2 is not 100% compatible with the units system of Brian 1.

FilterbankGroup now follows the rules for NeuronGroup in Brian 2, which means some changes may be
necessary to match the syntax of Brian 2, for example, the following would work in Brian 1 Hears:

# Leaky integrate-and-fire model with noise and refractoriness
eqgs = T

dv/dt = (I-v)/(l*ms)+0.2%xi*x (2/(l*ms))**.5 : 1

I:1

anf = FilterbankGroup(ihc, 'I', egs, reset=0, threshold=1l, refractory=5*ms)

However, in Brian 2 Hears you would need to do:

# Leaky integrate-and-fire model with noise and refractoriness
eqgs = T

dv/dt = (I-v)/(l*ms)+0.2+xix(2/(l*ms))**.5 : 1 (unless refractory)
I 1

anf = FilterbankGroup (ihc, 'I', egs, reset='v=0', threshold='v>1', refractory=5+ms)
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Slicing sounds no longer works. Previously you could do, e.g. sound[:20+ms] but with Brian 2 you would need
todo sound.slice (Oxms, 20*ms).

In addition, some functions may not work correctly with Brian 2 units. In most circumstances, Brian 2 units
can be used interchangeably with Brian 1 units in the bridge, but in some cases it may be necessary to convert
units from one format to another, and to do that you can use the functions convert_unit_bl_to_bZ2 and
convert_unit_bZ to_bl.

1.4 Known issues

In addition to the issues noted below, you can refer to our bug tracker on GitHub.

List of known issues

Cannot find msver90d.dll

”»

“AttributeError: MSVCCompiler instance has no attribute ‘compiler_cxx’

“Missing compiler_cxx fix for MSVCCompiler”

Problems with numerical integration

* Jupyter notebooks and C++ standalone mode progress reporting

Parallel Brian simulations with the weave code generation target

Slow standalone simulations

1.4.1 Cannot find msvcr90d.dll

If you see this message coming up, find the file PythonDir\Lib\site-packages\numpy\distutils\mingw32ccompile:
py and modify the line msvcr_dbg_success = build_msvcr_library (debug=True) to read
msvcr_dbg_success = False (you can comment out the existing line and add the new line immediately after).

1.4.2 “AttributeError: MSVCCompiler instance has no attribute ‘compiler_cxx’”

This is caused by a bug in some versions of numpy on Windows. The easiest solution is to update to the latest version
of numpy.

If that isn’t possible, a hacky solution is to modify the numpy code directly to fix the problem. The
following change may work. Modify line 388 of numpy/distutils/ccompiler.py from elif
not self.compiler cxx: to elif not hasattr(self, 'compiler_cxx') or not self.
compiler_cxx:. If the line number is different, it should be nearby. Search for elif not self.
compiler_cxx in that file.

1.4.3 “Missing compiler_cxx fix for MSVCCompiler”

If you keep seeing this message, do not worry. It’s not possible for us to hide it, but doesn’t indicate any problems.
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1.4.4 Problems with numerical integration

In some cases, the automatic choice of numerical integration method will not be appropriate, because of a choice of
parameters that couldn’t be determined in advance. In this case, typically you will get nan (not a number) values in
the results, or large oscillations. In this case, Brian will generate a warning to let you know, but will not raise an error.

1.4.5 Jupyter notebooks and C++ standalone mode progress reporting

When you run simulations in C++ standalone mode and enable progress reporting (e.g. by using report="text'
as a keyword argument), the progress will not be displayed in the jupyter notebook. If you started the notebook from
a terminal, you will find the output there. Unfortunately, this is a tricky problem to solve at the moment, due to the
details of how the jupyter notebook handles output.

1.4.6 Parallel Brian simulations with the weave code generation target

When using the weave code generation target (the default runtime target on Python 2.x, see Runtime code generation
for details), you should avoid running multiple Brian simulations in parallel. The weave package caches compiled
files, but this cache is not prepared for multiple concurrent updates. If two Python scripts (or two processes started
from the same Python script, e.g. via the multiprocessing package) try to store compilation results at the same
time, weave will crash with an error message. The numpy and cython targets are not affected by this problem.

1.4.7 Slow standalone simulations

Some versions of the GNU standard library (in particular those used by recent Ubuntu versions) have a bug
that can dramatically slow down simulations in C++ standalone mode on modern hardware (see #803). As a
workaround, Brian will set an environment variable LD_BIND_NOW during the execution of standalone stimula-
tions which changes the way the library is linked so that it does not suffer from this problem. If this environ-
ment variable leads to unwanted behaviour on your machine, change the prefs.devices.cpp_standalone.
run_environment_variables preference.

1.5 Support

If you are stuck with a problem using Brian, please do get in touch at our email support list.
You can save time by following this procedure when reporting a problem:

1. Do try to solve the problem on your own first. Read the documentation, including using the search feature, index
and reference documentation.

2. Search the mailing list archives to see if someone else already had the same problem.

3. Before writing, try to create a minimal example that reproduces the problem. You’ll get the fastest response if
you can send just a handful of lines of code that show what isn’t working.
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CHAPTER 2

Tutorials

The tutorial consists of a series of Jupyter Notebooks'.

For more information about how to use Jupyter Notebooks, see the Jupyter Notebook documentation.

2.1 Introduction to Brian part 1: Neurons

All Brian scripts start with the following. If you’re trying this notebook out in the Jupyter notebook, you should start
by running this cell.

’from brian2 import =«

Later we’ll do some plotting in the notebook, so we activate inline plotting in the notebook by doing this:

$matplotlib inline

If you are not using the Jupyter notebook to run this example (e.g. you are using a standard Python terminal, or you
copy&paste these example into an editor and run them as a script), then plots will not automatically be displayed. In
this case, call the show () command explicitly after the plotting commands.

2.1.1 Units system

Brian has a system for using quantities with physical dimensions:

20*volt

20.0V

All of the basic SI units can be used (volt, amp, etc.) along with all the standard prefixes (m=milli, p=pico, etc.), as
well as a few special abbreviations like mV for millivolt, pF for picofarad, etc.

! Formerly known as “IPython Notebooks”.
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IIOOO*amp

1.0k A
’166*volt

1.0MV
llooo*namp

1.0pA

Also note that combinations of units with work as expected:

’lO*nA*S*Mohm

50.0mV

And if you try to do something wrong like adding amps and volts, what happens?

’5*amp+10*volt

DimensionMismatchErrorTraceback (most recent call last)
<ipython-input-8-adlfc569ladb> in <module> ()

———-> 1 Sxamp+10xvolt

/home/marcel /programming/brian2/brian2/units/fundamentalunits.pyc in __add__ (self,
—other)

1422 return self._binary_operation (other, operator.add,

1423 fail_for_mismatch=True,
-> 1424 operator_str="+")

1425

1426 def _ radd__ (self, other):

/home/marcel/programming/brian2/brian2/units/fundamentalunits.pyc in _binary_
—operation(self, other, operation, dim_operation, fail_ for_mismatch, operator_str,
—~inplace)

1362 _, other_dim = fail_for_dimension_mismatch(self, other,
—message,

1363 valuel=self,
-> 1364 value2=other)

1365

1366 if other_dim is None:

/home/marcel/programming/brian2/brian2/units/fundamentalunits.pyc in fail for_
—dimension_mismatch (objl, obj2, error_message, *xerror_quantities)

184 raise DimensionMismatchError (error_message, diml)
185 else:
--> 186 raise DimensionMismatchError (error_message, diml, dim2)
187 else:
188 return diml, dim2
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DimensionMismatchError: Cannot calculate 5. A + 10. V, units do not match (units are_
—amp and volt).

If you haven’t see an error message in Python before that can look a bit overwhelming, but it’s actually quite simple
and it’s important to know how to read these because you’ll probably see them quite often.

You should start at the bottom and work up. The last line gives the error type DimensionMismatchError along
with a more specific message (in this case, you were trying to add together two quantities with different SI units, which
is impossible).

Working upwards, each of the sections starts with a filename (e.g. C: \Users\Dan\ . . .) with possibly the name of
a function, and then a few lines surrounding the line where the error occurred (which is identified with an arrow).

The last of these sections shows the place in the function where the error actually happened. The section above it
shows the function that called that function, and so on until the first section will be the script that you actually run.
This sequence of sections is called a traceback, and is helpful in debugging.

If you see a traceback, what you want to do is start at the bottom and scan up the sections until you find your own file
because that’s most likely where the problem is. (Of course, your code might be correct and Brian may have a bug in
which case, please let us know on the email support list.)

2.1.2 A simple model

Let’s start by defining a simple neuron model. In Brian, all models are defined by systems of differential equations.
Here’s a simple example of what that looks like:

tau = 10xms

egqs = '"!'

dv/dt = (1-v)/tau : 1

In Python, the notation ' ' ' is used to begin and end a multi-line string. So the equations are just a string with one
line per equation. The equations are formatted with standard mathematical notation, with one addition. At the end of
aline you write :  unit where unit is the SI unit of that variable. Note that this is not the unit of the two sides of

the equation (which would be 1/second), but the unit of the variable defined by the equation, i.e. in this case v.

Now let’s use this definition to create a neuron.

G = NeuronGroup (1, egs)

In Brian, you only create groups of neurons, using the class NeuronGroup. The first two arguments when you create
one of these objects are the number of neurons (in this case, 1) and the defining differential equations.

Let’s see what happens if we didn’t put the variable t au in the equation:

T

egs =
dv/dt = 1-v : 1

Tra

G = NeuronGroup (l, egs)
run (100+ms)

BrianObjectExceptionTraceback (most recent call last)

<ipython-input-11-d086eealb2de> in <module> ()
3 T
4 G = NeuronGroup(l, egs)
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———-=> 5 run(100+*ms)

/home/marcel/programming/brian2/brian2/units/fundamentalunits.pyc in new_f (xargs,
—*xkwds)

2353 get_
—dimensions (newkeyset [k]))

2354
-> 2355 result = f(xargs, xxkwds)

2356 if 'result' in au:

2357 if au['result'] == bool:

/home/marcel/programming/brian2/brian2/core/magic.pyc in run (duration, report, report_
—period, namespace, profile, level)

369 e

370 return magic_network.run(duration, report=report, report_period=report_
—period,
--> 371 namespace=namespace, profile=profile, |
—level=2+level)

372 run._ _module_ = _ name_

373

/home/marcel/programming/brian2/brian2/core/magic.pyc in run(self, duration, report,
—report_period, namespace, profile, level)

229 self._update_magic_objects (level=level+l)
230 Network.run (self, duration, report=report, report_period=report_
—period,
-—> 231 namespace=namespace, profile=profile, level=level+l)
232
233 def store(self, name='default', filename=None, level=0):

/home/marcel/programming/brian2/brian2/core/base.pyc in device_override_decorated_
—function (xargs, =*+kwds)

276 return getattr (curdev, name) (xargs, xxkwds)
277 else:
-—> 278 return func(xargs, =*xkwds)
279
280 device_override_decorated_function. doc = func._ doc

/home/marcel/programming/brian2/brian2/units/fundamentalunits.pyc in new_f (xargs,
—xxkwds)

2353 get_
—dimensions (newkeyset[k]))

2354
-> 2355 result = f(xargs, =**kwds)

2356 if 'result' in au:

2357 if au['result'] == bool:

/home/marcel /programming/brian2/brian2/core/network.pyc in run(self, duration, report,
— report_period, namespace, profile, level)

949 namespace = get_local_namespace (level=level+3)
950
—-—> 951 self.before_run (namespace)
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952
953 if len(self.objects)==0:

/home/marcel/programming/brian2/brian2/core/base.pyc in device_override_decorated_
—function(xargs, =*xkwds)

276 return getattr (curdev, name) (xargs, xxkwds)
277 else:
-—> 278 return func(xargs, =*xkwds)
279
280 device_override_decorated_function._  doc_ = func._ doc

/home/marcel /programming/brian2/brian2/core/network.pyc in before_run(self, run_

—namespace)

841 obj.before_run (run_namespace)

842 except Exception as ex:
——> 843 raise brian_object_exception("An error occurred when_
—preparing an object.", obj, ex)

844

845 # Check that no object has been run as part of another network before

BrianObjectException: Original error and traceback:
Traceback (most recent call last):
File "/home/marcel/programming/brian2/brian2/core/network.py", line 841, in before_
—run
obj.before_run (run_namespace)
File "/home/marcel/programming/brian2/brian2/groups/neurongroup.py", line 790, in_
—before_run
self.equations.check_units(self, run_namespace=run_namespace)
File "/home/marcel/programming/brian2/brian2/equations/equations.py", line 959, in_
—check_units
*ex.dims)
DimensionMismatchError: Inconsistent units in differential equation defining variable
—V 3

Expression 1-v does not have the expected unit hertz (unit is 1).

Error encountered with object named "neurongroup_1".
Object was created here (most recent call only, full details in debug log):
File "<ipython-input-11-d086eealb2de>", 1line 4, in <module>
G = NeuronGroup(l, egs)

An error occurred when preparing an object. DimensionMismatchError: Inconsistent,
—units in differential equation defining variable v:

Expression 1-v does not have the expected unit hertz (unit is 1).

(See above for original error message and traceback.)

An error is raised, but why? The reason is that the differential equation is now dimensionally inconsistent. The
left hand side dv/dt has units of 1/second but the right hand side 1-v is dimensionless. People often find this
behaviour of Brian confusing because this sort of equation is very common in mathematics. However, for quantities
with physical dimensions it is incorrect because the results would change depending on the unit you measured it in.
For time, if you measured it in seconds the same equation would behave differently to how it would if you measured
time in milliseconds. To avoid this, we insist that you always specify dimensionally consistent equations.

Now let’s go back to the good equations and actually run the simulation.
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start_scope ()

tau = 10*ms
eqs:"’
dv/dt = (l1-v)/tau : 1

T

G = NeuronGroup (l, egs)
run (100+ms)

INFO No numerical integration method specified for group 'neurongroup', using,
—method 'exact' (took 0.04s). [brian2.stateupdaters.base.method_choice]

First off, ignore that start_scope () at the top of the cell. You’ll see that in each cell in this tutorial where we run
a simulation. All it does is make sure that any Brian objects created before the function is called aren’t included in the
next run of the simulation.

Secondly, you’ll see that there is an “INFO” message about not specifying the numerical integration method. This is
harmless and just to let you know what method we chose, but we’ll fix it in the next cell by specifying the method
explicitly.

So, what has happened here? Well, the command run (100+ms) runs the simulation for 100 ms. We can see that
this has worked by printing the value of the variable v before and after the simulation.

start_scope ()

G = NeuronGroup(l, egs, method='exact')
print ('Before v = "% G.v[0])
run (100+ms)

print ('After v = !

o

G.vI[0])

Before v = 0.0
After v = 0.99995460007

By default, all variables start with the value 0. Since the differential equation is dv/dt=(1-v) /tau we would
expect after a while that v would tend towards the value 1, which is just what we see. Specifically, we’d expect v to
have the value 1-exp (-t /tau). Let’s see if that’s right.

’print('Expected value of v = "% (l-exp(-100+ms/tau)))

’Expected value of v = 0.99995460007

Good news, the simulation gives the value we’d expect!

Now let’s take a look at a graph of how the variable v evolves over time.

start_scope ()

G = NeuronGroup(l, egs, method='exact')
M = StateMonitor (G, 'v', record=True)

run (30+ms)
plot (M.t/ms, M.v[0])

xlabel ('Time (ms) ')
ylabel ('v'");
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This time we only ran the simulation for 30 ms so that we can see the behaviour better. It looks like it’s behaving as
expected, but let’s just check that analytically by plotting the expected behaviour on top.

start_scope ()

G = NeuronGroup(l, egs, method='exact')
M StateMonitor (G, 'v', record=0)

run (30+ms)

plot (M.t/ms, M.v[0], 'CO', label='Brian')

plot (M.t/ms, l-exp(-M.t/tau), 'Cl--',label="Analytic')
xlabel ('Time (ms) ")

ylabel ('v")

legend() ;
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As you can see, the blue (Brian) and dashed orange (analytic solution) lines coincide.

In this example, we used the object StateMonitor object. This is used to record the values of a neuron variable
while the simulation runs. The first two arguments are the group to record from, and the variable you want to record
from. We also specify record=0. This means that we record all values for neuron 0. We have to specify which
neurons we want to record because in large simulations with many neurons it usually uses up too much RAM to record
the values of all neurons.

Now try modifying the equations and parameters and see what happens in the cell below.

start_scope ()

tau = 10+*ms
eqgs = T
dv/dt = (sin(2xpix100xHzxt)-v)/tau : 1

# Change to Euler method because exact integrator doesn't work here
G = NeuronGroup(l, egs, method='euler'")
M StateMonitor (G, 'v', record=0)

G.v = 5 # initial value
run (60+ms)
plot (M.t/ms, M.v[0])

xlabel ('Time (ms) ')
ylabel ('v');
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2.1.3 Adding spikes

So far we haven’t done anything neuronal, just played around with differential equations. Now let’s start adding
spiking behaviour.

start_scope ()

tau = 10+*ms

eqgs = T

dv/dt = (l1-v)/tau : 1

LI B |

G = NeuronGroup(l, eqgs, threshold='v>0.8"', reset='v = 0', method='exact')

M = StateMonitor (G, 'v', record=0)
run (50+ms)

plot (M.t/ms, M.v[0])

xlabel ('Time (ms) ")

ylabel ('v');
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We’ve added two new keywords to the NeuronGroup declaration: threshold='v>0.8"' and reset="'v =
0'. What this means is that when v>0 . 8 we fire a spike, and immediately reset v = 0 after the spike. We can put
any expression and series of statements as these strings.

As you can see, at the beginning the behaviour is the same as before until v crosses the threshold v>0. 8 at which
point you see it reset to 0. You can’t see it in this figure, but internally Brian has registered this event as a spike. Let’s
have a look at that.

start_scope ()

G = NeuronGroup(l, egs, threshold='v>0.8"', reset='v = 0', method='exact')
spikemon = SpikeMonitor (G)

run (50+ms)

)

print ('Spike times: ' % spikemon.t[:])

Spike times: [ 16. 32.1 48.2] ms

The SpikeMonitor object takes the group whose spikes you want to record as its argument and stores the spike
times in the variable t. Let’s plot those spikes on top of the other figure to see that it’s getting it right.

start_scope ()

G = NeuronGroup(l, eqgs, threshold='v>0.8"', reset='v = 0', method='exact')
statemon = StateMonitor (G, 'v', record=0)
spikemon = SpikeMonitor (G)

run (50+ms)

plot (statemon.t/ms, statemon.v[0])
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for t in spikemon.t:

axvline (t/ms, ls='-—-', c='Cl', 1lw=3)
xlabel ('Time (ms) ")
ylabel ('v'");
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Here we’ve used the axv1ine command from matplotlib to draw an orange, dashed vertical line at the time of
each spike recorded by the SpikeMonitor.

Now try changing the strings for threshold and reset in the cell above to see what happens.
2.1.4 Refractoriness

A common feature of neuron models is refractoriness. This means that after the neuron fires a spike it becomes
refractory for a certain duration and cannot fire another spike until this period is over. Here’s how we do that in Brian.

start_scope ()

tau = 10*ms

egs = T

dv/dt = (l1-v)/tau : 1 (unless refractory)

G = NeuronGroup (l, egs, threshold='v>0.8'", reset='v = 0', refractory=5+ms, method=
—'exact!'")

statemon = StateMonitor (G, 'v', record=0)

spikemon = SpikeMonitor (G)

run (50+ms)

plot (statemon.t/ms, statemon.v[0])
for t in spikemon.t:
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axvline (t/ms, ls='—-', c='Cl', 1lw=3)
xlabel ('"Time (ms) ")
ylabel ('v');
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As you can see in this figure, after the first spike, v stays at O for around 5 ms before it resumes its normal behaviour.
To do this, we’ve done two things. Firstly, we’ve added the keyword refractory=5+ms to the NeuronGroup
declaration. On its own, this only means that the neuron cannot spike in this period (see below), but doesn’t change how
v behaves. In order to make v stay constant during the refractory period, we have to add (unless refractory)
to the end of the definition of v in the differential equations. What this means is that the differential equation determines
the behaviour of v unless it’s refractory in which case it is switched off.

Here’s what would happen if we didn’t include (unless refractory). Note that we’ve also decreased the value
of tau and increased the length of the refractory period to make the behaviour clearer.

start_scope ()

tau = 5x*ms

eqgs = T

dv/dt = (1-v)/tau : 1

Tra

G = NeuronGroup(l, egs, threshold='v>0.8'"', reset='v = 0', refractory=15+ms, method=

—'exact!'")

statemon = StateMonitor (G, 'v', record=0)
spikemon = SpikeMonitor (G)

run (50+ms)

plot (statemon.t/ms, statemon.v([0])
for t in spikemon.t:

axvline (t/ms, ls='—-', c='Cl', 1lw=3)
axhline (0.8, 1ls=':', c='C2', 1lw=3)
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xlabel ('Time (ms) ")
ylabel ('v'")
print ("Spike times: " % spikemon.t[:1])

Spike times: [ 8. 23.1 38.2] ms
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So what’s going on here? The behaviour for the first spike is the same: v rises to 0.8 and then the neuron fires a spike
at time 8 ms before immediately resetting to 0. Since the refractory period is now 15 ms this means that the neuron
won’t be able to spike again until time 8 + 15 = 23 ms. Immediately after the first spike, the value of v now instantly
starts to rise because we didn’t specify (unless refractory) in the definition of dv/dt. However, once it
reaches the value 0.8 (the dashed green line) at time roughly 8 ms it doesn’t fire a spike even though the threshold is
v>0. 8. This is because the neuron is still refractory until time 23 ms, at which point it fires a spike.

Note that you can do more complicated and interesting things with refractoriness. See the full documentation for more
details about how it works.

2.1.5 Multiple neurons

So far we’ve only been working with a single neuron. Let’s do something interesting with multiple neurons.

start_scope ()

N = 100

tau = 10xms

eqs . Tr

dv/dt = (2-v)/tau : 1

G = NeuronGroup (N, eqgs, threshold='v>1', reset='v=0', method='exact')
G.v = 'rand()'

2.1. Introduction to Brian part 1: Neurons 69




Brian 2 Documentation, Release 2.1

spikemon = SpikeMonitor (G)
run (50+ms)
plot (spikemon.t/ms, spikemon.i,

xlabel ('Time (ms) ")
ylabel ('Neuron index');
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This shows a few changes. Firstly, we’ve got a new variable N determining the number of neurons. Secondly, we added
the statement G.v = 'rand () ' before the run. What this does is initialise each neuron with a different uniform
random value between 0 and 1. We’ve done this just so each neuron will do something a bit different. The other big
change is how we plot the data in the end.

As well as the variable spikemon .t with the times of all the spikes, we’ve also used the variable spikemon. i
which gives the corresponding neuron index for each spike, and plotted a single black dot with time on the x-axis and

neuron index on the y-value. This is the standard “raster plot” used in neuroscience.

2.1.6 Parameters

To make these multiple neurons do something more interesting, let’s introduce per-neuron parameters that don’t have

a differential equation attached to them.

start_scope ()

N = 100
tau = 10*ms
vO0_max = 3.

duration = 1000+ms

egs = T

vO : 1

dv/dt = (vO-v)/tau : 1 (unless refractory)
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G = NeuronGroup (N, eqgs, threshold='v>1', reset='v=0', refractory=5+ms, method='exact')
M = SpikeMonitor (G)
G.v0 = '"ixv0_max/ (N-1)"

run (duration)

figure (figsize=(12,4))
subplot (121)

plot (M.t/ms, M.i, '.k")
xlabel ('Time (ms) ")

ylabel ('Neuron index'")
subplot (122)

plot (G.v0, M.count/duration)
xlabel ('v0")

ylabel ('Firing rate (sp/s)');
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The line vO : 1 declares a new per-neuron parameter v0 with units 1 (i.e. dimensionless).
The line G.v0 = 'ixv0_max/ (N-1) ' initialises the value of vO for each neuron varying from O up to v0_max.

The symbol i when it appears in strings like this refers to the neuron index.

So in this example, we’re driving the neuron towards the value v0 exponentially, but when v crosses v>1, it fires a
spike and resets. The effect is that the rate at which it fires spikes will be related to the value of v0. For v0<1 it will
never fire a spike, and as vO gets larger it will fire spikes at a higher rate. The right hand plot shows the firing rate as
a function of the value of v0. This is the I-f curve of this neuron model.

Note that in the plot we’ve used the count variable of the SpikeMonitor: this is an array of the number of spikes
each neuron in the group fired. Dividing this by the duration of the run gives the firing rate.

2.1.7 Stochastic neurons

Often when making models of neurons, we include a random element to model the effect of various forms of neural
noise. In Brian, we can do this by using the symbol xi in differential equations. Strictly speaking, this symbol
is a “stochastic differential” but you can sort of thinking of it as just a Gaussian random variable with mean 0 and
standard deviation 1. We do have to take into account the way stochastic differentials scale with time, which is why
we multiply it by taux+-0.5 in the equations below (see a textbook on stochastic differential equations for more
details). Note that we also changed the method keyword argument to use 'euler' (which stands for the Euler-
Maruyama method); the 'exact ' method that we used earlier is not applicable to stochastic differential equations.
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start_scope ()

N = 100

tau = 10+*ms

v0_max = 3.
duration = 1000+*ms
sigma = 0.2

egs = T
dv/dt = (v0-v)/taut+sigmaxxixtau**-0.5 : 1 (unless refractory)
vo : 1

v

G = NeuronGroup (N, eqgs, threshold='v>1', reset='v=0', refractory=5xms, method='euler')
M = SpikeMonitor (G)
G.v0 "ixv0_max/ (N-1)"'

run (duration)

figure (figsize=(12,4))
subplot (121)

plot (M.t/ms, M.i, '.k'")
xlabel ('Time (ms) ")

ylabel ('Neuron index')
subplot (122)

plot (G.v0, M.count/duration)
xlabel ('v0")

ylabel ('Firing rate (sp/s)');
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That’s the same figure as in the previous section but with some noise added. Note how the curve has changed shape:
instead of a sharp jump from firing at rate O to firing at a positive rate, it now increases in a sigmoidal fashion. This is
because no matter how small the driving force the randomness may cause it to fire a spike.

2.1.8 End of tutorial

That’s the end of this part of the tutorial. The cell below has another example. See if you can work out what it is
doing and why. Try adding a StateMonitor to record the values of the variables for one of the neurons to help you
understand it.

You could also try out the things you’ve learned in this cell.
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Once you’re done with that you can move on to the next tutorial on Synapses.

start_scope ()

N = 1000

tau = 10xms

vr = —-70xmV

vt0 = -50*mV

delta_vt0 = 5+mV
tau_t = 100+ms

sigma = 0.5% (vt0-vr)

v_drive = 2x (vt0-vr)

duration = 100+*ms

egs = T

dv/dt = (v_drive+vr-v)/tau + sigmaxxixtau**-0.5 : volt
dvt/dt = (vtO-vt)/tau_t : volt

reset = '"!'

v = vr

vt += delta_vtO0

G = NeuronGroup (N, egs, threshold='v>vt', reset=reset, refractory=5+ms, method='euler

)

spikemon = SpikeMonitor (G)

G.v = 'rand () * (vtO-vr)+vr'
G.vt = vtO0

run (duration)

_ = hist(spikemon.t/ms, 100, histtype='stepfilled', facecolor='k', |
—welights=ones (len (spikemon) )/ (Nxdefaultclock.dt))

xlabel ('Time (ms) ")

ylabel ('Instantaneous firing rate (sp/s)');
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2.2 Introduction to Brian part 2: Synapses

If you haven’t yet read part 1: Neurons, go read that now.

As before we start by importing the Brian package and setting up matplotlib for IPython:

from brian2 import =«
$matplotlib inline

2.2.1 The simplest Synapse

Once you have some neurons, the next step is to connect them up via synapses. We’ll start out with doing the simplest
possible type of synapse that causes an instantaneous change in a variable after a spike.

start_scope ()
eqs . L B
dv/dt = (I-v)/tau : 1

I 1

tau : second

G = NeuronGroup (2, eqgs, threshold='v>1', reset='v = 0', method='exact")
G.I = [2, 0]

G.tau = [10, 100]~*ms

# Comment these two lines out to see what happens withou
S = Synapses (G, G, on_pre='v_post += 0.2")

S.connect (1=0, j=1)

M = StateMonitor (G, 'v', record=True)
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run (100+ms)

plot (M.t/ms, M.v[0], label='Neuron 0'")
plot (M.t/ms, M.v[1], label='Neuron 1")
xlabel ('Time (ms) ")

ylabel ('v'")

legend() ;
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There are a few things going on here. First of all, let’s recap what is going on with the NeuronGroup. We’ve created
two neurons, each of which has the same differential equation but different values for parameters I and tau. Neuron 0
has I=2 and tau=10+ms which means that is driven to repeatedly spike at a fairly high rate. Neuron 1 has I=0 and
tau=100+ms which means that on its own - without the synapses - it won’t spike at all (the driving current I is 0).
You can prove this to yourself by commenting out the two lines that define the synapse.

Next we define the synapses: Synapses (source, target, ...) means thatwe are defining a synaptic model
that goes from source to target. In this case, the source and target are both the same, the group G. The syntax
on_pre='v_post += 0.2' means that when a spike occurs in the presynaptic neuron (hence on_pre) it causes
an instantaneous change to happen v_post += 0.2. The _post means that the value of v referred to is the post-
synaptic value, and it is increased by 0.2. So in total, what this model says is that whenever two neurons in G are
connected by a synapse, when the source neuron fires a spike the target neuron will have its value of v increased by
0.2.

However, at this point we have only defined the synapse model, we haven’t actually created any synapses. The next
line S.connect (i=0, j=1) creates a synapse from neuron O to neuron 1.

2.2.2 Adding a weight

In the previous section, we hard coded the weight of the synapse to be the value 0.2, but often we would to allow this
to be different for different synapses. We do that by introducing synapse equations.
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start_scope ()

T

egs =
dv/dt = (I-v)/tau : 1

I :1

tau : second

Tra

G = NeuronGroup (3, eqgs, threshold='v>1', reset='v = 0', method='exact")
G.I = [2, 0, 0]

G.tau = [10, 100, 100]+*ms

# Comment these two lines out to see what happens without Synapses
S = Synapses (G, G, 'w : 1', on_pre='v_post += w')

S.connect (1i=0, J=[1, 2])
S.w = "jx0.2"'

M = StateMonitor (G, 'v', record=True)
run (50+ms)

plot (M.t/ms, M.v[0], label='Neuron 0")
plot (M.t/ms, M.v[1], label='Neuron 1'")

plot (M.t/ms, M.v[2], label='Neuron 2')
xlabel ('Time (ms) ")

ylabel ('v')
legend() ;
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This example behaves very similarly to the previous example, but now there’s a synaptic weight variable w. The string
'w : 1" is an equation string, precisely the same as for neurons, that defines a single dimensionless parameter
w. We changed the behaviour on a spike to on_pre='v_post += w' now, so that each synapse can behave
differently depending on the value of w. To illustrate this, we’ve made a third neuron which behaves precisely the
same as the second neuron, and connected neuron 0 to both neurons 1 and 2. We’ve also set the weights via S.w =
'jx0.2"'. When 1 and j occur in the context of synapses, i refers to the source neuron index, and 7 to the target
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neuron index. So this will give a synaptic connection from 0 to 1 with weight 0.2=0.2x1 and from 0 to 2 with
weight 0.4=0.2%*2.

2.2.3 Introducing a delay

So far, the synapses have been instantaneous, but we can also make them act with a certain delay.

start_scope ()
eqs - Tr
dv/dt = (I-v)/tau : 1

I : 1

tau : second

G = NeuronGroup (3, eqgs, threshold='v>1', reset='v = 0', method='exact")
G.I = (2, 0, 0]

G.tau = [10, 100, 100]+ms

= Synapses (G, G, 'w : 1', on_pre='v_post += w')
.connect (1=0, Jj=[1, 2])
wo= "j%x0.2"

0 n n n

.delay = "Jx2xms'

=

= StateMonitor (G, 'v', record=True)
run (50+ms)

plot (M.t/ms, M.v[0], label='Neuron 0")
plot (M.t/ms, M.v[1], label='Neuron 1")
plot (M.t/ms, M.v[2], label='Neuron 2'")
xlabel ("Time (ms) ")

ylabel ('v'")

legend() ;
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As you can see, that’s as simple as adding aline S.delay = 'J*2xms" so that the synapse from O to 1 has a delay

of 2 ms, and from O to 2 has a delay of 4 ms.

2.2.4 More complex connectivity

So far, we specified the synaptic connectivity explicitly, but for larger networks this isn’t usually possible. For that,
we usually want to specify some condition.

start_scope ()

N = 10

G = NeuronGroup (N, 'v:1")

S = Synapses (G, G)

S.connect (condition="1i!=j", p=0.2)

Here we’ve created a dummy neuron group of N neurons and a dummy synapses model that doens’t actually do any-
thing just to demonstrate the connectivity. The line S.connect (condition="i!=3"', p=0.2) will connect
all pairs of neurons i and j with probability 0.2 as long as the condition i!=7j holds. So, how can we see that
connectivity? Here’s a little function that will let us visualise it.

def visualise_connectivity (S):
Ns = len(S.source)
Nt = len(S.target)
figure (figsize=(10, 4))
subplot (121)
plot (zeros (Ns), arange(Ns), 'ok', ms=10)
plot (ones (Nt), arange(Nt), 'ok', ms=10)
for i, j in zip(S.i, S.Jj):
plot ([0, 11, [4i, 31, '"-k")
xticks ([0, 1], ['Source', 'Target'])
ylabel ("Neuron index')
x1lim(-0.1, 1.1)
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ylim (-1, max(Ns, Nt))
subplot (122)
plot(S.i, S.j, 'ok")
x1lim( Ns)
ylim( Nt)
ylabe

visualise_connectivity (S)

,1,
_1’

xlabel ('Source neuron index')
1('Target neuron index')
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There are two plots here. On the left hand side, you see a vertical line of circles indicating source neurons on the left,
and a vertical line indicating target neurons on the right, and a line between two neurons that have a synapse. On the
right hand side is another way of visualising the same thing. Here each black dot is a synapse, with x value the source
neuron index, and y value the target neuron index.

Let’s see how these figures change as we change the probability of a connection:

start_scope ()

N =
G

10
NeuronGroup (N, 'v:1")

for p in [0.1, 0.5, 1.0]:
S = Synapses (G, G)

S.connect (condition="i!=73",

visualise_connectivity (S)
suptitle('p = "+str(p))

p=p)
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And let’s see what another connectivity condition looks like. This one will only connect neighbouring neurons.
start_scope ()
N = 10
G = NeuronGroup (N, 'v:1")
S = Synapses (G, G)
S.connect (condition="abs (i-7)<4 and i!=7")
visualise_connectivity (S)
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Source neuron index

Try using that cell to see how other connectivity conditions look like.

You can also use the generator syntax to create connections like this more efficiently. In small examples like this,
it doesn’t matter, but for large numbers of neurons it can be much more efficient to specify directly which neurons
should be connected than to specify just a condition. Note that the following example uses skip_if_invalid to
avoid errors at the boundaries (e.g. do not try to connect the neuron with index 1 to a neuron with index -2).
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start_scope ()

N
G

10
NeuronGroup (N, 'v:1")

S = Synapses (G, G)
S.connect (j='k for k in range(i-3, i+4) if il!=k', skip_if invalid=True)
visualise_connectivity (S)
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Source neuron index

If each source neuron is connected to precisely one target neuron (which would be normally used with two separate
groups of the same size, not with identical source and target groups as in this example), there is a special syntax that
is extremely efficient. For example, 1-to-1 connectivity looks like this:

start_scope ()

N
G

10
NeuronGroup (N, 'v:1")

S = Synapses (G, G)
S.connect (j="1")
visualise_connectivity (S)
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You can also do things like specifying the value of weights with a string. Let’s see an example where we assign each
neuron a spatial location and have a distance-dependent connectivity function. We visualise the weight of a synapse
by the size of the marker.

start_scope ()

N = 30
neuron_spacing = 50xumetre
width = N/4.0+neuron_spacing

# Neuron has one variable x, 1its position
G = NeuronGroup (N, 'x : metre')
G.x = 'isneuron_spacing'

# All synapses are connected (excluding self-connections)
S = Synapses(G, G, 'w : 1")

S.connect (condition="1i!=7")

# Weight varies with distance

S.w = 'exp (- (x_pre-x_post)«*2/ (2xwidth*x2) )"

scatter (S.x_pre/um, S.x_post/um, S.wx20)
xlabel ('Source neuron position (um)"')
ylabel ('Target neuron position (um)');
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Now try changing that function and seeing how the plot changes.

2.2.5 More complex synapse models: STDP

Brian’s synapse framework is very general and can do things like short-term plasticity (STP) or spike-timing dependent
plasticity (STDP). Let’s see how that works for STDP.
STDP is normally defined by an equation something like this:
Aw = Z Z W(tpost - tpre)
tpre tpost
That is, the change in synaptic weight w is the sum over all presynaptic spike times ¢, and postsynaptic spike times

Lpost Of some function I of the difference in these spike times. A commonly used function W is:

Apree/Tme At >0
Apost €At/ Tt At <0

W(At) = {

This function looks like this:

tau_pre = tau_post = 20*ms
A_pre = 0.01
A_post = -A_prex1.05

delta_t = linspace(-50, 50, 100)*ms

W = where(delta_t>0, A_prexexp(-delta_t/tau_pre), A_postrexp(delta_t/tau_post))
plot (delta_t/ms, W)

xlabel (r'$\Delta tS$ (ms) ")

ylabel ('W")

axhline (0, 1ls='-', c="'k");
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Simulating it directly using this equation though would be very inefficient, because we would have to sum over all
pairs of spikes. That would also be physiologically unrealistic because the neuron cannot remember all its previous
spike times. It turns out there is a more efficient and physiologically more plausible way to get the same effect.

We define two new variables ap,. and ay,s¢ Which are “traces” of pre- and post-synaptic activity, governed by the
differential equations:

d
Tpre&a;m“e = —0pre 2.0

d
Tpost aapost = —Qpost (2.2)

2.3)

When a presynaptic spike occurs, the presynaptic trace is updated and the weight is modified according to the rule:

Qpre — Apre + Apre (24)
w—w+ apost (25)
When a postsynaptic spike occurs:
QApost — Apost + Apost (26)
W — W+ Apre 2.7

To see that this formulation is equivalent, you just have to check that the equations sum linearly, and consider two
cases: what happens if the presynaptic spike occurs before the postsynaptic spike, and vice versa. Try drawing a
picture of it.
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Now that we have a formulation that relies only on differential equations and spike events, we can turn that into Brian
code.

start_scope ()

taupre = taupost = 20xms

wmax = 0.01

Apre = 0.01

Apost = -Aprextaupre/taupostx1.05

G = NeuronGroup (1, v:1', threshold='v>1")

S = Synapses (G, G,

rr

w o : 1

dapre/dt = —-apre/taupre : 1 (event-driven)
dapost/dt = —-apost/taupost : 1 (event—-driven)
rr ',

on_pre="'""

v_post +=w
apre += Apre
w = clip(wtapost, 0, wmax)

T

on_post="""
apost += Apost
w = clip(wtapre, 0, wmax)

vl!)

There are a few things to see there. Firstly, when defining the synapses we’ve given a more complicated multi-
line string defining three synaptic variables (w, apre and apost). We’ve also got a new bit of syntax there,
(event—-driven) after the definitions of apre and apost. What this means is that although these two vari-
ables evolve continuously over time, Brian should only update them at the time of an event (a spike). This is because
we don’t need the values of apre and apost except at spike times, and it is more efficient to only update them when
needed.

Next we have a on_pre=. .. argument. The first line is v_post += w: this is the line that actually applies the
synaptic weight to the target neuron. The second line is apre += Apre which encodes the rule above. In the
third line, we’re also encoding the rule above but we’ve added one extra feature: we’ve clamped the synaptic weights
between a minimum of 0 and a maximum of wmax so that the weights can’t get too large or negative. The function
clip(x, low, high) does this.

Finally, we have a on_post=. .. argument. This gives the statements to calculate when a post-synaptic neuron fires.
Note that we do not modify v in this case, only the synaptic variables.

Now let’s see how all the variables behave when a presynaptic spike arrives some time before a postsynaptic spike.

start_scope ()

taupre = taupost = 20xms

wmax = 0.01

Apre = 0.01

Apost = -Aprextaupre/taupostx1.05

G

NeuronGroup (2, 'v:1', threshold='t>(1+1i)*10+ms', refractory=100xms)

S = Synapses (G, G,
w s 1
dapre/dt = —-apre/taupre : 1 (clock-driven)
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dapost/dt = —apost/taupost : 1 (clock-driven)

rror

—T

on_pre=
v_post +=w
apre += Apre
w = clip(wtapost, 0, wmax)
LI B |
on_post="""
apost += Apost
w = clip(wtapre, 0, wmax)
""", method='linear")
S.connect (1=0, Jj=1)
M = StateMonitor (S, ['w', 'apre', 'apost'], record=True)

run (30+ms)

figure (figsize=(4, 8))

subplot (211)

plot (M.t/ms, M.apre[0], label='apre')
plot (M.t/ms, M.apost[0], label='apost')
legend ()

subplot (212)

plot (M.t/ms, M.w[0], label='w'")
legend(loc="best")

xlabel ('Time (ms)');
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A couple of things to note here. First of all, we’ve used a trick to make neuron O fire a spike at time 10 ms, and neuron
1 at time 20 ms. Can you see how that works?

Secondly, we’ve replaced the (event-driven) by (clock-driven) so you can see how apre and apost
evolve over time. Try reverting this change and see what happens.

Try changing the times of the spikes to see what happens.

Finally, let’s verify that this formulation is equivalent to the original one.

start_scope ()

taupre = taupost = 20*ms
Apre = 0.01
Apost = -Aprextaupre/taupostx1.05
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tmax = 50xms
N = 100
# Presynaptic neurons G spike at times from 0 to tmax
# Postsynaptic neurons G spike at times from tmax to 0
# So difference in spike times will vary from —-tmax to +tmax
G = NeuronGroup (N, 'tspike:second', threshold='t>tspike', refractory=100xms)
H = NeuronGroup (N, 'tspike:second', threshold='t>tspike', refractory=100+ms)
G.tspike = 'ixtmax/ (N-1)"'
H.tspike = ' (N-1-1)~*tmax/ (N-1)'"
S = Synapses (G, H,
rr
w o 1
dapre/dt = —apre/taupre : 1 (event-driven)
dapost/dt = —apost/taupost : 1 (event-driven)
on_pre="""

apre += Apre

w = wtapost
Tr

on_post="""
apost += Apost
W = wtapre

Vll)
S.connect (j="1")

run (tmax+1l+ms)

plot ((H.tspike-G.tspike)/ms, S.w)
xlabel (r'$\Delta tS$ (ms) ")

ylabel (r'S\Delta w$')

axhline (0, 1ls='-', c="'k'");
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Can you see how this works?

2.2.6 End of tutorial

2.3 Introduction to Brian part 3: Simulations

If you haven’t yet read parts 1 and 2 on Neurons and Synapses, go read them first.

This tutorial is about managing the slightly more complicated tasks that crop up in research problems, rather than the
toy examples we’ve been looking at so far. So we cover things like inputting sensory data, modelling experimental
conditions, etc.

As before we start by importing the Brian package and setting up matplotlib for IPython:

from brian2 import x
$matplotlib inline

2.3.1 Multiple runs

Let’s start by looking at a very common task: doing multiple runs of a simulation with some parameter that changes.
Let’s start off with something very simple, how does the firing rate of a leaky integrate-and-fire neuron driven by
Poisson spiking neurons change depending on its membrane time constant? Let’s set that up.

# remember, this is here for running separate simulations in the same notebook
start_scope ()

# Parameters

num_inputs = 100

input_rate = 10xHz
weight = 0.1
t

# Range of time constants
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tau_range = linspace(l, 10, 30)»*ms
# Use this list to store output rates
output_rates = []
# Iterate over range of time constants
for tau in tau_range:

# Construct the network each time

P = PoissonGroup (num_inputs, rates=input_rate)

eqgs = T

dv/dt = -v/tau : 1

Tra

G = NeuronGroup(l, eqgs, threshold='v>1', reset='v=0', method='exact")

Synapses (P, G, on_pre='v += weight")
.connect ()
= SpikeMonitor (G)

=< 0 W0

Run it and store the output firing rate in the list
run (1 «second)
output_rates.append (M.num_spikes/second)

# And plot it

plot (tau_range/ms, output_rates)

xlabel (r's\tau$ (ms)")

ylabel ('Firing rate (sp/s)');

20 -

Firing rate (spfs)

10 4

2 4 3] g 10
Tims)

Now if you’re running the notebook, you’ll see that this was a little slow to run. The reason is that for each loop,
you’re recreating the objects from scratch. We can improve that by setting up the network just once. We store a copy
of the state of the network before the loop, and restore it at the beginning of each iteration.

start_scope ()

num_inputs = 100

input_rate = 10xHz

weight 0.1

tau_range = linspace(l, 10, 30)»*ms
output_rates = []

# Construct the network just once

2.3. Introduction to Brian part 3: Simulations 91




Brian 2 Documentation, Release 2.1

P = PoissonGroup (num_inputs, rates=input_rate)

eqgs = T

dv/dt = -v/tau : 1

Tra

G = NeuronGroup(l, egs, threshold='v>1', reset='v=0', method='exact')

S = Synapses (P, G, on_pre='v += weight')
S.connect ()
M = SpikeMonitor (G)
# Store the current state of the network
store ()
for tau in tau_range:
# Restore the original state of the network
restore ()
# Run it with the new value of tau
run (lxsecond)
output_rates.append (M.num_spikes/second)
plot (tau_range/ms, output_rates)
xlabel (r'S\tau$ (ms)"')
ylabel ('Firing rate (sp/s)');

20 1

Firing rate (sp/s)

2 4 G B 10
Tims]

That’s a very simple example of using store and restore, but you can use it in much more complicated situations. For
example, you might want to run a long training run, and then run multiple test runs afterwards. Simply put a store after
the long training run, and a restore before each testing run.

You can also see that the output curve is very noisy and doesn’t increase monotonically like we’d expect. The noise
is coming from the fact that we run the Poisson group afresh each time. If we only wanted to see the effect of the
time constant, we could make sure that the spikes were the same each time (although note that really, you ought to do
multiple runs and take an average). We do this by running just the Poisson group once, recording its spikes, and then
creating a new SpikeGeneratorGroup that will output those recorded spikes each time.

start_scope ()
num_inputs = 100
input_rate = 10xHz
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weight = 0.1

tau_range = linspace(l, 10, 30)»*ms

output_rates = []

# Construct the Poisson spikes just once

P = PoissonGroup (num_inputs, rates=input_rate)

MP = SpikeMonitor (P)

# We use a Network object because later on we don't

# want to include these objects

net = Network (P, MP)

net.run (l+second)

# And keep a copy of those spikes

spikes_1 = MP.1i

spikes_t = MP.t

# Now construct the network that we run each time

# SpikeGeneratorGroup gets the spikes that we created before
SGG = SpikeGeneratorGroup (num_inputs, spikes_i, spikes_t)

T

egs =
dv/dt = -v/tau : 1

Tra

G = NeuronGroup(l, eqgs, threshold='v>1', reset='v=0', method='exact'")
S = Synapses (SGG, G, on_pre='v += weight')

S.connect ()

M = SpikeMonitor (G)

# Store the current state of the network

net = Network (SGG, G, S, M)
net.store()
for tau in tau_range:
# Restore the original state of the network
net.restore ()
# Run it with the new value of tau
net.run (l*second)
output_rates.append (M.num_spikes/second)
plot (tau_range/ms, output_rates)
xlabel (r's\tau$ (ms)")
ylabel ('Firing rate (sp/s)');
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You can see that now there is much less noise and it increases monotonically because the input spikes are the same
each time, meaning we’re seeing the effect of the time constant, not the random spikes.

Note that in the code above, we created Network objects. The reason is that in the loop, if we just called run it
would try to simulate all the objects, including the Poisson neurons P, and we only want to run that once. We use
Network to specify explicitly which objects we want to include.

The techniques we’ve looked at so far are the conceptually most simple way to do multiple runs, but not always the
most efficient. Since there’s only a single output neuron in the model above, we can simply duplicate that output
neuron and make the time constant a parameter of the group.

start_scope ()

num_inputs = 100

input_rate = 10xHz

weight = 0.1

tau_range = linspace(l, 10, 30)»*ms

num_tau = len(tau_range)

P = PoissonGroup (num_inputs, rates=input_rate)

# We make tau a parameter of the group

egqs = '"!'

dv/dt = -v/tau : 1

tau : second

And we have num_tau output neurons, each with a different tau
= NeuronGroup (num_tau, egs, threshold='v>1'"', reset='v=0', method='exact')
.tau = tau_range

= Synapses (P, G, on_pre='v += weight')

.connect ()

= SpikeMonitor (G)

= RN N OO %%

Now we can just run once with no loop

run (1 +second)

output_rates = M.count/second # firing rate is count/duration
plot (tau_range/ms, output_rates)

xlabel (r'S\tau$ (ms)"')
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ylabel ('Firing rate (sp/s)');

WARNING "tau" is an internal variable of group "neurongroup_ 2", but also exists in_
—the run namespace with the value 10. » msecond. The internal variable will be used.
— [brian2.groups.group.Group.resolve.resolution_conflict]

_q_n -

35 1

0

25 1

20 -

15

Firing rate (spfs)

2 4q 2] g 10
Tims)

You can see that this is much faster again! It’s a little bit more complicated conceptually, and it’s not always possible
to do this trick, but it can be much more efficient if it’s possible.

Let’s finish with this example by having a quick look at how the mean and standard deviation of the interspike intervals
depends on the time constant.

trains = M.spike_trains{()
isi_mu = full (num_tau, nan)*second
isi_std = full (num_tau, nan)*second
for idx in range (num_tau) :
train = diff (trains[idx])
if len(train)>1:
isi_mu[idx] = mean (train)
isi_std[idx] = std(train)
errorbar (tau_range/ms, isi_mu/ms, yerr=isi_std/ms)
xlabel (r's\tau$ (ms)")
ylabel ('Interspike interval (ms)');
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Notice that we used the spike_trains () method of SpikeMonitor. This is a dictionary with keys being the
indices of the neurons and values being the array of spike times for that neuron.

2.3.2 Changing things during a run

Imagine an experiment where you inject current into a neuron, and change the amplitude randomly every 10 ms. Let’s
see if we can model that using a Hodgkin-Huxley type neuron.

start_scope ()
# Parameters

area = 20000xumetrex«*2

Cm = lxufaradxcm*x*-2 * area

gl = Se-5«xsiemens*cm*xx—2 * area
El = -65xmV

EK = -90+mV

ENa = 50+mV

g_na = 1l00xmsiemens*cm**-2 % area
g_kd = 30x*msiemens*cmx*—2 % area
VT = —-63xmV

# The model

egqs_HH = '''

dv/dt = (glx(E1l-v) - g_nax (m#m*m)+hx* (v-ENa) - g_kdx (n*n*nsn)«* (v-EK) + I)/Cm : volt

dm/dt = 0.32% (mV**x—1)* (13.+«mV-v+VT)/

(exp ((13.+mV-v+VT)/ (4.xmV))-1.)/ms* (1-m)—-0.28% (mV**—1) x (v=VT-40.+mV) /

(exp ((v=-VT-40.*mV)/(5.xmV))-1.)/ms+m : 1
dn/dt = 0.032% (mV*x—1)* (15.+*mV-v+VT) /

(exp ((15.+mV-v+VT)/(5.xmV))-1.)/ms* (1.-n)—-.5xexp ((10.+mV-v+VT)/ (40.+mV)) /ms*n : 1
dh/dt = 0.128%exp ((17.*mV-v+VT)/(18.+mV)) /ms* (1.-h)-4./ (1+exp ((40.+mV-v+VT)/(5.*xmV)))/
—msxh @ 1
I : amp

v

group = NeuronGroup(l, eqgs_HH,
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threshold='v > —-40xnV',
refractory="'v > —-40xmV',
method="'exponential_ euler')
group.v = El
statemon = StateMonitor (group, 'v', record=True)
spikemon = SpikeMonitor (group, variables='v')
figure (figsize=(9, 4))
for 1 in range(5):
group.I = rand()*50*nA
run (10+ms)

axvline (1«10, 1ls='--', c='k")
axhline (E1l/mv, 1ls='-', c='lightgray', 1lw=3)
plot (statemon.t/ms, statemon.v[0]/mV, '-b')

plot (spikemon.t/ms, spikemon.v/mV, 'ob'")
xlabel ('Time (ms) ")
ylabel ('v (mV)");
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In the code above, we used a loop over multiple runs to achieve this. That’s fine, but it’s not the most efficient way
to do it because each time we call run we have to do a lot of initialisation work that slows everything down. It also
won’t work as well with the more efficient standalone mode of Brian. Here’s another way.

start_scope ()

group = NeuronGroup(l, egs_HH,
threshold='v > —-40xnV',
refractory="'v > —-40xmV',
method="'exponential_euler')

group.v = E1

statemon = StateMonitor (group, 'v', record=True)

spikemon = SpikeMonitor (group, variables='v"')

# we replace the loop with a run_regularly

group.run_regularly ('T = rand()*«50«nA', dt=10+ms)

run (50+ms)

figure (figsize=(9, 4))

# we keep the loop just to draw the vertical lines

for 1 in range(5):

axvline (1«10, 1ls='—-"', c='k")
axhline (El/mv, ls='—-', c='lightgray', 1lw=3)

2.3. Introduction to Brian part 3: Simulations
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plot (statemon.t/ms, statemon.v[0]/mV, '-b')
plot (spikemon.t/ms, spikemon.v/mV, 'ob'")
xlabel ('Time (ms) ")

ylabel ('v (mV)");
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We’ve replaced the loop that had multiple run calls with a run_regularly. This makes the specified block of code
run every dt=10+ms. The run_regularly lets you run code specific to a single NeuronGroup, but sometimes
you might need more flexibility. For this, you can use network_operation which lets you run arbitrary Python
code (but won’t work with the standalone mode).

start_scope ()

group = NeuronGroup(l, egs_HH,
threshold='v > —-40+mV',
refractory='v > —-40xmV',
method="'exponential_euler')

group.v = E1

statemon = StateMonitor (group, 'v', record=True)

spikemon = SpikeMonitor (group, variables='v"')

# we replace the loop with a network_operation

@network_operation (dt=10xms)

def change_I():

group.I = rand()*«50*nA

run (50+ms)

figure (figsize=(9, 4))

for 1 in range(5):

axvline (110, ls='—-"', c='k")
axhline(El1/mv, ls='-', c='lightgray', 1lw=3)
plot (statemon.t/ms, statemon.v([0]/mV, '-b'")

plot (spikemon.t/ms, spikemon.v/mV, 'ob')
xlabel ('Time (ms) ")
ylabel ('v (mV)");
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Now let’s extend this example to run on multiple neurons, each with a different capacitance to see how that affects the
behaviour of the cell.

start_scope ()

N = 3

eqs_HH_2 = """

dv/dt = (gl*(El-v) - g_nax* (mxm*m)«hx (v-ENa) - g_kd* (nxn*n*n)x (v-EK) + I)/C : volt
dm/dt = 0.32% (mVx*—1)* (13.+mV-v+VT) /

(exp ((13.#mV-v+VT)/ (4.*mV))-1.)/ms* (1-m)=0.28% (mV**—1) % (v-=VT-40.x*mV) /

(exp ((v=VT=40.*mV) /(5.*xmV))-1.)/ms+m : 1
dn/dt = 0.032% (mV4x=1) % (15.xmV-v+VT) /

(exp ((15.+mV-v+VT)/(5.+mV))-1.)/ms* (1l.-n)-.5+exp ((10.+mV-v+VT)/ (40.*mV)) /ms*n : 1
dh/dt = 0.128xexp ((17.+xmV-v+VT)/ (18.+mV)) /ms* (l.-h)-4./ (1+exp ((40.+mV-v+VT)/ (5.xmV)))/
—ms*xh : 1
I : amp
C : farad
Tra
group = NeuronGroup (N, egs_HH_2,

threshold='v > —40*mV',
refractory='v > —40*mV',
method="'exponential_ euler'")
group.v = El
# initialise with some different capacitances
group.C = array ([0.8, 1, 1.2])+*ufaradrxcmx+-2+area
statemon = StateMonitor (group, variables=True, record=True)
# we go back to run_regularly
group.run_regularly ('T = rand()*«50«nA', dt=10+ms)
run (50+ms)
figure (figsize=(9, 4))
for 1 in range(5):

axvline (1«10, 1ls='—-"', c='k")
axhline(El1l/mvV, l1ls='-', c='lightgray', 1lw=3)
plot (statemon.t/ms, statemon.v.T/mV, '—')
xlabel ('"Time (ms) ")
ylabel ('v (mV)");
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So that runs, but something looks wrong! The injected currents look like they’re different for all the different neurons!
Let’s check:

plot (statemon.t/ms, statemon.I.T/nA, '—-')
xlabel ('Time (ms) ')
ylabel ("I (nA)");

E_D_

45 1

0 10 20 30 40 50
Time {ms}

Sure enough, it’s different each time. But why? We wrote group.run_regularly ('I = rand()*50*nA",
dt=10+ms) which seems like it should give the same value of I for each neuron. But, like threshold and reset state-
ments, run_regularly code is interpreted as being run separately for each neuron, and because I is a parameter, it
can be different for each neuron. We can fix this by making I into a shared variable, meaning it has the same value for
each neuron.
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start_scope ()

N =3
eqs_HH_3 = ''"'
dv/dt = (glx(E1-v) - g_nax (m#m*m)+hx (v-ENa) - g_kdx (n*n*nsn)« (v-EK) + I)/C : volt
dm/dt = 0.32% (mV*%x—1) % (13.*mV-v+VT) /
(exp ((13.+mV-v+VT)/ (4.xmV))-1.)/ms* (1-m)—-0.28% (mV**—1) x (v=-VT-40.+mV) /

(exp ((v=VT-40.*mV)/(5.xmV))~-1.)/ms»m : 1
dn/dt = 0.032% (mV*x—1)* (15.«mV-v+VT) /

(exp ((15.+mV-v+VT)/(5.xmV))-1.)/ms* (1.-n)—-.5xexp ((10.+mV-v+VT)/ (40.+mV)) /ms*n : 1
dh/dt = 0.128%exp ((17.*mV-v+VT)/ (18.xmV) ) /ms* (1.-h)-4./ (1l+exp ((40.»mV-v+VT)/(5.%xmV)))/
—msxh @ 1
I : amp (shared) # everything is the same except we've added this shared
C : farad
R
group = NeuronGroup (N, egs_HH_3,

threshold='v > —40+*mV',
refractory="'v > —-40xmV',
method="'exponential_euler')
group.v = E1
group.C = array ([0.8, 1, 1.2])+*ufarad*cmx+-2*area
statemon = StateMonitor (group, 'v', record=True)
group.run_regularly ('I = rand()*50+nA"', dt=10+ms)
run (50+ms)
figure (figsize=(9, 4))
for 1 in range (5):

axvline (1«10, 1ls="'--', c='k")
axhline(E1/mv, 1ls='-', c='lightgray', 1lw=3)
plot (statemon.t/ms, statemon.v.T/mV, '—-")
xlabel ('Time (ms) ")
ylabel ('v (mV)");
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Ahh, that’s more like it!

2.3. Introduction to Brian part 3: Simulations 101




Brian 2 Documentation, Release 2.1

2.3.3 Adding input

Now let’s think about a neuron being driven by a sinusoidal input. Let’s go back to a leaky integrate-and-fire to
simplify the equations a bit.

start_scope ()
A =2.5

f = 10«xHz
tau = S5x*ms
egqs = ''"
dv/dt = (I-v)/tau : 1

I = Axsin(2+pixfxt) : 1

LN B |

G = NeuronGroup (l, egs, threshold='v>1', reset='v=0', method='euler'")
M = StateMonitor (G, variables=True, record=True)

run (200+ms)

plot (M.t/ms, M.v[0], label='v")

plot (M.t/ms, M.I[0], label='T1")

xlabel ('Time (ms) ")

ylabel ('v")

legend (loc="'best");

0 25 S0 75 100 125 150 175 200
Time {ms)

So far, so good and the sort of thing we saw in the first tutorial. Now, what if that input current were something we
had recorded and saved in a file? In that case, we can use TimedArray. Let’s start by reproducing the picture above
but using TimedArray.

start_scope ()

A =2.5
f = 10+Hz
tau = 5S#*ms

# Create a TimedArray and set the equations to use it
t_recorded = arange (int (200+ms/defaultclock.dt))~defaultclock.dt
I_recorded = TimedArray (A*xsin(2+xpixfxt_recorded), dt=defaultclock.dt)
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eqgs = T
dv/dt = (I-v)/tau : 1
I = I_recorded(t) : 1

v

G = NeuronGroup(l, eqgs, threshold='v>1', reset='v=0', method='exact'")
M = StateMonitor (G, variables=True, record=True)

run (200+ms)

plot (M.t/ms, M.v[0], label='v")

plot (M.t/ms, M.I[0], label='T")

xlabel ("Time (ms) ")

ylabel ('v'")

legend (loc='best");

0 2% s0 75 100 135 150 175 200
Time {ms)

Note that for the example where we put the sin function directly in the equations, we had to use the
method="euler' argument because the exact integrator wouldn’t work here (try it!). However, TimedArray
is considered to be constant over its time step and so the linear integrator can be used. This means you won’t get
the same behaviour from these two methods for two reasons. Firstly, the numerical integration methods exact and
euler give slightly different results. Secondly, sin is not constant over a timestep whereas TimedArray is.

Now just to show that TimedArray works for arbitrary currents, let’s make a weird “recorded” current and run it on
that.

start_scope ()

A =2.5
f = 10«Hz
tau = 5#*ms

# Let's create an array that couldn't be
# reproduced with a formula
num_samples = int (200+ms/defaultclock.dt)
I_arr = zeros (num_samples)
for _ in range(100) :

a = randint (num_samples)
I_arrf[a:a+100] = rand()
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I_recorded = TimedArray (AxI_arr, dt=defaultclock.dt)

T

egs =
dv/dt = (I-v)/tau : 1

I = I_recorded(t) : 1

G = NeuronGroup(l, eqgs, threshold='v>1', reset='v=0', method='exact')
M = StateMonitor (G, variables=True, record=True)

run (200+ms)

plot (M.t/ms, M.v[0], label='v")
plot (M.t/ms, M.I[0], label='T")
xlabel ('Time (ms) ')

ylabel ('v")

legend (loc="best");
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Finally, let’s finish on an example that actually reads in some data from a file. See if you can work out how this
example works.

start_scope ()

from matplotlib.image import imread

img = (l-imread('brian.png'))[::-1, =:, 0].T
num_samples, N = img.shape

ta = TimedArray(img, dt=lxms) # 228

A= 1.5

tau = 2xms

eqs — vt

dv/dt = (Axta(t, 1)-v)/tau+0.8xxixtau**-0.5 : 1

Tra

G = NeuronGroup (N, egs, threshold='v>1', reset='v=0', method='euler')

M = SpikeMonitor (G)

run (num_samples+ms)

plot (M.t/ms, M.i, '.k', ms=3)
x1im (0, num_samples)

ylim (0, N)
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xlabel ("Time (ms) ")
ylabel ('Neuron index');
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CHAPTER 3

User’s guide

3.1 Importing Brian

After installation, Brian is available in the brian?2 package. By doing a wildcard import from this package, i.e.:

’from brian2 import =«

you will not only get access to the brian?2 classes and functions, but also to everything in the pylab package,
which includes the plotting functions from matplotlib and everything included in numpy/scipy (e.g. functions such as
arange, linspace, etc.).

The following topics are not essential for beginners.

3.1.1 Precise control over importing

If you want to use a wildcard import from Brian, but don’t want to import all the additional symbols provided by
pylab, you can use:

from brian2.only import =x

Note that whenever you use something different from the most general from brian2 import = statement, you
should be aware that Brian overwrites some numpy functions with their unit-aware equivalents (see Units). If you
combine multiple wildcard imports, the Brian import should therefore be the last import. Similarly, you should not
import and call overwritten numpy functions directly, e.g. by using import numpy as np followed by np.sin
since this will not use the unit-aware versions. To make this easier, Brian provides a brian2.numpy_ package
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that provides access to everything in numpy but overwrites certain functions. If you prefer to use prefixed names, the
recommended way of doing the imports is therefore:

import brian2.numpy as np
import brian2.only as br2

Note that it is safe to use e.g. np.sin and numpy.sin aftera from brian2 import =.

3.1.2 Dependency checks

Brian will check the dependency versions during import and raise an error for an outdated dependency. An outdated
dependency does not necessarily mean that Brian cannot be run with it, it only means that Brian is untested on that
version. If you want to force Brian to run despite the outdated dependency, set the core.outdated_dependency_error
preference to False. Note that this cannot be done in a script, since you do not have access to the preferences before
importing brian2. See Preferences for instructions how to set preferences in a file.

3.2 Physical units

* Using units

* Removing units
» Temperatures
» Constants

* Importing units

* In-place operations on quantities

Brian includes a system for physical units. The base units are defined by their standard SI unit names: amp/ampere,
kilogram/kilogramme, second, metre/meter, mole/mol, kelvin, and candela. In addition to these
base units, Brian defines a set of derived units: coulomb, farad, gram/gramme, hertz, joule, liter/
litre, molar, pascal, ohm, siemens, volt, watt, together with prefixed versions (e.g. msiemens =
0.001+siemens) using the prefixes p, n, u, m, k, M, G, T (two exceptions to this rule: kilogram is
not defined with any additional prefixes, and met re and meter are additionaly defined with the “centi” prefix, i.e.
cmetre/cmeter). For convenience, a couple of additional useful standard abbreviations such as cm (instead of
cmetre/cmeter), nS (instead of nsiemens), ms (instead of msecond), Hz (instead of hert z), mM (instead of
mmolar) are included. To avoid clashes with common variable names, no one-letter abbreviations are provided (e.g.
you can use mV or nS, but not V or S).

3.2.1 Using units

You can generate a physical quantity by multiplying a scalar or vector value with its physical unit:

>>> tau = 20xms
>>> print (tau)
20. ms

>>> rates = [10, 20, 30]xHz
>>> print (rates)
[ 10. 20. 30.] Hz
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Brian will check the consistency of operations on units and raise an error for dimensionality mismatches:

>>> tau += 1 # ms? second?
Traceback (most recent call last):

DimensionMismatchError: Cannot calculate ... += 1, units do not match (units are,
—second and 1).

>>> 3xkgram + 3xamp

Traceback (most recent call last):

DimensionMismatchError: Cannot calculate 3. kg + 3. A, units do not match (units are_
—~kilogram and amp) .

Most Brian functions will also complain about non-specified or incorrect units:

>>> G = NeuronGroup (10, 'dv/dt = -v/tau: volt', dt=0.5)
Traceback (most recent call last):

DimensionMismatchError: Function "__init__ " expected a quantitity with unit second
—for argument "dt" but got 0.5 (unit is 1).

Numpy functions have been overwritten to correctly work with units (see the developer documentation for more
details):

>>> print mean (rates)

20. Hz

>>> print rates.repeat (2)

[ 10. 10. 20. 20. 30. 30.] Hz

3.2.2 Removing units
There are various options to remove the units from a value (e.g. to use it with analysis functions that do not correctly
work with units)

* Divide the value by its unit (most of the time the recommended option because it is clear about the scale)

» Transform it to a pure numpy array in the base unit by calling asarray () (no copy) or array (copy)

¢ Directly get the unitless value of a state variable by appending an underscore to the name

>>> tau/ms

20.0

>> asarray (rates)

array ([ 10., 20., 30.1)

>>> G = NeuronGroup (5, 'dv/dt = —-v/tau: volt'")
>>> print G.v_[:]

[ o., 0., 0., 0., 0.]

3.2.3 Temperatures

Brian only supports temperatures defined in °K, using the provided ke 1vin unit object. Other conventions such as °C,
or °F are not compatible with Brian’s unit system, because they cannot be expressed as a multiplicative scaling of the
SI base unit kelvin (their zero point is different). However, in biological experiments and modeling, temperatures are
typically reported in °C. How to use such temperatures depends on whether they are used as temperature differences
or as absolute temperatures:
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temperature differences Their major use case is the correction of time constants for differences in temperatures
based on the Q10 temperature coefficient. In this case, all temperatures can directly use kelvin even though
the temperatures are reported in Celsius, since temperature differences in Celsius and Kelvin are identical.

absolute temperatures Equations such as the Goldman—Hodgkin—Katz voltage equation have a factor that depends
on the absolute temperature measured in Kelvin. To get this temperature from a temperature reported in °C, you
can use the zero_celsius constant fromthe brian2.units.constants package (see below):

from brian2.units.constants import zero_celsius

celsius_temp = 27
abs_temp = celsius_tempxkelvin + zero_celsius

Note: Earlier versions of Brian had a celsius unit which was in fact identical to kelvin. While this gave the
correct results for temperature differences, it did not correctly work for absolute temperatures. To avoid confusion and
possible misinterpretation, the celsius unit has therefore been removed.

3.2.4 Constants

The brian2.units.constants package provides a range of physical constants that can be useful for detailed
biological models. Brian provides the following constants:

Constant Symbol(s) | Brian name Value

Avogadro constant Na, L avogadro_constant 6.022140857 x 1023 mol ~*
Boltzmann constant | k boltzmann_constant | 1.38064852 x 10~23JK™!
Electric constant €0 electric_constant 8.854187817 x 102 Fm™!
Electron mass Me electron_mass 9.10938356 x 103! kg
Elementary charge e elementary_charge 1.6021766208 x 10~19C
Faraday constant F faraday_constant 06485.33289 C mol !

Gas constant R gas_constant 8.3144598 Jmol T K1
Magnetic constant 140 magnetic_constant 12.566370614 x 10" "N A2
Molar mass constant | M, molar_mass_constant | 1 x 1072 kg mol T

0°C zero_celsius 273.15K

Note that these constants are not imported by default, you will have to explicitly import them from brian2.units.

constants. During the import, you can also give them shorter names using Python’s from ... import
as ... syntax. For example, to calculate the % factor that appears in the Goldman—Hodgkin—Katz voltage equation
you can use:

from brian2 import =«
from brian2.units.constants import zero_celsius, gas_constant as R, faraday_constant,
—as F

celsius_temp = 27
T = celsius_tempxkelvin + zero_celsius
factor = R«T/F

The following topics are not essential for beginners.
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3.2.5 Importing units

Brian generates standard names for units, combining the unit name (e.g. “siemens”) with a prefixes (e.g. “m”), and
also generates squared and cubed versions by appending a number. For example, the units “msiemens”, “siemens2”,
“usiemens3” are all predefined. You can import these units from the package brian2.units.allunits —accord-
ingly, an from brian2.units.allunits import = will result in everything from Y1lumen3 (cubed yotta

Iumen) to ymo1 (yocto mole) being imported.

A better choice is normally to do from brian2.units import = or import everything from brian2
import * which only imports the units mentioned in the introductory paragraph (base units, derived units, and
some standard abbreviations).

3.2.6 In-place operations on quantities

In-place operations on quantity arrays change the underlying array, in the same way as for standard numpy arrays.
This means, that any other variables referencing the same object will be affected as well:

>>> g = [1, 2] * mV

>>> r = (g

>>> g += 1xmV

>>> g

array ([ 2., 3.]) * mvolt
>>> r

array ([ 2., 3.]) * mvolt

In contrast, scalar quantities will never change the underlying value but instead return a new value (in the same way as
standard Python scalars):

>>> x = 1+mV
>>> y = X
>>> X *x= 2
>>> x

2. * mvolt
>>> y

1. » mvolt

3.3 Models and neuron groups

For Brian 1 users

See the document Neural models (Brian 1 —> 2 conversion) for details how to convert Brian 1 code.

* Model equations

e Noise

e Threshold and reset
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* Refractoriness

* State variables

» Subgroups

» Shared variables

* Storing state variables

e Linked variables

» Time scaling of noise

3.3.1 Model equations

The core of every simulation is a NeuronGroup, a group of neurons that share the same equations defining their
properties. The minimum NeuronGroup specification contains the number of neurons and the model description in
the form of equations:

G = NeuronGroup (10, 'dv/dt = —-v/(10%ms) : volt")

This defines a group of 10 leaky integrators. The model description can be directly given as a (possibly multi-line)
string as above, or as an Equat i ons object. For more details on the form of equations, see Equations. Brian needs
the model to be given in the form of differential equations, but you might see the integrated form of synapses in some
textbooks and papers. See Converting from integrated form to ODEs for details on how to convert between these
representations.

Note that model descriptions can make reference to physical units, but also to scalar variables declared outside of the
model description itself:

tau = 10+ms
G = NeuronGroup (10, 'dv/dt = -v/tau : volt'")

If a variable should be taken as a parameter of the neurons, i.e. if it should be possible to vary its value across neurons,
it has to be declared as part of the model description:

G = NeuronGroup (10, '''dv/dt = -v/tau : volt
tau : second''")

To make complex model descriptions more readable, named subexpressions can be used:

G = NeuronGroup (10, '"''dv/dt = I_leak / Cm : volt
I_leak = g Lx(E_L — v) : amp''")

For a list of some standard model equations, see Neural models (Brian 1 —> 2 conversion).

3.3.2 Noise

In addition to ordinary differential equations, Brian allows you to introduce random noise by specifying a stochastic
differential equation. Brian uses the physicists’ notation used in the Langevin equation, representing the “noise” as a
term £(¢), rather than the mathematicians’ stochastic differential dW;. The following is an example of the Ornstein-
Uhlenbeck process that is often used to model a leaky integrate-and-fire neuron with a stochastic current:

’G = NeuronGroup (10, 'dv/dt = -v/tau + sigmaxxixtaux+-0.5 : volt"')
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You can start by thinking of x1i as just a Gaussian random variable with mean O and standard deviation 1. However,
it scales in an unusual way with time and this gives it units of 1/sqgrt (second). You don’t necessarily need
to understand why this is, but it is possible to get a reasonably simple intuition for it by thinking about numerical
integration: see below.

3.3.3 Threshold and reset

To emit spikes, neurons need a threshold. Threshold and reset are given as strings in the NeuronGroup constructor:

tau = 10*ms
G = NeuronGroup (10, 'dv/dt = -v/tau : volt', threshold='v > -50+mV',
reset="'v = -70xmV")

Whenever the threshold condition is fulfilled, the reset statements will be executed. Again, both threshold and reset
can refer to physical units, external variables and parameters, in the same way as model descriptions:

v_r = -70xmV # reset potential
G = NeuronGroup (10, '''dv/dt = -v/tau : volt
v_th : volt # neuron-specific threshold''',

threshold='v > v_th', reset='v = v_r'")

You can also create non-spike events. See Custom events for more details.

3.3.4 Refractoriness

To make a neuron non-excitable for a certain time period after a spike, the refractory keyword can be used:

G = NeuronGroup (10, 'dv/dt = -v/tau : volt', threshold='v > -50+mV',
reset="'v = -70+mV', refractory=5*ms)

This will not allow any threshold crossing for a neuron for Sms after a spike. The refractory keyword allows for more
flexible refractoriness specifications, see Refractoriness for details.

3.3.5 State variables

Differential equations and parameters in model descriptions are stored as state variables of the NeuronGroup. They
can be accessed and set as an attribute of the group. To get the values without physical units (e.g. for analysing data
with external tools), use an underscore after the name:

>>> G = NeuronGroup (10, '''dv/dt = -v/tau : volt

.. tau : second''')

>>> G.v = —70+mV

>>> G.v

<neurongroup.v: array([-70., -70., -70., -70., -70., -70., -70., =-70., =-70., =70.]1) =*_
—mvolt>

>>> G.v_ # values without units

<neurongroup.v_: array([(-o0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07,
— *OO7J)>

The value of state variables can also be set using string expressions that can refer to units and external variables, other
state variables, mathematical functions, and a special variable i, the index of the neuron:
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>>> G.tau = '5xms + (1.0xi/N)*5+ms'

>>> G.tau

<neurongroup.tau: array ([ 5. , 5.5, 6. , 6.5, 7. , 7.5, 8. , 8.5, 9. , 9.5])
—% msecond>

You can also set the value only if a condition holds, for example:

>>> G.v['tau>7.25xms'] = —-60+mV

>>> G.v

<neurongroup.v: array([-70., -70., -70., -70., -70., -60., -60., -60., -60., —-60.1) =,
—mvolt>

3.3.6 Subgroups

It is often useful to refer to a subset of neurons, this can be achieved using Python’s slicing syntax:

G = NeuronGroup (10, '''dv/dt = -v/tau : volt
tau : second''',
threshold='v > -50+mV"',
reset="'v = =70+ mV")
# Create subgroups
Gl = G[:5]
G2 = G[5:]

# This will set the values in the main group, subgroups are just "views"
Gl.tau = 10+ms
G2.tau = 20*ms

Here G1 refers to the first 5 neurons in G, and G2 to the second 5 neurons. In general G[1i: j] refers to the neurons
with indices from i to j-1, as in general in Python. Subgroups can be used in most places where regular groups
are used, e.g. their state variables or spiking activity can be recorded using monitors, they can be connected via
Synapses, etc. In such situations, indices (e.g. the indices of the neurons to record from in a StateMonitor) are
relative to the subgroup, not to the main group

The following topics are not essential for beginners.

3.3.7 Shared variables

Sometimes it can also be useful to introduce shared variables or subexpressions, i.e. variables that have a common
value for all neurons. In contrast to external variables (such as Cm above), such variables can change during a run, e.g.
by using run_regularly (). This can be for example used for an external stimulus that changes in the course of a
run:

G = NeuronGroup (10, '''shared_input : volt (shared)
dv/dt = (-v + shared_input)/tau : volt
tau : second''')
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Note that there are several restrictions around the use of shared variables: they cannot be written to in contexts where
statements apply only to a subset of neurons (e.g. reset statements, see below). If a code block mixes statements
writing to shared and vector variables, then the shared statements have to come first.

By default, subexpressions are re-evaluated whenever they are used, i.e. using a subexpression is completely equivalent
to substituting it. Sometimes it is useful to instead only evaluate a subexpression once and then use this value for the
rest of the time step. This can be achieved by using the (constant over dt) flag. This flag is mandatory
for subexpressions that refer to stateful functions like rand () which notably allows them to be recorded with a
StateMonitor — otherwise the monitor would record a different instance of the random number than the one that
was used in the equations.

For shared variables, setting by string expressions can only refer to shared values:

>>> G.shared_input = ' (4.0/N)+mV’
>>> G.shared_input
<neurongroup.shared_input: 0.4 % mvolt>

3.3.8 Storing state variables

Sometimes it can be convenient to access multiple state variables at once, e.g. to set initial values from a dictionary of
values or to store all the values of a group on disk. This can be done with the get__states () and set_states ()
methods:

>>> group = NeuronGroup (5, '''dv/dt = -v/tau : 1
Ce tau : second''')
>>> initial_values = {'v': [0, 1, 2, 3, 41,

C 'tau': [10, 20, 10, 20, 10]xms}
>>> group.set_states(initial_values)

>>> group.v/[:]

array ([ 0., 1., 2., 3., 4.1)

>>> group.taul:]
array ([ 10., 20., 10., 20., 10.]) * msecond
>>> states = group.get_states()

>>> states['v']
array ([ 0., 1., 2., 3., 4.7)

The data (without physical units) can also be exported/imported to/from Pandas data frames (needs an installation of
pandas):

>>> df = group.get_states(units=False, format='pandas')

>>> df

N dt i t tau v
0 5 0.000L 0O 0.0 0.01 0.0
1 5 0.0001 1 0.0 0.02 1.0
2 5 0.0001 2 0.0 0.01 2.0
3 5 0.0001 3 0.0 0.02 3.0
4 5 0.0001 4 0.0 0.01 4.0
>>> df['tau']
0 0.01
1 0.02
2 0.01
3 0.02
4 0.01
Name: tau, dtype: float64
>>> df['tau'] x= 2

>>> group.set_states(df[['tau']l]l, units=False, format='pandas')
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>>> group.tau
<neurongroup.tau: array ([ 20., 40., 20., 40., 20.]) * msecond>

3.3.9 Linked variables

A NeuronGroup can define parameters that are not stored in this group, but are instead a reference to a state variable
in another group. For this, a group defines a parameter as 1inked and then uses 1inked var () to specify the
linking. This can for example be useful to model shared noise between cells:

inp = NeuronGroup(l, 'dnoise/dt = -noise/tau + taux*-0.5xxi : 1'")
neurons = NeuronGroup (100, '"''noise : 1 (linked)

dv/dt = (-v + noise_strength*noise)/tau : volt''")
neurons.noise = linked_var (inp, 'noise')

If the two groups have the same size, the linking will be done in a 1-to-1 fashion. If the source group has the size one
(as in the above example) or if the source parameter is a shared variable, then the linking will be done as 1-to-all. In
all other cases, you have to specify the indices to use for the linking explicitly:

# two inputs with different phases
inp = NeuronGroup (2, '''phase : 1

dx/dt = 1xmV/ms*sin (2«pi*100+xHz*t-phase) : volt''")
inp.phase = [0, pi/2]

neurons = NeuronGroup (100, '"'"'"inp : volt (linked)

dv/dt = (-v + inp) / tau : volt''")
# Half of the cells get the first input, other half gets the second
x', index=repeat ([0, 1], 50))

neurons.inp = linked_var (inp,

3.3.10 Time scaling of noise

Suppose we just had the differential equation
de/dt = ¢

To solve this numerically, we could compute
z(t+dt) =z(t) + &

where £; is a normally distributed random number with mean O and standard deviation 1. However, what happens if
we change the time step? Suppose we used a value of d¢/2 instead of d¢. Now, we compute

z(t+dt) =zt +dt/2)+ & =2(t) + &+ &

The mean value of (¢ + dt) is 0 in both cases, but the standard deviations are different. The first method x (¢ + dt) =
z(t) + & gives x(t 4+ dt) a standard deviation of 1, whereas the second method x(t + dt) = x(t + d/2) + & =
x(t) + & + & gives 2(t) a variance of 1+1=2 and therefore a standard deviation of /2.

In order to solve this problem, we use the rule (¢t + dt) = z(t) + V/dt&;, which makes the mean and standard
deviation of the value at time ¢ independent of d¢. For this to make sense dimensionally, £ must have units of 1/
sgrt (second).

For further details, refer to a textbook on stochastic differential equations.
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3.4 Numerical integration

By default, Brian chooses an integration method automatically, trying to solve the equations exactly first (for linear
equations) and then resorting to numerical algorithms. It will also take care of integrating stochastic differential
equations appropriately.

Note that in some cases, the automatic choice of integration method will not be appropriate, because of a choice of
parameters that couldn’t be determined in advance. In this case, typically you will get nan (not a number) values in
the results, or large oscillations. In this case, Brian will generate a warning to let you know, but will not raise an error.

3.4.1 Method choice

You will get an INFO message telling you which integration method Brian decided to use, together with information
about how much time it took to apply the integration method to your equations. If other methods have been tried
but were not applicable, you will also see the time it took to try out those other methods. In some cases, checking
other methods (in particular the 'exact' method which attempts to solve the equations analytically) can take a
considerable amount of time — to avoid wasting this time, you can always chose the integration method manually (see
below). You can also suppress the message by raising the log level or by explicitly suppressing 'method_choice’
log messages — for details, see Logging.

If you prefer to chose an integration algorithm yourself, you can do so using the met hod keyword for NeuronGroup,
Synapses, or SpatialNeuron. The complete list of available methods is the following:

e 'exact': exact integration for linear equations (alternative name: 'linear')
* 'exponential_euler': exponential Euler integration for conditionally linear equations

* 'euler': forward Euler integration (for additive stochastic differential equations using the Euler-Maruyama
method)

e 'rk2': second order Runge-Kutta method (midpoint method)
e 'rk4': classical Runge-Kutta method (RK4)

* 'heun': stochastic Heun method for solving Stratonovich stochastic differential equations with non-diagonal
multiplicative noise.

* 'milstein': derivative-free Milstein method for solving stochastic differential equations with diagonal mul-
tiplicative noise

Note: The 'independent' integration method (exact integration for a system of independent equations, where
all the equations can be analytically solved independently) should no longer be used and might be removed in future
versions of Brian.

Note: The following methods are still considered experimental

e 'gsl': default integrator when choosing to integrate equations with the GNU Scientific Library ODE solver:
the rkf45 method. Uses an adaptable time step by default.

* 'gsl_rkf45': Runge-Kutta-Fehlberg method. A good general-purpose integrator according to the GSL
documentation. Uses an adaptable time step by default.

e 'gsl_rk2"': Second order Runge-Kutta method using GSL. Uses an adaptable time step by default.

e 'gsl_rk4': Fourth order Runge-Kutta method using GSL. Uses an adaptable time step by default.
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e 'gsl_rkck': Runge-Kutta Cash-Karp method using GSL. Uses an adaptable time step by default.

* 'gsl_rk8pd"': Runge-Kutta Prince-Dormand method using GSL. Uses an adaptable time step by default.

The following topics are not essential for beginners.

3.4.2 Technical notes

Each class defines its own list of algorithms it tries to apply, NeuronGroup and Synapses will use the first suitable
method out of the methods 'exact', 'euler' and '"heun' while SpatialNeuron objects will use 'exact’,
'exponential_euler', 'rk2'or 'heun'.

You can also define your own numerical integrators, see State update for details.

3.4.3 GSL stateupdaters

The stateupdaters preceded with the gsl tag use ODE solvers defined in the GNU Scientific Library. The benefit
of using these integrators over the ones written by Brian internally, is that they are implemented with an adaptable
timestep. Integrating with an adaptable timestep comes with two advantages:

¢ These methods check whether the estimated error of the solutions returned fall within a certain error bound. For

the non-gsl integrators there is currently no such check.

» Systems no longer need to be simulated with just one time step. That is, a bigger timestep can be chosen

and the integrator will reduce the timestep when increased accuracy is required. This is particularly useful for
systems where both slow and fast time constants coexist, as is the case with for example (networks of neurons
with) Hodgkin-Huxley equations. Note that Brian’s timestep still determines the resolution for monitors, spike
timing, spike propagation etc. Hence, in a network, the simulation error will therefore still be on the order of
dt. The benefit is that short time constants occurring in equations no longer dictate the network time step.

In addition to a choice between different integration methods, there are a few more options that can be specified when
using GSL. These options can be specified by sending a dictionary as the method_options key upon initialization
of the object using the integrator (NeuronGroup, Synapses or SpatialNeuron). The available method options

are:

* 'adaptable_timestep': whether or not to let GSL reduce the timestep to achieve the accuracy defined

with the 'absolute_error' and 'absolute_error_per_variable' options described below. If
this is set to False, the timestep is determined by Brian (i.e. the dt of the respective clock is used, see
Scheduling). If the resulted estimated error exceeds the set error bounds, the simulation is aborted. When using
cython or weave this is reported with an TntegrationError. Defaults to True.

'absolute_error': each of the methods has a way of estimating the error that is the result of using numer-
ical integration. You can specify the maximum size of this error to be allowed for any of the to-be-integrated
variables in base units with this keyword. Note that giving very small values makes the simulation slow and
might result in unsuccessful integration. In the case of using the 'absolute_error_per_variable'
option, this is the error for variables that were not specified individually. Defaults to 1e-6.

'absolute_error_per_variable': specify the absolute error per variable in its own units. Variables
for which the error is not specified use the error set with the 'absolute_error' option. Defaults to None.
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* 'max_steps': The maximal number of steps that the integrator will take within a single “Brian timestep” in
order to reach the given error criterion. Can be set to 0 to not set any limits. Note that without limits, it can take
a very long time until the integrator figures out that it cannot reach the desired error level. This will manifest as
a simulation that appears to be stuck. Defaults to 100.

* 'use_last_timestep': withthe 'adaptable_timestep' option set to True, GSL tries different time
steps to find a solution that satisfies the set error bounds. It is likely that for Brian’s next time step the GSL time
step will be somewhat similar per neuron (e.g. active neurons will have a shorter GSL time step than inactive
neurons). With this option set to True, the time step GSL found to satisfy the set error bounds is saved per neuron
and given to GSL again in Brian’s next time step. This also means that the final time steps are saved in Brian’s
memory and can thus be recorded with the StateMonitor: it can be accessed under ' _last_timestep'.
Note that some extra memory is required to keep track of the last time steps. Defaults to True.

* 'save_failed_steps':if 'adaptable_timestep" issetto True, each time GSL tries a time step and
it results in an estimated error that exceeds the set bounds, one is added to the '_failed_steps' variable.
For purposes of investigating what happens within GSL during an integration step, we offer the option of saving
this variable. Defaults to False.

* 'save_step_count': the same goes for the total number of GSL steps taken in a single Brian time step:
this is optionally saved in the ' _step_count ' variable. Defaults to False.

Note that at the moment recording '_last_timestep', '_failed_steps',or '_step_count' requires a
call to run () (e.g. with 0 ms) to trigger the code generation process, before the call to StateMonitor.

More information on the GSL ODE solver itself can be found in its documentation.

3.5 Equations

» Equation strings

* External variables and functions
* Flags

* List of special symbols

* Event-driven equations

» Equation objects

* Examples of Equation objects

3.5.1 Equation strings

Equations are used both in NeuronGroup and Synapses to:
¢ define state variables

* define continuous-updates on these variables, through differential equations

Note: Brian models are defined by systems of first order ordinary differential equations, but you might see the
integrated form of synapses in some textbooks and papers. See Converting from integrated form to ODEs for details
on how to convert between these representations.

Equations are defined by multiline strings.
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An Equation is a set of single lines in a string:

1. dx/dt = £ : unit (differential equation)
2. x = £ : unit (subexpression)
3. x : unit (parameter)

Each equation may be spread out over multiple lines to improve formatting. Comments using # may also be included.
Subunits are not allowed, i.e., one must write volt, not mV. This is to make it clear that the values are internally always
saved in the basic units, so no confusion can arise when getting the values out of a NeuronGroup and discarding the
units. Compound units are of course allowed as well (e.g. farad/meter=*2). There are also three special “units”
that can be used: 1 denotes a dimensionless floating point variable, boolean and integer denote dimensionless
variables of the respective kind.

Note: For molar concentration, the base unit that has to be used in the equations is mmolar (or mM), not molar.
This is because 1 molar is 10° mol/m? in SI units (i.e., it has a “scale” of 10°), whereas 1 millimolar corresponds to 1
mol/m>.

Some special variables are defined: t, dt (time) and xi (white noise). Variable names starting with an underscore
and a couple of other names that have special meanings under certain circumstances (e.g. names ending in _pre or
_post) are forbidden.

For stochastic equations with several xi values it is necessary to make clear whether they correspond to the same or
different noise instantiations. To make this distinction, an arbitrary suffix can be used, e.g. using xi_1 several times
refers to the same variable, xi_2 (or xi_inh, xi_alpha, etc.) refers to another. An error will be raised if you
use more than one plain xi. Note that noise is always independent across neurons, you can only work around this
restriction by defining your noise variable as a shared parameter and update it using a user-defined function (e.g. with
run_regularly), or create a group that models the noise and link to its variable (see Linked variables).

3.5.2 External variables and functions

Equations defining neuronal or synaptic equations can contain references to external parameters or functions. These
references are looked up at the time that the simulation is run. If you don’t specify where to look them up, it will look
in the Python local/global namespace (i.e. the block of code where you call run ()). If you want to override this, you
can specify an explicit “namespace”. This is a Python dictionary with keys being variable names as they appear in the
equations, and values being the desired value of that variable. This namespace can be specified either in the creation
of the group or when you can the run () function using the namespace keyword argument.

The following three examples show the different ways of providing external variable values, all having the same effect
in this case:

# Explicit argument to the NeuronGroup

G = NeuronGroup(l, 'dv/dt = -v / tau : 1', namespace={'tau': 10+ms})
net = Network (G)

net.run (10+ms)

# Explicit argument to the run function

G = NeuronGroup(l, 'dv/dt = -v / tau : 1")
net = Network (G)
net.run(l0xms, namespace={'tau': 10xms})

# Implicit namespace from the context
G = NeuronGroup(l, 'dv/dt = -v / tau : 1")
net = Network (G)
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tau = 10+*ms
net.run (10+ms)

See Namespaces for more details.

The following topics are not essential for beginners.

3.5.3 Flags

A flag is a keyword in parentheses at the end of the line, which qualifies the equations. There are several keywords:

event-driven this is only used in Synapses, and means that the differential equation should be updated only at the
times of events. This implies that the equation is taken out of the continuous state update, and instead a event-
based state update statement is generated and inserted into event codes (pre and post). This can only qualify
differential equations of synapses. Currently, only one-dimensional linear equations can be handled (see below).

unless refractory this means the variable is not updated during the refractory period. This can only qualify differential
equations of neuron groups.

constant this means the parameter will not be changed during a run. This allows optimizations in state updaters. This
can only qualify parameters.

constant over dt this means that the subexpression will be only evaluated once at the beginning of the time step.
This can be useful to e.g. approximate a non-linear term as constant over a time step in order to use the
linear numerical integration algorithm. It is also mandatory for subexpressions that refer to stateful func-
tions like rand () to make sure that they are only evaluated once (otherwise e.g. recording the value with a
StateMonitor would re-evaluate it and therefore not record the same values that are used in other places).
This can only qualify subexpressions.

shared this means that a parameter or subexpression is not neuron-/synapse-specific but rather a single value for the
whole NeuronGroup or Synapses. A shared subexpression can only refer to other shared variables.

linked this means that a parameter refers to a parameter in another NeuronGroup. See Linked variables for more
details.

Multiple flags may be specified as follows:

dx/dt = £ : unit (flagl,flag2)

3.5.4 List of special symbols

The following lists all of the special symbols that Brian uses in equations and code blocks, and their meanings.
dt Time step width

i Index of a neuron (NeuronGroup) or the pre-synaptic neuron of a synapse (Synapses)

J Index of a post-synaptic neuron of a synapse

lastspike Last time that the neuron spiked (for refractoriness)

lastupdate Time of the last update of synaptic variables in event-driven equations.
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N Number of neurons (NeuronGroup) or synapses (Synapses). Use N_pre or N_post for the number of
presynaptic or postsynaptic neurons in the context of Synapses.

not_refractory Boolean variable that is normally true, and false if the neuron is currently in a refractory state
t Current time

xi, xi_* Stochastic differential in equations

3.5.5 Event-driven equations
Equations defined as event-driven are completely ignored in the state update. They are only defined as variables that
can be externally accessed. There are additional constraints:

* An event-driven variable cannot be used by any other equation that is not also event-driven.

* An event-driven equation cannot depend on a differential equation that is not event-driven (directly, or indirectly
through subexpressions). It can depend on a constant parameter.

Currently, automatic event-driven updates are only possible for one-dimensional linear equations, but this may be
extended in the future.

3.5.6 Equation objects

The model definitions for NeuronGroup and Synapses can be simple strings or Equations objects. Such
objects can be combined using the add operator:

eqgs = Equations('dx/dt = (y-x)/tau : volt'")
egs += Equations('dy/dt = -y/tau: volt')

Equations allow for the specification of values in the strings, but does this by simple string replacement, e.g. you
can do:

’eqs = Equations ('dx/dt = x/tau : volt', tau=10xms)

but this is exactly equivalent to:

’eqs = Equations ('dx/dt = x/(10+ms) : volt'")

The Equations object does some basic syntax checking and will raise an error if two equations defining the same
variable are combined. It does not however do unit checking, checking for unknown identifiers or incorrect flags — all
this will be done during the instantiation of a NeuronGroup or Synapses object.

3.5.7 Examples of Equation objects

Concatenating equations

>>> membrane_eqgs = Equations('dv/dt = —(v + I)/ tau : volt")

>>> egsl = membrane_eqgs + Equations('''I = sin(2xpixfregxt) : volt
freg : Hz''")

>>> eqgs2 = membrane_edgs + Equations('''I : volt''")

>>> print (egsl)

I = sin(2+pixfreqgx*t) HEAY

dv/dt = —(v + I)/ tau : V

freq : Hz

>>> print (egs2)
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dv/dt = = (v + I)/ tau : V
I :V

Substituting variable names

>>> general_equation = 'dg/dt = -g / tau : siemens'

>>> eqgs_exc = Equations(general_equation, g='g_e', tau='tau_e')
>>> eqgs_inh = Equations (general_equation, g='g_i', tau='tau i')
>>> print (egs_exc)

dg_e/dt = -g_e / tau_e : S
>>> print (egs_inh)
dg_i/dt = —-g_i / tau_i : S

Inserting values

>>> eqgs = Equations('dv/dt = mu/tau + sigma/tauxx.5xxi : volt',
Ce mu=-65+xmV, sigma=3xmV, tau=10xms)

>>> print (eqgs)
dv/dt = (-65. * mvolt)/(10. % msecond) + (3. % mvolt)/(10. % msecond)**.5%«xi : V

3.6 Refractoriness

* Defining the refractory period

* Defining model behaviour during refractoriness

* Arbitrary refractoriness

Brian allows you to model the absolute refractory period of a neuron in a flexible way. The definition of refractoriness
consists of two components: the amount of time after a spike that a neuron is considered to be refractory, and what
changes in the neuron during the refractoriness.

3.6.1 Defining the refractory period

The refractory period is specified by the refractory keyword in the NeuronGroup initializer. In the simplest
case, this is simply a fixed time, valid for all neurons:

G = NeuronGroup (N, model='...'"', threshold='...', reset='...",
refractory=2+ms)

Alternatively, it can be a string expression that evaluates to a time. This expression will be evaluated after every spike
and allows for a changing refractory period. For example, the following will set the refractory period to a random
duration between 1ms and 3ms after every spike:

G = NeuronGroup (N, model='...'"', threshold='...', reset='...",
refractory=' (1 + 2xrand())*ms')

In general, modelling a refractory period that varies across neurons involves declaring a state variable that stores the
refractory period per neuron as a model parameter. The refractory expression can then refer to this parameter:
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G = NeuronGroup (N, model="""...
refractory : second''', threshold='...",
reset='..."', refractory='refractory')
# Set the refractory period for each cell
G.refractory =

This state variable can also be a dynamic variable itself. For example, it can serve as an adaptation mechanism by
increasing it after every spike and letting it relax back to a steady-state value between spikes:

refractory_0 = 2xms
tau_refractory = 50xms
G = NeuronGroup (N, model='""...
drefractory/dt = (refractory_0 - refractory) / tau_
—refractory : second''',
threshold='...'", refractory='refractory',
reset="""...

refractory += lxms''")
G.refractory = refractory_0

In some cases, the condition for leaving the refractory period is not easily expressed as a certain time span. For
example, in a Hodgkin-Huxley type model the threshold is only used for counting spikes and the refractoriness is used
to prevent to count multiple spikes for a single threshold crossing (the threshold condition would evaluate to True for
several time points). When a neuron should leave the refractory period is not easily expressed as a time span but more
naturally as a condition that the neuron should remain refractory for as long as it stays above the threshold. This can
be achieved by using a string expression for the refractory keyword that evaluates to a boolean condition:

G = NeuronGroup (N, model='...', threshold='v > -20xmV’',
refractory="'v >= -20+mV")

The refractory keyword should be read as “stay refractory as long as the condition remains true”. In fact, spec-
ifying a time span for the refractoriness will be automatically transformed into a logical expression using the current
time t and the time of the last spike lastspike. Specifying refractory=2+ms is equivalent to specifying
refractory="'(t - lastspike) <= 2xms’'.

3.6.2 Defining model behaviour during refractoriness

The refractoriness definition as described above only has a single effect by itself: threshold crossings during the
refractory period are ignored. In the following model, the variable v continues to update during the refractory period
but it does not elicit a spike if it crosses the threshold:

G = NeuronGroup(N, 'dv/dt = -v / tau : 1°',
threshold='v > 1', reset='v=0",
refractory=2+ms)

There is also a second implementation of refractoriness that is supported by Brian, one or several state variables can
be clamped during the refractory period. To model this kind of behaviour, variables that should stop being updated
during refractoriness can be marked with the (unless refractory) flag:

G = NeuronGroup(N, '''dv/dt = —-(v + w)/ tau_v : 1 (unless refractory)
dw/dt = -w / tau_w : 1''",
threshold='v > 1', reset='v=0; w+=0.1", refractory=2*ms)

In the above model, the v variable is clamped at O for 2ms after a spike but the adaptation variable w continues to
update during this time. In addition, a variable of a neuron that is in its refractory period is read-only: incoming
synapses or other code will have no effect on the value of v until it leaves its refractory period.
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The following topics are not essential for beginners.

3.6.3 Arbitrary refractoriness

In fact, arbitrary behaviours can be defined using Brian’s refractoriness mechanism.

Internally, a NeuronGroup with refractoriness has a boolean variable not _refractory added to the equations,
and this is used to implement the refractoriness behaviour. Specifically, the threshold condition is replaced by
threshold and not_refractory and differential equations that are marked as (unless refractory)
are multiplied by int (not_refractory) (so that they have the value 0 when the neuron is refractory).

This not_refractory variable is also available to the user to define more sophisticated refractoriness behaviour.
For example, the following code updates the w variable with a different time constant during refractoriness:

G = NeuronGroup(N, '''dv/dt = —(v + w)/ tau_v : 1 (unless refractory)
dw/dt = (-w / tau_active)xint (not_refractory) + (-w / tau_
—ref)* (1 - int (not_refractory)) : 1''",

threshold='v > 1', reset='v=0; w+=0.1", refractory=2+ms)

3.7 Synapses

For Brian 1 users

Synapses is now the only class for defining synaptic interactions, it replaces Connection, STDP, etc. See the
document Synapses (Brian 1 —> 2 conversion) for details how to convert Brian 1 code.

Defining synaptic models

Creating synapses

Accessing synaptic variables

* Delays

Monitoring synaptic variables

Creating synapses with the generator syntax

Summed variables

Creating multi-synapses

Multiple pathways

Numerical integration

Technical notes
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3.7.1 Defining synaptic models

The most simple synapse (adding a fixed amount to the target membrane potential on every spike) is described as
follows:

w = lxmV
Synapses (P, Q, on_pre='v += w')

n
I

This defines a set of synapses between NeuronGroup P and NeuronGroup Q. If the target group is not specified,
it is identical to the source group by default. The on_pre keyword defines what happens when a presynaptic spike
arrives at a synapse. In this case, the constant w is added to variable v. Because v is not defined as a synaptic variable,
it is assumed by default that it is a postsynaptic variable, defined in the target NeuronGroup Q. Note that this does
not does create synapses (see Creating Synapses), only the synaptic models.

To define more complex models, models can be described as string equations, similar to the models specified in
NeuronGroup:

S = Synapses (P, Q, model='w : volt', on_pre='v += w')

The above specifies a parameter w, i.e. a synapse-specific weight.

Synapses can also specify code that should be executed whenever a postsynaptic spike occurs (keyword on_post)
and a fixed (pre-synaptic) delay for all synapses (keyword delay).

When specifying equations or code for Synapses, there is a possible ambiguity about what a variable name refers
to. For example, if both the Synapses object and the target NeuronGroup have a variable w, what would the code
w += 1 do? The answer is that it will modify the synapse’s variable w. In general, it will first check if there is a
synaptic variable of that name, then a variable of the post-synaptic neurons, and otherwise it will look for an external
constant. To explicitly specify that a variable should be from a pre- or post-synaptic neuron, append the suffix _pre
or _post, so in the situation above w_post += 1 would increase the post-synaptic neuron’s copy of w by 1, not
the synapse’s variable w.

Model syntax

The model follows exactly the same syntax as for NeuronGroup. There can be parameters (e.g. synaptic variable
w above), but there can also be named subexpressions and differential equations, describing the dynamics of synaptic
variables. In all cases, synaptic variables are created, one value per synapse.

Event-driven updates

By default, differential equations are integrated in a clock-driven fashion, as for a NeuronGroup. This is potentially
very time consuming, because all synapses are updated at every timestep and Brian will therefore emit a warning. If
you are sure about integrating the equations at every timestep (e.g. because you want to record the values continu-
ously), then you should specify the flag (clock-driven). To ask Brian 2 to simulate differential equations in an
event-driven fashion use the flag (event—driven). A typical example is pre- and postsynaptic traces in STDP:

model="""w:1
dApre/dt=-Apre/taupre : 1 (event-driven)
dApost/dt=-Apost/taupost : 1 (event-driven)'''

Here, Brian updates the value of Apre for a given synapse only when this synapse receives a spike, whether it is
presynaptic or postsynaptic. More precisely, the variables are updated every time either the on_pre or on_post
code is called for the synapse, so that the values are always up to date when these codes are executed.
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Automatic event-driven updates are only possible for a subset of equations, in particular for one-dimensional linear
equations. These equations must also be independent of the other ones, that is, a differential equation that is not event-
driven cannot depend on an event-driven equation (since the values are not continuously updated). In other cases, the
user can write event-driven code explicitly in the update codes (see below).

Pre and post codes

The on_pre code is executed at each synapse receiving a presynaptic spike. For example:

on_pre="v+=w'

adds the value of synaptic variable w to postsynaptic variable v. Any sort of code can be executed. For example, the
following code defines stochastic synapses, with a synaptic weight w and transmission probability p:

S=Synapses (input, neurons, model="""w : 1
p . 1""",
on_pre="v+=wx (rand () <p)")

The code means that w is added to v with probability p. The code may also include multiple lines.
Similarly, the on_post code is executed at each synapse where the postsynaptic neuron has fired a spike.
3.7.2 Creating synapses

Creating a Synapses instance does not create synapses, it only specifies their dynamics. The following command
creates a synapse between neuron 5 in the source group and neuron 10 in the target group:

S.connect (1=5, j=10)

Multiple synaptic connections can be created in a single statement:

S.connect ()
S.connect (i=[1, 21, 3Jj=I[3, 41)
S.connect (i=numpy.arange (10), j=1)

The first statement connects all neuron pairs. The second statement creates synapses between neurons 1 and 3, and
between neurons 2 and 4. The third statement creates synapses between the first ten neurons in the source group and
neuron 1 in the target group.

Conditional

One can also create synapses by giving (as a string) the condition for a pair of neurons i and j to be connected by a
synapse, e.g. you could connect neurons that are not very far apart with:

S.connect (condition="abs (i-7)<=5")

The string expressions can also refer to pre- or postsynaptic variables. This can be useful for example for spatial
connectivity: assuming that the pre- and postsynaptic groups have parameters x and y, storing their location, the
following statement connects all cells in a 250 um radius:

S.connect (condition="sqgrt ( (x_pre-x_post)*x2 + (y_pre-y_post)*%2) < 250xumeter’')
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Probabilistic

Synapse creation can also be probabilistic by providing a p argument, providing the connection probability for each
pair of synapses:

S.connect (p=0.1)

This connects all neuron pairs with a probability of 10%. Probabilities can also be given as expressions, for example
to implement a connection probability that depends on distance:

S.connect (condition="1 != 7',

p="p_max*exp (- (x_pre-x_post) x*«2+ (y_pre-y_post) **2) / (2% (125xumeter) %2)")

If this statement is applied to a Synapses object that connects a group to itself, it prevents self-connections (1 !
= Jj) and connects cells with a probability that is modulated according to a 2-dimensional Gaussian of the distance
between the cells.

One-to-one

You can specify a mapping from i to any function f(i), e.g. the simplest way to give a 1-to-1 connection would be:

’S.connect(j:'i')

This mapping can also use a restricting condition with 1 f, e.g. to connect neurons 0, 2, 4, 6, ... to neurons 0, 1, 2, 3,
... you could write:

’S‘connect(j:'int(i/Z) if i & 2 =

3.7.3 Accessing synaptic variables

Synaptic variables can be accessed in a similar way as NeuronGroup variables. They can be indexed with two
indexes, corresponding to the indexes of pre and postsynaptic neurons, or with string expressions (referring to i and
j as the pre-/post-synaptic indices, or to other state variables of the synapse or the connected neurons). Note that
setting a synaptic variable always refers to the synapses that currently exist, i.e. you have to set them after the relevant
Synapses.connect () call.

Here are a few examples:

S.w[2, 5] = 1%nS

S.w[l, :] = 2*nS

S.w = 1%«nS # all synapses assigned

S.w[2, 3] = (1*nS, 2+%nS)

S.wlgroupl, group2] = " (l+cos(i-7j))*2xns"
S.wl:, :] = "rand()*nS'

S.w['abs (x_pre-x_post) < 250xumetre'] = 1xnS

Note that it is also possible to index synaptic variables with a single index (integer, slice, or array), but in this case
synaptic indices have to be provided.

3.7.4 Delays

There is a special synaptic variable that is automatically created: delay. It is the propagation delay from the presy-
naptic neuron to the synapse, i.e., the presynaptic delay. This is just a convenience syntax for accessing the delay
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stored in the presynaptic pathway: pre .delay. When there is a postsynaptic code (keyword post), the delay of the
postsynaptic pathway can be accessed as post .delay.

The delay variable(s) can be set and accessed in the same way as other synaptic variables. The same semantics as
for other synaptic variables apply, which means in particular that the delay is only set for the synapses that have been
already created with Synapses.connect (). If you want to set a global delay for all synapses of a Synapses
object, you can directly specify that delay as part of the Synapses initializer:

synapses = Synapses (sources, targets, ...'", on_pre='..."', delay=1l+*ms)

When you use this syntax, you can still change the delay afterwards by setting synapses.delay, but you can only
set it to another scalar value. If you need different delays across synapses, do not use this syntax but instead set the
delay variable as any other synaptic variable (see above).

3.7.5 Monitoring synaptic variables

A StateMonitor object can be used to monitor synaptic variables. For example, the following statement creates a
monitor for variable w for the synapses 0 and 1:

M = StateMonitor (S, 'w', record=[0,11])

Note that these are synapse indices, not neuron indices. More convenient is to directly index the Synapses object,
Brian will automatically calculate the indices for you in this case:

M = StateMonitor (S, 'w', record=S[0, :1]) # all synapses originating from neuron 0
M = StateMonitor (S, 'w', record=S['i!=7']) # all synapses excluding autapses
M = StateMonitor (S, 'w', record=S['w>0']) # all synapses with non-zero weights (at_

—~this time)

You can also record a synaptic variable for all synapses by passing record=True.

The recorded traces can then be accessed in the usual way, again with the possibility to index the Synapses object:

plot (M.t / ms, M[S[0]].w / nS) # first synapse

plot (M.t / ms, M[S[0, :]1].w / nS) # all synapses originating from neuron 0

plot (M.t / ms, M[S['w>0xnS']].w / nS) # all synapses with non-zero weights (at this,,
—time)

Note (for users of Brian’s advanced standalone mode only): the use of the Synapses object for indexing and
record=True only work in the default runtime modes. In standalone mode (see Standalone code generation),
the synapses have not yet been created at this point, so Brian cannot calculate the indices.

3.7.6 Creating synapses with the generator syntax

The most general way of specifying a connection is using the generator syntax, e.g. to connect neuron i to all neurons
j with O<=j<=i:

’S.connect(j:'k for k in range (0, 1i+1)")

There are several parts to this syntax. The general form is:

’jZ'EXPR for VAR in RANGE if COND'

Here EXPR can be any integer-valued expression. VAR is the name of the iteration variable (any name you like can
be specified here). The 1 £ COND part is optional and lets you give an additional condition that has to be true for the
synapse to be created. Finally, RANGE can be either:
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1. aPython range, e.g. range (N) is the integers from O to N-1, range (A, B) is the integers from A to B-1,
range (low, high, step) isthe integers from 1ow to high-1 with steps of size step, or

2. it can be a random sample sample (N, p=0.1) gives a random sample of integers from O to N-1 with
10% probability of each integer appearing in the sample. This can have extra arguments like range, e.g.
sample (low, high, step, p=0.1) will give each integer in range (low, high, step) with
probability 10%.

If you try to create an invalid synapse (i.e. connecting neurons that are outside the correct range) then you will get an
error, e.g. you might like to try to do this to connect each neuron to its neighbours:

’S.connect(j:'i+<fl)**k for k in range(2)")

However this won’t work at for 1=0 it gives j=—1 which is invalid. There is an option to just skip any synapses that
are outside the valid range:

’S.connect(j:'i+(—l)**k for k in range(2)', skip_if_invalid=True)

3.7.7 Summed variables

In many cases, the postsynaptic neuron has a variable that represents a sum of variables over all its synapses. This is
called a “summed variable”. An example is nonlinear synapses (e.g. NMDA):

neurons = NeuronGroup (l, model='"''dv/dt=(gtot-v)/(10+ms) : 1
gtot : 1'"'"")
S = Synapses (input, neurons,
model="""dg/dt=-argtb*xx (1-g) : 1

gtot_post = g : 1 (summed)
dx/dt=-c*x : 1
w : 1 # synaptic weight''', on_pre='x+=w')

Here, each synapse has a conductance g with nonlinear dynamics. The neuron’s total conductance is gt ot. The line
stating gtot_post = g : 1 (summed) specifies the link between the two: gt ot in the postsynaptic group is
the summer over all variables g of the corresponding synapses. What happens during the simulation is that at each time
step, presynaptic conductances are summed for each neuron and the result is copied to the variable gt ot. Another
example is gap junctions:

neurons = NeuronGroup (N, model='"''dv/dt=(vO-v+Igap)/tau : 1
Igap : 1''")
S=Synapses (neurons,model="""'w:1 # gap Jjunction conductance
Igap_post = wx (v_pre-v_post): 1 (summed)''")

Here, Igap is the total gap junction current received by the postsynaptic neuron.

Note that you cannot target the same post-synaptic variable from more than one Synapses object. To work around
this restriction, use multiple post-synaptic variables that ar then summed up:

neurons = NeuronGroup(l, model='"''dv/dt=(gtot-v)/(10+ms) : 1
gtot = gtotl + gtot2: 1
gtotl : 1
gtot2 : 1''")
S1 = Synapses (input, neurons,
model="""dg/dt=-al+g+blsxx (1-g) : 1

gtotl_post = g : 1 (summed)
dx/dt=-cl*x : 1
w : 1 # synaptic weight

[

, on_pre="xt=w')
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S2 = Synapses (input, neurons,
model="""dg/dt=-a2+g+b2+x*x (1-g) : 1
gtot2_post = g : 1 (summed)
dx/dt=-c2*x : 1
w : 1 # synaptic weight

T

, on_pre="x+t=w")

3.7.8 Creating multi-synapses

It is also possible to create several synapses for a given pair of neurons:

S.connect (i=numpy.arange (10), j=1, n=3)

This is useful for example if one wants to have multiple synapses with different delays. To distinguish multiple
variables connecting the same pair of neurons in synaptic expressions and statements, you can create a variable storing
the synapse index with the multisynaptic_index keyword:

syn = Synapses (source_group, target_group, model='w : 1', on_pre='v += w',
multisynaptic_index="synapse_number')

syn.connect (i=numpy.arange (10), j=1, n=3)

syn.delay = '"lxms + synapse_numberx2*ms'

This index can then be used to set/get synapse-specific values:

S.delay = ' (synapse_number + 1)sxms)"' # Set delays between 1 and 10ms
S.w['synapse_number<5'] = 0.5
S.w['synapse_number>=5"] 1

It also enables three-dimensional indexing, the following statement has the same effect as the last one above:

S.wl:, :, 5:] =1

3.7.9 Multiple pathways

It is possible to have multiple pathways with different update codes from the same presynaptic neuron group. This
may be interesting in cases when different operations must be applied at different times for the same presynaptic spike.
To do this, specify a dictionary of pathway names and codes:

on_pre={'pre_transmission': 'ge+t=w',
'pre_plasticity': '''w=clip(wt+Apost,0,inf)
Apre+=dApre'''}

This creates two pathways with the given names (in fact, specifying on_pre=code is just a shorter syntax
for on_pre={'pre': code}) through which the delay variables can be accessed. The following state-
ment, for example, sets the delay of the synapse between the first neurons of the source and target groups in the
pre_plasticity pathway:

S.pre_plasticity.delay[0,0] = 3xms

As mentioned above, pre pathways are generally executed before post pathways. The order of execution of several
pre (or post) pathways is however arbitrary, and simply based on the alphabetical ordering of their names (i.e.
pre_plasticity will be executed before pre_transmission). To explicitly specify the order, set the order
attribute of the pathway, e.g.:
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S.pre_transmission.order = -2

will make sure that the pre_transmission code is executed before the pre_plasticity code in each time
step.

3.7.10 Numerical integration

Differential equation flags

For the integration of differential equations, one can use the same keywords as for NeuronGroup.

Note: Declaring a subexpression as (constant over dt) means that it will be evaluated each timestep for all
synapses, potentially a very costly operation.

Explicit event-driven updates

As mentioned above, it is possible to write event-driven update code for the synaptic variables. For this, two special
variables are provided: t is the current time when the code is executed, and lastupdate is the last time when the
synapse was updated (either through on_pre or on_post code). An example is short-term plasticity (in fact this
could be done automatically with the use of the (event-driven) keyword mentioned above):

S=Synapses (input, neuron,

model="""x : 1

u : 1

w : 1''"'",
on_pre="'""u=U+ (u-U) xexp (- (t-lastupdate) /tauf)

x=1+ (x-1) rexp (- (t—lastupdate) /taud)
14+=wrurx

xx=(1-u)

u+=U*(1l-u)''")

By default, the pre pathway is executed before the post pathway (both are executed in the ' synapses ' scheduling
slot, but the pre pathway has the order attribute -1, wheras the post pathway has order 1. See Scheduling for
more details).

3.7.11 Technical notes

How connection arguments are interpreted

If conditions for connecting neurons are combined with both the n (number of synapses to create) and the p (probability
of a synapse) keywords, they are interpreted in the following way:
For every pair 1, j:
if condition(i, j) is fulfilled:
Evaluate p(i, j)
If uniform random number between 0 and 1 < p(i, j):
Create n(i, j) synapses for (i, j)

With the generator syntax j='EXPR for VAR in RANGE if COND', the interpretation is:

For every i:
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for every VAR in RANGE:
j=EXPR
if COND:
Create n(i, j) synapses for (i, j)
Note that the arguments in RANGE can only depend on i and the values of presynaptic variables. Similarly, the

expression for j, EXPR can depend on i, presynaptic variables, and on the iteration variable VAR. The condition
COND can depend on anything (presynaptic and postsynaptic variables).

With the 1-to-1 mapping syntax j='EXPR' the interpretation is:

For every i:
j=EXPR
Create n(i, j) synapses for (i, )

Efficiency considerations

If you are connecting a single pair of neurons, the direct form connect (i=5, j=10) is the most efficient. How-
ever, if you are connecting a number of neurons, it will usually be more efficient to construct an array of i and j
values and have a single connect (i=1i, j=7j) call.

For large connections, you should use one of the string based syntaxes where possible as this will generate compiled
low-level code that will be typically much faster than equivalent Python code.

If you are expecting a majority of pairs of neurons to be connected, then using the condition-based syntax is op-
timal, e.g. connect (condition="1i!=7"). However, if relatively few neurons are being connected then the
1-to-1 mapping or generator syntax will be better. For 1-to-1, connect (j='1i"') will always be faster than
connect (condition="i==7j"') because the latter has to evaluate all Nx%2 pairs (i, J) and check if the
condition is true, whereas the former only has to do O(N) operations.

One tricky problem is how to efficiently generate connectivity with a probability p (1, J) that depends on both i and
J» since this requires N+N computations even if the expected number of synapses is proportional to N. Some tricks for
getting around this are shown in Example: efficient_gaussian_connectivity.

3.8 Input stimuli

For Brian 1 users

See the document Inputs (Brian 1 —> 2 conversion) for details how to convert Brian 1 code.

* Poisson inputs

* Spike generation

» Explicit equations
» Timed arrays

* Regular operations

* More on Poisson inputs

* Arbitrary Python code (network operations)
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There are various ways of providing “external” input to a network.

3.8.1 Poisson inputs

For generating spikes according to a Poisson point process, PoissonGroup can be used, e.g.:

P = PoissonGroup (100, np.arange(100)+«Hz + 10xHz)
G = NeuronGroup (100, 'dv/dt = -v / (10*ms) : 1")
S = Synapses (P, G, on_pre='v+=0.1")
S.connect (j="1")

See More on Poisson inputs below for further information.

For simulations where the individually generated spikes are just used as a source of input to a neuron, the
PoissonInput class provides a more efficient alternative: see Efficient Poisson inputs via Poissonlnput below
for details.

3.8.2 Spike generation

You can also generate an explicit list of spikes given via arrays using SpikeGeneratorGroup. This object behaves
just like a NeuronGroup in that you can connect it to other groups viaa Synapses object, but you specify three bits
of information: N the number of neurons in the group; indices an array of the indices of the neurons that will fire;
and times an array of the same length as indices with the times that the neurons will fire a spike. The indices
and times arrays are matching, so for example indices=[0,2, 1] and times=[1*ms, 2*ms, 3*ms] means
that neuron 0 fires at time 1 ms, neuron 2 fires at 2 ms and neuron 1 fires at 3 ms. Example use:

indices = array ([0, 2, 11)
times = array([1l, 2, 3])x*ms
G = SpikeGeneratorGroup (3, indices, times)

The spikes that will be generated by SpikeGeneratorGroup can be changed between runs with the set_spikes
method. This can be useful if the input to a system should depend on its previous output or when running multiple
trials with different input:

inp = SpikeGeneratorGroup (N, indices, times)

G = NeuronGroup (N, '"...")

feedforward = Synapses(inp, G, '...', on_pre='...")
feedforward.connect (j="1")

recurrent = Synapses (G, G, '...', on_pre='...")

recurrent.connect ('i!=7")

spike_mon = SpikeMonitor (G)

#

run (runtime)

# Replay the previous output of group G as input into the group
inp.set_spikes (spike_mon.i, spike_mon.t + runtime)

run (runtime)

3.8.3 Explicit equations

If the input can be explicitly expressed as a function of time (e.g. a sinusoidal input current), then its description can
be directly included in the equations of the respective group:
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G = NeuronGroup (100, '''dv/dt = (-v + I)/(10xms) : 1
rates : Hz # each neuron's input has a different rate
size : 1 # and a different amplitude
I = sizexsin(2+pixratesxt) : 1''")

G.rates = '"10xHz + ixHz'

G.size = '"(100-1)/100. + 0.1"

3.8.4 Timed arrays

If the time dependence of the input cannot be expressed in the equations in the way shown above, it is possible to
create a TimedArray. This acts as a function of time where the values at given time points are given explicitly.
This can be especially useful to describe non-continuous stimulation. For example, the following code defines a
TimedArray where stimulus blocks consist of a constant current of random strength for 30ms, followed by no
stimulus for 20ms. Note that in this particular example, numerical integration can use exact methods, since it can
assume that the TimedArray is a constant function of time during a single integration time step.

Note: The semantics of TimedArray changed slightly compared to Brian 1: for TimedArray ([x1, x2,
], dt=my_dt), the value x1 will be returned for all 0<=t<my_dt, x2 for my_dt<=t<2xmy_dt etc., whereas
Brian1 returned x1 for 0<=t<0.5*my_dt, x2 for 0.5*my_dt<=t<1.5*my_dt, etc.

stimulus = TimedArray (np.hstack([[c, ¢, ¢, 0, 0]
for ¢ in np.random.rand(1000)7),
dt=10+ms)
G = NeuronGroup (100, 'dv/dt = (-v + stimulus(t))/(10+ms) : 1°',
threshold='v>1"', reset='v=0")
G.v = '0.5xrand ()" # different initial values for the neurons

TimedArray can take a one-dimensional value array (as above) and therefore return the same value for all neurons
or it can take a two-dimensional array with time as the first and (neuron/synapse/. .. -)index as the second dimension.

In the following, this is used to implement shared noise between neurons, all the “even neurons” get the first noise
instantiation, all the “odd neurons” get the second:

runtime = Ilxsecond

stimulus = TimedArray (np.random.rand (int (runtime/defaultclock.dt), 2),
dt=defaultclock.dt)

G = NeuronGroup (100, 'dv/dt = (-v + stimulus(t, 1 % 2))/(10xms) : 1',

threshold='v>1"', reset='v=0")

3.8.5 Regular operations

An alternative to specifying a stimulus in advance is to run explicitly specified code at certain points during a sim-
ulation. This can be achieved with run_regularly (). One can think of these statements as equivalent to reset
statements but executed unconditionally (i.e. for all neurons) and possibly on a different clock than the rest of the
group. The following code changes the stimulus strength of half of the neurons (randomly chosen) to a new random
value every 50ms. Note that the statement uses logical expressions to have the values only updated for the chosen
subset of neurons (where the newly introduced auxiliary variable change equals 1):

G = NeuronGroup (100, '''dv/dt = (-v + I)/(10+ms) : 1
I : 1 # one stimulus per neuron''')
G.run_regularly ('''change = int (rand() < 0.5)
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I = changex (rand()*2) + (l-change)*I''"',
dt=50+ms)

The following topics are not essential for beginners.

3.8.6 More on Poisson inputs

Setting rates for Poisson inputs

PoissonGroup takes either a constant rate, an array of rates (one rate per neuron, as in the example above), or a
string expression evaluating to a rate as an argument.

If the given value for rates is a constant, then using PoissonGroup (N, rates) is equivalent to:

’NeuronGroup(N, 'rates : Hz', threshold='rand()<rates*dt')

and setting the group’s rates attribute.

If rates is a string, then this is equivalent to:

’NeuronGroup(N, 'rates = ... : Hz', threshold='rand()<rates*dt'")

with the respective expression for the rates. This expression will be evaluated at every time step and therefore allows
the use of time-dependent rates, i.e. inhomogeneous Poisson processes. For example, the following code (see also
Timed arrays) uses a TimedArray to define the rates of a PoissonGroup as a function of time, resulting in five
100ms blocks of 100 Hz stimulation, followed by 100ms of silence:

stimulus = TimedArray (np.tile([100., 0.], 5)xHz, dt=100.~*ms)
P = PoissonGroup(l, rates='stimulus(t)")

Note that, as can be seen in its equivalent NeuronGroup formulation, a PoissonGroup does not work for high
rates where more than one spike might fall into a single timestep. Use several units with lower rates in this case (e.g.
use PoissonGroup (10, 1000+Hz) instead of PoissonGroup (1, 10000*Hz)).

Efficient Poisson inputs via Poissoninput

For simulations where the Po i ssonGroup is just used as a source of input to a neuron (i.e., the individually generated
spikes are not important, just their impact on the target cell), the PoissonInput class provides a more efficient
alternative: instead of generating spikes, PoissonInput directly updates a target variable based on the sum of
independent Poisson processes:

G NeuronGroup (100, 'dv/dt = -v / (10xms) : 1")
P = PoissonInput (G, 'v', 100, 100+Hz, weight=0.1)

The PoissonInput class is however more restrictive than PoissonGroup, it only allows for a constant rate
across all neurons (but you can create several PoissonInput objects, targeting different subgroups). It internally
uses BinomialFunction which will draw a random number each time step, either from a binomial distribution or
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from a normal distribution as an approximation to the binomial distribution if np > 5 A n(1 — p) > 5, where n is the
number of inputs and p = dt - rate the spiking probability for a single input.

3.8.7 Arbitrary Python code (network operations)

If none of the above techniques is general enough to fulfill the requirements of a simulation, Brian allows you to write
a NetworkOperat ion, an arbitrary Python function that is executed every time step (possible on a different clock
than the rest of the simulation). This function can do arbitrary operations, use conditional statements etc. and it will be
executed as it is (i.e. as pure Python code even if weave code generation is active). Note that one cannot use network
operations in combination with the C++ standalone mode. Network operations are particularly useful when some
condition or calculation depends on operations across neurons, which is currently not possible to express in abstract
code. The following code switches input on for a randomly chosen single neuron every 50 ms:

G = NeuronGroup (10, '''dv/dt = (-v + activexI)/(10xms) : 1
I = sin(2%pi*x100«Hz*t) : 1 (shared) #single input
active : 1 # will be set in the network operation''')

@network_operation (dt=50+*ms)
def update_active() :

index = np.random.randint (10) # index for the active neuron
G.active_ = 0 # the underscore switches off unit checking
G.active_[index] = 1

Note that the network operation (in the above example: update_active) has to be included in the Net work object
if one is constructed explicitly.

Only functions with zero or one arguments can be used as a Net workOperat ion. If the function has one argument
then it will be passed the current time t:

@network_operation (dt=1x*ms)
def update_input (t):
if t>50+ms and t<100*ms:
pass # do something

Note that this is preferable to accessing defaultclock.t from within the function — if the network operation is
not running on the defaultclock itself, then that value is not guaranteed to be correct.

Instance methods can be used as network operations as well, however in this case they have to be constructed explicitly,
the network_operation () decorator cannot be used:

class Simulation (object) :
def _ init_ (self, data):
self.data = data
self.group = NeuronGroup(...)
self.network_op = NetworkOperation (self.update_func, dt=10+ms)
self.network = Network (self.group, self.network_op)

def update_func(self):
pass # do something

def run(self, runtime):
self.network.run (runtime)

3.9 Recording during a simulation
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For Brian 1 users

See the document Monitors (Brian 1 —> 2 conversion) for details how to convert Brian 1 code.

* Recording spikes
* Recording variables at spike time
* Recording variables continuously

* Recording population rates

* Getting all data

Recording variables during a simulation is done with “monitor” objects. Specifically, spikes are recorded with
SpikeMonitor,the time evolution of variables with StateMonitor and the firing rate of a population of neurons
with PopulationRateMonitor.

3.9.1 Recording spikes

To record spikes from a group G simply create a SpikeMonitor via SpikeMonitor (G). After the simulation,
you can access the attributes i, t, num_spikes and count of the monitor. The i and t attributes give the array of
neuron indices and times of the spikes. For example, if M.i==[0, 2, 1] and M.t==[1lxms, 2*ms, 3+*ms]
it means that neuron O fired a spike at 1 ms, neuron 2 fired a spike at 2 ms, and neuron 1 fired a spike at 3 ms.
Alternatively, you can also call the spike_trains method to get a dictionary mapping neuron indices to arrays of
spike times, i.e. in the above example, spike_trains = M.spike_trains(); spike_trains[1] would
return array ([ 3.]) * msecond. The num_spikes attribute gives the total number of spikes recorded, and
count is an array of the length of the recorded group giving the total number of spikes recorded from each neuron.

Example:

G = NeuronGroup (N, model='...")
M SpikeMonitor (G)

run (runtime)

plot (M.t/ms, M.i, '.")

If you are only interested in summary statistics but not the individual spikes, you can set the record argument to
False. You will then not have access to i and t but you can still get the count and the total number of spikes
(num_spikes).

3.9.2 Recording variables at spike time

By default, a SpikeMonitor only records the time of the spike and the index of the neuron that spiked. Sometimes
it can be useful to addtionaly record other variables, e.g. the membrane potential for models where the threshold is
not at a fixed value. This can be done by providing an extra variables argument, the recorded variable can then be
accessed as an attribute of the SpikeMonitor,e.g.:

G = NeuronGroup (10, 'v : 1', threshold="rand()<100xHzxdt")
G.run_regularly ('v = rand()")

M = SpikeMonitor (G, wvariables=['v'])

run (100+ms)

plot (M.t/ms, M.v, '.")
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To conveniently access the values of a recorded variable for a single neuron, the SpikeMonitor.values ()
method can be used that returns a dictionary with the values for each neuron.:

G = NeuronGroup(N, '''dv/dt = (1-v)/(10%ms) : 1
v_th : 1''",

threshold='v > v_th',

# randomly change the threshold after a spike:

reset="""'v=0

v_th = clip(v_th + rand()*0.2 - 0.1, 0.1, 0.9)''")

G.v_th = 0.5
spike_mon = SpikeMonitor (G, variables='v'")
run (1xsecond)
v_values = spike_mon.values('v")
print ('Threshold crossing values for neuron 0: {}'.format (v_values[0]))
hist (spike_mon.v, np.arange(0, 1, .1))
show ()

Note: Spikes are not the only events that can trigger recordings, see Custom events.

3.9.3 Recording variables continuously

To record how a variable evolves over time, use a StateMonitor, e.g. to record the variable v at every time step
and plot it for neuron 0:

G = NeuronGroup(...)
M = StateMonitor (G, 'v', record=True)
run(...)

plot (M.t/ms, M.v[0]/mV)

In general, you specify the group, variables and indices you want to record from. You specify the variables with a
string or list of strings, and the indices either as an array of indices or True to record all indices (but beware because
this may take a lot of memory).

After the simulation, you can access these variables as attributes of the monitor. They are 2D arrays with shape
(num_indices, num_times). The special attribute t is an array of length num_t imes with the corresponding
times at which the values were recorded.

Note that you can also use StateMonitor to record from Synapses where the indices are the synapse indices
rather than neuron indices.

In this example, we record two variables v and u, and record from indices 0, 10 and 100. Afterwards, we plot the
recorded values of v and u from neuron 0O:

G = NeuronGroup(...)
M = StateMonitor (G, ('v', 'u'), record=[0, 10, 100])
run(...)

plot (M.t/ms, M.v[0]/mV, label='v")
plot (M.t/ms, M.u[0]/mV, label='u'")

There are two subtly different ways to get the values for specific neurons: you can either index the 2D array stored in
the attribute with the variable name (as in the example above) or you can index the monitor itself. The former will use
an index relative to the recorded neurons (e.g. M. v [ 1] will return the values for the second recorded neuron which is
the neuron with the index 10 whereas M. v [10] would raise an error because only three neurons have been recorded),
whereas the latter will use an absolute index corresponding to the recorded group (e.g. M[1] .v will raise an error
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because the neuron with the index 1 has not been recorded and M[10] . v will return the values for the neuron with
the index 10). If all neurons have been recorded (e.g. with record=True) then both forms give the same result.

Note that for plotting all recorded values at once, you have to transpose the variable values:

plot (M.t/ms, M.v.T/mV)

Note: In contrast to Brian 1, the values are recorded at the beginning of a time step and not at the end (you can set
the when argument when creating a St ateMonitor, details about scheduling can be found here: Custom progress
reporting).

3.9.4 Recording population rates

To record the time-varying firing rate of a population of neurons use PopulationRateMonitor. After the simu-
lation the monitor will have two attributes t and rate, the latter giving the firing rate at each time step corresponding
to the time in t. For example:

G = NeuronGroup(...)
M = PopulationRateMonitor (G)
run(...)

plot (M.t/ms, M.rate/Hz)

To get a smoother version of the rate, use PopulationRateMonitor.smooth_rate ().

The following topics are not essential for beginners.

3.9.5 Getting all data

Note that all monitors are implement as “groups”, so you can get all the stored values in a monitor with the Group.
get_states () method, which can be useful to dump all recorded data to disk, for example.

3.10 Running a simulation

For Brian 1 users

See the document Networks and clocks (Brian I —> 2 conversion) for details how to convert Brian 1 code.

e Networks

* Setting the simulation time step
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* Progress reporting

* Continuing/repeating simulations
* Multiple magic runs

* Changing the simulation time step
* Profiling

» Scheduling

e Store/restore

To run a simulation, one either constructs a new Network object and calls its Net work . run () method, or uses the
“magic” system and a plain run () call, collecting all the objects in the current namespace.

Note that Brian has several different ways of running the actual computations, and choosing the right one can make
orders of magnitude of difference in terms of simplicity and efficiency. See Computational methods and efficiency for
more details.

3.10.1 Networks

In most straightforward simulations, you do not have to explicitly create a Net work object but instead can simply
call run () to run a simulation. This is what is called the “magic” system, because Brian figures out automatically
what you want to do.

When calling run (), Brian runs the collect () function to gather all the objects in the current context. It will
include all the objects that are “visible”, i.e. that you could refer to with an explicit name:

G = NeuronGroup (10, 'dv/dt = -v / tau : volt')
S = Synapses (G, G, model='w:1', on_pre='vt+=w')
S.connect ('i!=73")

mon = SpikeMonitor (G)

run (10+ms) # will include G, S, mon

Note that it will not automatically include objects that are “hidden” in containers, e.g. if you store several monitors
in a list. Use an explicit Net work object in this case. It might be convenient to use the collect () function when
creating the Net work object in that case:

G = NeuronGroup (10, 'dv/dt = -v / tau : volt")

S = Synapses (G, G, model='w:1', on_pre='vt+t=w')

S.connect ('i!=73")

monitors = [SpikeMonitor (G), StateMonitor(G, 'v', record=True) ]

# a simple run would not include the monitors
net = Network (collect()) # automatically include G and S
net .add (monitors) # manually add the monitors

net.run (10+ms)

3.10.2 Setting the simulation time step

To set the simulation time step for every simulated object, set the dt attribute of the defaultclock which is used
by all objects that do not explicitly specify a clock or dt value during construction:

3.10. Running a simulation 141



Brian 2 Documentation, Release 2.1

’defaultclock.dt = 0.05+ms

If some objects should use a different clock (e.g. to record values with a StateMonitor not at every time step in a
long running simulation), you can provide a dt argument to the respective object:

’s_mon = StateMonitor (group, 'v', record=True, dt=1*ms)

To sum up:
e Setdefaultclock.dt to the time step that should be used by most (or all) of your objects.
» Set dt explicitly when creating objects that should use a different time step.

Behind the scenes, a new C1ock object will be created for each object that defines its own dt value.

3.10.3 Progress reporting

Especially for long simulations it is useful to get some feedback about the progress of the simulation. Brian offers a
few built-in options and an extensible system to report the progress of the simulation. In the Network. run () or
run () call, two arguments determine the output: report and report_period. When report issetto 'text'
or 'stdout ', the progress will be printed to the standard output, when it is set to 'stderr"', it will be printed to
“standard error”. There will be output at the start and the end of the run, and during the run in report_period
intervals. It is also possible to do custom progress reporting.

3.10.4 Continuing/repeating simulations

To store the current state of the simulation, call store () (use the Network. store () method for a Net work).
You can store more than one snapshot of a system by providing a name for the snapshot; if store () is called without
a specified name, 'default' is used as the name. To restore the state, use restore ().

The following simple example shows how this system can be used to run several trials of an experiment:

# set up the network
G = NeuronGroup(...)

spike_monitor = SpikeMonitor (G)

# Snapshot the state
store ()

# Run the trials
spike_counts = []
for trial in range (3):
restore () # Restore the initial state
run(...)
# store the results
spike_counts.append (spike_monitor.count)

The following schematic shows how multiple snapshots can be used to run a network with a separate “train” and “test”
phase. After training, the test is run several times based on the trained network. The whole process of training and
testing is repeated several times as well:

# set up the network
G = NeuronGroup (..., '"'"'...
test_input : amp

.IYI)
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S = Synapses (..., ""'"...

plastic : boolean (shared)
S0

G.v =

S.connect (...)

S.w =

# First snapshot at t=0
store('initialized")

# Run 3 complete trials

for trial in range(3):
# Simulate training phase
restore('initialized")
S.plastic = True
run(...)

# Snapshot after learning
store('after_learning')

# Run 5 tests after the training

for test_number in range(5):
restore('after_learning')
S.plastic = False # switch plasticity off

G.test_input = test_inputs[test_number]
# monitor the activity now

spike_mon = SpikeMonitor (G)

run(...)

# Do something with the result

#

The following topics are not essential for beginners.

3.10.5 Multiple magic runs

When you use more than a single run () statement, the magic system tries to detect which of the following two
situations applies:

1. You want to continue a previous simulation
2. You want to start a new simulation

For this, it uses the following heuristic: if a simulation consists only of objects that have not been run, it will start
a new simulation starting at time O (corresponding to the creation of a new Network object). If a simulation only
consists of objects that have been simulated in the previous run () call, it will continue that simulation at the previous
time.

If neither of these two situations apply, i.e., the network consists of a mix of previously run objects and new objects,
an error will be raised. If this is not a mistake but intended (e.g. when a new input source and synapses should be
added to a network at a later stage), use an explicit Net work object.
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In these checks, “non-invalidating”  objects  (i.e. objects that have BrianObject.
invalidates_magic_network setto False) are ignored, e.g. creating new monitors is always possible.

3.10.6 Changing the simulation time step

You can change the simulation time step after objects have been created or even after a simulation has been run:

defaultclock.dt = 0.1lxms

# Set the network

#

run (initial_time)
defaultclock.dt = 0.01lxms
run (full_time - initial_time)

To change the time step between runs for objects that do not use the de faultclock, youcannot directly change their
dt attribute (which is read-only) but instead you have to change the dt of the c1ock attribute. If you want to change
the dt value of several objects at the same time (but not for all of them, i.e. when you cannot use defaultclock.
dt) then you might consider creating a C1ock object explicitly and then passing this clock to each object with the
clock keyword argument (instead of dt). This way, you can later change the dt for several objects at once by
assigning a new value to Clock. dt.

Note that a change of dt has to be compatible with the internal representation of clocks as an integer value (the number
of elapsed time steps). For example, you can simulate an object for 100ms with a time step of 0.1ms (i.e. for 1000
steps) and then switch to a dt of 0.5ms, the time will then be internally represented as 200 steps. You cannot, however,
switch to a dt of 0.3ms, because 100ms are not an integer multiple of 0.3ms.

3.10.7 Profiling

To get an idea which parts of a simulation take the most time, Brian offers a basic profiling mechanism. If a simulation
is run with the profile=True keyword argument, it will collect information about the total simulation time for
each CodeOb ject. This information can then be retrieved from Network.profiling info, which contains
a list of (name, time) tuples or a string summary can be obtained by calling profiling summary (). The
following example shows profiling output after running the CUBA example (where the neuronal state updates take up
the most time):

>>> profiling_summary (show=5) # show the 5 objects that took the longest
Profiling summary

neurongroup_stateupdater 5.54 s 61.32 %
synapses_pre 1.39 s 15.39 %
synapses_1_pre 1.03 s 11.37 %
spikemonitor 0.59 s 6.55 %
neurongroup_thresholder 0.33 s 3.66 %

3.10.8 Scheduling

Every simulated object in Brian has three attributes that can be specified at object creation time: dt, when, and
order. The time step of the simulation is determined by dt, if it is specified, or otherwise by defaultclock.dt.
Changing this will therefore change the dt of all objects that don’t specify one. Alternatively, a c1ock object can be
specified directly, this can be useful if a clock should be shared between several objects — under most circumstances,
however, a user should not have to deal with the creation of C1ock objects and just define dt.
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During a single time step, objects are updated in an order according first to their when argument’s position in
the schedule. This schedule is determined by Network.schedule which is a list of strings, determining “ex-
ecution slots” and their order. It defaults to: ['start', 'groups', 'thresholds', 'synapses',
'resets', 'end']. In addition to the names provided in the schedule, names such as before_thresholds
or after_synapses can be used that are understood as slots in the respective positions. The default for the when
attribute is a sensible value for most objects (resets will happen in the reset slot, etc.) but sometimes it make sense
to change it, e.g. if one would like a St ateMonitor, which by default records in the end slot, to record the mem-
brane potential before a reset is applied (otherwise no threshold crossings will be observed in the membrane potential
traces).

Finally, if during a time step two objects fall in the same execution slot, they will be updated in ascending order
according to their order attribute, an integer number defaulting to 0. If two objects have the same when and order
attribute then they will be updated in an arbitrary but reproducible order (based on the lexicographical order of their
names).

Note that objects that don’t do any computation by themselves but only act as a container for other objects (e.g. a
NeuronGroup which contains a StateUpdater, aResetter and a Thresholder), don’t have any value for
when, but pass on the given values for dt and order to their containing objects.

To see how the objects in a network are scheduled, you can use the scheduling summary () function:

>>> group = NeuronGroup (10, 'dv/dt = -v/(10xms) : 1', threshold='v > 1',
. reset="'v = 0")
>>> mon = StateMonitor (group, 'v', record=True, dt=1lxms)
>>> scheduling_summary ()
object | part of | Clock,,
—dt | when | order | active
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, O EO
——————— F————— - o
statemonitor (StateMonitor) | statemonitor (StateMonitor) | 1. ms (every,
—10 steps) | start | 0 | yes
neurongroup_stateupdater (StateUpdater) | neurongroup (NeuronGroup) | 100. us_,
— (every step) | groups | 0 | yes
neurongroup_thresholder (Thresholder) | neurongroup (NeuronGroup) | 100. us_,
— (every step) | thresholds | 0 | yes
neurongroup_resetter (Resetter) | neurongroup (NeuronGroup) | 100. us_,
— (every step) | resets | 0 | yes

As you can see in the output above, the St at eMonit or will only record the membrane potential every 10 time steps,
but when it does, it will do it at the start of the time step, before the numerical integration, the thresholding, and the
reset operation takes place.

Every new Network starts a simulation at time 0; Network. t is a read-only attribute, to go back to a previous
moment in time (e.g. to do another trial of a simulation with a new noise instantiation) use the mechanism described
below.

3.10.9 Store/restore

Note that Network.run (), Network.store() and Network.restore() (or run(), store(),
restore ()) are the only way of affecting the time of the clocks. In contrast to Brianl, it is no longer necessary (nor
possible) to directly set the time of the clocks or call a reinit function.

The state of a network can also be stored on disk with the optional filename argument of Network.
store ()/store (). This way, you can run the initial part of a simulation once, store it to disk, and then continue
from this state later. Note that the st ore ()/restore () mechanism does not re-create the network as such, you still
need to construct all the NeuronGroup, Synapses, StateMonitor, ... objects, restoring will only restore all
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the state variable values (membrane potential, conductances, synaptic connections/weights/delays, ...). This restora-
tion does however restore the internal state of the objects as well, e.g. spikes that have not been delivered yet because
of synaptic delays will be delivered correctly.

3.11 Multicompartment models

For Brian 1 users

See the document Multicompartmental models (Brian 1 —> 2 conversion) for details how to convert Brian 1 code.

It is possible to create neuron models with a spatially extended morphology, using the SpatialNeuron class. A
SpatialNeuron is a single neuron with many compartments. Essentially, it works as a NeuronGroup where
elements are compartments instead of neurons.

A SpatialNeuron is specified by a morphology (see Creating a neuron morphology) and a set of equations for
transmembrane currents (see Creating a spatially extended neuron).

3.11.1 Creating a neuron morphology

Schematic morphologies

Morphologies can be created combining geometrical objects:

soma = Soma (diameter=30+um)
cylinder = Cylinder (diameter=1xum, length=100%um, n=10)

The first statement creates a single iso-potential compartment (i.e. with no axial resistance within the compartment),
with its area calculated as the area of a sphere with the given diameter. The second one specifies a cylinder consisting
of 10 compartments with identical diameter and the given total length.

For more precise control over the geometry, you can specify the length and diameter of each individual compartment,
including the diameter at the start of the section (i.e. for n compartments: n length and n+1 diameter values) in a
Sect ion object:

section = Section(diameter=[6, 5, 4, 3, 2, 1l]lxum, length=[10, 10, 10, 5, 5]%um, n=5)

The individual compartments are modeled as truncated cones, changing the diameter linearly between the given diam-
eters over the length of the compartment. Note that the diameter argument specifies the values at the nodes between
the compartments, but accessing the diameter attribute of a Morphology object will return the diameter at the
center of the compartment (see the note below).

The following table summarizes the different options to create schematic morphologies (the black compartment before
the start of the section represents the parent compartment with diameter 15 pm, not specified in the code below):
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Example

Soma

# Soma always has a single_
—compartment
Soma (diameter=30+um)

Cylinder
# Each compartment has fixed_
—length and diameter
Cylinder (5, diameter=10xum,
—length=50+um)

jnnunn

# Length and diameter,
—individually defined for,
—each compartment (at start
# and end)
Section (5, diameter=[15, 5, 10,
— 5, 10, 5]*um,

length=[10, 20, 5, 5,
107 *um)

o ket

Section

Note: For a Section, the diameter argument specifies the diameter between the compartments (and at
the beginning/end of the first/last compartment). the corresponding values can therefore be later retrieved from
the Morphology via the start_diameter and end_diameter attributes. The diameter attribute of
a Morphology does correspond to the diameter at the midpoint of the compartment. For a Cylinder,
start_diameter, diameter, and end_diameter are of course all identical.

The tree structure of a morphology is created by attaching Morphology objects together:

morpho = Soma (diameter=30+um)
morpho.axon = Cylinder (length=100%um, diameter=1xum, n=10)
morpho.dendrite = Cylinder (length=50+um, diameter=2xum, n=5)

These statements create a morphology consisting of a cylindrical axon and a dendrite attached to a spherical soma.
Note that the names axon and dendrite are arbitrary and chosen by the user. For example, the same morphology
can be created as follows:

morpho = Soma (diameter=30+um)
morpho.output_process = Cylinder (length=100+um, diameter=1l+um, n=10)
morpho.input_process = Cylinder (length=50+um, diameter=2xum, n=5)

The syntax is recursive, for example two sections can be added at the end of the dendrite as follows:

morpho.dendrite.branchl Cylinder (length=50+um, diameter=1xum, n=3)
morpho.dendrite.branch2 = Cylinder (length=50+um, diameter=1xum, n=3)

Equivalently, one can use an indexing syntax:

morpho['dendrite'] ['branchl'] = Cylinder (length=50+um, diameter=1lxum, n=3)
morpho['dendrite'] ['branch2'] = Cylinder (length=50+um, diameter=1xum, n=3)
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The names given to sections are completely up to the user. However, names that consist of a single digit (1 to 9) or
the letters L (for left) and R (for right) allow for a special short syntax: they can be joined together directly, without
the needs for dots (or dictionary syntax) and therefore allow to quickly navigate through the morphology tree (e.g.
morpho.LRLLR is equivalent to morpho.L.R. L. L.R). This short syntax can also be used to create trees:

morpho = Soma (diameter=30+um)
morpho.L = Cylinder (length=10+um, diameter=1xum,
morpho.Ll = Cylinder (length=5%um, diameter=1~*um,

morpho.L2 = Cylinder (length=5+um, diameter=1xum, n=
morpho.L3 = Cylinder (length=5+um, diameter=1xum,
morpho.R = Cylinder (length=10+um, diameter=1lxum, n=

morpho.RL = Cylinder (length=5+um, diameter=1xum,
morpho.RR = Cylinder (length=5+um, diameter=1xum,

Dbd:ﬁ:ﬁdb
W wwwwww

The above instructions create a dendritic tree with two main sections, three sections attached to the first section and
two to the second. This can be verified with the Morphology. topology () method:

>>> morpho.topology ()

() [root]
-——| .L
C———|  .L.1
-—] .L.2
——— .L.3
——— .R
‘———] .R.L
‘———| .R.R

Note that an expression such as morpho . L will always refer to the entire subtree. However, accessing the attributes
(e.g. diameter) will only return the values for the given section.

Note: To avoid ambiguities, do not use names for sections that can be interpreted in the abbreviated way detailed
above. For example, do not name a child section L1 (which will be interpreted as the first child of the child L)

The number of compartments in a section can be accessed with morpho.n (or morpho.L.n, etc.), the number
of total sections and compartments in a subtree can be accessed with morpho.total_sections and morpho.
total_compartments respectively.

Adding coordinates

For plotting purposes, it can be useful to add coordinates to a Morphology that was created using the “schematic”
approach described above. This can be done by calling the generate_coordinates method on a morphology,
which will return an identical morphology but with additional 2D or 3D coordinates. By default, this method creates
a morphology according to a deterministic algorithm in 2D:

new_morpho = morpho.generate_coordinates ()
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To get more “realistic” morphologies, this function can also be used to create morphologies in 3D where the orientation
of each section differs from the orientation of the parent section by a random amount:

new_morpho = morpho.generate_coordinates (section_randomness=25)

This algorithm will base the orientation of each section on the orientation of the parent section and then randomly per-
turb this orientation. More precisely, the algorithm first chooses a random vector orthogonal to the orientation of the
parent section. Then, the section will be rotated around this orthogonal vector by a random angle, drawn from an expo-
nential distribution with the 8 parameter (in degrees) given by section_randomness. This 5 parameter specifies
both the mean and the standard deviation of the rotation angle. Note that no maximum rotation angle is enforced,
values for section_randomness should therefore be reasonably small (e.g. using a section_randomness
of 45 would already lead to a probability of ~14% that the section will be rotated by more than 90 degrees, therefore
making the section go “backwards”).

3.11. Multicompartment models 149



Brian 2 Documentation, Release 2.1

In addition, also the orientation of each compartment within a section can be randomly varied:

new_morpho = morpho.generate_coordinates (section_randomness=25,
compartment_randomness=15)

The algorithm is the same as the one presented above, but applied individually to each compartment within a section
(still based on the orientation on the parent section, not on the orientation of the previous compartment).

Complex morphologies

Morphologies can also be created from information about the compartment coordinates in 3D space. Such morpholo-
gies can be loaded from a . swc file (a standard format for neuronal morphologies; for a large database of morphologies
in this format see http://neuromorpho.org):

morpho = Morphology.from file('corticalcell.swc')

To manually create a morphology from a list of points in a similar format to SWC files, see Morphology.
from_points.

Morphologies that are created in such a way will use standard names for the sections that allow for the short syntax
shown in the previous sections: if a section has one or two child sections, then they will be called L and R, otherwise
they will be numbered starting at 1.

Morphologies with coordinates can also be created section by section, following the same syntax as for “schematic”
morphologies:

soma = Soma (diameter=30xum, x=50xum, y=20=%um)
cylinder = Cylinder (10, x=[0, 100]*um, diameter=1xum)
section = Section (5,

x=[0, 10, 20, 30, 40, 50]+*um,
y=[0, 10, 20, 30, 40, 50]=xum,
z=[(0, 10, 10, 10, 10, 10]=*um,
diameter=[6, 5, 4, 3, 2, 171)*um

Note that the %, y, z attributes of Morphology and SpatialNeuron will return the coordinates at the midpoint
of each compartment (as for all other attributes that vary over the length of a compartment, e.g. diameter or
distance), but during construction the coordinates refer to the start and end of the section (Cy1inder), respec-
tively to the coordinates of the nodes between the compartments (Sect ion).

A few additional remarks:

1. In the majority of simulations, coordinates are not used in the neuronal equations, therefore the coordinates are
purely for visualization purposes and do not affect the simulation results in any way.

2. Coordinate specification cannot be combined with length specification — lengths are automatically calculated
from the coordinates.
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3. The coordinate specification can also be 1- or 2-dimensional (as in the first two examples above), the unspecified
coordinate will use 0 pm.

4. All coordinates are interpreted relative to the parent compartment, i.e. the point (0 pm, O ym, 0 pm) refers to
the end point of the previous compartment. Most of the time, the first element of the coordinate specification
is therefore O pm, to continue a section where the previous one ended. However, it can be convenient to use a
value different from O pum for sections connecting to the Soma to make them (visually) connect to a point on
the sphere surface instead of the center of the sphere.

3.11.2 Creating a spatially extended neuron

A SpatialNeuron is a spatially extended neuron. It is created by specifying the morphology as a Morphology
object, the equations for transmembrane currents, and optionally the specific membrane capacitance Cm and intracel-
lular resistivity Ri:

gL = le-4+siemens/cm*«2

EL = -70xmV

egs = '"!'

Im=gL * (EL - v) : amp/meter*x2

I : amp (point current)

neuron = SpatialNeuron (morphology=morpho, model=eqs, Cm=1lxuF/cmx*2, Ri=100xohm=*cm)

neuron.v = EL + 10xmV

Several state variables are created automatically: the SpatialNeuron inherits all the geometrical variables of the
compartments (Length, diameter, area, volume), as well as the distance variable that gives the distance to
the soma. For morphologies that use coordinates, the x, y and z variables are provided as well. Additionally, a state
variable Cm is created. It is initialized with the value given at construction, but it can be modified on a compartment per
compartment basis (which is useful to model myelinated axons). The membrane potential is stored in state variable v.

Note that for all variable values that vary across a compartment (e.g. distance, x, v, z, v), the value that is reported
is the value at the midpoint of the compartment.

The key state variable, which must be specified at construction, is Im. It is the total transmembrane current, expressed
in units of current per area. This is a mandatory line in the definition of the model. The rest of the string description may
include other state variables (differential equations or subexpressions) or parameters, exactly as in NeuronGroup.
At every timestep, Brian integrates the state variables, calculates the transmembrane current at every point on the
neuronal morphology, and updates v using the transmembrane current and the diffusion current, which is calculated
based on the morphology and the intracellular resistivity. Note that the transmembrane current is a surfacic current,
not the total current in the compartement. This choice means that the model equations are independent of the number
of compartments chosen for the simulation. The space and time constants can obtained for any point of the neuron
with the space_constant respectively t ime_constant attributes:

1 = neuron.space_constant [0]
tau = neuron.time_constant [0]

The calculation is based on the local total conductance (not just the leak conductance), therefore, it can potentially vary
during a simulation (e.g. decrease during an action potential). The reported value is only correct for compartments with
a cylindrical geometry, though, it does not give reasonable values for compartments with strongly varying diameter.

To inject a current T at a particular point (e.g. through an electrode or a synapse), this current must be divided by the
area of the compartment when inserted in the transmembrane current equation. This is done automatically when the
flagpoint current isspecified, as in the example above. This flag can apply only to subexpressions or parameters
with amp units. Internally, the expression of the transmembrane current Im is simply augmented with +I/area. A
current can then be injected in the first compartment of the neuron (generally the soma) as follows:
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neuron.I[0] = 1*nA

State variables of the SpatialNeuron include all the compartments of that neuron (including subtrees). Therefore,
the statement neuron.v = EL + 10+mV sets the membrane potential of the entire neuron at -60 mV.

Subtrees can be accessed by attribute (in the same way as in Morphology objects):

’neuron.axon.gNa = 10%gL

Note that the state variables correspond to the entire subtree, not just the main section. That is, if the axon had branches,
then the above statement would change gNa on the main section and all the sections in the subtree. To access the main
section only, use the attribute main:

’neuron.axon.main.gNa = 10%gL

A typical use case is when one wants to change parameter values at the soma only. For example, inserting an electrode
current at the soma is done as follows:

’neuron.main.l = 1+nA

A part of a section can be accessed as follows:

initial_segment = neuron.axon[lO0xum:50+um]

Synaptic inputs

There are two methods to have synapses on SpatialNeuron. The first one to insert synaptic equations directly in
the neuron equations:

eqS:' (I}

Im = gL * (EL — v) : amp/meterx=*2

Is = gs * (Es - v) : amp (point current)

dgs/dt = —-gs/taus : siemens

neuron = SpatialNeuron (morphology=morpho, model=eqgs, Cm=l%uF/cm*%2, Ri=100+ohmx*cm)

Note that, as for electrode stimulation, the synaptic current must be defined as a point current. Then we use a
Synapses object to connect a spike source to the neuron:

S = Synapses (stimulation, neuron, on_pre='gs += w')
S.connect (1=0, j=50)
S.connect (i=1, J=100)

This creates two synapses, on compartments 50 and 100. One can specify the compartment number with its spatial
position by indexing the morphology:

S.connect (1=0, j=morpho[25xum])
S.connect (i=1, Jj=morpho.axon[30xum])

In this method for creating synapses, there is a single value for the synaptic conductance in any compartment. This
means that it will fail if there are several synapses onto the same compartment and synaptic equations are nonlinear.
The second method, which works in such cases, is to have synaptic equations in the Synapses object:

eqs=
Im = gL » (EL — v) : amp/meterx=2
Is = gs » (Es — v) : amp (point current)
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gs : siemens

neuron = SpatialNeuron (morphology=morpho, model=eqgs, Cm=1 * uF / cm ** 2, Ri=100 «_
—ohm * cm)

S = Synapses (stimulation, neuron, model='''dg/dt = -g/taus : siemens

gs_post = g : siemens (summed)''',
on_pre='qg += w')

Here each synapse (instead of each compartment) has an associated value g, and all values of g for each compartment
(i.e., all synapses targeting that compartment) are collected into the compartmental variable gs.

Detecting spikes

To detect and record spikes, we must specify a threshold condition, essentially in the same way as for a
NeuronGroup:

neuron = SpatialNeuron (morphology=morpho, model=eqgs, threshold='v > 0xmV', refractory=
—'v > =10+mV")

Here spikes are detected when the membrane potential v reaches 0 mV. Because there is generally no explicit reset in
this type of model (although it is possible to specify one), v remains above 0 mV for some time. To avoid detecting
spikes during this entire time, we specify a refractory period. In this case no spike is detected as long as v is greater
than -10 mV. Another possibility could be:

neuron = SpatialNeuron (morphology=morpho, model=eqgs, threshold='m > 0.5', refractory=
—'m > 0.4")

where m is the state variable for sodium channel activation (assuming this has been defined in the model). Here a spike
is detected when half of the sodium channels are open.

With the syntax above, spikes are detected in all compartments of the neuron. To detect them in a single compartment,
use the threshold_location keyword:

neuron = SpatialNeuron (morphology=morpho, model=eqgs, threshold='m > 0.5', threshold_
—location=30,

refractory="m > 0.4")

In this case, spikes are only detecting in compartment number 30. Reset then applies locally to that compartment (if a
reset statement is defined). Again the location of the threshold can be specified with spatial position:

neuron = SpatialNeuron (morphology=morpho, model=eqgs, threshold='m > 0.5',
threshold_location=morpho.axon[30*um],
refractory="m > 0.4")

3.12 Computational methods and efficiency

* Runtime code generation

* Standalone code generation

* Compiler settings
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Brian has several different methods for running the computations in a simulation. The default mode is Runtime
code generation, which runs the simulation loop in Python but compiles and executes the modules doing the actual
simulation work (numerical integration, synaptic propagation, etc.) in a defined target language. Brian will select the
best available target language automatically. On Windows, to ensure that you get the advantages of compiled code,
read the instructions on installing a suitable compiler in Windows. Runtime mode has the advantage that you can
combine the computations performed by Brian with arbitrary Python code specified as Net workOperation.

The fact that the simulation is run in Python means that there is a (potentially big) overhead for each simulated time
step. An alternative is to run Brian in with Standalone code generation — this is in general faster (for certain types of
simulations much faster) but cannot be used for all kinds of simulations. To enable this mode, add the following line
after your Brian import, but before your simulation code:

set_device ('cpp_standalone')

For detailed control over the compilation process (both for runtime and standalone code generation), you can change
the Compiler settings that are used.

The following topics are not essential for beginners.

3.12.1 Runtime code generation

Code generation means that Brian takes the Python code and strings in your model and generates code in one of several
possible different languages and actually executes that. The target language for this code generation process is set in
the codegen.target preference. By default, this preference is set to 'auto', meaning that it will chose a compiled
language target if possible and fall back to Python otherwise (it will also raise a warning in this case, set codegen.target
to 'numpy ' explicitly to avoid this warning). There are two compiled language targets for Python 2.x, 'weave'
(needing a working installation of a C++ compiler) and 'cython' (needing the Cython package in addition); for
Python 3.x, only 'cython' is available. If you want to chose a code generation target explicitly (e.g. because you
want to get rid of the warning that only the Python fallback is available), set the preference to ' numpy"', 'weave'
or 'cython"' at the beginning of your script:

from brian2 import =«
prefs.codegen.target = 'numpy' # use the Python fallback

See Preferences for different ways of setting preferences.

Warning:

Do not use the weave code generation targets when running multiple simulations in parallel. See
Known issues for more details.

You might find that running simulations in weave or Cython modes won’t work or is not as efficient as you were
expecting. This is probably because you’re using Python functions which are not compatible with weave or Cython.
For example, if you wrote something like this it would not be efficient:

from brian2 import =«
prefs.codegen.target = 'cython'
def f(x):
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return abs (x)
G = NeuronGroup (10000, 'dv/dt = —-x*f(x) : 1")

The reason is that the function £ (x) is a Python function and so cannot be called from C++ directly. To solve this
problem, you need to provide an implementation of the function in the target language. See Functions.

3.12.2 Standalone code generation

Brian supports generating standalone code for multiple devices. In this mode, running a Brian script generates source
code in a project tree for the target device/language. This code can then be compiled and run on the device, and
modified if needed. At the moment, the only “device” supported is standalone C++ code. In some cases, the speed
gains can be impressive, in particular for smaller networks with complicated spike propagation rules (such as STDP).

To use the C++ standalone mode, you only have to make very small changes to your script. The exact change depends
on whether your script has only a single run () (or Network. run ()) call, or several of them:

Single run call

At the beginning of the script, i.e. after the import statements, add:

set_device ('cpp_standalone')

The CPPStandaloneDevice.build function will be automatically called with default arguments right after the
run () call. If you need non-standard arguments then you can specify them as part of the set_device () call:

set_device ('cpp_standalone', directory='my_ directory', debug=True)

Multiple run calls

At the beginning of the script, i.e. after the import statements, add:

’set_device('cpp_standalone', build_on_run=False)

After the last run () call, call device.build () explicitly:

’device.build(directory:'output', compile=True, run=True, debug=False)

The build function has several arguments to specify the output directory, whether or not to compile and run the
project after creating it and whether or not to compile it with debugging support or not.

Multiple builds

To run multiple full simulations (i.e. multiple device.build calls, not just multiple run () calls as discussed
above), you have to reinitialize the device again:

device.reinit ()
device.activate ()

Note that the device “forgets” about all previously set build options provided to set_device () (most importantly
the build_on_run option, but also e.g. the directory), you’ll have to specify them as part of the Device.
activate call. Also, Device.activate will reset the defaultclock, you’ll therefore have to set its dt
after the activate call if you want to use a non-default value.
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Limitations

Not all features of Brian will work with C++ standalone, in particular Python based network operations and some
array based syntax suchas S.w[0, :] = ... will not work. If possible, rewrite these using string based syntax
and they should work. Also note that since the Python code actually runs as normal, code that does something like this
may not behave as you would like:

results = []

for val in vals:
# set up a network
run ()
results.append(result)

The current C++ standalone code generation only works for a fixed number of run statements, not with loops. If you
need to do loops or other features not supported automatically, you can do so by inspecting the generated C++ source
code and modifying it, or by inserting code directly into the main loop as follows:

device.insert_code('main', '''"
cout << "Testing direct insertion of code." << endl;

lll)

Variables
After a simulation has been run (after the run () call if set_device () has been called with build_on_run set

to True or after the Device.build call with run set to True), state variables and monitored variables can be
accessed using standard syntax, with a few exceptions (e.g. string expressions for indexing).

Multi-threading with OpenMP

Warning: OpenMP code has not yet been well tested and so may be inaccurate.

When using the C++ standalone mode, you have the opportunity to turn on multi-threading, if your C++ compiler is
compatible with OpenMP. By default, this option is turned off and only one thread is used. However, by changing the
preferences of the codegen.cpp_standalone object, you can turn it on. To do so, just add the following line in your
python script:

prefs.devices.cpp_standalone.openmp_threads = XX

XX should be a positive value representing the number of threads that will be used during the simulation. Note that
the speedup will strongly depend on the network, so there is no guarantee that the speedup will be linear as a function
of the number of threads. However, this is working fine for networks with not too small timestep (dt > 0.1ms), and
results do not depend on the number of threads used in the simulation.

Customizing the build process

In standalone mode, a standard “make file” is used to orchestrate the compilation and linking. To pro-
vide additional arguments to the make command (respectively nmake on Windows), you can use the de-
vices.cpp_standalone.extra_make_args_unix or devices.cpp_standalone.extra_make_args_windows preference. On
Linux, this preference is by default set to [ '—7j'] to enable parallel compilation. Note that you can also use these
arguments to overwrite variables in the make file, e.g. to use clang instead of the default gcc compiler:
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prefs.devices.cpp_standalone.extra_make_args_unix += ['CC=clang++']

3.12.3 Compiler settings

If using C++ code generation (either via weave, cython or standalone), the compiler settings can make a big difference
for the speed of the simulation. By default, Brian uses a set of compiler settings that switches on various optimizations
and compiles for running on the same architecture where the code is compiled. This allows the compiler to make use
of as many advanced instructions as possible, but reduces portability of the generated executable (which is not usually
an issue).

If there are any issues with these compiler settings, for example because you are using an older version of the C++
compiler or because you want to run the generated code on a different architecture, you can change the settings by man-
ually specifying the codegen.cpp.extra_compile_args preference (or by using codegen.cpp.extra_compile_args_gcc or
codegen.cpp.extra_compile_args_msvc if you want to specify the settings for either compiler only).

3.13 Converting from integrated form to ODEs

Brian requires models to be expressed as systems of first order ordinary differential equations, and the effect of spikes
to be expressed as (possibly delayed) one-off changes. However, many neuron models are given in integrated form.
For example, one form of the Spike Response Model (SRM; Gerstner and Kistler 2002) is defined as

V()= wi» PSP(t—t;) + Viest
i ti

where V (¢) is the membrane potential, Vg is the rest potential, w; is the synaptic weight of synapse 4, and ¢; are the
timings of the spikes coming from synapse %, and PSP is a postsynaptic potential function.

An example PSP is the a-function PSP(t) = (¢/7)e~*/7. For this function, we could rewrite the equation above in
the following ODE form:

dv

TE = Vrest — V+g
dg

T— = —
a -

g < g+ w; upon spike from synapse ¢

This could then be written in Brian as:

eqgs = T
dv/dt = (V_rest-V+g)/tau : 1

dg/dt = -g/tau : 1

G = NeuronGroup (N, egs, ...)

S = Synapses (G, G, 'w : 1', on_pre='g += w'")

To see that these two formulations are the same, you first solve the problem for the case of a single synapse and a
single spike at time 0. The initial conditions at t = 0 will be V(0) = Vjest, g(0) = w.

To solve these equations, let’s substitute s = ¢/7 and take derivatives with respect to s instead of ¢, set u = V' — Vest,
and assume w = 1. This gives us the equations v’ = g — u, ¢’ = —¢g with initial conditions u(0) = 0, g(0) = 1. At
this point, you can either consult a textbook on solving linear systems of differential equations, or just plug this into
Wolfram Alpha to get the solution g(s) = e~*, u(s) = se™*® which is equal to the PSP given above.
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Now we use the linearity of these differential equations to see that it also works when w # 0 and for summing over
multiple spikes at different times.

In general, to convert from integrated form to ODE form, see K6hn and Worgotter (1998), Sanchez-Montadds (2001),
and Jahnke et al. (1999). However, for some simple and widely used types of synapses, use the list below. In this
list, we assume synapses are postsynaptic potentials, but you can replace V' (¢) with a current or conductance for
postsynaptic currents or conductances. In each case, we give the Brian code with unitless variables, where eqgs is the
differential equations for the target NeuronGroup, and on_pre is the argument to Synapses.

Exponential synapse V (t) = e~ */7:

T

eqgs =
dv/dt = -V/tau : 1
Tra

on_pre = 'V += w'

Alpha synapse V (t) = (t/7)e"!/":

T

eqgs =
dv/dt = (x-V)/tau : 1
dx/dt = -x/tau 1
on_pre = 'x += w'

V() reaches a maximum value of w/e at time ¢t = 7.

: : _ —t —t .
Biexponential synapse V(1) = % (e~ "/ — e71/™):
egs = v
dv/dt = ((tau_2 / tau_l) ** (tau_l / (tau_2 - tau_l))x*xx-V)/tau_1l : 1
dx/dt = —-x/tau_2 1
on_pre = 'x += w'

V() reaches a maximum value of w at time ¢t = -2 log (7—2)
To—T1 T1

STDP

The weight update equation of the standard STDP is also often stated in an integrated form and can be converted to an
ODE form. This is covered in Tutorial 2.
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CHAPTER 4

Advanced guide

This section has additional information on details not covered in the User’s guide.

4.1 Functions

All equations, expressions and statements in Brian can make use of mathematical functions. However, functions have
to be prepared for use with Brian for two reasons: 1) Brian is strict about checking the consistency of units, therefore
every function has to specify how it deals with units; 2) functions need to be implemented differently for different
code generation targets.

Brian provides a number of default functions that are already prepared for use with numpy and C++ and also provides
a mechanism for preparing new functions for use (see below).

4.1.1 Default functions

The following functions (stored in the DEFAULT_FUNCTIONS dictionary) are ready for use:

* Random numbers: rand (), randn () (Note that these functions should be called without arguments, the code
generation process will take care of generating an array of numbers for numpy).

* Elementary functions: sqrt, exp, log, 1ogl0, abs, sign
¢ Trigonometric functions: sin, cos, tan, sinh, cosh, tanh, arcsin, arccos, arctan
* General utility functions: clip, floor, ceil

Brian also provides a special purpose function int, which can be used to convert a an expression or variable into an
integer value. This is especially useful for boolean values (which will be converted into O or 1), for example to have
a conditional evaluation as part of an equation or statement which sometimes allows to circumvent the lack of an i f
statement. For example, the following reset statement resets the variable v to either v_r1 or v_r2, depending on the
valueof w: 'v = v_rl x int(w <= 0.5) + v_r2 * int(w > 0.5)"
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4.1.2 User-provided functions

Python code generation

If a function is only used in contexts that use Python code generation, preparing a function for use with Brian only
means specifying its units. The simplest way to do this is to use the check_units () decorator:

@check_units (xl=meter, yl=meter, x2=meter, y2=meter, result=meter)
def distance(x1l, vy1, x2, y2):
return sqgrt ((x1l - x2)*%x2 + (yl1 — y2)*%x2)

Another option is to wrap the function in a Funct ion object:

def distance(xl, y1l, x2, y2):
return sqrt ((x1 — x2)*%2 + (yl — y2)*%2)
# wrap the distance function
distance = Function(distance, arg_units=[meter, meter, meter, meter],
return_unit=meter)

The use of Brian’s unit system has the benefit of checking the consistency of units for every operation but at the
expense of performance. Consider the following function, for example:

@check_units (I=amp, result=Hz)
def piecewise_linear(I):
return clip((I-1+nA) = 50«Hz/nA, OxHz, 100xHz)

When Brian runs a simulation, the state variables are stored and passed around without units for performance reasons.
If the above function is used, however, Brian adds units to its input argument so that the operations inside the function
do not fail with dimension mismatches. Accordingly, units are removed from the return value so that the function
output can be used with the rest of the code. For better performance, Brian can alter the namespace of the function
when it is executed as part of the simulation and remove all the units, then pass values without units to the function.
In the above example, this means making the symbol nA refer to 1e-9 and Hz to 1. To use this mechanism, add the
decorator implementation () withthe discard_units keyword:

@implementation ('numpy', discard_units=True)
@check_units (I=amp, result=Hz)
def piecewise_linear (I):

return clip((I-1+nA) * 50+«Hz/nA, OxHz, 100+Hz)

Note that the use of the function outside of simulation runs is not affected, i.e. using piecewise_linear still
requires a current in Ampere and returns a rate in Hertz. The discard_units mechanism does not work in all cases,
e.g. it does not work if the function refers to units as brian?2 . nA instead of na, if it uses imports inside the function
(e.g. from brian2 import nA),etc. The discard_units can also be switched on for all functions without
having to use the implementation () decorator by setting the codegen.runtime.numpy.discard_units preference.

Other code generation targets

To make a function available for other code generation targets (e.g. C++), implementations for these targets have to
be added. This can be achieved using the implementation () decorator. The form of the code (e.g. a simple
string or a dictionary of strings) necessary is target-dependent, for C++ both options are allowed, a simple string will
be interpreted as filling the ' support_code' block. Note that both 'cpp' and 'weave' can be used to provide
C++ implementations, the first should be used for generic C++ implementations, and the latter if weave-specific code
is necessary. An implementation for the C++ target could look like this:
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@implementation('cpp', '''
double piecewise_linear (double I) {
if (I < 1le-9)
return 0;
if (I > 3e-9)
return 100;
return (I/le-9 - 1) x 50;
}
)
@check units (I=amp, result=Hz)
def piecewise_linear(I):
return clip((I-1+nA) = 50+Hz/nA, OxHz, 100xHz)

Alternatively, Funct ionImplementation objects can be added to the Funct ion object.

The same sort of approach as for C++ works for Cython using the 'cython' target. The example above would look
like this:

@implementation('cython', '''
cdef double piecewise_linear (double I):
if I<le-9:
return 0.0
elif I>3e-9:
return 100.0
return (I/1le-9-1) x50
)
@check _units (I=amp, result=Hz)
def piecewise_linear(I):
return clip((I-1+nA) = 50xHz/nA, OxHz, 100xHz)

Arrays vs. scalar values in user-provided functions

Equations, expressions and abstract code statements are always implicitly referring to all the neurons in a
NeuronGroup, all the synapses in a Synapses object, etc. Therefore, function calls also apply to more than a
single value. The way in which this is handled differs between code generation targets that support vectorized ex-
pressions (e.g. the numpy target) and targets that don’t (e.g. the weave target or the cpp_standalone mode).
If the code generation target supports vectorized expressions, it will receive an array of values. For example, in the
piecewise_linear example above, the argument I will be an array of values and the function returns an array
of values. For code generation without support for vectorized expressions, all code will be executed in a loop (over
neurons, over synapses, ... ), the function will therefore be called several times with a single value each time.

In both cases, the function will only receive the “relevant” values, meaning that if for example a function is evaluated
as part of a reset statement, it will only receive values for the neurons that just spiked.

Additional namespace

Some functions need additional data to compute a result, e.g. a TimedArray needs access to the underlying array.
For the numpy target, a function can simply use a reference to an object defined outside the function, there is no need
to explicitly pass values in a namespace. For the other code language targets, values can be passed in the namespace
argument of the implementation () decorator or the add_implementation method. The namespace values
are then accessible in the function code under the given name, prefixed with _namespace. Note that this mechanism
should only be used for numpy arrays or general objects (e.g. function references to call Python functions from weave
or Cython code). Scalar values should be directly included in the function code, by using a “dynamic implemention”
(see add_dynamic_implementation).
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See TimedArray and BinomialFunction for examples that use this mechanism.

Data types

By default, functions are assumed to take any type of argument, and return a floating point value. If you want to put
a restriction on the type of an argument, or specify that the return type should be something other than float, either
declare it as a Funct ion (and see its documentation on specifying types) or use the declare types () decorator,

e.g.:

@check_units (a=1, b=1, result=1)
@declare_types (a='integer', result='highest')
def f(a, b):

return axb

This is potentially important if you have functions that return integer or boolean values, because Brian’s code genera-
tion optimisation step will make some potentially incorrect simplifications if it assumes that the return type is floating
point.

4.2 Preferences

Brian has a system of global preferences that affect how certain objects behave. These can be set either in scripts by
using the prefs object or in a file. Each preference looks like codegen.c.compiler, i.e. dotted names.

4.2.1 Accessing and setting preferences

Preferences can be accessed and set either keyword-based or attribute-based. The following are equivalent:

prefs['codegen.c.compiler'] = 'gcc'
prefs.codegen.c.compiler = 'gcc'

Using the attribute-based form can be particulary useful for interactive work, e.g. in ipython, as it offers autocom-
pletion and documentation. In ipython, prefs.codegen.c? would display a docstring with all the preferences
available in the codegen. c category.

4.2.2 Preference files
Preferences are stored in a hierarchy of files, with the following order (each step overrides the values in the previous
step but no error is raised if one is missing):

* The global defaults are stored in the installation directory.

¢ The user default are storedin ~/ .brian/user_preferences (which works on Windows as well as Linux).
The ~ symbol refers to the user directory.

e The file brian_preferences in the current directory.

The preference files are of the following form:

a.b.c =1
# Comment line
[al

b.d = 2
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[a.b]
b.e = 3

This would set preferences a.b.c=1,a.b.d=2and a.b.e=3.

4.2.3 List of preferences

Brian itself defines the following preferences (including their default values):

GSL

Directory containing GSL code

GSL.directory =None Set path to directory containing GSL header files (gsl_odeiv2.h etc.) If this directory is
already in Python’s include (e.g. because of conda installation), this path can be set to None.

codegen

Code generation preferences codegen.loop_invariant_optimisations = True

Whether to pull out scalar expressions out of the statements, so that they are only evaluated once instead
of once for every neuron/synapse/... Can be switched off, e.g. because it complicates the code (and the
same optimisation is already performed by the compiler) or because the code generation target does not
deal well with it. Defaults to True.

codegen.string_expression_target = "'numpy'

Default target for the evaluation of string expressions (e.g. when indexing state variables). Should nor-
mally not be changed from the default numpy target, because the overhead of compiling code is not worth
the speed gain for simple expressions.

Accepts the same arguments as codegen.target, except for 'auto’
codegen.target = 'auto'
Default target for code generation.
Can be a string, in which case it should be one of:
e 'auto' the default, automatically chose the best code generation target available.

* 'weave' uses scipy.weave to generate and compile C++ code, should work anywhere where
gcc is installed and available at the command line.

e 'cython', uses the Cython package to generate C++ code. Needs a working installation of Cython
and a C++ compiler.

e '"numpy ' works on all platforms and doesn’t need a C compiler but is often less efficient.
Or it can be a CodeObject class.
codegen.cpp
C++ compilation preferences codegen.cpp.compiler=""
Compiler to use (uses default if empty)
Should be gcc or msvc.

codegen.cpp.define_macros = []
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List of macros to define; each macro is defined using a 2-tuple, where ‘value’ is either the string to define
it to or None to define it without a particular value (equivalent of “#define FOO” in source or -DFOO on
Unix C compiler command line).

codegen.cpp.extra_compile_args =None

Extra arguments to pass to compiler (if None, use either extra_compile_args_gcc or
extra_compile_args_msvc).

codegen.cpp.extra_compile_args_gcc = ["-w', '-03', '—-ffast-math',
'-fno-finite-math-only', '-march=native']

Extra compile arguments to pass to GCC compiler
codegen.cpp.extra_compile_args_msvc=['/Ox', '/w', '/arch:SSE2', '/MP']

Extra compile arguments to pass to MSVC compiler (the default /arch: flagis determined based on the
processor architecture)

codegen.cpp.extra_link_args =[]
Any extra platform- and compiler-specific information to use when linking object files together.
codegen.cpp.headers =[]

A list of strings specifying header files to use when compiling the code. The list might look like [“<vec-
tor>",*“‘my_header’”’]. Note that the header strings need to be in a form than can be pasted at the end of a

#include statement in the C++ code.

LEL)

codegen.cpp.include_dirs =[]

Include directories to use. Note that Sprefix/include will be appended to the end automatically,
where $Sprefix is Python’s site-specific directory prefix as returned by sys.prefix.

codegen.cpp.libraries =[]
List of library names (not filenames or paths) to link against.
codegen.cpp.library_dirs =[]

List of directories to search for C/C++ libraries at link time. Note that Sprefix/1ib will be appended
to the end automatically, where $prefix is Python’s site-specific directory prefix as returned by sys.
prefix.

codegen.cpp.msvc_architecture=""

MSVC architecture name (or use system architectue by default).

Could take values such as x86, amd64, etc.
codegen.cpp.msvc_vars_location=""

Location of the MSVC command line tool (or search for best by default).
codegen.cpp.runtime_library_dirs =[]

List of directories to search for C/C++ libraries at run time.
codegen.generators
Codegen generator preferences (see subcategories for individual languages)
codegen.generators.cpp

C++ codegen preferences codegen.generators.cpp.flush_denormals =False
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Adds code to flush denormals to zero.

The code is gcc and architecture specific, so may not compile on all platforms. The code, for reference is:

#define CSR_FLUSH_TO_ZERO (1 << 15)
unsigned csr = __builtin_ia32_stmxcsr();
csr |= CSR_FLUSH_TO_ZERO;

__builtin_ia32_ldmxcsr(csr);

Found at http://stackoverflow.com/questions/2487653/avoiding-denormal- values-in-c.
codegen.generators.cpp.restrict_keyword="'_ restrict'

The keyword used for the given compiler to declare pointers as restricted.

This keyword is different on different compilers, the default works for gcc and MSVS.
codegen.runtime
Runtime codegen preferences (see subcategories for individual targets)
codegen.runtime.cython
Cython runtime codegen preferences codegen.runtime.cython.cache_dir =None

Location of the cache directory for Cython files. By default, will be stored in a
brian_extensions subdirectory where Cython inline stores its temporary files (the result of
get_cython_cache_dir ()).

codegen.runtime.cython.multiprocess_safe =True

Whether to use a lock file to prevent simultaneous write access to cython .pyx and .so files.
codegen.runtime.numpy
Numpy runtime codegen preferences codegen.runtime.numpy.discard_units =False

Whether to change the namespace of user-specifed functions to remove units.

core

Core Brian preferences core.default_float_dtype = float64

Default dtype for all arrays of scalars (state variables, weights, etc.).

Currently, this is not supported (only float64 can be used).
core.default_integer_dtype=1int32

Default dtype for all arrays of integer scalars.
core.outdated_dependency_error =True

Whether to raise an error for outdated dependencies (True) or just a warning (False).
core.network

Network preferences core.network.default_schedule=['start', 'groups', 'thresholds',
'synapses', 'resets', 'end']

Default schedule used for networks that don’t specify a schedule.
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devices

Device preferences
devices.cpp_standalone
C++ standalone preferences devices.cpp_standalone.extra_make_args_unix=['-3"]

Additional flags to pass to the GNU make command on Linux/OS-X. Defaults to “-j” for parallel compi-
lation.

devices.cpp_standalone.extra_make_args_windows = []
Additional flags to pass to the nmake command on Windows. By default, no additional flags are passed.
devices.cpp_standalone.openmp_spatialneuron_strategy =None

Which strategy to chose for solving the three tridiagonal systems with OpenMP: 'branches' means
to solve the three systems sequentially, but for all the branches in parallel, ' systems' means to solve
the three systems in parallel, but all the branches within each system sequentially. The 'branches'
approach is usually better for morphologies with many branches and a large number of threads, while the
'systems' strategy should be better for morphologies with few branches (e.g. cables) and/or simula-
tions with no more than three threads. If not specified (the default), the ' systems' strategy will be used
when using no more than three threads or when the morphology has less than three branches in total.

devices.cpp_standalone.openmp_threads =0

The number of threads to use if OpenMP is turned on. By default, this value is set to 0 and the C++ code is
generated without any reference to OpenMP. If greater than 0, then the corresponding number of threads
are used to launch the simulation.

devices.cpp_standalone.run_environment_variables = {'LD_BIND_NOW': '1'}

Dictionary of environment variables and their values that will be set during the execution of the standalone
code.

logging

Logging system preferences 1ogging.console_log_level = 'INFO'

What log level to use for the log written to the console.

Has to be one of CRITICAL, ERROR, WARNING, INFO, DEBUG or DIAGNOSTIC.
logging.delete_log_on_exit =True

Whether to delete the log and script file on exit.

If set to True (the default), log files (and the copy of the main script) will be deleted after the brian
process has exited, unless an uncaught exception occured. If set to False, all log files will be kept.

logging.file_log=True
Whether to log to a file or not.

If set to True (the default), logging information will be written to a file. The log level can be set via the
logging.file_log_level preference.

logging.file_log_level = 'DIAGNOSTIC'
What log level to use for the log written to the log file.

In case file logging is activated (see logging.file_log), which log level should be used for logging. Has to
be one of CRITICAL, ERROR, WARNING, INFO, DEBUG or DIAGNOSTIC.
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logging.save_script =True
Whether to save a copy of the script that is run.

If set to True (the default), a copy of the currently run script is saved to a temporary location. It is
deleted after a successful run (unless logging.delete_log_on_exit is False) but is kept after an uncaught
exception occured. This can be helpful for debugging, in particular when several simulations are running
in parallel.

logging.std_redirection=True
Whether or not to redirect stdout/stderr to null at certain places.

This silences a lot of annoying compiler output, but will also hide error messages making it harder to debug
problems. You can always temporarily switch it off when debugging. If logging.std_redirection_to_file is
set to True as well, then the output is saved to a file and if an error occurs the name of this file will be
printed.

logging.std_redirection_to_file=True
Whether to redirect stdout/stderr to a file.

If both 1logging.std_redirection and this preference are set to True, all standard output/error
(most importantly output from the compiler) will be stored in files and if an error occurs the name of this
file will be printed. If logging.std_redirection is True and this preference is False, then all standard
output/error will be completely suppressed, i.e. neither be displayed nor stored in a file.

The value of this preference is ignore if logging.std_redirection is set to False.

4.3 Logging

Brian uses a logging system to display warnings and general information messages to the user, as well as writing them
to a file with more detailed information, useful for debugging. Each log message has one of the following “log levels”:

ERROR Only used when an exception is raised, i.e. an error occurs and the current operation is interrupted. Example:
You use a variable name in an equation that Brian does not recognize.

WARNING Brian thinks that something is most likely a bug, but it cannot be sure. Example: You use a Synapses
object without any synapses in your simulation.

INFO Brian wants to make the user aware of some automatic choice that it did for the user. Example: You did not
specify an integration method for a NeuronGroup and therefore Brian chose an appropriate method for you.

DEBUG Additional information that might be useful when a simulation is not working as expected. Example: The
integration timestep used during the simulation.

DIAGNOSTIC Additional information useful when tracking down bugs in Brian itself. Example: The generated code
for a CodeOb ject.

By default, all messages are written to the log file and all messages of level INFO and above are displayed on the
console. To change what messages are displayed, see below.

Note: By default, the log file is deleted after a successful simulation run, i.e. when the simulation exited without an
error. To keep the log around, set the logging.delete_log_on_exit preference to False.
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4.3.1 Showing/hiding log messages

If you want to change what messages are displayed on the console, you can call a method of the method of
BrianLogger:

BrianLogger.log_level_debug() # now also display debug messages

It is also possible to suppress messages for certain sub-hierarchies by using BrianLogger.
suppress_hierarchy:

# Suppress code generation messages on the console

BrianLogger.suppress_hierarchy ('brian2.codegen')

# Suppress preference messages even in the log file

BrianLogger.suppress_hierarchy('brian2.core.preferences',
filter_log_file=True)

Similarly, messages ending in a certain name can be suppressed with BrianLogger. suppress_name:

# Suppress resolution conflict warnings
BrianLogger.suppress_name ('resolution conflict")

These functions should be used with care, as they suppresses messages independent of the level, i.e. even warning and
error messages.

4.3.2 Preferences

You can also change details of the logging system via Brian’s Preferences system. With this mechanism, you can
switch the logging to a file off completely (by setting logging.file_log to False) or have it log less messages (by setting
logging.file_log_level to alevel higher than DIAGNOSTIC) — this can be important for long-running simulations where
the log might otherwise take up a lot of disk space. For a list of all preferences related to logging, see the documentation
ofthe brian2.utils.logger module.

Warning: Most of the logging preferences are only taken into account during the initialization of the logging sys-
tem which takes place as soon as brian? is imported. Therefore, if youuse e.g. prefs.logging.file_log
= False in your script, this will not have the intended effect! Instead, set these preferences in a file (see Prefer-
ences).

4.4 Namespaces

Equat ions can contain references to external parameters or functions. During the initialisation of a NeuronGroup
or a Synapses object, this namespace can be provided as an argument. This is a group-specific namespace that will
only be used for names in the context of the respective group. Note that units and a set of standard functions are
always provided and should not be given explicitly. This namespace does not necessarily need to be exhaustive at the
time of the creation of the NeuronGroup/Synapses, entries can be added (or modified) at a later stage via the
namespace attribute (e.g. G.namespace['tau'] = 10*ms).

At the point of the call to the Network. run () namespace, any group-specific namespace will be augmented by the
“run namespace”. This namespace can be either given explicitly as an argument to the run method or it will be taken
from the locals and globals surrounding the call. A warning will be emitted if a name is defined in more than one
namespace.
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To summarize: an external identifier will be looked up in the context of an object such as NeuronGroup or
Synapses. It will follow the following resolution hierarchy:

1. Default unit and function names.
2. Names defined in the explicit group-specific namespace.
3. Names in the run namespace which is either explicitly given or the implicit namespace surrounding the run call.

Note that if you completely specify your namespaces at the Group level, you should probably pass an empty dictionary
as the namespace argument to the run call — this will completely switch off the “implicit namespace” mechanism.

The following three examples show the different ways of providing external variable values, all having the same effect
in this case:

# Explicit argument to the NeuronGroup

G = NeuronGroup(l, 'dv/dt = -v / tau : 1', namespace={'tau': 10+ms})
net = Network (G)

net.run (10+ms)

# Explicit argument to the run function

G = NeuronGroup(l, 'dv/dt = -v / tau : 1")
net = Network (G)
net.run(10xms, namespace={'tau': 10xms})

# Implicit namespace from the context

G = NeuronGroup(l, 'dv/dt = -v / tau : 1")
net = Network (G)
tau = 10+*ms

net.run (10+ms)

External variables are free to change between runs (but not during one run), the value at the time of the run () call is
used in the simulation.

4.5 Custom progress reporting

4.5.1 Progress reporting
For custom progress reporting (e.g. graphical output, writing to a file, etc.), the report keyword accepts a callable
(i.e. a function or an object witha __call__ method) that will be called with four parameters:

* elapsed: the total (real) time since the start of the run

e completed: the fraction of the total simulation that is completed, i.e. a value between 0 and 1

* start: The start of the simulation (in biological time)

e duration: the total duration (in biological time) of the simulation

The function will be called every report_period during the simulation, but also at the beginning and end with
completed equal to 0.0 and 1.0, respectively.

For the C++ standalone mode, the same standard options are available. It is also possible to implement custom progress
reporting by directly passing the code (as a multi-line string) to the report argument. This code will be filled into
a progress report function template, it should therefore only contain a function body. The simplest use of this might
look like:

net.run (duration, report='std::cout << (int) (completedx100.) << " ompleted" <<_,
—std::endl; ")
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Examples of custom reporting

Progress printed to a file

from brian2.core.network import TextReport
report_file = open('report.txt', 'w')
file_reporter = TextReport (report_file)
net.run (duration, report=file_reporter)
report_file.close ()

“Graphical” output on the console
This needs a “normal” Linux console, i.e. it might not work in an integrated console in an IDE.

Adapted from http://stackoverflow.com/questions/3160699/python-progress-bar

import sys

class ProgressBar (object) :
def _ init_ (self, toolbar_width):
self.toolbar_width = toolbar_width
self.ticks = 0

def _ _call_(self, elapsed, complete, start, duration):
if complete == 0.0:
# setup toolbar
sys.stdout .write (" [ 1" (" " % self.toolbar_width))

sys.stdout.flush()
sys.stdout.write ("\b" * (self.toolbar_width + 1)) # return to start of,
—~line, after '['
else:
ticks_needed = int (round(complete * 40))
if self.ticks < ticks_needed:

sys.stdout.write("-" % (ticks_needed-self.ticks))
sys.stdout.flush ()
self.ticks = ticks_needed

if complete == 1.0:

sys.stdout.write ("\n")

net.run (duration, report=progress_bar, report_period=1l+second)

4.6 Random numbers

Brian provides two basic functions to generate random numbers that can be used in model code and equations:
rand (), to generate uniformly generated random numbers between 0 and 1, and randn (), to generate random
numbers from a standard normal distribution (i.e. normally distributed numbers with a mean of 0 and a standard
deviation of 1). All other stochastic elements of a simulation (probabilistic connections, Poisson-distributed input
generated by PoissonGroup or PoissonInput, differential equations using the noise term x1i, ...) will inter-
nally make use of these two basic functions.

For Runtime code generation, random numbers are generated by numpy . random. rand and numpy . random.
randn respectively, which uses a Mersenne-Twister pseudorandom number generator. When the numpy code gen-
eration target is used, these functions are called directly, but for weave and cython, Brian uses a internal buffers
for uniformly and normally distributed random numbers and calls the numpy functions whenever all numbers from
this buffer have been used. This avoids the overhead of switching between C code and Python code for each ran-
dom number. For Standalone code generation, the random number generation is based on “randomkit”, the same
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Mersenne-Twister implementation that is used by numpy. The source code of this implementation will be included in
every generated standalone project.

4.6.1 Seeding and reproducibility
Runtime mode

As explained above, Runtime code generation makes use of numpy’s random number generator. In principle, us-
ing numpy . random. seed therefore permits reproducing a stream of random numbers. However, for weave and
cython, Brian’s buffer complicates the matter a bit: if a simulation sets numpy’s seed, uses 10000 random numbers,
and then resets the seed, the following 10000 random numbers (assuming the current size of the buffer) will come
out of the pre-generated buffer before numpy’s random number generation functions are called again and take into
account the seed set by the user. Instead, users should use the seed () function provided by Brian 2 itself, this will
take care of setting numpy’s random seed and empty Brian’s internal buffers. This function also has the advantage
that it will continue to work when the simulation is switched to standalone code generation (see below). Note that
random numbers are not guaranteed to be reproducible across different code generation targets or different versions of
Brian, especially if several sources of randomness are used in the same CodeOb ject (e.g. two noise variables in the
equations of a NeuronGroup). This is because Brian does not guarantee the order of certain operations (e.g. should
it first generate all random numbers for the first noise variable for all neurons, followed by the random numbers for
the second noise variable for all neurons or rather first the random numbers for all noice variables of the first neuron,
then for the second neuron, etc.) Since all random numbers are coming from the same stream of random numbers, the
order of getting the numbers out of this stream matter.

Standalone mode

For Standalone code generation, Brian’s seed () function will insert code to set the random number generator seed
into the generated code. The code will be generated at the position where the seed () call was made, allowing
detailed control over the seeding. For example the following code would generate identical initial conditions every
time it is run, but the noise generated by the x1i variable would differ:

G = NeuronGroup (10, 'dv/dt = -v/(10*ms) + 0.l%xi/sqrt (ms) : 1")
seed (4321)

G.v = 'rand()'

seed ()

run (100+ms)

Note: In standalone mode, seed () will not set numpy’s random number generator. If you use random numbers
in the Python script itself (e.g. to generate a list of synaptic connections that will be passed to the standalone code
as a pre-calculated array), then you have to explicitly call numpy . random. seed yourself to make these random
numbers reproducible.

Note: Seeding should lead to reproducible random numbers even when using OpenMP with multiple threads (for
repeated simulations with the same number of threads), but this has not been rigorously tested. Use at your own risk.
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4.7 Custom events

4.7.1 Overview

In most simulations, a NeuronGroup defines a threshold on its membrane potential that triggers a spike event. This
event can be monitored by a SpikeMonitor, itis used in synaptic interactions, and in integrate-and-fire models it
also leads to the execution of one or more reset statements.

Sometimes, it can be useful to define additional events, e.g. when an ion concentration in the cell crosses a certain
threshold. This can be done with the custom events system in Brian, which is illustrated in this diagram.

NeuronGroup G Synapses NeuronGroup

spike /_\ spike
evt_other W

evt_mon

evt_run v

G.run_on_event EventMonitor

You can see in this diagram that the source NeuronGroup has four types of events, called spike, evt_other,
evt_mon and evt_run. The event spike is the default event. It is triggered when you you include
threshold="'..."' in a NeuronGroup, and has two potential effects. Firstly, when the event is triggered it
causes the reset code to run, specified by reset="..."'. Secondly, if there are Synapses connected, it causes
the on_pre on on_post code to run (depending if the NeuronGroup is presynaptic or postsynaptic for those
Synapses).

In the diagram though, we have three additional event types. We’ve included several event types here to make it clearer,
but you could use the same event for different purposes. Let’s start with the first one, evt_other. To understand this,
we need to look at the Synapses object in a bit more detail. A Synapses object has multiple pathways associated
to it. By default, there are just two, called pre and post. The pre pathway is activated by presynaptic spikes, and
the post pathway by postsynaptic spikes. Specifically, the spike event on the presynaptic NeuronGroup triggers
the pre pathway, and the spike event on the postsynaptic NeuronGroup triggers the post pathway. In the
example in the diagram, we have created a new pathway called ot her, and the evt_other event in the presynaptic
NeuronGroup triggers this pathway. Note that we can arrange this however we want. We could have spike trigger
the other pathway if we wanted to, or allow it to trigger both the pre and other pathways. We could also allow
evt_other to trigger the pre pathway. See below for details on the syntax for this.
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The third type of event in the example is named evt_mon and this is connected to an EventMonitor which
works exactly the same way as SpikeMonitor (which is justan EventMonitor attached by default to the event
spike).

Finally, the fourth type of event in the example is named evt_run, and this causes some code to be run in the
NeuronGroup triggered by the event. To add this code, we call NeuronGroup.run_on_event (). So, when
you set reset="...", this is equivalent to calling NeuronGroup. run_on_event () with the spike event.

4.7.2 Details
Defining an event

This can be done with the event s keyword in the NeuronGroup initializer:

group = NeuronGroup(N, '...', threshold='...', reset='...",
events={'custom_event': 'x > x_th'})

In this example, we define an event with the name custom_event that is triggered when the x variable crosses the
threshold x_ th. Note that you can define any number of custom events. Each event is defined by its name as the key,
and its condition as the value of the dictionary.

Recording events

Custom events can be recorded with an EventMonitor:

event_mon = EventMonitor (group, 'custom_event')

Such an EventMonitor can be used in the same way as a SpikeMonitor —in fact, creating the SpikeMonitor
is basically identical to recording the spike event with an EventMonitor. An EventMonitor is not limited to
record the event time/neuron index, it can also record other variables of the model at the time of the event:

event_mon = EventMonitor (group, 'custom_event', variables['varl', 'wvar2'])

Triggering NeuronGroup code

If the event should trigger a series of statements (i.e. the equivalent of reset statements), this can be added by calling
run_on_event:

group.run_on_event ('custom_event', 'x=0")

Triggering synaptic pathways

When neurons are connected by Synapses, the pre and post pathways are triggered by spike events on the
presynaptic and postsynaptic NeuronGroup by default. It is possible to change which pathway is triggered by which
event by providing an on_event keyword that either specifies which event to use for all pathways, or a specific event
for each pathway (where non-specified pathways use the default spike event):

synapse_1 = Synapses (group, another_group, '...', on_pre='...', on_event='custom_ event

o)

The code above causes all pathways to be triggered by an event named custom_event instead of the default spike.

4.7. Custom events 173




Brian 2 Documentation, Release 2.1

synapse_2 = Synapses (group, another_group, '...', on_pre='...', on_post='...",
on_event={'pre': 'custom_event'})

In the code above, only the pre pathway is triggered by the custom_event event.

We can also create new pathways and have them be triggered by custom events. For example:

synapse_3 = Synapses (group, another_group, '...',
on_pre={'pre': "....",
'custom_pathway': '...'},
on_event={'pre': 'spike',
'custom_pathway': 'custom_event'})

In this code, the default pre pathway is still triggered by the spike event, but there is a new pathway called
custom_pathway that is triggered by the custom_event event.

Scheduling

By default, custom events are checked after the spiking threshold (in the after_thresholds slots) and statements
are executed after the reset (in the after_resets slots). The slot for the execution of custom event-triggered
statements can be changed when it is added with the usual when and order keyword arguments (see Scheduling for
details). To change the time when the condition is checked, use NeuronGroup. set_event_schedule ().

4.8 State update

In Brian, a state updater transforms a set of equations into an abstract state update code (and therefore is automatically
target-independent). In general, any function (or callable object) that takes an Equat i ons object and returns abstract
code (as a string) can be used as a state updater and passed to the NeuronGroup constructor as a met hod argument.

The more common use case is to specify no state updater at all or chose one by name, see Choice of state updaters
below.

4.8.1 Explicit state update

Explicit state update schemes can be specified in mathematical notation, using the ExplicitStateUpdater class.
A state updater scheme contains a series of statements, defining temporary variables and a final line (starting with
x_new =), giving the updated value for the state variable. The description can make reference to t (the current time),
dt (the size of the time step), x (value of the state variable), and f (x, t) (the definition of the state variable x,
assuming dx/dt = f(x, t). In addition, state updaters supporting stochastic equations additionally make use
of dW (a normal distributed random variable with variance dt) and g (x, t), the factor multiplied with the noise
variable, assuming dx/dt = f(x, t) + g(x, t) = xi.

Using this notation, simple forward Euler integration is specified as:

x_new = x + dt * f(x, t)

A Runge-Kutta 2 (midpoint) method is specified as:

k = dt « f(x,t)
Xx_new = x + dt » f(x + k/2, t + dt/2)

When creating a new state updater using ExplicitStateUpdater, you can specify the stochastic
keyword argument, determining whether this state updater does not support any stochastic equations (None,
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the default), stochastic equations with additive noise only ('additive'), or arbitrary stochastic equations
("multiplicative'). The provided state updaters use the Stratonovich interpretation for stochastic equations
(which is the correct interpretation if the white noise source is seen as the limit of a coloured noise source with a
short time constant). As a result of this, the simple Euler-Maruyama scheme (x_new = x + dt«f(x, t) +
dW+g (x, t))will only be used for additive noise.

An example for a general state updater that handles arbitrary multiplicative noise (under Stratonovich interpretation)
is the derivative-free Milstein method:

x_support = x + dtxf(x, t) + dtx».5 » g(x, t)
g_support = g(x_support, t)

k = 1/(2+dt*+*.5) % (g_support — g(x, t))+* (dWx=x2)
x_new = x + dtxf(x,t) + g(x, t) » dwWw + k

Note that a single line in these descriptions is only allowed to mention g (x, t), respectively £ (x, t) only once
(and you are not allowed to write, for example, g (£ (x, t), t)). Youcan work around these restrictions by using
intermediate steps, defining temporary variables, as in the above examples for mi 1stein and rk2.

4.8.2 Choice of state updaters

As mentioned in the beginning, you can pass arbitrary callables to the method argument of a NeuronGroup, as long
as this callable converts an Equat ions object into abstract code. The best way to add a new state updater, however,
is to register it with brian and provide a method to determine whether it is appropriate for a given set of equations.
This way, it can be automatically chosen when no method is specified and it can be referred to with a name (i.e. you
can pass a string like 'euler' to the method argument instead of importing euler and passing a reference to the
object itself).

If you create a new state updater using the ExplicitStateUpdater class, you have to specify what kind of
stochastic equations it supports. The keyword argument st ochastic takes the values None (no stochastic equation
support, the default), 'additive' (support for stochastic equations with additive noise), 'multiplicative’
(support for arbitrary stochastic equations).

After creating the state updater, it has to be registered with StateUpdateMethod:

new_state_updater = ExplicitStateUpdater('...', stochastic='additive')
StateUpdateMethod.register ('mymethod', new_state_updater)

The preferred way to do write new general state updaters (i.e. state updaters that cannot be described using the explicit
syntax described above) is to extend the StateUpdateMethod class (but this is not strictly necessary, all that is
needed is an object that implements a ___call__ method that operates on an Equat i ons object and a dictionary of
variables). Optionally, the state updater can be registered with St ateUpdateMethod as shown above.

4.8.3 Implicit state updates

Note: All of the following is just here for future reference, it’s not implemented yet.

Implicit schemes often use Newton-Raphson or fixed point iterations. These can also be defined by mathematical
statements, but the number of iterations is dynamic and therefore not easily vectorised. However, this might not be a
big issue in C, GPU or even with Numba.

Backward Euler

Backward Euler is defined as follows:
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x (t+dt) =x(t)+dt+~f (x (t+dt),t+dt)

This is not a executable statement because the RHS depends on the future. A simple way is to perform fixed point
iterations:

x (t+dt) =x(t)
x (t+dt) =x (t) +dt +«dx=f (x (t+dt) , t+dt) until increment<tolerance

This includes a loop with a different number of iterations depending on the neuron.

4.9 How Brian works

In this section we will briefly cover some of the internals of how Brian works. This is included here to understand the
general process that Brian goes through in running a simulation, but it will not be sufficient to understand the source
code of Brian itself or to extend it to do new things. For a more detailed view of this, see the documentation in the
Developer’s guide.

4.9.1 Clock-driven versus event-driven

Brian is a clock-driven simulator. This means that the simulation time is broken into an equally spaced time grid, O,
dt, 2*dt, 3*dt, .... At each time step t, the differential equations specifying the models are first integrated giving the
values at time t+dt. Spikes are generated when a condition such as v>vt is satisfied, and spikes can only occur on the
time grid.

The advantage of clock driven simulation is that it is very flexible (arbitrary differential equations can be used) and
computationally efficient. However, the time grid approximation can lead to an overestimate of the amount of syn-
chrony that is present in a network. This is usually not a problem, and can be managed by reducing the time step dt,
but it can be an issue for some models.

Note that the inaccuracy introduced by the spike time approximation is of order O(dt), so the total accuracy of the
simulation is of order O(dt) per time step. This means that in many cases, there is no need to use a higher order
numerical integration method than forward Euler, as it will not improve the order of the error beyond O(dt). See State
update for more details of numerical integration methods.

Some simulators use an event-driven method. With this method, spikes can occur at arbitrary times instead of just
on the grid. This method can be more accurate than a clock-driven simulation, but it is usually substantially more
computationally expensive (especially for larger networks). In addition, they are usually more restrictive in terms of
the class of differential equations that can be solved.

For a review of some of the simulation strategies that have been used, see Brette et al. 2007.

4.9.2 Code overview

The user-visible part of Brian consists of a number of objects such as NeuronGroup, Synapses, Network, etc.
These are all written in pure Python and essentially work to translate the user specified model into the computational
engine. The end state of this translation is a collection of short blocks of code operating on a namespace, which are
called in a sequence by the Network. Examples of these short blocks of code are the “state updaters” which perform
numerical integration, or the synaptic propagation step. The namespaces consist of a mapping from names to values,
where the possible values can be scalar values, fixed-length or dynamically sized arrays, and functions.
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4.9.3 Syntax layer

The syntax layer consists of everything that is independent of the way the final simulation is computed (i.e. the lan-
guage and device it is running on). This includes things like NeuronGroup, Synapses, Network, Equations,
etc.

The user-visible part of this is documented fully in the User’s guide and the Advanced guide. In particular, things such
as the analysis of equations and assignment of numerical integrators. The end result of this process, which is passed
to the computational engine, is a specification of the simulation consisting of the following data:

* A collection of variables which are scalar values, fixed-length arrays, dynamically sized arrays, and functions.
These are handled by Variable objects detailed in Variables and indices. Examples: each state variable of
a NeuronGroup is assigned an ArrayVariable; the list of spike indices stored by a SpikeMonitor is
assigned a DynamicArrayVariable; etc.

¢ A collection of code blocks specified via an “abstract code block™ and a template name. The “abstract code
block” is a sequence of statements such as v = vr which are to be executed. In the case that say, v and vr
are arrays, then the statement is to be executed for each element of the array. These abstract code blocks are
either given directly by the user (in the case of neuron threshold and reset, and synaptic pre and post codes),
or generated from differential equations combined with a numerical integrator. The template name is one of a
small set (around 20 total) which give additional context. For example, the code block a = b when considered
as part of a “‘state update” means execute that for each neuron index. In the context of a reset statement, it means
execute it for each neuron index of a neuron that has spiked. Internally, these templates need to be implemented
for each target language/device, but there are relatively few of them.

* The order of execution of these code blocks, as defined by the Network.

4.9.4 Computational engine

The computational engine covers everything from generating to running code in a particular language or on a particular
device. It starts with the abstract definition of the simulation resulting from the syntax layer described above.

The computational engine is described by a Device object. This is used for allocating memory, generating and
running code. There are two types of device, “runtime” and “standalone”. In runtime mode, everything is managed
by Python, even if individual code blocks are in a different language. Memory is managed using numpy arrays (which
can be passed as pointers to use in other languages). In standalone mode, the output of the process (after calling
Device.build) is a complete source code project that handles everything, including memory management, and is
independent of Python.

For both types of device, one of the key steps that works in the same way is code generation, the creation of a
compilable and runnable block of code from an abstract code block and a collection of variables. This happens in two
stages: first of all, the abstract code block is converted into a code snippet, which is a syntactically correct block of
code in the target language, but not one that can run on its own (it doesn’t handle accessing the variables from memory,
etc.). This code snippet typically represents the inner loop code. This step is handled by a CodeGenerator object.
In some cases it will involve a syntax translation (e.g. the Python syntax xx*y in C++ should be pow (x, y)).
The next step is to insert this code snippet into a template to form a compilable code block. This code block is then
passed to a runtime CodeOb ject. In the case of standalone mode, this doesn’t do anything, but for runtime devices
it handles compiling the code and then running the compiled code block in the given namespace.

4.10 Interfacing with external code

Some neural simulations benefit from a direct connections to external libraries, e.g. to support real-time input from
a sensor (but note that Brian currently does not offer facilities to assure real-time processing) or to perform complex
calculations during a simulation run.
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If the external library is written in Python (or is a library with Python bindings), then the connection can be made
either using the mechanism for User-provided functions, or using a network operation.

In case of C/C++ libraries, only the User-provided functions mechanism can be used. On the other hand, such simu-
lations can use the same user-provided C++ code to run both with the runtime weave target and with the Standalone
code generation mode. In addition to that code, one generally needs to include additional header files and use com-
piler/linker options to interface with the external code. For this, several preferences can be used that will be taken into
account for weave, cython and the cpp_standalone device. These preferences are mostly equivalent to the
respective keyword arguments for Python’s distutils.core.Extension class, see the documentation of the
cpp_prefs module for more details.
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CHAPTER B

Examples

5.1 Example: COBAHH

This is an implementation of a benchmark described in the following review paper:

Simulation of networks of spiking neurons: A review of tools and strategies (2006). Brette, Rudolph, Carnevale,
Hines, Beeman, Bower, Diesmann, Goodman, Harris, Zirpe, Natschldger, Pecevski, Ermentrout, Djurfeldt, Lansner,
Rochel, Vibert, Alvarez, Muller, Davison, El Boustani and Destexhe. Journal of Computational Neuroscience

Benchmark 3: random network of HH neurons with exponential synaptic conductances
Clock-driven implementation (no spike time interpolation)

18. Brette - Dec 2007

from brian2 import =«

# Parameters

area = 20000+xumetrex=2

Cm = (lxufaradxcmxx—2) % area

gl = (5e-5xsiemens*cmx*—-2) % area
El = -60+mV

EK = -90+mV

ENa = 50+mV

g_na = (l00Oxmsiemens*cmxx—2) % area
g_kd = (30x*msiemensxcm**-2) = area
VT = -63+mV

# Time constants

taue = 5xms

taui = 10*ms

# Reversal potentials

Ee = 0*mV

Ei = -80+mV
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we = 6*nS # excitatory synaptic weight
67xnS # inhibitory synaptic weight

=
-
Il

# The model
egs = Equations('''
dv/dt = (gl (El-v)+ge* (Ee-v)+gix (Ei-v) -

g_nax* (mxm*m) xhx (v-ENa) —

g_kd* (nxn*n*n) x (v—EK) ) /Cm : volt
dm/dt = alpha_mx (1-m)-beta_m*m : 1
dn/dt = alpha_nx*(l-n)-beta_n*n : 1
dh/dt = alpha_hx (1-h)-beta_hxh : 1
dge/dt = -gex* (l./taue) : siemens
dgi/dt = -gi*(l./taui) : siemens
alpha_m = 0.32% (mV**—1) % (13*mV-v+VT) /

(exp ((13*mV—-v+VT)/ (4*mV))—-1.) /ms : Hz
beta_m = 0.28%x (mVx*x—1) % (v—=VT—-40+mV) /

(exp ((v=VT-40+mV) / (5*mV) ) —-1) /ms : Hz
alpha_h = 0.128%exp ((17+*mV-v+VT)/ (18+mV))/ms : Hz
beta_h = 4./ (l+exp ((40*mV-v+VT)/ (5xmV))) /ms : Hz
alpha_n = 0.032% (mV**=1) % (15+mV-v+VT) /

(exp ((15*mV—-v+VT) / (5+mV))—-1.) /ms : Hz
beta_n = .5%xexp ((10*mV-v+VT)/ (40*xmV))/ms : Hz
)

P = NeuronGroup (4000, model=eqgs, threshold='v>-20xmV', refractory=3+ms,
method="exponential_ euler'")

Pe = P[:3200]

Pi = P[3200:]

Ce = Synapses (Pe, P, on_pre='get=we')

Ci = Synapses(Pi, P, on_pre='git+=wi')

Ce.connect (p=0.02)

Ci.connect (p=0.02)

# Initialization

P.v = '"E1l + (randn() * 5 — 5)*mV'
P.ge = '"(randn() * 1.5 + 4) % 10.%xnS'
P.gi = '(randn() % 12 + 20) % 10.%nS'

# Record a few traces

trace = StateMonitor (P, 'v', record=[1l, 10, 100])
run(l % second, report='text')

plot (trace.t/ms, trace[l].v/mV)

plot (trace.t/ms, trace[l0].v/mV)

plot (trace.t/ms, trace[100].v/mV)

xlabel ('t (ms)')

ylabel ('v (mV) ")

show ()
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5.2 Example: CUBA

This is a Brian script implementing a benchmark described in the following review paper:

Simulation of networks of spiking neurons: A review of tools and strategies (2007). Brette, Rudolph, Carnevale, Hines,
Beeman, Bower, Diesmann, Goodman, Harris, Zirpe, Natschlager, Pecevski, Ermentrout, Djurfeldt, Lansner, Rochel,
Vibert, Alvarez, Muller, Davison, El Boustani and Destexhe. Journal of Computational Neuroscience 23(3):349-98

Benchmark 2: random network of integrate-and-fire neurons with exponential synaptic currents.

Clock-driven implementation with exact subthreshold integration (but spike times are aligned to the grid).

from brian2 import x

taum = 20+ms

taue = 5xms

taui = 10xms

vt = -50+xmV

Vr = —60+xmV

El = -49xmV

egs = ]

dv/dt = (ge+gi-(v-El))/taum : volt (unless refractory)
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dge/dt = —-ge/taue : volt
dgi/dt = —-gi/taui : volt

[

P = NeuronGroup (4000, egs, threshold='v>Vt', reset='v = Vr', refractory=5*ms,
method="exact")

P.v = 'Vr + rand() %= (Vt - Vr)'

P.ge = 0xmV

P.gi = 0xmV

we = (60x0.27/10)+«mV # (voltage)
wi = (-20%x4.5/10)+mV #

Ce = Synapses (P, P, on_pre='ge += we')

Ci = Synapses (P, P, on_pre='gi += wi')

Ce.connect ('1<3200', p=0.02)
Ci.connect ('i>=3200"', p=0.02)

s_mon = SpikeMonitor (P)

run (1l = second)

plot (s_mon.t/ms, s_mon.i, ', k")
xlabel ('Time (ms) ")

ylabel ('Neuron index')
show ()
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5.3 Example: IF_curve_Hodgkin_Huxley

Input-Frequency curve of a HH model. Network: 100 unconnected Hodgin-Huxley neurons with an input current I.
The input is set differently for each neuron.

This simulation should use exponential Euler integration.

from brian2 import =«

num_neurons = 100
duration = 2xsecond

# Parameters

area = 20000xumetrex+*2

Cm = lxufaradxcm**-2 * area

gl = Se-5xsiemens*cmx*—2 % area
El = —65+mV

EK = -90*mV

ENa = 50+mV

g_na = 100+msiemens*cmx*—2 * area
g_kd = 30*msiemens*cmx*—2 % area
VT = —-63+xmV

# The model

egs = Equations('''
dv/dt = (gl*(El-v) - g_nax* (mxm*m)+hx (v-ENa) - g_kdx (nxn*nxn)x (v-EK) + I)/Cm : volt
dm/dt = 0.32* (mV**—1)* (13.+*mV-v+VT) /

(exp ((13.+mV-v+VT)/ (4.xmV))-1.)/ms* (1-m)—-0.28% (mV**—1) x (v=VT-40.+mV) /

(exp ((v=VT-40.xmV) /(5.%mV))~-1.)/ms*m : 1
dn/dt = 0.032x (mVx%=1) % (15.+mV-v+VT) /

(exp ((15.+mV-v+VT) /(5.+mV))~-1.)/ms*(l.-n)—-.5xexp ((10.+mV-v+VT)/ (40.+mV)) /ms*n : 1
dh/dt = 0.128xexp ((17. mV-v+VT)/ (18.xmV))/ms* (l.-h)-4./ (l+exp ((40.+mV-v+VT)/ (5.+mV)))/
—msxh : 1
I : amp
)

# Threshold and refractoriness are only used for spike counting
group = NeuronGroup (num_neurons, eds,
threshold='v > —40xmV',
refractory='v > —-40+mV',
method="'exponential_ euler'")
group.v = El
group.I = '0.7«nA % i / num_neurons'

monitor = SpikeMonitor (group)

run (duration)

plot (group.I/nA, monitor.count / duration)
xlabel ('I (nA)")

ylabel ('Firing rate (sp/s)")
show ()
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5.4 Example: IF_curve_ LIF

Input-Frequency curve of a IF model. Network: 1000 unconnected integrate-and-fire neurons (leaky IF) with an input
parameter vO. The input is set differently for each neuron.

from brian2 import =«

n = 1000

duration = lxsecond

tau = 10+*ms

egs = '"!'

dv/dt = (vO - v) / tau : volt (unless refractory)

v0 : volt

group = NeuronGroup (n, egs, threshold='v > 10+xmV', reset='v = 0xmV',
refractory=5+ms, method='exact')

group.v = 0*xmV

group.v0 = '20+mV x i / (n-1)"

monitor = SpikeMonitor (group)

run (duration)
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plot (group.v0/mV, monitor.count / duration)
xlabel ("v0 (mV) ")

ylabel ('Firing rate (sp/s)')

show ()
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5.5 Example: adaptive_threshold

A model with adaptive threshold (increases with each spike)

T T
15.0 17.5 20.0

from brian2 import =«

T

eqgs =
dv/dt = -v/(10*ms) : volt

dvt/dt = (10xmV-vt)/ (15*ms) : volt
Tra

reset = '"!'

v = 0*xmV

vt += 3xmV

IF = NeuronGroup(l, model=eqgs, reset=reset,

threshold="v>vt',
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method="'exact")
IF.vt = 10xmV
PG = PoissonGroup(l, 500 = Hz)

C = Synapses (PG, IF, on_pre='v += 3xmV")
C.connect ()

Mv = StateMonitor (IF, 'v', record=True)

Mvt = StateMonitor (IF, 'vt', record=True)

# Record the value of v when the threshold is crossed
M_crossings = SpikeMonitor (IF, variables='v"')

run (2+xsecond, report='text')

subplot (1, 2, 1)

plot (Mv.t / ms, Mv[0].v / mV)

plot (Mvt.t / ms, Mvt[0].vt / mV)

ylabel ('v (mV) ")

xlabel ('t (ms)')

# zoom in on the first 100ms

x1im (0, 100)

subplot (1, 2, 2)

hist (M_crossings.v / mV, bins=np.arange (10, 20, 0.5))
xlabel ('v at threshold crossing (mV)')

show ()
17.5 1
25 1
15.0
20 1
12.5 1
_ 10.0 -+ 15 -
=
E
= 7.5+
10
5.0 4
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5.6 Example: non_reliability

Reliability of spike timing. See e.g. Mainen & Sejnowski (1995) for experimental results in vitro.

Here: a constant current is injected in all trials.

from brian2 import =«

N = 25

tau = 20*ms

sigma = .015

egs_neurons = '"'

dx/dt = (1.1 - x) / tau + sigma » (2 / tau)**.5 % xi : 1 (unless refractory)
Tra

neurons = NeuronGroup (N, model=egs_neurons, threshold='x > 1', reset='x = 0',

refractory=5+ms,
spikes = SpikeMonitor (neurons)

run (500+ms)

plot (spikes.t/ms, spikes.i, '.k'")
xlabel ('"Time (ms) ")

ylabel ('Neuron index')

method='euler')

show ()
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5.7 Example: phase_locking

Phase locking of IF neurons to a periodic input.

from brian2 import =«

tau = 20+*ms
n = 100
b = 1.2 # constant current mean, the modulation varies

freqg = 10xHz

egs = '"!'

dv/dt = (-v + a % sin(2 % pi » freqg » t) + b) / tau : 1

a 1

neurons = NeuronGroup (n, model=eqgs, threshold='v > 1', reset='v = 0',
method='euler')

neurons.v = 'rand()'

neurons.a = '0.05 + 0.7%1/n"'

S = SpikeMonitor (neurons)

trace = StateMonitor (neurons, 'v', record=50)

run (1000+ms)

subplot (211)

plot (S.t/ms, S.i, '.k'")
xlabel ('Time (ms) ")
ylabel ('Neuron index')
subplot (212)

plot (trace.t/ms, trace.v.T)
xlabel ('Time (ms) ")
ylabel ('v")
tight_layout ()

show ()
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5.8 Example: reliability

Reliability of spike timing. See e.g. Mainen & Sejnowski (1995) for experimental results in vitro.

T
1000

from brian2 import =«

# The common noisy input
N = 25
tau_input = 5*ms

input = NeuronGroup(l, 'dx/dt = -x / tau_input + (2 /tau_input)*x.5 * xi :

# The noisy neurons receiving the same input

tau = 10*ms

sigma = .015

egs_neurons = "''

dx/dt = (0.9 + .5 » I - x) / tau + sigma * (2 / tau)*x.5 » xi : 1

I : 1 (linked)

Tra

neurons = NeuronGroup (N, model=egs_neurons, threshold='x > 1',
reset="'x = 0', refractory=5xms, method='euler'")

neurons.x = 'rand()'

neurons.I = linked_var (input,

")

x') # input.x is continuously fed into neurons.I

5.8. Example: reliability
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spikes = SpikeMonitor (neurons)

run (500+ms)

plt.plot (spikes.t/ms, spikes.i, '.k')
xlabel ('Time (ms) ')

ylabel ('Neuron index')

show ()
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5.9 advanced

5.9.1 Example: compare_GSL_to_conventional

Example using GSL ODE solvers with a variable time step and comparing it to the Brian solver.

For highly accurate simulations, i.e. simulations with a very low desired error, the GSL simulation with a variable time
step can be faster because it uses a low time step only when it is necessary. In biologically detailed models (e.g. of the
Hodgkin-Huxley type), the relevant time constants are very short around an action potential, but much longer when the
neuron is near its resting potential. The following example uses a very simple neuron model (leaky integrate-and-fire),
but simulates a change in relevant time constants by changing the actual time constant every 10ms, independently for
each of 100 neurons. To accurately simulate this model with a fixed time step, the time step has to be very small,
wasting many unnecessary steps for all the neurons where the time constant is long.
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Note that using the GSL ODE solver is much slower, if both methods use a comparable number of steps, i.e. if the
desired accuracy is low enough so that a single step per “Brian time step” is enough.

from brian2 import =«
import time

# Run settings

start_dt = .1 % ms
method = 'rk2'
error = l.e-6 # requested accuracy

def runner (method, dt, options=None) :

seed (0)

I =25

group = NeuronGroup (100, '"''dv/dt = (-v + I)/tau : 1

tau : second''',

method=method,
method_options=options,
dt=dt)

group.run_regularly ('''v = rand/()

tau = 0.1xms + rand()*9.9xms''', dt=10*ms)
rec_vars = ['v', 'tau']
if 'gsl' in method:
rec_vars += ['_step_count']
net = Network (group)

net.run (0 = ms)

mon = StateMonitor (group, rec_vars, record=True, dt=start_dt)
net .add (mon)

start = time.time ()

net.run(l » second)

mon.add_attribute ('run_time')

mon.run_time = time.time () - start

return mon

lin = runner('linear', start_dt)
method_options = {'save_step_count': True,
'absolute_error': error,
'max_steps': 10000}
gsl = runner('gsl_ ¢s' % method, start_dt, options=method_options)

print ("Running with GSL integrator and variable time step:")

o

print ('Run time: 2.37fs' % gsl.run_time)

# check gsl error
assert np.max (np.abs (

lin.v - gsl.v)) < error, "Maximum error gsl integration too large: $f" % np.max(
np.abs(lin.v - gsl.v))

print ("average step count: 2.17f" % np.mean(gsl._step_count))

print ("average absolute error: %g" % np.mean(np.abs(gsl.v - lin.v)))

print ("\nRunning with exact integration and fixed time step:")
dt = start_dt

count = 0

dts = []

avg_errors = []

max_errors = []
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runtimes = []
while True:
print ('Using dt: %s' % str(dt))
brian = runner (method, dt)
print ('\tRun time: £.3fs' % brian.run_time)
avg_errors.append (np.mean (np.abs (brian.v - lin.v))
max_errors.append (np.max (np.abs (brian.v - lin.v)))
dts.append(dt)
runtimes.append (brian.run_time)
if np.max(np.abs(brian.v - lin.v)) > error:
print ('\tError too high (%g), decreasing dt' % np.max(

)

np.abs(brian.v - lin.v)))
dt »= .5
count += 1
else:
break

print ("Desired error level achieved:")
print ("average step count: $.2fs" % (start_dt / dt))

o

print ("average absolute error: %g" % np.mean(np.abs(brian.v - lin.v)))

print ('Run time: $.3fs' % brian.run_time)
if brian.run_time > gsl.run_time:

print ("This is %.1f times slower than the simulation with GSL's variable "
"time step method." % (brian.run_time / gsl.run_time))
else:
print ("This is %.1f times faster than the simulation with GSL's variable "
"time step method." % (gsl.run_time / brian.run_time))

fig, (axl, ax2) = plt.subplots(l, 2)
ax2.axvline (le-6, color='gray')
for label, gsl_error, std_errors, ax in [ ('average absolute error', np.mean(np.
—abs(gsl.v - lin.v)), avg_errors, axl),
('maximum absolute error', np.max(np.abs(gsl.
—~v — lin.v)), max_errors, ax2)]:
ax.set (xscale="log', yscale='log'")
ax.plot ([], [1, 'o', color='CO'"', label='fixed time step') # for the legend entry
for (error, runtime, dt) in zip(std_errors, runtimes, dts):
ax.plot (error, runtime, 'o', color='C0")
ax.annotate('%s' % str(dt), xy=(error, runtime), xytext=(2.5, 5),
textcoords='offset points', color='C0")
ax.plot (gsl_error, gsl.run_time, 'o', color='Cl', label='variable time step (GSL)
—")
ax.set (xlabel=label, xlim=(10%%-10, 10xx%1))
axl.set_ylabel ('runtime (s)"')
ax2.legend(loc="lower left')

plt.show ()
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5.9.2 Example: custom_events

Example demonstrating the use of custom events.

Here we have three neurons, the first is Poisson spiking and connects to neuron G, which in turn connects to neuron H.
Neuron G has two variables v and g, and the incoming Poisson spikes cause an instantaneous increase in variable g. g
decays rapidly, and in turn causes a slow increase in v. If v crosses a threshold, it causes a standard spike and reset. If
g crosses a threshold, it causes a custom event gspike, and if it returns below that threshold it causes a custom event
end_gspike. The standard spike event when v crosses a threshold causes an instantaneous increase in variable X in
neuron H (which happens through the standard pre pathway in the synapses), and the gspike event causes an increase
in variable y (which happens through the custom pathway gpath).

from brian2 import =«

# Input Poisson spikes

inp = PoissonGroup(l, rates=250xHz)

# First group G

egqs_G = ""!

dv/dt = (g-v)/(50xms) : 1

dg/dt = -g/(10xms) : 1

allow_gspike : boolean

Tra

G = NeuronGroup(l, egs_G, threshold='v>1",
reset='v = 0; g = 0; allow_gspike = True;"',
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events={'gspike': 'g>1 and allow_gspike"',
'end_gspike': 'g<l and not allow_gspike'})
G.run_on_event ('gspike', 'allow_gspike = False')
G.run_on_event ('end_gspike', 'allow_gspike = True')
# Second group H
egqs_H = '"'!
dx/dt -x/(10*ms) : 1
dy/dt -y/ (10*ms) : 1

[

H = NeuronGroup (l, egs_H)

# Synapses from input Poisson group to G
Sin = Synapses (inp, G, on_pre='g += 0.5")
Sin.connect ()

# Synapses from G to H

S = Synapses (G, H,

on_pre={'pre': 'x += 1",
'gpath': 'y += 1"},
on_event={'pre': 'spike',
'gpath': 'gspike'})

S.connect ()

# Monitors

Mstate = StateMonitor (G, ('v', 'g'), record=True)
Mgspike = EventMonitor (G, 'gspike', 'g')

Mspike = SpikeMonitor (G, 'v')

MHstate = StateMonitor (H, ('x', 'y'), record=True)

# Initialise and run

G.allow_gspike = True

run (500+ms)

# Plot

figure (figsize=(10, 4))

subplot (121)

plot (Mstate.t/ms, Mstate.g[0], '-g', label='g'")

plot (Mstate.t/ms, Mstate.v[0], '-b', lw=2, label='V")
plot (Mspike.t/ms, Mspike.v, 'ob', label='_nolegend_ ")
plot (Mgspike.t/ms, Mgspike.g, 'og', label='_nolegend_ ')
xlabel ('Time (ms) ")

title('Presynaptic group G')

legend (loc="best")

subplot (122)

plot (MHstate.t/ms, MHstate.y[0], '-r', label='y'")
plot (MHstate.t/ms, MHstate.x[0], '-k', lw=2, label='x")
xlabel ('"Time (ms) ")

title('Postsynaptic group H')

legend (loc="best")

tight_layout ()

show ()
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5.9.3 Example: opencv_movie

An example that uses a function from external C library (OpenCV in this case). Works for all C-based code generation
targets (i.e. for weave and cpp_standalone device) and for numpy (using the Python bindings).

This example needs a working installation of OpenCV2 and its Python bindings. It has been tested on Ubuntu 14.04
with OpenCV 2.4.8 (libopencv-dev and python-opencv packages).

import os

import urllib2

import cv2 # Import OpenCV2

import cv2.cv as cv # Import the cv subpackage, needed for some constants

from brian2 import =«

defaultclock.dt = lxms
prefs.codegen.target = 'weave'
prefs.logging.std_redirection = False
set_device ('cpp_standalone')

filename = os.path.abspath ('Megamind.avi')

if not os.path.exists(filename) :
print ('Downloading the example video file')
response = urllib2.urlopen('http://docs.opencv.org/2.4/_downloads/Megamind.avi')
data = response.read()
with open(filename, 'wb') as f:
f.write (data)

video = cv2.VideoCapture (filename)

width, height, frame_count = (int (video.get (cv.CV_CAP_PROP_FRAME_WIDTH)),
int (video.get (cv.CV_CAP_PROP_FRAME_HEIGHT)),
int (video.get (cv.CV_CAP_PROP_FRAME_COUNT) ))

fps = 24

time_between_frames = lxsecond/fps

# Links the necessary libraries
prefs.codegen.cpp.libraries += ['opencv_core',
'opencv_highgui']

5.9. advanced 195




Brian 2 Documentation, Release 2.1

# Includes the header files in all generated files
prefs.codegen.cpp.headers += ['<opencv2/core/core.hpp>"',
'<opencv2/highgui/highgui.hpp>"]

# Pass 1n values as macros
# Note that in general we could also pass in the filename this way, but to get
# the string quoting right 1is unfortunately quite difficult
prefs.codegen.cpp.define_macros += [('VIDEO_WIDTH', width),
('"VIDEO_HEIGHT', height)]
@implementation('cpp', '''
doublex get_frame (bool new_frame)
{
// The following initializations will only be executed once
static cv::VideoCapture source ("VIDEO_FILENAME");
static cv::Mat frame;
static doublex grayscale_frame = (doublex)malloc (VIDEO_WIDTH*VIDEO_
—HEIGHT*sizeof (double));
if (new_frame)
{
source >> frame;
double mean_value = 0;
for (int row=0; row<VIDEO_HEIGHT; row++)
for (int col=0; col<VIDEO_WIDTH; col++)
{
const double grayscale_value = (frame.at<cv::Vec3b>(row, col) [0]
frame.at<cv::Vec3b> (row, col) [1]
frame.at<cv::Vec3b> (row, col) [2])

~ + +

(3.
—~0%128);
mean_value += grayscale_value / (VIDEO_WIDTH = VIDEO_HEIGHT) ;
grayscale_frame[rowxVIDEO_WIDTH + col] = grayscale_value;
}
// subtract the mean
for (int i=0; 1<VIDEO_HEIGHT*VIDEO_WIDTH; i++)
grayscale_frame[i] -= mean_value;
}

return grayscale_frame;

double video_input (const int x, const int y)
{
// Get the current frame (or a new frame in case we are asked for the first
// element
double *frame = get_frame (x==0 && y==0);
return frame[y*VIDEO_WIDTH + x];
}
''"'" . replace ('VIDEO_FILENAME', filename))
@check_units (x=1, y=1, result=1)
def video_input(x, y):
# we assume this will only be called in the custom operation (and not for
# example in a reset or synaptic statement), so we don't need to do indexing
# but we can directly return the full result
_, frame = video.read()
grayscale = frame.mean (axis=2)
grayscale /= 128. # scale everything between 0 and 2
return grayscale.ravel () - grayscale.ravel () .mean()
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N = width % height
tau, tau_th = 10+ms, time_between_frames
G = NeuronGroup(N, '''dv/dt = (-v + I)/tau : 1
dv_th/dt = -v_th/tau_th : 1
row : integer (constant)
column : integer (constant)
I : 1 # input current''',
threshold='v>v_th', reset='v=0; v_th = 3%xv_th + 1.0'",
method="exact")

G.v_th =1

G.row = 'i/width'

G.column = 'i%width'

G.run_regularly ('l = video_input (column, row)',
dt=time_between_frames)

mon = SpikeMonitor (G)

runtime = frame_count+time_between_frames

run (runtime, report='text')
device.build(compile=True, run=True)

# Avoid going through the whole Brian2 indexing machinery too much
i, t, row, column = mon.i[:], mon.t[:], G.row[:], G.column[:]

import matplotlib.animation as animation

# TODO: Use overlapping windows
stepsize = 100xms
def next_spikes():
step = next_spikes.step
if stepxstepsize > runtime:
next_spikes.step=0
raise StopIteration()
spikes = i[(t>=step*stepsize) & (t<(step+tl)=xstepsize)]
next_spikes.step += 1
yield column[spikes], row[spikes]
next_spikes.step = 0

fig, ax = plt.subplots|()
dots, = ax.plot([], [], 'k.', markersize=2, alpha=.25)
ax.set_x1im (0, width)
ax.set_ylim (0, height)
ax.invert_yaxis ()
def run(data):
x, y = data
dots.set_data(x, vy)

ani = animation.FuncAnimation(fig, run, next_spikes, blit=False, repeat=True,
repeat_delay=1000)
plt.show ()

5.9.4 Example: stochastic_odes

Demonstrate the correctness of the “derivative-free Milstein method” for multiplicative noise.
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from brian2 import =«

# We only get exactly the same random numbers for the exact solution and the
# simulation if we use the numpy code generation target

prefs.codegen.target = 'numpy'

# setting a random seed makes all variants use exactly the same Wiener process
seed = 12347

X0 =1

mu = 0.5/second # drift

sigma = 0.1/second #diffusion
runtime = Ilxsecond

def simulate (method, dt):

rro

simulate geometrical Brownian with the given method

rrr

np.random. seed (seed)

G = NeuronGroup(l, 'dX/dt = (mu - 0.5+«secondssigma*=*2)*X + Xsxsigmaxxixseconds*.5:
f—>l',

dt=dt, method=method)

G.X = X0

mon StateMonitor (G, 'X', record=True)

net = Network (G, mon)

net.run(runtime)

return mon.t_[:], mon.X.flatten ()

def exact_solution(t, dt):
Return the exact solution for geometrical Brownian motion at the given
time points
# Remove units for simplicity
my_mu = float (mu)
my_sigma = float (sigma)
dt = float (dt)
t = asarray(t)

np.random. seed (seed)

# We are calculating the values at the xstart* of a time step, as when using
# a StateMonitor. Therefore the Brownian motion starts with zero

brownian = np.hstack ([0, cumsum(sgrt (dt) = np.random.randn (len(t)-1))1)

return (X0 * exp((my_mu - 0.5xmy_sigmaxx2)« (t+dt) + my_sigmaxbrownian))

figure(l, figsize=(1l6, 7))
figure (2, figsize=(16, 7))

methods = ['milstein', 'heun']

dts = [l#ms, 0.5+ms, 0.2+ms, O0.lxms, 0.05+ms, 0.025xms, 0.0l+ms, 0.005+ms]
rows = floor (sgrt (len(dts)))

cols = ceil (1.0 x= len(dts) / rows)

errors = dict ([ (method, zeros(len(dts))) for method in methods])

for dt_idx, dt in enumerate (dts) :
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print ('dt: $s' %
trajectories = {}
# Test the numerical methods
for method in methods:

t, trajectories[method] =
# Calculate the exact solution
exact = dt)

dt)

simulate (method, dt)

exact_solution (t,

for method in methods:
# plot the trajectories

figure (1)
subplot (rows, cols, dt_idx+1)
plot (t, trajectories[method], label=method,

# determine the mean absolute error

alpha=0.75)

errors[method] [dt_idx] = mean (abs(trajectories[method] - exact))
# plot the difference to the real trajectory
figure (2)
subplot (rows, cols, dt_idx+1)
plot (t, trajectories[method] - exact, label=method, alpha=0.75)
figure (1)
plot (t, exact, color='gray', 1lw=2, label='exact', alpha=0.75)
title('dt = %s' % str(dt))
xticks ([])
figure (1)
legend (frameon=False, loc='best"')
tight_layout ()
figure (2)
legend (frameon=False, loc='best")
tight_layout ()
figure (3)
for method in methods:
plot (array(dts) / ms, errors[method], 'o', label=method)
legend (frameon=False, loc='best")
xscale('log")
yscale('log")
xlabel ('dt (ms) ")
ylabel ('Mean absolute error')

tight_layout ()

show ()
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5.10 compartmental

5.10.1 Example: bipolar_cell

101

10°

A pseudo MSO neuron, with two dendrites and one axon (fake geometry).

from brian2 import =«

# Morphology
morpho = Soma (30+um)

morpho.axon = Cylinder (diameter=1xum,
morpho.L = Cylinder (diameter=1+um,
morpho.R = Cylinder (diameter=1x*um,

# Passive channels

gL = le-4+siemens/cm*«2

EL = -70+mV

egs="""

Im = gL » (EL - v) : amp/meterx*2
I : amp (point current)

length=300*um,
length=100+*um,
length=150+*um,

n=100)

n=50)
n=50)

5.10. compartmental

201




Brian 2 Documentation, Release 2.1

neuron = SpatialNeuron (morphology=morpho, model=egs,

Cm=1+uF/cm+*2, Ri=100+ohm+cm, method='exponential euler")
neuron.v = EL
neuron.Il = Oxamp

# Monitors

mon_soma = StateMonitor (neuron, 'v', record=[0])

mon_L = StateMonitor (neuron.L, 'v', record=True)

mon_R = StateMonitor (neuron, 'v', record=morpho.R[75xum])

run (1+ms)

neuron.I[morpho.L[50xum]] = 0.2+nA # injecting in the left dendrite
run (5+*ms)

neuron.I = Oxamp

run (50*ms, report='text')

subplot (211)

plot (mon_L.t/ms, mon_soma[0].v/mV, 'k'")

plot (mon_L.t/ms, mon_L[morpho.L[50xum]].v/mV, 'r')

plot (mon_L.t/ms, mon_R[morpho.R[75+um]].v/mV, 'b'")

ylabel ('v (mV) ")

subplot (212)

for x in linspace (0Oxum, 100xum, 10, endpoint=False):
plot (mon_L.t/ms, mon_L[morpho.L[x]].v/mV)

xlabel ("Time (ms) ")

ylabel ('v (mV) ")

show ()
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5.10.2 Example: bipolar_with_inputs

A pseudo MSO neuron, with two dendrites (fake geometry). There are synaptic inputs.

from brian2 import =«

# Morphology

morpho = Soma (30+um)

morpho.L = Cylinder (diameter=1+um, length=100xum, n=50)
morpho.R = Cylinder (diameter=1xum, length=100xum, n=50)

# Passive channels

gL = le-4xsiemens/cmx~*2

EL = -70+mV

Es = 0*mV

egs="""

Im = gL+ (EL-v) : amp/meterxx2

Is = gsx(Es-v) : amp (point current)

gs : siemens

Tra

neuron = SpatialNeuron (morphology=morpho, model=egs,

Cm=1+uF/cm+*2, Ri=100+ohm*cm, method='exponential euler")
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neuron.v = EL

# Regular inputs
stimulation = NeuronGroup (2, 'dx/dt = 300«Hz : 1', threshold='x>1"', reset='x=0",
method="'euler")

stimulation.x = [0, 0.5] # Asynchronous

# Synapses

taus = lxms

w = 20%nS

S = Synapses (stimulation, neuron, model='''dg/dt = -g/taus : siemens (clock-driven)

gs_post = g : siemens (summed)''',
on_pre='g += w', method='exact'")

S.connect (1=0, Jj=morpho.L[-11])
S.connect (i=1, j=morpho.R[-1])

# Monitors

mon_soma = StateMonitor (neuron, 'v', record=[0])

mon_L = StateMonitor (neuron.L, 'v', record=True)

mon_R = StateMonitor (neuron.R, 'v',
record=morpho.R[-1])

run (50*ms, report='text')

subplot (211)

plot (mon_L.t/ms, mon_soma[0].v/mVv, 'k'")

plot (mon_L.t/ms, mon_L[morpho.L[-1]].v/mV, 'r')

plot (mon_L.t/ms, mon_R[morpho.R[-1]].v/mV, 'b'")

ylabel ('v (mV) ")

subplot (212)

for x in linspace (0Oxum, 100xum, 10, endpoint=False):
plot (mon_L.t/ms, mon_L[morpho.L[x]].v/mV)

xlabel ("Time (ms) ")

ylabel ('v (mV) ")

show ()
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5.10.3 Example: bipolar_with_inputs2

A pseudo MSO neuron, with two dendrites (fake geometry). There are synaptic inputs. Second method.

from brian2 import =«

# Morphology

morpho = Soma (30xum)

morpho.L = Cylinder (diameter=1+um, length=100xum, n=50)
morpho.R = Cylinder (diameter=1+um, length=100xum, n=50)

# Passive channels

gL = le-4xsiemens/cmx~*2

EL = -70xmV

Es = 0xmV

taus = lxms

eqS:' T

Im = gL+ (EL-v) : amp/meterx*2

Is = gsx(Es-v) : amp (point current)

dgs/dt = -gs/taus : siemens

neuron = SpatialNeuron (morphology=morpho, model=egs,
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Cm=1+uF/cm+*2, Ri=100+ohm*cm, method='exponential euler")
neuron.v = EL

# Regular inputs
stimulation = NeuronGroup (2, 'dx/dt = 300«Hz : 1', threshold='x>1', reset='x=0",
method="euler")

stimulation.x = [0, 0.5] # Asynchronous

# Synapses

w = 20%nS

S = Synapses (stimulation, neuron,on_pre='gs += w')
S.connect (1=0, Jj=morpho.L[99.9xum])

S.connect (1i=1, Jj=morpho.R[99.9*um])

# Monitors

mon_soma = StateMonitor (neuron, 'v', record=[0])

mon_L = StateMonitor (neuron.L, 'v', record=True)

mon_R = StateMonitor (neuron, 'v', record=morpho.R[99.9xum])

v

run (50*ms, report='text')

subplot (211)

plot (mon_L.t/ms, mon_somal[0].v/mV, 'k'")

plot (mon_L.t/ms, mon_L[morpho.L[99.9+um]].v/mV, 'r'")

plot (mon_L.t/ms, mon_R[morpho.R[99.9+um]].v/mV, 'b'")

ylabel ('v (mV) ")

subplot (212)

for i in [O, 5, 10, 15, 20, 25, 30, 35, 40, 45]:
plot (mon_L.t/ms, mon_L.v[i, :]/mV)

xlabel ('Time (ms) ")

ylabel ('v (mV) ")

show ()
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5.10.4 Example: cylinder

A short cylinder with constant injection at one end.

from brian2 import =«
defaultclock.dt = 0.0lxms

# Morphology

diameter = lxum

length = 300%um

Cm = 1xuF/cm*x2

Ri = 150%ohmxcm

N = 200

morpho = Cylinder (diameter=diameter, length=length, n=N)

# Passive channels

gl = le-4+siemens/cm**2

EL = -70*mV

eqs - rra

Im = gL * (EL - v) : amp/meterx*2
I : amp (point current)

v
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neuron = SpatialNeuron (morphology=morpho,

model=eqgs, Cm=Cm, Ri=Ri,

method="'exponential_ euler')

neuron.v = EL

la = neuron.space_constant[0]

print ("Electrotonic length: %s" % la)

neuron.I[0] = 0.02xnA # injecting at the left end

run (100*ms, report='text')

plot (neuron.distance/um, neuron.v/mV,

# Theory
x = neuron.distance
ra = la » 4 « Ri / (pl * diameterx*2)

lle)

theory = EL + ra % neuron.I[0] % cosh((length - x) / la) / sinh(length / la)

plot (x/um, theory/mv, 'r')
xlabel ("x (um) ')

ylabel ('v (mV) ")

show ()
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Hodgkin-Huxley equations (1952). Spikes are recorded along the axon, and then velocity is calculated.

from brian2 import =«
from scipy import stats

defaultclock.dt = 0.0lxms
morpho = Cylinder (length=10xcm, diameter=2x238xum, n=1000, type='axon')

El = 10.613*mV
ENa = 115xmV

EK = -12xmV
gl = 0.3xmsiemens/cmx*«2
gNa0 = 120+msiemens/cmx~*2

gK = 36xmsiemens/cm*x2

# Typical equations

egs = T

# The same equations for the whole neuron, but possibly different parameter values
# distributed transmembrane current

Im = gl * (El-v) + gNa * mx*3 * h » (ENa-v) + gK * nxx4 x (EK-v) : amp/meter*=*2
I : amp (point current) # applied current

dm/dt = alpham * (1-m) - betam * m : 1

dn/dt = alphan * (1-n) - betan % n 1

dh/dt = alphah * (1-h) - betah = h : 1

alpham = (0.1/mV) * (-v+25+mV) / (exp((-v+25+mV) / (10xmV)) - 1)/ms : Hz

betam = 4 % exp(-v/ (18xmV))/ms : Hz
alphah = 0.07 » exp(-v/(20+mV)) /ms : Hz
betah = 1/ (exp ((-v+30+mV) / (10+mV)) + 1)/ms : Hz

alphan = (0.01/mV) * (-v+10xmV) / (exp((-v+10*xmV) / (10xmV)) - 1)/ms : Hz

betan = 0.125%exp (-v/ (80*mV)) /ms : Hz

gNa : siemens/meterx«*2

Tra

neuron = SpatialNeuron (morphology=morpho, model=eqgs, method="exponential euler",

refractory="m > 0.4", threshold="m > 0.5",
Cm=1+uF/cmx*2, Ri=35.4xohm*cm)

neuron.v = 0+mV

neuron.h = 1

neuron.m = 0

neuron.n = .5

neuron.I = Oxamp

neuron.gNa = gNa0

M = StateMonitor (neuron, 'v', record=True)
spikes = SpikeMonitor (neuron)

run (50*ms, report='text')

neuron.I[0] = 1+ulA # current injection at one end
run (3+ms)
neuron.Il = Oxamp

run (50*ms, report='text")

# Calculation of velocity
slope, intercept, r_value, p_value, std_err = stats.linregress(spikes.t/second,
neuron.distance[spikes.i] /meter)

)

print ("Velocity = %.2f m/s" % slope)

subplot (211)
for i in range (10):
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plot (M.t/ms, M.v.T[:, 1ix100]/mV)
ylabel ('v'")
subplot (212)
plot (spikes.t/ms, spikes.isneuron.length[0]/cm, '.k")
plot (spikes.t/ms, (intercept+slopex* (spikes.t/second))/cm, 'r')
xlabel ('Time (ms) ')
ylabel ('Position (cm) ')
show ()
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5.10.6 Example: hodgkin_huxley_ 1952

Hodgkin-Huxley equations (1952).

from brian2 import =«

morpho = Cylinder (length=10xcm, diameter=2%238xum, n=1000, type='axon')

El = 10.613*mV
ENa = 115+mV

EK = -12+xmV
gl = 0.3+msiemens/cmx~*2
gNalO = 120+*msiemens/cmx*x*2
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gK = 36xmsiemens/cmx**2

# Typical equations

egs = Ty

# The same equations for the whole neuron, but possibly different parameter values
# distributed transmembrane current

Im = gl * (El1-v) + gNa x m*xx3 * h x (ENa-v) + gK » nxx4 x (EK-v) : amp/meter=*x2
I : amp (point current) # applied current

dm/dt = alpham * (1-m) - betam * m : 1

dn/dt = alphan * (l-n) - betan % n 1

dh/dt = alphah * (1-h) - betah = h : 1

alpham = (0.1/mV) * (-v+25+mV) / (exp((-v+25+mV) / (10xmV)) - 1)/ms : Hz

betam = 4 % exp(-v/(18xmV))/ms : Hz
alphah = 0.07 x exp(-v/(20+mV))/ms : Hz
betah = 1/ (exp ((-v+30+mV) / (10+mV)) + 1)/ms : Hz

alphan = (0.01/mV) * (-v+10xmV) / (exp((-v+10*mV) / (10xmV)) - 1)/ms : Hz

betan = 0.125%exp (-v/ (80*mV)) /ms : Hz

gNa : siemens/meterx«*2

Tra

neuron = SpatialNeuron (morphology=morpho, model=eqs, Cm=1lxuF/cmx*2,
Ri=35.4xohmxcm, method="exponential_ euler™)

neuron.v = 0xmV

neuron.h = 1

neuron.m = 0

neuron.n = .5

neuron.I = 0

neuron.gNa = gNa0

neuron[5+cm:10xcm] .gNa = Oxsiemens/cm*«*2

M = StateMonitor (neuron, 'v', record=True)

run (50*ms, report='text')

neuron.I[0] = 1+«uA # current injection at one end
run (3*ms)
neuron.I = Oxamp

run (100+ms, report='text')
for i in range (75, 125, 1):
plot (cumsum (neuron.length) /cm, i+ (1./60)+«M.v[:, ix5]/mV, 'k")
yticks ([])
ylabel ('Time [major] v (mV) [minor]')
xlabel ('"Position (cm) ")
axis('tight'")
show ()
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5.10.7 Example: infinite_cable

An (almost) infinite cable with pulse injection in the middle.

10

from brian2 import =
defaultclock.dt = 0.001l*ms
# Morphology

diameter = lxum
Cm = 1+uF/cm*=*2

Ri = 100+xohm*cm
N = 500
morpho = Cylinder (diameter=diameter, length=3*mm, n=N)

# Passive channels

gL = le-4xsiemens/cmx*2

EL = -70*xmV

egs = '"!'

Im = gL * (EL-v) : amp/meter*x2

I : amp (point current)
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neuron = SpatialNeuron (morphology=morpho, model=eqgs, Cm=Cm, Ri=Ri,
method = 'exponential_ euler')
neuron.v = EL

taum = Cm /gL # membrane time constant

print ("Time constant: %s" % taum)
la = neuron.space_constant[0]
print ("Characteristic length: 2s" % la)

# Monitors

mon = StateMonitor (neuron, 'v', record=range (0, N//2, 20))
neuron.I[len(neuron) // 2] = 1«nA # injecting in the middle
run (0.02+ms)

neuron.I = Oxamp

run (10*ms, report='text')

t = mon.t
plot (t/ms, mon.v.T/mvV, 'k'")
# Theory (incorrect near cable ends)
for i in range (0, len(neuron)//2, 20):
x = (len(neuron)/2 - i) % morpho.length[0]
theory = (1/(la*Cm+pixdiameter) = sqgrt(taum / (4xpix(t + defaultclock.dt))) =
exp (- (t+defaultclock.dt) /taum -
taum / (4 (t+defaultclock.dt)) (x/la)**2))
theory = EL + theory x 1xnA % 0.02xms
plot (t/ms, theory/mv, 'r'")
xlabel ("Time (ms) ")
ylabel ('v (mV')
show ()
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5.10.8 Example: Ifp

Hodgkin-Huxley equations (1952)

We calculate the extracellular field potential at various places.

from brian2 import =«
defaultclock.dt = 0.01lxms
morpho = Cylinder (x=[0, 10]*cm, diameter=2x238+um, n=1000, type='axon')

El = 10.613% mV
ENa = 115xmV

EK = -12xmV
gl = 0.3xmsiemens/cm#*x2
gNalQ = 120+msiemens/cmx*2

gK = 36xmsiemens/cmx**2

# Typical equations

egs = """

# The same equations for the whole neuron, but possibly different parameter values
# distributed transmembrane current

Im = gl = (El-v) + gNa * mx*3 * h » (ENa-v) + gK * nxx4 *» (EK-v) : amp/meter*=*2

I : amp (point current) # applied current
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dm/dt = alpham * (l-m) - betam * m 1

dn/dt = alphan * (1-n) - betan = n : 1

dh/dt = alphah % (1-h) - betah * h : 1

alpham = (0.1/mV) * (-v+25+mV) / (exp((-v+25+mV) / (10xmV)) - 1)/ms : Hz
Hz

betam = 4 * exp(-v/(18+mV)) /ms :

alphah = 0.07 » exp(-v/(20+mV))/ms : Hz

betah = 1/ (exp ((-v+30+mV) / (10+mV)) + 1)/ms : Hz

alphan = (0.01/mV) % (-v+10*xmV) / (exp((-v+10*mV) / (10*mV)) - 1)/ms : Hz
betan = 0.125+exp (-v/ (80*mV)) /ms : Hz

gNa

[

siemens/meterxx2

neuron = SpatialNeuron (morphology=morpho, model=eqgs, Cm=1lxuF/cm*x2,

neuron.
neuron.
neuron.
neuron.
neuron.

Ri=35.4+xohmxcm, method="exponential_ euler™)
= 0xmV
=1
=0
= .5
=0

H 3 3 50 <

neuron.gNa = gNaO
neuron|[5+cm:10xcm] .gNa = Oxsiemens/cmx*«*2

M =

StateMonitor (neuron, 'v', record=True)

# LFP recorder

Ne = 5 # Number of electrodes
sigma = 0.3+siemens/meter # Resistivity of extracellular field (0.3-0.4 S/m)
lfp = NeuronGroup (Ne,model="'"'"v : volt

X : meter

y : meter

z : meter''")
1lfp.x = 7xcm # Off center (to be far from stimulating electrode)
lfp.y = [lsmm, 2xmm, 4*mm, 8xmm, 16*mm]
S = Synapses (neuron, 1fp,model="""'w : ohmsmeterxx2 (constant) # Weight in the LFP_
—calculation

v_post = wx (Ic_pre—-Im_pre) : volt (summed)''")

S.summed_updaters['v_post'].when = 'after_ groups' # otherwise Ic has not yet been,

—updated for the current time step.
S.connect ()

S.w

= 'area_pre/ (4xpixsigma) / ( (x_pre—-x_post) x*2+ (y_pre-y_post) »+«2+ (z_pre—z_

—post) xx2) xx. 5"

Mlfp

= StateMonitor (lfp, 'v', record=True)

run (50*ms, report='text')

neuron.I[0] = 1+«uA # current injection at one end
run (3+ms)
neuron.I = Oxamp

run (100+ms, report='text')

subplot (211)

for

i in range(10):
plot (M.t/ms,M.v[ix100]/mV)

ylabel ('$V_m$ (mV) ")
subplot (212)

for

i in range(5):
plot (M.t/ms,Mlfp.v[i]/mV)

ylabel ("LEP (mV) ")
xlabel ('"Time (ms) ")
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show ()
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5.10.9 Example: morphotest

T T
140 160

from brian2 import =«

# Morphology

morpho = Soma (30xum)

morpho.L = Cylinder (diameter=1+um, length=100xum, n=5)
morpho.LL = Cylinder (diameter=1+um, length=20xum, n=2)
morpho.R = Cylinder (diameter=1+um, length=100xum, n=5)

# Passive channels

gl = le-4+siemens/cm#**2

EL = -70*mV

eqs - rra

Im = gL % (EL-v) : amp/meterx«2

neuron = SpatialNeuron (morphology=morpho, model=egs,

Cm=1+uF/cm+*2, Ri=100+ohm+cm, method='exponential euler')

neuron.v = arange (0, 13)=xvolt
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print (neuron.v)

print (neuron.L.v)
print (neuron.LL.v)
print (neuron.L.main.v)

5.10.10 Example: rall

A cylinder plus two branches, with diameters according to Rall’s formula

from brian2 import =«
defaultclock.dt = 0.0lxms

# Passive channels
gL = le-4xsiemens/cmx~*2
EL = -70*mV

# Morphology

diameter = 1lxum
length = 300*um
Cm = 1xuF/cmx*x2

Ri = 150%ohmxcm

N = 500

rm = 1 / (gL » pl * diameter) # membrane resistance per unit length
ra = (4  Ri)/(pi » diameterx*2) # axial resistance per unit length

la = sgrt(rm / ra) # space length

morpho = Cylinder (diameter=diameter, length=length, n=N)

dl = 0.5*um

Ll = 200%um

rm =1 / (gL » pl ~ dl) # membrane resistance per unit length
ra = (4  Ri) / (pli % dlxx2) # axial resistance per unit length
11 = sqgrt(rm / ra) # space length

morpho.L = Cylinder (diameter=dl, length=L1l, n=N)

d2 = (diameterx*1.5 — dlx+x1.5)**x (1. / 1.5)

rm = 1/(gL * pi x d2) # membrane resistance per unit length

ra = (4 » Ri) / (pl » d2x%2) # axial resistance per unit length
12 = sqrt(rm / ra) # space length

L2 = (L1 / 11) =+ 12

morpho.R = Cylinder (diameter=d2, length=L2, n=N)

eqS:' [

Im = gL * (EL-v) : amp/meter*=2

I : amp (point current)

neuron = SpatialNeuron (morphology=morpho, model=eqgs, Cm=Cm, Ri=Ri,
method="exponential_ euler'")

neuron.v = EL

neuron.I[0] = 0.02*nA # injecting at the left end

run (100+ms, report="text')

plot (neuron.main.distance/um, neuron.main.v/mV, 'k'")
plot (neuron.L.distance/um, neuron.L.v/mV, 'k')

5.10. compartmental

217




Brian 2 Documentation, Release 2.1

plot (neuron.R.distance/um, neuron.R.v/mV, 'k')

# Theory

x = neuron.main.distance

ra = la » 4 « Ri/(pi » diameterx*2)

1 = length/la + L1/11

theory = EL + ra*neuron.I[0]xcosh(l - x/la)/sinh (1)

plot (x/um, theory/mv, 'r'")

x = neuron.L.distance

theory = (EL+rasneuron.I[0]*cosh(l - neuron.main.distance[-1]/la —
(x — neuron.main.distance[-1])/11)/sinh (1))

plot (x/um, theory/mv, 'r')

x = neuron.R.distance
theory = (EL+raxneuron.I[0]*cosh(l - neuron.main.distance[-1]/la -
(x — neuron.main.distance[-1])/12)/sinh (1))
plot (x/um, theory/mv, 'r')
xlabel ('x (um) ')
ylabel ('v (mV) ")
show ()
—54 -
—56 -
>
E
> —58 -
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5.10.11 Example: spike_initiation

Ball and stick with Na and K channels
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from brian2 import =«
defaultclock.dt = 0.025xms
# Morphology

morpho = Soma (30xum)

morpho.axon = Cylinder (diameter=1xum, length=300+um, n=100)

# Channels

gL = le-4xsiemens/cmx~*2

EL = -70+mV

ENa = 50+mV

ka = 6xmV

ki = 6+mv

va = —30+mV

vi = -50*xmVvV

EK = -90+mV

vk = -20+mV

kk = 8xmV

egs = '"!'

Im = gL (EL-v)+gNasmxhx (ENa-v) +gK+n* (EK-v) : amp/meter*x2

dm/dt = (minf-m)/(0.3*ms) : 1 # simplified Na channel

dh/dt = (hinf-h)/ (3*ms) 1 # inactivation

dn/dt = (ninf-n)/(5*ms) : 1 # K+

minf = 1/ (l+exp((va-v) /ka)) 1

hinf = 1/ (l+exp((v-vi) /ki)) 1

ninf = 1/ (l+exp ((vk-v) /kk)) 1

I : amp (point current)

gNa : siemens/meterxx2

gK : siemens/meterxx2

Tra

neuron = SpatialNeuron (morphology=morpho, model=egs,
Cm=1+uF/cm+*2, Ri=100+ohm+cm, method='exponential euler")

neuron.v = —65xmV

neuron.I = Oxamp

neuron.axon[30xum:60+xum] .gNa = 700xgL
neuron.axon[30xum:60+um] .gk = 700+gL

# Monitors
mon=StateMonitor (neuron, 'v', record=True)

run (1*ms)

neuron.main.I = 0.15%xnA
run (50+ms)
neuron.I = Oxamp

run (95+ms, report='text')

plot (mon.t/ms, mon 0]/mv, 'r'")
plot (mon.t/ms, mon 201 /mv, 'g'
plot (mon

(

60]/mv,
80]/mv, '

plot (mon.t/ms, mon
plot (mon.t/ms, mon
xlabel ('"Time (ms) ")
ylabel ('v (mV) ")
show ()

val
v [
.t/ms, mon.v[40]/mVv, '
val
v [

TN o]
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5.11 frompapers

5.11.1 Example: Brette_2004

Phase locking in leaky integrate-and-fire model

Fig. 2A from: Brette R (2004). Dynamics of one-dimensional spiking neuron models. J Math Biol 48(1): 38-56.

This shows the phase-locking structure of a LIF driven by a sinusoidal current. When the current crosses the threshold
(a<3), the model almost always phase locks (in a measure-theoretical sense).

from brian2 import =«

# defaultclock.dt = 0.0l1*ms # for a more precise picture
N = 2000

tau = 100+ms

freq = 1/tau

egs = v
dv/dt = (-v + a + 2+sin(2+pixt/tau))/tau : 1
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[

neurons = NeuronGroup (N, eqgs, threshold='v>1', reset='v=0', method='euler')
neurons.a = linspace(2, 4, N)

run (5*second, report='text') # discard the first spikes (wait for convergence)
S = SpikeMonitor (neurons)
run (5x*second, report='text')

i, t = S.it

plot ((t % tau)/tau, neurons.ali], ', ")
xlabel ('Spike phase')

ylabel ('Parameter a')

show ()

4.00

3.75

3.50 A

3.25 A

3.00 A

Parameter a

2.75

2.50

2.25

2.00

0.0 0.2 0.4 0.6 0.8 1.0
Spike phase

5.11.2 Example: Brette_Gerstner_2005

Adaptive exponential integrate-and-fire model. http://www.scholarpedia.org/article/Adaptive_exponential _
integrate-and-fire_model

Introduced in Brette R. and Gerstner W. (2005), Adaptive Exponential Integrate-and-Fire Model as an Effective De-
scription of Neuronal Activity, J. Neurophysiol. 94: 3637 - 3642.
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from brian2 import =«

# Parameters

C = 281 % pF

gL = 30 * nS

taum = C / gL

EL = -70.6 * mV

VT = -50.4 » mV

DeltaT = 2 % mV

Vcut = VT + 5 * DeltaT

# Pick an electrophysiological behaviour

tauw, a, b, Vr = 144xms, 4%nS, 0.0805%nA, -70.6*mV # Regular spiking (as in the paper)
#tauw,a, b, Vr=20+ms, 4+nS, 0.5+nA, VT+5+mV # Bursting

#tauw,a, b, Vr=144+ms, 2+C/ (144+ms), 0+nA, =70.6+mV # Fast spiking

nun

eqgs =

dvm/dt = (gL* (EL - vm) + gL+DeltaT*exp((vm — VT)/DeltaT) + I - w)/C : volt
dw/dt = (ax(vm - EL) - w)/tauw : amp

I : amp

nwn

neuron = NeuronGroup (l, model=eqgs, threshold='vm>Vcut',
reset="vm=Vr; w+=b", method='euler')

neuron.vm = EL

trace = StateMonitor (neuron, 'vm', record=0)

spikes = SpikeMonitor (neuron)

run (20 * ms)

neuron.I = 1%nA
run (100 * ms)
neuron.I = 0*nA

run (20 = ms)

# We draw nicer spikes

vm = trace[0].vm[:]

for t in spikes.t:
i = int(t / defaultclock.dt)
vm[i] = 20*mV

plot (trace.t / ms, vm / mV)
xlabel ('"time (ms) ")

ylabel ('membrane potential (mV)')
show ()
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5.11.3 Example: Brette_Guigon_2003

Reliability of spike timing
Adapted from Fig. 10D,E of Brette R and E Guigon (2003). Reliability of Spike Timing Is a General Property of
Spiking Model Neurons. Neural Computation 15, 279-308.

This shows that reliability of spike timing is a generic property of spiking neurons, even those that are not leaky. This
is a non-physiological model which can be leaky or anti-leaky depending on the sign of the input .

All neurons receive the same fluctuating input, scaled by a parameter p that varies across neurons. This shows:
1. reproducibility of spike timing
2. robustness with respect to deterministic changes (parameter)

3. increased reproducibility in the fluctuation-driven regime (input crosses the threshold)

from brian2 import =«

N = 500
tau = 33+ms
taux = 20*ms
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sigma = 0.02

egs_input = '''

dx/dt = -x/taux + (2/taux)*x.5%xi : 1

eqs = Tr

dv/dt = (v+I + 1)/tau + sigmax* (2/tau)**.5+xi : 1
I = 0.5+ 3%xp*xB : 1

B=2./(1 + exp(-2*x)) — 1 : 1 (shared)

S 1

X 1 (linked)

)

input = NeuronGroup(l, egs_input, method='euler")
neurons = NeuronGroup (N, eqgs, threshold='v>1', reset='v=0', method='euler')

neurons.p = '1.0%1/N'

neurons.v = 'rand()'

neurons.x = linked_var (input, 'x'")

M = StateMonitor (neurons, 'B', record=0)

S = SpikeMonitor (neurons)
run (1000+ms, report='text')

subplot (211) # The input

plot (M.t/ms, M[0].B)

xticks ([])

title('shared input')

subplot (212)

plot (S.t/ms, neurons.p[S.i], ',")
plot ([0, 10001, [.5, .5], color='Cl")
xlabel ('"time (ms) ")

ylabel('p")
title('spiking activity")
show ()
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5.11.4 Example: Brunel_Hakim_1999

Dynamics of a network of sparsely connected inhibitory current-based integrate-and-fire neurons. Individual neu-
rons fire irregularly at low rate but the network is in an oscillatory global activity regime where neurons are weakly
synchronized.

Reference: “Fast Global Oscillations in Networks of Integrate-and-Fire Neurons with Low Firing Rates” Nicolas
Brunel & Vincent Hakim Neural Computation 11, 1621-1671 (1999)

from brian2 import x

N = 5000

Vr = 10+mV
theta = 20+mVvV
tau = 20*ms
delta = 2*ms
taurefr = 2xms

duration = .lxsecond

C = 1000

sparseness = float (C) /N
J = .1lxmV

muext = 25+mV

sigmaext = lxmV
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nun

eqgs =
dv/dt =

nwn

(-V+muext + sigmaext * sqrt(tau) = xi)/tau : volt

group = NeuronGroup (N,

eqgs, threshold='V>theta',

group.V = Vr
conn =

reset="'V=vr',

refractory=taurefr,

method="'euler"')

Synapses (group,

group, on_pre='V += -J', delay=delta)

conn.connect (p=sparseness)

M =

SpikeMonitor (group)

LFP = PopulationRateMonitor (group)

run (duration)

subplot (211)
plot (M.t /ms,
x1im (O,

subplot (212)
plot (LFP.t/ms,

M.i, '.")
duration/ms)

LFP.smooth_rate (window='flat', width=0.5+ms) /Hz)

x1im (0, duration/ms)
show ()
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5.11.5 Example: Clopath_et_al_2010_homeostasis

This code contains an adapted version of the voltage-dependent triplet STDP rule from: Clopath et al., Connectivity
reflects coding: a model of voltage-based STDP with homeostasis, Nature Neuroscience, 2010 (http://dx.doi.org/10.
1038/nn.2479)

The plasticity rule is adapted for a leaky integrate & fire model in Brian2. More specifically, the filters v_lowpassl
and v_lowpass2 are incremented by a constant at every post-synaptic spike time, to compensate for the lack of an
actual spike in the integrate & fire model.

As an illustration of the rule, we simulate the competition between inputs projecting on a downstream neuron. We
would like to note that the parameters have been chosen arbitrarily to qualitatively reproduce the behavior of the
original work, but need additional fitting.

We kindly ask to cite the article when using the model presented below.

This code was written by Jacopo Bono, 12/2015

from brian2 import =«

FHEAFFRAFFRAFFAAFFAAFHAAFEAAFRAFFEAAFRAFFRAFFHAFFRAFHAAFHAAFRAAFEAAFEAFFRAFF A
# PLASTICITY MODEL
lddzadzdadasadssddasdsasdsasdsasisaddsdsdssddasddadadasddatdsatddasdaasdaaddsaddi

#### Plasticity Parameters

V_rest = -70.*mV # resting potential
V_thresh = -55.xmV # spiking threshold
Theta_low = V_rest # depolarization threshold for plasticity
x_reset = 1. # spike trace reset value
taux = 15.xms # spike trace time constant
A_LTD = 1.5e-4 # depression amplitude
A_LTP = 1.5e-2 # potentiation amplitude
tau_lowpassl = 40x*ms # timeconstant for low-pass filtered voltage
tau_lowpass2 = 30+ms # timeconstant for low-pass filtered voltage
tau_homeo = 1000+ms # homeostatic timeconstant
#

v_target = 12xmVx*+*2 target depolarisation

#### Plasticity Equations
# equations executed at every timestepC
Syn_model = ("
w_ampa:l # synaptic weight (ampa synapse)

lvl)

# equations executed only when a presynaptic spike occurs

Pre_eq = ('"'

g_ampa_post += w_ampaxampa_max_cond o
. # increment synaptic conductance

A_LTD_u = A_LTDx (v_homeo**2/v_target) o
. # metaplasticity

w_minus = A_LTD_u=* (v_lowpassl_post/mV - Theta_low/mV)*int (v_lowpassl_post/
—mV - Theta_low/mV > 0) # synaptic depression

w_ampa = clip(w_ampa-w_minus, 0, w_max) o
N # hard bounds

lvl)

# equations executed only when a postsynaptic spike occurs
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Post_eqg = (''"'
v_lowpassl += 10xmV =
. # mimics the depolarisation effect due to a spike
v_lowpass2 += 10xmV -
o # mimics the depolarisation effect due to a spike
v_homeo += 0.1l mV -
- # mimics the depolarisation effect due to a spike
w_plus = A_LTP*x_trace_prex (v_lowpass2_post/mV - Theta_low/mV) xint (v_
—lowpass2_post/mV - Theta_low/mV > 0) # synaptic potentiation
w_ampa = clip(w_ampa+w_plus, 0, w_max) -
. # hard bounds
)
#HE#AA A FAA A FAF A FAF AR A AR A AR A AR A AR F AR A AR AR A AR AR AR H A S
# I&F Parameters and equations
FHAFAFHAFAFEAFAFEAHAFEAFAFEAFAFEAFAFHAFAF AR F AR F AR F AR F AR FAA A FAAEAFAFEA
#### Neuron parameters
gleak = 30.%nS # leak conductance
C = 300.xpF # membrane capacitance
tau_AMPA = 2. ms # AMPA synaptic timeconstant
E_AMPA = 0.xmV # reversal potential AMPA

ampa_max_cond
w_max = 1.

#### Neuron E
# We connect

# downstream
egs_neurons =
dv/dt = (glea
dv_lowpassl/d
—voltage
dv_lowpass2/d
—voltage
dv_homeo/dt =
—voltage
I_ext : amp
I_syn = g_amp
dg_ampa/dt =
dx_trace/dt =

# Iinput neuro
egs_inputs =
dv/dt = gleak
dx_trace/dt =
rates : Hz

selected_inde
T

#AHAHAHAAAAAA
# Simulation
#HHAHAHAAAAAA

= 5.e-8xsiemens # Ampa maximal conductance
# maximal ampa weight

quations

10 presynaptic neurons to 1 downstream neuron

neuron
Tra
k* (V_rest-v) + I_ext + I_syn)/C: volt # voltage
t = (v-v_lowpassl)/tau_lowpassl : volt # low-pass filter of the,
t = (v-v_lowpass?2)/tau_lowpass2 : volt # low-pass filter of the
(v-V_rest-v_homeo) /tau_homeo : volt # low-pass filter of the,
# external current
ax (E_AMPA-v) : amp # synaptic current
—-g_ampa/tau_AMPA : siemens # synaptic conductance
-x_trace/taux :1 # spike trace
ns
T
* (V_rest-v)/C: volt # voltage
-x_trace/taux :1 # spike trace
# input rates
X : integer (shared) # active neuron

HEAFFHRAAAAAFFFAAARAAFFRRAAAAFFFRRARAAFFRRAAAAFFFRRAAAAFFFARAAAAFHS

FAFHAFHAAFHAAFHAAFHAAFHAAFRAAFRAFFHAFFRAFFEAFFAAAFRAFFHAFFHAFHAA A
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#### Parameters

defaultclock.dt = 500.=+us # timestep

Nr_neurons = 1 # Number of downstream neurons
Nr_inputs = 5 # Number of input neurons
input_rate = 35+Hz # Rates

init_weight = 0.5 # initial synaptic weight
final_t = 20.*second # end of simulation

input_time = 100.*ms # duration of an input

#### Create neuron objects

Nrn_downstream = NeuronGroup (Nr_neurons, egs_neurons, threshold='v>V_thresh',
reset="'v=V_rest;x_trace+=x_reset/ (taux/ms) "',
method="'euler'")

Nrns_input = NeuronGroup (Nr_inputs, egs_inputs, threshold='rand()<ratesxdt',

reset='v=V_rest; x_trace+=x_reset/ (taux/ms) "',
method="exact")

#### create Synapses

Syn = Synapses (Nrns_input, Nrn_downstream,
model=Syn_model,
on_pre=Pre_eq,
on_post=Post_eqg

)
Syn.connect (i=numpy.arange (Nr_inputs), j=0)

#### Monitors and storage
W_evolution = StateMonitor (Syn, 'w_ampa', record=True)

#### Run

# Initial values

Nrn_downstream.v = V_rest
Nrn_downstream.v_lowpassl = V_rest
Nrn_downstream.v_lowpass2 = V_rest
Nrn_downstream.v_homeo = 0
Nrn_downstream.I_ext = 0.xamp
Nrn_downstream.x_trace = 0
Nrns_input.v = V_rest
Nrns_input.x_trace = 0.

Syn.w_ampa = init_weight

# Switch on a different input every 100ms
Nrns_input.run_regularly('''
selected_index = int (floor (rand()*Nr_inputs))
rates = input_rate x int (selected_index == i) # All rates,,
—are zero except for the selected neuron
"', dt=input_time)
run(final_t, report='text')

AHHAHAFHAHAFAFHAFAFHAFAFHAFAF AR F AR FAA R F AR FAF R FAF A FAF A HAF AR AR RS
# Plots
ldddazdsdadssdadssdadasdadatdsdatasdadasdadasdadatdadataadadaadadaddadsddidssdidi
stitle = 'Synaptic Competition'
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fig = figure(figsize=(8, 5))
for kk in range (Nr_inputs) :

plt.plot (W_evolution.t, W_evolution.w_ampalkk], '-', linewidth=2)
xlabel ('Time [ms]', fontsize=22)
ylabel ('Weight [a.u.]', fontsize=22)
plt.subplots_adjust (bottom=0.2, left=0.15, right=0.95, top=0.85)
title(stitle, fontsize=22)

plt.show ()
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5.11.6 Example: Clopath_et_al_2010_no_homeostasis

This code contains an adapted version of the voltage-dependent triplet STDP rule from: Clopath et al., Connectivity
reflects coding: a model of voltage-based STDP with homeostasis, Nature Neuroscience, 2010 (http://dx.doi.org/10.
1038/nn.2479)

The plasticity rule is adapted for a leaky integrate & fire model in Brian2. In particular, the filters v_lowpass1 and
v_lowpass?2 are incremented by a constant at every post-synaptic spike time, to compensate for the lack of an actual
spike in the integrate & fire model. Moreover, this script does not include the homeostatic metaplasticity.

As an illustration of the Rule, we simulate a plot analogous to figure 2b in the above article, showing the frequency
dependence of plasticity as measured in: Sjostrom et al., Rate, timing and cooperativity jointly determine cortical
synaptic plasticity. Neuron, 2001. We would like to note that the parameters have been chosen arbitrarily to qualita-
tively reproduce the behavior of the original works, but need additional fitting.

We kindly ask to cite both articles when using the model presented below.

This code was written by Jacopo Bono, 12/2015
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from brian2 import =«
ldddddzdzdasddasdsasisatdsasdsasdsaddadsdasddasddatadasdsaddsadisaddaadaaddsddsds
# PLASTICITY MODEL
FEAFAFHAFAFEAFAFEAFAFHAFAFHAFAFHAHAF IR A AR F AR F AR F AR F AR FA AR F AR FAF A

#### Plasticity Parameters

V_rest = -70.+mV # resting potential

V_thresh = -50.*mV # spiking threshold

Theta_low = V_rest # depolarization threshold for plasticity
x_reset = 1. # spike trace reset value

taux = 15.xms # spike trace time constant

A_LTD = 1.5e-4 # depression amplitude

A_LTP = 1.5e-2 # potentiation amplitude

tau_lowpassl = 40+*ms # timeconstant for low-pass filtered voltage
tau_lowpass2 = 30xms # timeconstant for low-pass filtered voltage

#### Plasticity Equations

# equations executed at every timestep
Syn_model = ''"
w_ampa:l # synaptic weight (ampa synapse)

[

# equations executed only when a presynaptic spike occurs

Pre_eq = '"'

g_ampa_post += w_ampa*ampa_max_cond o
— # increment synaptic conductance

w_minus = A_LTD« (v_lowpassl_post/mV - Theta_low/mV)*int (v_lowpassl_post/mV -
—Theta_low/mV > 0) # synaptic depression

w_ampa = clip(w_ampa-w_minus, 0, w_max) o
o # hard bounds

T

# equations executed only when a postsynaptic spike occurs

Post_eqg = ""'

v_lowpassl += 10xmV -
. # mimics the depolarisation by a spike

v_lowpass2 += 10*mV -
— # mimics the depolarisation by a spike

w_plus = A_LTP*x_trace_prex (v_lowpass2_post/mV - Theta_low/mV) *xint (v_
—lowpass2_post/mV - Theta_low/mV > 0) # synaptic potentiation

w_ampa = clip(w_ampa+w_plus, 0, w_max) .
- # hard bounds

v

FHEAFFRAFFRAFFHAFFAAFHAAFHAAFRAFFEAAFRAFFRAFFHA AR RAFHAAFHAAF R F A FRAFF AR
# I&F Parameters and equations

HHAFHRAAAAAFFFRAARAAFFFERAAAAFFRRAAAAAFFHRAAAAFFFFRAARAAFFFEAAAAAFFRRAAAAFFFHRAA

#### Neuron parameters

gleak = 30.%nS # leak conductance
C = 300.xpF # membrane capacitance
tau_AMPA = 2.xms # AMPA synaptic timeconstant
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E_AMPA = 0.xmV # reversal potential AMPA
ampa_max_cond = 5.e-10+siemens # Ampa maximal conductance
w_max = 1. # maximal ampa weight

#### Neuron Equations

egs_neurons = "'"'

dv/dt = (gleakx (V_rest-v) + I_ext + I_syn)/C: volt # voltage

dv_lowpassl/dt = (v-v_lowpassl)/tau_lowpassl : volt # low-pass filter of the,
—voltage

dv_lowpass2/dt = (v-v_lowpass2)/tau_lowpass2 : volt # low-pass filter of the,
—voltage

I_ext : amp # external current

I_syn = g_ampax (E_AMPA-v) : amp # synaptic current
dg_ampa/dt = —-g_ampa/tau_AMPA : siemens # synaptic conductance
dx_trace/dt = -x_trace/taux :1 # spike trace

v

FHAHRFRAAAFAFAAAAFAARFAAFAARFAAAFAAFAAAAAFAFAFAFAAAAAAFARAAFAARFAAFAARFA AR FAA
# Simulation

HAHAHAAAAAAHARARAAAAFARAAAAFAAAFAAAAA AR AAHAFA A AAAF AR RA AR A AA AR AAA
#### Parameters

defaultclock.dt
Nr_neurons = 2
rate_array = [1., 5., 10., 15., 20., 30., 50.]xHz
init_weight = 0.

reps = 15

100.~*us timestep
Number of neurons

Rates

ul

initial synaptic weight
Number of pairings

HH W H H

#### Create neuron objects

Nrns = NeuronGroup (Nr_neurons, egs_neurons, threshold='v>V_thresh',
reset="'v=V_rest;x_trace+=x_reset/ (taux/ms) ', method='euler') #

#### create Synapses

Syn = Synapses (Nrns, Nrns,
model=Syn_model,
on_pre=Pre_eq,
on_post=Post_eq
)

Syn.connect ('i!=73")

#### Monitors and storage

weight_result = np.zeros((2,len(rate_array))) # to save the final_,
—weights

#### Run

# loop over rates
for jj, rate in enumerate (rate_array):
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# Calculate interval between pairs
pair_interval = 1./rate - 10+ms
print ('Starting simulations for

2s' % rate)

# Initial values

Nrns.v = V_rest
Nrns.v_lowpassl = V_rest
Nrns.v_lowpass2 = V_rest
Nrns.I_ext = Oxamp
Nrns.x_trace = 0.
Syn.w_ampa = init_weight

# loop over pairings
for ii in range (reps):
# 1lst SPIKE
Nrns.v[0] = V_thresh + 1+mV
# 2nd SPIKE
run (10+ms)
Nrns.v[1l] = V_thresh + 1+mV
# run
run (pair_interval)
print ('Pair %d out of 2d' % (ii+l, reps))

#store weight changes
weight_result [0, jj] = 100.+Syn.w_ampal[0]/init_weight
weight_result[1l, jj] = 100.+Syn.w_ampa[l]/init_weight

FHARFAAAAAAARAAARAAARHARRHARAFARRFARAAARA A AR A AR AR H AR A A AR AR AR A A ARA A
# Plots
FAHAAHHAAHAA AR AR HAA R AR AR H AR AR H A H AR H AR H AR H AR H A AR A AR 14

stitle = 'Pairings'
scolor = 'k'

figure (figsize=(8, 5))

plot (rate_array,weight_result([0, :], '-', linewidth=2, color=scolor)
plot (rate_array,weight_result([l, :], ':', linewidth=2, color=scolor)
xlabel ('Pairing frequency [Hz]', fontsize=22)

ylabel ('Normalised Weight [%]', fontsize=22)

legend ([ 'Pre-Post', 'Post-Pre'], loc='best')

subplots_adjust (bottom=0.2, left=0.15, right=0.95, top=0.85)
title(stitle)

show ()
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5.11.7 Example: Destexhe_et_al_1998

Reproduces Figure 12 (simplified three-compartment model) from the following paper: Dendritic Low-Threshold
Calcium Currents in Thalamic Relay Cells Alain Destexhe, Mike Neubig, Daniel Ulrich, John Huguenard Journal of
Neuroscience 15 May 1998, 18 (10) 3574-3588

The original NEURON code is available on ModelDB: https://senselab.med.yale.edu/modeldb/ShowModel.cshtml?
model=279

Reference for the original morphology: Rat VB neuron (thalamocortical cell), given by J. Huguenard, stained with
biocytin and traced by A. Destexhe, December 1992. The neuron is described in: J.R. Huguenard & D.A. Prince,
A novel T-type current underlies prolonged calcium-dependent burst firing in GABAergic neurons of rat thalamic
reticular nucleus. J. Neurosci. 12: 3804-3817, 1992.

Available at NeuroMorpho.org: http://neuromorpho.org/neuron_info.jsp?neuron_name=tc200 NeuroMorpho.Org ID
:NMO_00881

Notes
* Completely removed the “Fast mechanism for submembranal Ca++ concentration (cai)” — it did not affect the
results presented here

e Time constants for the I_T current are slightly different from the equations given in the paper — the paper
calculation seems to be based on 36 degree Celsius but the temperature that is used is 34 degrees.

* To reproduce Figure 12C, the “presence of dendritic shunt conductances” meant setting g_L to 0.15 mS/cm”2
for the whole neuron.
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 Other small discrepancies with the paper — values from the NEURON code were used whenever different from
the values stated in the paper

from _ future  import print_function

from brian2 import x

from brian2.units.constants import (zero_celsius, faraday_constant as F,
gas_constant as R)

defaultclock.dt = 0.01lxms

VT = —-52+mV
El = -76.5xmV # from code, text says: —69.85+mV

E_Na = 50+mV
E_K = -100+*mV
C_d = 7.954 # dendritic correction factor

T = 34xkelvin + zero_celsius # 34 degC (current-clamp experiments)

tadj_HH = 3.0+ ((34-36)/10.0) # temperature adjustment for Na & K (original_,
—recordings at 36 degC)

tadj_m T = 2.5%%((34-24)/10.0)

tadj_h_T = 2.5+%((34-24)/10.0)

shift_I_T = —-1+mV

gamma = F/ (R*T) # R=gas constant, F=Faraday constant

Z_Ca = 2 # Valence of Calcium ions
Ca_i = 240+xnM # intracellular Calcium concentration
Ca_o = 2+mM # extracellular Calcium concentration

egs = Equations('''

Im = gl*«(El-v) — I_Na - I_K - I_T: amp/meter*x2
I_inj : amp (point current)
gl : siemens/meterx=*2

# HH-type currents for spike initiation

g_Na : siemens/meterx*2

g_K : siemens/meterx«*2

I_Na = g_Na * mx*3 = h » (v-E_Na) : amp/meter*=*2

I_K = g_K * nx¥*4 » (v-E_K) : amp/meter*«*2

v2 = v - VT : volt # shifted membrane potential (Traub convention)
dm/dt = (0.32% (mV**—1)* (13.*mV-v2)/

(
(exp ((13.+mV-v2)/(4.xmV))-1.)*(1-m)—-0.28% (mV*x—1)* (v2-40.+mV) /
(exp ((v2-40.+mV) / (5.xmV))-1.)*m) / ms = tadj_HH: 1
dn/dt = (0.032% (mV**—1)* (15.*mV-v2)/

(exp ((15.+mV-v2)/(5.+mV))=1.)*(1l.-n)-.5%exp ((10.+*mV-v2)/ (40.+mV))*n) / ms *_
—tadj_HH: 1

dh/dt = (0.128%exp ((17.+mV-v2)/(18.+mV))* (1l.-h)-4./ (1l+exp((40.+mV-v2)/(5.+mV)))+h) /
—ms * tadj_HH: 1

[

# Low-threshold Calcium current (I_T) —-— nonlinear function of voltage

I_T = P_Ca * m_Tx+2xh_T » G_Ca : amp/meter*=2

P_Ca : meter/second # maximum Permeability to Calcium

G_Ca = Z_Cax*2+Fxvxgammax (Ca_i - Ca_ox*exp(-Z_Caxgammax*v))/ (1l — exp(-Z_Caxgammax*v)) :
—coulomb/meterx*3

dm_T/dt = —(m_T — m_T_ inf)/taum T : 1

dh_T/dt = -(h_T - h_T_inf)/tau_h_T : 1

m_T_inf = 1/(1 + exp(—(v/mV + 56)/6.2)) : 1

h_T inf = 1/(1 + exp((v/mV + 80)/4)) : 1
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tau_m T = (0.612 + 1.0/ (exp(—(v/mV + 131)/16.7) + exp((v/mV + 15.8)/18.2))) * ms /_
—tadj_m_T: second
tau_h_T = (int (v<-81*mV) x exp((v/mV + 466)/66.6) +

int (v>=-81xmV) * (28 + exp(—(v/mV + 21)/10.5))) * ms / tadj_h_T: second

lll)

# Simplified three-compartment morphology

morpho = Cylinder (x=[0, 38.42]xum, diameter=26+*um)

morpho.dend = Cylinder (x=[0, 12.49]+um, diameter=10.28+um)

morpho.dend.distal = Cylinder(x=[0, 84.67]+*um, diameter=8.5%um)

neuron = SpatialNeuron (morpho, eqs, Cm=0.88*uF/cmx+2, Ri=173xohm*cm,
method="'exponential_ euler')

neuron.v = —74xmV

# Only the soma has Na/K channels
neuron.main.g_Na = 100+msiemens/cmx*«*2
neuron.main.g_K = 100+msiemens/cmx**2

# Apply the correction factor to the dendrites

neuron.dend.Cm x= C_d

neuron.m_T = 'm_T_inf'
neuron.h T = 'h T inf'
mon = StateMonitor (neuron, ['v'], record=True)

store('initial state')

def do_experiment (currents, somatic_density, dendritic_density,
dendritic_conductance=0.0379+xmsiemens/cmx*2,
HH_currents=True) :
restore('initial state')
voltages = []
neuron.P_Ca = somatic_density
neuron.dend.distal.P_Ca = dendritic_density = C_d
# dendritic conductance (shunting conductance used for Fig 12C)
neuron.gl = dendritic_conductance
neuron.dend.gl = dendritic_conductance x C_d
if not HH_currents:
# Shut off spiking (for Figures 12B and 12C)
neuron.g_Na = O+msiemens/cmxx*2
neuron.g_K = O+msiemens/cmxx*2
run (180+ms)
store ('before current')
for current in currents:
restore ('before current')

neuron.main.I_inj = current

print ('.', end="")

run (320+ms)

voltages.append (mon[morpho] .v[:]) # somatic voltage

return voltages

## Run the various variants of the model to reproduce Figure 12

mpl.rcParams|['lines.markersize'] = 3.0

fig, axes = plt.subplots (2, 2)

print ('Running experiments for Figure Al ', end='")

voltages = do_experiment ([50, 75]x*pA, somatic_density=1.7e-5+cm/second,
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dendritic_density=1.7e-5+cm/second)
print (' done.')
cut_off = 100xms # Do not display first part of simulation
axes[0, 0].plot((mon.t - cut_off) / ms, voltages[0] / mV, color='gray')
axes [0, 0].plot((mon.t - cut_off) / ms, voltages[l] / mV, color='black")
axes [0, 0].set(xlim=(0, 400), ylim=(-80, 40), xticks=[],

title='Al: Uniform T-current density', ylabel='Voltage (mV)'"')

axes [0, 0].spines['right'].set_visible (False)
axes [0, O0].spines['top'].set_visible(False)
axes [0, 0O].spines['bottom'].set_visible (False)

print ('Running experiments for Figure A2 ', end='")
voltages = do_experiment ([50, 75]#pA, somatic_density=1.7e-5+cm/second,
dendritic_density=9.5e-5+cm/second)
print (' done.')
cut_off = 100xms # Do not display first part of simulation
axes[1l, 0].plot((mon.t - cut_off) / ms, voltages[0] / mV, color='gray')
axes[1l, 0].plot((mon.t - cut_off) / ms, voltages([l] / mV, color='black")
axes[l, 0].set(xlim=(0, 400), ylim=(-80, 40),
title="'A2: High T-current density in dendrites’',
xlabel="Time (ms)', ylabel='Voltage (mV)")
axes[l, O].spines['right'].set_visible (False)
axes[1l, 0O].spines['top'].set_visible(False)

print ('Running experiments for Figure B ', end='")
currents = np.linspace (0, 200, 41)+*pA
voltages_somatic = do_experiment (currents, somatic_density=56.36e-5+cm/second,
dendritic_density=0+cm/second,
HH_currents=False)
voltages_somatic_dendritic = do_experiment (currents, somatic_density=1.7e-5+cm/second,
dendritic_density=9.5e-5+cm/second,
HH_currents=False)

print (' done.')
maxima_somatic = Quantity(voltages_somatic) .max (axis=1)
maxima_somatic_dendritic = Quantity(voltages_somatic_dendritic) .max (axis=1)

axes [0, 1].yaxis.tick_right ()
axes[0, 1].plot(currents/pA, maxima_somatic/mV,
'o-', color='black', label='Somatic only")
axes[0, 1].plot(currents/pA, maxima_somatic_dendritic/mV,
's—=', color='black', label='Somatic & dendritic')
axes [0, 1].set(xlabel="'Injected current (pA)', ylabel='Peak LTS (mV)"',
ylim=(-80, 0))
axes[0, 1].legend(loc='best', frameon=False)

print ('Running experiments for Figure C ', end='")
currents = np.linspace (200, 400, 41)«*pA
voltages_somatic = do_experiment (currents, somatic_density=56.36e-5+cm/second,
dendritic_density=0+cm/second,
dendritic_conductance=0.1l5*msiemens/cm**2,
HH_currents=False)
voltages_somatic_dendritic = do_experiment (currents, somatic_density=1.7e-5+cm/second,
dendritic_density=9.5e-5+cm/second,
dendritic_conductance=0.l5+«msiemens/cm*=*2,
HH_currents=False)

print (' done.')
maxima_somatic = Quantity (voltages_somatic) .max (axis=1)
maxima_somatic_dendritic = Quantity(voltages_somatic_dendritic) .max (axis=1)

axes[1l, 1].yaxis.tick_right ()
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axes[1l, 1].plot(currents/pA, maxima_somatic/mV,

'o-', color='black', label='Somatic only")
axes[l, 1].plot (currents/pA, maxima_somatic_dendritic/mV,
's="', color='black', label='Somatic & dendritic')
axes[1l, 1].set(xlabel="'Injected current (pA)', ylabel='Peak LTS (mV)"',
ylim=(-80, 0))
axes[1l, 1].legend(loc='best', frameon=False)

plt.tight_layout ()
plt.show ()
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5.11.8 Example: Diesmann_et_al_1999

Synfire chains

M. Diesmann et al. (1999). Stable propagation of synchronous spiking in cortical neural networks. Nature 402,
529-533.

from brian2 import =«

duration = 100+ms
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# Neuron model parameters
Vr = —70+xmV

Vt = -55+xmV

taum = 10xms

taupsp = 0.325xms

weight = 4.86xmV

# Neuron model

egs = Equations('''

dv/dt = (- (V-Vr)+x)=*(1l./taum) : volt
dx/dt = (-x+y)=*(l./taupsp) : volt
dy/dt = -y (1l./taupsp)+25.27+mV/ms+

(39.24+mV/ms*%0.5)*x1i : volt
'l')

# Neuron groups

n_groups = 10

group_size = 100

P = NeuronGroup (N=n_groups*group_size, model=eqgs,
threshold='v>Vt', reset='V=Vr', refractory=lxsms,
method="euler")

Pinput = SpikeGeneratorGroup (85, np.arange(85),
np.random.randn (85) x1lxms + 50xms)
# The network structure
S = Synapses (P, P, on_pre='y+=weight')
S.connect (j='k for k in range ((int (i/group_size)+1)+xgroup_size, (int (i/group_
—size)+2) xgroup_size) '
'if i<N_pre-group_size')
Sinput = Synapses (Pinput, P[:group_size], on_pre='y+=weight')
Sinput.connect ()

# Record the spikes

Mgp = SpikeMonitor (P)

Minput = SpikeMonitor (Pinput)

# Setup the network, and run it
P.V = '"Vr + rand() %= (Vt - Vr)'
run (duration)

plot (Mgp.t/ms, 1.0+«Mgp.i/group_size, '.'")

plot ([0, duration/ms], np.arange (n_groups) .repeat (2).reshape(-1, 2).T, 'k-')
ylabel ('group number')

yticks (np.arange (n_groups) )

xlabel ('"time (ms) ")

show ()
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5.11.9 Example: Kremer_et_al_2011_barrel_cortex

Late Emergence of the Whisker Direction Selectivity Map in the Rat Barrel Cortex. Kremer Y, Leger JF, Goodman
DF, Brette R, Bourdieu L (2011). J Neurosci 31(29):10689-700.

Development of direction maps with pinwheels in the barrel cortex. Whiskers are deflected with random moving bars.
N.B.: network construction can be long.

from brian2 import =«
import time

tl = time.time ()

# PARAMETERS

# Neuron numbers

M4, M23exc, M23inh = 22, 25, 12 # size of each barrel (in neurons)

N4, N23exc, N23inh = M4xx2, M23excx*2, M23inhxx2 # neurons per barrel
barrelarraysize = 5 # Choose 3 or 4 if memory error

Nbarrels = barrelarraysizex*«*2

# Stimulation

stim_change_time = 5xms

Fmax = .5/stim_change_time # maximum firing rate in layer 4 (.5 spike / stimulation)
# Neuron parameters
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taum, taue, taui = 10xms, 2*ms, 25+ms

El = -70xmV

Vt, vt_inc, tauvt = -55xmV, 2+mV, 50xms # adaptive threshold
# STDP

taup, taud = 5xms, 25xms

Ap, Ad= .05, -.04

# EPSPs/IPSPs

EPSP, IPSP = 1xmV, —1xmV

EPSC = EPSP * (taue/taum) *+* (taum/ (taue—taum))
IPSC = IPSP * (taui/taum) *=* (taum/ (taui-taum))
Ap, Ad = Ap*EPSC, AdxEPSC

# Layer 4, models the input stimulus

egs_layerd = "''

rate = int (is_active)*clip(cos(direction - selectivity), 0, inf)*Fmax: Hz

is_active = abs((barrel_x + 0.5 - bar_x) x cos(direction) + (barrel_y + 0.5 - bar_y),

—* sin(direction)) < 0.5: boolean

barrel_x : integer # The x index of the barrel

barrel_y : integer # The y index of the barrel

selectivity : 1

# Stimulus parameters (same for all neurons)

bar_x = cos(direction)* (t - stim_start_time)/ (5*xms) + stim_start_x : 1 (shared)

bar_y = sin(direction)*(t — stim_start_time)/(5+ms) + stim_start_y 1 (shared)

direction : 1 (shared) # direction of the current stimulus

stim_start_time : second (shared) # start time of the current stimulus

stim_start_x 1 (shared) # start position of the stimulus

stim_start_y : 1 (shared) # start position of the stimulus

Tr

layerd4 = NeuronGroup (N4xNbarrels, eqgs_layerd4, threshold='rand() < ratexdt',
method='euler', name='layerd')

layerd.barrel_x = '(i / N4) % barrelarraysize + 0.5'

layerd.barrel_y = 'i / (barrelarraysizexN4) + 0.5'

layerd.selectivity = ' (1i%N4)/ (1.0%N4) «2+pi' # for each barrel, selectivity between 0,

—and 2x*pi

stimradius = (11+1)=*.5

# Chose a new randomly oriented bar every 60ms
runner_code = ''"'

direction = rand () *2*pi
stim_start_x = barrelarraysize / 2.0 - cos(direction)+stimradius
stim_start_y = barrelarraysize / 2.0 - sin(direction)xstimradius

stim_start_time = t

[

layerd.run_regularly (runner_code, dt=60+xms, when='start')

# Layer 2/3

# Model: IF with adaptive threshold
egs_layer23 = ''!'
dv/dt=(ge+gi+El-v) /taum : volt
dge/dt=-ge/taue : volt

dgi/dt=-gi/taui : volt

dvt/dt=(Vt-vt) /tauvt : volt # adaptation
barrel_idx : integer

x : 1 # in "barrel width" units

y : 1 # in "barrel width" units

v

layer23 = NeuronGroup (Nbarrels* (N23exc+N23inh), eqgs_layer23,
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threshold='v>vt', reset='v = El; vt += vt_inc',
refractory=2+ms, method='euler', name='layer23'")
layer23.v = E1
layer23.vt = Vt

# Subgroups for excitatory and inhibitory neurons in layer 2/3
layer23exc = layer23[:Nbarrels+N23exc]
layer23inh = layer23[Nbarrels+N23exc:]

# Layer 2/3 excitatory
# The units for x and y are the width/height of a single barrel

layer23exc.x = '(i % (barrelarraysizexM23exc)) * (1.0/M23exc)’
layer23exc.y = '(i / (barrelarraysizexM23exc)) * (1.0/M23exc)’
layer23exc.barrel_idx = 'floor (x) + floor(y)xbarrelarraysize'

# Layer 2/3 inhibitory

layer23inh.x = 'i % (barrelarraysizexM23inh) * (1.0/M231inh)"'
layer23inh.y = 'i / (barrelarraysizexM23inh) % (1.0/M23inh)"'
layer23inh.barrel_idx = 'floor(x) + floor(y)xbarrelarraysize'
print ("Building synapses, please wait...")

# Feedforward connections (plastic)
feedforward = Synapses (layer4, layer23exc,

model="""'w:volt
dA_source/dt = —-A_source/taup : volt (event-driven)
dA_target/dt = -A_target/taud : volt (event-driven)''
‘—"l
on_pre="""get=w
A_source += Ap
w = clip(w+A_target, 0, EPSC)''',
on_post="""
A_target += Ad
w = clip(w+A_source, 0, EPSC)''',

name="'feedforward")
# Connect neurons in the same barrel with 50% probability
feedforward.connect (' (barrel_x_pre + barrelarraysizexbarrel_ y_ pre) == barrel_idx_post
‘—"I
p=0.5)
feedforward.w = EPSCx.5

print ('excitatory lateral')

# Excitatory lateral connections

recurrent_exc = Synapses (layer23exc, layer23, model='w:volt', on_pre='ge+=w',
name="'recurrent_exc')

recurrent_exc.connect (p="'.15xexp (-.5% ( ((x_pre-x_post) /.4)xx2+ ((y_pre-y_post)/.4)*%2))

")

recurrent_exc.w['Jj<Nbarrels«N23exc'] = EPSCx.3 # excitatory->excitatory

recurrent_exc.w['j>=NbarrelsxN23exc'] = EPSC # excitatory->inhibitory

# Inhibitory lateral connections

print ('inhibitory lateral')

recurrent_inh = Synapses (layer23inh, layer23exc, on_pre='gi+=IPSC',
name="'recurrent_inh'")

recurrent_inh.connect (p="exp (-.5 ( ((x_pre-x_post)/.2) xx2+ ((y_pre—-y_post)/.2)x%2))")

if get_device()._ _class__ . name__=='RuntimeDevice':
print ('Total number of connections')
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=

en (feedforward))
% len(recurrent_exc))
% len(recurrent_inh))

print ('feedforward: $d' %
print ('recurrent exc: !
print ('recurrent inh: 2&d'

t2 = time.time ()
print ("Construction time: ¢.1fs" % (t2 - tl))

run (5xsecond, report='text')

# Calculate the preferred direction of each cell in layer23 by doing a
# vector average of the selectivity of the projecting layer4d cells, weighted
# by the synaptic weight.
_r = bincount (feedforward. j,
weights=feedforward.w * cos (feedforward.selectivity_pre) /feedforward.N_

—~incoming,

minlength=len (layer23exc))
i = bincount (feedforward. j,

weights=feedforward.w * sin(feedforward.selectivity_pre)/feedforward.N_

—~incoming,
minlength=len (layer23exc))

o

selectivity_exc = (arctan2(_r, _i) % (2+pi))+*180./pi

scatter (layer23.x[:Nbarrels«N23exc], layer23.y[:NbarrelsxN23exc],
c=selectivity_exc[:Nbarrels«N23exc],
edgecolors='none', marker='s', cmap='hsv')
vlines (np.arange (barrelarraysize), 0, barrelarraysize, 'k')
hlines (np.arange (barrelarraysize), 0, barrelarraysize, 'k'")
clim(0, 360)
colorbar ()
show ()
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5.11.10 Example: Platkiewicz_Brette 2011

Slope-threshold relationship with noisy inputs, in the adaptive threshold model

Fig. S5E,F from:

Platkiewicz J and R Brette (2011). Impact of Fast Sodium Channel Inactivation on Spike Threshold Dynamics and
Synaptic Integration. PLoS Comp Biol 7(5): e1001129. doi:10.1371/journal.pcbi.1001129

from scipy import optimize
from scipy.stats import linregress

from brian2 import x

N = 200 # 200 neurons to get more statistics, only one is shown
duration = l*second

# ——-Biophysical parameters

ENa 60+*mV

EL = -70*mV

v = —-55xmV

Vi = —63+mV

tauh = 5xms
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tau = 5xms
ka = 5xmv
ki = 6+mv
a = ka / ki
taul = 5x*ms
mu = 15xmV

sigma = 6xmV / sqgrt(taul / (taul + tau))

# ——Theoretical prediction for the slope-threshold relationship (approximation:,
—a=1l+epsilon)
thresh = lambda slope, a: Vi - slope % tauh * log(l + (Vi — vT / a) / (slope * tauh))
# o Exact calculation of the slope-threshold relationship
# (note that optimize.fsolve does not work with units, we therefore let th be a
# unitless quantity, i.e. the value in volt).
thresh_ex = lambda s: optimize.fsolve(lambda th: (axs*tauhxexp((Vi-thxvolt)/(s+tauh))-
—th*voltx (1-a)-ax (sxtauh+Vi)+vT) /volt,

thresh (s, a))»*volt

egqs = """

dv/dt=(EL-v+mu+sigmaxI) /tau : volt

dtheta/dt=(vT+axclip(v-Vi, 0*mV, infxmV)-theta)/tauh : volt

dI/dt=-I/taul+ (2/taul)*x.5xx1i : 1 # Ornstein-Uhlenbeck

neurons = NeuronGroup (N, eqgs, threshold="v>theta", reset='v=EL',
refractory=>5+ms)

neurons.v = EL

neurons.theta = vT

neurons.I = 0

S = SpikeMonitor (neurons)

M = StateMonitor (neurons, 'v', record=True)

Mt = StateMonitor (neurons, 'theta', record=0)

run (duration, report='text')
# Linear regression gives depolarization slope before spikes
tx = M.t[ (M.t > O#second) & (M.t < 1.5 % tauh)]

slope, threshold = [], []

for (i, t) in zip(S.i, S.t):

ind = (M.t < t) & (M.t > t - tauh)
mx = M.v[i, ind]
S, _y _r _, _ = linregress(tx[:len(mx)]/ms, mx/mV)

slope.append(s)
threshold.append (mx[-117)

# Figure
fig, (axl, ax2) = plt.subplots(l, 2, figsize=(10, 4))

axl.plot (M.t/ms, M.v[0]/mV, 'k")
axl.plot (Mt.t/ms, Mt.theta[0]/mV, 'r'")
# Display spikes on the trace
spike_timesteps = np.round(S.t[S.i == 0]/defaultclock.dt) .astype (int)
axl.vlines(S.t[S.i == 0]/ms,
M.v[0, spike_timesteps]/mV,
0, color='r")
axl.plot(S.t[S.1 == 0]/ms, M.v[0, spike_timesteps]/mV, 'ro', ms=3)
axl.set (xlabel="Time (ms)', ylabel='Voltage (mV)', xlim=(0, 500),
ylim=(-75, -35))
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ax2.plot (slope, Quantity (threshold)/mv, 'r.")

sx = linspace(0.5+mV/ms, 4+mV/ms, 100)

t = Quantity([thresh_ex(s) for s in sx])

ax2.plot (sx/ (mV/ms), t/mv, 'k')

ax2.set (x1lim=(0.5, 4), xlabel='Depolarization slope (mV/ms)',
ylabel='Threshold (mV)"')

fig.tight_layout ()
plt.show ()

Voltage (mV)

Threshold (mv)

T T T T T T T
4] 100 200 300 400 500 0.5 10 15 2.0 25 3.0 3.5 4.0
Time (ms) Depolarization slope (mVy/ms)

5.11.11 Example: Rossant_et_al 2011bis

5.11.12 Distributed synchrony example

Fig. 14 from:

Rossant C, Leijon S, Magnusson AK, Brette R (2011). “Sensitivity of noisy neurons to coincident inputs”.
Journal of Neuroscience, 31(47).

5000 independent E/I Poisson inputs are injected into a leaky integrate-and-fire neuron. Synchronous events, following
an independent Poisson process at 40 Hz, are considered, where 15 E Poisson spikes are randomly shifted to be
synchronous at those events. The output firing rate is then significantly higher, showing that the spike timing of less
than 1% of the excitatory synapses have an important impact on the postsynaptic firing.

from brian2 import =«

# neuron parameters

theta = -55xmV

El = -65xmV

vmean = —-65+mV
taum = 5#*ms

taue = 3*ms

taui = 10xms

egs = Equations ("""

dv/dt = (ge+gi-(v-El))/taum : volt
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dge/dt =
dgi/dt

wn n)

# input parameters
o) 15

ne = 4000

ni = 1000

lambdac
lambdae

40+Hz
lambdai

1xHz

# synapse parameters
we

wi

# NeuronGroup definition

—-ge/taue
-gi/taui

volt
volt

.5*xmV/ (taum/taue) =+ (taum/ (taue—taum))
(vmean—-El-lambdae+ne+we*taue) / (lambdae*ni*taui)

group = NeuronGroup (N=2, model=eqs, reset='v = El',
threshold="'v>theta',
refractory=5+ms, method='exact"')

group.v = E1

group.ge = group.gi = 0

# independent E/I Poisson inputs

pl = PoissonInput (group[0:1], 'ge', N=ne, rate=lambdae, weight=we)

p2 = PoissonInput (group[0:1], 'gi', N=ni, rate=lambdai, weight=wi)

# independent E/I Poisson

p3 = PoissonInput (group[l:
p4 = PoissonInput (group[l:
p5 = PoissonInput (group[l:

# run the simulation
M SpikeMonitor (group)
SM StateMonitor (group,

Vit
Vo

inputs + synchronous E events

1, 'ge', N=ne, rate=lambdae- (p*1.0/ne)«lambdac,
], 'gi', N=ni, rate=lambdai,
], 'ge', N=1, rate=lambdac,

weight=we)
weight=wi)
weight=p=*we)

record=True)

BrianLogger.log_level_info ()

run (lxsecond)
# plot trace and spikes

for i in [0, 1]:
spikes = (M.t[M.i == 1]
val = SM[i].v

subplot (2,1,1+1)
plot (SM.t/ms, val)

— defaultclock.dt) /ms

plot (tile (spikes, (2,1)),
vstack ((val[array (spikes, dtype=int)],
zeros (len (spikes)))), 'CO")
title("%s: ¢d spikes/second" % (["uncorrelated inputs", "correlated inputs"][i],
M.count [1]))
tight_layout ()
show ()
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5.11.13 Example: Rothman_Manis_2003

Cochlear neuron model of Rothman & Manis

Rothman JS, Manis PB (2003) The roles potassium currents play in regulating the electrical activity of ventral cochlear
nucleus neurons. J Neurophysiol 89:3097-113.

All model types differ only by the maximal conductances.

Adapted from their Neuron implementation by Romain Brette

from brian2 import =«

#defaultclock.dt=0.025+ms # for better precision

rro

Simulation parameters: choose current amplitude and neuron type
(from typelc, typelt, typel2, type 21, type2, typelo)
neuron_type = 'typelc'

Ipulse = 250%pA
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C = 12%pF

Eh = —-43+mV

EK = -70xmV # -77+mV in mod file

El = —-65xmV

ENa = 50+mV

nf = 0.85 # proportion of n vs p kinetics
zss = 0.5 # steady state inactivation of glt
temp = 22. # temperature in degree celcius

ql0 = 3. *x ((temp - 22) / 10.)
# hcno current (octopus cell)
frac = 0.0

gt = 4.5 % ((temp - 33.) / 10.)

# Maximal conductances of different cell types in nS
maximal_conductances = dict (

typelc=(1000, 150, 0O, 0, 0.5, 0, 2),

typelt=(1000, 80, 0, 65, 0.5, 0, 2),

typel2=(1000, 150, 20, O, 2, 0, 2),

type2l=(1000, 150, 35, 0, 3.5, 0, 2),

type2=(1000, 150, 200, 0, 20, 0, 2),

type20=(1000, 150, 600, 0, 0, 40, 2) # octopus cell
)

gnabar, gkhtbar, gkltbar, gkabar, ghbar, gbarno, gl = [x * nS for x in maximal__
—conductances [neuron_type] ]

# Classical Na channel
egs_na = nnw

ina = gnabar*mxx3xh* (ENa-v) : amp
dm/dt=ql0* (minf-m) /mtau : 1

dh/dt=gl0% (hinf-h) /htau : 1

minf = 1./ (l+exp(—-(vu + 38.) / 7.)) : 1

hinf = 1./ (l+exp((vu + 65.) / 6.)) 1

mtau = ((10. / (5%exp((vu+60.) / 18.) + 36.xexp(-(vu+60.) / 25.))) + 0.04)~*ms
—second

htau = ((100. / (7xexp((vu+60.) / 11.) + 10.*exp(—(vu+60.) / 25.))) + 0.6)*ms
—second

nwn

# KHT channel (delayed-rectifier K+)
eqs_kht = mmww

ikht = gkhtbar* (nfxnxx2 + (
dn/dt=gl0* (ninf-n) /ntau : 1
dp/dt=ql0* (pinf-p) /ptau : 1

1-nf) *p) * (EK-v) : amp

p

ninf = (1 + exp(=(vu + 15) / 5.))x*-0.5 : 1

pinf = 1. / (1 + exp(—(vu + 23) / 6.)) : 1

ntau = ((100. / (llxexp((vu+60) / 24.) + 21*exp(—(vu+60) / 23.))) + 0.7)+*ms second
ptau = ((100. / (4xexp((vu+60) / 32.) + Sxexp(-(vu+60) / 22.))) + 5)*ms : second

# Ih channel (subthreshold adaptive, non-inactivating)

egs_ih = """

ih = ghbarxrx (Eh-v) : amp

dr/dt=ql0« (rinf-r) /rtau : 1

rinf = 1. / (l+exp((vu + 76.) / 7.)) : 1

rtau = ((100000. / (237.xexp((vu+60.) / 12.) + 17.xexp(-(vu+60.) / 14.))) + 25.)*ms :_
—second
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# KLT channel (low threshold K+)
egs_klt = """

iklt = gkltbarxwx*4xzx (EK-v) : amp
dw/dt=gl0* (winf-w) /wtau : 1
dz/dt=qlO0* (zinf-z) /wtau : 1

winf = (1. / (1 + exp(—(vu + 48.) / 6.)))**0.25 : 1

zinf = zss + ((l.-zss) / (1 + exp((vu + 71.) / 10.))) : 1

wtau = ((100. / (6.%exp((vu+60.) / 6.) + 1l6.*xexp(—(vu+60.) / 45.))) + 1.5)*ms : second
ztau = ((1000. / (exp((vu+60.) / 20.) + exp(—(vu+60.) / 8.))) + 50)xms : second

nwn

# Ka channel (transient K+)
egs_ka = """

ika = gkabarxaxx4xbxcx (EK-v): amp
da/dt=gl0« (ainf-a)/atau : 1
db/dt=gl0« (binf-b) /btau : 1
dc/dt=gl0«* (cinf-c)/ctau : 1

ainf = (1. / (1 + exp(=(vu + 31) / 6.)))*%0.25 : 1

binf = 1. / (1 + exp((vu + 66) / 7.))x*x0.5 : 1

cinf = 1. / (1 + exp((vu + 66) / 7.))*%x0.5 : 1

atau = ((100. / (7*exp((vu+60) / 14.) + 29xexp (- (vu+60) / 24.))) + 0.1)*ms : second
btau = ((1000. / (ldxexp((vu+60) / 27.) + 29xexp(—(vu+60) / 24.))) + 1)*ms : second
ctau = ((90. / (1 + exp((-66-vu) / 17.))) + 10)ms : second

# Leak

eqgs_leak = """

ileak = glx (El-v) : amp

nun

# h current for octopus cells

eqgs_hcno = """

ihcno = gbarnox (hlxfrac + h2«(l-frac))*(Eh-v) : amp
dhl/dt=(hinfno-hl)/taul : 1

dh2/dt=(hinfno-h2) /tau2 : 1

hinfno = 1./ (l+exp((vu+66.)/7.)) : 1

taul = betl/ (gtx0.008% (1+alpl))+ms : second

tau2 = bet2/(gtx0.0029% (1+alp2))*ms : second

alpl = exp(le-3%3x (vu+50)*9.648e4/(8.315% (273.16+temp)))

1
betl = exp(le-3x3%0.3% (vu+50)%9.648e4/(8.315%(273.16+temp))) 1
alp2 = exp(le—-3%3%(vu+84)*9.648e4/(8.315*(273.16+temp))) : 1
bet2 = exp(le-3x3%0.6% (vu+84)%9.648e4/(8.315%(273.16+temp))) 1

nwn

egs = nun

dv/dt = (ileak + ina + ikht + iklt + ika + ih 4+ ihcno + I)/C : volt
vu = v/mV : 1 # unitless v
I : amp

nun

egs += eqgs_leak + eqgs_ka + egs_na + egs_ih + egs_klt + egs_kht + egs_hcno

neuron = NeuronGroup(l, egs, method='exponential euler')
neuron.v = E1

run (50*ms, report='text") # Go to rest

M = StateMonitor (neuron, 'v', record=0)
neuron.Il = Ipulse
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run (100+ms, report='text')

plot (M.t / ms, M[0].v / mV)
xlabel ('t (ms) ')

ylabel ('v (mV) ")

show ()
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—20 1

_40 -
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T T T
60 80 100 120 140
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5.11.14 Example: Sturzl_et_al_2000

Adapted from Theory of Arachnid Prey Localization W. Sturzl, R. Kempter, and J. L. van Hemmen PRL 2000
Poisson inputs are replaced by integrate-and-fire neurons

Romain Brette

from brian2 import =«

# Parameters
degree = 2 x pi / 360.

duration = 500*ms
R = 2.5«cm # radius of scorpion
vr = 50+meter/second # Rayleigh wave speed
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phi = 1l44xdegree # angle of prey

A = 250«%Hz

deltal = .7xms # inhibitory delay

gamma = (22.5 + 45 % arange(8)) * degree # leg angle
delay = R / vr * (1 - cos(phi - gamma)) # wave delay
# Wave (vector w)

time = arange (int (duration / defaultclock.dt) + 1)
Dtot = 0.

w = 0.

for f in arange (150, 451)«*Hz:

D = exp(—(f/Hz — 300) x* 2 /
rand_angle = 2 % pi * rand()
w += 100 = D % cos(2 » pi = £ » time + rand_angle)
Dtot += D

.01 = w / Dtot

(2 = (50 »% 2)))

w =

# Rates from the wave
rates = TimedArray(w, dt=defaultclock.dt)
# Leg mechanical receptors
tau_legs = 1 % ms

sigma = .01

egs_legs = """

dv/dt = (1 + rates(t - d)
d : second

nwn

legs = NeuronGroup (8, model=eqgs_legs, threshold='v > 1°',
refractory=1l+ms, method='euler')

legs.d = delay

spikes_legs = SpikeMonitor (legs)

# Command neurons

tau = 1 * ms

taus = 1.001 % ms

wex = 7/

winh = -2

egs_neuron = '''

dv/dt = (x - v)/tau : 1

dx/dt = (y — x)/taus 1 # alpha currents

dy/dt = -y/taus : 1

Tra

neurons = NeuronGroup (8, model=eqgs_neuron, threshold='v>1",

method="exact")
synapses_ex = Synapses (legs,
synapses_ex.connect (j="1")
synapses_inh = Synapses (legs,
synapses_inh.connect ('abs (((7 - 1) %
spikes = SpikeMonitor (neurons)

neurons, on_pre='y+t=wex')

neurons,
N_post)

on_pre='y+=winh',
- N_post/2)

run (duration, report='text')

nspikes = spikes.count

phi_est = imag(log(sum(nspikes * exp(gamma * 173))))
print ("True angle (deg): 2f" % (phi/degree))

print ("Estimated angle (deg): %.2f" % (phi_est/degree))
rmax = amax (nspikes)/duration/Hz

polar (concatenate ( (gamma, [gammal[O0] + 2 = pil)),

« defaultclock.dt

- v)/tau_legs + sigma=* (2./tau_legs)*x.5*xi:1

reset='v = 0',

reset="'v=0",

delay=deltal)
<=1")
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concatenate ((nspikes, [nspikes([0]])) / duration / Hz,
c="k")
axvline (phi, 1ls='-', c="'g")
axvline (phi_est, 1ls='-', c='b")
show ()
an®

180°

270"

5.11.15 Example: Touboul_Brette 2008

Chaos in the AdEx model

Fig. 8B from: Touboul, J. and Brette, R. (2008). Dynamics and bifurcations of the adaptive exponential integrate-and-
fire model. Biological Cybernetics 99(4-5):319-34.

This shows the bifurcation structure when the reset value is varied (vertical axis shows the values of w at spike times
for a given a reset value Vr).

from brian2 import =«
defaultclock.dt = 0.01lxms

C = 281+pF
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gL = 30%nS
EL = -70.6*mV
VT = -50.4+mV

DeltaT = 2xmV
tauw = 40xms

a = 4%nS

b = 0.08xnA

I = .8*nA

Vcut = VT + 5 x DeltaT # practical threshold condition
N = 200

egs = nun

dvm/dt= (gL* (EL-vm) +gL*DeltaT*exp ( (vim—VT) /DeltaT)+I-w)/C : volt
dw/dt=(ax (vm-EL) -w) /tauw : amp
Vr:volt

nwn

neuron = NeuronGroup (N, model=eqgs, threshold='vm > Vcut',
reset="vm = Vr; w += b", method='euler')

neuron.vm = EL

neuron.w = a * (neuron.vm — EL)

neuron.Vr = linspace(-48.3 % mV, -47.7 x mV, N) # bifurcation parameter
init_time = 3xsecond

run(init_time, report='text') # we discard the first spikes

states = StateMonitor (neuron, "w", record=True, when='start')

spikes = SpikeMonitor (neuron)

run(l % second, report='text')

# Get the values of Vr and w for each spike

Vr = neuron.Vr[spikes.i]
w = states.w[spikes.i, int_ ((spikes.t-init_time)/defaultclock.dt) ]
figure ()

plot(Vr / mV, w / nA, '.k'")
xlabel ('Vr (mV)")

ylabel ('w (ni)"')

show ()
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5.11.16 Example: Vogels_et_al 2011

Inhibitory synaptic plasticity in a recurrent network model

(F. Zenke, 2011) (from the 2012 Brian twister)

Adapted from: Vogels, T. P, H. Sprekeler, F. Zenke, C. Clopath, and W. Gerstner. Inhibitory Plasticity Balances
Excitation and Inhibition in Sensory Pathways and Memory Networks. Science (November 10, 2011).

from brian2 import =«

# #AFAFAFAAAEAAFAAAHA AR A A AFAAA A AFAHAHAA

# Definirn 1etwork model

# #HE#AFH #E#HFAFAAS

NE = 8000 # Number of exci

NI = NE/4 # Number of inhibitory

tau_ampa = 5.0*ms # G

tau_gaba = 10.0*ms # GABAergic synaptic

epsilon = 0.02 # Sparseness of synaptic connections
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tau_stdp = 20+ms # STDP time constant
simtime = 10xsecond # Simulation time
# HAHAAAAAAHARA A AR A AR A AHA AR A AAAAA

# Neuron model
# HAHAHAAFAFARAAAAFAFAAAAAAFARAAAFAHARAAAAAA

gl = 10.0%nsiemens # Leak conductance

el = -60+mV # Resting potential

er = -80*mV # Inhibitory reversal potential
vt = -50.*mV # Spiking threshold

memc = 200.0xpfarad # Membrane capacitance
bgcurrent = 200+pA # External current

egs_neurons="'""

dv/dt=(-glx (v-el) - (g_ampax*v+g_gabax* (v-er) ) +bgcurrent) /memc : volt (unless refractory)
dg_ampa/dt = —-g_ampa/tau_ampa : siemens
dg_gaba/dt = -g_gaba/tau_gaba : siemens

[

# #RAEFEAAFAHAAA A AFARAAARAARA R A AFR A A A
# Initialize neuron group

# HAFFEAAFRAFFHAAFRAFFRAAFHAFFAAF AR A AR FHAS

neurons = NeuronGroup (NE+NI, model=eqgs_neurons, threshold='v > vt',
reset="'v=el', refractory=5+ms, method='euler'")

Pe = neurons/[:NE]

Pi neurons [NE: ]

# #EAFHAFAAAARAA A RAA A EAA AR A A A FAA A HAAHA
# Connecting the network
# #A#AAA AR A AAARA A RA AR A AR AR

con_e = Synapses (Pe, neurons, on_pre='g_ampa += 0.3xnS")
con_e.connect (p=epsilon)
con_ii = Synapses(Pi, Pi, on_pre='g gaba += 3xnS')

con_ii.connect (p=epsilon)

# #A#FRAAFRARFRAAFRAAFRAAFAAAFAAA AR AR FAAS
# Inhibitory Plasticity
# #EAFEAHAFAAHAF A EAFAAEAFAFEAAAF A HAF A HAFHA

egs_stdp_inhib = """

w o 1

dApre/dt=-Apre/tau_stdp : 1 (event-driven)
dApost/dt=-Apost/tau_stdp : 1 (event-driven)

v

alpha = 3xHzxtau_stdp*2 # Target rate parameter

gmax = 100 # Maximum inhibitory weight
con_ie = Synapses(Pi, Pe, model=eqgs_stdp_inhib,
on_pre="'""'"'Apre += 1.

w = clip(w+ (Apost—alpha)xeta, 0, gmax)
g_gaba += wxn3S''"'",

on_post="""Apost += 1.
w = clip(wtAprexeta, 0, gmax)

vlv)
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con_ie.connect (p=epsilon)
con_ie.w = 1le-10

# #EAFHAFAAAARAA A RAA A EAF A EAF A A FA A A HAAHA
# Setting up monitors
# HEAFEAHAFAAEAA A EAA A EAF AR AR AR A4

sm = SpikeMonitor (Pe)

# #REFEAAAAAARAEAAAARAAARA AR A AFAAA AR
# Run without plasticity

# #A#AAAAAAAAAA A AAARARA AR R A AR RA AR
eta = 0 # Learning rate

run (1 +«second)

# #AEFEAAFAHAAA A AFA AR A RFARA R A AHA A AR
# Run with plasticity

# #A#AAEAAAAAAAA A AR ARA AR R A AR RA AR
eta = le-2 # Learning rate

run (simtime-1l+second, report='text')

# #EAFRAFAAAARAA A RAA A EAA AR F A A FAA A HAAHA
# Make plots
# HEAFHAEAFHAEAA A RAA A EAF AR H AR H AR A4

i, t = sm.it

subplot (211)

plot (t/ms, i, 'k.', ms=0.25)
title ("Before™)

xlabel ("")

yticks ([1)

x1im(0.8*1e3, 1x1e3)

subplot (212)

plot (t/ms, i, 'k.', ms=0.25)
xlabel ("time (ms)")

yticks ([1])

title("After")

xlim( (simtime-0.2+second) /ms, simtime/ms)
show ()
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5.11.17 Example: Wang_Buszaki_1996

Wang-Buszaki model

J Neurosci. 1996 Oct 15;16(20):6402-13. Gamma oscillation by synaptic inhibition in a hippocampal interneuronal
network model. Wang XJ, Buzsaki G.

Note that implicit integration (exponential Euler) cannot be used, and therefore simulation is rather slow.

from brian2 import =«
defaultclock.dt = 0.0lxms

Cm = 1xuF # /cm##2
Iapp = 2*ulA

gL = 0.lx*msiemens
EL = —65xmV

ENa = 55xmV

EK = -90+mV

gNa = 35xmsiemens
gK = 9+msiemens
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T

eqgs =

dv/dt = (—-gNa*m**3xhx (v-ENa)-gK+n**4* (v-EK) —gL«* (v-EL) +Iapp)/Cm : volt
m = alpha_m/ (alpha_mt+beta_m) : 1

alpha_m = -0.1/mVx (v+35+mV) / (exp (-0.1/mV* (v+35+mV))~-1) /ms : Hz

beta_m = 4xexp (- (v+60+mV)/ (18*mV))/ms : Hz

dh/dt = 5% (alpha_hx (1-h)-beta_hxh) 1

alpha_h = 0.07+exp (- (v+58+mV) / (20xmV) ) /ms : Hz

beta_h = 1./ (exp(-0.1/mV* (v+28xmV))+1)/ms : Hz

dn/dt = 5% (alpha_nx (l-n)-beta_n=*n) : 1

alpha_n = -0.01/mV* (v+34xmV) / (exp (-0.1/mV« (v+34+mV))~-1) /ms : Hz
beta_n = 0.125xexp (- (v+44xmV) / (80+mV) ) /ms : Hz

v

neuron = NeuronGroup (l, eqgs, method='exponential_ euler")

neuron.v = —70xmV
neuron.h = 1
M = StateMonitor (neuron, 'v', record=0)

run (100+ms, report='text')

plot (M.t/ms, M[0].v/mV)
show ()
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5.12 frompapers/Brette 2012

5.12.1 Example: Fig1

Brette R (2013). Sharpness of spike initiation in neurons explained by compartmentalization. PLoS Comp Biol, doi:
10.1371/journal.pcbi.1003338.

Fig 1C-E. Somatic voltage-clamp in a ball-and-stick model with Na channels at a particular location.

from brian2 import =«
from params import =«

defaultclock.dt = 0.025%ms

# Morphology
morpho = Soma (50+um) # chosen for a target Rm
morpho.axon = Cylinder (diameter=1+um, length=300+um, n=300)

location = 40xum # where Na channels are placed
duration = 500*ms

# Channels

egs="""

Im = gL+ (EL - v) + gclamp=* (vc — v) + gNasmx (ENa — v) : amp/meter*=*2

dm/dt = (minf - m) / taum: 1 # simplified Na channel

minf =1 / (1 + exp((va - v) / ka)) : 1

gclamp : siemens/meter*=*2

gNa : siemens/meter*=*2

ve = EL + 50xmV * t/duration : volt (shared) # Voltage clamp with a ramping voltage,,

—command
Tra

neuron = SpatialNeuron (morphology=morpho, model=eqgs, Cm=Cm, Ri=Ri)
compartment = morpho.axon[location]

neuron.v = EL

neuron.gclamp[0] = gLx500

neuron.gNa[compartment] = gNa_0O/neuron.area[compartment]

# Monitors
mon = StateMonitor (neuron, ['v', 'vc', 'm'], record=True)

run (duration, report='text')

subplot (221)
plot (mon[0] .vc/mV,
~((mon[0].vc — mon[0].v)* (neuron.gclamp[0])) *neuron.area[0]/nA, 'k'")
xlabel ('V (mV) ")
ylabel ("I (nA)")
x1lim (=75, -45)
title('I-V curve')

subplot (222)

plot (mon[0] .vc/mV, mon[compartment].m, 'k')
xlabel ('V (mV) ")

ylabel ('m")

title('Activation curve (m(V))")
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subplot (223)
# Number of simulation time steps for each volt increment in the voltage-clamp
dt_per_volt = len(mon.t)/ (50+mV)
for v in [-64xmV, -61+mV, —-58xmV, -55xmV]:
plot (mon.v[:100 ,int (dt_per_voltx(v - EL))]/mv, 'k'")
xlabel ('Distance from soma (um) ')
ylabel ('V (mV) ")
title('Voltage across axon')

subplot (224)

plot (mon[compartment] .v/mV, mon[compartment].v/mV, 'k--") # Diagonal
plot (mon[0] .v/mV, mon[compartment].v/mV, 'k'")

xlabel ('Vs (mV) ')

ylabel ('Va (mV)")

tight_layout ()

show ()
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5.12.2 Example: Fig3AB

Brette R (2013). Sharpness of spike initiation in neurons explained by compartmentalization. PLoS Comp Biol, doi:
10.1371/journal.pcbi.1003338.
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Fig. 3. A, B. Kink with only Nav1.6 channels

from brian2 import x
from params import =«

codegen.target="numpy'
defaultclock.dt = 0.025+ms
# Morphology

morpho = Soma (50+xum) # chosen for a target Rm
morpho.axon = Cylinder (diameter=1xum, length=300+um, n=300)

location = 40*um # where Na channels are placed

# Channels

eqS:' [}

Im = gL* (EL - v) + gNasm* (ENa — v) : amp/meter*x2

dm/dt = (minf - m) / taum : 1 # simplified Na channel

minf = 1 / (1 + exp((va - v) / ka)) : 1

gNa : siemens/meterx«*2

Iin : amp (point current)

neuron = SpatialNeuron (morphology=morpho, model=eqgs, Cm=Cm, Ri=Ri,

method="exponential_ euler")

compartment = morpho.axon[location]

neuron.v = EL
neuron.gNa[compartment] = gNa_0O/neuron.area[compartment]
M = StateMonitor (neuron, ['v', 'm'], record=True)

run (20*ms, report='text')
neuron.Iin[0] = gL x 20+mV % neuron.areal[0]
run (80*ms, report='text')

subplot (121)

plot (M.t/ms, M[0].v/mV, 'r'")

plot (M.t/ms, M[compartment].v/mV, 'k'")

plot (M.t/ms, M[compartment].m« (80+60)-80, 'k——") # open channels
ylim (=80, 60)

xlabel ('"Time (ms) ")

ylabel ('V (mV) ")

title('Voltage traces')

subplot (122)

dm = diff (M[0].v) / defaultclock.dt

dm40 = diff (M[compartment].v) / defaultclock.dt
plot ((M[0].v/mV) [1:], dm/(volt/second), 'r')
plot ( (M[compartment] .v/mV) [1:], dm40/ (volt/second), 'k'")
x1lim(-80, 40)

xlabel ('V (mV) ")

ylabel ('dv/dt (V/s)")

title('Phase plot')

tight_layout ()

show ()
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5.12.3 Example: Fig3CF

Brette R (2013). Sharpness of spike initiation in neurons explained by compartmentalization. PLoS Comp Biol, doi:
10.1371/journal.pcbi.1003338.

Fig. 3C-F. Kink with Nav1.6 and Nav1.2

from brian2 import =«
from params import =«

defaultclock.dt = 0.01lxms
# Morphology
morpho = Soma (50xum) # chosen for a target Rm

morpho.axon = Cylinder (diameter=1xum, length=300%um, n=300)

locationl6 = 40xum # where Navl.6 channels are placed
locationl2 = 15xum # where Navl.Z2 channels are placed

vaz = va + 15xmV # depolarized Navl.Z2

# Channels
duration = 100xms
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eqgs="""

Im = gL * (EL - v) + gNaxm* (ENa — v) + gNa2xm2* (ENa — v) : amp/meter=*=*2
dm/dt = (minf - m) / taum : 1 # simplified Na channel

minf =1 / (1 + exp((va - v) / ka)) : 1

dm2/dt = (minf2 - m2) / taum : 1 # simplified Na channel, Navl.2
minf2 = 1/(1 + exp((va2 - v) / ka)) : 1

gNa : siemens/meter*x2

gNa2 : siemens/meterxx2 # Navl.2

Iin : amp (point current)

Tra

neuron = SpatialNeuron (morphology=morpho, model=egs, Cm=Cm, Ri=Ri,

method="exponential_euler")
compartmentl6 = morpho.axon[locationlé6]
compartmentl2 = morpho.axon[locationl?2]

neuron.v = EL

neuron.gNa[compartmentl1l6] = gNa_O/neuron.areal[compartmentl16]
neuron.gNa2 [compartment12] = 20+«gNa_0/neuron.area[compartmentl12]
# Monitors

M = StateMonitor (neuron, ['v', 'm', 'm2'], record=True)

run (20*ms, report='text')
neuron.Iin[0] = gL * 20xmV % neuron.areal[0]
run (80*ms, report='text')

subplot (221)

plot (M.t/ms, M[0].v/mV, 'r'")

plot (M.t/ms, M[compartmentl6].v/mV, 'k')

plot (M.t/ms, M[compartmentl6].mx (80+60)-80, 'k--") # open channels
ylim(-80, 60)

xlabel ("Time (ms) ")

ylabel ('V (mV) ')

title('Voltage traces')

subplot (222)

plot (M[0].v/mV, M[compartmentl6].m, 'k")

plot (M[0].v/mV, 1 / (1 + exp((va — M[0].v) / ka)), 'k—")
plot (M[0].v/mV, M[compartmentl2] .m2, 'r'")

plot (M[0].v/mV, 1 / (1 + exp((va2 - M[0].v) / ka)), 'r——")

x1im (=70, 0)

xlabel ('V (mV) ")
ylabel('m")
title('Activation curves')

subplot (223)

dm = diff (M[0].v) / defaultclock.dt

dm40 = diff (M[compartmentl6].v) / defaultclock.dt

plot ((M[0].v/mV) [1:], dm/(volt/second), 'r')

plot ((M[compartmentl6] .v/mV) [1:], dm40/(volt/second), 'k'")
x1im (-80, 40)

xlabel ('V (mV) ")

ylabel ('dv/dt (V/s)")

title('Phase plot'")

subplot (224)

plot ((M[0].v/mV) [1:], dm/(volt/second), 'r'")

plot ( (M[compartmentl6].v/mV) [1:], dm40/ (volt/second)
plot ((M[0].v/mV) [1:], 10 + Oxdm/(volt/second), 'k—-'

k")
)
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x1lim (=70, -40)

ylim (0, 20)

xlabel ('V (mV) ")

ylabel ('dv/dt (V/s)")
title('Phase plot (zoom) ')
tight_layout ()

show ()
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5.12.4 Example: Fig4

Brette R (2013). Sharpness of spike initiation in neurons explained by compartmentalization. PLoS Comp Biol, doi:
10.1371/journal.pcbi.1003338.

Fig. 4E-F. Spatial distribution of Na channels. Tapering axon near soma.

from brian2 import =«
from params import =«

defaultclock.dt = 0.025+ms
# Morphology

morpho = Soma (50xum) # chosen for a target Rm
# Tapering (change this for the other figure panels)
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diameters = hstack([linspace(4, 1, 11), ones(290)]) »um
morpho.axon = Section (diameter=diameters, length=ones (300)*um, n=300)

# Na channels

Na_start = (25 + 10) *um

Na_end = (40 + 10) *um

linear_distribution = True # True is F, False is E

duration = 500+ms

# Channels
eqgs="""

Im = gL+ (EL - v) + gclamp=* (vc — v) + gNasmx (ENa — v) : amp/meterx=*2

dm/dt = (minf - m) / taum: 1 # simplified Na channel

minf = 1 / (1 + exp((va - v) / ka)) : 1

gclamp : siemens/meter**2

gNa : siemens/meterxx2

vc = EL + 50xmV » t / duration : volt (shared) # Voltage clamp with a ramping,,

—voltage command

[

neuron = SpatialNeuron (morphology=morpho, model=eqgs, Cm=Cm, Ri=Ri,
method="exponential_ euler")

compartments = morpho.axon[Na_start:Na_end]

neuron.v = EL

neuron.gclamp[0] = gLx500

if linear_distribution:

profile = linspace(l, 0, len(compartments))
else:

profile = ones(len(compartments))
profile = profile / sum(profile) # normalization

neuron.gNa[compartments] = gNa_0 » profile / neuron.area[compartments]

# Monitors
mon = StateMonitor (neuron, 'v', record=True)

run (duration, report='text')

dt_per_volt = len(mon.t) / (50xmV)
for v in [-64*mV, -61+mV, -58+mV, -55+mV, —-52+mV]:
plot (mon.v[:100, int (dt_per_volt * (v — EL))]/mV, 'k')
x1im (0, 50+10)
ylim(-65, -25)
ylabel ('V (mV) ")
xlabel ('Location (um) ')
title('Voltage across axon')
tight_layout ()
show ()
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5.12.5 Example: Fig5A

Brette R (2013). Sharpness of spike initiation in neurons explained by compartmentalization. PLoS Comp Biol, doi:
10.1371/journal.pcbi.1003338.

Fig. 5A. Voltage trace for current injection, with an additional reset when a spike is produced.

Trick: to reset the entire neuron, we use a set of synapses from the spike initiation compartment where the threshold
condition applies to all compartments, and the reset operation (v = EL) is applied there every time a spike is produced.

from brian2 import =«
from params import =«

defaultclock.dt = 0.025%ms
duration = 500xms

# Morphology
morpho = Soma (50xum) # chosen for a target Rm
morpho.axon = Cylinder (diameter=1xum, length=300%um, n=300)

# Input
taux = 5xms
sigmax = 12+mV

xx0 = 7+mV
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compartment = 40

# Channels

egs = '"!'

Im = gL * (EL - v) + gNa  m = (ENa - v) + gLx % (xx0 + xx) : amp/meter*=*2

dm/dt = (minf - m) / taum : 1 # simplified Na channel

minf =1 / (1 + exp((va - v) / ka)) : 1

gNa : siemens/meterx«*2

gLx : siemens/meter*x2

dxx/dt = -xx / taux + sigmax x (2 / taux)**.5 xxi : volt

Tr

neuron = SpatialNeuron (morphology=morpho, model=eqgs, Cm=Cm, Ri=Ri,
threshold='m>0.5", threshold_location=compartment,
refractory=5+ms)

neuron.v = EL

neuron.gLx[0] = gL

neuron.gNa[compartment] = gNa_0 / neuron.area[compartment]

# Reset the entire neuron when there is a spike

reset = Synapses (neuron, neuron, on_pre='v = EL")
reset.connect ('i == compartment') # Connects the spike initiation compartment to all_
—compartments

# Monitors

S = SpikeMonitor (neuron)

M = StateMonitor (neuron, 'v', record=0)
run (duration, report='text')

# Add spikes for display
v = M[0].v
for t in S.t:
viint (t / defaultclock.dt)] = 50+mV

plot (M.t/ms, v/mv, 'k'")
tight_layout ()
show ()
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5.12.6 Example: params

T T
200 300

Parameters for spike initiation simulations.

T T
400 500

from brian2.units import =

# Passive parameters

EL = -75%mV

S = 7.85e-9+ meterxx2 # area
Cm = 0.75*uF/cm#**2

gL = 1. / (30000+ohm*cmx*«2)
Ri = 150+ohmxcm

# Na channels

ENa = 60xmV

ka = 6+mv

va = —40+mV

gNa_0 = gL *» 2%S

taum = 0.lxms

(sphere of 50 um diameter)
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5.13 frompapers/Stimberg_et_al 2018

5.13.1 Example: example_1_COBA

Modeling neuron-glia interactions with the Brian 2 simulator Marcel Stimberg, Dan F. M. Goodman, Romain Brette,
Maurizio De Pitta bioRxiv 198366; doi: https://doi.org/10.1101/198366

Figure 1: Modeling of neurons and synapses.

Randomly connected networks with conductance-based synapses (COBA; see Brunel, 2000). Synapses exhibit short-
time plasticity (Tsodyks, 2005; Tsodyks et al., 1998).

from brian2 import =«

import plot_utils as pu

seed (11922) # to get identical figures for repeated runs

#tHE#AA A FA AR FAFEAFAF AR AR R F AR A AR F AR F AR F AR AR A AR AR AR H A A
# Model parameters

ldidaddddaddddaadddasadaasataadataadadsadatsadatsadatsddatsddadsdasdssaadadaadadd
### General parameters

duration = 1.0xsecond # Total simulation time

sim_dt = 0.lxms # Integrator/sampling step

N_e = 3200 # Number of excitatory neurons
N_i = 800 # Number of inhibitory neurons

### Neuron parameters

E_1 = —-60xmV # Leak reversal potential

g_ 1l = 9.99%xnS # Leak conductance

E_e = 0xmV # Excitatory synaptic reversal potential
E_i = -80*xmV # Inhibitory synaptic reversal potential
C_m = 198xpF # Membrane capacitance

tau_e = 5xms # Excitatory synaptic time constant
tau_i = 10#ms # Inhibitory synaptic time constant
tau_r = 5xms # Refractory period

I_ex = 150*pA # External current

V_th = -50xmv # Firing threshold

V_r = E_1 # Reset potential

### Synapse parameters

w_e = 0.05%nS # Excitatory synaptic conductance

w_1i = 1.0%nS # Inhibitory synaptic conductance

U_0 = 0.6 # Synaptic release probability at rest
Omega_d = 2.0/second # Synaptic depression rate

Omega_f = 3.33/second # Synaptic facilitation rate

HAHRHAAAAFAHARARAAAAFARAAAFAAA A AR R A AA R A AR F AR AR EA AR A
# Model definition
HEFAAAAAHAAARAAFARARARAAFARARAAFAHAEA A AFA R A EAAHA A RA AR R AR AR RA AR FA RS
# Set the integration time (in this case not strictly necessary, since we are

# using the default value)

defaultclock.dt = sim_dt

### Neurons

neuron_eqgs = '''
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dv/dt = (g_l*x(E_1-v) + g_ex(E_e-v) + g_ix(E_i-v) +

I_ex)/C_m : volt (unless refractory)
dg_e/dt = -g_e/tau_e : siemens # post-synaptic exc. conductance
dg_i/dt = -g_i/tau_i : siemens # post-synaptic inh. conductance
neurons = NeuronGroup(N_e + N_i, model=neuron_edgs,

threshold='v>V_th', reset='v=V_r',
refractory='tau_r', method='euler')
# Random initial membrane potential values and conductances

neurons.v = 'E_ 1 + rand()*(V_th-E _1)"'
neurons.g_e = 'rand()x*w_e'
neurons.g_i = 'rand () w_1i"'
exc_neurons = neurons/[:N_e]
inh_neurons = neurons[N_e:]

### Synapses
synapses_eqgs = '''
# Usage of releasable neurotransmitter per single action potential:

du_S/dt = -Omega_f » u_S : 1 (event-driven)
# Fraction of synaptic neurotransmitter resources available:
dx_S/dt = Omega_d =(1 - x_S) : 1 (event—driven)

Tr

synapses_action = '''
u_S += U_0 * (1 - u_Sl)
= u_S * X_S

- wm
|
Il
a]
)

exc_syn = Synapses (exc_neurons, neurons, model=synapses_edgs,
on_pre=synapses_action+'g_e_post += w_exr_S")

inh_syn = Synapses (inh_neurons, neurons, model=synapses_eds,
on_pre=synapses_action+'g_i_ post += w_ixr_S')

exc_syn.connect (p=0.05)

inh_syn.connect (p=0.2)

# Start from "resting" condition: all synapses have fully-replenished
# neurotransmitter resources

exc_syn.x_S = 1

inh_syn.x_S 1

# HARAHAAFAFARARAAAAFARAAAAFAAA A AAAR AR A AHAFA A A H AR AA AR A AA AR
# # Monitors

# #AEAAAAFAFARARAAAARA R AR RARA AR RAEA A AFARA A A AF AR A AR A AR RAAHAH
# Note that we could use a single monitor for all neurons instead, but in this

# way plotting is a bit easier in the end

exc_mon = SpikeMonitor (exc_neurons)

inh_mon = SpikeMonitor (inh_neurons)

### We record some additional data from a single excitatory neuron
ni = 50
# Record conductances and membrane potential of neuron ni
state_mon = StateMonitor (exc_neurons, ['v', 'g. e', 'g_ i']l, record=ni)
# We make sure to monitor synaptic variables after synapse are updated in order
# to use simple recurrence relations to reconstruct them. Record all synapses
# originating from neuron ni
synapse_mon = StateMonitor (exc_syn, ['u_S', 'x_S'],
record=exc_syn[ni, :], when='after_ synapses')

# HEHRAAAAAFFFRAARAAFFFERAAAAFFRRAAAAFFFHRAAAAFFFFRAARAAFFFERAAAAFFRRAAAAFFFHRAA
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# # Simulation run
# HHFAAHFAAAFAAHAAAHFAAHFAFHFARFF AR AR HHAAH AR F A A AR H A F AR H A H AR AR A AAH
run (duration, report='text')

#HAARHAAAAAAHARAAA AR A AHA A A AR A AR RA A AH AR A AR A AAH AR
# Analysis and plotting
FHAFRFAAAAAAFARARAAAARARAAAAFA AR RFAFAEA A AFR AR AAFA R A AA AR A AR AR AHAS
plt.style.use('figures.mplstyle')

### Spiking activity (w/ rate)
figl, ax = plt.subplots(nrows=2, ncols=1, sharex=False,
gridspec_kw={"'height_ratios': [3, 1],
'left': 0.18, 'bottom': 0.18, 'top': 0.95,
'hspace': 0.1},
figsize=(3.07, 3.07))

ax[0] .plot (exc_mon.t[exc_mon.i <= N_e//4]/ms,
exc_mon.i[exc_mon.i <= N_e//4], '|', color='C0")
ax[0] .plot (inh_mon.t[inh_mon.i <= N_i//4]/ms,
inh_mon.i[inh_mon.i <= N_i//4]+N_e//4, '|', color='Cl")

pu.adjust_spines(ax[0], ['left'])
ax[0].set (x1im=(0.,duration/ms), ylim=(0, (N_e+N_1i)//4), ylabel="'neuron index')

# Generate frequencies
bin_size = l+*ms
spk_count, bin_edges = np.histogram(np.r_[exc_mon.t/ms, inh_mon.t/ms],
int (duration/ms))
rate = double (spk_count)/(N_e + N_i)/bin_size/Hz
ax[1l].plot (bin_edges[:-1], rate, '-', color='k")
pu.adjust_spines(ax[1], ['left', 'bottom'])
ax[1].set (x1lim=(0.,duration/ms), ylim=(0, 10.),
xlabel="time (ms)', ylabel='rate (Hz)")
pu.adjust_ylabels(ax, x_offset=-0.18)

### Dynamics of a single neuron
fig2, ax = plt.subplots (4, sharex=False,
gridspec_kw={'left': 0.27, 'bottom': 0.18, 'top': 0.95,
'hspace': 0.2},
figsize=(3.07, 3.07))
### Postsynaptic conductances
ax[0] .plot (state_mon.t/ms, state_mon.g_e[0]/nS, color='C0")
ax[0].plot (state_mon.t/ms, —-state_mon.g_i[0]/nS, color='Cl")
ax[0] .plot ([state_mon.t[0]/ms, state_mon.t[-1]/ms], [0, 0], color='grey"',
linestyle=":")
# Adjust axis
pu.adjust_spines(ax[0], ['left'])
ax[0].set (x1im=(0., duration/ms), ylim=(-5.0,0.25),
ylabel="postsyn.\nconduct.\n(${0}$)'.format (sympy.latex (nS)))

### Membrane potential

ax[1l].axhline (V_th/mV, color='C2', linestyle=':") # Threshold

# Artificially insert spikes

ax[1l].plot (state_mon.t/ms, state_mon.v[0]/mV, color='black")

ax[1l].vlines (exc_mon.t[exc_mon.i == ni]/ms, V_th/mV, 0, color='black')

pu.adjust_spines(ax[1], ['left'])

ax[1l].set(x1lim=(0., duration/ms), ylim=(-1+V_r/mV,0.),
ylabel="membrane\npotential\n(${0}$)"'.format (sympy.latex (mV)))

### Synaptic variables
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# Retrieves indexes of spikes in the synaptic monitor using the fact that we
# are sampling spikes and synaptic variables by the same dt

spk_index = np.inld(synapse_mon.t, exc_mon.t[exc_mon.i == ni])

ax[2] .plot (synapse_mon.t [spk_index]/ms, synapse_mon.x_S[0] [spk_index], '.',
ms=4, color='C3")

ax[2] .plot (synapse_mon.t [spk_index]/ms, synapse_mon.u_S[0] [spk_index], '.',

ms=4, color='C4d")
# Super—-impose reconstructed solutions

time = synapse_mon.t # time vector
tspk = Quantity(synapse_mon.t, copy=True) # Spike times
for ts in exc_mon.t[exc_mon.i == ni]:

tspk[time >= ts] = ts

ax[2] .plot (synapse_mon.t/ms, 1 + (synapse_mon.x_S[0]-1)~*exp (- (time-tspk) +*Omega_d),
'-'", color='C3")

ax[2] .plot (synapse_mon.t/ms, synapse_mon.u_S[0]*exp (- (time-tspk) *Omega_f),
'=', color='C4")

# Adjust axis

pu.adjust_spines(ax[2], ['left'])

ax[2].set (x1im=(0., duration/ms), ylim=(-0.05, 1.05),

ylabel="'synaptic\nvariables\nSu_S,\,x_SS$")

nspikes = np.sum(spk_index)
Xx_S_spike = synapse_mon.x_S[0] [spk_index]
u_S_spike = synapse_mon.u_S[0] [spk_index]

ax[3].vlines (synapse_mon.t [spk_index]/ms, np.zeros (nspikes),
x_S_spikexu_S_spike/ (1-u_S_spike))
pu.adjust_spines(ax[3], ['left', 'bottom'])
ax[3].set (x1lim=(0., duration/ms), ylim=(-0.01, 0.62),
yticks=np.arange (0, 0.62, 0.2), xlabel='time (ms)', ylabel='Sr_Ss$'")

pu.adjust_ylabels (ax, x_offset=-0.20)

plt.show ()
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5.13.2 Example: example_2 gchi_astrocyte

Modeling neuron-glia interactions with the Brian 2 simulator Marcel Stimberg, Dan F. M. Goodman, Romain Brette,
Maurizio De Pitta bioRxiv 198366; doi: https://doi.org/10.1101/198366

Figure 2: Modeling of synaptically-activated astrocytes

Two astrocytes (one stochastic and the other deterministic) activated by synapses (connecting “dummy” groups of
neurons) (see De Pitta’ et al., 2009)

from brian2 import =«
import plot_utils as pu

set_device ('cpp_standalone', directory=None) # Use fast "C++ standalone mode"
seed (790824) # to get identical figures for repeated runs

FHAEREAAAAHAFAEAAARHA AR A AHA AR RF AR FA A AH AR AA AR RF AR AR A AR AR A A
# Model parameters
#EFAAAAAFARARARFARARARAAFARARAAFAHA R A AA AR A A AHA R A RA AR R AR AR AAAFA RS
### General parameters

duration = 30*second # Total simulation time

sim_dt = 1lxms # Integrator/sampling step

### Neuron parameters
f_0 = 0.5%Hz # Spike rate of the "source" neurons

### Synapse parameters

rho_c = 0.001 # Synaptic vesicle-to-extracellular space volume ratio
Y_T = 500+mmolar # Total vesicular neurotransmitter concentration
Omega_c = 40/second # Neurotransmitter clearance rate

### Astrocyte parameters

# —-—— Calcium fluxes

O_P = 0.9+umolar/second # Maximal Ca’2+ uptake rate by SERCAs
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K P = 0.1 % umolar # Ca2+ affinity of SERCAs

C_T = 2+umolar # Total cell free Ca”2+ content

rho_A = 0.18 # ER-to-cytoplasm volume ratio

Omega_C = 6/second # Maximal rate of Ca”2+ release by IP_3Rs
Omega_L = 0.1/second # Maximal rate of Ca”2+ leak from the ER

# ——— IP_3R kinectics

d_1 = 0.13%umolar # IP_3 binding affinity

d_2 = 1.05xumolar # Ca”2+ inactivation dissociation constant
0_2 = 0.2/umolar/second # IP_3R binding rate for Ca”2+ inhibition

d_3 = 0.9434+umolar # IP_3 dissociation constant

d_5 = 0.08xumolar # Ca"2+ activation dissociation constant

# ——— Agonist-dependent IP_3 production

O_beta = 5xumolar/second # Maximal rate of IP_3 production by PLCheta
O_N = 0.3/umolar/second # Agonist binding rate

Omega_N = 0.5/second # Maximal inactivation rate

K_KC 0.5*umolar # Ca"2+ affinity of PKC

zeta = 10 # Maximal reduction of receptor affinity by PKC
# —-—— IP_3 production

O_delta = 0.2 *umolar/second # Maximal rate of IP_3 production by PLCdelta
kappa_delta = 1.5 % umolar # Inhibition constant of PLC_delta by IP_3
K_delta = 0.3*umolar # Ca~2+ affinity of PLCdelta

# ——— IP_3 degradation

Omega_5P = 0.1/second # Maximal rate of IP_3 degradation by IP-5P
K D = 0.5%umolar # Ca~2+ affinity of IP3-3K

K_3K = l*umolar # IP_3 affinity of IP_3-3K

O_3K = 4.5+umolar/second # Maximal rate of IP_3 degradation by IP_3-3K
# ——— IP_3 external production

F_ex 0.09%umolar/second # Maximal exogenous IP3 flow

I_Theta = 0.3xumolar # Threshold gradient for IP_3 diffusion
omega_I = 0.05xumolar # Scaling factor of diffusion

FHARFAAHAAHAAAHAAHHA A HAHHH AR EH AR H AR A H A AR H A H AR H AR A AR A A4
# Model definition
HAHAHAAAAAAFARAAAAAAFARAAAAFAAA A AAAAARA A FARAAAAFAH AR AAAFA A A AF AR AR AAA
defaultclock.dt = sim_dt # Set the integration time

### "Neurons"

# (We are only interested in the activity of the synapse, so we replace the

# neurons by trivial "dummy" groups

# # Regular spiking neuron

source_neurons = NeuronGroup(l, 'dx/dt = £ 0 : 1', threshold='x>1",
reset="'x=0"', method='euler')

## Dummy neuron

target_neurons = NeuronGroup (1, '"')

### Synapses
# Our synapse model is trivial, we are only interested in its neurotransmitter
# release

synapses_eqgs = 'dY_S/dt = -Omega_c * Y_S : mmolar (clock-driven)'
synapses_action = 'Y_S += rho_c * Y_T'
synapses = Synapses (source_neurons, target_neurons,

model=synapses_eds, on_pre=synapses_action,
method="'exact ')
synapses.connect ()

### Astrocytes
# We are modelling two astrocytes, the first is deterministic while the second
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# displays stochastic dynamics
astro_egs = ""'
# Fraction of activated astrocyte receptors:
dGamma_A/dt = O N = Y. S * (1 - Gamma_A) -
Omega_N=x (1 + zeta = C/(C + K_KC)) * Gamma_A : 1

# IP_3 dynamics:

dI/dt = J beta + J delta - J 3K - J_5P + J_ex : mmolar
J_beta = O_beta * Gamma_A : mmolar/second
J_delta = O_delta/ (1 + I/kappa_delta) =*
Cxx2/ (Cx%2 + K_delta*x*2) : mmolar/second

J_3K = O_3K * Cxx4/(Cx*4 + K D*%4) % I/(I + K _3K) : mmolar/second
J_5P = Omega_b5P*I : mmolar/second
delta_I bias = I - I_bias : mmolar
J_ex = -F_ex/2x(1 + tanh((abs(delta_I_bias) - I_Theta)/omega_I)) =*

sign(delta_I_bias) : mmolar/second
I_bias : mmolar (constant)

# Ca”2+-induced Ca"2+ release:

dc/dt = J_r + J_1 - Jp : mmolar
# IP3R de-inactivation probability
dh/dt = (h_inf - h_clipped)/tau_h =*
(1 + noisexxixtau_h=**0.5) 1

h_clipped = clip(h,0,1) 01
J_r = (Omega_C % m_inf*%3 % h_clippedx*3) =

(C_T — (1 + rho_A)=*C) : mmolar/second
J_1 = Omega_L x (C_T - (1 + rho_A)«*C) : mmolar/second
J_p = O_P x Cxx2/(C*%x2 + K_Px*2) : mmolar/second
m_inf = I/(I + d_1) = C/(C + d_5) 1
h_inf = Q_2/(0_2 + C) 1
tau_h = 1/(0_2 = (Q_2 + C)) : second
02 =d.2 x (I + d_1)/(I + d_3) : mmolar

# Neurotransmitter concentration in the extracellular space

Y_S : mmolar
# Noise flag
noise : 1 (constant)

[

# Milstein integration method for the multiplicative noise
astrocytes = NeuronGroup (2, astro_eqgs, method='milstein')
astrocytes.h = 0.9 # IP3Rs are initially mostly available for CICR

# The first astrocyte is deterministic ("zero noise"), the second stochastic
astrocytes.noise = [0, 1]
Connection between synapses and astrocytes (both astrocytes receive the
same input from the synapse). Note that in this special case, where each
astrocyte is only influenced by the neurotransmitter from a single synapse,
the '(linked)' variable mechanism could be used instead. The mechanism used
below is more general and can add the contribution of several synapses.
ecs_syn_to_astro = Synapses (synapses, astrocytes,

'Y_S_post = Y_S_pre : mmolar (summed)')

S H W R H

ecs_syn_to_astro.connect ()

(2222222 EE 2SS 2L sa s s Ise eSS I EEEEEEE SRR L L L L

# Monitors

HAHAHAAAAAAHARAAAAAAFARAAAHAAA A AR R A AR RAAFAA AR A AA AR A EA AR AR

astro_mon = StateMonitor (astrocytes, variables=['Gamma_ A', 'C', 'h', 'I'],
record=True)
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FARAARHAARFAERFARAAAA AR AA A AR A A HAARHAA AR AR A AR A AR AR H AR AR AR AR A A
# Simulation run

(2222222 EE 2SS 2T e T e EE TS EE ST E ST EEE R SRR LR EEEE
run (duration, report='text')

ldgdazdsdasdsdasdsdasdsdadatdadatdadatdadatdadtdadatdsdatsadatdsdadaadaddidadsii
# Analysis and plotting

#HE#AFRAFAF A HAF A FAF AR A A FAF AR A AR A AR A AR AR AR A AR F AR A AR HA RS
from matplotlib.ticker import FormatStrFormatter
plt.style.use('figures.mplstyle')

# Plot Gamma_A

fig, ax = plt.subplots(4, 1, figsize=(6.26894, 6.26894%x0.66))

ax[0] .plot (astro_mon.t/second, astro_mon.Gamma_A.T)

ax[0].set (x1im=(0., duration/second), ylim=[-0.05, 1.02], yticks=[0.0, 0.5, 1.01],
ylabel=r'$\Gamma_{A}$")

# Adjust axis

pu.adjust_spines(ax[0], ['left'])

# Plot I

ax[1].plot (astro_mon.t/second, astro_mon.I.T/umolar)

ax[1l].set (x1lim=(0., duration/second), ylim=[-0.1, 5.017,
yticks=arange (0.0, 5.1, 1., dtype=float),
ylabel=r'S$IS$ (S\mu M$) ")

ax[l].yaxis.set_major_formatter (FormatStrFormatter('$.17"))

ax[1l].legend(['deterministic', 'stochastic'], loc='upper left')

pu.adjust_spines(ax[1], ['left'])

# Plot C

ax[2].plot (astro_mon.t/second, astro_mon.C.T/umolar)

ax[2].set (x1im=(0., duration/second), ylim=[-0.1, 1.31,
ylabel=r'SC$ (S\mu M$) ')

pu.adjust_spines(ax[2], ['left'])

# Plot h
ax[3].plot (astro_mon.t/second, astro_mon.h.T)
ax[3].set (x1im=(0., duration/second),
ylim=[0.4, 1.02],
ylabel="'h', xlabel='time ($s35)")
pu.adjust_spines(ax[3], ['left', 'bottom'])

pu.adjust_ylabels (ax, x_offset=-0.1)

plt.show()
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5.13.3 Example: example_3_io_synapse

Modeling neuron-glia interactions with the Brian 2 simulator Marcel Stimberg, Dan F. M. Goodman, Romain Brette,
Maurizio De Pitta bioRxiv 198366; doi: https://doi.org/10.1101/198366

Figure 3: Modeling of modulation of synaptic release by gliotransmission.

Three synapses: the first one without astrocyte, the remaining two respectively with open-loop and close-loop glio-
transmission (see De Pitta’ et al., 2011, 2016)

from brian2 import =«

import plot_utils as pu

set_device ('cpp_standalone', directory=None) # Use fast "C++ standalone mode"
AAFHAFHHAFFHAFFRAFFHAFFAAFHAAFHAAFRAAFHAAFEAFFRAFFHAFFRAFFHAFFAAFRAAFHAAFRAAFHAS
# Model parameters

FHEAFFRAFFRAFFRAFFAAFHAAFFAAFRAFFEAAFRAFFRAFFHAFFRAFFHAHFAA AR F AR F RS A

### General parameters

transient = 16.5%second
duration = transient + 600xms # Total simulation time
sim_dt = 1l»xms # Integrator/sampling step

### Synapse parameters

rho_c = 0.005 # Synaptic vesicle-to-extracellular space volume ratio
Y_T = 500+mmolar # Total vesicular neurotransmitter concentration
Omega_c = 40/second # Neurotransmitter clearance rate
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U_0__star = 0.6 # Resting synaptic release probability
Omega_f = 3.33/second # Synaptic facilitation rate

Omega_d = 2.0/second # Synaptic depression rate

# ——— Presynaptic receptors

O_G = 1.5/umolar/second # Agonist binding (activating) rate
Omega_G = 0.5/ (60+xsecond) # Agonist release (deactivating) rate

### Astrocyte parameters

# ——— Calcium fluxes

O_P = 0.9+umolar/second # Maximal Ca’2+ uptake rate by SERCAs

K P = 0.05 % umolar # Cal+ affinity of SERCAs

C_T = 2*umolar # Total cell free Ca"2+ content

rho_A = 0.18 # ER-to-cytoplasm volume ratio

Omega_C = 6/second # Maximal rate of Ca"2+ release by IP_3Rs
Omega_L = 0.1/second # Maximal rate of Ca’2+ leak from the ER
# ——— IP_3R kinectics

1 = 0.13xumolar # IP_3 binding affinity

d_2 = 1.05+xumolar # Ca"2+ inactivation dissociation constant
0_2 = 0.2/umolar/second # IP_3R binding rate for Ca”2+ inhibition
d_3 = 0.9434xumolar # IP_3 dissociation constant

d_5 = 0.08xumolar # Ca"2+ activation dissociation constant
# ——— IP_3 production

S

O_delta = 0.6+umolar/second
kappa_delta = 1.5% umolar
K_delta = 0.l*umolar

# ——— IP_3 degradation

Maximal rate of IP_3 production by PLCdelta
Inhibition constant of PLC_delta by IP_3
Ca”2+ affinity of PLCdelta

HH F

Omega_5P = 0.05/second # Maximal rate of IP_3 degradation by IP-5P
K_ D = 0.7«umolar # Ca"2+ affinity of IP3-3K

K_3K = 1.0+umolar # IP_3 affinity of IP_3-3K

O_3K = 4.5+umolar/second # Maximal rate of IP_3 degradation by IP_3-3K
# ——— IP_3 diffusion

F_ex = 2.0+xumolar/second # Maximal exogenous IP3 flow

I_Theta = 0.3*xumolar # Threshold gradient for IP_3 diffusion
omega_I = 0.05+umolar # Scaling factor of diffusion

# ——— Gliotransmitter release and time course

C_Theta = 0.5+umolar Ca”2+ threshold for exocytosis

Omega_A = 0.6/second Gliotransmitter recycling rate

U_A = 0.6 Gliotransmitter release probability

G_T = 200*mmolar Total vesicular gliotransmitter concentration

rho_e = 6.5e-4
Omega_e = 60/second

alpha = 0.0

Astrocytic vesicle-to-extracellular volume ratio
Gliotransmitter clearance rate
Gliotransmission nature

HH o W H IR W H

(2222222 IS 22 s 2 e T2 TsE SIS T TSI TSI SIS TR LR EEEEEEEEE L LS
# Model definition
HHAHRHAAAAFAHARARAAAAFARAAAAFARA A AAAA AR AA AR A A AR AA AR A AR AR
defaultclock.dt = sim_dt # Set the integration time

### "Neurons"
# We are only interested in the activity of the synapse, so we replace the
# neurons by trivial "dummy" groups
spikes = [0, 50, 100, 150, 200,
300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400]*ms
spikes += transient # allow for some initial transient
source_neurons = SpikeGeneratorGroup(l, np.zeros(len(spikes)), spikes)
target_neurons = NeuronGroup(l, '"')

### Synapses

5.13. frompapers/Stimberg_et_al_2018

279




Brian 2 Documentation, Release 2.1

Note that the synapse does not actually have any effect on the post-synaptic
target

Also note that for easier plotting we do not use the "event-driven" flag here,
even though the value of u_S and x_S only needs to be updated on the arrival
of a spike

HH W W HH H

synapses_eqs = '''

# Neurotransmitter
dy_S/dt = -Omega_c » Y_S : mmolar (clock-driven)
# Fraction of activated presynaptic receptors
dGamma_S/dt = O.G * G_A * (1 - Gamma_S) -
Omega_G * Gamma_S : 1 (clock-driven)
# Usage of releasable neurotransmitter per single action potential:
du_S/dt = -Omega_f * u_S : 1 (clock-driven)
# Fraction of synaptic neurotransmitter resources available:
dx_S/dt = Omega_d = (1 - x_S) : 1 (clock—-driven)
# released synaptic neurotransmitter resources:
r_S HE
# gliotransmitter concentration in the extracellular space:
G_A : mmolar

[

synapses_action = '''

U_0 = (1 - Gamma_S) * U_O__star + alpha x Gamma_S
+= U_0 *« (1 - u_S)

= u_S x x_S

-= r_S

_S
_S
_S

S += rho_c = Y_T » r_S

-K X B c

T
synapses = Synapses (source_neurons, target_neurons,
model=synapses_eqs, on_pre=synapses_action,
method="'exact ')
# We create three synapses, only the second and third ones are modulated by astrocytes
synapses.connect (True, n=3)

### Astrocytes

# The astrocyte emits gliotransmitter when its Ca’2+ concentration crosses
# a threshold

astro_egs = '''

# IP_3 dynamics:

dI/dt = J_delta - J_3K - J_5P + J_ex : mmolar

J_delta = O_delta/ (1 + I/kappa_delta) x C%x2/(Cx%2 + K_deltaxx2) : mmolar/second

J 3K = O_3K * Cxx4/(Cx*4 + K _D*%4) x I/ (I + K_3K) : mmolar/second

J_5P = Omega_b5Px*I : mmolar/second

# Exogenous stimulation

delta_I _bias = I - I_bias : mmolar

J_ex = -F_ex/2x (1 + tanh((abs(delta_I_bias) - I_Theta)/omega_I)) =*
sign(delta_I_bias) : mmolar/second

I_bias : mmolar (constant)

# Ca”2+-induced Ca”2+ release:

dCc/dt = (Omega_C * m_inf*x3 % h*x3 + Omega_L) * (C_T - (1 + rho_A)=*C) -
O_P * C*%x2/(Cx*2 + K_P*x*2) : mmolar

dh/dt = (h_inf - h)/tau_h : 1 # IP3R de-inactivation probability

m_inf = I/(I + d_1) * C/(C + d_5) 1

h_inf = Q 2/(Q_2 + C) 1

tau_h = 1/(0_2 * (Q_2 + C)) : second

Q02 =d2 x (I + d_1)/(I + d_3) : mmolar

# Fraction of gliotransmitter resources available:

dx_A/dt = Omega_A * (1 - x_A) 1
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# gliotransmitter concentration in the extracellular space:
dG_A/dt = -Omega_exG_A : mmolar

LI ]

glio_release = """

G_A += rho_e * G_T % U_A x X_A

x_ A —= U_A x X_A

L )

# The following formulation makes sure that a "spike" is only triggered at the
# first threshold crossing —- the astrocyte is considered "refractory" (i.e.,

# not allowed to trigger another event) as long as the Cal2+ concentration

# remains above threshold

# The gliotransmitter release happens when the threshold is crossed, in Brian

# terms it can therefore be considered a "reset"

astrocyte = NeuronGroup (2, astro_egs,
threshold='C>C_Theta',
refractory='C>C_Theta',
reset=glio_release,
method="'rk4")

# Different length of stimulation

astrocyte.x_A = 1.0

astrocyte.h = 0.9

astrocyte.I = 0.4xumolar
astrocyte.I_bias = np.asarray([0.8, 1.25])=umolar
# Connection between astrocytes and the second synapse. Note that in this
# special case, where the synapse 1is only influenced by the gliotransmitter from
# a single astrocyte, the '(linked)' variable mechanism could be used instead.
# The mechanism used below 1is more general and can add the contribution of
# several astrocytes
ecs_astro_to_syn = Synapses (astrocyte, synapses,
'G_A_post = G_A_pre : mmolar (summed)')

# Connect second and third synapse to a different astrocyte
ecs_astro_to_syn.connect (j="i+1")

#HARHAAAAAAFARAAAAAARA R A AHARARA AR R A AR AA AR AA AR AAH AR A A AAAH

# Monitors

ldidaddddasddaasadaasazaasaaadataadadsadatsadatsadataddadsddatsdasdssaasadaadadi

# Note that we cannot use "record=True" for synapses in C++ standalone mode —-

# the StateMonitor needs to know the number of elements to record from during

# its initialization, but in C++ standalone mode, no synapses have been created

# yet. We therefore explicitly state to record from the three synapses.

syn_mon = StateMonitor (synapses, variables=['u_S', 'x_S', 'r.s', 'v.S'],
record=[0, 1, 21)

ast_mon = StateMonitor (astrocyte, variables=['C', 'G_A'], record=True)

HHAHRHAAAAAAHARAAAAAAFARAAAFARA A AAAR AR AA AR A A H AR A AR AA AR AR
# Simulation run
HAARFAAHAAAFAAAAARHAAHAAEHAARHA AR AR HA AR H A RAAAF AR A H AR A AR AR AR AR H AR AH
run (duration, report='text')

idddzzdsdssdsdssdsdaddsdsdsdsdsdsdasdadtdsdasdadatdddadsddatdsdaddadaddidadsidi
# Analysis and plotting
ldddazdadasdsdasdsdasssdadatdadatdadatdadatdadatdadatiadatsadatssdadsadaddidadsii
from matplotlib import cycler

plt.style.use('figures.mplstyle')

fig, ax = plt.subplots(nrows=7, ncols=1,figsize=(6.26894, 6.26894 » 1.2),
gridspec_kw={'height_ ratios': [3, 2, 1, 1, 3, 3, 31,
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'top': 0.98, 'bottom': 0.08,
'left': 0.15, 'right': 0.95})

## Ca"2+ traces of the two astrocytes
ax[0] .plot ((ast_mon.t-transient)/second, ast_mon.C[0]/umolar, '-', color='C2")
ax[0].plot ((ast_mon.t-transient)/second, ast_mon.C[1]/umolar, '-', color='C3")
## Add threshold for gliotransmitter release
ax[0] .plot (np.asarray([-transient/second, 0.0]),
np.asarray ([C_Theta, C_Theta]) /umolar, ':', color='gray')
ax[0] .set (xlim=[-transient/second, 0.0], yticks=[0., 0.4, 0.8, 1.2],
ylabel=r'S$Cs ($\musSM) ")
pu.adjust_spines(ax[0], ['left'])

## Gliotransmitter concentration in the extracellular space
ax[1l].plot ((ast_mon.t-transient)/second, ast_mon.G_A[0]/umolar, '-', color='C2")
ax[1l].plot((ast_mon.t-transient)/second, ast_mon.G_A[l]/umolar, '-', color='C3")
ax[1l].set (yticks=[0., 50., 100.], xlim=[-transient/second, 0.0],

xlabel="time (s)', ylabel=r'S$G_AS ($S\muSM)")
pu.adjust_spines(ax[1l], ['left', 'bottom'])

## Turn off one axis to display x-labeling of ax[1] correctly
ax[2].axis('off")

## Synaptic stimulation

ax[3].vlines ((spikes—transient)/ms, 0, 1, clip_on=False)
ax[3].set (x1im=(0, (duration-transient)/ms))
ax[3].axis('off")

## Synaptic variables
# Use a custom cycle that uses black as the first color
prop_cycle = cycler(color="k'"') .concat (matplotlib.rcParams|['axes.prop_cycle'][2:])
ax[4].set (x1im=(0, (duration-transient)/ms), ylim=[0., 1.1,
yticks=np.arange (0, 1.1, .25), ylabel='Su_Ss$',
prop_cycle=prop_cycle)
ax[4].plot ((syn_mon.t-transient)/ms, syn_mon.u_S.T)
pu.adjust_spines(ax[4], ['left'])

ax[5].set (x1im=(0, (duration-transient)/ms), ylim=[-0.05, 1.],
yticks=np.arange(0,1.1,.25), ylabel="S$x_S$',
prop_cycle=prop_cycle)

ax[5].plot ((syn_mon.t-transient)/ms, syn_mon.x_S.T)

pu.adjust_spines(ax[5], ['left'])

ax[6].set (x1im=(0, (duration-transient)/ms), ylim=(-5., 1500),
xticks=np.arange (0, (duration-transient)/ms, 100), xlabel='time (ms)',
yticks=[0, 500, 1000, 1500], ylabel=r'S$Y S$ ($\muSM)',
prop_cycle=prop_cycle)

ax[6].plot ((syn_mon.t-transient)/ms, syn_mon.Y_S.T/umolar)

ax[6].legend(['no gliotransmission',

'weak gliotransmission',
'stronger gliotransmission'], loc='upper right')
pu.adjust_spines(ax([6], ['left', 'bottom'])

pu.adjust_ylabels (ax, x_offset=-0.11)

plt.show ()
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5.13.4 Example: example_4 rsmean

Modeling neuron-glia interactions with the Brian 2 simulator Marcel Stimberg, Dan F. M. Goodman, Romain Brette,
Maurizio De Pitta bioRxiv 198366; doi: https://doi.org/10.1101/198366

Figure 4C: Closed-loop gliotransmission.
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I/O curves in terms average per-spike release vs. rate of stimulation for three synapses: one without gliotransmission,
and the other two with open- and close-loop gliotransmssion.

from brian2 import =«
import plot_utils as pu

set_device ('cpp_standalone', directory=None) # Use fast "C++ standalone mode"
seed (1929) # to get identical figures for repeated runs

#HAAHAAAAFAFARAAF AR A RHARARA AR R A AR A A AR A AR AAHA R A AR AAH
# Model parameters

tHi#AA A F AR FAA A FAF AR A A FAF AR A A RAF AR A AR F AR A AR A AR F AR A AR H A
### General parameters

N_synapses = 100

N_astro = 2

transient = 15xsecond
duration = transient + 180xsecond # Total simulation time
sim_dt = l+ms # Integrator/sampling step

### Neuron parameters

# ### Synapse parameters
### Synapse parameters
rho_c = 0.005

YT = 500+mmolar

Omega_c = 40/second
U_0__star = 0.6

Omega_f = 3.33/second
Omega_d = 2.0/second

# ——— Presynaptic receptors
O_G = 1.5/umolar/second Agonist binding (activating) rate
Omega_G = 0.5/ (60xsecond) # Agonist release (deactivating) rate

Synaptic vesicle-to-extracellular space volume ratio
Total vesicular neurotransmitter concentration
Neurotransmitter clearance rate

Resting synaptic release probability

Synaptic facilitation rate

Synaptic depression rate

HH oH H HH I W

=

### Astrocyte parameters

# ——— Calcium fluxes

O_P = 0.9+umolar/second Maximal Ca"2+ uptake rate by SERCAs
K P = 0.05 » umolar Caz+ affinity of SERCAs

C_T = 2+umolar Total cell free Ca”2+ content

rho_A = 0.18
Omega_C = 6/second
Omega_L = 0.1/second

ER-to-cytoplasm volume ratio
Maximal rate of Ca"2+ release by IP_3Rs
Maximal rate of Ca’2+ leak from the ER

HH oH H R I W

# ——— IP_3R kinectics

d_1 = 0.13xumolar # IP_3 binding affinity

d_2 = 1.05+xumolar # Ca"2+ inactivation dissociation constant
o_2 0.2/umolar/second # IP_3R binding rate for Ca”2+ inhibition
d_3 = 0.9434+umolar # IP_3 dissociation constant

d_5 = 0.08xumolar # Ca"2+ activation dissociation constant

# ——— IP_3 production

# ——— Agonist-dependent IP_3 production

O_beta = 3.2+umolar/second # Maximal rate of IP_3 production by PLCheta
O_N = 0.3/umolar/second # Agonist binding rate

Omega_N = 0.5/second # Maximal inactivation rate

K_KC = 0.5xumolar # Ca”2+ affinity of PKC

zeta = 10 # Maximal reduction of receptor affinity by PKC
# ——— Endogenous IP3 production

O_delta = 0.6*umolar/second # Maximal rate of IP_3 production by PLCdelta
kappa_delta = 1.5+ umolar # Inhibition constant of PLC_delta by IP_3
K_delta = 0.l*umolar # Ca”2+ affinity of PLCdelta
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# ——— IP_3 degradation

Omega_5P = 0.05/second # Maximal rate of IP_3 degradation by IP-5P
K_D = 0.7+umolar # Ca”2+ affinity of IP3-3K

K_3K = 1.0*umolar # IP_3 affinity of IP_3-3K

O_3K = 4.5+umolar/second # Maximal rate of IP_3 degradation by IP_3-3K
# ——— IP_3 diffusion

F_ex = 2.0+umolar/second # Maximal exogenous IP3 flow

I_Theta = 0.3*umolar # Threshold gradient for IP_3 diffusion
omega_I = 0.05xumolar # Scaling factor of diffusion

# ——— Gliotransmitter release and time course

C_Theta = 0.5xumolar
Omega_A = 0.6/second
U_A = 0.6

G_T = 200+mmolar
rho_e = 6.5e-4
Omega_e = 60/second
alpha = 0.0

Can2+ threshold for exocytosis

Gliotransmitter recycling rate

Gliotransmitter release probability

Total vesicular gliotransmitter concentration
Astrocytic vesicle-to-extracellular volume ratio
Gliotransmitter clearance rate

H FH W H R I H

Gliotransmission nature

FHARFARAAARAAAAARAAA A AR HAAAFAARFARAFARARAA AR AR AR H AR A A AR R A AR A AR AR AA AR A A
# Model definition
(2222222 E T EE e ST E ST TSI EEEEE IR SRR T LR L E
defaultclock.dt = sim_dt # Set the integration time

f_vals = np.logspace(-1, 2, N_synapses) xHz
source_neurons = PoissonGroup (N_synapses, rates=f_vals)
target_neurons = NeuronGroup (N_synapses, '')

### Synapses

Note that the synapse does not actually have any effect on the post-synaptic
target

Also note that for easier plotting we do not use the "event-driven" flag here,
even though the value of u_S and x_S only needs to be updated on the arrival
of a spike

synapses_eqgs = '''

# Neurotransmitter

HH W R HR W

dy_S/dt = -Omega_c * Y_S : mmolar (clock-driven)

# Fraction of activated presynaptic receptors

dGamma_S/dt = O_G * G_A * (1 — Gamma_S) — Omega_G % Gamma_S : 1 (clock-driven)
# Usage of releasable neurotransmitter per single action potential:

du_S/dt = -Omega_f » u_S : 1 (event-driven)

# Fraction of synaptic neurotransmitter resources available for release:
dx_S/dt = Omega_d =(1 - x_S) : 1 (event—driven)

(2

r 1 # released synaptic neurotransmitter resources
G_A : mmolar # gliotransmitter concentration in the extracellular space
|l

synapses_action = """
U_0 = (1 - Gamma_S) * U_0O__star + alpha % Gamma_S
+= U_0 * (1 - u_Sl)

S

S u_S * x_S

S —= r_S

S += rho_c = Y. T  r_S
]

synapses = Synapses (source_neurons, target_neurons,
model=synapses_eds, on_pre=synapses_action,
method="exact"')
# We create three synapses per connection: only the first two are modulated by
# the astrocyte however. Note that we could also create three synapses per
# connection with a single connect call by using connect (j='i', n=3), but this
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# would create synapses arranged differently (synapses connection pairs

+# (¢, 0), (0, 0), (0, 0), (1, 1), (1, 1), (1, 1), ..., instead of

# connections (0, 0), (1, 1), ..., (0, 0), (1, 1), ..., (0, 0), (1, 1), ...)
# making the later connection descriptions more complicated.
synapses.connect (j="'1i") # closed-loop modulation

synapses.connect (j='1'"') # open modulation

synapses.connect (j='1"') # no modulation

synapses.x_S = 1.0

### Astrocytes
# The astrocyte emits gliotransmitter when its Ca’2+ concentration crosses
# a threshold
astro_eqgs = '''
# Fraction of activated astrocyte receptors:
dGamma_A/dt = O_N * Y_S x (1 — Gamma_A) -
Omega_N=x (1 + zeta = C/(C + K_KC)) * Gamma_A : 1

# IP_3 dynamics:

dI/dt = J_beta + J _delta - J_3K - J_5P + J_ex : mmolar
J_beta = O_beta x Gamma_A : mmolar/second
J_delta = O_delta/ (1 + I/kappa_delta) =
Cxx2/ (C**2 + K_deltax*=*2) : mmolar/second

J 3K = O_3K % Cxx4/(Cx*4 + K _D*%4) % I/ (I + K_3K) : mmolar/second
J_5P = Omega_b5Px*I : mmolar/second
delta_I bias = I - I_bias : mmolar
J_ex = -F_ex/2x(1 + tanh((abs(delta_I_bias) - I_Theta)/omega_I)) =*

sign(delta_I_bias) : mmolar/second
I _bias : mmolar (constant)

# Ca”2+-induced Ca”2+ release:

dCc/dt = (Omega_C % m_inf+x3 % h%%x3 + Omega_L) % (C_T - (1 + rho_A)xC) -
O_P % Cxx2/(Cx%x2 + K_P%x%2) : mmolar

dh/dt = (h_inf - h)/tau_h : 1 # IP3R de-inactivation probability

m_inf = I/(I + d_1) = C/(C + d_5) : 1

h_inf = Q_2/(Q_2 + C) 1

tau_h = 1/(0_2 * (Q_2 + C)) : second

02 =d2 % (I + d_1)/(1 + d_3) : mmolar

# Fraction of gliotransmitter resources available for release

dx_A/dt = Omega_A = (1 - x_A) : 1

# gliotransmitter concentration in the extracellular space
dG_A/dt = -Omega_exG_A : mmolar

# Neurotransmitter concentration in the extracellular space
Y_S : mmolar

v

glio_release = """

G_A += rho_e * G_T % U_A % x_A

x A —= U_A » xX_A

Tra

astrocyte = NeuronGroup (N_astrox*N_synapses, astro_eqgs,
# The following formulation makes sure that a "spike" is
# only triggered at the first threshold crossing
threshold='C>C_Theta',
refractory='C>C_Theta',
# The gliotransmitter release happens when the threshold
# 1is crossed, 1in Brian terms it can therefore be
# considered a "reset"
reset=glio_release,
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method="'rk4")
astrocyte.h = 0.9
= 1.

astrocyte.x_A 0

# Only the second group of N_synapses astrocytes are activated by external stimulation
astrocyte.I_bias = (np.r_[np.zeros (N_synapses), np.ones (N_synapses)])x1l.0+ umolar

## Connections

ecs_syn_to_astro = Synapses (synapses, astrocyte,

'Y_S_post = Y_S_pre : mmolar (summed)')
# Connect the first N_synapses synapses—-astrocyte pairs
ecs_syn_to_astro.connect (j='1 if i < N_synapses')

ecs_astro_to_syn = Synapses (astrocyte, synapses,
'G_A_post = G_A_pre : mmolar (summed) ')
# Connect the first N_synapses astrocytes--pairs
# (closed-loop configuration)
ecs_astro_to_syn.connect (j='1i if i < N_synapses')
# Connect the second N_synapses astrocyte-—-synapses pailrs
# (open—-loop configuration)
ecs_astro_to_syn.connect (j='1i if i >= N_synapses and i < 2%N_synapses')

FHARFAAAAARAAAAARRAARHARRHAAAFAARFARAA AR AR A AR A AR AR H AR A AR R A AR A AR AR AR AAAA
# Monitors
(22222 E T EE e e TS e eSS TSR E R SRR TR SRR EEE
syn_mon = StateMonitor (synapses, 'r_S',

record=np.arange (N_synapsesx* (N_astro+1)))

FHRARFAAAAARARAAARAFARHARRHAAAFARRFARAFARA A AR A AR AR H AR A A AR AR AR AR A AAAAA
# Simulation run

(22222 s TSI T e E ez TS eSS eSS E R TR SRR R R SRR E L
run (duration, report='text')

ldgdzsdsdssdsdssdsdasdsdsdssdsdasdadasdadatdadaddadatdsdatsadatdddaddadaddidadsii
# Analysis and plotting

#tHE#AF A HAF A HAF A FAF AR F AR F A A F AR AR AR AR A A A A A A 1
plt.style.use('figures.mplstyle')

fig, ax = plt.subplots(nrows=4, ncols=1, figsize=(3.07, 3.07%x1.33), sharex=False,
gridspec_kw={'height_ratios': [1, 3, 3, 3],
'top': 0.98, 'bottom': 0.12,
'left': 0.22, 'right': 0.93})

## Turn off one axis to display accordingly to the other figure in example_4_synrel.py
ax[0] .axis('off")

ax[l].errorbar (f_vals/Hz, np.mean(syn_mon.r_S[2xN_synapses:], axis=1),
np.std(syn_mon.r_S[2+N_synapses:], axis=1),
fmt="'0', color='black', 1lw=0.5)
ax[1l].set (x1im=(0.08, 100), xscale='log',
ylim=(0., 0.7),
ylabel=r'$\langle r_S \rangle$')
pu.adjust_spines(ax[1l], ['left'])

ax[2] .errorbar (f_vals/Hz, np.mean(syn_mon.r_S[N_synapses:2+N_synapses], axis=1),
np.std(syn_mon.r_S[N_synapses:2*N_synapses], axis=1),
fmt="'0', color='C2', 1lw=0.5)
ax[2] .set(xlim=(0.08, 100), xscale='log',
ylim=(0., 0.2), ylabel=r'S$\langle r_S \rangleS$")
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pu.adjust_spines(ax[2], ['left'])

ax[3].errorbar (f_vals/Hz, np.mean(syn_mon.r_S[:N_synapses], axis=1),
np.std(syn_mon.r_S[:N_synapses], axis=1l),
fmt="'0', color='C3', 1lw=0.5)
ax[3].set (x1lim=(0.08, 100), xticks=np.logspace(-1, 2, 4), xscale='log',
ylim=(0., 0.7), xlabel='input frequency (Hz)',
ylabel=r'S$\langle r_S \rangle$')
ax[3] .xaxis.set_major_formatter (ScalarFormatter())
pu.adjust_spines(ax[3], ['left', 'bottom'])

pu.adjust_ylabels(ax, x_offset=-0.2)

plt.show ()
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5.13.5 Example: example_4_ synrel

Modeling neuron-glia interactions with the Brian 2 simulator Marcel Stimberg, Dan F. M. Goodman, Romain Brette,
Maurizio De Pitta bioRxiv 198366; doi: https://doi.org/10.1101/198366

Figure 4B: Closed-loop gliotransmission.

Extracellular neurotransmitter concentration (averaged across 500 synapses) for three step increases of the presynaptic
rate, for three synapses: one without gliotransmission, and the other two with open- and close-loop gliotransmssion.

from brian2 import =«

import plot_utils as pu
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set_device ('cpp_standalone', directory=None) # Use fast "C++ standalone mode"
seed (16283) # to get identical figures for repeated runs

#HAARHAAAAHAHARAAA AR A AHAAARA AR AR A AR A A AHA A AR A AR A AR
# Model parameters
FHAFRFAAAAAAFARARAAAARARARAAFAAARARFAFAEARAAF AR A AFA R A AF AR A A AR AHAS
### General parameters

N_synapses = 500

N_astro = 2

duration = 20+second # Total simulation time

sim_dt = lxms # Integrator/sampling step

### Neuron parameters

# ### Synapse parameters

### Synapse parameters

rho_c = 0.005 # Synaptic vesicle-to-extracellular space volume ratio
Y T = 500+ mmolar # Total vesicular neurotransmitter concentration
Omega_c = 40/second # Neurotransmitter clearance rate

U_0__star = 0.6 # Resting synaptic release probability
Omega_f = 3.33/second # Synaptic facilitation rate

Omega_d = 2.0/second # Synaptic depression rate

# ——— Presynaptic receptors

O_G = 1.5/umolar/second # Agonist binding (activating) rate

Omega_G = 0.5/ (60+second) # Agonist release (deactivating) rate

### Astrocyte parameters

# ——— Calcium fluxes

O_P = 0.9xumolar/second # Maximal Ca”2+ uptake rate by SERCAs

K P = 0.05 » umolar # Ca2+ affinity of SERCAs

C_T = 2+umolar # Total cell free Ca"2+ content

rho_A = 0.18 # ER-to-cytoplasm volume ratio

Omega_C = 6/second # Maximal rate of Ca’2+ release by IP_3Rs
Omega_L = 0.1/second # Maximal rate of Ca”2+ leak from the ER

# ——— IP_3R kinectics

d 1 = 0.13xumolar # IP_3 binding affinity

d 2 = 1.05xumolar # Ca”2+ inactivation dissociation constant
0_2 = 0.2/umolar/second # IP_3R binding rate for Ca”2+ inhibition
d_3 = 0.9434+umolar # IP_3 dissociation constant

d_5 = 0.08xumolar # Ca”2+ activation dissociation constant

# ——— IP_3 production

# ——— Agonist-dependent IP_3 production

O_beta = 3.2+umolar/second # Maximal rate of IP_3 production by PLCheta
O_N = 0.3/umolar/second # Agonist binding rate

Omega_N = 0.5/second # Maximal inactivation rate

K_KC = 0.5%umolar # Ca"2+ affinity of PKC

zeta = 10 # Maximal reduction of receptor affinity by PKC
# ——— Endogenous IP3 production

O_delta = 0.6xumolar/second # Maximal rate of IP_3 production by PLCdelta
kappa_delta = 1.5% umolar # Inhibition constant of PLC_delta by IP_3
K_delta = 0.lxumolar # Ca”2+ affinity of PLCdelta

# ——— IP_3 diffusion

F = 2xumolar/second # GJC IP_3 permeability

I_Theta = 0.3*umolar # Threshold gradient for IP_3 diffusion
omega_I = 0.05xumolar # Scaling factor of diffusion

# ——— IP_3 degradation

Omega_5P = 0.05/second # Maximal rate of IP_3 degradation by IP-5P
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K D = 0.7+umolar # Ca”2+ affinity of IP3-3K

K_3K = 1.0*umolar # IP_3 affinity of IP_3-3K

O_3K = 4.5+umolar/second # Maximal rate of IP_3 degradation by IP_3-3K

# ——— IP_3 diffusion

F_ex = 2.0+umolar/second # Maximal exogenous IP3 flow

I_Theta = 0.3xumolar # Threshold gradient for IP_3 diffusion

omega_I = 0.05+umolar # Scaling factor of diffusion

# ——— Gliotransmitter release and time course

C_Theta = 0.5xumolar # Ca”2+ threshold for exocytosis

Omega_A = 0.6/second # Gliotransmitter recycling rate

U_A = 0.6 # Gliotransmitter release probability

G_T = 200*mmolar # Total vesicular gliotransmitter concentration
rho_e = 6.5e-4 # Astrocytic vesicle-to-extracellular volume ratio
Omega_e = 60/second # Gliotransmitter clearance rate

alpha = 0.0 # Gliotransmission nature

FHARFRAHAAHAAAHAAAFAAHFAAHAAHF A H A HFAARA A H AR A AR H A H A A H AR AR AR A A
# Model definition
FHARFAAAAARARAAARAAARHARAHARAFAARFARFA AR AR A AR A AR AR H AR A AR R A AR A AR AR AAARAA A
defaultclock.dt = sim_dt # Set the integration time

# ### "Neurons"

rate_in = TimedArray([0.011, 0.11, 1.1, 11] % Hz, dt=5xsecond)
source_neurons = PoissonGroup (N_synapses, rates='rate_in(t)")
target_neurons = NeuronGroup (N_synapses, ''")

### Synapses

Note that the synapse does not actually have any effect on the post-synaptic
target

Also note that for easier plotting we do not use the "event-driven" flag here,
even though the value of u_S and x_S only needs to be updated on the arrival
of a spike

synapses_eqs = '''

# Neurotransmitter

dy_S/dt = -Omega_c * Y_S : mmolar (clock-driven)

# Fraction of activated presynaptic receptors

dGamma_S/dt = O_G » G_A % (1 — Gamma_S) - Omega_G % Gamma_S : 1 (clock-driven)
# Usage of releasable neurotransmitter per single action potential:

du_S/dt = -Omega_f » u_S : 1 (event-driven)

H R HH KR W

# Fraction of synaptic neurotransmitter resources available for release:
dx_S/dt = Omega_d (1 - x_S) : 1 (event—driven)

r_S : 1 # released synaptic neurotransmitter resources

G_A : mmolar # gliotransmitter concentration in the extracellular space
synapses_action = '''

U_0 = (1 - Gamma_S) * U_O__star + alpha x Gamma_S

u_S += U_0 * (1 - u_S)

S = u_S * x_S
S —= r_S
S
|l

r
X
Y S += rho_c » YT % r_S
T
synapses = Synapses (source_neurons, target_neurons,
model=synapses_eds, on_pre=synapses_action,
method="'exact ')
We create three synapses per connection: only the first two are modulated by
the astrocyte however. Note that we could also create three synapses per
connection with a single connect call by using connect (j='i', n=3), but this
would create synapses arranged differently (synapses connection pairs

S W W H
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+# (0, 0), (o0, 0), (0, 0), (1, 1), (1, 1), (1, 1), ..., instead of

# connections (0, 0), (1, 1), ..., (o0, 0), (1, 1), ..., (0, 0), (1, 1), ...)
# making the later connection descriptions more complicated.
synapses.connect (j='1') # closed-loop modulation

synapses.connect (j="'1i") # open modulation

synapses.connect (j='1'") # no modulation

synapses.x_S = 1.0

### Astrocytes
# The astrocyte emits gliotransmitter when its Ca”2+ concentration crosses
# a threshold
astro_eqgs = '''
# Fraction of activated astrocyte receptors:
dGamma_A/dt = O_N * Y_S % (1 - Gamma_A) -
Omega_N=* (1 + zeta » C/(C + K_KC)) * Gamma_A : 1

# IP_3 dynamics:

dI/dt = J _beta + J delta - J 3K - J_5P + J_ex : mmolar
J_beta = O_beta x Gamma_A : mmolar/second
J_delta = O_delta/ (1 + I/kappa_delta) =
Cx*2/ (Cxx2 + K_deltax=*2) : mmolar/second

J 3K = O_3K * Cxx4/(Cx*x4 + K _Dxx4) % I/ (I + K_3K) : mmolar/second
J_5P = Omega_5P*1I : mmolar/second
delta_I_bias = I - I_bias : mmolar
J_ex = -F_ex/2x (1 + tanh((abs(delta_I_bias) - I_Theta)/omega_I)) =*

sign(delta_I_bias) : mmolar/second
I_bias : mmolar (constant)

# Ca”2+-induced Ca”2+ release:

dC/dt = (Omega_C % m_inf*x3 % h%x3 + Omega_L) * (C_T - (1 + rho_A)xC) -
O_P % Cx*2/(Cxx2 + K_P%x%2) : mmolar

dh/dt = (h_inf - h)/tau_h : 1 # IP3R de—-inactivation probability

m_inf = I/(I + d_1) = C/(C + d_5) 1

h_inf = Q_2/(Q_2 + C) 1

tau_h = 1/(0_2 = (Q_2 + C)) : second

Q0 2 =d.2 x (I + d_1)/(I + d_3) : mmolar

# Fraction of gliotransmitter resources available for release

dx_A/dt = Omega_A » (1 - x_A) : 1

# gliotransmitter concentration in the extracellular space
dG_A/dt = -Omega_exG_A : mmolar

# Neurotransmitter concentration in the extracellular space
Y S : mmolar

glio_release = """

G_A += rho_e * G_T * U_A * xX_A

x_ A —= U_A x XxX_A

LI ]

astrocyte = NeuronGroup (N_astroxN_synapses, astro_egs,
# The following formulation makes sure that a "spike" is
# only triggered at the first threshold crossing
threshold='"'C>C_Theta',
refractory="'C>C_Theta',
# The gliotransmitter release happens when the threshold
# is crossed, in Brian terms it can therefore be
# considered a "reset"
reset=glio_release,
method="'rk4")
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astrocyte.h = 0.9

astrocyte.x_A = 1.0

# Only the second group of N_synapses astrocytes are activated by external stimulation
astrocyte.I_bias = (np.r_[np.zeros (N_synapses), np.ones (N_synapses)])*1.0xumolar

## Connections
ecs_syn_to_astro = Synapses (synapses, astrocyte,

'Y_S_post = Y_S_pre : mmolar (summed) ')
# Connect the first N_synapses synapses—-astrocyte pairs
ecs_syn_to_astro.connect (j='1i if i < N_synapses')
ecs_astro_to_syn = Synapses (astrocyte, synapses,

'G_A_post = G_A_pre : mmolar (summed)')
# Connect the first N_synapses astrocytes--pairs (closed-loop)
ecs_astro_to_syn.connect (j='1i if i < N_synapses')
# Connect the second N_synapses astrocyte-—-synapses pailrs (open-loop)
ecs_astro_to_syn.connect (j='1i if i >= N_synapses and 1 < 2xN_synapses')

(222222 E e T T e TS E ST E I TR TR SRR LR E S E
# Monitors
FAARFRAHAAAAAAAAAAHAAAHFAFHFARFF AR HH AR H A A AR H AR H A A A A H AR HH AR H AR A A
syn_mon = StateMonitor (synapses, 'Y_S',

record=np.arange (N_synapsesx* (N_astro+1l)), dt=10xms)

FHEHRHAAAAFAFARARFAARFAAAAARFARAFAAFAFAFAAAAHAFAAAAFAFAFAAFAA IR AAAFAAAAAAAAFAH
# Simulation run
FHARFRAAAFAFAAAAFAARFARFAARFAAAFFAFAFAAAFAFAFAFAAAAFAFARAAFAARFA A RFAAAAA AR

run (duration, report='text')

#HAAHAAAAAAAARAAAAAARA R A RAA A A AR AR A AR A A AR AA AR EA AR AR
# Analysis and plotting
FHAFRHAAAAFAHAAARARHAFAAARAAFRAAHARFAHAEAAAAHRHA A AR H AR A RA AR A A AR AR HAH
plt.style.use('figures.mplstyle')

fig, ax = plt.subplots(nrows=4, ncols=1, figsize=(3.07, 3.07%x1.33),
sharex=False,
gridspec_kw={'height_ratios': [1, 3, 3, 3],

'top': 0.98, 'bottom': 0.12,

'left': 0.24, 'right': 0.95})
ax[0].semilogy (syn_mon.t/second, rate_in(syn_mon.t), '-', color='black")
ax[0].set (x1im=(0, duration/second), ylim=(0.01, 12),

yticks=[0.01, 0.1, 1, 10], ylabel=r'S$\nu_{in}$ (Hz)")
ax[0] .yaxis.set_major_formatter (ScalarFormatter())
pu.adjust_spines(ax[0], ['left'])

ax[1].plot (syn_mon.t/second,

np.mean (syn_mon.Y_S[2+N_synapses:]/umolar, axis=0),

'-'", color='black")

ax[1l].set (x1lim=(0, duration/second), ylim= (-5, 260),

yticks=np.arange (0, 260, 50),

ylabel=r's$\langle Y_S \rangle$ ($S\muSM)")
ax[l].legend(['no gliotransmission'], loc='upper left')
pu.adjust_spines(ax[1l], ['left'])

ax[2].plot (syn_mon.t/second,
np.mean (syn_mon.Y_S[N_synapses:2+«N_synapses]/umolar, axis=0),
'-'", color='C2")
ax[2].set (x1im=(0, duration/second), ylim=(-3, 150),
yticks=np.arange (0, 151, 25),
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ylabel=r's$\langle Y_S \rangle$ ($\muSM)")
ax[2].legend(['open-loop gliotransmission'], loc='upper left')
pu.adjust_spines(ax[2], ['left'])

ax[3] .plot (syn_mon.t/second,
np.mean (syn_mon.Y_S[:N_synapses]/umolar, axis=0),
'—=', color='C3")
ax[3].set (x1lim=(0, duration/second), ylim=(-2, 150),
xticks=np.arange (0., duration/second+l, 5.0),
yticks=np.arange (0, 151, 25),
xlabel="time (s)', ylabel=r'$\langle Y_S \rangle$ ($\muSM) ")
ax[3].legend(['closed-loop gliotransmission'], loc='upper left')
pu.adjust_spines(ax[3], ['left', 'bottom'])

pu.adjust_ylabels(ax, x_offset=-0.22)

plt.show ()
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5.13.6 Example: example_5 astro_ring

Modeling neuron-glia interactions with the Brian 2 simulator Marcel Stimberg, Dan F. M. Goodman, Romain Brette,
Maurizio De Pitta bioRxiv 198366; doi: https://doi.org/10.1101/198366

Figure 5: Astrocytes connected in a network.

Intercellular calcium wave propagation in a ring of 50 astrocytes connected by bidirectional gap junctions (see Gold-
berg et al., 2010)
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from brian2 import =«
import plot_utils as pu
set_device ('cpp_standalone', directory=None) # Use fast "C++ standalone mode"

FHAARFAAAAFAFARARA AR R AAAFAAARARF AR R A AR FA A A AF AR AA AR A A AR AR AHAS
# Model parameters

#HAAHAAAAFAFARA A AR R A RFARA A RAAAARA A AR A A AFA R A AR EAAH AR AARAAAAS
### General parameters

duration = 4000+second # Total simulation time

sim_dt = 50+ms # Integrator/sampling step

### Astrocyte parameters

# ——— Calcium fluxes

O_P = 0.9*umolar/second # Maximal Ca”2+ uptake rate by SERCAs

K P = 0.05 % umolar # Ca2+ affinity of SERCAs

C_T = 2+umolar # Total cell free Ca”2+ content

rho_A = 0.18 # ER-to-cytoplasm volume ratio

Omega_C = 6/second # Maximal rate of Ca’2+ release by IP_3Rs
Omega_L = 0.1/second # Maximal rate of Ca”2+ leak from the ER

# ——— IP_3R kinectics

d 1 = 0.13xumolar # IP_3 binding affinity

d_2 = 1.05«umolar # Ca"2+ inactivation dissociation constant
0_2 = 0.2/umolar/second # IP_3R binding rate for Ca"2+ inhibition
d_3 = 0.9434xumolar # IP_3 dissociation constant

d_5 = 0.08+umolar # Ca"2+ activation dissociation constant

# ——— IP_3 production

O_delta = 0.6xumolar/second # Maximal rate of IP_3 production by PLCdelta
kappa_delta = 1.5% umolar # Inhibition constant of PLC_delta by IP_3
K_delta = 0.l*umolar # Ca”2+ affinity of PLCdelta

# ——— IP_3 degradation

Omega_5P = 0.05/second # Maximal rate of IP_3 degradation by IP-5P
K_D = 0.7+umolar # Ca”2+ affinity of IP3-3K

K_3K = 1.0+umolar # IP_3 affinity of IP_3-3K

O_3K = 4.5xumolar/second # Maximal rate of IP_3 degradation by IP_3-3K
# ——— IP_3 diffusion

F_ex = 0.09xumolar/second # Maximal exogenous IP3 flow

F = 0.09+umolar/second # GJC IP_3 permeability

I_Theta = 0.3*umolar # Threshold gradient for IP_3 diffusion
omega_I = 0.05+umolar # Scaling factor of diffusion

HAHAHAAAAFAHARARAAAAFARAAAFRAA A AR AARA A AR A A AARA A AA AR A AR
# Model definition

HAARFAAHAARFAAHAARH AR A AR HAARHA AR AR AR AR A AA AR A A AR H AR HH AR AR AH
defaultclock.dt = sim_dt # Set the integration time

### Astrocytes
astro_egs = '''
dIi/dt = J delta - J_3K — J_5P + J_ex + J_coupling : mmolar

J_delta = O_delta/ (1 + I/kappa_delta) x Cxx2/(Cx%2 + K_deltax*2) : mmolar/second

J_3K = O_3K * Cxx4/(C*x*4 + K_Dxx4) * I/(I + K_3K) : mmolar/second

J_5P = Omega_5Px*I : mmolar/second

# Exogenous stimulation (rectangular wave with period of 50s and duty factor 0.4)

stimulus = int ((t % (50*second))<20xsecond) 01

delta_I _bias = I - I_bias*stimulus : mmolar

J_ex = -F_ex/2x (1 + tanh((abs(delta_I_bias) - I_Theta)/omega_I)) =*
sign(delta_I_lbias) : mmolar/second
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# Diffusion between astrocytes
J_coupling : mmolar/second

# Ca”2+-induced Ca”2+ release:

dc/dt = J_r + J_1 - J_p : mmolar

dh/dt = (h_inf - h)/tau_h : 1

J_r = (Omega_C * m_inf#%3 % h*x%3) % (C_T - (1 + rho_A)*C) : mmolar/second
J_1 = Omega_L * (C_T - (1 + rho_A)xC) : mmolar/second
J_p = O_P » Cxx2/ (C*xx2 + K_Px*2) : mmolar/second
m_inf = I/(I + d_1) = C/(C + d_5) 1

h_inf = Q 2/(Q_2 + C) N

tau_h = 1/(0_2 % (0_2 + C)) : second

Q2 =d.2 x (I +d_1)/(I + d_3) : mmolar

# External IP_3 drive
I _bias : mmolar (constant)

N_astro = 50 # Total number of astrocytes in the network

astrocytes = NeuronGroup (N_astro, astro_eqgs, method='rk4")

# Asymmetric stimulation on the 50th cell to get some nice chaotic patterns
astrocytes.I_bias[N_astro//2] = 1.0xumolar

astrocytes.h = 0.9

# Diffusion between astrocytes

astro_to_astro_egs = "'’

delta_I = I_post - I_pre : mmolar

J_coupling_post = -F/2 % (1 + tanh((abs(delta_I) - I_Theta)/omega_TI)) =
sign(delta_I) : mmolar/second (summed)

astro_to_astro = Synapses(astrocytes, astrocytes,

model=astro_to_astro_eqgs)
# Couple neighboring astrocytes: two connections per astrocyte pair, as
# the above formulation will only update the I_coupling term of one of the
# astrocytes

astro_to_astro.connect ( == (i + 1) % N_pre or '

o

= (1 + N_pre - 1) % N_pre')

"]
"J

FHEAAFRARFRARFHAFFAAFHAAFEAAFRAAFEAAFRAFFRAFFHA AR AR FHAAF A AR FRAFF AR RS

# Monitors

HAHAHAAAAFAHARARAAAAFARAAAFARA A AAAAARA A AAFARA A AA AR AA AR A AA AR A
astro_mon = StateMonitor (astrocytes, variables=['C'], record=True)

HAHAHAAAAFAHARARAAAAFARAAAAFRRA A AFAAARA A AHARA A A AR AA AR AAHA R AR
# Simulation run
HAARFAAHAAAFAAHAAAHAAHAARHAARH AR AR HA AR AR AR AA AR A A AR AR AR RH AR A AR AH
run (duration, report='text')

idddzzdsdssdsdssdsdaddsdsdssdsdsdsdsdadtdsdasdadatdddadssdatdddaddadaddidadsidi
# Analysis and plotting
ldddazdddadaddadsddadasdadatdsdadasdadasdadasdadatdadatsadadaadadaddadaddadsddaidi
plt.style.use('figures.mplstyle')

fig, ax plt.subplots (nrows=1, ncols=1, figsize=(6.26894, 6.26894 x 0.66),
gridspec_kw={'left': 0.1, 'bottom': 0.12})
scaling = 1.2
step = 10
ax.plot (astro_mon.t/second,
(astro_mon.C[0:N_astro//2-1].T/astro_mon.C.max () +
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np.arange (N_astro//2-1) xscaling), color='black")
ax.plot (astro_mon.t/second, (astro_mon.C[N_astro//2:].T/astro_mon.C.max () +
np.arange (N_astro//2, N_astro)*scaling),
color="black")
ax.plot (astro_mon.t/second, (astro_mon.C[N_astro//2-1].T/astro_mon.C.max () +
np.arange (N_astro//2-1, N_astro//2)+scaling),
color="C0O")
ax.set (x1lim=(0., duration/second), ylim=(0, (N_astro+l1.5)=*scaling),
xticks=np.arange (0., duration/second, 500), xlabel='time (s)"',
yticks=np.arange (0.5*scaling, (N_astro + 1.5)xscaling, step*scaling),
yticklabels=[str (yt) for yt in np.arange (0, N_astro + 1, step)l],
ylabel='5C/C_{max}$ (cell index)"')
pu.adjust_spines(ax, ['left', 'bottom'])

pu.adjust_ylabels([ax], x_offset=-0.08)

plt.show ()
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5.13.7 Example: example_6_COBA_with_astro

Modeling neuron-glia interactions with the Brian 2 simulator Marcel Stimberg, Dan F. M. Goodman, Romain Brette,
Maurizio De Pitta bioRxiv 198366; doi: https://doi.org/10.1101/198366

Figure 6: Recurrent neuron-glial network.

Randomly connected COBA network (see Brunel, 2000) with excitatory synapses modulated by release-increasing
gliotransmission from a randomly connected network of astrocytes.
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from brian2 import =«
import plot_utils as pu

set_device ('cpp_standalone', directory=None) # Use fast "C++ standalone mode"
seed (28371) # to get identical figures for repeated runs

#HAAAHAAAAFAHARA A AR A AHA A A AR R A AR A A AR A AR A H AR AR
# Model parameters
ldidadaddasaaaadidasasdadatasdatsaddsadatssdatssdatsdsadsddadsdasdssaadadaadsdd
### General parameters

N_e = 3200 # Number of excitatory neurons
N_i = 800 # Number of inhibitory neurons
N_a = 3200 # Number of astrocytes

## Some metrics parameters needed to establish proper connections
size = 3.75+mmeter # Length and width of the square lattice
distance = 50xumeter # Distance between neurons

### Neuron parameters

E_1 = -60*mV # Leak reversal potential

g_l = 9.99%nS # Leak conductance

E_e = 0xmV # Excitatory synaptic reversal potential
E_i = -80+mV # Inhibitory synaptic reversal potential
C_m = 198xpF # Membrane capacitance

tau_e = 5xms # Excitatory synaptic time constant

tau_i = 10#ms # Inhibitory synaptic time constant

tau_r = 5xms # Refractory period

I_ex = 100*pA # External current

V_th = -50xmv # Firing threshold

V_r = E_1 # Reset potential

### Synapse parameters

rho_c = 0.005 # Synaptic vesicle-to-extracellular space volume ratio
YT = 500.+mmolar # Total vesicular neurotransmitter concentration
Omega_c = 40/second # Neurotransmitter clearance rate
U_0__star = 0.6 # Resting synaptic release probability
Omega_f = 3.33/second # Synaptic facilitation rate

Omega_d = 2.0/second # Synaptic depression rate

w_e = 0.05xnS # Excitatory synaptic conductance

w_1i = 1.0%nS # Inhibitory synaptic conductance

# ——— Presynaptic receptors

O_G = 1.5/umolar/second # Agonist binding (activating) rate
Omega_G = 0.5/ (60+xsecond) # Agonist release (deactivating) rate

### Astrocyte parameters

# ——— Calcium fluxes

O_P = 0.9xumolar/second # Maximal Ca"2+ uptake rate by SERCAs

K_P = 0.05%umolar # Ca2+ affinity of SERCAs

C_T = 2*umolar # Total cell free Ca’2+ content

rho_A = 0.18 # ER-to-cytoplasm volume ratio

Omega_C = 6/second # Maximal rate of Ca’2+ release by IP_3Rs
Omega_L = 0.1/second # Maximal rate of Ca”2+ leak from the ER
# ——— IP_3R kinectics

d_1 = 0.13xumolar # IP_3 binding affinity

d_2 = 1.05+xumolar # Ca”2+ inactivation dissociation constant
0_2 = 0.2/umolar/second # IP_3R binding rate for Ca”2+ inhibition
d_3 = 0.9434xumolar # IP_3 dissociation constant
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d_5 = 0.08xumolar # Ca”2+ activation dissociation constant

# —-—-— IP_3 production

# ——-— Agonist-dependent IP_3 production

O_beta = 0.5+ umolar/second # Maximal rate of IP_3 production by PLCbeta
O_N = 0.3/umolar/second # Agonist binding rate

Omega_N = 0.5/second # Maximal inactivation rate

K_KC = 0.5+umolar # Ca”2+ affinity of PKC

zeta = 10 # Maximal reduction of receptor affinity by PKC
# ——— Endogenous IP3 production

O_delta = 1l.2+umolar/second # Maximal rate of IP_3 production by PLCdelta
kappa_delta = 1.5+umolar # Inhibition constant of PLC _delta by IP_3
K_delta = 0.lxumolar # Ca”2+ affinity of PLCdelta

# ——— IP_3 degradation

Omega_5P = 0.05/second # Maximal rate of IP_3 degradation by IP-5P

K D = 0.7+umolar # Ca”2+ affinity of IP3-3K

K_3K = 1.0%umolar # IP_3 affinity of IP_3-3K

O_3K = 4.5+umolar/second # Maximal rate of IP_3 degradation by IP_3-3K

# ——— IP_3 diffusion

F = 0.09*umolar/second # GJC IP_3 permeability

I_Theta = 0.3+xumolar # Threshold gradient for IP_3 diffusion

omega_I = 0.05xumolar # Scaling factor of diffusion

# ——— Gliotransmitter release and time course

C_Theta = 0.5xumolar # Ca”2+ threshold for exocytosis

Omega_A = 0.6/second # Gliotransmitter recycling rate

U_A = 0.6 # Gliotransmitter release probability

G_T = 200*mmolar # Total vesicular gliotransmitter concentration
rho_e = 6.5e-4 # Astrocytic vesicle-to-extracellular volume ratio
Omega_e = 60/second # Gliotransmitter clearance rate

alpha = 0.0 # Gliotransmission nature

HAHRHAAAAAAHARAAAAAAFARAAAAFAAA A AAAFARAAAAHAFAAAAAAF AR AA AR A AAA AR
# Define HF stimulus

[z e s TEa IS e EeEEa SRR TR R SRR R TR R R R AR
stimulus = TimedArray([1.0, 1.2, 1.0, 1.0], dt=2+second)

HAARFAAHAAAFAAAAARHAAHAAEHAA R AR AR AR H AR A A A AR A H AR AR AR AR AR
# Simulation time (based on the stimulus)
FAARFAAHAAHAAAHAAHH AR HFHEH AR EF AR AR A H AR H AR H A H AR H AR AR A A 44

duration = 8xsecond # Total simulation time

FHEHRHRAAAAAFAAAAFAARFAAFAARFAAAAFAFAFAFAFAFAFAFAAAAAAFAHAAFAARFAAFAARFAAAAAAFAFAA
# Model definition
HAHAHAAAAFAHARARAAAAFARAAA AR AAFARA R A AR A A AR A RA AR A AR
### Neurons

neuron_eqgs = """

dv/dt = (g_l*x(E_1-v) + g_ex(E_e-v) + g_ix(E_i-v) + I_exxstimulus(t))/C_m : volt
— (unless refractory)

dg_e/dt = -g_e/tau_e : siemens # post-synaptic excitatory conductance

dg_i/dt = —-g_i/tau_1i : siemens # post-synaptic inhibitory conductance

# Neuron position in space

x : meter (constant)

y : meter (constant)

T

neurons = NeuronGroup(N_e + N_i, model=neuron_edgs,
threshold='v>V_th', reset='v=vV_r',
refractory="'tau_r', method='euler'")

exc_neurons = neurons/[:N_e]

inh_neurons = neurons[N_e:]
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# Arrange excitatory neurons in a grid

N_rows = int (sqrt (N_e))

N_cols = N_e/N_rows

grid_dist = (size / N_cols)

exc_neurons.x = ' (i / N_rows)xgrid_dist - N_rows/2.0*grid_dist'
exc_neurons.y = '(i % N_rows)xgrid_dist - N_cols/2.0*grid_dist'
# Random initial membrane potential values and conductances
neurons.v = 'E_1 + rand()x(V_th-E_1)"

neurons.g_e = 'rand()xw_e'

neurons.g_i = 'rand () w_1i"'

### Synapses
synapses_eqgs = '''
# Neurotransmitter

dy_S/dt = -Omega_c * Y_S : mmolar (clock-driven)
# Fraction of activated presynaptic receptors

dGamma_S/dt = O_G * G_A * (1 - Gamma_S) - Omega_G » Gamma_S : 1 (clock-driven)
# Usage of releasable neurotransmitter per single action potential:

du_S/dt = -Omega_f » u_S : 1 (event—-driven)
# Fraction of synaptic neurotransmitter resources available for release:
dx_S/dt = Omega_d = (1 — x_S) : 1 (event—-driven)
U_0 : 1

# released synaptic neurotransmitter resources:

r S 1

# gliotransmitter concentration in the extracellular space:

G_A : mmolar

# which astrocyte covers this synapse ?

astrocyte_index : integer (constant)

[

synapses_action = '''

U_0 = (1 - Gamma_S) * U_O__star + alpha » Gamma_S

u_S += U_0 * (1 - u_S)

r S = u_.S * xX_S

x_S —= r_S

Y_ S += rho_c * Y_T % r_S

Tr

exc_syn = Synapses (exc_neurons, neurons, model=synapses_edgs,
on_pre=synapses_action+'g_e_post += w_exr_S',
method="exact")

exc_syn.connect (True, p=0.05)

exc_syn.x_S = 1.0

inh_syn = Synapses (inh_neurons, neurons, model=synapses_eds,
on_pre=synapses_action+'g_i post += w_ixr_S',
method="exact")

inh_syn.connect (True, p=0.2)

inh_syn.x_S = 1.0

# Connect excitatory synapses to an astrocyte depending on the position of the

# post-synaptic neuron

N_rows_a = int (sqrt(N_a))

N_cols_a = N_a/N_rows_a

grid_dist = size / N_rows_a

exc_syn.astrocyte_index = ('int (x_post/grid_dist) + '

'N_cols_axint (y_post/grid_dist)")
### Astrocytes
# The astrocyte emits gliotransmitter when its Ca’2+ concentration crosses
# a threshold
astro_eqgs = '''
# Fraction of activated astrocyte receptors:
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dGamma_A/dt = O_N = Y_S % (1 - clip(Gamma_A,0,1)) -

Omega_N=x (1 + zeta = C/(C + K _KC)) * clip(Gamma_A,0,1) : 1
# Intracellular IP_3
dI/dt = J_beta + J_delta - J_3K - J_5P + J_coupling : mmolar
J_beta = O_beta x Gamma_A : mmolar/second
J_delta = O_delta/ (1 + I/kappa_delta) x C*x2/(Cx*2 + K_deltax*2) : mmolar/second
J 3K = O_3K * Cxx4/ (Cxx4 + K _Dxx4) % I/ (I + K_3K) : mmolar/second
J_5P = Omega_5Px1I : mmolar/second
# Diffusion between astrocytes:
J_coupling : mmolar/second

# Ca”2+-induced Ca”2+ release:

dc/dt = J_r + J_1 - J_p : mmolar

dh/dt = (h_inf - h)/tau_h N

J_r = (Omega_C * m_inf#%*3 % h*x%3) % (C_T - (1 + rho_A)*C) : mmolar/second
J_1 = Omega_L » (C_T - (1 + rho_A)=«C) : mmolar/second
J p = O_P * C*%x2/(Cx%*2 + K_P**2) : mmolar/second
m_inf = I/(I + d_1) * C/(C + d_5) 21

h_inf = Q_2/(Q_2 + C) 1

tau_h = 1/(0_2 * (Q_2 + C)) : second

Q2 =d.2 x (I + d_1)/(I + d_3) : mmolar

# Fraction of gliotransmitter resources available for release:

dx_A/dt = Omega_A x (1 - x_A) : 1

# gliotransmitter concentration in the extracellular space:
dG_A/dt = -Omega_exG_A : mmolar

# Neurotransmitter concentration in the extracellular space:
Y S : mmolar

# The astrocyte position in space

x : meter (constant)

y : meter (constant)
glio_release = """
G_A += rho_e * G_T * U_A * xX_A
x_ A —= U_A » XxX_A
Tr
astrocytes = NeuronGroup(N_a, astro_egs,
# The following formulation makes sure that a "spike" is
# only triggered at the first threshold crossing
threshold='C>C_Theta',
refractory='C>C_Theta',
# The gliotransmitter release happens when the threshold
# 1is crossed, in Brian terms it can therefore be
# considered a "reset"
reset=glio_release,
method='rk4d"',
dt=1le-2+second)
# Arrange astrocytes in a grid

astrocytes.x = '(i / N_rows_a)+*grid_dist - N_rows_a/2.0+grid_dist'
astrocytes.y = '(i % N_rows_a)+*grid_dist - N_cols_a/2.0+grid_dist'
# Add random initialization

astrocytes.C = 0.0lxumolar

astrocytes.h = 0.9

astrocytes.I = 0.0lxumolar

astrocytes.x_A = 1.0

ecs_astro_to_syn = Synapses (astrocytes, exc_syn,
'G_A_post = G_A_pre : mmolar (summed) ')
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ecs_astro_to_syn.connect ('i == astrocyte_index_post')
ecs_syn_to_astro = Synapses (exc_syn, astrocytes,

'Y_S_post = Y_S_pre/N_incoming : mmolar (summed)"')
ecs_syn_to_astro.connect ('astrocyte_index _pre == 7J')

# Diffusion between astrocytes
astro_to_astro_eqgs = "'’

delta_I = I_post - I_pre : mmolar

J_coupling_post = —(1 + tanh((abs(delta_I) - I_Theta)/omega_TI)) *
sign(delta_TI)+F/2 : mmolar/second (summed)

Tra

astro_to_astro = Synapses (astrocytes, astrocytes,

model=astro_to_astro_eqgs)
# Connect to all astrocytes less than 75um away
# (about 4 connections per astrocyte)
astro_to_astro.connect ('i != j and '
'sgrt ((x_pre—-x_post) xx2 +'
! (y_pre-y_post) *%2) < 75xum')

FHARFAAAAARAAAAARAAA A AR HARAAFAARFA AR RA AR AR A AR AR H AR A A AR AR AR AR AR AAAA
# Monitors
(2222222 E e EE L eSS eSS TSI TR TR SRR R LR EEE
# Note that we could use a single monitor for all neurons instead, but this

# way plotting is a bit easier in the end

exc_mon = SpikeMonitor (exc_neurons)

inh_mon = SpikeMonitor (inh_neurons)

ast_mon = SpikeMonitor (astrocytes)

FHRARFAAAAARARAAARAAARHARAHARAFAARFARAA AR AR AA AR A AR AR H AR A A AR R AR AR AR AR A A
# Simulation run

(22222 E a2 E e E TS ST E ST EEEEE R SRR R E R E L
run (duration, report='text')

ldddzsdsdssdsdssdsdasdsdadasdadasdadasdadatdsdatdadatdsdatsadatdddaddadaddidadsii
# Plot of Spiking activity

#HE#AF A HAF AR F A EAF AR F AR F AR AR AR AR AR AR A A A
plt.style.use('figures.mplstyle')

fig, ax = plt.subplots(nrows=3, ncols=1, sharex=True, figsize=(6.26894, 6.26894x0.8),
gridspec_kw={'height_ratios': [1, 6, 2],
'left': 0.12, 'top': 0.97})
time_range = np.linspace (0, duration/second, duration/second+100)+«second
ax[0] .plot (time_range, I_exsstimulus (time_range)/pA, 'k')
ax[0].set (x1im=(0, duration/second), ylim=(98, 122),
yticks=[100, 120], ylabel='SI_{ex}$S (pA)")
pu.adjust_spines(ax[0], ['left'])

## We only plot a fraction of the spikes

fraction = 4
ax[1l].plot (exc_mon.t[exc_mon.i <= N_e//fraction]/second,
exc_mon.i[exc_mon.i <= N_e//fraction], '|', color='C0")
ax[1l].plot (inh_mon.t[inh_mon.i <= N_i//fraction]/second,
inh_mon.i[inh_mon.i <= N_i//fraction]+N_e//fraction, '|', color='Cl")
ax[1].plot (ast_mon.t[ast_mon.i <= N_a//fraction]/second,
ast_mon.i[ast_mon.i <= N_a//fraction]+ (N_e+N_i)//fraction,

"|'", color='C2")
ax[1].set (x1lim=(0, duration/second), ylim=[0, (N_e+N_i+N_a)//fraction],
yticks=np.arange (0, (N_e+N_i+N_a)//fraction+1, 250),
ylabel="cell index")
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["left'])

pu.adjust_spines(ax[1l],

# Generate frequencies

= 1lxms

bin_size

/second],

inh_mon.t

np.histogram(np.r_[exc_mon.t/second,

ges =

bin_ed

spk_count,

_ ))

duration/bin_size

int (

1.0+xspk_count/ (N_e + N_1i) /bin_size/Hz

rate[rate<0.001]

ax[2]

rate

= 0.001 # Fix 0 lower bound for log scale

color="k")

'bottom'])

’

v

rate,

:71]1

.semilogy (bin_edges|

["left"',

pu.adjust_spines(ax[2],

150),

ylim=(0.1,

duration/second),

(0,

.set (x1lim

ax[2]

1, 10, 10017,

.1,

[0

ylabel="rate

yticks

np.arange (0, 9),

xticks

(Hz) ")

formatter (ScalarFormatter ())

(s) ',

xlabel="time

jor_

.set_ma

.get_yaxis ()

ax[2]

=-0.11)

x_offset

pu.adjust_ylabels (ax,

plt.show ()
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5.13.8 Example: plot_utils
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Module with useful functions for making publication-ready plots.

def

def

adjust_spines (ax, spines, position=5, smart_bounds=False):
mmwn

Set custom visibility and position of axes

ax : Axes
Axes handle
spines : List
String list of 'left', 'bottom', 'right', 'top' spines to show
position : Integer
Number of points for position of axis
mmwn
for loc, spine in ax.spines.items/() :
if loc in spines:
spine.set_position(('outward', position))
spine.set_smart_bounds (smart_bounds)
else:
spine.set_color ('none') # don't draw spine

# turn off ticks where there is no spine
if 'left' in spines:
ax.yaxis.set_ticks_position('left'")
elif 'right' in spines:
ax.yaxis.set_ticks_position('right")
else:
# no yaxis ticks
ax.yaxis.set_ticks ([])
ax.tick_params (axis='y', which="'both', left='off', right='off")

if 'bottom' in spines:
ax.xaxis.set_ticks_position('bottom')
elif 'top' in spines:
ax.xaxis.set_ticks_position('top")
else:
# no xaxis ticks
ax.xaxis.set_ticks([])
ax.tick_params (axis="'x"', which="'both', bottom='off', top='off'")

adjust_ylabels (ax,x_offset=0):

rr

Scan all ax 1list and identify the outmost y-axis position.
Setting all the labels to that position + x_offset.

rrr

xc = 0.0
for a in ax:
xCc = min(xc, (a.yaxis.get_label()).get_position() [0])

for a in ax:
a.yaxis.set_label_coords(xc + x_offset,
(a.yaxis.get_label()) .get_position()[1])
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5.14 standalone

5.14.1 Example: STDP_standalone

Spike-timing dependent plasticity. Adapted from Song, Miller and Abbott (2000) and Song and Abbott (2001).

This example is modified from synapses_STDP.py and writes a standalone C++ project in the directory
STDP_standalone.

from brian2 import =«
set_device ('cpp_standalone', directory='STDP_standalone')

N = 1000

taum = 10xms
taupre = 20xms
taupost = taupre
Ee = 0»mV

vt = -54xmV

vr = —60xmV

El = -74xmV

taue = 5xms

F = 15+«Hz

gmax = .01

dApre = .01
dApost = -dApre * taupre / taupost % 1.05
dApost *= gmax
dApre *= gmax

T

egs_neurons =

dv/dt = (ge * (Ee-vr) + El1 - v) / taum : volt
dge/dt = -ge / taue : 1
input = PoissonGroup (N, rates=F)

neurons = NeuronGroup(l, egs_neurons, threshold='v>vt', reset='v = vr',
method="exact"')

S = Synapses (input, neurons,
'T'wos 1
dApre/dt = —-Apre / taupre : 1 (event-driven)
dApost/dt = -Apost / taupost : 1 (event-driven)''',
on_pre="'""'ge += w
Apre += dApre
w = clip(w + Apost, 0, gmax)''',
on_post="""Apost += dApost
w = clip(w + Apre, 0, gmax)''"',
)
S.connect ()
S.w = 'rand() * gmax'
mon = StateMonitor (S, 'w', record=[0, 11)
s_mon = SpikeMonitor (input)

run (100+xsecond, report='text')

subplot (311)
plot (S.w / gmax, '.k'")
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ylabel ('Weight / gmax')
xlabel ('Synapse index')
subplot (312)

hist(S.w / gmax, 20)
xlabel ('Weight / gmax')
subplot (313)

plot (mon.t/second, mon.w.T/gmax)
xlabel ('Time (s)'")
ylabel ('Weight / gmax')
tight_layout ()

show ()
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5.14.2 Example: cuba_openmp

Run the cuba . py example with OpenMP threads.

from brian2 import =«

set_device ('cpp_standalone', directory='CUBA')
prefs.devices.cpp_standalone.openmp_threads = 4

taum = 20*ms
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taue = 5#ms

taui = 10xms

vVt = -50xmV

Vr = -60xmV

El = -49xmV

eqs . Tr

dv/dt = (ge+gi-(v-El))/taum volt (unless refractory)

dge/dt = -ge/taue volt (unless refractory)

dgi/dt = —-gi/taui volt (unless refractory)

P = NeuronGroup (4000, egs, threshold='v>Vt', reset='v = Vr', refractory=5*ms,
method="exact")

P.v = '"Vr + rand() * (Vt - Vr)'

P.ge = 0xmV

P.gi = 0xmV

we = (60x0.27/10)+mV # excitatory synaptic weight (voltage)

wi = (-20%4.5/10)*mV # inhibitory synaptic weight

Ce = Synapses (P, P, on_pre='ge += we')

Ci = Synapses (P, P, on_pre='gi += wi')

Ce.connect ('i<3200", p=0.02)

Ci.connect ('i>=3200", p=0.02)

s_mon = SpikeMonitor (P)

run(l % second)

plot (s_mon.t/ms, s_mon.i, ', k")

xlabel ("Time (ms) ")

ylabel ('Neuron index'")

show ()
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5.15 synapses

5.15.1 Example: STDP

Spike-timing dependent plasticity Adapted from Song, Miller and Abbott (2000) and Song and Abbott (2001)

from brian2 import =«

N = 1000

taum = 10xms
taupre = 20xms
taupost = taupre
Ee = 0*mV

vt —54xmVvV

vr = —60xmV

El = -74xmV

taue = 5xms

F = 15xHz

gmax = .01

dApre = .01
dApost = -dApre * taupre / taupost % 1.05
dApost *= gmax
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dApre *= gmax

[

egs_neurons =

dv/dt = (ge * (Ee-vr) + E1 - v) / taum : volt
dge/dt = -ge / taue : 1

Tr

input = PoissonGroup (N, rates=F)

neurons = NeuronGroup (l, egs_neurons, threshold='v>vt', reset='v = vr',
method="exact"')

S = Synapses (input, neurons,
Trhyos 1
dApre/dt = —-Apre / taupre : 1 (event-driven)
dApost/dt = -Apost / taupost : 1 (event-driven)''',
on_pre='""ge +=w
Apre += dApre
w = clip(w + Apost, 0, gmax)''"',
on_post="""Apost += dApost
w = clip(w + Apre, 0, gmax)''"',

S.connect ()

S.w = 'rand() * gmax'
mon = StateMonitor (S, 'w', record=[0, 11)
s_mon = SpikeMonitor (input)

run (100+xsecond, report='text')

subplot (311)

plot (S.w / gmax, '.k'")
ylabel ('Weight / gmax')
xlabel ('Synapse index')
subplot (312)

hist (S.w / gmax, 20)
xlabel ('"Weight / gmax')
subplot (313)

plot (mon.t/second, mon.w.T/gmax)
xlabel ('Time (s)'")
ylabel ('Weight / gmax")
tight_layout ()

show ()

308 Chapter 5. Examples




Brian 2 Documentation, Release 2.1

E 1.0 4 2, LY X0
g‘l 3 'i‘u': . ':...E. '- dl' cté : ‘t“ﬂr% 'l""o !
= 0.5 -.’ =ﬂ": :"‘ - -{ r h H.p-. . -Jl- *-'.‘.
£= 'i- -: -..i--i’f'. “ ' .. h‘.
£ gt ewd Ml '
v AL WRIA S "‘:h.»..:f.{
= 0.0 | |
0 200 4[]"[] GD'U BD‘U lD‘U'D

Synapse index

100 ~

0.4 0.6 0.8 1.0
Weight / gmax

0.5

Weight / gmax
e
o

J‘

T
0 20 40 60 80 100
Time (s)

5.15.2 Example: efficient_gaussian_connectivity

An example of turning an expensive Synapses.connect () operation into three cheap ones using a mathematical
trick.

Consider the connection probability between neurons i and j given by the Gaussian function p = e~ (=7 )? (for some
constant «v). If we want to connect neurons with this probability, we can very simply do:

S.connect (p='"exp (-alphax (1—73) *%2) ")

However, this has a problem. Although we know that this will create O(N) synapses if N is the number of neurons,
because we have specified p as a function of i and j, we have to evaluate p (1, Jj) for every pair (i, j), and
therefore it takes O(N?) operations.

Our first option is to take a cutoff, and say that if p < ¢ for some small g, then we assume that p ~ 0. We can work out
which j values are compatible with a given value of i by solving e~*(=1)” < g which gives li—j| < +/—log(q)/a) =
w. Now we implement the rule using the generator syntax to only search for values between i-w and i+w, except
that some of these values will be outside the valid range of values for j so we set skip_if_invalid=True. The
connection code is then:

S.connect (j='k for k in range(i-w, i+w) 1if rand()<exp (—-alphax (i-73)**x2)"'
skip_if invalid=True)
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This is a lot faster (see graph labelled “Limited” for this algorithm).

However, it may be a problem that we have to specify a cutoff and so we will lose some synapses doing this: it won’t be
mathematically exact. This isn’t a problem for the Gaussian because w grows very slowly with the cutoff probability
g, but for other probability distributions with more weight in the tails, it could be an issue.

If we want to be exact, we can still do a big improvement. For the case : —w < j < ¢+ w we use the same connection
code, but we also handle the case | — j| > w. This time, we note that we want to create a synapse with probability
p(i — j) and we can rewrite this as p(i — j)/p(w) - p(w). If |§ — j| > w then this is a product of two probabilities
p(i — j)/p(w) and p(w). So in the region |i — j| > w a synapse will be created if two random events both occur, with
these two probabilities. This might seem a little strange until you notice that one of the two probabilities p(w) doesn’t
depend on i or j. This lets us use the much more efficient sample algorithm to generate a set of candidate j values,
and then add the additional test rand () <p (1—7) /p (w) . Here’s the code for that:

w = int (ceil (sgrt (log(q)/-0.1)))

S.connect (j='k for k in range(i-w, i+w) 1if rand()<exp (-alphax* (i-73)*%x2)"',
skip_if_invalid=True)

pmax = exp (0.l wx*2)

S.connect (j='k for k in sample (0, i-w, p=pmax) if rand()<exp (-alphax (i-j)**2) /pmax',
skip_if_invalid=True)

S.connect (j='k for k in sample (i+w, N_post, p=pmax) if rand()<exp (-alphax (i-7)*%2)/

—pmax',
skip_if invalid=True)

This “Divided” method is also much faster than the naive method, and is mathematically correct. Note though that
this method is still O(/N?) but the constants are much, much smaller and this will usually be sufficient. It is possible
to take the ideas developed here even further and get even better scaling, but in most cases it’s unlikely to be worth the
effort.

The code below shows these examples written out, along with some timing code and plots for different values of N.

from brian2 import =«
import time

def naive (N) :
G NeuronGroup (N, 'v:1'"', threshold='v>1', name='G")
S = Synapses (G, G, on_pre='v += 1', name='S")
S.connect (p="exp (-0.1x (i-7)**2)")

def limited (N, g=0.001):

G NeuronGroup (N, 'v:1', threshold='v>1', name='G")

S = Synapses (G, G, on_pre='v += 1', name='S")

w = int (ceil (sqrt (log(qg)/-0.1)))

S.connect (j='k for k in range(i-w, i+w) 1if rand()<exp(-0.1%(i-7j)**2)"', skip_1if__
—invalid=True)

def divided (N, g=0.001):

G = NeuronGroup (N, 'v:1'"', threshold='v>1', name='G")

S = Synapses (G, G, on_pre='v += 1", name='S")

w = int (ceil (sqrt (log(qg)/-0.1)))

S.connect (j='k for k in range(i-w, i+w) if rand()<exp(-0.1*(i-7J)**2)"', skip_1if_
—invalid=True)

pmax = exp(—0.1lxwx*2)

S.connect (j='k for k in sample (0, i-w, p=pmax) 1if rand()<exp (-0.1x (i-7)**2)/pmax',
— skip_1if_invalid=True)

S.connect (j='k for k in sample (i+w, N_post, p=pmax) if rand()<exp (-0.1x (i-7)*%2)/
—pmax', skip_if_invalid=True)

def repeated_run(f, N, repeats):
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start_time = time.time ()
for _ in range (repeats):
£ (N)
end_time = time.time ()
return (end_time-start_time) /repeats

N = array([100, 500, 1000, 5000, 10000, 200007])

repeats = array([100, 10, 10, 1, 1, 1]1)=%3

naive (10)

limited (10)

divided (10)

print 'Starting naive'

loglog (N, [repeated_run(naive, n, r) for n, r in zip (N, repeats)],
label="Naive', 1lw=2)

print 'Starting limit'

loglog (N, [repeated_run(limited, n, r) for n, r in zip (N, repeats)],
label="Limited', 1lw=2)

print 'Starting divided'

loglog (N, [repeated_run(divided, n, r) for n, r in zip (N, repeats)],
label="Divided', 1lw=2)

xlabel ('N")

ylabel ('Time (s)")

legend (loc="best', frameon=False)

show ()
101 - — Naive
] = Limited
] = Divided
107 1
w 1
" 1
1= ]
=
1071
LA | T T T T T LI | T T T T T L | T
104 103 104
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5.15.3 Example: gapjunctions

Neurons with gap junctions.

from brian2 import =«

n = 10
v0 = 1.05
tau = 10+ms
eqgs = T
dv/dt = (v0 - v + Igap) / tau : 1
Igap : 1 # gap junction current
neurons = NeuronGroup(n, eqgs, threshold='v > 1', reset='v = 0',
method="exact ')
neurons.v = 'i % 1.0 / (n-1)"
trace = StateMonitor (neurons, 'v', record=[0, 5])
S = Synapses (neurons, neurons, '''
w : 1 # gap Jjunction conductance
Igap_post = w * (v_pre — v_post) : 1 (summed)

Tra )
S.connect ()
S.w = .02

run (500+ms)

plot (trace.t/ms, trace[0].v)
plot (trace.t/ms, trace[5].v)
xlabel ('Time (ms) ")

ylabel ('v")

show ()
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5.15.4 Example: jeffress

Jeffress model, adapted with spiking neuron models. A sound source (white noise) is moving around the head. Delay
differences between the two ears are used to determine the azimuth of the source. Delays are mapped to a neural place

code using delay lines (each neuron receives input from both ears, with different delays).

from brian2 import x
defaultclock.dt = .02xms

# Sound
sound = TimedArray (10 x randn(50000), dt=defaultclock.dt) # white noise

# Ears and sound motion around the head (constant angular speed)
sound_speed = 300+ metre/second

interaural_distance = 20xcm # big head!

max_delay = interaural_distance / sound_speed

print ("Maximum interaural delay: %s" % max_delay)
angular_speed = 2 * pi / second # 1 turn/second

tau_ear = l+ms
sigma_ear = .1
egs_ears = "''
dx/dt = (sound(t-delay)-x)/tau_ear+sigma_ear* (2./tau_ear)*.5xxi : 1 (unless,

£ .
reTrracCTtory T
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delay = distancex*sin(theta) : second
distance : second # distance to the centre of the head in time units
dtheta/dt = angular_speed : radian

v

ears = NeuronGroup (2, eqgs_ears, threshold='x>1"', reset='x = 0',
refractory=2.5+ms, name='ears', method='euler'")

ears.distance = [-.5 » max_delay, .5 % max_delay]

traces = StateMonitor (ears, 'delay', record=True)

# Coincidence detectors

num_neurons = 30

tau = lxms

sigma = .1

egs_neurons = "''

dv/dt = -v / tau + sigma * (2 / tau)**.5 » xi : 1

v

neurons = NeuronGroup (num_neurons, edgs_neurons, threshold='v>1",
reset='v = 0', name='neurons', method='euler')

synapses = Synapses(ears, neurons, on_pre='v += .5")
synapses.connect ()

synapses.delay['i==0"] '(1.0%73)/ (num_neurons-1) *1.lxmax_delay'
synapses.delay['i==1"'] = ' (1.0 (num_neurons—-7J-1))/ (num_neurons-1)*1.l+max_delay'

spikes = SpikeMonitor (neurons)
run (1000+ms)

# Plot the results

i, t = spikes.it
subplot (2, 1, 1)

plot (t/ms, i, '.")

xlabel ('Time (ms) ")

ylabel ("Neuron index')
x1im (0, 1000)

subplot (2, 1, 2)

plot (traces.t/ms, traces.delay.T/ms)
xlabel ('Time (ms) ')

ylabel ('Input delay (ms)")
x1im (0, 1000)
tight_layout ()

show ()
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5.15.5 Example: licklider

Spike-based adaptation of Licklider’s model of pitch processing (autocorrelation with delay lines) with phase locking.

from brian2 import =«
defaultclock.dt = .02 * ms

# Ear and sound
max_delay = 20xms # 50 Hz

tau_ear = l+ms

sigma_ear = 0.0

egs_ear = ''"'

dx/dt = (sound-x)/tau_ear+0.1x(2./tau_ear)*x.5+x1i : 1 (unless refractory)

sound = 5xsin (2xpixfrequency*t)*+3 : 1 # nonlinear distortion

#sound = 5« (sin(4+pixfrequencyxt)+.5+«sin(6xpirfrequency*t)) : 1 # missing fundamental
frequency = (200+200%t«Hz)*Hz : Hz # increasing pitch

[

receptors = NeuronGroup (2, egs_ear, threshold='x>1', reset='x=0",
refractory=2+ms, method='euler'")

# Coincidence detectors

min_freqg = 50xHz

max_freq = 1000xHz
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num_neurons = 300

tau = lxms

sigma = .1

egs_neurons = "'"'

dv/dt = -v/taut+sigma=* (2./tau) **.5+*xi : 1

neurons = NeuronGroup (num_neurons, edgs_neurons, threshold='v>1', reset='v=0",
method='euler')

synapses = Synapses (receptors, neurons, on_pre='v += 0.5")

synapses.connect ()

synapses.delay = 'ix1.0/exp(log(min_freq/Hz)+ (j*1.0/ (num_neurons-1))*log(max_freqgq/min_

—freq) ) xsecond’
spikes = SpikeMonitor (neurons)

run (500+ms)
plot (spikes.t/ms, spikes.i, '.k'")
xlabel ('Time (ms) ')
ylabel ('Frequency')
yticks ([0, 99, 199, 2997,
array(l. / synapses.delay[l, [0, 99, 199, 299]], dtype=int))

show ()
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5.15.6 Example: nonlinear

NMDA synapses.

from brian2 import x

a =1/ (10xms)
b =1/ (10xms)
c =1/ (10+ms)
input = NeuronGroup (2, 'dv/dt = 1/(10+ms) : 1', threshold='v>1', reset='v = 0',
method='euler')
neurons = NeuronGroup(l, """dv/dt = (g-v)/(10+ms) : 1
g : 1""", method='exact')
S = Synapses (input, neurons,'''
dg_syn/dt = —axg_syn+bxxx* (1l-g_syn) : 1 (clock-driven)
g_post = g_syn : 1 (summed)
dx/dt=-c*x : 1 (clock-driven)

w : 1 # synaptic weight

[}

, on_pre='x += w') # NMDA synapses

S.connect ()
S.w = [1., 10.]
input.v = [0., 0.5]

M = StateMonitor(s, 'g',
# If not using standalone mode, this could also simply be
# record=True
record=np.arange (len (input) xlen (neurons)))

Mn = StateMonitor (neurons, 'g', record=0)

run (1000+ms)

subplot (2, 1, 1)

plot (M.t/ms, M.g.T)
xlabel ("Time (ms) ")
ylabel ('g_syn')
subplot (2, 1, 2)

plot (Mn.t/ms, Mn[0].q)
ylabel ('Time (ms) ")

ylabel('g")
tight_layout ()
show ()
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5.15.7 Example: spatial_connections

T T T
600 800 1000

A simple example showing how string expressions can be used to implement spatial (deterministic or stochastic)

connection patterns.

from brian2 import =«

rows, cols = 20, 20
G = NeuronGroup (rows * cols, '"''x : meter

y : meter''")
# initialize the grid positions

grid_dist = 25xumeter
G.x = '"(1 / rows) = grid_dist - rows/2.0 * grid_dist'
G.y = '"(1i ¢ rows) % grid_dist - cols/2.0 x grid_dist'

# Deterministic connections
distance = 120xumeter
S_deterministic = Synapses (G, G)

S_deterministic.connect ('sgrt ((x_pre — x_post)**2 +

# Random connections (no self-connections)
S_stochastic = Synapses (G, G)
S_stochastic.connect ('i !'= 7J°',

(y_pre — y_post)**2) < distance')
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p="1.5 % exp (- ((x_pre-x_post)*x2 + (y_pre-y_post)**2)/

(2% (60xumeter) x*x2)) ")
figure (figsize=(12, 6))

# Show the connections for some neurons in different colors
for color in ['g', 'b', 'm']:
subplot (1, 2, 1)
neuron_idx = np.random.randint (0, rowsxcols)
plot (G.x[neuron_idx] / umeter, G.y[neuron_idx] / umeter,
mfc="none")
plot (G.x[S_deterministic. j[neuron_idx, :]] / umeter,
G.y[S_deterministic.j[neuron_idx, :]] / umeter,
subplot (1, 2, 2)
plot (G.x[neuron_idx] / umeter, G.y[neuron_idx] / umeter,
mfc="none')
plot (G.x[S_stochastic.j[neuron_idx, :]] / umeter,

'o', mec=color,

color + '.")

'o', mec=color,

G.y[S_stochastic. j[neuron_idx, :]] / umeter, color + '.")

for idx, t in enumerate(['determininstic connections',
'random connections']):
subplot (1, 2, idx + 1)

x1lim((-rows/2.0 % grid_dist) / umeter, (rows/2.0 = grid_dist) / umeter)
ylim((-cols/2.0 % grid_dist) / umeter, (cols/2.0 % grid_dist) / umeter)

title(t)

xlabel ('x")

ylabel('y', rotation='horizontal')
axis('equal')

tight_layout ()

show ()
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5.15.8 Example: state_variables

Set state variable values with a string (using code generation).

from brian2 import =«

G = NeuronGroup (100, 'v:volt', threshold='v>-50xmV")
G.v = '"(sin(2xpixi/N) - 70 + 0.25xrandn()) % mV'

S = Synapses (G, G, 'w : volt', on_pre='v += w')
S.connect ()

space_constant = 200.0

S.w['i > 3'] = 'exp(-(1 - J)**2/space_constant) * mV'

# Generate a matrix for display
w_matrix = np.zeros((len(G), len(G)))
w_matrix[S.i[:], S.J[:]1] = S.w[:]

subplot (1, 2, 1)

plot (G.v[:] / mV)
xlabel ('Neuron index'")
ylabel ('v'")

subplot (1, 2, 2)

imshow (w_matrix)

xlabel ('1'")

ylabel ('3")
title('Synaptic weight')
tight_layout ()

show ()

320 Chapter 5. Examples




Brian 2 Documentation, Release 2.1

—68.5

Synaptic weight

—69.0

—69.5

= —70.0 - =

—70.5 +

—71.0 ~

—71.5 A

T
0 25 50 75 100
MNeuron index

5.15.9 Example: synapses

A simple example of using Synapses.

from brian2 import =

Gl = NeuronGroup (10, 'dv/dt = -v / (10%ms) : 17,
threshold='v > 1', reset='v=0.', method='exact')
Gl.v = 1.2
G2 = NeuronGroup (10, 'dv/dt = -v / (10+ms) : 17,
threshold='v > 1', reset='v=0', method='exact')
syn = Synapses (Gl, G2, 'dw/dt = -w / (50%ms): 1 (event-driven)', on_pre='v += w')
syn.connect ('i == 7J', p=0.75)

# Set the delays

syn.delay = "lxms + ixms + 0.25xms % randn()'

# Set the initial values of the synaptic variable
syn.w = 1

mon = StateMonitor (G2, 'v', record=True)
run (20+ms)
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plot (mon.t/ms, mon.v.T)
xlabel ('"Time (ms) ")
ylabel ('v")

show ()
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brian2 package

Brian 2.0

6.1 hears module

This is only a bridge for using Brian 1 hears with Brian 2.
NOTES:

e Slicing sounds with Brian 2 units doesn’t work, you need to either use Brian 1 units or replace calls to
sound[:20*ms] with sound.slice (None, 20xms), etc.

TODO: handle properties (e.g. sound.duration)
Not working examples:
* time_varying_filter]l (care with units)
Exported members: convert_unit_bl_to_b2, convert_unit_b2 to_bl

Classes

BridgeSound We add a new method slice because slicing with units can’t
work with Brian 2 units.

6.1.1 BridgeSound class

(Shortest import: from brian2.hears import BridgeSound)

class brian2.hears.BridgeSound
Bases: brian2.hears.new_class

We add a new method slice because slicing with units can’t work with Brian 2 units.
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Methods

s1ice(*args)

Details

slice (*args)

FilterbankGroup(filterbank, targetvar, ...)

Methods

6.1.2 FilterbankGroup class

(Shortest import: from brian2.hears import FilterbankGroup)

class brian2.hears.FilterbankGroup (filterbank, targetvar, *args, **kwds)
Bases: brian2.groups.neurongroup.NeuronGroup

Methods

reinit()

Details

reinit ()

Sound alias of BridgeSound

6.1.3 Sound class

(Shortest import: from brian2.hears import Sound)

brian2.hears.Sound
alias of BridgeSound

WrappedSound alias of new_class

6.1.4 WrappedSound class

(Shortest import: from brian2.hears import WrappedSound)

brian2.hears.WrappedSound
alias of new_class

Functions
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convert_unit_bl_to_b2(val)

6.1.5 convert_unit_b1 to b2 function

(Shortest import: from brian2.hears import convert_unit_bl_to_b?2)

brian2.hears.convert_unit_bl_to_b2 (val)

convert_unit_b2_ to_ bl(val)

6.1.6 convert_unit b2 to b1 function

(Shortest import: from brian2.hears import convert_unit_b2_to_bl)

brian2.hears.convert_unit_b2_ to_bl (val)

modify_arg(arg) Modify arguments to make them compatible with Brian 1.

6.1.7 modify_arg function

(Shortest import: from brian2.hears import modify_arg)

brian2.hears.modify arg (arg)
Modify arguments to make them compatible with Brian 1.

e Arrays of units are replaced with straight arrays
* Single values are replaced with Brian 1 equivalents
e Slices are handled so we can use e.g. sound[:20*ms]

The second part was necessary because some functions/classes test if an object is an array or not to see if it is a
sequence, but because brian2.Quantity derives from ndarray this was causing problems.

wrap_units(f) Wrap a function to convert units into a form that Brian 1
can handle.

6.1.8 wrap_units function

(Shortest import: from brian2.hears import wrap_units)

brian2.hears.wrap_units (f)
Wrap a function to convert units into a form that Brian 1 can handle. Also, check the output argument, if it is a
blh.Sound wrap it.

wrap_units_class(_C) Wrap a class to convert units into a form that Brian 1 can
handle in all methods
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6.1.9 wrap_units_class function

(Shortest import: from brian2.hears import wrap_units_class)

brian2.hears.wrap_units_class (_C)
Wrap a class to convert units into a form that Brian 1 can handle in all methods

wrap_units_property(p)

6.1.10 wrap_units_property function

(Shortest import: from brian2.hears import wrap_units_property)

brian2.hears.wrap_units_property (p)

6.2 numpy_ module

A dummy package to allow importing numpy and the unit-aware replacements of numpy functions without having to
know which functions are overwritten.

This can be used for example as import brian2.numpy_ as np

Exported members: add_newdocs, ModuleDeprecationWarning, VisibleDeprecationWarning,
_ version_ , pkgload(), Packageloader, show_config(), char, rec, memmap, newaxis,
ndarray, flatiter,nditer, nested_iters,ufunc, arange (), array, zeros, count_nonzero (),
empty, broadcast, dtype, fromstring, fromfile ... (615 more members)

6.3 only module

A dummy package to allow wildcard import from brian2 without also importing the pylab (numpy + matplotlib)
namespace.

Usage: from brian2.only import =

Functions

restore_initial_state() Restores internal Brian variables to the state they are in
when Brian is imported

6.3.1 restore_initial_state function

(Shortest import: from brian2 import restore_initial_state)

brian2.only.restore_initial_state()
Restores internal Brian variables to the state they are in when Brian is imported

Resets defaultclock.dt = 0.lsms,BrianGlobalPreferences._restore preferences, and set
BrianObject._scope_current_key backto 0.
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6.4 Subpackages

6.4.1 codegen package

Package providing the code generation framework.

_prefs module

Module declaring general code generation preferences.

Preferences

Code generation preferences codegen.loop_invariant_optimisations =True

Whether to pull out scalar expressions out of the statements, so that they are only evaluated once instead
of once for every neuron/synapse/... Can be switched off, e.g. because it complicates the code (and the
same optimisation is already performed by the compiler) or because the code generation target does not
deal well with it. Defaults to True.

codegen.string_expression_target = 'numpy'

Default target for the evaluation of string expressions (e.g. when indexing state variables). Should nor-
mally not be changed from the default numpy target, because the overhead of compiling code is not worth
the speed gain for simple expressions.

Accepts the same arguments as codegen.target, except for 'auto'
codegen.target = 'auto"'
Default target for code generation.
Can be a string, in which case it should be one of:
e 'auto' the default, automatically chose the best code generation target available.

* 'weave' uses scipy.weave to generate and compile C++ code, should work anywhere where
gcc is installed and available at the command line.

e 'cython', uses the Cython package to generate C++ code. Needs a working installation of Cython
and a C++ compiler.

e '"numpy ' works on all platforms and doesn’t need a C compiler but is often less efficient.

Or it can be a CodeOb ject class.

codeobject module

Module providing the base CodeOb ject and related functions.
Exported members: CodeOb ject, CodeObjectUpdater, constant_or_scalar

Classes

CodeOb ject(owner, code, variables, ... [, name]) Executable code object.

6.4. Subpackages
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CodeObiject class

(Shortest import: from brian2 import CodeObject)

class brian2.codegen.codeobject .CodeObject (owner, code, variables, variable_indices,
template_name, template_source,

name=’codeobject*’)
Bases: brian2.core.names.Nameable

Executable code object.
The code can either be a string or a brian2.codegen.templates.MultiTemplate.
After initialisation, the code is compiled with the given namespace using code . compile (namespace).

Calling code (keyl=vall, key2=val2) executes the code with the given variables inserted into the

namespace.

Attributes
class_name A short name for this type of CodeOb ject
generator_class The CodeGenerator «class wused by this

CodeObject

Methods
__call__ (**kwds)
compile()
is_available() Whether this target for code generation is available.
run() Runs the code in the namespace.
update_namespace() Update the namespace for this timestep.

Details

class_name
A short name for this type of CodeOb ject

generator_class
The CodeGenerator class used by this CodeOb ject

__call  (**kwds)
compile ()

classmethod is_available ()
Whether this target for code generation is available. Should use a minimal example to check whether code
generation works in general.

run ()
Runs the code in the namespace.

Returns return_value : dict

A dictionary with the keys corresponding to the output_variables defined during
the call of CodeGenerator.code_object.
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update_namespace ()
Update the namespace for this timestep. Should only deal with variables where the reference changes
every timestep, i.e. where the current reference in name space is not correct.

Functions

constant_or_scalar(varname, variable) Convenience function to generate code to access the value
of a variable.

constant_or_scalar function

(Shortest import. from brian2.codegen.codeobject import constant_or_scalar)

brian2.codegen.codeobject.constant_or_scalar (varname, variable)
Convenience function to generate code to access the value of a variable. Will return 'varname' if the
variable is a constant, and array_name [0] if it is a scalar array.

create_runner._codeob j(group, code, ...[,...]) Create a CodeOb ject for the execution of code in the
context of a Group.

create_runner_codeobj function

(Shortest import. from brian2.codegen.codeobject import create_runner_codeob’)

brian2.codegen.codeobject.create_runner_codeobj (group, code, template_name,
run_namespace, user_code=None,
variable_indices=None,
name=None, check_units=True,
needed_variables=None, ad-
ditional_variables=None,
template_kwds=None, over-

ride_conditional_write=None,

codeobj_class=None)
Create a CodeOb ject for the execution of code in the context of a Group.

Parameters group : Group
The group where the code is to be run
code : str or dict of str
The code to be executed.
template_name : str
The name of the template to use for the code.
run_namespace : dict-like

An additional namespace that is used for variable lookup (either an explicitly defined
namespace or one taken from the local context).

user_code : str, optional

The code that had been specified by the user before other code was added automatically.
If not specified, will be assumed to be identical to code.

variable_indices : dict-like, optional
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A mapping from Variable objects to index names (strings). If none is given, uses the
corresponding attribute of group.

name : str, optional

A name for this code object, will use group + '_codeobject«' if none is given.
check_units : bool, optional

Whether to check units in the statement. Defaults to True.
needed_variables: list of str, optional :

A list of variables that are neither present in the abstract code, nor in the
USES_VARIABLES statement in the template. This is only rarely necessary, an ex-
ample being a StateMonitor where the names of the variables are neither known to
the template nor included in the abstract code statements.

additional_variables : dict-like, optional

A mapping of names to Variable objects, used in addition to the variables saved in
group.

template_kwds : dict, optional
A dictionary of additional information that is passed to the template.
override_conditional_write: list of str, optional :

A list of variable names which are used as conditions (e.g. for refractoriness) which
should be ignored.

codeobj_class : class, optional

The CodeObject class to run code with. If not specified, defaults to the group’s
codeobj_class attribute.

cpp_prefs module

Preferences related to C++ compilation

Preferences

C++ compilation preferences codegen.cpp.compiler=""
Compiler to use (uses default if empty)
Should be gcc or msvc.
codegen.cpp.define_macros =[]

List of macros to define; each macro is defined using a 2-tuple, where ‘value’ is either the string to define
it to or None to define it without a particular value (equivalent of “#define FOO” in source or -DFOO on
Unix C compiler command line).

codegen.cpp.extra_compile_args =None

Extra arguments to pass to compiler (if None, use either extra_compile_args_gcc or
extra_compile_args_msvc).

codegen.cpp.extra_compile_args_gcc = ['"-w', '-03', '—-ffast-math',
'-fno-finite-math-only', '-march=native']
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Extra compile arguments to pass to GCC compiler
codegen.cpp.extra_compile_args_msvc=['/0Ox', '/w', '/arch:SSE2', '/MP']

Extra compile arguments to pass to MSVC compiler (the default /arch: flagis determined based on the
processor architecture)

codegen.cpp.extra_link_args =[]
Any extra platform- and compiler-specific information to use when linking object files together.
codegen.cpp.headers =[]

A list of strings specifying header files to use when compiling the code. The list might look like [“<vec-
tor>",“‘my_header’”’]. Note that the header strings need to be in a form than can be pasted at the end of a
#include statement in the C++ code.

codegen.cpp.include_dirs =[]

Include directories to use. Note that $prefix/include will be appended to the end automatically,
where Sprefix is Python’s site-specific directory prefix as returned by sys.prefix.

codegen.cpp.libraries =[]
List of library names (not filenames or paths) to link against.
codegen.cpp.library_dirs =[]

List of directories to search for C/C++ libraries at link time. Note that $prefix/1ib will be appended
to the end automatically, where $Sprefix is Python’s site-specific directory prefix as returned by sys.
prefix.

codegen.cpp.msvc_architecture=""

MSVC architecture name (or use system architectue by default).

Could take values such as x86, amd64, etc.
codegen.cpp.msvc_vars_location=""

Location of the MSVC command line tool (or search for best by default).
codegen.cpp.runtime_library_dirs =[]

List of directories to search for C/C++ libraries at run time.
Exported members: get_compiler_and_args

Functions

get_compiler _and_args() Returns the computed compiler and compilation flags

get_compiler_and_args function

(Shortest import: from brian2.codegen.cpp_prefs import get_compiler_and_args)

brian2.codegen.cpp_prefs.get_compiler_and args()
Returns the computed compiler and compilation flags

update_for_cross_compilation(library_dirs, Update the compiler arguments to allow cross-compilation
L) for 32bit on a 64bit Linux system.
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update_for_cross_compilation function

(Shortest import: from brian2.codegen.cpp_prefs import update_for_cross_compilation)

brian2.codegen.cpp_prefs.update_for_cross_compilation (library_dirs, ex-
tra_compile_args, ex-
tra_link_args, logger=None)
Update the compiler arguments to allow cross-compilation for 32bit on a 64bit Linux system. Uses the provided
logger to print an INFO message and modifies the provided lists in-place.

Parameters library_dirs : list
List of library directories (will be modified in-place).
extra_compile_args : list
List of extra compile args (will be modified in-place).
extra_link_args : list
List of extra link args (will be modified in-place).
logger : BrianLogger, optional

The logger to use for the INFO message. Defaults to None (no message).

optimisation module

Simplify and optimise sequences of statements by rewriting and pulling out loop invariants.
Exported members: optimise_statements, ArithmeticSimplifier, Simplifier

Classes

ArithmeticSimplifier(variables) Carries out the following arithmetic simplifications:

ArithmeticSimplifier class

(Shortest import: from brian2.codegen.optimisation import ArithmeticSimplifier)

class brian2.codegen.optimisation.ArithmeticSimplifier (variables)
Bases: brian2.parsing.bast.BrianASTRenderer

Carries out the following arithmetic simplifications:

1. Constant evaluation (e.g. exp(0)=1) by attempting to evaluate the expression in an “assumptions names-
pace”

2. Binary operators, e.g. 0¥x=0, 1*x=x, etc. You have to take care that the dtypes match here, e.g. if x is an
integer, then 1.0*x shouldn’t be replaced with x but left as 1.0*x.
Parameters variables : dict of (str, Variable)
Usual definition of variables.
assumptions : sequence of str

Additional assumptions that can be used in simplification, each assumption is a string
statement. These might be the scalar statements for example.
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Methods

render_BinOp(node)
render_node(node) Assumes that the node has already been fully processed
by BrianASTRenderer

Details

render_BinOp (node)

render node (node)
Assumes that the node has already been fully processed by BrianASTRenderer

Simplifier(variables, scalar_statements|, ...]) Carry out arithmetic simplifications (see
ArithmeticSimplifier) and loop invariants

Simplifier class

(Shortest import: from brian2.codegen.optimisation import Simplifier)

class brian2.codegen.optimisation.Simplifier (variables, scalar_statements, ex-
tra_lio_prefix="")
Bases: brian2.parsing.bast.BrianASTRenderer

Carry out arithmetic simplifications (see ArithmeticSimplifier) and loop invariants
Parameters variables : dict of (str, Variable)
Usual definition of variables.
scalar_statements : sequence of Statement

Predefined scalar statements that can be used as part of simplification

Notes

After calling render_expr on a sequence of expressions (coming from vector statements typically), this
object will have some new attributes:

loop_invariants [OrderedDict of (expression, varname)] varname will be of the form _11io_N where N
is some integer, and the expressions will be strings that correspond to scalar-only expressions that can be
evaluated outside of the vector block.

loop_invariant_dtypes [dict of (varname, dtypename)] dtypename will be one of 'boolean',
'integer', 'float"'.

Methods

render._expr(expr)
render_node(node) Assumes that the node has already been fully processed
by BrianASTRenderer
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Details

render_expr (expr)

render_ node (node)
Assumes that the node has already been fully processed by BrianASTRenderer

Functions

cancel_identical_terms(primary, inverted) Cancel terms in a collection, e.g.

cancel_identical_terms function

(Shortest import: from brian2.codegen.optimisation import cancel_identical_terms)

brian2.codegen.optimisation.cancel_identical_terms (primary, inverted)
Cancel terms in a collection, e.g. a+b-a should be cancelled to b

Simply renders the nodes into expressions and removes whenever there is a common expression in primary and
inverted.

Parameters primary : list of AST nodes

These are the nodes that are positive with respect to the operator, e.g. in x*y/z it would
be [x, y].

inverted : list of AST nodes

These are the nodes that are inverted with respect to the operator, e.g. in x*y/z it would
be [z].

Returns primary : list of AST nodes
Primary nodes after cancellation
inverted : list of AST nodes

Inverted nodes after cancellation

collect(node) Attempts to collect commutative operations into one and
simplifies them.

collect function

(Shortest import: from brian2.codegen.optimisation import collect)

brian2.codegen.optimisation.collect (node)
Attempts to collect commutative operations into one and simplifies them.

For example, if x and y are scalars, and z is a vector, then (x*z)*y should be rewritten as (x*y)*z to minimise
the number of vector operations. Similarly, ((x*2)*3)*4 should be rewritten as x*24.

Works for either multiplication/division or addition/subtraction nodes.
The final output is a subexpression of the following maximal form:

(((numerical_value*(product of scalars))/(product of scalars))*(product of vectors))/(product of vec-
tors)
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Any possible cancellations will have been done.
Parameters node : Brian AST node
The node to be collected/simplified.
Returns node : Brian AST node

Simplified node.

collect_commutative(node, primary, inverted, ...)

collect_commutative function

(Shortest import: from brian2.codegen.optimisation import collect_commutative)

brian2.codegen.optimisation.collect_commutative (node, primary, inverted,
terms_primary, terms_inverted,
add_to_inverted=False)

evaluate_expr(expr, ns) Try to evaluate the expression in the given namespace

evaluate_expr function

(Shortest import: from brian2.codegen.optimisation import evaluate_expr)

brian2.codegen.optimisation.evaluate_expr (expr, ns)
Try to evaluate the expression in the given namespace

Returns either (value, True) if successful, or (expr, False) otherwise.

expression_complexity(expt, variables)

expression_complexity function

(Shortest import: from brian2.codegen.optimisation import expression_complexity)

brian2.codegen.optimisation.expression_complexity (expr, variables)

optimise_statements(scalar_statements, ...) Optimise a sequence of scalar and vector statements

optimise_statements function

(Shortest import: from brian2.codegen.optimisation import optimise_statements)

brian2.codegen.optimisation.optimise_statements (scalar_statements, vector_statements,

variables, blockname="")
Optimise a sequence of scalar and vector statements

Performs the following optimisations:
1. Constant evaluations (e.g. exp(0) to 1). See evaluate_expr.

2. Arithmetic simplifications (e.g. 0*x to 0). See ArithmeticSimplifier, collect ().
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3. Pulling out loop invariants (e.g. v¥exp(-dt/tau) to a=exp(-dt/tau) outside the loop and v*a inside). See
Simplifier.

4. Boolean simplifications (allowing the replacement of expressions with booleans with a sequence of
if/thens). See Simplifier.
Parameters scalar_statements : sequence of Statement
Statements that only involve scalar values and should be evaluated in the scalar block.
vector_statements : sequence of Statement
Statements that involve vector values and should be evaluated in the vector block.
variables : dict of (str, Variable)
Definition of the types of the variables.
blockname : str, optional
Name of the block (used for LIO constant prefixes to avoid name clashes)
Returns new_scalar_statements : sequence of Statement
As above but with loop invariants pulled out from vector statements
new_vector_statements : sequence of Statement

Simplified/optimised versions of statements

reduced_node(terms, op) Reduce a sequence of terms with the given operator

reduced_node function

(Shortest import: from brian2.codegen.optimisation import reduced_node)

brian2.codegen.optimisation.reduced_node (terms, op)
Reduce a sequence of terms with the given operator

For examples, if terms were [a, b, c] and op was multiplication then the reduction would be (a*b)*c.
Parameters terms : list
AST nodes.
op : AST node

Could be ast .Mult or ast .Add.

Examples

>>> import ast

>>> nodes = [ast.Name(id='x"), ast.Num(n=3), ast.Name (id='y')]

>>> ast.dump (reduced_node (nodes, ast.Mult), annotate_fields=False)
"BinOp (BinOp (Name ('x'), Mult (), Num(3)), Mult(), Name('y'))"

>>> nodes = [ast.Num(n=17.0)]

>>> ast.dump (reduced_node (nodes, ast.Add), annotate_fields=False)
'"Num (17.0) "'
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permutation_analysis module

Module for analysing synaptic pre and post code for synapse order independence.
Exported members: OrderDependenceError, check_for_order_independence

Classes

OrderDependenceError

OrderDependenceError class

(Shortest import: from brian2.codegen.permutation_analysis import
OrderDependenceError)

class brian2.codegen.permutation_analysis.OrderDependenceError
Bases: exceptions.Exception

Functions

check_for._order_independence(statements,...) Check that the sequence of statements doesn’t depend on
the order in which the indices are iterated through.

check_for_order_independence function

(Shortest import: from brian2.codegen.permutation_analysis import
check_for_order_independence)

brian2.codegen.permutation_analysis.check_ for_order_independence (statements,
variables,

indices)
Check that the sequence of statements doesn’t depend on the order in which the indices are iterated through.

statements module

Module providing the Statement class.

Classes

Statement(var, op, expr, comment, dtype[, ...]) A single line mathematical statement.

Statement class

(Shortest import: from brian2 import Statement)

class brian2.codegen.statements.Statement (var, op, expr, comment, dtype, constant=False,

subexpression=False, scalar=False)
Bases: object

A single line mathematical statement.
The structure is var op expr.

Parameters var : str
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The left hand side of the statement, the value being written to.
op : str

The operation, can be any of the standard Python operators (including += etc.) or a
special operator : = which means you are defining a new symbol (whereas = means you
are setting the value of an existing symbol).

expr : str, Expression
The right hand side of the statement.
dtype : dtype
The numpy dtype of the value or array var ().
constant : bool, optional
Set this flag to True if the value will not change (only applies for op==":=".
subexpression : bool, optional

Set this flag to True if the variable is a subexpression. In some languages (e.g. Python)
you can use this to save a memory copy, because you don’t need to do lhs[:] =
rhs but a redefinition 1hs = rhs.

scalar : bool, optional

Set this flag to True if var () and expr are scalar.

Notes

Will compute the following attribute:
inplace True or False depending if the operation is in-place or not.
Boolean simplification notes:

Will initially set the attribute used_boolean_variables to None. This is set by
optimise_statements when it is called on a sequence of statements to the list of boolean vari-
ables that are used in this expression. In addition, the attribute boolean_simplified_expressions
is set to a dictionary with keys consisting of a tuple of pairs (var, value) where var is the name of the
boolean variable (will be in used_boolean_variables) and var is True or False. The values of the
dictionary are strings representing the simplified version of the expression if each var=value substitution is
made for that key. The keys will range over all possible values of the set of boolean variables. The complexity
of the original statement is set as the attribute complexity_std, and the complexity of the simplified
versions are in the dictionary complexities (with the same keys).

This information can be used to generate code that replaces a complex expression that varies depending on the
value of one or more boolean variables with an i £ /then sequence where each subexpression is simplified. It
is optional to use this (e.g. the numpy codegen does not, but the weave and cython ones do).

targets module

Module that stores all known code generation targets as codegen_targets.

Exported members: codegen_targets
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templates module

Handles loading templates from a directory.
Exported members: Templater

Classes

CodeOb ject Template(template, template_source) Single template object returned by Templater and used
for final code generation

CodeObjectTemplate class

(Shortest import: from brian2.codegen.templates import CodeObjectTemplate)

class brian2.codegen.templates.CodeObjectTemplate (template, template_source)
Bases: object

Single template object returned by Templater and used for final code generation

Should not be instantiated by the user, but only directly by Templater.

Notes

The final code is obtained from this by calling the template (see __call_ ).

Attributes
allows_scalar write Does this template allow writing to scalar variables?
iterate_all The indices over which the template iterates completely
variables The set of variables in this template
writes_read_only Read-only variables that are changed by this template
Methods
__call__ (scalar_code, vector_code, **kwds) Return a usable code block or blocks from this template.
Details

allows_scalar write
Does this template allow writing to scalar variables?

iterate_all
The indices over which the template iterates completely

variables
The set of variables in this template

writes_read only
Read-only variables that are changed by this template

__call_ (scalar_code, vector_code, **kwds)
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Return a usable code block or blocks from this template.
Parameters scalar_code : dict
Dictionary of scalar code blocks.
vector_code : dict
Dictionary of vector code blocks
**kwds :

Additional parameters to pass to the template

Notes

Returns either a string (if macros were not used in the template), or a MultiTemplate (if macros were
used).

LazyTemplateLoader(environment, extension) Helper object to load templates only when they are needed.

LazyTemplateLoader class

(Shortest import: from brian2.codegen.templates import LazyTemplateLoader)

class brian2.codegen.templates.LazyTemplateLoader (environment, extension)
Bases: object

Helper object to load templates only when they are needed.

Methods

get_template(name)

Details

get_template (name)

MultiTemplate(module) Code generated by a CodeOb ject Template with mul-
tiple blocks

MultiTemplate class

(Shortest import: from brian2.codegen.templates import MultiTemplate)

class brian2.codegen.templates.MultiTemplate (module)
Bases: _abcoll.Mapping

Code generated by a CodeOb ject Template with multiple blocks

Each block is a string stored as an attribute with the block name. The object can also be accessed as a dictionary.
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Templater(package_name, extension[, env_globals]) Class to load and return all the templates a CodeOb ject
defines.

Templater class

(Shortest import: from brian2.codegen.templates import Templater)

class brian2.codegen.templates.Templater (package_name, extension, env_globals=None)
Bases: object

Class to load and return all the templates a CodeOb ject defines.
Parameters package_name : str, tuple of str

The package where the templates are saved. If this is a tuple then each template will be
searched in order starting from the first package in the tuple until the template is found.
This allows for derived templates to be used. See also derive.

env_globals : dict (optional)

A dictionary of global values accessible by the templates. Can be used for providing
utility functions. In all cases, the filter ‘autoindent’ is available (see existing templates
for example usage).

Notes

Templates are accessed using templater.template_base_name (the base name is without the file ex-
tension). This returns a CodeOb ject Template.

Methods
derive(package_name[, extension, env_globals]) Return a new Templater derived from this one, where
the new package name and globals overwrite the old.
Details

derive (package_name, extension=None, env_globals=None)
Return a new Templater derived from this one, where the new package name and globals overwrite the old.

Functions

autoindent(code)

autoindent function

(Shortest import: from brian2.codegen.templates import autoindent)

brian2.codegen.templates.autoindent (code)
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autoindent_postfilter(code)

autoindent_postfilter function

(Shortest import: from brian2.codegen.templates import autoindent_postfilter)

brian2.codegen.templates.autoindent_postfilter (code)

variables_to_array_names(variables|, ...])

variables_to_array names function

(Shortest import: from brian2.codegen.templates import variables_to_array_names)

brian2.codegen.templates.variables_to_array_ names (variables, access_data=True)

translation module
This module translates a series of statements into a language-specific syntactically correct code block that can be
inserted into a template.

It infers whether or not a variable can be declared as constant, etc. It should handle common subexpressions, and so
forth.

The input information needed:
* The sequence of statements (a multiline string) in standard mathematical form

* The list of known variables, common subexpressions and functions, and for each variable whether or not it is a
value or an array, and if an array what the dtype is.

* The dtype to use for newly created variables
* The language to translate to

Exported members: make_ statements (), analyse_identifiers(),
get_identifiers recursively()

Classes

LineInfo(**kwds) A helper class, just used to store attributes.

Linelnfo class

(Shortest import: from brian2.codegen.translation import LineInfo)

class brian2.codegen.translation.LineInfo (**kwds)
Bases: object

A helper class, just used to store attributes.

Functions
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analyse_identifiers(code, variables[, recursive]) Analyses a code string (sequence of statements) to find all
identifiers by type.

analyse_identifiers function

(Shortest import: from brian2 import analyse_identifiers)

brian2.codegen.translation.analyse_identifiers (code, variables, recursive=False)
Analyses a code string (sequence of statements) to find all identifiers by type.

In a given code block, some variable names (identifiers) must be given as inputs to the code block, and some are
created by the code block. For example, the line:

a = b+tc

This could mean to create a new variable a from b and c, or it could mean modify the existing value of a from b
or c, depending on whether a was previously known.

Parameters code : str
The code string, a sequence of statements one per line.
variables : dict of Variable, set of names
Specifiers for the model variables or a set of known names
recursive : bool, optional
Whether to recurse down into subexpressions (defaults to False).
Returns newly_defined : set
A set of variables that are created by the code block.
used_known : set
A set of variables that are used and already known, a subset of the known parameter.
unknown : set

A set of variables which are used by the code block but not defined by it and not previ-
ously known. Should correspond to variables in the external namespace.

get_identifiers_recursively(expressions,...) Gets all the identifiers in a list of expressions, recursing
down into subexpressions.

get_identifiers_recursively function

(Shortest import: from brian2 import get_identifiers_recursively)

brian2.codegen.translation.get_identifiers_recursively (expressions, variables, in-

clude_numbers=False)
Gets all the identifiers in a list of expressions, recursing down into subexpressions.

Parameters expressions : list of str
List of expressions to check.

variables : dict-like
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Dictionary of Variable objects
include_numbers : bool, optional

Whether to include number literals in the output. Defaults to False.

is_scalar_expression(expr, variables) Whether the given expression is scalar.

is_scalar_expression function

(Shortest import: from brian2.codegen.translation import is_scalar_expression)

brian2.codegen.translation.is_scalar_expression (expr, variables)
Whether the given expression is scalar.

Parameters expr : str
The expression to check
variables : dict-like
Variable and Funct ion object for all the identifiers used in expr
Returns scalar : bool

Whether expr is a scalar expression

make_statement s(code, variables, dtypel, ...]) Turn a series of abstract code statements into Statement ob-
jects, inferring whether each line is a set/declare operation,
whether the variables are constant or not, and handling the
cacheing of subexpressions.

make_statements function

(Shortest import: from brian2 import make_statements)

brian2.codegen.translation.make_statements (code, variables, dtype, optimise=True, block-

name="")
Turn a series of abstract code statements into Statement objects, inferring whether each line is a set/declare

operation, whether the variables are constant or not, and handling the cacheing of subexpressions.
Parameters code : str
A (multi-line) string of statements.
variables : dict-like

A dictionary of with Variable and Function objects for every identifier used in
the code.

dtype : dtype
The data type to use for temporary variables
optimise : bool, optional

Whether to optimise expressions, including pulling out loop invariant expressions and
putting them in new scalar constants. Defaults to False, since this function is also
used just to in contexts where we are not interested by this kind of optimisation. For the
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main code generation stage, its value is set by the codegen.loop_invariant_optimisations
preference.

blockname : str, optional

A name for the block (used to name intermediate variables to avoid name clashes when
multiple blocks are used together)

Returns :
scalar_statements, vector_statements : (list of Statement, list of Statement)

Lists with statements that are to be executed once and statements that are to be executed
once for every neuron/synapse/... (or in a vectorised way)

Notes

If optimise is True, then the scalar_statements may include newly introduced scalar constants that
have been identified as loop-invariant and have therefore been pulled out of the vector statements. The resulting
statements will also use augmented assignments where possible, i.e. a statement such asw = w + 1 will be
replaced by w += 1. Also, statements involving booleans will have additional information added to them (see
Statement for details) describing how the statement can be reformulated as a sequence of if/then statements.
Calls optimise_statements.

Subpackages

generators package
GSL_generator module

GSLCodeGenerators for code that uses the ODE solver provided by the GNU Scientific Library (GSL)
Exported members: GSL.CodeGenerator, GSLiWeaveCodeGenerator, GSLCythonCodeGenerator

Classes

GSLCodeGenerator(variables, ...[,...]) GSL code generator.

GSLCodeGenerator class

(Shortest import: from brian2 import GSLCodeGenerator)
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class brian2.codegen.generators.GSL_generator.GSLCodeGenerator (variables, vari-

Bases: object

GSL code generator.

Notes

able_indices,
owner, it-
erate_all,
codeobj_class,
name, tem-
plate_name,
over-

ride_conditional_write=None,

al-

lows_scalar_write=False)

Approach is to first let the already existing code generator for a target language do the bulk of the translating
from abstract_code to actual code. This generated code is slightly adapted to render it GSL compatible. The

most critical part here is that the vector_code that is normally contained in a loop in the “main () °

is moved to

the function * _GSIL_func" thatis sent to the GSL integrator. The variables used in the vector_code are added
to a struct named " dataholder” and their values are set from the Brian namespace just before the scalar

code block.

Methods

add_gsl_variables_as_non_scalar(diff_vars) Add _gsl variables as non-scalar.

add_meta_variables(options)

c_data_type(dtype)

Get string version of object dtype that is attached to
Brian variables.

diff var_ to_replace(diff_vars)

Add differential variable-related strings that need to be
replaced to go

find differential_variables(code)

Find the variables that were tagged _gsl_{var}_f{ind}
and return var, ind pairs.

find_ function_names()

Return a list of used function names in the self.variables
dictionary

find _undefined variables(statements)

Find identifiers that are not in self.variables dictionary.

find used_ variables(statements,
other_variables)

Find all the variables used in the right hand side of the
given expressions.

get_dimension_code(diff_num)

Generate code for function that sets the dimension of the
ODE system.

initialize array(varname, values)

Initialize a static array with given floating point values.

is_constant_and_cpp_standalone(var_obj)

Check whether self.cpp_standalone and variable is Con-
stant.

is_cpp_standalone()

Check whether we’re running with cpp_standalone.

make_function_code(lines)

Add lines of GSL translated vector code to ‘non-
changing’ _GSL_func code.

scale_array_code(diff_vars, method_options)

Return code for definition of _GSL_scale_array in
generated code.

Continued on next page
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Table 6.52 — continued from previous page

to_replace_vector_ vars(variables_in_vector)  Create dictionary containing key, value pairs with to

be replaced text to translate from conventional Brian to

GSL.

translate(code, dtype) Translates an abstract code block into the target lan-
guage.

translate_scalar_code(code_lines, ...) Translate scalar code: if calculated variables are used in

the vector_code their value is added to the variable in
the _dataholder.

translate_vector_code(code_lines, to_replace) Translate vector code to GSL compatible code by sub-

stituting fragments of code.

unpack_namespace(variables_in_vector, ...[,...])  Write code that unpacks Brian namespace to cython/cpp

namespace.

unpack_namespace_single(var_obj, in_vector, Writes the code necessary to pull single variable out of

) the Brian namespace into the generated code.

var_init_ 1hs(var, type) Get string version of the left hand side of an initializing
expression

write dataholder(variables_in_vector) Return string with full code for _dataholder struct.

write dataholder single(var_obj) Return string declaring a single variable in the
_dataholder struct.

yvector_ code(diff_vars) Generate code for function dealing with GSLs y vector.

Details

add_gsl_variables_as_non_scalar (diff_vars)
Add _gsl variables as non-scalar.

In GSLStateUpdater the differential equation variables are substituted with GSL tags that describe the
information needed to translate the conventional Brian code to GSL compatible code. This function tells
Brian that the variables that contain these tags should always be vector variables. If we don’t do this, Brian
renders the tag-variables as scalar if no vector variables are used in the right hand side of the expression.

Parameters diff vars : dict
dictionary with variables as keys and differential equation index as value
add_meta_variables (options)

c_data_type (dtype)
Get string version of object dtype that is attached to Brian variables. c pp_generator already has this
function, but the Cython generator does not, but we need it for GSL code generation.

diff_ var_to_replace (diff_vars)
Add differential variable-related strings that need to be replaced to go from normal brian to GSL code

From the code generated by Brian’s ‘normal’ generators (cpp_generator or cython_generator a few bits
of text need to be replaced to get GSL compatible code. The bits of text related to differential equation
variables are put in the replacer dictionary in this function.

Parameters diff_vars : dict
dictionary with variables as keys and differential equation index as value
Returns to_replace : dict

dictionary with strings that need to be replaced as keys and the strings that will replace
them as values
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find differential variables (code)
Find the variables that were tagged _gsl_{var}_f{ind} and return var, ind pairs.

GSLStateUpdater tagged differential variables and here we extract the information given in these tags.
Parameters code : list of strings
A list of strings containing gsl tagged variables
Returns diff_vars : dict
A dictionary with variable names as keys and differential equation index as value

find function names ()
Return a list of used function names in the self.variables dictionary

Functions need to be ignored in the GSL translation process, because the brian generator already suffi-
ciently dealt with them. However, the brian generator also removes them from the variables dict, so there
is no way to check whether an identifier is a function after the brian translation process. This function
is called before this translation process and the list of function names is stored to be used in the GSL
translation.

Returns function_names : list
list of strings that are function names used in the code

find undefined wvariables (statements)
Find identifiers that are not in self.variables dictionary.

Brian does not save the _lio_ variables it uses anywhere. This is problematic for our GSL implementation
because we save the lio variables in the _dataholder struct (for which we need the datatype of the variables).
This function adds the left hand side variables that are used in the vector code to the variable dictionary as
‘Auxiliary Variable‘s (all we need later is the datatype).

Parameters statements : list

list of statement objects (need to have the dtype attribute)

Notes

I keep self.variables and other_variables separate so I can distinguish what variables are in the Brian
namespace and which ones are defined in the code itself.

find used_variables (statements, other_variables)
Find all the variables used in the right hand side of the given expressions.

Parameters statements : list
list of statement objects
Returns used_variables : dict
dictionary of variables that are used as variable name (str), Variable pairs.

get_dimension_code (diff_num)
Generate code for function that sets the dimension of the ODE system.

GSL needs to know how many differential variables there are in the ODE system. Since the current
approach is to have the code in the vector loop the same for all simulations, this dimension is set by an
external function. The code for this set_dimension functon is written here. It is assumed the code will be
the same for each target language with the exception of some syntactical differences

Parameters diff num : int
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Number of differential variables that describe the ODE system
Returns set_dimension_code : str
The code describing the target language function in a single string

initialize_array (varname, values)
Initialize a static array with given floating point values. E.g. in C++, when called with arguments array
and [1.0, 3.0, 2.0]7,this method should return double array[] = {1.0, 3.0, 2.0}.

Parameters varname : str
The name of the array variable that should be initialized
values : list of float
The values that should be assigned to the array
Returns code : str
One or more lines of array initialization code.

is_constant_and_cpp_standalone (var_obj)
Check whether self.cpp_standalone and variable is Constant.

This check is needed because in the case of using the cpp_standalone device we do not want to apply
our GSL variable conversion (var —> _GSL_dataholder.var), because the cpp_standalone code generation
process involves replacing constants with their actual value (‘freezing’). This results in code that looks like
(if for example var = 1.2): _GSL_dataholder.1.2 = 1.2 and _GSL_dataholder->1.2. To prevent repetitive
calls to get_device() etc. the outcome of is_cpp_standalone is saved.

Parameters var_obj: Variable
instance of brian Variable class describing the variable
Returns is_cpp_standalone : bool

whether the used device is cpp_standalone and the given variable is an instance of Con-
stant

is_cpp_standalone ()
Check whether we’re running with cpp_standalone.

Test if get_device () isinstance CPPStandaloneDevice.
Returns is_cpp_standalone : bool
whether currently using cpp_standalone device

See also:
is constant and cpp standalone uses the returned value
make function_ code (lines)

Add lines of GSL translated vector code to ‘non-changing’ _GSL_func code.

Adds nonchanging aspects of GSL _GSL_func code to lines of code written somewhere else
(translate_vector_code). Here these lines are put between the non-changing parts of the code
and the target-language specific syntax is added.

Parameters lines : str
Code containing GSL version of equations

Returns function_code : str
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code describing _GSL_ func that is sent to GSL integrator.

scale_array_code (diff_vars, method_options)
Return code for definition of _GSL_scale_array in generated code.

Parameters diff vars : dict
dictionary with variable name (str) as key and differential variable index (int) as value
method_options : dict
dictionary containing integrator settings
Returns code : str

full code describing a function returning a array containing doubles with the absolute
errors for each differential variable (according to their assigned index in the GSL State-
Updater)

to_replace_vector_vars (variables_in_vector, ignore=frozenset([]))
Create dictionary containing key, value pairs with to be replaced text to translate from conventional Brian
to GSL.

Parameters variables_in_vector : dict

dictionary with variable name (str), Variable pairs of variables occurring in vector
code

ignore : set, optional
set of strings with variable names that should be ignored
Returns to_replace : dict

dictionary with strings that need to be replaced i.e. _lio_1 will be
_GSL_dataholder._lio_1 (in cython) or _GSL_dataholder->_lio_1 (cpp)

Notes

t will always be added because GSL defines its own t. i.e. for cpp: {‘const t =
_ptr_array_defaultclock_t[0];" : ’}

translate (code, dtype)
Translates an abstract code block into the target language.

translate_scalar_ code (code_lines, variables _in_scalar, variables_in_vector)
Translate scalar code: if calculated variables are used in the vector_code their value is added to the variable
in the _dataholder.

Parameters code lines : list
list of strings containing scalar code
variables_in_vector : dict

dictionary with variable name (str), Variable pairs of variables occurring in vector
code

variables_in_scalar : dict

dictionary with variable name (str), Variable pairs of variables occurring in scalar
code

Returns scalar_code : str
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code fragment that should be injected in the main before the loop

translate_vector_code (code_lines, to_replace)
Translate vector code to GSL compatible code by substituting fragments of code.

Parameters code lines : list
list of strings describing the vector_code
to_replace: dict :

dictionary with to be replaced strings (see to_replace_vector_vars and
to_replace_diff_vars)

Returns vector_code : str
New code that is now to be added to the function that is sent to the GSL integrator

unpack_namespace (variables_in_vector, variables_in_scalar, ignore=frozenset([]))
Write code that unpacks Brian namespace to cython/cpp namespace.

For vector code this means putting variables in _dataholder (i.e. _GSL_dataholder->var or
_GSL_dataholder.var = ...) Note that code is written so a variable could occur both in scalar and vec-
tor code

Parameters variables_in_vector : dict

dictionary with variable name (str), Variable pairs of variables occurring in vector
code

variables_in_scalar : dict

dictionary with variable name (str), Variable pairs of variables occurring in
scalar code

ignore : set, optional
set of string names of variables that should be ignored
Returns unpack_namespace_code : str

code fragment unpacking the Brian namespace (setting variables in the _dataholder
struct in case of vector)

unpack_namespace_single (var_obj, in_vector, in_scalar)
Writes the code necessary to pull single variable out of the Brian namespace into the generated code.

The code created is significantly different between cpp and cython, so I decided to not make this func-

tion general over all target languages (i.e. in contrast to most other functions that only have syntactical
differences)

var_init_1lhs (var, type)
Get string version of the left hand side of an initializing expression

Parameters var : str
type : str
Returns code : str
For cpp returns type + var, while for cython just var

write_dataholder (variables_in_vector)
Return string with full code for _dataholder struct.

Parameters variables_in_vector : dict
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dictionary containing variable name as key and Variable as value
Returns code : str
code for _dataholder struct

write_dataholder_single (var_obj)
Return string declaring a single variable in the _dataholder struct.

Parameters var_obj: Variable
Returns code : str

string describing this variable object as required for the _dataholder struct (e.g.
double* _array_neurongroup_vV)

yvector_code (diff_vars)
Generate code for function dealing with GSLs y vector.

The values of differential variables have to be transferred from Brian’s namespace to a vector that is given
to GSL. The transferring from Brian —> y and back from y —> Brian after integration happens in separate
functions. The code for these is written here.

Parameters diff vars : dictionary

Dictionary containing variable names as keys (str) and differential variable index as
value

Returns yvector_code : str

The code for the two functions (_fill_y_vector and _empty_y_vector) as
single string.

GSLCythonCodeGenerator(variables, ...[,...])

Methods

GSLCythonCodeGenerator class

(Shortest import: from brian2 import GSLCythonCodeGenerator)

class brian2.codegen.generators.GSL_generator.GSLCythonCodeGenerator (variables,
vari-
able_indices,
owner,
iter-
ate_all,
codeobj_class,
name,
tem-
plate_name,
over-
ride_conditional_write=None,
al-

lows_scalar_write=False)
Bases: brian2.codegen.generators.GSL_generator.GSLCodeGenerator
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Methods

c_data_type(dtype)

get_array_name(var|, access_data])

initialize array(varname, values)

unpack_namespace_single(var_obj, in_vector,

)

var_init_ 1hs(var, type)

var_replace diff_var_1hs(var,ind)

Details

c_data_type (dtype)

static get_array name (var, access_data=True)
initialize_array (varname, values)
unpack_namespace_single (var_obj, in_vector, in_scalar)

var_init_1lhs (var, type)

var_replace_diff_ var_ 1lhs (var,ind)

GSLWeaveCodeGenerator(variables, ... [, ..

D

GSLWeaveCodeGenerator class

(Shortest import: from brian2 import GSLWeaveCodeGenerator)

class brian2.codegen.generators.GSIL_generator.GSLWeaveCodeGenerator (variables,

Bases: brian2.codegen.generators.GSL_generator.GSLCodeGenerator

Methods

vari-

able_indices,

owner,

iter-

ate_all,

codeobj_class,

name,

tem-

plate_name,

over-
ride_conditional_write=None,
al-
lows_scalar_write=False)
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c_data_type(dtype)

get_array_name(var[, access_data])

initialize array(varname, values)

unpack_namespace_single(var_obj, in_vector,
)

var_init_ 1hs(var, type)

var_replace diff_var_1hs(var,ind)

Details

c_data_type (dtype)

static get_array name (var, access_data=True)
initialize_array (varname, values)
unpack_namespace_single (var_obj, in_vector, in_scalar)
var_init_1lhs (var, type)

var_replace_diff var_ 1lhs (var,ind)

Functions

valid gsl_dir(val) Validate given string to be path containing required GSL
files.

valid_gsl_dir function

(Shortest import: from brian2.codegen.generators.GSL_generator import valid_gsl_dir)

brian2.codegen.generators.GSL_generator.valid_gsl_dir (val)
Validate given string to be path containing required GSL files.

base module

Base class for generating code in different programming languages, gives the methods which should be overridden to
implement a new language.

Exported members: CodeGenerator

Classes

CodeGenerator(variables, variable_indices, ...) Base class for all languages.

CodeGenerator class

(Shortest import: from brian2 import CodeGenerator)
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class brian2.codegen.generators.base.CodeGenerator (variables, variable_indices,

Bases: object
Base class for all languages.
See definition of methods below.

TODO: more details here

Methods

owner, iterate_all, codeobj_class,
name,  template_name,  over-
ride_conditional_write=None,
allows_scalar_write=False)

array_read_write(statements)

Helper function, gives the set of ArrayVariables that are
read from and written to in the series of statements.

arrays_helper(statements)

Combines the two helper func-
tions array_read _write and
get_conditional_write_vars, and updates
the read set.

determine_keywords()

A dictionary of values that is made available to the tem-
plated.

get_array_name(var|, access_data])

Get a globally unique name for a ArrayVariable.

get_conditional_write_vars()

Helper function, returns a dict of mappings
(varname, condition_var_name) indi-
cating that when varname is written to, it should only
be when condition_var_nameis True.

has_repeated_indices(statements)

Whether any of the statements potentially uses repeated
indices (e.g.

translate(code, dtype)

Translates an abstract code block into the target lan-
guage.

translate expression(expr)

Translate the given expression string into a string in the
target language, returns a string.

translate one_statement_sequence(statements)

translate_statement(statement)

Translate a single line Statement into the target lan-
guage, returns a string.

translate_statement_sequence(...)

Translate a sequence of St atement into the target lan-
guage, taking care to declare variables, etc.

Details

array_read_write (statements)

Helper function, gives the set of Array Variables that are read from and written to in the series of statements.
Returns the pair read, write of sets of variable names.

arrays_helper (statements)

Combines the two helper functions array_ read write and get_conditional write_ vars,

and updates the read set.

determine_keywords ()

A dictionary of values that is made available to the templated. This is used for example by the
CPPCodeGenerator to set up all the supporting code

6.4. Subpackages

355


https://docs.python.org/2/library/functions.html#object

Brian 2 Documentation, Release 2.1

static get_array name (var, access_data=True)
Get a globally unique name for a ArrayVariable.

Parameters var : ArrayVariable
The variable for which a name should be found.
access_data : bool, optional

For DynamicArrayVariable objects, specifying True here means the name for
the underlying data is returned. If specifying False, the name of object itself is re-
turned (e.g. to allow resizing).

Returns :
name : str
A unige name for var ().

get_conditional_write_vars ()
Helper function, returns a dict of mappings (varname, condition_var_name) indicating that
when varname is written to, it should only be when condition_var_name is True.

has_repeated_indices (statements)
Whether any of the statements potentially uses repeated indices (e.g. pre- or postsynaptic indices).

translate (code, dtype)
Translates an abstract code block into the target language.

translate_expression (expr)
Translate the given expression string into a string in the target language, returns a string.

translate_one_statement_sequence (statements, scalar=False)

translate_ statement (statement)
Translate a single line St atement into the target language, returns a string.

translate_statement_sequence (scalar_statements, vector_statements)
Translate a sequence of Statement into the target language, taking care to declare variables, etc. if
necessary.

Returns atuple (scalar_code, vector_code, kwds) where scalar_code isalistof the lines
of code executed before the inner loop, vector_code is a list of the lines of code in the inner loop, and
kwds is a dictionary of values that is made available to the template.

cpp_generator module

Exported members: CPPCodeGenerator, c_data_type ()

Classes

CPPCodeGenerator(*args, **kwds) C++ language

CPPCodeGenerator class

(Shortest import: from brian2 import CPPCodeGenerator)

class brian2.codegen.generators.cpp_generator.CPPCodeGenerator (*args, **kwds)
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Bases: brian2.codegen.generators.base.CodeGenerator

C++ language

C++ code templates should provide Jinja2 macros with the following names:

main The main loop.

support_code The support code (function definitions, etc.), compiled in a separate file.
For user-defined functions, there are two keys to provide:

support_code The function definition which will be added to the support code.
hashdefine_code The #define code added to the main loop.

See TimedArray for an example of these keys.

Attributes

flush denormals
restrict

Methods

denormals_to_zero_code()
determine_keywords()

get_array name(var|, access_data])
translate_expression(expr)

translate_one_ statement_ sequence(statements)
translate_ statement(statement)

translate to_declarations(statements)
translate to_read_ arrays(statements)
translate to_statement s(statements)
translate_ to_write_arrays(statements)

Details

flush_denormals

restrict

denormals_to_zero_code ()

determine_keywords ()

static get_array name (var, access_data=True)
translate_expression (expr)
translate_one_statement_sequence (statements, scalar=False)
translate_statement (statement)

translate to_declarations (statements)
translate_to_read_arrays (statements)

translate_to_statements (statements)
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translate_to_write_arrays (statements)

Functions

c_data_type(dtype) Gives the C language specifier for numpy data types.

c_data_type function

(Shortest import: from brian2 import c_data_type)

brian2.codegen.generators.cpp_generator.c_data_type (dtype)
Gives the C language specifier for numpy data types. For example, numpy . int 32 mapsto int32_t in C.

cython_generator module

Exported members: CythonCodeGenerator

Classes

CythonCodeGenerator(*args, **kwds) Cython code generator

CythonCodeGenerator class

(Shortest import: from brian2.codegen.generators.cython_generator import
CythonCodeGenerator)

class brian2.codegen.generators.cython_generator.CythonCodeGenerator (*args,
**kwds)

Bases: brian2.codegen.generators.base.CodeGenerator

Cython code generator

Methods

determine_keywords()
translate_expression(expr)
translate_one_statement_sequence(statements)
translate_statement(statement)

Details

determine_keywords ()
translate_expression (expr)
translate_one_statement_sequence (statements, scalar=False)

translate_ statement (statement)
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CythonNodeRenderer([use_vectorisation_idx])

Methods

CythonNodeRenderer class

(Shortest import: from brian2.codegen.generators.cython_generator import
CythonNodeRenderer)

class brian2.codegen.generators.cython_generator.CythonNodeRenderer (use_vectorisation_idx=True)
Bases: brian2.parsing.rendering.NodeRenderer

Methods

render_BinOp(node)
render._ Name(node)
render_NameConstant(node)

Details

render_BinOp (node)
render Name (node)
render NameConstant (node)

Functions

get_cpp_dtype(obj)

get_cpp_dtype function

(Shortest import: from brian2.codegen.generators.cython_generator import
get_cpp_dtype)

brian2.codegen.generators.cython_generator.get_cpp_dtype (obj)

get_numpy_dtype(obj)

get_numpy_dtype function

(Shortest import: from brian2.codegen.generators.cython_generator import
get_numpy_dtype)

brian2.codegen.generators.cython_generator.get_numpy_dtype (0bj)
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numpy_generator module

Exported members: NumpyCodeGenerator

Classes

NumpyCodeGenerator(variables, ...[,...])

Numpy language

NumpyCodeGenerator class

(Shortest import: from brian2 import NumpyCodeGenerator)

class brian2.codegen.generators.numpy_generator.NumpyCodeGenerator (variables,

Bases: brian2.codegen.generators.base.CodeGenerator

vari-

able_indices,

owner, it-

erate_all,

codeobj_class,

name,

tem-

plate_name,

over-
ride_conditional_write=None,
al-
lows_scalar_write=False)

Numpy language

Essentially Python but vectorised.

Methods

conditional_write(line, stmt, variables, ...)

determine_keywords()

read_arrays(read, write, indices, variables, ...)

translate_expression(expr)

translate_one_statement_sequence(statements)

translate_ statement(statement)

ufunc_at_vectorisation(statement, variables,

)

vectorise code(statements, variables, ...[,...])

write_arrays(statements, read, write, ...)

Details

conditional_write (line, stmt, variables, conditional_write_vars, created_vars)

determine_keywords ()
read_arrays (read, write, indices, variables, variable_indices)

translate_expression (expr)
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translate_one_statement_sequence (statements, scalar=False)
translate_statement (statement)

ufunc_at_vectorisation (statement, variables, indices, conditional_write_vars, created_vars,
used_variables)

vectorise_ code (statements, variables, variable_indices, index="_idx")

write_arrays (statements, read, write, variables, variable_indices)

VectorisationError

VectorisationError class

(Shortest import: from brian2.codegen.generators.numpy_generator import
VectorisationError)

class brian2.codegen.generators.numpy_generator.VectorisationError
Bases: exceptions.Exception

Functions

ceil_func(value)

ceil_func function

(Shortest import: from brian2.codegen.generators.numpy_generator import ceil_func)

brian2.codegen.generators.numpy_generator.ceil_func (value)

clip_func(array, a_min, a_max)

clip_func function

(Shortest import: from brian2.codegen.generators.numpy_generator import clip_func)

brian2.codegen.generators.numpy_generator.clip_func (array, a_min, a_max)

floor_func(value)

floor_func function

(Shortest import: from brian2.codegen.generators.numpy_generator import floor_func)

brian2.codegen.generators.numpy_generator.floor_func (value)

int_ func(value)
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int_func function

(Shortest import: from brian2.codegen.generators.numpy_generator import int_func)

brian2.codegen.generators.numpy_generator.int_func (value)

rand_ func(vectorisation_idx)

rand_func function

(Shortest import: from brian2.codegen.generators.numpy_generator import rand_func)

brian2.codegen.generators.numpy_generator.rand_func (vectorisation_idx)

randn_ func(vectorisation_idx)

randn_func function

(Shortest import: from brian2.codegen.generators.numpy_generator import randn_func)

brian2.codegen.generators.numpy_generator.randn_func (vectorisation_idx)

runtime package

Runtime targets for code generation.

Subpackages
GSLcython_rt package
GSLcython_rt module

Module containing the Cython CodeObject for code generation for integration using the ODE solver provided in the
GNU Scientific Library (GSL)

Exported members: GSL.CythonCodeOb ject, IntegrationError

Classes

GSLCompileError

GSLCompileError class

(Shortest  import: from brian2.codegen.runtime.GSLcython_rt.GSLcython_rt import
GSLCompileError)

class brian2.codegen.runtime.GSLcython_rt.GSLcython_rt.GSLCompileError
Bases: exceptions.Exception
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GSLCythonCodeOb ject(owner, code, variables, ...)

Methods

GSLCythonCodeObiject class

(Shortest import. from brian2 import GSLCythonCodeObject)

class brian2.codegen.runtime.GSLcython_rt.GSLcython_rt.GSLCythonCodeObject (owner,
code,
vari-
ables,
vari-
able_indices,
tem-
plate_name,
tem-
plate_source,
name="cython_code_o

Bases: brian2.codegen.runtime.cython _rt.cython_rt.CythonCodeObject

Methods

compile()

Details

compile ()

IntegrationError Error used to signify that GSL was unable to complete in-
tegration (only works for cython)

IntegrationError class

(Shortest import: from brian2 import IntegrationError)

class brian2.codegen.runtime.GSLcython_rt.GSLcython_rt.IntegrationError
Bases: exceptions.Exception

Error used to signify that GSL was unable to complete integration (only works for cython)

GSLweave_rt package
GSLweave_rt module

Module containing the Weave CodeObject for code generation for integration using the ODE solver provided in the
GNU Scientific Library (GSL)
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Exported members: GSLileaveCodeOb ject

Classes

GSLCompileError

GSLCompileError class

(Shortest import: from brian2.codegen.runtime.GSLweave_rt.GSLweave_rt import
GSLCompileError)

class brian2.codegen.runtime.GSLweave_rt.GSLweave_rt.GSLCompileError
Bases: exceptions.Exception

GSLWeaveCodeOb ject(owner, code, variables, ...)

Methods

GSLWeaveCodeObiject class

(Shortest import: from brian2 import GSLWeaveCodeObject)

class brian2.codegen.runtime.GSLweave_rt.GSLweave_rt .GSLWeaveCodeObject (owner,
code,
vari-
ables,
vari-
able_indices,
tem-
plate_name,
tem-
plate_source,

name="weave_code_object
Bases: brian2.codegen. runtime.weave_rt.weave_rt.WeaveCodeOb ject

Methods

run()

Details

run ()

cython_rt package

cython_rt module

Exported members: CythonCodeObject
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Classes

CythonCodeOb ject(owner, code, variables, ...) Execute code using Cython.

CythonCodeObject class

(Shortest import: from brian2 import CythonCodeObject)

class brian2.codegen.runtime.cython_rt.cython_rt.CythonCodeObject (owner,

code, vari-
ables, vari-
able_indices,
tem-
plate_name,
tem-

plate_source,
name="cython_code_object™’)
Bases: brian2.codegen.runtime.numpy_rt.numpy_rt.NumpyCodeObject

Execute code using Cython.

Methods

compile()
is_available()

run()
update_namespace()
variables_to _namespace()

Details

compile ()

classmethod is_available ()
run ()

update_namespace ()

variables_to_namespace ()

extension_manager module

Cython automatic extension builder/manager

Inspired by IPython’s Cython cell magics, see: https://github.com/ipython/ipython/blob/master/IPython/extensions/
cythonmagic.py

Exported members: cython _extension_manager

Classes
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CythonExtensionManager()

Attributes

CythonExtensionManager class

(Shortest  import: from brian2.codegen.runtime.cython_rt.extension_manager import
CythonExtensionManager)

class brian2.codegen.runtime.cython_rt.extension_manager.CythonExtensionManager
Bases: object

Attributes

so_ext The extension suffix for compiled modules.

Methods

create_extension(code[, force, name, ...])

Details

so_ext
The extension suffix for compiled modules.

create_extension (code, force=False, name=None, define_macros=None, include_dirs=None, li-
brary_dirs=None, runtime_library_dirs=None, extra_compile_args=None, ex-
tra_link_args=None, libraries=None, compiler=None, owner_name="")

Functions

simplify_path_env_var(path)

simplify_path_env_var function

(Shortest  import: from brian2.codegen.runtime.cython_rt.extension_manager import
simplify_path_env_var)

brian2.codegen.runtime.cython_rt.extension_manager.simplify path_env_var (path)

Objects

cython _extension_manager
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cython_extension_manager object

(Shortest  import: from brian2.codegen.runtime.cython_rt.extension_manager import
cython_extension_manager)

brian2.codegen.runtime.cython_rt.extension_manager.cython_extension_manager = <brian2.code

numpy_rt package

Numpy runtime implementation.

Preferences

Numpy runtime codegen preferences codegen.runtime.numpy.discard_units =False

Whether to change the namespace of user-specifed functions to remove units.

numpy_rt module

Module providing NumpyCodeOb ject.
Exported members: NumpyCodeOb ject

Classes

LazyArange(stopl, start, indices]) A class that can be used as a arange replacement (with an
implied step size of 1) but does not actually create an array
of values until necessary.

LazyArange class

(Shortest import: from brian2.codegen.runtime.numpy_rt.numpy_rt import LazyArange)

class brian2.codegen.runtime.numpy_rt.numpy_rt.LazyArange (stop, start=0, n-

dices=None)
Bases: _abcoll.Iterable

A class that can be used as a arange replacement (with an implied step size of 1) but does not actually create
an array of values until necessary. It is somewhat similar to the range () function in Python 3, but does not use
a generator. It is tailored to a special use case, the _vectorisation_idx variable in numpy templates, and
not meant for general use. The _vectorisation_idx is used for stateless function calls such as rand ()
and for the numpy codegen target determines the number of values produced by such a call. This will often be
the number of neurons or synapses, and this class avoids creating a new array of that size at every code object
call when all that is needed is the length of the array.

Examples

>>> from brian2.codegen.runtime.numpy rt.numpy rt import LazyArange
>>> ar = LazyArange (10)

>>> len(ar)

10
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>>> len(ar[:5])
5
>>> type(ar[:5])
<class 'brian2.codegen.runtime.numpy_rt.numpy_rt.LazyArange'>
>>> ar[5]
5
>>> for value in ar[3:7]:
print (value)

3
4
5
6
>>> len(ar[np.array([1, 2, 31)1)
3
NumpyCodeOb ject(owner, code, variables, ...) Execute code using Numpy
NumpyCodeObject class

(Shortest import: from brian2 import NumpyCodeObject)

class brian2.codegen.runtime.numpy_rt.numpy_rt.NumpyCodeObject (owner, code,
variables, vari-
able_indices,
template_name,
tem-
plate_source,

name="numpy_code_object*’)
Bases: brian2.codegen.codeobject.CodeObject

Execute code using Numpy

Default for Brian because it works on all platforms.

Methods

compile()

is_available()

run()

update_namespace()
variables_ to_namespace()

Details

compile ()

classmethod is_available()
run ()

update_namespace ()

variables_to_namespace ()
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weave_rt package

Runtime C++ code generation via weave.

weave_rt module

Module providing WeaveCodeObject.
Exported members: WeaveCodeOb ject, WeaveCodeGenerator

Classes

WeaveCodeGenerator(*args, **kwds)

WeaveCodeGenerator class

(Shortest import: from brian2 import WeaveCodeGenerator)

class brian2.codegen.runtime.weave_rt.weave_rt .WeaveCodeGenerator (*args,

*¥kwds)

Bases: brian2.codegen.generators.cpp_generator.CPPCodeGenerator

WeaveCodeOb ject(owner, code, variables, ...) Weave code object

WeaveCodeObject class

(Shortest import: from brian2 import WeaveCodeObject)

class brian2.codegen.runtime.weave_rt.weave_rt .WeaveCodeObject (owner, code,
variables, vari-
able_indices,
template_name,
tem-
plate_source,

name="weave_code_object*’)
Bases: brian2.codegen.codeobject.CodeObject

Weave code object

The code should be a MultiTemplate object with two macros defined, main (for the main loop code) and
support_code for any support code (e.g. function definitions).

Methods

compile()
is_available()
run()

update_namespace()
variables_to _namespace()
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Details

compile ()

classmethod is_available ()
run ()

update_namespace ()

variables_to_namespace ()

Functions
weave_data_type(dtype) Gives the C language specifier for numpy data types using
weave.
weave_data_type function
(Shortest import: from brian2.codegen.runtime.weave_rt.weave_rt import

weave_data_type)

brian2.codegen.runtime.weave_rt.weave_rt.weave_data_type (dtype)
Gives the C language specifier for numpy data types using weave. For example, numpy . int 32 maps to 1ong
in C.

6.4.2 core package

Essential Brian modules, in particular base classes for all kinds of brian objects.

Built-in preferences

Core Brian preferences core.default_float_dtype = float64
Default dtype for all arrays of scalars (state variables, weights, etc.).
Currently, this is not supported (only float64 can be used).

core.default_integer_dtype =1int32
Default dtype for all arrays of integer scalars.

core.outdated_dependency_error =True

Whether to raise an error for outdated dependencies (True) or just a warning (False).

base module

All Brian objects should derive from BrianOb ject.

Exported members: BrianObject, weakproxy_with_fallback (), BrianObjectException,
brian_object_exception ()

Classes
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BrianOb ject(*args, **kwds) All Brian objects derive from this class, defines magic
tracking and update.

BrianObject class

(Shortest import: from brian2 import BrianObject)

class brian2.core.base.BrianObject (*args, **kwds)
Bases: brian2.core.names.Nameable

All Brian objects derive from this class, defines magic tracking and update.
See the documentation for Net work for an explanation of which objects get updated in which order.
Parameters dt: Quantity, optional

The time step to be used for the simulation. Cannot be combined with the clock
argument.

clock : Clock, optional

The update clock to be used. If neither a clock, nor the dt argument is specified, the
defaultclock will be used.

when : str, optional

In which scheduling slot to simulate the object during a time step. Defaults to
'start’.

order : int, optional

The priority of this object for operations occurring at the same time step and in the same
scheduling slot. Defaults to 0.

name : str, optional

A unique name for the object - one will be assigned automatically if not provided (of
the form brianobject_1, etc.).

Notes

The set of all BrianOb ject objects is stored in BrianObject._ _instances__ ().

Attributes

_clock The clock used for simulating this object

_creation_stack A string indicating where this object was created (trace-
back with any parts of Brian code removed)

_network Used to remember the Network in which this object
has been included

_scope_current_key Global key value for ipython cell restrict magic

_scope_key The scope key is used to determine which objects are
collected by magic

active Whether or not the object should be run.

Continued on next page
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Table 6.101 — continued from previous page

add_to_magic_network Whether or not the object should be added to a
MagicNetwork.

clock The Clock determining when the object should be up-
dated.

code_objects The list of CodeObject contained within the
BrianObject.

contained_objects The list of objects contained within the
BrianObject.

invalidates_magic_network Whether or not MagicNetwork is invalidated when a
new BrianObject of this type is added

name The unique name for this object.

order The order in which objects with the same clock and
when should be updated

updaters The list of Updater that define the runtime behaviour
of this object.

when The ID string determining when the object should be

updated in Network. run ().

Methods
add_dependency(obj) Add an object to the list of dependencies.
arfter_run() Optional method to do work after a run is finished.
before_run(run_namespace) Optional method to prepare the object before a run.
run()

Details

_clock

The clock used for simulating this object

_creation_stack
A string indicating where this object was created (traceback with any parts of Brian code removed)

_network
Used to remember the Net work in which this object has been included before, to raise an error if it is
included in a new Network

_scope_current_key
Global key value for ipython cell restrict magic

_scope_key
The scope key is used to determine which objects are collected by magic

active
Whether or not the object should be run.

Inactive objects will not have their update method called in Network. run (). Note that setting or
unsetting the act i ve attribute will set or unset it for all contained _objects.

add_to_magic_network
Whether or not the object should be added to a MagicNetwork. Note that all objects in
BrianObject.contained _objects are automatically added when the parent object is added,
therefore e.g. NeuronGroup should set add to_magic _network to True, but it should not be
set for all the dependent objects such as StateUpdater
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clock
The C1ock determining when the object should be updated.

Note that this cannot be changed after the object is created.

code_objects
The list of Co