
Brian 2 Documentation
Release 2.1.1

Brian authors

Nov 03, 2017

Contents

1 Introduction 3
1.1 Installation . 3
1.2 Release notes . 6
1.3 Changes for Brian 1 users . 23
1.4 Known issues . 54
1.5 Support . 55

2 Tutorials 57
2.1 Introduction to Brian part 1: Neurons . 57
2.2 Introduction to Brian part 2: Synapses . 74
2.3 Introduction to Brian part 3: Simulations . 90

3 User’s guide 107
3.1 Importing Brian . 107
3.2 Physical units . 108
3.3 Models and neuron groups . 111
3.4 Numerical integration . 117
3.5 Equations . 119
3.6 Refractoriness . 123
3.7 Synapses . 125
3.8 Input stimuli . 133
3.9 Recording during a simulation . 137
3.10 Running a simulation . 140
3.11 Multicompartment models . 146
3.12 Computational methods and efficiency . 153
3.13 Converting from integrated form to ODEs . 157

4 Advanced guide 159
4.1 Functions . 159
4.2 Preferences . 162
4.3 Logging . 167
4.4 Namespaces . 168
4.5 Custom progress reporting . 169
4.6 Random numbers . 170
4.7 Custom events . 172
4.8 State update . 174
4.9 How Brian works . 176

i

4.10 Interfacing with external code . 177

5 Examples 179
5.1 Example: COBAHH . 179
5.2 Example: CUBA . 181
5.3 Example: IF_curve_Hodgkin_Huxley . 183
5.4 Example: IF_curve_LIF . 184
5.5 Example: adaptive_threshold . 185
5.6 Example: non_reliability . 187
5.7 Example: phase_locking . 188
5.8 Example: reliability . 189
5.9 advanced . 190
5.10 compartmental . 201
5.11 frompapers . 220
5.12 frompapers/Brette_2012 . 260
5.13 frompapers/Stimberg_et_al_2018 . 270
5.14 standalone . 304
5.15 synapses . 307

6 brian2 package 323
6.1 hears module . 323
6.2 numpy_ module . 326
6.3 only module . 326
6.4 Subpackages . 327

7 Developer’s guide 633
7.1 Coding guidelines . 633
7.2 Units . 648
7.3 Equations and namespaces . 651
7.4 Variables and indices . 651
7.5 Preferences system . 655
7.6 Adding support for new functions . 661
7.7 Code generation . 662
7.8 Devices . 668
7.9 Multi-threading with OpenMP . 669
7.10 Solving differential equations with the GNU Scientific Library . 672

8 Indices and tables 677

Bibliography 679

Python Module Index 681

ii

Brian 2 Documentation, Release 2.1.1

Brian is a simulator for spiking neural networks. It is written in the Python programming language and is available
on almost all platforms. We believe that a simulator should not only save the time of processors, but also the time of
scientists. Brian is therefore designed to be easy to learn and use, highly flexible and easily extensible.

To get an idea of what writing a simulation in Brian looks like, take a look at a simple example, or run our interactive
demo.

Once you have a feel for what is involved in using Brian, we recommend you start by following the installation
instructions, then going through the tutorials, and finally reading the User Guide.

While reading the documentation, you will see the names of certain functions and classes are highlighted links (e.g.
PoissonGroup). Clicking on these will take you to the “reference documentation”. This section is automatically
generated from the code, and includes complete and very detailed information, so for new users we recommend
sticking to the User’s guide. However, there is one feature that may be useful for all users. If you click on, for example,
PoissonGroup, and scroll down to the bottom, you’ll get a list of all the example code that uses PoissonGroup.
This is available for each class or method, and can be helpful in understanding how a feature works.

Finally, if you’re having problems, please do let us know at our support page.

Contents:

Contents 1

http://mybinder.org/repo/brian-team/brian2-binder/notebooks/demo.ipynb
http://mybinder.org/repo/brian-team/brian2-binder/notebooks/demo.ipynb

Brian 2 Documentation, Release 2.1.1

2 Contents

CHAPTER 1

Introduction

1.1 Installation

We recommend users to use the Anaconda distribution by Continuum Analytics. Its use will make the installation of
Brian 2 and its dependencies simpler, since packages are provided in binary form, meaning that they don’t have to be
build from the source code at your machine. Furthermore, our automatic testing on the continuous integration services
travis and appveyor are based on Anaconda, we are therefore confident that it works under this configuration.

However, Brian 2 can also be installed independent of Anaconda, either with other Python distributions (Enthought
Canopy, Python(x,y) for Windows, . . .) or simply based on Python and pip (see Installation from source below).

1.1.1 Installation with Anaconda

Installing Anaconda

Download the Anaconda distribution for your Operating System. For Windows users that want to use Python 3.x, we
strongly recommend installing the 32 Bit version even on 64 Bit systems, since setting the compilation environment
(see Requirements for C++ code generation below) is less complicated in that case. Note that the choice between
Python 2.7 and Python 3.x is not very important at this stage, Anaconda allows you to create a Python 3 environment
from Python 2 Anaconda and vice versa.

After the installation, make sure that your environment is configured to use the Anaconda distribution. You should
have access to the conda command in a terminal and running python (e.g. from your IDE) should show a header
like this, indicating that you are using Anaconda’s Python interpreter:

Python 2.7.10 |Anaconda 2.3.0 (64-bit)| (default, May 28 2015, 17:02:03)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
Anaconda is brought to you by Continuum Analytics.
Please check out: http://continuum.io/thanks and https://binstar.org

Here’s some documentation on how to set up some popular IDEs for Anaconda: https://docs.continuum.io/anaconda/
ide_integration

3

https://www.continuum.io/downloads
https://travis-ci.org/brian-team/brian2
https://ci.appveyor.com/project/brianteam/brian2
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
https://code.google.com/p/pythonxy/
https://continuum.io/downloads
https://docs.continuum.io/anaconda/ide_integration
https://docs.continuum.io/anaconda/ide_integration

Brian 2 Documentation, Release 2.1.1

Installing Brian 2

You can either install Brian 2 in the Anaconda root environment, or create a new environment for Brian 2 (http://conda.
pydata.org/docs/using/envs.html). The latter has the advantage that you can update (or not update) the dependencies
of Brian 2 independently from the rest of your system.

Since Brian 2 is not part of the main Anaconda distribution, you have to install it from the brian-team channel. To do
so, use:

conda install -c brian-team brian2

You can also permanently add the channel to your list of channels:

conda config --add channels brian-team

This has only to be done once. After that, you can install and update the brian2 packages as any other Anaconda
package:

conda install brian2

Installing other useful packages

There are various packages that are useful but not necessary for working with Brian. These include: matplotlib (for
plotting), nose (for running the test suite), ipython and jupyter-notebook (for an interactive console). To install them
from anaconda, simply do:

conda install matplotlib nose ipython jupyter-notebook

You should also have a look at the brian2tools package, which contains several useful functions to visualize Brian 2
simulations and recordings. You can install it with pip or anaconda, in the same way as Brian 2 itself, e.g. with:

conda install -c brian-team brian2tools

1.1.2 Installation from source

If you decide not to use Anaconda, you can install Brian 2 from the Python package index: https://pypi.python.org/
pypi/Brian2

To do so, use the pip utility:

pip install brian2

You might want to add the --user flag, to install Brian 2 for the local user only, which means that you don’t need
administrator privileges for the installation.

In principle, the above command also install Brian’s dependencies. Unfortunately, this does not work for numpy,
it has to be installed in a separate step before all other dependencies (pip install numpy), if it is not already
installed.

If you have an older version of pip, first update pip itself:

On Linux/MacOsX:
pip install -U pip

On Windows
python -m pip install -U pip

4 Chapter 1. Introduction

http://conda.pydata.org/docs/using/envs.html
http://conda.pydata.org/docs/using/envs.html
https://conda.anaconda.org/brian-team
http://matplotlib.org/
https://pypi.python.org/pypi/nose
http://ipython.org/
http://jupyter.org/
https://brian2tools.readthedocs.io
https://pypi.python.org/pypi/Brian2
https://pypi.python.org/pypi/Brian2

Brian 2 Documentation, Release 2.1.1

If you don’t have pip but you have the easy_install utility, you can use it to install pip:

easy_install pip

If you have neither pip nor easy_install, use the approach described here to install pip: https://pip.pypa.io/en/
latest/installing/

Alternatively, you can download the source package directly and uncompress it. You can then either run python
setup.py install or python setup.py develop to install it, or simply add the source directory to your
PYTHONPATH (this will only work for Python 2.x).

1.1.3 Requirements for C++ code generation

C++ code generation is highly recommended since it can drastically increase the speed of simulations (see Computa-
tional methods and efficiency for details). To use it, you need a C++ compiler and either Cython or weave (only for
Python 2.x). Cython/weave will be automatically installed if you perform the installation via Anaconda, as recom-
mended. Otherwise you can install them in the usual way, e.g. using pip install cython or pip install
weave.

Linux and OS X

On Linux and Mac OS X, you will most likely already have a working C++ compiler installed (try calling g++
--version in a terminal). If not, use your distribution’s package manager to install a g++ package.

Windows

On Windows, the necessary steps to get Runtime code generation (i.e. Cython/weave) to work depend on the Python
version you are using:

Python 2.7

• Download and install the Microsoft Visual C++ Compiler for Python 2.7

This should be all you need.

Python 3.4

• Download and install the Microsoft .NET Framework 4

• Download and install the Microsoft Windows SDK for Windows 7 and .NET Framework 4

For 64 Bit Windows with Python 3.4, you have to additionally set up your environment correctly every time you
run your Brian script (this is why we recommend against using this combination on Windows). To do this, run the
following commands (assuming the default installation path) at the CMD prompt, or put them in a batch file:

setlocal EnableDelayedExpansion
CALL "C:\Program Files\Microsoft SDKs\Windows\v7.1\Bin\SetEnv.cmd" /x64 /release
set DISTUTILS_USE_SDK=1

Python 3.5

• Download and install Visual Studio Community 2015. Do not chose the default install but instead customize it,
the only necessary option is “Programming Languages / Visual C++ / Common Tools for Visual C++ 2015”

For Standalone code generation, you can either use the compiler installed above or any other version of Visual Studio
– in this case, the Python version does not matter.

1.1. Installation 5

https://pip.pypa.io/en/latest/installing/
https://pip.pypa.io/en/latest/installing/
http://cython.org/
https://github.com/scipy/weave
http://www.microsoft.com/en-us/download/details.aspx?id=44266
https://www.microsoft.com/en-us/download/details.aspx?id=17851
http://www.microsoft.com/en-in/download/details.aspx?id=8279
https://www.visualstudio.com/

Brian 2 Documentation, Release 2.1.1

Try running the test suite (see Testing Brian below) after the installation to make sure everything is working as ex-
pected.

1.1.4 Development version

To run the latest development code, you can install from brian-team’s “dev” channel with Anaconda. Note that if you
previously added the brian-team channel to your list of channels, you have to first remove it:

conda config --remove channels brian-team -f

Also uninstall any version of Brian 2 that you might have previously installed:

conda remove brian2

Finally, install the brian2 package from the development channel:

conda install -c brian-team/channel/dev brian2

If this fails with an error message about the py-cpuinfo package (a dependency that we provide in the main brian-
team channel), install it from the main channel:

conda install -c brian-team py-cpuinfo

Then repeat the command to install Brian 2 from the development channel.

You can also directly clone the git repository at github (https://github.com/brian-team/brian2) and then run
python setup.py install or python setup.py develop or simply add the source directory to your
PYTHONPATH (this will only work for Python 2.x).

Finally, another option is to use pip to directly install from github:

pip install https://github.com/brian-team/brian2/archive/master.zip

1.1.5 Testing Brian

If you have the nose testing utility installed, you can run Brian’s test suite:

import brian2
brian2.test()

It should end with “OK”, possibly showing a number of skipped tests but no warnings or errors. For more control
about the tests that are run see the developer documentation on testing.

1.2 Release notes

1.2.1 Brian 2.1.1

This is a bug fix release that re-activates parts of the caching mechanism for code generation that had been erroneously
deactivated in the previous release.

6 Chapter 1. Introduction

https://github.com/brian-team/brian2
https://pypi.python.org/pypi/nose

Brian 2 Documentation, Release 2.1.1

1.2.2 Brian 2.1

This release introduces two main new features: a new “GSL integration” mode for differential equation that offers to
integrate equations with variable-timestep methods provided by the GNU Scientific Library, and caching for the run
preparation phase that can significantly speed up simulations. It also comes with a newly written tutorial, as well as
additional documentation and examples.

As always, please report bugs or suggestions to the github bug tracker (https://github.com/brian-team/brian2/issues)
or to the brian-development mailing list (brian-development@googlegroups.com).

New features

• New numerical integration methods with variable time-step integration, based on the GNU Scientific Library
(see Numerical integration). Contributed by Charlee Fletterman, supported by 2017’s Google Summer of Code
program.

• New caching mechanism for the code generation stage (application of numerical integration algorithms, anal-
ysis of equations and statements, etc.), reducing the preparation time before the actual run, in particular for
simulations with multiple run() statements.

Selected improvements and bug fixes

• Fix a rare problem in Cython code generation caused by missing type information (#893)

• Fix warnings about improperly closed files on Python 3.6 (#892; reported and fixed by Teo Stocco)

• Fix an error when using numpy integer types for synaptic indexing (#888)

• Fix an error in numpy codegen target, triggered when assigning to a variable with an unfulfilled condition (#887)

• Fix an error when repeatedly referring to subexpressions in multiline statements (#880)

• Shorten long arrays in warning messages (#874)

• Enable the use of if in the shorthand generator syntax for Synapses.connect() (#873)

• Fix the meaning of i and j in synapses connecting to/from other synapses (#854)

Backward-incompatible changes and deprecations

• In C++ standalone mode, information about the number of synapses and spikes will now only be displayed when
built with debug=True (#882).

• The linear state updater has been renamed to exact to avoid confusion (#877). Users are encouraged to use
exact, but the name linear is still available and does not raise any warning or error for now.

• The independent state updater has been marked as deprecated and might be removed in future versions.

Infrastructure and documentation improvements

• A new, more advanced, tutorial “about managing the slightly more complicated tasks that crop up in research
problems, rather than the toy examples we’ve been looking at so far.”

• Additional documentation on Custom events and Converting from integrated form to ODEs (including example
code for typical synapse models).

• New example code reproducing published findings (Platkiewicz and Brette, 2011; Stimberg et al., 2018)

1.2. Release notes 7

https://github.com/brian-team/brian2/issues
mailto:brian-development@googlegroups.com
https://github.com/CharleeSF
https://summerofcode.withgoogle.com
https://github.com/brian-team/brian2/issues/893
https://github.com/brian-team/brian2/issues/892
https://github.com/zifeo
https://github.com/brian-team/brian2/issues/888
https://github.com/brian-team/brian2/issues/887
https://github.com/brian-team/brian2/issues/880
https://github.com/brian-team/brian2/issues/874
https://github.com/brian-team/brian2/issues/873
https://github.com/brian-team/brian2/issues/854
https://github.com/brian-team/brian2/issues/882
https://github.com/brian-team/brian2/issues/877

Brian 2 Documentation, Release 2.1.1

• Fixes to the sphinx documentation creation process, the documentation can be downloaded as a PDF once again
(705 pages!)

• Conda packages now have support for numpy 1.13 (but support for numpy 1.10 and 1.11 has been removed)

Contributions

Github code, documentation, and issue contributions (ordered by the number of contributions):

• Marcel Stimberg (@mstimberg)

• Charlee Fletterman (@CharleeSF)

• Dan Goodman (@thesamovar)

• Teo Stocco (@zifeo)

• @k47h4

Other contributions outside of github (ordered alphabetically, apologies to anyone we forgot. . .):

• Chaofei Hong

• Lucas (“lucascdst”)

1.2.3 Brian 2.0.2.1

Fixes a bug in the tutorials’ HMTL rendering on readthedocs.org (code blocks were not displayed). Thanks to Flora
Bouchacourt for making us aware of this problem.

1.2.4 Brian 2.0.2

New features

• molar and liter (as well as litre, scaled versions of the former, and a few useful abbreviations such as
mM) have been added as new units (#574).

• A new module brian2.units.constants provides physical constants such as the Faraday constants or
the gas constant (see Constants for details).

• SpatialNeuron now supports non-linear membrane currents (e.g. Goldman–Hodgkin–Katz equations) by
linearizing them with respect to v.

• Multi-compartmental models can access the capacitive current via Ic in their equations (#677)

• A new function scheduling_summary() that displays information about the scheduling of all objects (see
Scheduling for details).

• Introduce a new preference to pass arguments to the make/nmake command in C++
standalone mode (devices.cpp_standalone.extra_make_args_unix for Linux/OS X and de-
vices.cpp_standalone.extra_make_args_windows for Windows). For Linux/OS X, this enables parallel
compilation by default.

• Anaconda packages for Brian 2 are now available for Python 3.6 (but Python 3.4 support has been removed).

8 Chapter 1. Introduction

https://github.com/mstimberg
https://github.com/CharleeSF/
https://github.com/thesamovar
https://github.com/zifeo
https://github.com/k47h4
https://github.com/brian-team/brian2/issues/574
https://github.com/brian-team/brian2/issues/677

Brian 2 Documentation, Release 2.1.1

Selected improvements and bug fixes

• Work around low performance for certain C++ standalone simulations on Linux, due to a bug in glibc (see
#803). Thanks to Oleg Strikov (@xj8z) for debugging this issue and providing the workaround that is now in
use.

• Make exact integration of event-driven synaptic variables use the linear numerical integration algorithm
(instead of independent), fixing rare occasions where integration failed despite the equations being linear
(#801).

• Better error messages for incorrect unit definitions in equations.

• Various fixes for the internal representation of physical units and the unit registration system.

• Fix a bug in the assignment of state variables in subtrees of SpatialNeuron (#822)

• Numpy target: fix an indexing error for a SpikeMonitor that records from a subgroup (#824)

• Summed variables targeting the same post-synaptic variable now raise an error (previously, only the one exe-
cuted last was taken into account, see #766).

• Fix bugs in synapse generation affecting Cython (#781) respectively numpy (#835)

• C++ standalone simulations with many objects no longer fail on Windows (#787)

Backwards-incompatible changes

• celsius has been removed as a unit, because it was ambiguous in its relation to kelvin and gave wrong
results when used as an absolute temperature (and not a temperature difference). For temperature differences,
you can directly replace celsius by kelvin. To convert an absolute temperature in degree Celsius to Kelvin,
add the zero_celsius constant from brian2.units.constants (#817).

• State variables are no longer allowed to have names ending in _pre or _post to avoid confusion with refer-
ences to pre- and post-synaptic variables in Synapses (#818)

Changes to default settings

• In C++ standalone mode, the clean argument now defaults to False, meaning that make clean will not be
executed by default before building the simulation. This avoids recompiling all files for unchanged simulations
that are executed repeatedly. To return to the previous behaviour, specify clean=True in the device.
build call (or in set_device if your script does not have an explicit device.build).

Contributions

Github code, documentation, and issue contributions (ordered by the number of contributions):

• Marcel Stimberg (@mstimberg)

• Dan Goodman (@thesamovar)

• Thomas McColgan (@phreeza)

• Daan Sprenkels (@dsprenkels)

• Romain Brette (@romainbrette)

• Oleg Strikov (@xj8z)

• Charlee Fletterman (@CharleeSF)

1.2. Release notes 9

https://github.com/brian-team/brian2/issues/803
https://github.com/xj8z
https://github.com/brian-team/brian2/issues/801
https://github.com/brian-team/brian2/issues/822
https://github.com/brian-team/brian2/issues/824
https://github.com/brian-team/brian2/issues/766
https://github.com/brian-team/brian2/issues/781
https://github.com/brian-team/brian2/issues/835
https://github.com/brian-team/brian2/issues/787
https://github.com/brian-team/brian2/issues/817
https://github.com/brian-team/brian2/issues/818
https://github.com/mstimberg
https://github.com/thesamovar
https://github.com/phreeza
https://github.com/dsprenkels
https://github.com/romainbrette
https://github.com/xj8z
https://github.com/CharleeSF

Brian 2 Documentation, Release 2.1.1

• Meng Dong (@whenov)

• Denis Alevi (@denisalevi)

• Mihir Vaidya (@MihirVaidya94)

• Adam (@ffa)

• Sourav Singh (@souravsingh)

• Nick Hale (@nik849)

• Cody Greer (@Cody-G)

• Jean-Sébastien Dessureault (@jsdessureault)

• Michele Giugliano (@mgiugliano)

• Teo Stocco (@zifeo)

• Edward Betts (@EdwardBetts)

Other contributions outside of github (ordered alphabetically, apologies to anyone we forgot. . .):

• Christopher Nolan

• Regimantas Jurkus

• Shailesh Appukuttan

1.2.5 Brian 2.0.1

This is a bug-fix release that fixes a number of important bugs (see below), but does not introduce any new features.
We recommend all users of Brian 2 to upgrade.

As always, please report bugs or suggestions to the github bug tracker (https://github.com/brian-team/brian2/issues)
or to the brian-development mailing list (brian-development@googlegroups.com).

Improvements and bug fixes

• Fix PopulationRateMonitor for recordings from subgroups (#772)

• Fix SpikeMonitor for recordings from subgroups (#777)

• Check that string expressions provided as the rates argument for PoissonGroup have correct units.

• Fix compilation errors when multiple run statements with different report arguments are used in C++ stan-
dalone mode.

• Several documentation updates and fixes

Contributions

Code and documentation contributions (ordered by the number of commits):

• Marcel Stimberg (@mstimberg)

• Dan Goodman (@thesamovar)

• Alex Seeholzer (@flinz)

• Meng Dong (@whenov)

Testing, suggestions and bug reports (ordered alphabetically, apologies to anyone we forgot. . .):

10 Chapter 1. Introduction

https://github.com/whenov
https://github.com/denisalevi
https://github.com/MihirVaidya94
https://github.com/ffa
https://github.com/souravsingh
https://github.com/nik849
https://github.com/Cody-G
https://github.com/jsdessureault
https://github.com/mgiugliano
https://github.com/zifeo
https://github.com/EdwardBetts
https://github.com/brian-team/brian2/issues
mailto:brian-development@googlegroups.com
https://github.com/brian-team/brian2/issues/772
https://github.com/brian-team/brian2/issues/777
https://github.com/mstimberg
https://github.com/thesamovar
https://github.com/flinz
https://github.com/whenov

Brian 2 Documentation, Release 2.1.1

• Myung Seok Shim

• Pamela Hathway

1.2.6 Brian 2.0 (changes since 1.4)

Major new features

• Much more flexible model definitions. The behaviour of all model elements can now be defined by arbitrary
equations specified in standard mathematical notation.

• Code generation as standard. Behind the scenes, Brian automatically generates and compiles C++ code to
simulate your model, making it much faster.

• “Standalone mode”. In this mode, Brian generates a complete C++ project tree that implements your model.
This can be then be compiled and run entirely independently of Brian. This leads to both highly efficient code,
as well as making it much easier to run simulations on non-standard computational hardware, for example on
robotics platforms.

• Multicompartmental modelling.

• Python 2 and 3 support.

New features

• Installation should now be much easier, especially if using the Anaconda Python distribution. See Installation.

• Many improvements to Synapses which replaces the old Connection object in Brian 1. This includes:
synapses that are triggered by non-spike events; synapses that target other synapses; huge speed improvements
thanks to using code generation; new “generator syntax” when creating synapses is much more flexible and
efficient. See Synapses.

• New model definitions allow for much more flexible refractoriness. See Refractoriness.

• SpikeMonitor and StateMonitor are now much more flexible, and cover a lot of what used to be covered
by things like MultiStateMonitor, etc. See Recording during a simulation.

• Multiple event types. In addition to the default spike event, you can create arbitrary events, and have these
trigger code blocks (like reset) or synaptic events. See Custom events.

• New units system allows arrays to have units. This eliminates the need for a lot of the special casing that was
required in Brian 1. See Physical units.

• Indexing variable by condition, e.g. you might write G.v['x>0'] to return all values of variable v in
NeuronGroup G where the group’s variable x>0. See State variables.

• Correct numerical integration of stochastic differential equations. See Numerical integration.

• “Magic” run() system has been greatly simplified and is now much more transparent. In addition, if there
is any ambiguity about what the user wants to run, an erorr will be raised rather than making a guess. This
makes it much safer. In addition, there is now a store()/restore() mechanism that simplifies restarting
simulations and managing separate training/testing runs. See Running a simulation.

• Changing an external variable between runs now works as expected, i.e. something like tau=1*ms;
run(100*ms); tau=5*ms; run(100*ms). In Brian 1 this would have used tau=1*ms for both runs.
More generally, in Brian 2 there is now better control over namespaces. See Namespaces.

• New “shared” variables with a single value shared between all neurons. See Shared variables.

1.2. Release notes 11

Brian 2 Documentation, Release 2.1.1

• New Group.run_regularly() method for a codegen-compatible way of doing things that used to be done
with network_operation() (which can still be used). See Regular operations.

• New system for handling externally defined functions. They have to specify which units they accept in their ar-
guments, and what they return. In addition, you can easily specify the implementation of user-defined functions
in different languages for code generation. See Functions.

• State variables can now be defined as integer or boolean values. See Equations.

• State variables can now be exported directly to Pandas data frame. See Storing state variables.

• New generalised “flags” system for giving additional information when defining models. See Flags.

• TimedArray now allows for 2D arrays with arbitrary indexing. See Timed arrays.

• Better support for using Brian in IPython/Jupyter. See, for example, start_scope().

• New preferences system. See Preferences.

• Random number generation can now be made reliably reproducible. See Random numbers.

• New profiling option to see which parts of your simulation are taking the longest to run. See Profiling.

• New logging system allows for more precise control. See Logging.

• New ways of importing Brian for advanced Python users. See Importing Brian.

• Improved control over the order in which objects are updated during a run. See Custom progress reporting.

• Users can now easily define their own numerical integration methods. See State update.

• Support for parallel processing using the OpenMP version of standalone mode. Note that all Brian tests pass
with this, but it is still considered to be experimental. See Multi-threading with OpenMP.

Backwards incompatible changes

See Detailed Brian 1 to Brian 2 conversion notes.

Behind the scenes changes

• All user models are now passed through the code generation system. This allows us to be much more flexible
about introducing new target languages for generated code to make use of non-standard computational hardware.
See Code generation.

• New standalone/device mode allows generation of a complete project tree that can be compiled and built inde-
pendently of Brian and Python. This allows for even more flexible use of Brian on non-standard hardware. See
Devices.

• All objects now have a unique name, used in code generation. This can also be used to access the object through
the Network object.

Contributions

Full list of all Brian 2 contributors, ordered by the time of their first contribution:

• Dan Goodman (@thesamovar)

• Marcel Stimberg (@mstimberg)

• Romain Brette (@romainbrette)

• Cyrille Rossant (@rossant)

12 Chapter 1. Introduction

https://github.com/thesamovar
https://github.com/mstimberg
https://github.com/romainbrette
https://github.com/rossant

Brian 2 Documentation, Release 2.1.1

• Victor Benichoux (@victorbenichoux)

• Pierre Yger (@yger)

• Werner Beroux (@wernight)

• Konrad Wartke (@Kwartke)

• Daniel Bliss (@dabliss)

• Jan-Hendrik Schleimer (@ttxtea)

• Moritz Augustin (@moritzaugustin)

• Romain Cazé (@rcaze)

• Dominik Krzemiński (@dokato)

• Martino Sorbaro (@martinosorb)

• Benjamin Evans (@bdevans)

1.2.7 Brian 2.0 (changes since 2.0rc3)

New features

• A new flag constant over dt can be applied to subexpressions to have them only evaluated once per
timestep (see Models and neuron groups). This flag is mandatory for stateful subexpressions, e.g. expressions
using rand() or randn(). (#720, #721)

Improvements and bug fixes

• Fix EventMonitor.values() and SpikeMonitor.spike_trains() to always return sorted
spike/event times (#725).

• Respect the active attribute in C++ standalone mode (#718).

• More consistent check of compatible time and dt values (#730).

• Attempting to set a synaptic variable or to start a simulation with synapses without any preceding connect call
now raises an error (#737).

• Improve the performance of coordinate calculation for Morphology objects, which previously made plotting
very slow for complex morphologies (#741).

• Fix a bug in SpatialNeuron where it did not detect non-linear dependencies on v, introduced via point
currents (#743).

Infrastructure and documentation improvements

• An interactive demo, tutorials, and examples can now be run in an interactive jupyter notebook on the mybinder
platform, without any need for a local Brian installation (#736). Thanks to Ben Evans for the idea and help with
the implementation.

• A new extensive guide for converting Brian 1 simulations to Brian 2 user coming from Brian 1: Changes for
Brian 1 users

• A re-organized User’s guide, with clearer indications which information is important for new Brian users.

1.2. Release notes 13

https://github.com/victorbenichoux
https://github.com/yger
https://github.com/wernight
https://github.com/Kwartke
https://github.com/dabliss
https://github.com/ttxtea
https://github.com/moritzaugustin
https://github.com/rcaze
https://github.com/dokato
https://github.com/martinosorb
https://github.com/bdevans
https://github.com/brian-team/brian2/issues/720
https://github.com/brian-team/brian2/issues/721
https://github.com/brian-team/brian2/issues/725
https://github.com/brian-team/brian2/issues/718
https://github.com/brian-team/brian2/issues/730
https://github.com/brian-team/brian2/issues/737
https://github.com/brian-team/brian2/issues/741
https://github.com/brian-team/brian2/issues/743
http://mybinder.org/
https://github.com/brian-team/brian2/issues/736

Brian 2 Documentation, Release 2.1.1

Contributions

Code and documentation contributions (ordered by the number of commits):

• Marcel Stimberg (@mstimberg)

• Dan Goodman (@thesamovar)

• Benjamin Evans (@bdevans)

Testing, suggestions and bug reports (ordered alphabetically, apologies to anyone we forgot. . .):

• Chaofei Hong

• Daniel Bliss

• Jacopo Bono

• Ruben Tikidji-Hamburyan

1.2.8 Brian 2.0rc3

This is another “release candidate” for Brian 2.0 that fixes a range of bugs and introduces better support for random
numbers (see below). We are getting close to the final Brian 2.0 release, the remaining work will focus on bug fixes,
and better error messages and documentation.

As always, please report bugs or suggestions to the github bug tracker (https://github.com/brian-team/brian2/issues)
or to the brian-development mailing list (brian-development@googlegroups.com).

New features

• Brian now comes with its own seed() function, allowing to seed the random number generator and thereby
to make simulations reproducible. This function works for all code generation targets and in runtime and stan-
dalone mode. See Random numbers for details.

• Brian can now export/import state variables of a group or a full network to/from a pandas DataFrame and
comes with a mechanism to extend this to other formats. Thanks to Dominik Krzemiński for this contribution
(see #306).

Improvements and bug fixes

• Use a Mersenne-Twister pseudorandom number generator in C++ standalone mode, replacing the previously
used low-quality random number generator from the C standard library (see #222, #671 and #706).

• Fix a memory leak in code running with the weave code generation target, and a smaller memory leak related to
units stored repetitively in the UnitRegistry .

• Fix a difference of one timestep in the number of simulated timesteps between runtime and standalone that could
arise for very specific values of dt and t (see #695).

• Fix standalone compilation failures with the most recent gcc version which defaults to C++14 mode (see #701)

• Fix incorrect summation in synapses when using the (summed) flag and writing to pre-synaptic variables (see
#704)

• Make synaptic pathways work when connecting groups that define nested subexpressions, instead of failing with
a cryptic error message (see #707).

14 Chapter 1. Introduction

https://github.com/mstimberg
https://github.com/thesamovar
https://github.com/bdevans
https://github.com/brian-team/brian2/issues
mailto:brian-development@googlegroups.com
http://pandas.pydata.org
https://github.com/brian-team/brian2/issues/306
https://github.com/brian-team/brian2/issues/222
https://github.com/brian-team/brian2/issues/671
https://github.com/brian-team/brian2/issues/706
https://github.com/brian-team/brian2/issues/695
https://github.com/brian-team/brian2/issues/701
https://github.com/brian-team/brian2/issues/704
https://github.com/brian-team/brian2/issues/707

Brian 2 Documentation, Release 2.1.1

Contributions

Code and documentation contributions (ordered by the number of commits):

• Marcel Stimberg (@mstimberg)

• Dominik Krzemiński (@dokato)

• Dan Goodman (@thesamovar)

• Martino Sorbaro (@martinosorb)

Testing, suggestions and bug reports (ordered alphabetically, apologies to anyone we forgot. . .):

• Craig Henriquez

• Daniel Bliss

• David Higgins

• Gordon Erlebacher

• Max Gillett

• Moritz Augustin

• Sami Abdul-Wahid

1.2.9 Brian 2.0rc1

This is a bug fix release that we release only about two weeks after the previous release because that release introduced
a bug that could lead to wrong integration of stochastic differential equations. Note that standard neuronal noise models
were not affected by this bug, it only concerned differential equations implementing a “random walk”. The release
also fixes a few other issues reported by users, see below for more information.

Improvements and bug fixes

• Fix a regression from 2.0b4: stochastic differential equations without any non-stochastic part (e.g. dx/dt =
xi/sqrt(ms)`) were not integrated correctly (see #686).

• Repeatedly calling restore() (or Network.restore()) no longer raises an error (see #681).

• Fix an issue that made PoissonInput refuse to run after a change of dt (see #684).

• If the rates argument of PoissonGroup is a string, it will now be evaluated at every time step instead of
once at construction time. This makes time-dependent rate expressions work as expected (see #660).

Contributions

Code and documentation contributions (ordered by the number of commits):

• Marcel Stimberg (@mstimberg)

Testing, suggestions and bug reports (ordered alphabetically, apologies to anyone we forgot. . .):

• Cian O’Donnell

• Daniel Bliss

• Ibrahim Ozturk

• Olivia Gozel

1.2. Release notes 15

https://github.com/mstimberg
https://github.com/dokato
https://github.com/thesamovar
https://github.com/martinosorb
https://github.com/brian-team/brian2/issues/686
https://github.com/brian-team/brian2/issues/681
https://github.com/brian-team/brian2/issues/684
https://github.com/brian-team/brian2/issues/660
https://github.com/mstimberg

Brian 2 Documentation, Release 2.1.1

1.2.10 Brian 2.0rc

This is a release candidate for the final Brian 2.0 release, meaning that from now on we will focus on bug fixes and
documentation, without introducing new major features or changing the syntax for the user. This release candidate
itself does however change a few important syntax elements, see “Backwards-incompatible changes” below.

As always, please report bugs or suggestions to the github bug tracker (https://github.com/brian-team/brian2/issues)
or to the brian-development mailing list (brian-development@googlegroups.com).

Major new features

• New “generator syntax” to efficiently generate synapses (e.g. one-to-one connections), see Creating synapses
for more details.

• For synaptic connections with multiple synapses between a pair of neurons, the number of the synapse can now
be stored in a variable, allowing its use in expressions and statements (see Creating synapses).

• Synapses can now target other Synapses objects, useful for some models of synaptic modulation.

• The Morphology object has been completely re-worked and several issues have been fixed. The new
Section object allows to model a section as a series of truncated cones (see Creating a neuron morphology).

• Scripts with a single run() call, no longer need an explicit device.build() call to run with the C++
standalone device. A set_device() in the beginning is enough and will trigger the build call after the run
(see Standalone code generation).

• All state variables within a Network can now be accessed by Network.get_states() and Network.
set_states() and the store()/restore() mechanism can now store the full state of a simulation to
disk.

• Stochastic differential equations with multiplicative noise can now be integrated using the Euler-Heun method
(heun). Thanks to Jan-Hendrik Schleimer for this contribution.

• Error messages have been significantly improved: errors for unit mismatches are now much clearer and error
messages triggered during the intialization phase point back to the line of code where the relevant object (e.g. a
NeuronGroup) was created.

• PopulationRateMonitor now provides a smooth_ratemethod for a filtered version of the stored rates.

Improvements and bug fixes

• In addition to the new synapse creation syntax, sparse probabilistic connections are now created much faster.

• The time for the initialization phase at the beginning of a run() has been significantly reduced.

• Multicompartmental simulations with a large number of compartments are now simulated more efficiently and
are making better use of several processor cores when OpenMP is activated in C++ standalone mode. Thanks to
Moritz Augustin for this contribution.

• Simulations will use compiler settings that optimize performance by default.

• Objects that have user-specified names are better supported for complex simulation scenarios (names no longer
have to be unique at all times, but only across a network or across a standalone device).

• Various fixes for compatibility with recent versions of numpy and sympy

16 Chapter 1. Introduction

https://github.com/brian-team/brian2/issues
mailto:brian-development@googlegroups.com

Brian 2 Documentation, Release 2.1.1

Important backwards-incompatible changes

• The argument names in Synapses.connect() have changed and the first argument can no longer be
an array of indices. To connect based on indices, use Synapses.connect(i=source_indices,
j=target_indices). See Creating synapses and the documentation of Synapses.connect() for more
details.

• The actions triggered by pre-synaptic and post-synaptic spikes are now described by the on_pre and on_post
keyword arguments (instead of pre and post).

• The Morphology object no longer allows to change attributes such as length and diameter after its creation.
Complex morphologies should instead be created using the Section class, allowing for the specification of all
details.

• Morphology objects that are defined with coordinates need to provide the start point (relative to the end point
of the parent compartment) as the first coordinate. See Creating a neuron morphology for more details.

• For simulations using the C++ standalone mode, no longer call Device.build (if using a single run() call),
or use set_device() with build_on_run=False (see Standalone code generation).

Infrastructure improvements

• Our test suite is now also run on Mac OS-X (on the Travis CI platform).

Contributions

Code and documentation contributions (ordered by the number of commits):

• Marcel Stimberg (@mstimberg)

• Dan Goodman (@thesamovar)

• Moritz Augustin (@moritzaugustin)

• Jan-Hendrik Schleimer (@ttxtea)

• Romain Cazé (@rcaze)

• Konrad Wartke (@Kwartke)

• Romain Brette (@romainbrette)

Testing, suggestions and bug reports (ordered alphabetically, apologies to anyone we forgot. . .):

• Chaofei Hong

• Kees de Leeuw

• Luke Y Prince

• Myung Seok Shim

• Owen Mackwood

• Github users: @epaxon, @flinz, @mariomulansky, @martinosorb, @neuralyzer, @oleskiw, @prcastro, @su-
doankit

1.2. Release notes 17

https://travis-ci.org/
https://github.com/mstimberg
https://github.com/thesamovar
https://github.com/moritzaugustin
https://github.com/ttxtea
https://github.com/rcaze
https://github.com/Kwartke
https://github.com/romainbrette

Brian 2 Documentation, Release 2.1.1

1.2.11 Brian 2.0b4

This is the fourth (and probably last) beta release for Brian 2.0. This release adds a few important new features
and fixes a number of bugs so we recommend all users of Brian 2 to upgrade. If you are a user new to Brian, we also
recommend to directly start with Brian 2 instead of using the stable release of Brian 1. Note that the new recommended
way to install Brian 2 is to use the Anaconda distribution and to install the Brian 2 conda package (see Installation).

This is however still a Beta release, please report bugs or suggestions to the github bug tracker (https://github.com/
brian-team/brian2/issues) or to the brian-development mailing list (brian-development@googlegroups.com).

Major new features

• In addition to the standard threshold/reset, groups can now define “custom events”. These can be recorded with
the new EventMonitor (a generalization of SpikeMonitor) and Synapses can connect to these events
instead of the standard spike event. See Custom events for more details.

• SpikeMonitor and EventMonitor can now also record state variable values at the time of spikes (or
custom events), thereby offering the functionality of StateSpikeMonitor from Brian 1. See Recording
variables at spike time for more details.

• The code generation modes that interact with C++ code (weave, Cython, and C++ standalone) can now be
more easily configured to work with external libraries (compiler and linker options, header files, etc.). See the
documentation of the cpp_prefs module for more details.

Improvemements and bug fixes

• Cython simulations no longer interfere with each other when run in parallel (thanks to Daniel Bliss for reporting
and fixing this).

• The C++ standalone now works with scalar delays and the spike queue implementation deals more efficiently
with them in general.

• Dynamic arrays are now resized more efficiently, leading to faster monitors in runtime mode.

• The spikes generated by a SpikeGeneratorGroup can now be changed between runs using the
set_spikes method.

• Multi-step state updaters now work correctly for non-autonomous differential equations

• PoissonInput now correctly works with multiple clocks (thanks to Daniel Bliss for reporting and fixing this)

• The get_states method now works for StateMonitor. This method provides a convenient way to access
all the data stored in the monitor, e.g. in order to store it on disk.

• C++ compilation is now easier to get to work under Windows, see Installation for details.

Important backwards-incompatible changes

• The custom_operation method has been renamed to run_regularly and can now be called without
the need for storing its return value.

• StateMonitor will now by default record at the beginning of a time step instead of at the end. See Recording
variables continuously for details.

• Scalar quantities now behave as python scalars with respect to in-place modifications (augmented assignments).
This means that x = 3*mV; y = x; y += 1*mV will no longer increase the value of the variable x as
well.

18 Chapter 1. Introduction

https://github.com/brian-team/brian2/issues
https://github.com/brian-team/brian2/issues
mailto:brian-development@googlegroups.com

Brian 2 Documentation, Release 2.1.1

Infrastructure improvements

• We now provide conda packages for Brian 2, making it very easy to install when using the Anaconda distribution
(see Installation).

Contributions

Code and documentation contributions (ordered by the number of commits):

• Marcel Stimberg (@mstimberg)

• Dan Goodman (@thesamovar)

• Daniel Bliss (@dabliss)

• Romain Brette (@romainbrette)

Testing, suggestions and bug reports (ordered alphabetically, apologies to everyone we forgot. . .):

• Daniel Bliss

• Damien Drix

• Rainer Engelken

• Beatriz Herrera Figueredo

• Owen Mackwood

• Augustine Tan

• Ot de Wiljes

1.2.12 Brian 2.0b3

This is the third beta release for Brian 2.0. This release does not add many new features but it fixes a number of
important bugs so we recommend all users of Brian 2 to upgrade. If you are a user new to Brian, we also recommend
to directly start with Brian 2 instead of using the stable release of Brian 1.

This is however still a Beta release, please report bugs or suggestions to the github bug tracker (https://github.com/
brian-team/brian2/issues) or to the brian-development mailing list (brian-development@googlegroups.com).

Major new features

• A new PoissonInput class for efficient simulation of Poisson-distributed input events.

Improvements

• The order of execution for pre and post statements happending in the same time step was not well defined
(it fell back to the default alphabetical ordering, executing post before pre). It now explicitly specifies the
order attribute so that pre gets executed before post (as in Brian 1). See the Synapses documentation for
details.

• The default schedule that is used can now be set via a preference (core.network.default_schedule). New auto-
matically generated scheduling slots relative to the explicitly defined ones can be used, e.g. before_resets
or after_synapses. See Scheduling for details.

1.2. Release notes 19

https://github.com/mstimberg
https://github.com/thesamovar
https://github.com/dabliss
https://github.com/romainbrette
https://github.com/brian-team/brian2/issues
https://github.com/brian-team/brian2/issues
mailto:brian-development@googlegroups.com

Brian 2 Documentation, Release 2.1.1

• The scipy package is no longer a dependency (note that weave for compiled C code under Python 2 is now
available in a separate package). Note that multicompartmental models will still benefit from the scipy package
if they are simulated in pure Python (i.e. with the numpy code generation target) – otherwise Brian 2 will fall
back to a numpy-only solution which is significantly slower.

Important bug fixes

• Fix SpikeGeneratorGroup which did not emit all the spikes under certain conditions for some code gen-
eration targets (#429)

• Fix an incorrect update of pre-synaptic variables in synaptic statements for the numpy code generation target
(#435).

• Fix the possibility of an incorrect memory access when recording a subgroup with SpikeMonitor (#454).

• Fix the storing of results on disk for C++ standalone on Windows – variables that had the same name when
ignoring case (e.g. i and I) where overwriting each other (#455).

Infrastructure improvements

• Brian 2 now has a chat room on gitter: https://gitter.im/brian-team/brian2

• The sphinx documentation can now be built from the release archive file

• After a big cleanup, all files in the repository have now simple LF line endings (see https://help.github.com/
articles/dealing-with-line-endings/ on how to configure your own machine properly if you want to contribute to
Brian).

Contributions

Code and documentation contributions (ordered by the number of commits):

• Marcel Stimberg (@mstimberg)

• Dan Goodman (@thesamovar)

• Konrad Wartke (@kwartke)

Testing, suggestions and bug reports (ordered alphabetically, apologies to everyone we forgot. . .):

• Daniel Bliss

• Owen Mackwood

• Ankur Sinha

• Richard Tomsett

1.2.13 Brian 2.0b2

This is the second beta release for Brian 2.0, we recommend all users of Brian 2 to upgrade. If you are a user new to
Brian, we also recommend to directly start with Brian 2 instead of using the stable release of Brian 1.

This is however still a Beta release, please report bugs or suggestions to the github bug tracker (https://github.com/
brian-team/brian2/issues) or to the brian-development mailing list (brian-development@googlegroups.com).

20 Chapter 1. Introduction

http://scipy.org
https://pypi.python.org/pypi/weave
http://scipy.org
https://github.com/brian-team/brian2/issues/429
https://github.com/brian-team/brian2/issues/435
https://github.com/brian-team/brian2/issues/454
https://github.com/brian-team/brian2/issues/455
http://gitter.im
https://gitter.im/brian-team/brian2
https://help.github.com/articles/dealing-with-line-endings/
https://help.github.com/articles/dealing-with-line-endings/
https://github.com/mstimberg
https://github.com/thesamovar
https://github.com/Kwartke
https://github.com/brian-team/brian2/issues
https://github.com/brian-team/brian2/issues
mailto:brian-development@googlegroups.com

Brian 2 Documentation, Release 2.1.1

Major new features

• Multi-compartmental simulations can now be run using the Standalone code generation mode (this is not yet
well-tested, though).

• The implementation of TimedArray now supports two-dimensional arrays, i.e. different input per neuron (or
synapse, etc.), see Timed arrays for details.

• Previously, not setting a code generation target (using the codegen.target preference) would mean that the
numpy target was used. Now, the default target is auto, which means that a compiled language (weave
or cython) will be used if possible. See Computational methods and efficiency for details.

• The implementation of SpikeGeneratorGroup has been improved and it now supports a period argument
to repeatedly generate a spike pattern.

Improvements

• The selection of a numerical algorithm (if none has been specified by the user) has been simplified. See Numer-
ical integration for details.

• Expressions that are shared among neurons/synapses are now updated only once instead of for every neu-
ron/synapse which can lead to performance improvements.

• On Windows, The Microsoft Visual C compiler is now supported in the cpp_standalone mode, see the
respective notes in the Installation and Computational methods and efficiency documents.

• Simulation runs (using the standard “runtime” device) now collect profiling information. See Profiling for
details.

Infrastructure and documentation improvements

• Tutorials for beginners in the form of ipython notebooks (currently only covering the basics of neurons and
synapses) are now available.

• The Examples in the documentation now include the images they generated. Several examples have been adapted
from Brian 1.

• The code is now automatically tested on Windows machines, using the appveyor service. This complements the
Linux testing on travis.

• Using a version of a dependency (e.g. sympy) that we don’t support will now raise an error when you import
brian2 – see Dependency checks for more details.

• Test coverage for the cpp_standalone mode has been significantly increased.

Important bug fixes

• The preparation time for complicated equations has been significantly reduced.

• The string representation of small physical quantities has been corrected (#361)

• Linking variables from a group of size 1 now works correctly (#383)

1.2. Release notes 21

http://ci.appveyor.com
https://travis-ci.org
https://github.com/brian-team/brian2/issues/361
https://github.com/brian-team/brian2/issues/383

Brian 2 Documentation, Release 2.1.1

Contributions

Code and documentation contributions (ordered by the number of commits):

• Marcel Stimberg (@mstimberg)

• Dan Goodman (@thesamovar)

• Romain Brette (@romainbrette)

• Pierre Yger (@yger)

Testing, suggestions and bug reports (ordered alphabetically, apologies to everyone we forgot. . .):

• Conor Cox

• Gordon Erlebacher

• Konstantin Mergenthaler

1.2.14 Brian 2.0beta

This is the first beta release for Brian 2.0 and the first version of Brian 2.0 we recommend for general use. From
now on, we will try to keep changes that break existing code to a minimum. If you are a user new to Brian, we’d
recommend to start with the Brian 2 beta instead of using the stable release of Brian 1.

This is however still a Beta release, please report bugs or suggestions to the github bug tracker (https://github.com/
brian-team/brian2/issues) or to the brian-development mailing list (brian-development@googlegroups.com).

Major new features

• New classes Morphology and SpatialNeuron for the simulation of Multicompartment models

• A temporary “bridge” for brian.hears that allows to use its Brian 1 version from Brian 2 (Brian Hears)

• Cython is now a new code generation target, therefore the performance benefits of compiled code are now also
available to users running simulations under Python 3.x (where scipy.weave is not available)

• Networks can now store their current state and return to it at a later time, e.g. for simulating multiple trials
starting from a fixed network state (Continuing/repeating simulations)

• C++ standalone mode: multiple processors are now supported via OpenMP (Multi-threading with OpenMP),
although this code has not yet been well tested so may be inaccurate.

• C++ standalone mode: after a run, state variables and monitored values can be loaded from disk transparently.
Most scripts therefore only need two additional lines to use standalone mode instead of Brian’s default runtime
mode (Standalone code generation).

Syntax changes

• The syntax and semantics of everything around simulation time steps, clocks, and multiple runs have been
cleaned up, making reinit obsolete and also making it unnecessary for most users to explicitly generate
Clock objects – instead, a dt keyword can be specified for objects such as NeuronGroup (Running a simu-
lation)

• The scalar flag for parameters/subexpressions has been renamed to shared

• The “unit” for boolean variables has been renamed from bool to boolean

• C++ standalone: several keywords of CPPStandaloneDevice.build have been renamed

22 Chapter 1. Introduction

https://github.com/mstimberg
https://github.com/thesamovar
https://github.com/romainbrette
https://github.com/yger
https://github.com/brian-team/brian2/issues
https://github.com/brian-team/brian2/issues
mailto:brian-development@googlegroups.com

Brian 2 Documentation, Release 2.1.1

• The preferences are now accessible via prefs instead of brian_prefs

• The runner method has been renamed to custom_operation

Improvements

• Variables can now be linked across NeuronGroups (Linked variables)

• More flexible progress reporting system, progress reporting also works in the C++ standalone mode (Progress
reporting)

• State variables can be declared as integer (Equation strings)

Bug fixes

57 github issues have been closed since the alpha release, of which 26 had been labeled as bugs. We recommend all
users of Brian 2 to upgrade.

Contributions

Code and documentation contributions (ordered by the number of commits):

• Marcel Stimberg (@mstimberg)

• Dan Goodman (@thesamovar)

• Romain Brette (@romainbrette)

• Pierre Yger (@yger)

• Werner Beroux (@wernight)

Testing, suggestions and bug reports (ordered alphabetically, apologies to everyone we forgot. . .):

• Guillaume Bellec

• Victor Benichoux

• Laureline Logiaco

• Konstantin Mergenthaler

• Maurizio De Pitta

• Jan-Hendrick Schleimer

• Douglas Sterling

• Katharina Wilmes

1.3 Changes for Brian 1 users

• Physical units

• Unported packages

• Removed classes/functions and their replacements

1.3. Changes for Brian 1 users 23

https://github.com/mstimberg
https://github.com/thesamovar
https://github.com/romainbrette
https://github.com/yger
https://github.com/wernight

Brian 2 Documentation, Release 2.1.1

In most cases, Brian 2 works in a very similar way to Brian 1 but there are some important differences to be aware of.
The major distinction is that in Brian 2 you need to be more explicit about the definition of your simulation in order
to avoid inadvertent errors. In some cases, you will now get a warning in other even an error – often the error/warning
message describes a way to resolve the issue.

Specific examples how to convert code from Brian 1 can be found in the document Detailed Brian 1 to Brian 2
conversion notes.

1.3.1 Physical units

The unit system now extends to arrays, e.g. np.arange(5) * mVwill retain the units of volts and not discard them
as Brian 1 did. Brian 2 is therefore also more strict in checking the units. For example, if the state variable v uses the
unit of volt, the statement G.v = np.rand(len(G)) / 1000. will now raise an error. For consistency, units
are returned everywhere, e.g. in monitors. If mon records a state variable v, mon.t will return a time in seconds and
mon.v the stored values of v in units of volts.

If you need a pure numpy array without units for further processing, there are several options: if it is a state variable or
a recorded variable in a monitor, appending an underscore will refer to the variable values without units, e.g. mon.t_
returns pure floating point values. Alternatively, you can remove units by diving by the unit (e.g. mon.t / second)
or by explicitly converting it (np.asarray(mon.t)).

Here’s an overview showing a few expressions and their respective values in Brian 1 and Brian 2:

Expression Brian 1 Brian 2
1 * mV 1.0 * mvolt 1.0 * mvolt
np.array(1) * mV 0.001 1.0 * mvolt
np.array([1]) * mV array([0.001]) array([1.]) * mvolt
np.mean(np.arange(5) * mV) 0.002 2.0 * mvolt
np.arange(2) * mV array([0. , 0.001]) array([0., 1.]) * mvolt
(np.arange(2) * mV) >= 1 * mV array([False, True], dtype=bool) array([False, True], dtype=bool)
(np.arange(2) * mV)[0] >= 1 * mV False False
(np.arange(2) * mV)[1] >= 1 * mV DimensionMismatchError True

1.3.2 Unported packages

The following packages have not (yet) been ported to Brian 1. If your simulation critically depends on them, you
should consider staying with Brian 1 for now.

• brian.tools

• brian.hears (the Brian 1 version can be used via brian2.hears, though, see Brian Hears)

• brian.library.modelfitting

• brian.library.electrophysilogy

1.3.3 Removed classes/functions and their replacements

In Brian 2, we have tried to keep the number of classes/functions to a minimum, but make each of them flexible enough
to encompass a large number of use cases. A lot of the classes and functions that existed in Brian 1 have therefore
been removed. The following table lists (most of) the classes that existed in Brian 1 but do no longer exist in Brian 2.
You can consult it when you get a NameError while converting an existing script from Brian 1. The third column
links to a document with further explanation and the second column gives either:

24 Chapter 1. Introduction

Brian 2 Documentation, Release 2.1.1

1. the equivalent class in Brian 2 (e.g. StateMonitor can record multiple variables now and therefore replaces
MultiStateMonitor);

2. the name of a Brian 2 class in square brackets (e.g. [Synapses] for STDP), this means that the class can be
used as a replacement but needs some additional code (e.g. explicitly specified STDP equations). The “More
details” document should help you in making the necessary changes;

3. “string expression”, if the functionality of a previously existing class can be expressed using the general
string expression framework (e.g. threshold=VariableThreshold('Vt', 'V') can be replaced by
threshold='V > Vt');

4. a link to the relevant github issue if no equivalent class/function does exist so far in Brian 2;

5. a remark such as “obsolete” if the particular class/function is no longer needed.

Brian 1 Brian 2 More details
AdEx [Equations] Library models (Brian 1 –> 2 conversion)
aEIF [Equations] Library models (Brian 1 –> 2 conversion)
AERSpikeMonitor #298 Monitors (Brian 1 –> 2 conversion)
alpha_conductance [Equations] Library models (Brian 1 –> 2 conversion)
alpha_current [Equations] Library models (Brian 1 –> 2 conversion)
alpha_synapse [Equations] Library models (Brian 1 –> 2 conversion)
AutoCorrelogram [SpikeMonitor] Monitors (Brian 1 –> 2 conversion)
biexpr_conductance [Equations] Library models (Brian 1 –> 2 conversion)
biexpr_current [Equations] Library models (Brian 1 –> 2 conversion)
biexpr_synapse [Equations] Library models (Brian 1 –> 2 conversion)
Brette_Gerstner [Equations] Library models (Brian 1 –> 2 conversion)
CoincidenceCounter [SpikeMonitor] Monitors (Brian 1 –> 2 conversion)
CoincidenceMatrixCounter [SpikeMonitor] Monitors (Brian 1 –> 2 conversion)
Compartments #443 Multicompartmental models (Brian 1 –> 2 conversion)
Connection Synapses Synapses (Brian 1 –> 2 conversion)
Current #443 Multicompartmental models (Brian 1 –> 2 conversion)
CustomRefractoriness [string expression] Neural models (Brian 1 –> 2 conversion)
DefaultClock Clock Networks and clocks (Brian 1 –> 2 conversion)
EmpiricalThreshold string expression Neural models (Brian 1 –> 2 conversion)
EventClock Clock Networks and clocks (Brian 1 –> 2 conversion)
exp_conductance [Equations] Library models (Brian 1 –> 2 conversion)
exp_current [Equations] Library models (Brian 1 –> 2 conversion)
exp_IF [Equations] Library models (Brian 1 –> 2 conversion)
exp_synapse [Equations] Library models (Brian 1 –> 2 conversion)
FileSpikeMonitor #298 Monitors (Brian 1 –> 2 conversion)
FloatClock Clock Networks and clocks (Brian 1 –> 2 conversion)
FunReset [string expression] Neural models (Brian 1 –> 2 conversion)
FunThreshold [string expression] Neural models (Brian 1 –> 2 conversion)
hist_plot no equivalent –
HomogeneousPoissonThreshold string expression Neural models (Brian 1 –> 2 conversion)
IdentityConnection Synapses Synapses (Brian 1 –> 2 conversion)
IonicCurrent #443 Multicompartmental models (Brian 1 –> 2 conversion)
ISIHistogramMonitor [SpikeMonitor] Monitors (Brian 1 –> 2 conversion)
Izhikevich [Equations] Library models (Brian 1 –> 2 conversion)
K_current_HH [Equations] Library models (Brian 1 –> 2 conversion)
leak_current [Equations] Library models (Brian 1 –> 2 conversion)
leaky_IF [Equations] Library models (Brian 1 –> 2 conversion)

Continued on next page

1.3. Changes for Brian 1 users 25

https://github.com/brian-team/brian2/issues/298
https://github.com/brian-team/brian2/issues/443
https://github.com/brian-team/brian2/issues/443
https://github.com/brian-team/brian2/issues/298
https://github.com/brian-team/brian2/issues/443

Brian 2 Documentation, Release 2.1.1

Table 1.1 – continued from previous page
Brian 1 Brian 2 More details
MembraneEquation #443 Multicompartmental models (Brian 1 –> 2 conversion)
MultiStateMonitor StateMonitor Monitors (Brian 1 –> 2 conversion)
Na_current_HH [Equations] Library models (Brian 1 –> 2 conversion)
NaiveClock Clock Networks and clocks (Brian 1 –> 2 conversion)
NoReset obsolete Neural models (Brian 1 –> 2 conversion)
NoThreshold obsolete Neural models (Brian 1 –> 2 conversion)
OfflinePoissonGroup [SpikeGeneratorGroup] Inputs (Brian 1 –> 2 conversion)
OrnsteinUhlenbeck [Equations] Library models (Brian 1 –> 2 conversion)
perfect_IF [Equations] Library models (Brian 1 –> 2 conversion)
PoissonThreshold string expression Neural models (Brian 1 –> 2 conversion)
PopulationSpikeCounter SpikeMonitor Monitors (Brian 1 –> 2 conversion)
PulsePacket [SpikeGeneratorGroup] Inputs (Brian 1 –> 2 conversion)
quadratic_IF [Equations] Library models (Brian 1 –> 2 conversion)
raster_plot plot_raster (brian2tools) brian2tools documentation
RecentStateMonitor no direct equivalent Monitors (Brian 1 –> 2 conversion)
Refractoriness string expression Neural models (Brian 1 –> 2 conversion)
RegularClock Clock Networks and clocks (Brian 1 –> 2 conversion)
Reset string expression Neural models (Brian 1 –> 2 conversion)
SimpleCustomRefractoriness [string expression] Neural models (Brian 1 –> 2 conversion)
SimpleFunThreshold [string expression] Neural models (Brian 1 –> 2 conversion)
SpikeCounter SpikeMonitor Monitors (Brian 1 –> 2 conversion)
StateHistogramMonitor [StateMonitor] Monitors (Brian 1 –> 2 conversion)
StateSpikeMonitor SpikeMonitor Monitors (Brian 1 –> 2 conversion)
STDP [Synapses] Synapses (Brian 1 –> 2 conversion)
STP [Synapses] Synapses (Brian 1 –> 2 conversion)
StringReset string expression Neural models (Brian 1 –> 2 conversion)
StringThreshold string expression Neural models (Brian 1 –> 2 conversion)
Threshold string expression Neural models (Brian 1 –> 2 conversion)
VanRossumMetric [SpikeMonitor] Monitors (Brian 1 –> 2 conversion)
VariableReset string expression Neural models (Brian 1 –> 2 conversion)
VariableThreshold string expression Neural models (Brian 1 –> 2 conversion)

List of detailed instructions

Detailed Brian 1 to Brian 2 conversion notes

These documents are only relevant for former users of Brian 1. If you do not have any Brian 1 code to convert, go
directly to the main User’s guide.

Neural models (Brian 1 –> 2 conversion)

Brian 2 documentation

For the main documentation about defining neural models, see the document Models and neuron groups.

26 Chapter 1. Introduction

https://github.com/brian-team/brian2/issues/443
http://brian2tools.readthedocs.io

Brian 2 Documentation, Release 2.1.1

• Threshold and Reset

• Refractoriness

• Subgroups

• Linked Variables

The syntax for specifying neuron models in a NeuronGroup changed in several details. In general, a string-based
syntax (that was already optional in Brian 1) consistently replaces the use of classes (e.g. VariableThreshold)
or guessing (e.g. which variable does threshold=50*mV check).

Threshold and Reset

String-based thresholds are now the only possible option and replace all the methods of defining threshold/reset in
Brian 1:

Brian 1 Brian 2

group = NeuronGroup(N, 'dv/dt = -v / tau
→˓: volt',

threshold=-50*mV,
reset=-70*mV)

group = NeuronGroup(N, 'dv/dt = -v / tau
→˓: volt',

threshold='v > -50*mV
→˓',

reset='v = -70*mV')

group = NeuronGroup(N, 'dv/dt = -v / tau
→˓: volt',

threshold=Threshold(-
→˓50*mV, state='v'),

reset=Reset(-70*mV,
→˓state='w'))

group = NeuronGroup(N, 'dv/dt = -v / tau
→˓: volt',

threshold='v > -50*mV
→˓',

reset='v = -70*mV')

group = NeuronGroup(N, '''dv/dt = -v /
→˓tau : volt

dvt/dt = -vt /
→˓tau : volt

vr : volt''',

→˓threshold=VariableThreshold(state='v',

→˓ threshold_state='vt'),

→˓reset=VariableThreshold(state='v',

→˓ resetvaluestate='vr'))

group = NeuronGroup(N, '''dv/dt = -v /
→˓tau : volt

dvt/dt = -vt /
→˓tau : volt

vr : volt''',
threshold='v > vt',
reset='v = vr')

group = NeuronGroup(N, 'rate : Hz',

→˓threshold=PoissonThreshold(state='rate
→˓'))

group = NeuronGroup(N, 'rate : Hz',
threshold='rand()

→˓<rate*dt')

1.3. Changes for Brian 1 users 27

Brian 2 Documentation, Release 2.1.1

There’s no direct equivalent for the “functional threshold/reset” mechanism from Brian 1. In simple cases, they can
be implemented using the general string expression/statement mechanism (note that in Brian 1, reset=myreset is
equivalent to reset=FunReset(myreset)):

Brian 1 Brian 2

def myreset(P,spikes):
P.v_[spikes] = -

→˓70*mV+rand(len(spikes))*5*mV

group = NeuronGroup(N, 'dv/dt = -v / tau
→˓: volt',

threshold=-50*mV,
reset=myreset)

group = NeuronGroup(N, 'dv/dt = -v / tau
→˓: volt',

threshold='v > -50*mV
→˓',

reset='-70*mV +
→˓rand()*5*mV')

def mythreshold(v):
return (v > -50*mV) & (rand(N) > 0.5)

group = NeuronGroup(N, 'dv/dt = -v / tau
→˓: volt',

→˓threshold=SimpleFunThreshold(mythreshold,
→˓

→˓ state='v'),
reset=-70*mV)

group = NeuronGroup(N, 'dv/dt = -v / tau
→˓: volt',

threshold='v > -
→˓50*mV and rand() > 0.5',

reset='v = -70*mV')

For more complicated cases, you can use the general mechanism for User-provided functions that Brian 2 provides.
The only caveat is that you’d have to provide an implementation of the function in the code generation target language
which is by default C++ or Cython. However, in the default Runtime code generation mode, you can chose different
code generation targets for different parts of your simulation. You can thus switch the code generation target for the
threshold/reset mechanism to numpy while leaving the default target for the rest of the simulation in place. The details
of this process and the correct definition of the functions (e.g. global_reset needs a “dummy” return value) are
somewhat cumbersome at the moment and we plan to make them more straightforward in the future. Also note that if
you use this kind of mechanism extensively, you’ll lose all the performance advantage that Brian 2’s code generation
mechanism provides (in addition to not being able to use Standalone code generation mode at all).

28 Chapter 1. Introduction

Brian 2 Documentation, Release 2.1.1

Brian 1 Brian 2

def single_threshold(v):
Only let a single neuron spike
crossed_threshold = np.nonzero(v > -

→˓50*mV)[0]
should_spike = np.zeros(len(P),

→˓dtype=np.bool)
if len(crossed_threshold):

choose = np.random.
→˓randint(len(crossed_threshold))

should_spike[crossed_
→˓threshold[choose]] = True

return should_spike

def global_reset(P, spikes):
Reset everything
if len(spikes):

P.v_[:] = -70*mV

neurons = NeuronGroup(N, 'dv/dt = -v /
→˓tau : volt',

→˓threshold=SimpleFunThreshold(single_
→˓threshold,

→˓ state='v'),
reset=global_reset)

@check_units(v=volt, result=bool)
def single_threshold(v):

pass # ... (identical to Brian 1)

@check_units(spikes=1, result=1)
def global_reset(spikes):

Reset everything
if len(spikes):

neurons.v_[:] = -0.070

neurons = NeuronGroup(N, 'dv/dt = -v /
→˓tau : volt',

threshold='single_
→˓threshold(v)',

reset='dummy =
→˓global_reset(i)')
Set the code generation target for
→˓threshold/reset only:
neuron.thresholder['spike'].codeobj_
→˓class = NumpyCodeObject
neuron.resetter['spike'].codeobj_class =
→˓NumpyCodeObject

For an example how to translate EmpiricalThreshold, see the section on “Refractoriness” below.

Refractoriness

For a detailed description of Brian 2’s refractoriness mechanism see Refractoriness.

In Brian 1, refractoriness was tightly linked with the reset mechanism and some combinations of refractoriness and
reset were not allowed. The standard refractory mechanism had two effects during the refractoriness: it prevented
the refractory cell from spiking and it clamped a state variable (normally the membrane potential of the cell). In
Brian 2, refractoriness is independent of reset and the two effects are specified separately: the refractory keyword
specifies the time (or an expression evaluating to a time) during which the cell does not spike, and the (unless
refractory) flag marks one or more variables to be clamped during the refractory period. To correctly translate
the standard refractory mechanism from Brian 1, you’ll therefore need to specify both:

Brian 1 Brian 2

group = NeuronGroup(N, 'dv/dt = (I - v)/
→˓tau : volt',

threshold=-50*mV,
reset=-70*mV,
refractory=3*ms)

group = NeuronGroup(N, 'dv/dt = (I - v)/
→˓tau : volt (unless refractory)',

threshold='v > -50*mV
→˓',

reset='v = -70*mV',
refractory=3*ms)

1.3. Changes for Brian 1 users 29

Brian 2 Documentation, Release 2.1.1

More complex refractoriness mechanisms based on SimpleCustomRefractoriness and
CustomRefractoriness can be translatated using string expressions or user-defined functions, see the
remarks in the preceding section on “Threshold and Reset”.

Brian 2 no longer has an equivalent to the EmpiricalThreshold class (which detects at the first threshold cross-
ing but ignores all following threshold crossings for a certain time after that). However, the standard refractoriness
mechanism can be used to implement the same behaviour, since it does not reset/clamp any value if not explicitly
asked for it (which would be fatal for Hodgkin-Huxley type models):

Brian 1 Brian 2

group = NeuronGroup(N,'''
dv/dt = (I_L - I_Na -

→˓ I_K + I)/Cm : volt
...''',

→˓threshold=EmpiricalThreshold(threshold=20*mV,
→˓

→˓ refractory=1*ms,

→˓ state='v'))

group = NeuronGroup(N,'''
dv/dt = (I_L - I_Na -

→˓ I_K + I)/Cm : volt
...''',
threshold='v > -20*mV

→˓',
refractory=1*ms)

Subgroups

The class NeuronGroup in Brian 2 does no longer provide a subgroup method, the only way to construct sub-
groups is therefore the slicing syntax (that works in the same way as in Brian 1):

Brian 1 Brian 2

group = NeuronGroup(4000, ...)
group_exc = group.subgroup(3200)
group_inh = group.subgroup(800)

group = NeuronGroup(4000, ...)
group_exc = group[:3200]
group_inh = group[3200:]

Linked Variables

For a description of Brian 2’s mechanism to link variables between groups, see Linked variables.

Linked variables need to be explicitly annotated with the (linked) flag in Brian 2:

30 Chapter 1. Introduction

Brian 2 Documentation, Release 2.1.1

Brian 1 Brian 2

group1 = NeuronGroup(N,
'dv/dt = -v / tau :

→˓volt')
group2 = NeuronGroup(N,

'''dv/dt = (-v + w)
→˓/ tau : volt

w : volt''')
group2.w = linked_var(group1, 'v')

group1 = NeuronGroup(N,
'dv/dt = -v / tau :

→˓volt')
group2 = NeuronGroup(N,

'''dv/dt = (-v + w)
→˓/ tau : volt

w : volt (linked)
→˓''')
group2.w = linked_var(group1, 'v')

Synapses (Brian 1 –> 2 conversion)

Brian 2 documentation

For the main documentation about defining and creating synapses, see the document Synapses.

• Converting Brian 1’s Connection class

• Converting Brian 1’s Synapses class

Converting Brian 1’s Connection class

In Brian 2, the Synapses class is the only class to model synaptic connections, you will therefore have to convert
all uses of Brian 1’s Connection class. The Connection class increases a post-synaptic variable by a certain
amount (the “synaptic weight”) each time a pre-synaptic spike arrives. This has to be explicitly specified when using
the Synapses class, the equivalent to the basic Connection usage is:

Brian 1 Brian 2

conn = Connection(source, target, 'ge') conn = Synapses(source, target, 'w :
→˓siemens',

on_pre='ge += w')

Note that he variable w, which stores the synaptic weight, has to have the same units as the post-synaptic variable (in
this case: ge) that it increases.

Creating synapses and setting weights

With the Connection class, creating a synapse and setting its weight is a single process whereas with the
Synapses class those two steps are separate. There is no direct equivalent to the convenience functions
connect_full, connect_random and connect_one_to_one, but you can easily implement the same func-
tionality with the general mechanism of Synapses.connect():

1.3. Changes for Brian 1 users 31

Brian 2 Documentation, Release 2.1.1

Brian 1 Brian 2

conn1 = Connection(source, target, 'ge')
conn1[3, 5] = 3*nS

conn1 = Synapses(source, target, 'w:
→˓siemens',

on_pre='ge += w')
conn1.connect(i=3, j=5)
conn1.w[3, 5] = 3*nS # (or conn1.w =
→˓3*nS)

conn2 = Connection(source, target, 'ge')
conn2.connect_full(source, target, 5*nS)

conn2 = ... # see above
conn2.connect()
conn2.w = 5*nS

conn3 = Connection(source, target, 'ge')
conn3.connect_random(source, target,

sparseness=0.02,
weight=2*ns)

conn3 = ... # see above
conn3.connect(p=0.02)
conn3.w = 2*nS

conn4 = Connection(source, target, 'ge')
conn4.connect_one_to_one(source, target,

weight=4*nS)

conn4 = ... # see above
conn4.connect(j='i')
conn4.w = 4*nS

conn5 = IdentityConnection(source,
→˓target,

weight=3*nS)

conn5 = Synapses(source, target,
'w : siemens (shared)')

conn5.w = 3*nS

Weight matrices

Brian 2’s Synapses class does not support setting the weights of a neuron with a weight matrix. However,
Synapses.connect() creates the synapses in a predictable order (first all synapses for the first pre-synaptic
cell, then all synapses for the second pre-synaptic cell, etc.), so a reshaped “flat” weight matrix can be used:

32 Chapter 1. Introduction

Brian 2 Documentation, Release 2.1.1

Brian 1 Brian 2

len(source) == 20, len(target) == 30
conn6 = Connection(source, target, 'ge')
W = rand(20, 30)*nS
conn6.connect(source, target, weight=W)

len(source) == 20, len(target) == 30
conn6 = Synapses(source, target, 'w:
→˓siemens',

on_pre='ge += w')
W = rand(20, 30)*nS
conn6.connect()
conn6.w = W.flatten()

However note that if your weight matrix can be described mathematically (e.g. random as in the example above),
then you should not create a weight matrix in the first place but use Brian 2’s mechanism to set variables based on
mathematical expressions (in the above case: conn5.w = 'rand()'). Especially for big connection matrices this
will have better performance, since it will be executed in generated code. You should only resort to explicit weight
matrices when there is no alternative (e.g. to load weights from previous simulations).

In Brian 1, you can restrict the functions connect, connect_random, etc. to subgroups. Again, there is no direct
equivalent to this in Brian 2, but the general string syntax allows you to make connections conditional on logical
statements that refer to pre-/post-synaptic indices and can therefore also used to restrict the connection to a subgroup
of cells. When you set the synaptic weights, you can however use subgroups to restrict the subset of weights you want
to set.

Brian 1 Brian 2

conn7 = Connection(source, target, 'ge')
conn7.connect_full(source[:5],
→˓target[5:10], 5*nS)

conn7 = Synapses(source, target, 'w:
→˓siemens',

on_pre='ge += w')
conn7.connect('i < 5 and j >=5 and j <10
→˓')
Alternative (more efficient):
conn7.connect(j='k in range(5, 10) if
→˓i < 5')
conn7.w[source[:5], target[5:10]] = 5*nS

Connections defined by functions

Brian 1 allowed you to pass in a function as the value for the weight argument in a connect call (and also for
the sparseness argument in connect_random). You should be able to replace such use cases by the the general,
string-expression based method:

1.3. Changes for Brian 1 users 33

Brian 2 Documentation, Release 2.1.1

Brian 1 Brian 2

conn8 = Connection(source, target, 'ge')
conn8.connect_full(source, target,

weight=lambda i,
→˓j:(1+cos(i-j))*2*nS)

conn8 = Synapses(source, target, 'w:
→˓siemens',

on_pre='ge += w')
conn8.connect()
conn8.w = '(1 + cos(i - j))*2*nS'

conn9 = Connection(source, target, 'ge')
conn9.connect_random(source, target,

sparseness=0.02,

→˓weight=lambda:rand()*nS)

conn9 = ... # see above
conn9.connect(p=0.02)
conn9.w = 'rand()*nS'

conn10 = Connection(source, target, 'ge')
conn10.connect_random(source, target,

sparseness=lambda
→˓i,j:exp(-abs(i-j)*.1),

weight=2*ns)

conn10 = ... # see above
conn10.connect(p='exp(-abs(i - j)*.1)')
conn10.w = 2*nS

Delays

The specification of delays changed in several aspects from Brian 1 to Brian 2: In Brian 1, delays where homogeneous
by default, and heterogeneous delays had to be marked by delay=True, together with the specification of the
maximum delay. In Brian 2, homogeneous delays are the default and you do not have to state the maximum delay.
Brian 1’s syntax of specifying a pair of values to get randomly distributed delays in that range is no longer supported,
instead use Brian 2’s standard string syntax:

Brian 1 Brian 2

conn11 = Connection(source, target, 'ge',
→˓ delay=True,

max_delay=5*ms)
conn11.connect_full(source, target,
→˓weight=3*nS,

delay=(0*ms, 5*ms))

conn11 = Synapses(source, target, 'w :
→˓siemens',

on_pre='ge += w')
conn11.connect()
conn11.w = 3*nS
conn11.delay = 'rand()*5*ms'

Modulation

In Brian 2, there’s no need for the modulation keyword that Brian 1 offered, you can describe the modulation as
part of the on_pre action:

34 Chapter 1. Introduction

Brian 2 Documentation, Release 2.1.1

Brian 1 Brian 2

conn12 = Connection(source, target, 'ge',
modulation='u')

conn12 = Synapses(source, target, 'w :
→˓siemens',

on_pre='ge += w * u_pre
→˓')

Structure

There’s no equivalen for Brian 1’s structure keyword in Brian 2, synapses are always stored in a sparse data
structure. There is currently no support for changing synapses at run time (i.e. the “dynamic” structure of Brian 1).

Converting Brian 1’s Synapses class

Brian 2’s Synapses class works for the most part like the class of the same name in Brian 1. There are however
some differences in details, listed below:

Synaptic models

The basic syntax to define a synaptic model is unchanged, but the keywords pre and post have been renamed to
on_pre and on_post, respectively.

Brian 1 Brian 2

stdp_syn = Synapses(inputs, neurons,
→˓model='''

w:1
dApre/dt = -Apre/

→˓taupre : 1 (event-driven)
dApost/dt = -Apost/

→˓taupost : 1 (event-driven)''',
pre='''ge + =w

Apre += delta_
→˓Apre

w = clip(w +
→˓Apost, 0, gmax)''',

post='''Apost +=
→˓delta_Apost

w = clip(w +
→˓Apre, 0, gmax)''')

stdp_syn = Synapses(inputs, neurons,
→˓model='''

w:1
dApre/dt = -Apre/

→˓taupre : 1 (event-driven)
dApost/dt = -Apost/

→˓taupost : 1 (event-driven)''',
on_pre='''ge + =w

Apre += delta_
→˓Apre

w = clip(w +
→˓Apost, 0, gmax)''',

on_post='''Apost +=
→˓delta_Apost

w = clip(w +
→˓Apre, 0, gmax)''')

Lumped variables (summed variables)

The syntax to define lumped variables (we use the term “summed variables” in Brian 2) has been changed: instead
of assigning the synaptic variable to the neuronal variable you’ll have to include the summed variable in the synaptic
equations with the flag (summed):

1.3. Changes for Brian 1 users 35

Brian 2 Documentation, Release 2.1.1

Brian 1 Brian 2

a non-linear synapse (e.g. NMDA)
neurons = NeuronGroup(1, model='''

dv/dt = (gtot - v)/
→˓(10*ms) : 1

gtot : 1''')
syn = Synapses(inputs, neurons,

model='''
dg/dt = -a*g+b*x*(1-g) : 1
dx/dt = -c*x : 1
w : 1 # synaptic weight''

→˓',
pre='x += w')

neurons.gtot=S.g

a non-linear synapse (e.g. NMDA)
neurons = NeuronGroup(1, model='''

dv/dt = (gtot - v)/
→˓(10*ms) : 1

gtot : 1''')
syn = Synapses(inputs, neurons,

model='''
dg/dt = -a*g+b*x*(1-g) : 1
dx/dt = -c*x : 1
w : 1 # synaptic weight
gtot_post = g : 1 (summed)

→˓''',
on_pre='x += w')

Creating synapses

In Brian 1, synapses were created by assigning True or an integer (the number of synapses) to an indexed Synapses
object. In Brian 2, all synapse creation goes through the Synapses.connect() function. For examples how to
create more complex connection patterns, see the section on translating Connections objects above.

Brian 1 Brian 2

syn = Synapses(...)
single synapse
syn[3, 5] = True

syn = Synapses(...)
single synapse
syn.connect(i=3, j=5)

all-to-all connections
syn[:, :] = True

all-to-all connections
syn.connect()

all to neuron number 1
syn[:, 1] = True

all to neuron number 1
syn.connect(j='1')

multiple synapses
syn[4, 7] = 3

multiple synapses
syn.connect(i=4, j=7, n=3)

connection probability 2%
syn[:, :] = 0.02

connection probability 2%
syn.connect(p=0.02)

Multiple pathways

As Brian 1, Brian 2 supports multiple pre- or post-synaptic pathways, with separate pre-/post-codes and delays. In
Brian 1, you have to specify the pathways as tuples and can then later access them individually by using their index.
In Brian 2, you specify the pathways as a dictionary, i.e. by giving them individual names which you can then later
use to access them (the default pathways are called pre and post):

36 Chapter 1. Introduction

Brian 2 Documentation, Release 2.1.1

Brian 1 Brian 2

S = Synapses(...,
pre=('ge + =w',

'''w = clip(w + Apost,
→˓0, inf)

Apre += delta_Apre''
→˓'),

post='''Apost += delta_Apost
w = clip(w + Apre,

→˓0, inf)''')

S[:, :] = True
S.delay[1][:, :] = 3*ms # delayed trace

S = Synapses(...,
pre={'pre_transmission':

'ge += w',
'pre_plasticity':
'''w = clip(w + Apost,

→˓0, inf)
Apre += delta_Apre''

→˓'},
post='''Apost += delta_Apost

w = clip(w + Apre,
→˓0, inf)''')

S.connect()
S.pre_plasticity.delay[:, :] = 3*ms #
→˓delayed trace

Monitoring synaptic variables

Both in Brian 1 and Brian 2, you can record the values of synaptic variables with a StateMonitor. You no longer
have to call an explicit indexing function, but you can directly provide an appropriately indexed Synapses object.
You can now also use the same technique to index the StateMonitor object to get the recorded values, see the
respective section in the Synapses documentation for details.

Brian 1 Brian 2

syn = Synapses(...)
record all synapse targetting neuron 3
indices = syn.synapse_index((slice(None),
→˓ 3))
mon = StateMonitor(S, 'w',
→˓record=indices)

syn = Synapses(...)
record all synapse targetting neuron 3
mon = StateMonitor(S, 'w', record=S[:,
→˓3])

Inputs (Brian 1 –> 2 conversion)

Brian 2 documentation

For the main documentation about adding external stimulation to a network, see the document Input stimuli.

• Poisson Input

• Spike generation

• Arbitrary time-dependent input (TimedArray)

1.3. Changes for Brian 1 users 37

Brian 2 Documentation, Release 2.1.1

Poisson Input

Brian 2 provides the same two groups that Brian 1 provided: PoissonGroup and PoissonInput. The mechanism
for inhomogoneous Poisson processes has changed: instead of providing a Python function of time, you’ll now have
to provide a string expression that is evaluated at every time step. For most use cases, this should allow a direct
translation:

Brian 1 Brian 2

rates = lambda
→˓t:(1+cos(2*pi*t*1*Hz))*10*Hz
group = PoissonGroup(100, rates=rates)

rates = '(1 + cos(2*pi*t*1*Hz)*10*Hz)'
group = PoissonGroup(100, rates=rates)

For more complex rate modulations, the expression can refer to User-provided functions and/or you can replace the
PoissonGroup by a general NeuronGroup with a threshold condition rand()<rates*dt (which allows you
to store per-neuron attributes).

There is currently no direct replacement for the more advanced features of PoissonInput (record, freeze,
copies, jitter, and reliability keywords), but various workarounds are possible, e.g. by directly using
a BinomialFunction in the equations. For example, you can get the functionality of the freeze keyword
(identical Poisson events for all neurons) by storing the input in a shared variable and then distribute the input to all
neurons:

Brian 1 Brian 2

group = NeuronGroup(10,
'dv/dt = -v/(10*ms)

→˓: 1')
input = PoissonInput(group, N=1000,
→˓rate=1*Hz,

weight=0.1, state='v
→˓',

freeze=True)

group = NeuronGroup(10, '''dv/dt = -v /
→˓(10*ms) : 1

shared_input
→˓: 1 (shared)''')
poisson_input = BinomialFunction(n=1000,
→˓p=1*Hz*group.dt)
group.run_regularly('''shared_input =
→˓poisson_input()*0.1

v += shared_input'
→˓'')

Spike generation

SpikeGeneratorGroup provides mostly the same functionality as in Brian 1. In contrast to Brian 1, there is only
one way to specify which neurons spike and when – you have to provide the index array and the times array as separate
arguments:

38 Chapter 1. Introduction

Brian 2 Documentation, Release 2.1.1

Brian 1 Brian 2

gen1 = SpikeGeneratorGroup(2, [(0, 0*ms),
→˓ (1, 1*ms)])
gen2 = SpikeGeneratorGroup(2, [(array([0,
→˓ 1]), 0*ms),

(array([0,
→˓ 1]), 1*ms)]
gen3 = SpikeGeneratorGroup(2, (array([0,
→˓1]),

array([0,
→˓1])*ms))
gen4 = SpikeGeneratorGroup(2, array([[0,
→˓0.0],

[1,
→˓0.001]])

gen1 = SpikeGeneratorGroup(2, [0, 1], [0,
→˓ 1]*ms)
gen2 = SpikeGeneratorGroup(2, [0, 1, 0,
→˓1],

[0, 0, 1,
→˓1]*ms)
gen3 = SpikeGeneratorGroup(2, [0, 1], [0,
→˓ 1]*ms)

gen4 = SpikeGeneratorGroup(2, [0, 1], [0,
→˓ 1]*ms)

Note: For large arrays, make sure to provide a Quantity array (e.g. [0, 1, 2]*ms) and not a list of Quantity
values (e.g. [0*ms, 1*ms, 2*ms]). A list has first to be translated into an array which can take a considerable
amount of time for a list with many elements.

There is no direct equivalent of the Brian 1 option to use a generator that updates spike times online. The easiest
alternative in Brian 2 is to pre-calculate the spikes and then use a standard SpikeGeneratorGroup. If this is not
possible (e.g. there are two many spikes to fit in memory), then you can workaround the restriction by using custom
code (see User-provided functions and Arbitrary Python code (network operations)).

Arbitrary time-dependent input (TimedArray)

For a detailed description of the TimedArray mechanism in Brian 2, see Timed arrays.

In Brian 1, timed arrays where special objects that could be assigned to a state variable and would then be used to
update this state variable at every time step. In Brian 2, a timed array is implemented using the standard Functions
mechanism which has the advantage that more complex access patterns can be implemented (e.g. by not using t as
an argument, but something like t - delay). This syntax was possible in Brian 1 as well, but was disadvantageous
for performance and had other limits (e.g. no unit support, no linear integration). In Brian 2, these disadvantages
no longer apply and the function syntax is therefore the only available syntax. You can convert the old-style Brian 1
syntax to Brian 2 as follows:

Warning: The example below does not correctly translate the changed semantics of TimedArray re-
lated to the time. In Brian 1, TimedArray([0, 1, 2], dt=10*ms) will return 0 for t<5*ms, 1 for
5*ms<=t<15*ms, and 2 for t>=15*ms. Brian 2 will return 0 for t<10*ms, 1 for 10*ms<=t<20*ms, and 2
for t>=20*ms.

1.3. Changes for Brian 1 users 39

Brian 2 Documentation, Release 2.1.1

Brian 1 Brian 2

same input for all neurons
eqs = '''

dv/dt = (I - v)/tau : volt
I : volt
'''

group = NeuronGroup(1, model=eqs,
reset=0*mV,

→˓threshold=15*mV)
group.I = TimedArray(linspace(0*mV,
→˓20*mV, 100),

dt=10*ms)

same input for all neurons
I = TimedArray(linspace(0*mV, 20*mV,
→˓100),

dt=10*ms)
eqs = '''

dv/dt = (I(t) - v)/tau : volt
'''

group = NeuronGroup(1, model=eqs,
reset='v = 0*mV',
threshold='v > 15*mV

→˓')

neuron-specific input
eqs = '''

dv/dt = (I - v)/tau : volt
I : volt
'''

group = NeuronGroup(5, model=eqs,
reset=0*mV,

→˓threshold=15*mV)
values = (linspace(0*mV, 20*mV, 100)[:,
→˓None] *

linspace(0, 1, 5))
group.I = TimedArray(values, dt=10*ms)

neuron-specific input
values = (linspace(0*mV, 20*mV, 100)[:,
→˓None] *

linspace(0, 1, 5))
I = TimedArray(values, dt=10*ms)
eqs = '''

dv/dt = (I(t, i) - v)/tau : volt
'''

group = NeuronGroup(5, model=eqs,
reset='v = 0*mV',
threshold='v > 15*mV

→˓')

Monitors (Brian 1 –> 2 conversion)

Brian 2 documentation

For the main documentation about recording network activity, see the document Recording during a simulation.

• Monitoring spiking activity

• Monitoring variables

Monitoring spiking activity

The main class to record spiking activity is SpikeMonitor which is created in the same way as in Brian 1. However,
the internal storage and retrieval of spikes is different. In Brian 1, spikes were stored as a list of pairs (i, t), the
index and time of each spike. In Brian 2, spikes are stored as two arrays i and t, storing the indices and times. You
can access these arrays as attributes of the monitor, there’s also a convenience attribute it that returns both at the
same time. The following table shows how the spike indices and times can be retrieved in various forms in Brian 1
and Brian 2:

40 Chapter 1. Introduction

Brian 2 Documentation, Release 2.1.1

Brian 1 Brian 2

mon = SpikeMonitor(group)
#... do the run
list_of_pairs = mon.spikes
index_list, time_list = zip(*list_of_
→˓pairs)
index_array = array(index_list)
time_array = array(time_list)
time_array is unitless in Brian 1

mon = SpikeMonitor(group)
#... do the run
list_of_pairs = zip(*mon.it)
index_list = list(mon.i)
time_list = list(mon.t)
index_array, time_array = mon.i, mon.t
time_array has units in Brian 2

You can also access the spike times for individual neurons. In Brian 1, you could directly index the monitor which is
no longer allowed in Brian 2. Instead, ask for a dictionary of spike times and index the returned dictionary:

Brian 1 Brian 2

dictionary of spike times for each
→˓neuron:
spike_dict = mon.spiketimes
all spikes for neuron 3:
spikes_3 = spike_dict[3] # (no units)
spikes_3 = mon[3] # alternative (no
→˓units)

dictionary of spike times for each
→˓neuron:
spike_dict = mon.spike_trains()
all spikes for neuron 3:
spikes_3 = spike_dict[3] # with units

In Brian 2, SpikeMonitor also provides the functionality of the Brian 1 classes SpikeCounter and
PopulationSpikeCounter. If you are only interested in the counts and not in the individual spike events,
use record=False to save the memory of storing them:

Brian 1 Brian 2

counter = SpikeCounter(group)
pop_counter =
→˓PopulationSpikeCounter(group)
#... do the run
Number of spikes for neuron 3:
count_3 = counter[3]
Total number of spikes:
total_spikes = pop_counter.nspikes

counter = SpikeMonitor(group,
→˓record=False)

#... do the run
Number of spikes for neuron 3
count_3 = counter.count[3]
Total number of spikes:
total_spikes = counter.num_spikes

Currently Brian 2 provides no functionality to calculate statistics such as correlations or histograms online, there
is no equivalent to the following classes that existed in Brian 1: AutoCorrelogram, CoincidenceCounter,
CoincidenceMatrixCounter, ISIHistogramMonitor, VanRossumMetric. You will therefore have
to be calculate the corresponding statistiacs manually after the simulation based on the information stored in the
SpikeMonitor. If you use the default Runtime code generation, you can also create a new Python class that
calculates the statistic online (see this example from a Brian 2 tutorial).

1.3. Changes for Brian 1 users 41

https://github.com/brian-team/brian-material/blob/master/2015-CNS-tutorial/04-advanced-brian2/coincidence_counter.ipynb

Brian 2 Documentation, Release 2.1.1

Monitoring variables

Single variables are recorded with a StateMonitor in the same way as in Brian 1, but the times and variable values
are accessed differently:

Brian 1 Brian 2

mon = StateMonitor(group, 'v',
record=True)

... do the run
plot the trace of neuron 3:
plot(mon.times/ms, mon[3]/mV)
plot the traces of all neurons:
plot(mon.times/ms, mon.values.T/mV)

mon = StateMonitor(group, 'v',
record=True)

... do the run
plot the trace of neuron 3:
plot(mon.t/ms, mon[3].v/mV)
plot the traces of all neurons:
plot(mon.t/ms, mon.v.T/mV)

Further differences:

• StateMonitor now records in the 'start' scheduling slot by default. This leads to a more intuitive
correspondence between the recorded times and the values: in Brian 1 (where StateMonitor recorded in the
'end' slot) the recorded value at 0ms was not the initial value of the variable but the value after integrating
it for a single time step. The disadvantage of this new default is that the very last value at the end of the last
time step of a simulation is not recorded anymore. However, this value can be manually added to the monitor
by calling StateMonitor.record_single_timestep().

• To not record every time step, use the dt argument (as for all other classes) instead of specifying a number of
timesteps.

• Using record=False does no longer provide mean and variance of the recorded variable.

In contrast to Brian 1, StateMonitor can now record multiple variables and therefore replaces Brian 1’s
MultiStateMonitor:

Brian 1 Brian 2

mon = MultiStateMonitor(group, ['v', 'w
→˓'],

record=True)
... do the run
plot the traces of v and w for neuron
→˓3:
plot(mon['v'].times/ms, mon['v'][3]/mV)
plot(mon['w'].times/ms, mon['w'][3]/mV)

mon = StateMonitor(group, ['v', 'w'],
record=True)

... do the run
plot the traces of v and w for neuron
→˓3:
plot(mon.t/ms, mon[3].v/mV)
plot(mon.t/ms, mon[3].w/mV)

To record variable values at the times of spikes, Brian 2 no longer provides a separate class as Brian 1 did
(StateSpikeMonitor). Instead, you can use SpikeMonitor to record additional variables (in addition to the
neuron index and the spike time):

42 Chapter 1. Introduction

Brian 2 Documentation, Release 2.1.1

Brian 1 Brian 2

We assume that "group" has a varying
→˓threshold
mon = StateSpikeMonitor(group, 'v')
... do the run
plot the mean v at spike time for each
→˓neuron
mean_values = [mean(mon.values('v', idx))

for idx in
→˓range(len(group))]

plot(mean_values/mV, 'o')

We assume that "group" has a varying
→˓threshold
mon = SpikeMonitor(group, variables='v')
... do the run
plot the mean v at spike time for each
→˓neuron
values = mon.values('v')
mean_values = [mean(values[idx])

for idx in
→˓range(len(group))]
plot(mean_values/mV, 'o')

Note that there is no equivalent to StateHistogramMonitor, you will have to calculate the histogram from the
recorded values or write your own custom monitor class.

Networks and clocks (Brian 1 –> 2 conversion)

Brian 2 documentation

For the main documentation about running simulations, controling the simulation timestep, etc., see the document
Running a simulation.

• Clocks and timesteps

• Networks

Clocks and timesteps

Brian’s system of handling clocks has substantially changed. For details about the new system in place see Setting the
simulation time step. The main differences to Brian 1 are:

• There is no more “clock guessing” – objects either use the defaultclock or a dt/clock value that was
explicitly specified during their construction.

• In Brian 2, the time step is allowed to change after the creation of an object and between runs – the relevant
value is the value in place at the point of the run() call.

• It is rarely necessary to create an explicit Clock object, most of the time you should use the defaultclock
or provide a dt argument during the construction of the object.

• There’s only one Clock class, the (deprecated) FloatClock, RegularClock, etc. classes that Brian 1
provided no longer exist.

• It is no longer possible to (re-)set the time of a clock explicitly, there is no direct equivalent of Clock.reinit
and reinit_default_clock. To start a completely new simulation after you have finished a previous one,
either create a new Network or use the start_scope() mechanism. To “rewind” a simulation to a previous
point, use the new store()/restore() mechanism. For more details, see below and Running a simulation.

1.3. Changes for Brian 1 users 43

Brian 2 Documentation, Release 2.1.1

Networks

Both Brian 1 and Brian 2 offer two ways to run a simulation: either by explicitly creating a Network object, or by
using a MagicNetwork, i.e. a simple run() statement.

Explicit network

The mechanism to create explicit Network objects has not changed significantly from Brian 1 to Brian 2. However,
creating a new Network will now also automatically reset the clock back to 0s, and stricter checks no longer allow
the inclusion of the same object in multiple networks.

Brian 1 Brian 2

group = ...
mon = ...
net = Network(group, mon)
net.run(1*ms)

reinit()
group = ...
mon = ...
net = Network(group, mon)
net.run(1*ms)

group = ...
mon = ...
net = Network(group, mon)
net.run(1*ms)

new network starts at 0s
group = ...
mon = ...
net = Network(group, mon)
net.run(1*ms)

“Magic” network

For most simple, “flat”, scripts (see e.g. the Examples), the run() statement in Brian 2 automatically collects all
the Brian objects (NeuronGroup, etc.) into a “magic” network in the same way as Brian 1 did. The logic behind
this collection has changed, though, with important consequences for more complex simulation scripts: in Brian 1,
the magic network includes all Brian objects that have been created in the same execution frame as the run() call.
Objects that are created in other functions could be added using magic_return and magic_register. In Brian
2, the magic network contains all Brian objects that are visible in the same execution frame as the run() call. The
advantage of the new system is that it is clearer what will be included in the network and there is no danger of including
previously created, but no longer needed, objects in a simulation. E.g. in the following example, a common mistake in
Brian 1 was to not include the clear(), which meant that each run not only simulated the current objects, but also
all objects from previous loop iterations. Also, without the reinit_default_clock(), each run would start at
the end time of the previous run. In Brian 2, this loop does not need any explicit clearing up, each run() will only
simulate the object that it “sees” (group1, group2, syn, and mon) and start each simulation at 0s:

Brian 1 Brian 2

for r in range(100):
reinit_default_clock()
clear()
group1 = NeuronGroup(...)
group2 = NeuronGroup(...)
syn = Synapses(group1, group2, ...)
mon = SpikeMonitor(group2)
run(1*second)

for r in range(100):

group1 = NeuronGroup(...)
group2 = NeuronGroup(...)
syn = Synapses(group1, group2, ...)
mon = SpikeMonitor(group2)
run(1*second)

44 Chapter 1. Introduction

Brian 2 Documentation, Release 2.1.1

There is no replacement for the magic_return and magic_register functions. If the returned object is stored
in a variable at the level of the run() call, then it is no longer necessary to use magic_return, as the returned
object is “visible” at the level of the run() call:

Brian 1 Brian 2

@magic_return
def f():

return PoissonGroup(100,
→˓rates=100*Hz)

pg = f() # needs magic_return
mon = SpikeMonitor(pg)
run(100*ms)

def f():
return PoissonGroup(100,

→˓rates=100*Hz)

pg = f() # is "visible" and will be
→˓included
mon = SpikeMonitor(pg)
run(100*ms)

The general recommendation is however: if your script is complex (multiple functions/files/classes) and you are not
sure whether some objects will be included in the magic network, use an explicit Network object.

Note that one consequence of the “is visible” approach is that objects stored in containers (lists, dictionaries, . . .) will
not be automatically included in Brian 2. Use an explicit Network object to get around this restriction:

Brian 1 Brian 2

groups = {'exc': NeuronGroup(...),
'inh': NeuronGroup(...)}

...

run(5*ms)

groups = {'exc': NeuronGroup(...),
'inh': NeuronGroup(...)}

...
net = Network(groups)
net.run(5*ms)

External constants

In Brian 2, external constants are taken from the surrounding namespace at the point of the run() call and not when
the object is defined (for other ways to define the namespace, see External variables and functions). This allows to
easily change external constants between runs, in contrast to Brian 1 where the whether this worked or not depended
on details of the model (e.g. whether linear integration was used):

1.3. Changes for Brian 1 users 45

Brian 2 Documentation, Release 2.1.1

Brian 1 Brian 2

tau = 10*ms
to be sure that changes between runs
→˓are taken into
account, define "I" as a neuronal
→˓parameter
group = NeuronGroup(10, '''dv/dt = (-v +
→˓I) / tau : 1

I : 1''')
group.v = linspace(0, 1, 10)
group.I = 0.0
mon = StateMonitor(group, 'v',
→˓record=True)
run(5*ms)
group.I = 0.5
run(5*ms)
group.I = 0.0
run(5*ms)

tau = 10*ms

The value for I will be updated at
→˓each run
group = NeuronGroup(10, 'dv/dt = (-v +
→˓I) / tau : 1')

group.v = linspace(0, 1, 10)
I = 0.0
mon = StateMonitor(group, 'v',
→˓record=True)
run(5*ms)
I = 0.5
run(5*ms)
I = 0.0
run(5*ms)

Preferences (Brian 1 –> 2 conversion)

Brian 2 documentation

For the main documentation about preferences, see the document Preferences.

In Brian 1, preferences were set either with the function set_global_preferences or by creating a module
somewhere on the Python path called brian_global_config.py.

Setting preferences

The function set_global_preferences no longer exists in Brian 2. Instead, importing from brian2 gives you
a variable prefs that can be used to set preferences. For example, in Brian 1 you would write:

set_global_preferences(weavecompiler='gcc')

In Brian 2 you would write:

prefs.codegen.cpp.compiler = 'gcc'

Configuration file

The module brian_global_config.py is not used by Brian 2, instead we search for configuration files in the
current directory, user directory or installation directory. In Brian you would have a configuration file that looks like
this:

from brian.globalprefs import *
set_global_preferences(weavecompiler='gcc')

46 Chapter 1. Introduction

Brian 2 Documentation, Release 2.1.1

In Brian 2 you would have a file like this:

codegen.cpp.compiler = 'gcc'

Preference name changes

• defaultclock: removed because it led to unclear behaviour of scripts.

• useweave_linear_diffeq: removed because it was no longer relevant.

• useweave: now replaced by codegen.target.

• weavecompiler: now replaced by codegen.cpp.compiler.

• gcc_options: now replaced by codegen.cpp.extra_compile_args_gcc.

• openmp: now replaced by devices.cpp_standalone.openmp_threads.

• usecodegen*: removed because it was no longer relevant.

• usenewpropagate: removed because it was no longer relevant.

• usecstdp: removed because it was no longer relevant.

• brianhears_usegpu: removed because Brian Hears doesn’t exist in Brian 2.

• magic_useframes: removed because it was no longer relevant.

Multicompartmental models (Brian 1 –> 2 conversion)

Brian 2 documentation

Support for multicompartmental models is now an integral part of Brian 2 (an early version of it was included as an
experimental module in Brian 1). See the document Multicompartment models.

Brian 1 offered support for simple multi-compartmental models in the compartmentsmodule. This module allowed
you to combine the equations for several compartments into a single Equations object. This is only a suitable
solution for simple morphologies (e.g. “ball-and-stick” models) but has the advantage over using SpatialNeuron
that you can have several of such neurons in a NeuronGroup.

If you already have a definition of a model using Brian 1’s compartments module, then you can simply print out
the equations and use them directly in Brian 2. For simple models, writing the equations without that help is rather
straightforward anyway:

1.3. Changes for Brian 1 users 47

Brian 2 Documentation, Release 2.1.1

Brian 1 Brian 2

V0 = 10*mV
C = 200*pF
Ra = 150*kohm
R = 50*Mohm
soma_eqs = (MembraneEquation(C) +

IonicCurrent('I=(vm-V0)/R :
→˓amp'))
dend_eqs = MembraneEquation(C)
neuron_eqs = Compartments({'soma': soma_
→˓eqs,

'dend': dend_
→˓eqs})

neuron = NeuronGroup(N, neuron_eqs)

V0 = 10*mV
C = 200*pF
Ra = 150*kohm
R = 50*Mohm
neuron_eqs = '''
dvm_soma/dt = (I_soma + I_soma_dend)/C :
→˓volt
I_soma = (V0 - vm_soma)/R : amp
I_soma_dend = (vm_dend - vm_soma)/Ra :
→˓amp
dvm_dend/dt = -I_soma_dend/C : volt'''

neuron = NeuronGroup(N, neuron_eqs)

Library models (Brian 1 –> 2 conversion)

• Neuron models

• Ionic currents

• Synapses

Neuron models

The neuron models in Brian 1’s brian.library.IF package are nothing more than shorthands for equations. The
following table shows how the models from Brian 1 can be converted to explicit equations (and reset statements in
the case of the adaptive exponential integrate-and-fire model) for use in Brian 2. The examples include a “current” I
(depending on the model not necessarily in units of Ampère) and could e.g. be used to plot the f-I curve of the neuron.

Perfect integrator

Brian 1 Brian 2

eqs = (perfect_IF(tau=10*ms) +
Current('I : volt'))

group = NeuronGroup(N, eqs,
threshold='v > -50*mV

→˓',
reset='v = -70*mV')

tau = 10*ms
eqs = '''dvm/dt = I/tau : volt

I : volt'''
group = NeuronGroup(N, eqs,

threshold='v > -50*mV
→˓',

reset='v = -70*mV')

48 Chapter 1. Introduction

Brian 2 Documentation, Release 2.1.1

Leaky integrate-and-fire neuron

Brian 1 Brian 2

eqs = (leaky_IF(tau=10*ms, El=-70*mV) +
Current('I : volt'))

group = ... # see above

tau = 10*ms; El = -70*mV
eqs = '''dvm/dt = ((El - vm) + I)/tau :
→˓volt

I : volt'''
group = ... # see above

Exponential integrate-and-fire neuron

Brian 1 Brian 2

eqs = (exp_IF(C=1*nF, gL=30*nS, EL=-
→˓70*mV,

VT=-50*mV, DeltaT=2*mV) +
Current('I : amp'))

group = ... # see above

C = 1*nF; gL = 30*nS; EL = -70*mV; VT = -
→˓50*mV; DeltaT = 2*mV
eqs = '''dvm/dt = (gL*(EL-
→˓vm)+gL*DeltaT*exp((vm-VT)/DeltaT) + I)/
→˓C : volt

I : amp'''
group = ... # see above

Quadratic integrate-and-fire neuron

Brian 1 Brian 2

eqs = (quadratic_IF(C=1*nF, a=5*nS/mV,
EL=-70*mV, VT=-50*mV) +
Current('I : amp'))

group = ... # see above

C = 1*nF; a=5*nS/mV; EL=-70*mV; VT = -
→˓50*mV
eqs = '''dvm/dt = (a_q*(vm-EL)*(vm-VT) +
→˓I)/C : volt

I : amp'''
group = ... # see above

1.3. Changes for Brian 1 users 49

Brian 2 Documentation, Release 2.1.1

Izhikevich neuron

Brian 1 Brian 2

eqs = (Izhikevich(a=0.02/ms, b=0.2/ms) +
Current('I : volt/second'))

group = ... # see above

a = 0.02/ms; b = 0.2/ms
eqs = '''dvm/dt = (0.04/ms/mV)*vm**2+(5/
→˓ms)*vm+140*mV/ms-w + I : volt

dw/dt = a_I*(b_I*vm-w) : volt/
→˓second

I : volt/second'''
group = ... # see above

Adaptive exponential integrate-and-fire neuron (“Brette-Gerstner model”)

Brian 1 Brian 2

AdEx, aEIF, and Brette_Gerstner all
→˓refer to the same model
eqs = (aEIF(C=1*nF, gL=30*nS, EL=-70*mV,

VT=-50*mV, DeltaT=2*mV,
→˓tauw=150*ms, a=4*nS) +

Current('I:amp'))
group = NeuronGroup(N, eqs,

threshold='v > -20*mV
→˓',

→˓reset=AdaptiveReset(Vr=-70*mV, b=0.
→˓08*nA))

C = 1*nF; gL = 30*nS; EL = -70*mV; VT = -
→˓50*mV; DeltaT = 2*mV; tauw = 150*ms; a
→˓= 4*nS
eqs = '''dvm/dt = (gL*(EL-
→˓vm)+gL*DeltaT*exp((vm-VT)/DeltaT) -w +
→˓I)/C : volt

dw/dt=(a_BG*(vm-EL)-w)/tauw :
→˓amp

I : volt/second'''
group = NeuronGroup(N, eqs,

threshold='v > -20*mV
→˓',

reset='vm=-70*mV; w
→˓+= 0.08*nA')

Ionic currents

Brian 1’s functions for ionic currents, provided in brian.library.ionic_currents correspond to the follow-
ing equations (note that the currents follow the convention to use a shifted membrane potential, i.e. the membrane
potential at rest is 0mV):

50 Chapter 1. Introduction

Brian 2 Documentation, Release 2.1.1

Brian 1 Brian 2

from brian.library.ionic_currents import
→˓*
defaultclock.dt = 0.01*ms
eqs_leak = leak_current(gl=60*nS, El=10.
→˓6*mV, current_name='I_leak')

eqs_K = K_current_HH(gmax=7.2*uS, EK=-
→˓12*mV, current_name='I_K')

eqs_Na = Na_current_HH(gmax=24*uS,
→˓ENa=115*mV, current_name='I_Na')

eqs = (MembraneEquation(C=200*pF) +
eqs_leak + eqs_K + eqs+Na +
Current('I_inj : amp'))

defaultclock.dt = 0.01*ms
gl = 60*nS; El = 10.6*mV
eqs_leak = Equations('I_leak = gl*(El -
→˓vm) : amp')
g_K = 7.2*uS; EK = -12*mV
eqs_K = Equations('''I_K = g_K*n**4*(EK-
→˓vm) : amp

dn/dt = alphan*(1-
→˓n)-betan*n : 1

alphan = .01*(10*mV-
→˓vm)/(exp(1-.1*vm/mV)-1)/mV/ms : Hz

betan = .125*exp(-.
→˓0125*vm/mV)/ms : Hz''')
g_Na = 24*uS; ENa = 115*mV
eqs_Na = Equations('''I_Na = g_
→˓Na*m**3*h*(ENa-vm) : amp

dm/dt=alpham*(1-m)-
→˓betam*m : 1

dh/dt=alphah*(1-h)-
→˓betah*h : 1

alpham=.1*(25*mV-
→˓vm)/(exp(2.5-.1*vm/mV)-1)/mV/ms : Hz

betam=4*exp(-.
→˓0556*vm/mV)/ms : Hz

alphah=.07*exp(-.
→˓05*vm/mV)/ms : Hz

betah=1./(1+exp(3.-
→˓.1*vm/mV))/ms : Hz''')
C = 200*pF
eqs = Equations('''dvm/dt = (I_leak + I_
→˓K + I_Na + I_inj)/C : volt

I_inj : amp''') + eqs_
→˓leak + eqs_K + eqs_Na

Synapses

Brian 1’s synaptic models, provided in brian.library.synpases can be converted to the equivalent Brian 2
equations as follows:

1.3. Changes for Brian 1 users 51

Brian 2 Documentation, Release 2.1.1

Current-based synapses

Brian 1 Brian 2

syn_eqs = exp_current('s', tau=5*ms,
→˓current_name='I_syn')
eqs = (MembraneEquation(C=1*nF) +
→˓Current('Im = gl*(El-vm) : amp') +

syn_eqs)
group = NeuronGroup(N, eqs, threshold=
→˓'vm>-50*mV', reset='vm=-70*mV')
syn = Synapses(source, group, pre='s +=
→˓1*nA')
... connect synapses, etc.

tau = 5*ms
syn_eqs = Equations('dI_syn/dt = -I_syn/
→˓tau : amp')
eqs = (Equations('dvm/dt = (gl*(El - vm)
→˓+ I_syn)/C : volt') +

syn_eqs)
group = NeuronGroup(N, eqs, threshold=
→˓'vm>-50*mV', reset='vm=-70*mV')
syn = Synapses(source, group, pre='I_syn
→˓+= 1*nA')
... connect synapses, etc.

syn_eqs = alpha_current('s', tau=2.5*ms,
→˓current_name='I_syn')
eqs = ... # remaining code as above

tau = 2.5*ms
syn_eqs = Equations('''dI_syn/dt = (s -
→˓I_syn)/tau : amp

ds/dt = -s/tau :
→˓amp''')
group = NeuronGroup(N, eqs, threshold=
→˓'vm>-50*mV', reset='vm=-70*mV')
syn = Synapses(source, group, pre='s +=
→˓1*nA')
... connect synapses, etc.

syn_eqs = biexp_current('s', tau1=2.5*ms,
→˓ tau2=10*ms, current_name='I_syn')
eqs = ... # remaining code as above

tau1 = 2.5*ms; tau2 = 10*ms; invpeak =
→˓(tau2 / tau1) ** (tau1 / (tau2 - tau1))
syn_eqs = Equations('''dI_syn/dt =
→˓(invpeak*s - I_syn)/tau1 : amp

ds/dt = -s/tau2 :
→˓amp''')
eqs = ... # remaining code as above

Conductance-based synapses

Brian 1 Brian 2

syn_eqs = exp_conductance('s', tau=5*ms,
→˓E=0*mV, conductance_name='g_syn')
eqs = (MembraneEquation(C=1*nF) +
→˓Current('Im = gl*(El-vm) : amp') +

syn_eqs)
group = NeuronGroup(N, eqs, threshold=
→˓'vm>-50*mV', reset='vm=-70*mV')
syn = Synapses(source, group, pre='s +=
→˓10*nS')
... connect synapses, etc.

tau = 5*ms; E = 0*mV
syn_eqs = Equations('dg_syn/dt = -g_syn/
→˓tau : siemens')
eqs = (Equations('dvm/dt = (gl*(El - vm)
→˓+ g_syn*(E - vm))/C : volt') +

syn_eqs)
group = NeuronGroup(N, eqs, threshold=
→˓'vm>-50*mV', reset='vm=-70*mV')
syn = Synapses(source, group, pre='g_syn
→˓+= 10*nS')
... connect synapses, etc.

Continued on next page

52 Chapter 1. Introduction

Brian 2 Documentation, Release 2.1.1

Table 1.4 – continued from previous page
Brian 1 Brian 2

syn_eqs = alpha_conductance('s', tau=2.
→˓5*ms, E=0*mV, conductance_name='g_syn')
eqs = ... # remaining code as above

tau = 2.5*ms; E = 0*mV
syn_eqs = Equations('''dg_syn/dt = (s -
→˓g_syn)/tau : siemens

ds/dt = -s/tau :
→˓siemens''')
group = NeuronGroup(N, eqs, threshold=
→˓'vm>-50*mV', reset='vm=-70*mV')
syn = Synapses(source, group, pre='s +=
→˓10*nS')
... connect synapses, etc.

syn_eqs = biexp_conductance('s', tau1=2.
→˓5*ms, tau2=10*ms, E=0*mV,

conductance_
→˓name='g_syn')
eqs = ... # remaining code as above

tau1 = 2.5*ms; tau2 = 10*ms; E = 0*mV
invpeak = (tau2 / tau1) ** (tau1 / (tau2
→˓- tau1))
syn_eqs = Equations('''dg_syn/dt =
→˓(invpeak*s - g_syn)/tau1 : siemens

ds/dt = -s/tau2 :
→˓siemens''')
eqs = ... # remaining code as above

Brian Hears

This module is designed for users of the Brian 1 library “Brian Hears”. It allows you to use Brian Hears with Brian 2
with only a few modifications (although it’s not compatible with the “standalone” mode of Brian 2). The way it works
is by acting as a “bridge” to the version in Brian 1. To make this work, you must have a copy of Brian 1 installed
(preferably the latest version), and import Brian Hears using:

from brian2.hears import *

Many scripts will run without any changes, but there are a few caveats to be aware of. Mostly, the problems are due to
the fact that the units system in Brian 2 is not 100% compatible with the units system of Brian 1.

FilterbankGroup now follows the rules for NeuronGroup in Brian 2, which means some changes may be
necessary to match the syntax of Brian 2, for example, the following would work in Brian 1 Hears:

Leaky integrate-and-fire model with noise and refractoriness
eqs = '''
dv/dt = (I-v)/(1*ms)+0.2*xi*(2/(1*ms))**.5 : 1
I : 1
'''
anf = FilterbankGroup(ihc, 'I', eqs, reset=0, threshold=1, refractory=5*ms)

However, in Brian 2 Hears you would need to do:

Leaky integrate-and-fire model with noise and refractoriness
eqs = '''
dv/dt = (I-v)/(1*ms)+0.2*xi*(2/(1*ms))**.5 : 1 (unless refractory)
I : 1
'''
anf = FilterbankGroup(ihc, 'I', eqs, reset='v=0', threshold='v>1', refractory=5*ms)

1.3. Changes for Brian 1 users 53

Brian 2 Documentation, Release 2.1.1

Slicing sounds no longer works. Previously you could do, e.g. sound[:20*ms] but with Brian 2 you would need
to do sound.slice(0*ms, 20*ms).

In addition, some functions may not work correctly with Brian 2 units. In most circumstances, Brian 2 units
can be used interchangeably with Brian 1 units in the bridge, but in some cases it may be necessary to convert
units from one format to another, and to do that you can use the functions convert_unit_b1_to_b2 and
convert_unit_b2_to_b1.

1.4 Known issues

In addition to the issues noted below, you can refer to our bug tracker on GitHub.

List of known issues

• Cannot find msvcr90d.dll

• “AttributeError: MSVCCompiler instance has no attribute ‘compiler_cxx’”

• “Missing compiler_cxx fix for MSVCCompiler”

• Problems with numerical integration

• Jupyter notebooks and C++ standalone mode progress reporting

• Parallel Brian simulations with the weave code generation target

• Slow standalone simulations

1.4.1 Cannot find msvcr90d.dll

If you see this message coming up, find the file PythonDir\Lib\site-packages\numpy\distutils\mingw32ccompiler.
py and modify the line msvcr_dbg_success = build_msvcr_library(debug=True) to read
msvcr_dbg_success = False (you can comment out the existing line and add the new line immediately after).

1.4.2 “AttributeError: MSVCCompiler instance has no attribute ‘compiler_cxx’”

This is caused by a bug in some versions of numpy on Windows. The easiest solution is to update to the latest version
of numpy.

If that isn’t possible, a hacky solution is to modify the numpy code directly to fix the problem. The
following change may work. Modify line 388 of numpy/distutils/ccompiler.py from elif
not self.compiler_cxx: to elif not hasattr(self, 'compiler_cxx') or not self.
compiler_cxx:. If the line number is different, it should be nearby. Search for elif not self.
compiler_cxx in that file.

1.4.3 “Missing compiler_cxx fix for MSVCCompiler”

If you keep seeing this message, do not worry. It’s not possible for us to hide it, but doesn’t indicate any problems.

54 Chapter 1. Introduction

https://github.com/brian-team/brian2/issues?q=is%3Aopen+is%3Aissue+label%3Abug

Brian 2 Documentation, Release 2.1.1

1.4.4 Problems with numerical integration

In some cases, the automatic choice of numerical integration method will not be appropriate, because of a choice of
parameters that couldn’t be determined in advance. In this case, typically you will get nan (not a number) values in
the results, or large oscillations. In this case, Brian will generate a warning to let you know, but will not raise an error.

1.4.5 Jupyter notebooks and C++ standalone mode progress reporting

When you run simulations in C++ standalone mode and enable progress reporting (e.g. by using report='text'
as a keyword argument), the progress will not be displayed in the jupyter notebook. If you started the notebook from
a terminal, you will find the output there. Unfortunately, this is a tricky problem to solve at the moment, due to the
details of how the jupyter notebook handles output.

1.4.6 Parallel Brian simulations with the weave code generation target

When using the weave code generation target (the default runtime target on Python 2.x, see Runtime code generation
for details), you should avoid running multiple Brian simulations in parallel. The weave package caches compiled
files, but this cache is not prepared for multiple concurrent updates. If two Python scripts (or two processes started
from the same Python script, e.g. via the multiprocessing package) try to store compilation results at the same
time, weave will crash with an error message. The numpy and cython targets are not affected by this problem.

1.4.7 Slow standalone simulations

Some versions of the GNU standard library (in particular those used by recent Ubuntu versions) have a bug
that can dramatically slow down simulations in C++ standalone mode on modern hardware (see #803). As a
workaround, Brian will set an environment variable LD_BIND_NOW during the execution of standalone stimula-
tions which changes the way the library is linked so that it does not suffer from this problem. If this environ-
ment variable leads to unwanted behaviour on your machine, change the prefs.devices.cpp_standalone.
run_environment_variables preference.

1.5 Support

If you are stuck with a problem using Brian, please do get in touch at our email support list.

You can save time by following this procedure when reporting a problem:

1. Do try to solve the problem on your own first. Read the documentation, including using the search feature, index
and reference documentation.

2. Search the mailing list archives to see if someone else already had the same problem.

3. Before writing, try to create a minimal example that reproduces the problem. You’ll get the fastest response if
you can send just a handful of lines of code that show what isn’t working.

1.5. Support 55

https://docs.python.org/2/library/multiprocessing.html#module-multiprocessing
https://github.com/brian-team/brian2/issues/803
http://groups.google.com/group/briansupport

Brian 2 Documentation, Release 2.1.1

56 Chapter 1. Introduction

CHAPTER 2

Tutorials

The tutorial consists of a series of Jupyter Notebooks1.

For more information about how to use Jupyter Notebooks, see the Jupyter Notebook documentation.

2.1 Introduction to Brian part 1: Neurons

All Brian scripts start with the following. If you’re trying this notebook out in the Jupyter notebook, you should start
by running this cell.

from brian2 import *

Later we’ll do some plotting in the notebook, so we activate inline plotting in the notebook by doing this:

%matplotlib inline

If you are not using the Jupyter notebook to run this example (e.g. you are using a standard Python terminal, or you
copy&paste these example into an editor and run them as a script), then plots will not automatically be displayed. In
this case, call the show() command explicitly after the plotting commands.

2.1.1 Units system

Brian has a system for using quantities with physical dimensions:

20*volt

20.0 V

All of the basic SI units can be used (volt, amp, etc.) along with all the standard prefixes (m=milli, p=pico, etc.), as
well as a few special abbreviations like mV for millivolt, pF for picofarad, etc.

1 Formerly known as “IPython Notebooks”.

57

http://jupyter-notebook-beginner-guide.readthedocs.org/en/latest/what_is_jupyter.html
http://jupyter.readthedocs.org/

Brian 2 Documentation, Release 2.1.1

1000*amp

1.0 k A

1e6*volt

1.0 M V

1000*namp

1.0𝜇A

Also note that combinations of units with work as expected:

10*nA*5*Mohm

50.0 m V

And if you try to do something wrong like adding amps and volts, what happens?

5*amp+10*volt

DimensionMismatchErrorTraceback (most recent call last)

<ipython-input-8-ad1fc5691a4b> in <module>()
----> 1 5*amp+10*volt

/home/marcel/programming/brian2/brian2/units/fundamentalunits.pyc in __add__(self,
→˓other)

1422 return self._binary_operation(other, operator.add,
1423 fail_for_mismatch=True,

-> 1424 operator_str='+')
1425
1426 def __radd__(self, other):

/home/marcel/programming/brian2/brian2/units/fundamentalunits.pyc in _binary_
→˓operation(self, other, operation, dim_operation, fail_for_mismatch, operator_str,
→˓inplace)

1362 _, other_dim = fail_for_dimension_mismatch(self, other,
→˓message,

1363 value1=self,
-> 1364 value2=other)

1365
1366 if other_dim is None:

/home/marcel/programming/brian2/brian2/units/fundamentalunits.pyc in fail_for_
→˓dimension_mismatch(obj1, obj2, error_message, **error_quantities)

184 raise DimensionMismatchError(error_message, dim1)
185 else:

--> 186 raise DimensionMismatchError(error_message, dim1, dim2)
187 else:
188 return dim1, dim2

58 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.1.1

DimensionMismatchError: Cannot calculate 5. A + 10. V, units do not match (units are
→˓amp and volt).

If you haven’t see an error message in Python before that can look a bit overwhelming, but it’s actually quite simple
and it’s important to know how to read these because you’ll probably see them quite often.

You should start at the bottom and work up. The last line gives the error type DimensionMismatchError along
with a more specific message (in this case, you were trying to add together two quantities with different SI units, which
is impossible).

Working upwards, each of the sections starts with a filename (e.g. C:\Users\Dan\...) with possibly the name of
a function, and then a few lines surrounding the line where the error occurred (which is identified with an arrow).

The last of these sections shows the place in the function where the error actually happened. The section above it
shows the function that called that function, and so on until the first section will be the script that you actually run.
This sequence of sections is called a traceback, and is helpful in debugging.

If you see a traceback, what you want to do is start at the bottom and scan up the sections until you find your own file
because that’s most likely where the problem is. (Of course, your code might be correct and Brian may have a bug in
which case, please let us know on the email support list.)

2.1.2 A simple model

Let’s start by defining a simple neuron model. In Brian, all models are defined by systems of differential equations.
Here’s a simple example of what that looks like:

tau = 10*ms
eqs = '''
dv/dt = (1-v)/tau : 1
'''

In Python, the notation ''' is used to begin and end a multi-line string. So the equations are just a string with one
line per equation. The equations are formatted with standard mathematical notation, with one addition. At the end of
a line you write : unit where unit is the SI unit of that variable. Note that this is not the unit of the two sides of
the equation (which would be 1/second), but the unit of the variable defined by the equation, i.e. in this case 𝑣.

Now let’s use this definition to create a neuron.

G = NeuronGroup(1, eqs)

In Brian, you only create groups of neurons, using the class NeuronGroup. The first two arguments when you create
one of these objects are the number of neurons (in this case, 1) and the defining differential equations.

Let’s see what happens if we didn’t put the variable tau in the equation:

eqs = '''
dv/dt = 1-v : 1
'''
G = NeuronGroup(1, eqs)
run(100*ms)

BrianObjectExceptionTraceback (most recent call last)

<ipython-input-11-d086eea0b2de> in <module>()
3 '''
4 G = NeuronGroup(1, eqs)

2.1. Introduction to Brian part 1: Neurons 59

Brian 2 Documentation, Release 2.1.1

----> 5 run(100*ms)

/home/marcel/programming/brian2/brian2/units/fundamentalunits.pyc in new_f(*args,
→˓**kwds)

2353 get_
→˓dimensions(newkeyset[k]))

2354
-> 2355 result = f(*args, **kwds)

2356 if 'result' in au:
2357 if au['result'] == bool:

/home/marcel/programming/brian2/brian2/core/magic.pyc in run(duration, report, report_
→˓period, namespace, profile, level)

369 '''
370 return magic_network.run(duration, report=report, report_period=report_

→˓period,
--> 371 namespace=namespace, profile=profile,
→˓level=2+level)

372 run.__module__ = __name__
373

/home/marcel/programming/brian2/brian2/core/magic.pyc in run(self, duration, report,
→˓report_period, namespace, profile, level)

229 self._update_magic_objects(level=level+1)
230 Network.run(self, duration, report=report, report_period=report_

→˓period,
--> 231 namespace=namespace, profile=profile, level=level+1)

232
233 def store(self, name='default', filename=None, level=0):

/home/marcel/programming/brian2/brian2/core/base.pyc in device_override_decorated_
→˓function(*args, **kwds)

276 return getattr(curdev, name)(*args, **kwds)
277 else:

--> 278 return func(*args, **kwds)
279
280 device_override_decorated_function.__doc__ = func.__doc__

/home/marcel/programming/brian2/brian2/units/fundamentalunits.pyc in new_f(*args,
→˓**kwds)

2353 get_
→˓dimensions(newkeyset[k]))

2354
-> 2355 result = f(*args, **kwds)

2356 if 'result' in au:
2357 if au['result'] == bool:

/home/marcel/programming/brian2/brian2/core/network.pyc in run(self, duration, report,
→˓ report_period, namespace, profile, level)

949 namespace = get_local_namespace(level=level+3)
950

--> 951 self.before_run(namespace)

60 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.1.1

952
953 if len(self.objects)==0:

/home/marcel/programming/brian2/brian2/core/base.pyc in device_override_decorated_
→˓function(*args, **kwds)

276 return getattr(curdev, name)(*args, **kwds)
277 else:

--> 278 return func(*args, **kwds)
279
280 device_override_decorated_function.__doc__ = func.__doc__

/home/marcel/programming/brian2/brian2/core/network.pyc in before_run(self, run_
→˓namespace)

841 obj.before_run(run_namespace)
842 except Exception as ex:

--> 843 raise brian_object_exception("An error occurred when
→˓preparing an object.", obj, ex)

844
845 # Check that no object has been run as part of another network before

BrianObjectException: Original error and traceback:
Traceback (most recent call last):

File "/home/marcel/programming/brian2/brian2/core/network.py", line 841, in before_
→˓run

obj.before_run(run_namespace)
File "/home/marcel/programming/brian2/brian2/groups/neurongroup.py", line 790, in

→˓before_run
self.equations.check_units(self, run_namespace=run_namespace)

File "/home/marcel/programming/brian2/brian2/equations/equations.py", line 959, in
→˓check_units

*ex.dims)
DimensionMismatchError: Inconsistent units in differential equation defining variable
→˓v:
Expression 1-v does not have the expected unit hertz (unit is 1).

Error encountered with object named "neurongroup_1".
Object was created here (most recent call only, full details in debug log):

File "<ipython-input-11-d086eea0b2de>", line 4, in <module>
G = NeuronGroup(1, eqs)

An error occurred when preparing an object. DimensionMismatchError: Inconsistent
→˓units in differential equation defining variable v:
Expression 1-v does not have the expected unit hertz (unit is 1).
(See above for original error message and traceback.)

An error is raised, but why? The reason is that the differential equation is now dimensionally inconsistent. The
left hand side dv/dt has units of 1/second but the right hand side 1-v is dimensionless. People often find this
behaviour of Brian confusing because this sort of equation is very common in mathematics. However, for quantities
with physical dimensions it is incorrect because the results would change depending on the unit you measured it in.
For time, if you measured it in seconds the same equation would behave differently to how it would if you measured
time in milliseconds. To avoid this, we insist that you always specify dimensionally consistent equations.

Now let’s go back to the good equations and actually run the simulation.

2.1. Introduction to Brian part 1: Neurons 61

Brian 2 Documentation, Release 2.1.1

start_scope()

tau = 10*ms
eqs = '''
dv/dt = (1-v)/tau : 1
'''

G = NeuronGroup(1, eqs)
run(100*ms)

INFO No numerical integration method specified for group 'neurongroup', using
→˓method 'exact' (took 0.04s). [brian2.stateupdaters.base.method_choice]

First off, ignore that start_scope() at the top of the cell. You’ll see that in each cell in this tutorial where we run
a simulation. All it does is make sure that any Brian objects created before the function is called aren’t included in the
next run of the simulation.

Secondly, you’ll see that there is an “INFO” message about not specifying the numerical integration method. This is
harmless and just to let you know what method we chose, but we’ll fix it in the next cell by specifying the method
explicitly.

So, what has happened here? Well, the command run(100*ms) runs the simulation for 100 ms. We can see that
this has worked by printing the value of the variable v before and after the simulation.

start_scope()

G = NeuronGroup(1, eqs, method='exact')
print('Before v = %s' % G.v[0])
run(100*ms)
print('After v = %s' % G.v[0])

Before v = 0.0
After v = 0.99995460007

By default, all variables start with the value 0. Since the differential equation is dv/dt=(1-v)/tau we would
expect after a while that v would tend towards the value 1, which is just what we see. Specifically, we’d expect v to
have the value 1-exp(-t/tau). Let’s see if that’s right.

print('Expected value of v = %s' % (1-exp(-100*ms/tau)))

Expected value of v = 0.99995460007

Good news, the simulation gives the value we’d expect!

Now let’s take a look at a graph of how the variable v evolves over time.

start_scope()

G = NeuronGroup(1, eqs, method='exact')
M = StateMonitor(G, 'v', record=True)

run(30*ms)

plot(M.t/ms, M.v[0])
xlabel('Time (ms)')
ylabel('v');

62 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.1.1

This time we only ran the simulation for 30 ms so that we can see the behaviour better. It looks like it’s behaving as
expected, but let’s just check that analytically by plotting the expected behaviour on top.

start_scope()

G = NeuronGroup(1, eqs, method='exact')
M = StateMonitor(G, 'v', record=0)

run(30*ms)

plot(M.t/ms, M.v[0], 'C0', label='Brian')
plot(M.t/ms, 1-exp(-M.t/tau), 'C1--',label='Analytic')
xlabel('Time (ms)')
ylabel('v')
legend();

2.1. Introduction to Brian part 1: Neurons 63

Brian 2 Documentation, Release 2.1.1

As you can see, the blue (Brian) and dashed orange (analytic solution) lines coincide.

In this example, we used the object StateMonitor object. This is used to record the values of a neuron variable
while the simulation runs. The first two arguments are the group to record from, and the variable you want to record
from. We also specify record=0. This means that we record all values for neuron 0. We have to specify which
neurons we want to record because in large simulations with many neurons it usually uses up too much RAM to record
the values of all neurons.

Now try modifying the equations and parameters and see what happens in the cell below.

start_scope()

tau = 10*ms
eqs = '''
dv/dt = (sin(2*pi*100*Hz*t)-v)/tau : 1
'''

Change to Euler method because exact integrator doesn't work here
G = NeuronGroup(1, eqs, method='euler')
M = StateMonitor(G, 'v', record=0)

G.v = 5 # initial value

run(60*ms)

plot(M.t/ms, M.v[0])
xlabel('Time (ms)')
ylabel('v');

64 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.1.1

2.1.3 Adding spikes

So far we haven’t done anything neuronal, just played around with differential equations. Now let’s start adding
spiking behaviour.

start_scope()

tau = 10*ms
eqs = '''
dv/dt = (1-v)/tau : 1
'''

G = NeuronGroup(1, eqs, threshold='v>0.8', reset='v = 0', method='exact')

M = StateMonitor(G, 'v', record=0)
run(50*ms)
plot(M.t/ms, M.v[0])
xlabel('Time (ms)')
ylabel('v');

2.1. Introduction to Brian part 1: Neurons 65

Brian 2 Documentation, Release 2.1.1

We’ve added two new keywords to the NeuronGroup declaration: threshold='v>0.8' and reset='v =
0'. What this means is that when v>0.8 we fire a spike, and immediately reset v = 0 after the spike. We can put
any expression and series of statements as these strings.

As you can see, at the beginning the behaviour is the same as before until v crosses the threshold v>0.8 at which
point you see it reset to 0. You can’t see it in this figure, but internally Brian has registered this event as a spike. Let’s
have a look at that.

start_scope()

G = NeuronGroup(1, eqs, threshold='v>0.8', reset='v = 0', method='exact')

spikemon = SpikeMonitor(G)

run(50*ms)

print('Spike times: %s' % spikemon.t[:])

Spike times: [16. 32.1 48.2] ms

The SpikeMonitor object takes the group whose spikes you want to record as its argument and stores the spike
times in the variable t. Let’s plot those spikes on top of the other figure to see that it’s getting it right.

start_scope()

G = NeuronGroup(1, eqs, threshold='v>0.8', reset='v = 0', method='exact')

statemon = StateMonitor(G, 'v', record=0)
spikemon = SpikeMonitor(G)

run(50*ms)

plot(statemon.t/ms, statemon.v[0])

66 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.1.1

for t in spikemon.t:
axvline(t/ms, ls='--', c='C1', lw=3)

xlabel('Time (ms)')
ylabel('v');

Here we’ve used the axvline command from matplotlib to draw an orange, dashed vertical line at the time of
each spike recorded by the SpikeMonitor.

Now try changing the strings for threshold and reset in the cell above to see what happens.

2.1.4 Refractoriness

A common feature of neuron models is refractoriness. This means that after the neuron fires a spike it becomes
refractory for a certain duration and cannot fire another spike until this period is over. Here’s how we do that in Brian.

start_scope()

tau = 10*ms
eqs = '''
dv/dt = (1-v)/tau : 1 (unless refractory)
'''

G = NeuronGroup(1, eqs, threshold='v>0.8', reset='v = 0', refractory=5*ms, method=
→˓'exact')

statemon = StateMonitor(G, 'v', record=0)
spikemon = SpikeMonitor(G)

run(50*ms)

plot(statemon.t/ms, statemon.v[0])
for t in spikemon.t:

2.1. Introduction to Brian part 1: Neurons 67

Brian 2 Documentation, Release 2.1.1

axvline(t/ms, ls='--', c='C1', lw=3)
xlabel('Time (ms)')
ylabel('v');

As you can see in this figure, after the first spike, v stays at 0 for around 5 ms before it resumes its normal behaviour.
To do this, we’ve done two things. Firstly, we’ve added the keyword refractory=5*ms to the NeuronGroup
declaration. On its own, this only means that the neuron cannot spike in this period (see below), but doesn’t change how
v behaves. In order to make v stay constant during the refractory period, we have to add (unless refractory)
to the end of the definition of v in the differential equations. What this means is that the differential equation determines
the behaviour of v unless it’s refractory in which case it is switched off.

Here’s what would happen if we didn’t include (unless refractory). Note that we’ve also decreased the value
of tau and increased the length of the refractory period to make the behaviour clearer.

start_scope()

tau = 5*ms
eqs = '''
dv/dt = (1-v)/tau : 1
'''

G = NeuronGroup(1, eqs, threshold='v>0.8', reset='v = 0', refractory=15*ms, method=
→˓'exact')

statemon = StateMonitor(G, 'v', record=0)
spikemon = SpikeMonitor(G)

run(50*ms)

plot(statemon.t/ms, statemon.v[0])
for t in spikemon.t:

axvline(t/ms, ls='--', c='C1', lw=3)
axhline(0.8, ls=':', c='C2', lw=3)

68 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.1.1

xlabel('Time (ms)')
ylabel('v')
print("Spike times: %s" % spikemon.t[:])

Spike times: [8. 23.1 38.2] ms

So what’s going on here? The behaviour for the first spike is the same: v rises to 0.8 and then the neuron fires a spike
at time 8 ms before immediately resetting to 0. Since the refractory period is now 15 ms this means that the neuron
won’t be able to spike again until time 8 + 15 = 23 ms. Immediately after the first spike, the value of v now instantly
starts to rise because we didn’t specify (unless refractory) in the definition of dv/dt. However, once it
reaches the value 0.8 (the dashed green line) at time roughly 8 ms it doesn’t fire a spike even though the threshold is
v>0.8. This is because the neuron is still refractory until time 23 ms, at which point it fires a spike.

Note that you can do more complicated and interesting things with refractoriness. See the full documentation for more
details about how it works.

2.1.5 Multiple neurons

So far we’ve only been working with a single neuron. Let’s do something interesting with multiple neurons.

start_scope()

N = 100
tau = 10*ms
eqs = '''
dv/dt = (2-v)/tau : 1
'''

G = NeuronGroup(N, eqs, threshold='v>1', reset='v=0', method='exact')
G.v = 'rand()'

2.1. Introduction to Brian part 1: Neurons 69

Brian 2 Documentation, Release 2.1.1

spikemon = SpikeMonitor(G)

run(50*ms)

plot(spikemon.t/ms, spikemon.i, '.k')
xlabel('Time (ms)')
ylabel('Neuron index');

This shows a few changes. Firstly, we’ve got a new variable N determining the number of neurons. Secondly, we added
the statement G.v = 'rand()' before the run. What this does is initialise each neuron with a different uniform
random value between 0 and 1. We’ve done this just so each neuron will do something a bit different. The other big
change is how we plot the data in the end.

As well as the variable spikemon.t with the times of all the spikes, we’ve also used the variable spikemon.i
which gives the corresponding neuron index for each spike, and plotted a single black dot with time on the x-axis and
neuron index on the y-value. This is the standard “raster plot” used in neuroscience.

2.1.6 Parameters

To make these multiple neurons do something more interesting, let’s introduce per-neuron parameters that don’t have
a differential equation attached to them.

start_scope()

N = 100
tau = 10*ms
v0_max = 3.
duration = 1000*ms

eqs = '''
dv/dt = (v0-v)/tau : 1 (unless refractory)
v0 : 1

70 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.1.1

'''

G = NeuronGroup(N, eqs, threshold='v>1', reset='v=0', refractory=5*ms, method='exact')
M = SpikeMonitor(G)

G.v0 = 'i*v0_max/(N-1)'

run(duration)

figure(figsize=(12,4))
subplot(121)
plot(M.t/ms, M.i, '.k')
xlabel('Time (ms)')
ylabel('Neuron index')
subplot(122)
plot(G.v0, M.count/duration)
xlabel('v0')
ylabel('Firing rate (sp/s)');

The line v0 : 1 declares a new per-neuron parameter v0 with units 1 (i.e. dimensionless).

The line G.v0 = 'i*v0_max/(N-1)' initialises the value of v0 for each neuron varying from 0 up to v0_max.
The symbol i when it appears in strings like this refers to the neuron index.

So in this example, we’re driving the neuron towards the value v0 exponentially, but when v crosses v>1, it fires a
spike and resets. The effect is that the rate at which it fires spikes will be related to the value of v0. For v0<1 it will
never fire a spike, and as v0 gets larger it will fire spikes at a higher rate. The right hand plot shows the firing rate as
a function of the value of v0. This is the I-f curve of this neuron model.

Note that in the plot we’ve used the count variable of the SpikeMonitor: this is an array of the number of spikes
each neuron in the group fired. Dividing this by the duration of the run gives the firing rate.

2.1.7 Stochastic neurons

Often when making models of neurons, we include a random element to model the effect of various forms of neural
noise. In Brian, we can do this by using the symbol xi in differential equations. Strictly speaking, this symbol
is a “stochastic differential” but you can sort of thinking of it as just a Gaussian random variable with mean 0 and
standard deviation 1. We do have to take into account the way stochastic differentials scale with time, which is why
we multiply it by tau**-0.5 in the equations below (see a textbook on stochastic differential equations for more
details). Note that we also changed the method keyword argument to use 'euler' (which stands for the Euler-
Maruyama method); the 'exact' method that we used earlier is not applicable to stochastic differential equations.

2.1. Introduction to Brian part 1: Neurons 71

https://en.wikipedia.org/wiki/Euler%E2%80%93Maruyama_method
https://en.wikipedia.org/wiki/Euler%E2%80%93Maruyama_method

Brian 2 Documentation, Release 2.1.1

start_scope()

N = 100
tau = 10*ms
v0_max = 3.
duration = 1000*ms
sigma = 0.2

eqs = '''
dv/dt = (v0-v)/tau+sigma*xi*tau**-0.5 : 1 (unless refractory)
v0 : 1
'''

G = NeuronGroup(N, eqs, threshold='v>1', reset='v=0', refractory=5*ms, method='euler')
M = SpikeMonitor(G)

G.v0 = 'i*v0_max/(N-1)'

run(duration)

figure(figsize=(12,4))
subplot(121)
plot(M.t/ms, M.i, '.k')
xlabel('Time (ms)')
ylabel('Neuron index')
subplot(122)
plot(G.v0, M.count/duration)
xlabel('v0')
ylabel('Firing rate (sp/s)');

That’s the same figure as in the previous section but with some noise added. Note how the curve has changed shape:
instead of a sharp jump from firing at rate 0 to firing at a positive rate, it now increases in a sigmoidal fashion. This is
because no matter how small the driving force the randomness may cause it to fire a spike.

2.1.8 End of tutorial

That’s the end of this part of the tutorial. The cell below has another example. See if you can work out what it is
doing and why. Try adding a StateMonitor to record the values of the variables for one of the neurons to help you
understand it.

You could also try out the things you’ve learned in this cell.

72 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.1.1

Once you’re done with that you can move on to the next tutorial on Synapses.

start_scope()

N = 1000
tau = 10*ms
vr = -70*mV
vt0 = -50*mV
delta_vt0 = 5*mV
tau_t = 100*ms
sigma = 0.5*(vt0-vr)
v_drive = 2*(vt0-vr)
duration = 100*ms

eqs = '''
dv/dt = (v_drive+vr-v)/tau + sigma*xi*tau**-0.5 : volt
dvt/dt = (vt0-vt)/tau_t : volt
'''

reset = '''
v = vr
vt += delta_vt0
'''

G = NeuronGroup(N, eqs, threshold='v>vt', reset=reset, refractory=5*ms, method='euler
→˓')
spikemon = SpikeMonitor(G)

G.v = 'rand()*(vt0-vr)+vr'
G.vt = vt0

run(duration)

_ = hist(spikemon.t/ms, 100, histtype='stepfilled', facecolor='k',
→˓weights=ones(len(spikemon))/(N*defaultclock.dt))
xlabel('Time (ms)')
ylabel('Instantaneous firing rate (sp/s)');

2.1. Introduction to Brian part 1: Neurons 73

Brian 2 Documentation, Release 2.1.1

2.2 Introduction to Brian part 2: Synapses

If you haven’t yet read part 1: Neurons, go read that now.

As before we start by importing the Brian package and setting up matplotlib for IPython:

from brian2 import *
%matplotlib inline

2.2.1 The simplest Synapse

Once you have some neurons, the next step is to connect them up via synapses. We’ll start out with doing the simplest
possible type of synapse that causes an instantaneous change in a variable after a spike.

start_scope()

eqs = '''
dv/dt = (I-v)/tau : 1
I : 1
tau : second
'''
G = NeuronGroup(2, eqs, threshold='v>1', reset='v = 0', method='exact')
G.I = [2, 0]
G.tau = [10, 100]*ms

Comment these two lines out to see what happens without Synapses
S = Synapses(G, G, on_pre='v_post += 0.2')
S.connect(i=0, j=1)

M = StateMonitor(G, 'v', record=True)

74 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.1.1

run(100*ms)

plot(M.t/ms, M.v[0], label='Neuron 0')
plot(M.t/ms, M.v[1], label='Neuron 1')
xlabel('Time (ms)')
ylabel('v')
legend();

There are a few things going on here. First of all, let’s recap what is going on with the NeuronGroup. We’ve created
two neurons, each of which has the same differential equation but different values for parameters I and tau. Neuron 0
has I=2 and tau=10*ms which means that is driven to repeatedly spike at a fairly high rate. Neuron 1 has I=0 and
tau=100*ms which means that on its own - without the synapses - it won’t spike at all (the driving current I is 0).
You can prove this to yourself by commenting out the two lines that define the synapse.

Next we define the synapses: Synapses(source, target, ...) means that we are defining a synaptic model
that goes from source to target. In this case, the source and target are both the same, the group G. The syntax
on_pre='v_post += 0.2' means that when a spike occurs in the presynaptic neuron (hence on_pre) it causes
an instantaneous change to happen v_post += 0.2. The _post means that the value of v referred to is the post-
synaptic value, and it is increased by 0.2. So in total, what this model says is that whenever two neurons in G are
connected by a synapse, when the source neuron fires a spike the target neuron will have its value of v increased by
0.2.

However, at this point we have only defined the synapse model, we haven’t actually created any synapses. The next
line S.connect(i=0, j=1) creates a synapse from neuron 0 to neuron 1.

2.2.2 Adding a weight

In the previous section, we hard coded the weight of the synapse to be the value 0.2, but often we would to allow this
to be different for different synapses. We do that by introducing synapse equations.

2.2. Introduction to Brian part 2: Synapses 75

Brian 2 Documentation, Release 2.1.1

start_scope()

eqs = '''
dv/dt = (I-v)/tau : 1
I : 1
tau : second
'''
G = NeuronGroup(3, eqs, threshold='v>1', reset='v = 0', method='exact')
G.I = [2, 0, 0]
G.tau = [10, 100, 100]*ms

Comment these two lines out to see what happens without Synapses
S = Synapses(G, G, 'w : 1', on_pre='v_post += w')
S.connect(i=0, j=[1, 2])
S.w = 'j*0.2'

M = StateMonitor(G, 'v', record=True)

run(50*ms)

plot(M.t/ms, M.v[0], label='Neuron 0')
plot(M.t/ms, M.v[1], label='Neuron 1')
plot(M.t/ms, M.v[2], label='Neuron 2')
xlabel('Time (ms)')
ylabel('v')
legend();

This example behaves very similarly to the previous example, but now there’s a synaptic weight variable w. The string
'w : 1' is an equation string, precisely the same as for neurons, that defines a single dimensionless parameter
w. We changed the behaviour on a spike to on_pre='v_post += w' now, so that each synapse can behave
differently depending on the value of w. To illustrate this, we’ve made a third neuron which behaves precisely the
same as the second neuron, and connected neuron 0 to both neurons 1 and 2. We’ve also set the weights via S.w =
'j*0.2'. When i and j occur in the context of synapses, i refers to the source neuron index, and j to the target

76 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.1.1

neuron index. So this will give a synaptic connection from 0 to 1 with weight 0.2=0.2*1 and from 0 to 2 with
weight 0.4=0.2*2.

2.2.3 Introducing a delay

So far, the synapses have been instantaneous, but we can also make them act with a certain delay.

start_scope()

eqs = '''
dv/dt = (I-v)/tau : 1
I : 1
tau : second
'''
G = NeuronGroup(3, eqs, threshold='v>1', reset='v = 0', method='exact')
G.I = [2, 0, 0]
G.tau = [10, 100, 100]*ms

S = Synapses(G, G, 'w : 1', on_pre='v_post += w')
S.connect(i=0, j=[1, 2])
S.w = 'j*0.2'
S.delay = 'j*2*ms'

M = StateMonitor(G, 'v', record=True)

run(50*ms)

plot(M.t/ms, M.v[0], label='Neuron 0')
plot(M.t/ms, M.v[1], label='Neuron 1')
plot(M.t/ms, M.v[2], label='Neuron 2')
xlabel('Time (ms)')
ylabel('v')
legend();

2.2. Introduction to Brian part 2: Synapses 77

Brian 2 Documentation, Release 2.1.1

As you can see, that’s as simple as adding a line S.delay = 'j*2*ms' so that the synapse from 0 to 1 has a delay
of 2 ms, and from 0 to 2 has a delay of 4 ms.

2.2.4 More complex connectivity

So far, we specified the synaptic connectivity explicitly, but for larger networks this isn’t usually possible. For that,
we usually want to specify some condition.

start_scope()

N = 10
G = NeuronGroup(N, 'v:1')
S = Synapses(G, G)
S.connect(condition='i!=j', p=0.2)

Here we’ve created a dummy neuron group of N neurons and a dummy synapses model that doens’t actually do any-
thing just to demonstrate the connectivity. The line S.connect(condition='i!=j', p=0.2) will connect
all pairs of neurons i and j with probability 0.2 as long as the condition i!=j holds. So, how can we see that
connectivity? Here’s a little function that will let us visualise it.

def visualise_connectivity(S):
Ns = len(S.source)
Nt = len(S.target)
figure(figsize=(10, 4))
subplot(121)
plot(zeros(Ns), arange(Ns), 'ok', ms=10)
plot(ones(Nt), arange(Nt), 'ok', ms=10)
for i, j in zip(S.i, S.j):

plot([0, 1], [i, j], '-k')
xticks([0, 1], ['Source', 'Target'])
ylabel('Neuron index')
xlim(-0.1, 1.1)

78 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.1.1

ylim(-1, max(Ns, Nt))
subplot(122)
plot(S.i, S.j, 'ok')
xlim(-1, Ns)
ylim(-1, Nt)
xlabel('Source neuron index')
ylabel('Target neuron index')

visualise_connectivity(S)

There are two plots here. On the left hand side, you see a vertical line of circles indicating source neurons on the left,
and a vertical line indicating target neurons on the right, and a line between two neurons that have a synapse. On the
right hand side is another way of visualising the same thing. Here each black dot is a synapse, with x value the source
neuron index, and y value the target neuron index.

Let’s see how these figures change as we change the probability of a connection:

start_scope()

N = 10
G = NeuronGroup(N, 'v:1')

for p in [0.1, 0.5, 1.0]:
S = Synapses(G, G)
S.connect(condition='i!=j', p=p)
visualise_connectivity(S)
suptitle('p = '+str(p))

2.2. Introduction to Brian part 2: Synapses 79

Brian 2 Documentation, Release 2.1.1

80 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.1.1

And let’s see what another connectivity condition looks like. This one will only connect neighbouring neurons.

start_scope()

N = 10
G = NeuronGroup(N, 'v:1')

S = Synapses(G, G)
S.connect(condition='abs(i-j)<4 and i!=j')
visualise_connectivity(S)

Try using that cell to see how other connectivity conditions look like.

You can also use the generator syntax to create connections like this more efficiently. In small examples like this,
it doesn’t matter, but for large numbers of neurons it can be much more efficient to specify directly which neurons
should be connected than to specify just a condition. Note that the following example uses skip_if_invalid to
avoid errors at the boundaries (e.g. do not try to connect the neuron with index 1 to a neuron with index -2).

2.2. Introduction to Brian part 2: Synapses 81

Brian 2 Documentation, Release 2.1.1

start_scope()

N = 10
G = NeuronGroup(N, 'v:1')

S = Synapses(G, G)
S.connect(j='k for k in range(i-3, i+4) if i!=k', skip_if_invalid=True)
visualise_connectivity(S)

If each source neuron is connected to precisely one target neuron (which would be normally used with two separate
groups of the same size, not with identical source and target groups as in this example), there is a special syntax that
is extremely efficient. For example, 1-to-1 connectivity looks like this:

start_scope()

N = 10
G = NeuronGroup(N, 'v:1')

S = Synapses(G, G)
S.connect(j='i')
visualise_connectivity(S)

82 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.1.1

You can also do things like specifying the value of weights with a string. Let’s see an example where we assign each
neuron a spatial location and have a distance-dependent connectivity function. We visualise the weight of a synapse
by the size of the marker.

start_scope()

N = 30
neuron_spacing = 50*umetre
width = N/4.0*neuron_spacing

Neuron has one variable x, its position
G = NeuronGroup(N, 'x : metre')
G.x = 'i*neuron_spacing'

All synapses are connected (excluding self-connections)
S = Synapses(G, G, 'w : 1')
S.connect(condition='i!=j')
Weight varies with distance
S.w = 'exp(-(x_pre-x_post)**2/(2*width**2))'

scatter(S.x_pre/um, S.x_post/um, S.w*20)
xlabel('Source neuron position (um)')
ylabel('Target neuron position (um)');

2.2. Introduction to Brian part 2: Synapses 83

Brian 2 Documentation, Release 2.1.1

Now try changing that function and seeing how the plot changes.

2.2.5 More complex synapse models: STDP

Brian’s synapse framework is very general and can do things like short-term plasticity (STP) or spike-timing dependent
plasticity (STDP). Let’s see how that works for STDP.

STDP is normally defined by an equation something like this:

∆𝑤 =
∑︁
𝑡𝑝𝑟𝑒

∑︁
𝑡𝑝𝑜𝑠𝑡

𝑊 (𝑡𝑝𝑜𝑠𝑡 − 𝑡𝑝𝑟𝑒)

That is, the change in synaptic weight w is the sum over all presynaptic spike times 𝑡𝑝𝑟𝑒 and postsynaptic spike times
𝑡𝑝𝑜𝑠𝑡 of some function 𝑊 of the difference in these spike times. A commonly used function 𝑊 is:

𝑊 (∆𝑡) =

{︃
𝐴𝑝𝑟𝑒𝑒

−Δ𝑡/𝜏𝑝𝑟𝑒 ∆𝑡 > 0

𝐴𝑝𝑜𝑠𝑡𝑒
Δ𝑡/𝜏𝑝𝑜𝑠𝑡 ∆𝑡 < 0

This function looks like this:

tau_pre = tau_post = 20*ms
A_pre = 0.01
A_post = -A_pre*1.05
delta_t = linspace(-50, 50, 100)*ms
W = where(delta_t>0, A_pre*exp(-delta_t/tau_pre), A_post*exp(delta_t/tau_post))
plot(delta_t/ms, W)
xlabel(r'Δt (ms)')
ylabel('W')
axhline(0, ls='-', c='k');

84 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.1.1

Simulating it directly using this equation though would be very inefficient, because we would have to sum over all
pairs of spikes. That would also be physiologically unrealistic because the neuron cannot remember all its previous
spike times. It turns out there is a more efficient and physiologically more plausible way to get the same effect.

We define two new variables 𝑎𝑝𝑟𝑒 and 𝑎𝑝𝑜𝑠𝑡 which are “traces” of pre- and post-synaptic activity, governed by the
differential equations:

𝜏𝑝𝑟𝑒
d

d𝑡
𝑎𝑝𝑟𝑒 = −𝑎𝑝𝑟𝑒 (2.1)

𝜏𝑝𝑜𝑠𝑡
d

d𝑡
𝑎𝑝𝑜𝑠𝑡 = −𝑎𝑝𝑜𝑠𝑡 (2.2)

(2.3)

When a presynaptic spike occurs, the presynaptic trace is updated and the weight is modified according to the rule:

𝑎𝑝𝑟𝑒 → 𝑎𝑝𝑟𝑒 + 𝐴𝑝𝑟𝑒 (2.4)
𝑤 → 𝑤 + 𝑎𝑝𝑜𝑠𝑡 (2.5)

When a postsynaptic spike occurs:

𝑎𝑝𝑜𝑠𝑡 → 𝑎𝑝𝑜𝑠𝑡 + 𝐴𝑝𝑜𝑠𝑡 (2.6)
𝑤 → 𝑤 + 𝑎𝑝𝑟𝑒 (2.7)

To see that this formulation is equivalent, you just have to check that the equations sum linearly, and consider two
cases: what happens if the presynaptic spike occurs before the postsynaptic spike, and vice versa. Try drawing a
picture of it.

2.2. Introduction to Brian part 2: Synapses 85

Brian 2 Documentation, Release 2.1.1

Now that we have a formulation that relies only on differential equations and spike events, we can turn that into Brian
code.

start_scope()

taupre = taupost = 20*ms
wmax = 0.01
Apre = 0.01
Apost = -Apre*taupre/taupost*1.05

G = NeuronGroup(1, 'v:1', threshold='v>1')

S = Synapses(G, G,
'''
w : 1
dapre/dt = -apre/taupre : 1 (event-driven)
dapost/dt = -apost/taupost : 1 (event-driven)
''',
on_pre='''
v_post += w
apre += Apre
w = clip(w+apost, 0, wmax)
''',
on_post='''
apost += Apost
w = clip(w+apre, 0, wmax)
''')

There are a few things to see there. Firstly, when defining the synapses we’ve given a more complicated multi-
line string defining three synaptic variables (w, apre and apost). We’ve also got a new bit of syntax there,
(event-driven) after the definitions of apre and apost. What this means is that although these two vari-
ables evolve continuously over time, Brian should only update them at the time of an event (a spike). This is because
we don’t need the values of apre and apost except at spike times, and it is more efficient to only update them when
needed.

Next we have a on_pre=... argument. The first line is v_post += w: this is the line that actually applies the
synaptic weight to the target neuron. The second line is apre += Apre which encodes the rule above. In the
third line, we’re also encoding the rule above but we’ve added one extra feature: we’ve clamped the synaptic weights
between a minimum of 0 and a maximum of wmax so that the weights can’t get too large or negative. The function
clip(x, low, high) does this.

Finally, we have a on_post=... argument. This gives the statements to calculate when a post-synaptic neuron fires.
Note that we do not modify v in this case, only the synaptic variables.

Now let’s see how all the variables behave when a presynaptic spike arrives some time before a postsynaptic spike.

start_scope()

taupre = taupost = 20*ms
wmax = 0.01
Apre = 0.01
Apost = -Apre*taupre/taupost*1.05

G = NeuronGroup(2, 'v:1', threshold='t>(1+i)*10*ms', refractory=100*ms)

S = Synapses(G, G,
'''
w : 1
dapre/dt = -apre/taupre : 1 (clock-driven)

86 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.1.1

dapost/dt = -apost/taupost : 1 (clock-driven)
''',
on_pre='''
v_post += w
apre += Apre
w = clip(w+apost, 0, wmax)
''',
on_post='''
apost += Apost
w = clip(w+apre, 0, wmax)
''', method='linear')

S.connect(i=0, j=1)
M = StateMonitor(S, ['w', 'apre', 'apost'], record=True)

run(30*ms)

figure(figsize=(4, 8))
subplot(211)
plot(M.t/ms, M.apre[0], label='apre')
plot(M.t/ms, M.apost[0], label='apost')
legend()
subplot(212)
plot(M.t/ms, M.w[0], label='w')
legend(loc='best')
xlabel('Time (ms)');

2.2. Introduction to Brian part 2: Synapses 87

Brian 2 Documentation, Release 2.1.1

A couple of things to note here. First of all, we’ve used a trick to make neuron 0 fire a spike at time 10 ms, and neuron
1 at time 20 ms. Can you see how that works?

Secondly, we’ve replaced the (event-driven) by (clock-driven) so you can see how apre and apost
evolve over time. Try reverting this change and see what happens.

Try changing the times of the spikes to see what happens.

Finally, let’s verify that this formulation is equivalent to the original one.

start_scope()

taupre = taupost = 20*ms
Apre = 0.01
Apost = -Apre*taupre/taupost*1.05

88 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.1.1

tmax = 50*ms
N = 100

Presynaptic neurons G spike at times from 0 to tmax
Postsynaptic neurons G spike at times from tmax to 0
So difference in spike times will vary from -tmax to +tmax
G = NeuronGroup(N, 'tspike:second', threshold='t>tspike', refractory=100*ms)
H = NeuronGroup(N, 'tspike:second', threshold='t>tspike', refractory=100*ms)
G.tspike = 'i*tmax/(N-1)'
H.tspike = '(N-1-i)*tmax/(N-1)'

S = Synapses(G, H,
'''
w : 1
dapre/dt = -apre/taupre : 1 (event-driven)
dapost/dt = -apost/taupost : 1 (event-driven)
''',
on_pre='''
apre += Apre
w = w+apost
''',
on_post='''
apost += Apost
w = w+apre
''')

S.connect(j='i')

run(tmax+1*ms)

plot((H.tspike-G.tspike)/ms, S.w)
xlabel(r'Δt (ms)')
ylabel(r'Δw')
axhline(0, ls='-', c='k');

2.2. Introduction to Brian part 2: Synapses 89

Brian 2 Documentation, Release 2.1.1

Can you see how this works?

2.2.6 End of tutorial

2.3 Introduction to Brian part 3: Simulations

If you haven’t yet read parts 1 and 2 on Neurons and Synapses, go read them first.

This tutorial is about managing the slightly more complicated tasks that crop up in research problems, rather than the
toy examples we’ve been looking at so far. So we cover things like inputting sensory data, modelling experimental
conditions, etc.

As before we start by importing the Brian package and setting up matplotlib for IPython:

from brian2 import *
%matplotlib inline

2.3.1 Multiple runs

Let’s start by looking at a very common task: doing multiple runs of a simulation with some parameter that changes.
Let’s start off with something very simple, how does the firing rate of a leaky integrate-and-fire neuron driven by
Poisson spiking neurons change depending on its membrane time constant? Let’s set that up.

remember, this is here for running separate simulations in the same notebook
start_scope()
Parameters
num_inputs = 100
input_rate = 10*Hz
weight = 0.1
Range of time constants

90 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.1.1

tau_range = linspace(1, 10, 30)*ms
Use this list to store output rates
output_rates = []
Iterate over range of time constants
for tau in tau_range:

Construct the network each time
P = PoissonGroup(num_inputs, rates=input_rate)
eqs = '''
dv/dt = -v/tau : 1
'''
G = NeuronGroup(1, eqs, threshold='v>1', reset='v=0', method='exact')
S = Synapses(P, G, on_pre='v += weight')
S.connect()
M = SpikeMonitor(G)
Run it and store the output firing rate in the list
run(1*second)
output_rates.append(M.num_spikes/second)

And plot it
plot(tau_range/ms, output_rates)
xlabel(r'τ (ms)')
ylabel('Firing rate (sp/s)');

Now if you’re running the notebook, you’ll see that this was a little slow to run. The reason is that for each loop,
you’re recreating the objects from scratch. We can improve that by setting up the network just once. We store a copy
of the state of the network before the loop, and restore it at the beginning of each iteration.

start_scope()
num_inputs = 100
input_rate = 10*Hz
weight = 0.1
tau_range = linspace(1, 10, 30)*ms
output_rates = []
Construct the network just once

2.3. Introduction to Brian part 3: Simulations 91

Brian 2 Documentation, Release 2.1.1

P = PoissonGroup(num_inputs, rates=input_rate)
eqs = '''
dv/dt = -v/tau : 1
'''
G = NeuronGroup(1, eqs, threshold='v>1', reset='v=0', method='exact')
S = Synapses(P, G, on_pre='v += weight')
S.connect()
M = SpikeMonitor(G)
Store the current state of the network
store()
for tau in tau_range:

Restore the original state of the network
restore()
Run it with the new value of tau
run(1*second)
output_rates.append(M.num_spikes/second)

plot(tau_range/ms, output_rates)
xlabel(r'τ (ms)')
ylabel('Firing rate (sp/s)');

That’s a very simple example of using store and restore, but you can use it in much more complicated situations. For
example, you might want to run a long training run, and then run multiple test runs afterwards. Simply put a store after
the long training run, and a restore before each testing run.

You can also see that the output curve is very noisy and doesn’t increase monotonically like we’d expect. The noise
is coming from the fact that we run the Poisson group afresh each time. If we only wanted to see the effect of the
time constant, we could make sure that the spikes were the same each time (although note that really, you ought to do
multiple runs and take an average). We do this by running just the Poisson group once, recording its spikes, and then
creating a new SpikeGeneratorGroup that will output those recorded spikes each time.

start_scope()
num_inputs = 100
input_rate = 10*Hz

92 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.1.1

weight = 0.1
tau_range = linspace(1, 10, 30)*ms
output_rates = []
Construct the Poisson spikes just once
P = PoissonGroup(num_inputs, rates=input_rate)
MP = SpikeMonitor(P)
We use a Network object because later on we don't
want to include these objects
net = Network(P, MP)
net.run(1*second)
And keep a copy of those spikes
spikes_i = MP.i
spikes_t = MP.t
Now construct the network that we run each time
SpikeGeneratorGroup gets the spikes that we created before
SGG = SpikeGeneratorGroup(num_inputs, spikes_i, spikes_t)
eqs = '''
dv/dt = -v/tau : 1
'''
G = NeuronGroup(1, eqs, threshold='v>1', reset='v=0', method='exact')
S = Synapses(SGG, G, on_pre='v += weight')
S.connect()
M = SpikeMonitor(G)
Store the current state of the network
net = Network(SGG, G, S, M)
net.store()
for tau in tau_range:

Restore the original state of the network
net.restore()
Run it with the new value of tau
net.run(1*second)
output_rates.append(M.num_spikes/second)

plot(tau_range/ms, output_rates)
xlabel(r'τ (ms)')
ylabel('Firing rate (sp/s)');

2.3. Introduction to Brian part 3: Simulations 93

Brian 2 Documentation, Release 2.1.1

You can see that now there is much less noise and it increases monotonically because the input spikes are the same
each time, meaning we’re seeing the effect of the time constant, not the random spikes.

Note that in the code above, we created Network objects. The reason is that in the loop, if we just called run it
would try to simulate all the objects, including the Poisson neurons P, and we only want to run that once. We use
Network to specify explicitly which objects we want to include.

The techniques we’ve looked at so far are the conceptually most simple way to do multiple runs, but not always the
most efficient. Since there’s only a single output neuron in the model above, we can simply duplicate that output
neuron and make the time constant a parameter of the group.

start_scope()
num_inputs = 100
input_rate = 10*Hz
weight = 0.1
tau_range = linspace(1, 10, 30)*ms
num_tau = len(tau_range)
P = PoissonGroup(num_inputs, rates=input_rate)
We make tau a parameter of the group
eqs = '''
dv/dt = -v/tau : 1
tau : second
'''
And we have num_tau output neurons, each with a different tau
G = NeuronGroup(num_tau, eqs, threshold='v>1', reset='v=0', method='exact')
G.tau = tau_range
S = Synapses(P, G, on_pre='v += weight')
S.connect()
M = SpikeMonitor(G)
Now we can just run once with no loop
run(1*second)
output_rates = M.count/second # firing rate is count/duration
plot(tau_range/ms, output_rates)
xlabel(r'τ (ms)')

94 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.1.1

ylabel('Firing rate (sp/s)');

WARNING "tau" is an internal variable of group "neurongroup_2", but also exists in
→˓the run namespace with the value 10. * msecond. The internal variable will be used.
→˓[brian2.groups.group.Group.resolve.resolution_conflict]

You can see that this is much faster again! It’s a little bit more complicated conceptually, and it’s not always possible
to do this trick, but it can be much more efficient if it’s possible.

Let’s finish with this example by having a quick look at how the mean and standard deviation of the interspike intervals
depends on the time constant.

trains = M.spike_trains()
isi_mu = full(num_tau, nan)*second
isi_std = full(num_tau, nan)*second
for idx in range(num_tau):

train = diff(trains[idx])
if len(train)>1:

isi_mu[idx] = mean(train)
isi_std[idx] = std(train)

errorbar(tau_range/ms, isi_mu/ms, yerr=isi_std/ms)
xlabel(r'τ (ms)')
ylabel('Interspike interval (ms)');

2.3. Introduction to Brian part 3: Simulations 95

Brian 2 Documentation, Release 2.1.1

Notice that we used the spike_trains() method of SpikeMonitor. This is a dictionary with keys being the
indices of the neurons and values being the array of spike times for that neuron.

2.3.2 Changing things during a run

Imagine an experiment where you inject current into a neuron, and change the amplitude randomly every 10 ms. Let’s
see if we can model that using a Hodgkin-Huxley type neuron.

start_scope()
Parameters
area = 20000*umetre**2
Cm = 1*ufarad*cm**-2 * area
gl = 5e-5*siemens*cm**-2 * area
El = -65*mV
EK = -90*mV
ENa = 50*mV
g_na = 100*msiemens*cm**-2 * area
g_kd = 30*msiemens*cm**-2 * area
VT = -63*mV
The model
eqs_HH = '''
dv/dt = (gl*(El-v) - g_na*(m*m*m)*h*(v-ENa) - g_kd*(n*n*n*n)*(v-EK) + I)/Cm : volt
dm/dt = 0.32*(mV**-1)*(13.*mV-v+VT)/

(exp((13.*mV-v+VT)/(4.*mV))-1.)/ms*(1-m)-0.28*(mV**-1)*(v-VT-40.*mV)/
(exp((v-VT-40.*mV)/(5.*mV))-1.)/ms*m : 1

dn/dt = 0.032*(mV**-1)*(15.*mV-v+VT)/
(exp((15.*mV-v+VT)/(5.*mV))-1.)/ms*(1.-n)-.5*exp((10.*mV-v+VT)/(40.*mV))/ms*n : 1

dh/dt = 0.128*exp((17.*mV-v+VT)/(18.*mV))/ms*(1.-h)-4./(1+exp((40.*mV-v+VT)/(5.*mV)))/
→˓ms*h : 1
I : amp
'''
group = NeuronGroup(1, eqs_HH,

96 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.1.1

threshold='v > -40*mV',
refractory='v > -40*mV',
method='exponential_euler')

group.v = El
statemon = StateMonitor(group, 'v', record=True)
spikemon = SpikeMonitor(group, variables='v')
figure(figsize=(9, 4))
for l in range(5):

group.I = rand()*50*nA
run(10*ms)
axvline(l*10, ls='--', c='k')

axhline(El/mV, ls='-', c='lightgray', lw=3)
plot(statemon.t/ms, statemon.v[0]/mV, '-b')
plot(spikemon.t/ms, spikemon.v/mV, 'ob')
xlabel('Time (ms)')
ylabel('v (mV)');

In the code above, we used a loop over multiple runs to achieve this. That’s fine, but it’s not the most efficient way
to do it because each time we call run we have to do a lot of initialisation work that slows everything down. It also
won’t work as well with the more efficient standalone mode of Brian. Here’s another way.

start_scope()
group = NeuronGroup(1, eqs_HH,

threshold='v > -40*mV',
refractory='v > -40*mV',
method='exponential_euler')

group.v = El
statemon = StateMonitor(group, 'v', record=True)
spikemon = SpikeMonitor(group, variables='v')
we replace the loop with a run_regularly
group.run_regularly('I = rand()*50*nA', dt=10*ms)
run(50*ms)
figure(figsize=(9, 4))
we keep the loop just to draw the vertical lines
for l in range(5):

axvline(l*10, ls='--', c='k')
axhline(El/mV, ls='-', c='lightgray', lw=3)

2.3. Introduction to Brian part 3: Simulations 97

Brian 2 Documentation, Release 2.1.1

plot(statemon.t/ms, statemon.v[0]/mV, '-b')
plot(spikemon.t/ms, spikemon.v/mV, 'ob')
xlabel('Time (ms)')
ylabel('v (mV)');

We’ve replaced the loop that had multiple run calls with a run_regularly. This makes the specified block of code
run every dt=10*ms. The run_regularly lets you run code specific to a single NeuronGroup, but sometimes
you might need more flexibility. For this, you can use network_operation which lets you run arbitrary Python
code (but won’t work with the standalone mode).

start_scope()
group = NeuronGroup(1, eqs_HH,

threshold='v > -40*mV',
refractory='v > -40*mV',
method='exponential_euler')

group.v = El
statemon = StateMonitor(group, 'v', record=True)
spikemon = SpikeMonitor(group, variables='v')
we replace the loop with a network_operation
@network_operation(dt=10*ms)
def change_I():

group.I = rand()*50*nA
run(50*ms)
figure(figsize=(9, 4))
for l in range(5):

axvline(l*10, ls='--', c='k')
axhline(El/mV, ls='-', c='lightgray', lw=3)
plot(statemon.t/ms, statemon.v[0]/mV, '-b')
plot(spikemon.t/ms, spikemon.v/mV, 'ob')
xlabel('Time (ms)')
ylabel('v (mV)');

98 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.1.1

Now let’s extend this example to run on multiple neurons, each with a different capacitance to see how that affects the
behaviour of the cell.

start_scope()
N = 3
eqs_HH_2 = '''
dv/dt = (gl*(El-v) - g_na*(m*m*m)*h*(v-ENa) - g_kd*(n*n*n*n)*(v-EK) + I)/C : volt
dm/dt = 0.32*(mV**-1)*(13.*mV-v+VT)/

(exp((13.*mV-v+VT)/(4.*mV))-1.)/ms*(1-m)-0.28*(mV**-1)*(v-VT-40.*mV)/
(exp((v-VT-40.*mV)/(5.*mV))-1.)/ms*m : 1

dn/dt = 0.032*(mV**-1)*(15.*mV-v+VT)/
(exp((15.*mV-v+VT)/(5.*mV))-1.)/ms*(1.-n)-.5*exp((10.*mV-v+VT)/(40.*mV))/ms*n : 1

dh/dt = 0.128*exp((17.*mV-v+VT)/(18.*mV))/ms*(1.-h)-4./(1+exp((40.*mV-v+VT)/(5.*mV)))/
→˓ms*h : 1
I : amp
C : farad
'''
group = NeuronGroup(N, eqs_HH_2,

threshold='v > -40*mV',
refractory='v > -40*mV',
method='exponential_euler')

group.v = El
initialise with some different capacitances
group.C = array([0.8, 1, 1.2])*ufarad*cm**-2*area
statemon = StateMonitor(group, variables=True, record=True)
we go back to run_regularly
group.run_regularly('I = rand()*50*nA', dt=10*ms)
run(50*ms)
figure(figsize=(9, 4))
for l in range(5):

axvline(l*10, ls='--', c='k')
axhline(El/mV, ls='-', c='lightgray', lw=3)
plot(statemon.t/ms, statemon.v.T/mV, '-')
xlabel('Time (ms)')
ylabel('v (mV)');

2.3. Introduction to Brian part 3: Simulations 99

Brian 2 Documentation, Release 2.1.1

So that runs, but something looks wrong! The injected currents look like they’re different for all the different neurons!
Let’s check:

plot(statemon.t/ms, statemon.I.T/nA, '-')
xlabel('Time (ms)')
ylabel('I (nA)');

Sure enough, it’s different each time. But why? We wrote group.run_regularly('I = rand()*50*nA',
dt=10*ms) which seems like it should give the same value of I for each neuron. But, like threshold and reset state-
ments, run_regularly code is interpreted as being run separately for each neuron, and because I is a parameter, it
can be different for each neuron. We can fix this by making I into a shared variable, meaning it has the same value for
each neuron.

100 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.1.1

start_scope()
N = 3
eqs_HH_3 = '''
dv/dt = (gl*(El-v) - g_na*(m*m*m)*h*(v-ENa) - g_kd*(n*n*n*n)*(v-EK) + I)/C : volt
dm/dt = 0.32*(mV**-1)*(13.*mV-v+VT)/

(exp((13.*mV-v+VT)/(4.*mV))-1.)/ms*(1-m)-0.28*(mV**-1)*(v-VT-40.*mV)/
(exp((v-VT-40.*mV)/(5.*mV))-1.)/ms*m : 1

dn/dt = 0.032*(mV**-1)*(15.*mV-v+VT)/
(exp((15.*mV-v+VT)/(5.*mV))-1.)/ms*(1.-n)-.5*exp((10.*mV-v+VT)/(40.*mV))/ms*n : 1

dh/dt = 0.128*exp((17.*mV-v+VT)/(18.*mV))/ms*(1.-h)-4./(1+exp((40.*mV-v+VT)/(5.*mV)))/
→˓ms*h : 1
I : amp (shared) # everything is the same except we've added this shared
C : farad
'''
group = NeuronGroup(N, eqs_HH_3,

threshold='v > -40*mV',
refractory='v > -40*mV',
method='exponential_euler')

group.v = El
group.C = array([0.8, 1, 1.2])*ufarad*cm**-2*area
statemon = StateMonitor(group, 'v', record=True)
group.run_regularly('I = rand()*50*nA', dt=10*ms)
run(50*ms)
figure(figsize=(9, 4))
for l in range(5):

axvline(l*10, ls='--', c='k')
axhline(El/mV, ls='-', c='lightgray', lw=3)
plot(statemon.t/ms, statemon.v.T/mV, '-')
xlabel('Time (ms)')
ylabel('v (mV)');

Ahh, that’s more like it!

2.3. Introduction to Brian part 3: Simulations 101

Brian 2 Documentation, Release 2.1.1

2.3.3 Adding input

Now let’s think about a neuron being driven by a sinusoidal input. Let’s go back to a leaky integrate-and-fire to
simplify the equations a bit.

start_scope()
A = 2.5
f = 10*Hz
tau = 5*ms
eqs = '''
dv/dt = (I-v)/tau : 1
I = A*sin(2*pi*f*t) : 1
'''
G = NeuronGroup(1, eqs, threshold='v>1', reset='v=0', method='euler')
M = StateMonitor(G, variables=True, record=True)
run(200*ms)
plot(M.t/ms, M.v[0], label='v')
plot(M.t/ms, M.I[0], label='I')
xlabel('Time (ms)')
ylabel('v')
legend(loc='best');

So far, so good and the sort of thing we saw in the first tutorial. Now, what if that input current were something we
had recorded and saved in a file? In that case, we can use TimedArray. Let’s start by reproducing the picture above
but using TimedArray.

start_scope()
A = 2.5
f = 10*Hz
tau = 5*ms
Create a TimedArray and set the equations to use it
t_recorded = arange(int(200*ms/defaultclock.dt))*defaultclock.dt
I_recorded = TimedArray(A*sin(2*pi*f*t_recorded), dt=defaultclock.dt)

102 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.1.1

eqs = '''
dv/dt = (I-v)/tau : 1
I = I_recorded(t) : 1
'''
G = NeuronGroup(1, eqs, threshold='v>1', reset='v=0', method='exact')
M = StateMonitor(G, variables=True, record=True)
run(200*ms)
plot(M.t/ms, M.v[0], label='v')
plot(M.t/ms, M.I[0], label='I')
xlabel('Time (ms)')
ylabel('v')
legend(loc='best');

Note that for the example where we put the sin function directly in the equations, we had to use the
method='euler' argument because the exact integrator wouldn’t work here (try it!). However, TimedArray
is considered to be constant over its time step and so the linear integrator can be used. This means you won’t get
the same behaviour from these two methods for two reasons. Firstly, the numerical integration methods exact and
euler give slightly different results. Secondly, sin is not constant over a timestep whereas TimedArray is.

Now just to show that TimedArray works for arbitrary currents, let’s make a weird “recorded” current and run it on
that.

start_scope()
A = 2.5
f = 10*Hz
tau = 5*ms
Let's create an array that couldn't be
reproduced with a formula
num_samples = int(200*ms/defaultclock.dt)
I_arr = zeros(num_samples)
for _ in range(100):

a = randint(num_samples)
I_arr[a:a+100] = rand()

2.3. Introduction to Brian part 3: Simulations 103

Brian 2 Documentation, Release 2.1.1

I_recorded = TimedArray(A*I_arr, dt=defaultclock.dt)
eqs = '''
dv/dt = (I-v)/tau : 1
I = I_recorded(t) : 1
'''
G = NeuronGroup(1, eqs, threshold='v>1', reset='v=0', method='exact')
M = StateMonitor(G, variables=True, record=True)
run(200*ms)
plot(M.t/ms, M.v[0], label='v')
plot(M.t/ms, M.I[0], label='I')
xlabel('Time (ms)')
ylabel('v')
legend(loc='best');

Finally, let’s finish on an example that actually reads in some data from a file. See if you can work out how this
example works.

start_scope()
from matplotlib.image import imread
img = (1-imread('brian.png'))[::-1, :, 0].T
num_samples, N = img.shape
ta = TimedArray(img, dt=1*ms) # 228
A = 1.5
tau = 2*ms
eqs = '''
dv/dt = (A*ta(t, i)-v)/tau+0.8*xi*tau**-0.5 : 1
'''
G = NeuronGroup(N, eqs, threshold='v>1', reset='v=0', method='euler')
M = SpikeMonitor(G)
run(num_samples*ms)
plot(M.t/ms, M.i, '.k', ms=3)
xlim(0, num_samples)
ylim(0, N)

104 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.1.1

xlabel('Time (ms)')
ylabel('Neuron index');

2.3. Introduction to Brian part 3: Simulations 105

Brian 2 Documentation, Release 2.1.1

106 Chapter 2. Tutorials

CHAPTER 3

User’s guide

3.1 Importing Brian

After installation, Brian is available in the brian2 package. By doing a wildcard import from this package, i.e.:

from brian2 import *

you will not only get access to the brian2 classes and functions, but also to everything in the pylab package,
which includes the plotting functions from matplotlib and everything included in numpy/scipy (e.g. functions such as
arange, linspace, etc.).

The following topics are not essential for beginners.

3.1.1 Precise control over importing

If you want to use a wildcard import from Brian, but don’t want to import all the additional symbols provided by
pylab, you can use:

from brian2.only import *

Note that whenever you use something different from the most general from brian2 import * statement, you
should be aware that Brian overwrites some numpy functions with their unit-aware equivalents (see Units). If you
combine multiple wildcard imports, the Brian import should therefore be the last import. Similarly, you should not
import and call overwritten numpy functions directly, e.g. by using import numpy as np followed by np.sin
since this will not use the unit-aware versions. To make this easier, Brian provides a brian2.numpy_ package

107

http://matplotlib.org/

Brian 2 Documentation, Release 2.1.1

that provides access to everything in numpy but overwrites certain functions. If you prefer to use prefixed names, the
recommended way of doing the imports is therefore:

import brian2.numpy_ as np
import brian2.only as br2

Note that it is safe to use e.g. np.sin and numpy.sin after a from brian2 import *.

3.1.2 Dependency checks

Brian will check the dependency versions during import and raise an error for an outdated dependency. An outdated
dependency does not necessarily mean that Brian cannot be run with it, it only means that Brian is untested on that
version. If you want to force Brian to run despite the outdated dependency, set the core.outdated_dependency_error
preference to False. Note that this cannot be done in a script, since you do not have access to the preferences before
importing brian2. See Preferences for instructions how to set preferences in a file.

3.2 Physical units

• Using units

• Removing units

• Temperatures

• Constants

• Importing units

• In-place operations on quantities

Brian includes a system for physical units. The base units are defined by their standard SI unit names: amp/ampere,
kilogram/kilogramme, second, metre/meter, mole/mol, kelvin, and candela. In addition to these
base units, Brian defines a set of derived units: coulomb, farad, gram/gramme, hertz, joule, liter/
litre, molar, pascal, ohm, siemens, volt, watt, together with prefixed versions (e.g. msiemens =
0.001*siemens) using the prefixes p, n, u, m, k, M, G, T (two exceptions to this rule: kilogram is
not defined with any additional prefixes, and metre and meter are additionaly defined with the “centi” prefix, i.e.
cmetre/cmeter). For convenience, a couple of additional useful standard abbreviations such as cm (instead of
cmetre/cmeter), nS (instead of nsiemens), ms (instead of msecond), Hz (instead of hertz), mM (instead of
mmolar) are included. To avoid clashes with common variable names, no one-letter abbreviations are provided (e.g.
you can use mV or nS, but not V or S).

3.2.1 Using units

You can generate a physical quantity by multiplying a scalar or vector value with its physical unit:

>>> tau = 20*ms
>>> print(tau)
20. ms
>>> rates = [10, 20, 30]*Hz
>>> print(rates)
[10. 20. 30.] Hz

108 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.1.1

Brian will check the consistency of operations on units and raise an error for dimensionality mismatches:

>>> tau += 1 # ms? second?
Traceback (most recent call last):
...
DimensionMismatchError: Cannot calculate ... += 1, units do not match (units are
→˓second and 1).
>>> 3*kgram + 3*amp
Traceback (most recent call last):
...
DimensionMismatchError: Cannot calculate 3. kg + 3. A, units do not match (units are
→˓kilogram and amp).

Most Brian functions will also complain about non-specified or incorrect units:

>>> G = NeuronGroup(10, 'dv/dt = -v/tau: volt', dt=0.5)
Traceback (most recent call last):
...
DimensionMismatchError: Function "__init__" expected a quantitity with unit second
→˓for argument "dt" but got 0.5 (unit is 1).

Numpy functions have been overwritten to correctly work with units (see the developer documentation for more
details):

>>> print mean(rates)
20. Hz
>>> print rates.repeat(2)
[10. 10. 20. 20. 30. 30.] Hz

3.2.2 Removing units

There are various options to remove the units from a value (e.g. to use it with analysis functions that do not correctly
work with units)

• Divide the value by its unit (most of the time the recommended option because it is clear about the scale)

• Transform it to a pure numpy array in the base unit by calling asarray() (no copy) or array (copy)

• Directly get the unitless value of a state variable by appending an underscore to the name

>>> tau/ms
20.0
>> asarray(rates)
array([10., 20., 30.])
>>> G = NeuronGroup(5, 'dv/dt = -v/tau: volt')
>>> print G.v_[:]
[0., 0., 0., 0., 0.]

3.2.3 Temperatures

Brian only supports temperatures defined in °K, using the provided kelvin unit object. Other conventions such as °C,
or °F are not compatible with Brian’s unit system, because they cannot be expressed as a multiplicative scaling of the
SI base unit kelvin (their zero point is different). However, in biological experiments and modeling, temperatures are
typically reported in °C. How to use such temperatures depends on whether they are used as temperature differences
or as absolute temperatures:

3.2. Physical units 109

Brian 2 Documentation, Release 2.1.1

temperature differences Their major use case is the correction of time constants for differences in temperatures
based on the Q10 temperature coefficient. In this case, all temperatures can directly use kelvin even though
the temperatures are reported in Celsius, since temperature differences in Celsius and Kelvin are identical.

absolute temperatures Equations such as the Goldman–Hodgkin–Katz voltage equation have a factor that depends
on the absolute temperature measured in Kelvin. To get this temperature from a temperature reported in °C, you
can use the zero_celsius constant from the brian2.units.constants package (see below):

from brian2.units.constants import zero_celsius

celsius_temp = 27
abs_temp = celsius_temp*kelvin + zero_celsius

Note: Earlier versions of Brian had a celsius unit which was in fact identical to kelvin. While this gave the
correct results for temperature differences, it did not correctly work for absolute temperatures. To avoid confusion and
possible misinterpretation, the celsius unit has therefore been removed.

3.2.4 Constants

The brian2.units.constants package provides a range of physical constants that can be useful for detailed
biological models. Brian provides the following constants:

Constant Symbol(s) Brian name Value
Avogadro constant 𝑁𝐴, 𝐿 avogadro_constant 6.022140857× 1023 mol−1

Boltzmann constant 𝑘 boltzmann_constant 1.38064852× 10−23 J K−1

Electric constant 𝜖0 electric_constant 8.854187817× 10−12 F m−1

Electron mass 𝑚𝑒 electron_mass 9.10938356× 10−31 kg
Elementary charge 𝑒 elementary_charge 1.6021766208× 10−19 C

Faraday constant 𝐹 faraday_constant 96485.33289 C mol−1

Gas constant 𝑅 gas_constant 8.3144598 J mol−1 K−1

Magnetic constant 𝜇0 magnetic_constant 12.566370614× 10−7 N A−2

Molar mass constant 𝑀𝑢 molar_mass_constant 1× 10−3 kg mol−1

0°C zero_celsius 273.15 K

Note that these constants are not imported by default, you will have to explicitly import them from brian2.units.
constants. During the import, you can also give them shorter names using Python’s from ... import ...
as ... syntax. For example, to calculate the 𝑅𝑇

𝐹 factor that appears in the Goldman–Hodgkin–Katz voltage equation
you can use:

from brian2 import *
from brian2.units.constants import zero_celsius, gas_constant as R, faraday_constant
→˓as F

celsius_temp = 27
T = celsius_temp*kelvin + zero_celsius
factor = R*T/F

The following topics are not essential for beginners.

110 Chapter 3. User’s guide

https://en.wikipedia.org/wiki/Q10_(temperature_coefficient)
https://en.wikipedia.org/wiki/Goldman_equation
https://en.wikipedia.org/wiki/Goldman_equation

Brian 2 Documentation, Release 2.1.1

3.2.5 Importing units

Brian generates standard names for units, combining the unit name (e.g. “siemens”) with a prefixes (e.g. “m”), and
also generates squared and cubed versions by appending a number. For example, the units “msiemens”, “siemens2”,
“usiemens3” are all predefined. You can import these units from the package brian2.units.allunits – accord-
ingly, an from brian2.units.allunits import * will result in everything from Ylumen3 (cubed yotta
lumen) to ymol (yocto mole) being imported.

A better choice is normally to do from brian2.units import * or import everything from brian2
import * which only imports the units mentioned in the introductory paragraph (base units, derived units, and
some standard abbreviations).

3.2.6 In-place operations on quantities

In-place operations on quantity arrays change the underlying array, in the same way as for standard numpy arrays.
This means, that any other variables referencing the same object will be affected as well:

>>> q = [1, 2] * mV
>>> r = q
>>> q += 1*mV
>>> q
array([2., 3.]) * mvolt
>>> r
array([2., 3.]) * mvolt

In contrast, scalar quantities will never change the underlying value but instead return a new value (in the same way as
standard Python scalars):

>>> x = 1*mV
>>> y = x
>>> x *= 2
>>> x
2. * mvolt
>>> y
1. * mvolt

3.3 Models and neuron groups

For Brian 1 users

See the document Neural models (Brian 1 –> 2 conversion) for details how to convert Brian 1 code.

• Model equations

• Noise

• Threshold and reset

3.3. Models and neuron groups 111

Brian 2 Documentation, Release 2.1.1

• Refractoriness

• State variables

• Subgroups

• Shared variables

• Storing state variables

• Linked variables

• Time scaling of noise

3.3.1 Model equations

The core of every simulation is a NeuronGroup, a group of neurons that share the same equations defining their
properties. The minimum NeuronGroup specification contains the number of neurons and the model description in
the form of equations:

G = NeuronGroup(10, 'dv/dt = -v/(10*ms) : volt')

This defines a group of 10 leaky integrators. The model description can be directly given as a (possibly multi-line)
string as above, or as an Equations object. For more details on the form of equations, see Equations. Brian needs
the model to be given in the form of differential equations, but you might see the integrated form of synapses in some
textbooks and papers. See Converting from integrated form to ODEs for details on how to convert between these
representations.

Note that model descriptions can make reference to physical units, but also to scalar variables declared outside of the
model description itself:

tau = 10*ms
G = NeuronGroup(10, 'dv/dt = -v/tau : volt')

If a variable should be taken as a parameter of the neurons, i.e. if it should be possible to vary its value across neurons,
it has to be declared as part of the model description:

G = NeuronGroup(10, '''dv/dt = -v/tau : volt
tau : second''')

To make complex model descriptions more readable, named subexpressions can be used:

G = NeuronGroup(10, '''dv/dt = I_leak / Cm : volt
I_leak = g_L*(E_L - v) : amp''')

For a list of some standard model equations, see Neural models (Brian 1 –> 2 conversion).

3.3.2 Noise

In addition to ordinary differential equations, Brian allows you to introduce random noise by specifying a stochastic
differential equation. Brian uses the physicists’ notation used in the Langevin equation, representing the “noise” as a
term 𝜉(𝑡), rather than the mathematicians’ stochastic differential d𝑊𝑡. The following is an example of the Ornstein-
Uhlenbeck process that is often used to model a leaky integrate-and-fire neuron with a stochastic current:

G = NeuronGroup(10, 'dv/dt = -v/tau + sigma*xi*tau**-0.5 : volt')

112 Chapter 3. User’s guide

https://en.wikipedia.org/wiki/Stochastic_differential_equation
https://en.wikipedia.org/wiki/Stochastic_differential_equation
https://en.wikipedia.org/wiki/Langevin_equation
http://www.scholarpedia.org/article/Stochastic_dynamical_systems#Ornstein-Uhlenbeck_process
http://www.scholarpedia.org/article/Stochastic_dynamical_systems#Ornstein-Uhlenbeck_process

Brian 2 Documentation, Release 2.1.1

You can start by thinking of xi as just a Gaussian random variable with mean 0 and standard deviation 1. However,
it scales in an unusual way with time and this gives it units of 1/sqrt(second). You don’t necessarily need
to understand why this is, but it is possible to get a reasonably simple intuition for it by thinking about numerical
integration: see below.

3.3.3 Threshold and reset

To emit spikes, neurons need a threshold. Threshold and reset are given as strings in the NeuronGroup constructor:

tau = 10*ms
G = NeuronGroup(10, 'dv/dt = -v/tau : volt', threshold='v > -50*mV',

reset='v = -70*mV')

Whenever the threshold condition is fulfilled, the reset statements will be executed. Again, both threshold and reset
can refer to physical units, external variables and parameters, in the same way as model descriptions:

v_r = -70*mV # reset potential
G = NeuronGroup(10, '''dv/dt = -v/tau : volt

v_th : volt # neuron-specific threshold''',
threshold='v > v_th', reset='v = v_r')

You can also create non-spike events. See Custom events for more details.

3.3.4 Refractoriness

To make a neuron non-excitable for a certain time period after a spike, the refractory keyword can be used:

G = NeuronGroup(10, 'dv/dt = -v/tau : volt', threshold='v > -50*mV',
reset='v = -70*mV', refractory=5*ms)

This will not allow any threshold crossing for a neuron for 5ms after a spike. The refractory keyword allows for more
flexible refractoriness specifications, see Refractoriness for details.

3.3.5 State variables

Differential equations and parameters in model descriptions are stored as state variables of the NeuronGroup. They
can be accessed and set as an attribute of the group. To get the values without physical units (e.g. for analysing data
with external tools), use an underscore after the name:

>>> G = NeuronGroup(10, '''dv/dt = -v/tau : volt
... tau : second''')
>>> G.v = -70*mV
>>> G.v
<neurongroup.v: array([-70., -70., -70., -70., -70., -70., -70., -70., -70., -70.]) *
→˓mvolt>
>>> G.v_ # values without units
<neurongroup.v_: array([-0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07,
→˓ -0.07])>

The value of state variables can also be set using string expressions that can refer to units and external variables, other
state variables, mathematical functions, and a special variable i, the index of the neuron:

3.3. Models and neuron groups 113

Brian 2 Documentation, Release 2.1.1

>>> G.tau = '5*ms + (1.0*i/N)*5*ms'
>>> G.tau
<neurongroup.tau: array([5. , 5.5, 6. , 6.5, 7. , 7.5, 8. , 8.5, 9. , 9.5])
→˓* msecond>

You can also set the value only if a condition holds, for example:

>>> G.v['tau>7.25*ms'] = -60*mV
>>> G.v
<neurongroup.v: array([-70., -70., -70., -70., -70., -60., -60., -60., -60., -60.]) *
→˓mvolt>

3.3.6 Subgroups

It is often useful to refer to a subset of neurons, this can be achieved using Python’s slicing syntax:

G = NeuronGroup(10, '''dv/dt = -v/tau : volt
tau : second''',

threshold='v > -50*mV',
reset='v = -70*mV')

Create subgroups
G1 = G[:5]
G2 = G[5:]

This will set the values in the main group, subgroups are just "views"
G1.tau = 10*ms
G2.tau = 20*ms

Here G1 refers to the first 5 neurons in G, and G2 to the second 5 neurons. In general G[i:j] refers to the neurons
with indices from i to j-1, as in general in Python. Subgroups can be used in most places where regular groups
are used, e.g. their state variables or spiking activity can be recorded using monitors, they can be connected via
Synapses, etc. In such situations, indices (e.g. the indices of the neurons to record from in a StateMonitor) are
relative to the subgroup, not to the main group

The following topics are not essential for beginners.

3.3.7 Shared variables

Sometimes it can also be useful to introduce shared variables or subexpressions, i.e. variables that have a common
value for all neurons. In contrast to external variables (such as Cm above), such variables can change during a run, e.g.
by using run_regularly(). This can be for example used for an external stimulus that changes in the course of a
run:

G = NeuronGroup(10, '''shared_input : volt (shared)
dv/dt = (-v + shared_input)/tau : volt
tau : second''')

114 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.1.1

Note that there are several restrictions around the use of shared variables: they cannot be written to in contexts where
statements apply only to a subset of neurons (e.g. reset statements, see below). If a code block mixes statements
writing to shared and vector variables, then the shared statements have to come first.

By default, subexpressions are re-evaluated whenever they are used, i.e. using a subexpression is completely equivalent
to substituting it. Sometimes it is useful to instead only evaluate a subexpression once and then use this value for the
rest of the time step. This can be achieved by using the (constant over dt) flag. This flag is mandatory
for subexpressions that refer to stateful functions like rand() which notably allows them to be recorded with a
StateMonitor – otherwise the monitor would record a different instance of the random number than the one that
was used in the equations.

For shared variables, setting by string expressions can only refer to shared values:

>>> G.shared_input = '(4.0/N)*mV'
>>> G.shared_input
<neurongroup.shared_input: 0.4 * mvolt>

3.3.8 Storing state variables

Sometimes it can be convenient to access multiple state variables at once, e.g. to set initial values from a dictionary of
values or to store all the values of a group on disk. This can be done with the get_states() and set_states()
methods:

>>> group = NeuronGroup(5, '''dv/dt = -v/tau : 1
... tau : second''')
>>> initial_values = {'v': [0, 1, 2, 3, 4],
... 'tau': [10, 20, 10, 20, 10]*ms}
>>> group.set_states(initial_values)
>>> group.v[:]
array([0., 1., 2., 3., 4.])
>>> group.tau[:]
array([10., 20., 10., 20., 10.]) * msecond
>>> states = group.get_states()
>>> states['v']
array([0., 1., 2., 3., 4.])

The data (without physical units) can also be exported/imported to/from Pandas data frames (needs an installation of
pandas):

>>> df = group.get_states(units=False, format='pandas')
>>> df

N dt i t tau v
0 5 0.0001 0 0.0 0.01 0.0
1 5 0.0001 1 0.0 0.02 1.0
2 5 0.0001 2 0.0 0.01 2.0
3 5 0.0001 3 0.0 0.02 3.0
4 5 0.0001 4 0.0 0.01 4.0
>>> df['tau']
0 0.01
1 0.02
2 0.01
3 0.02
4 0.01
Name: tau, dtype: float64
>>> df['tau'] *= 2
>>> group.set_states(df[['tau']], units=False, format='pandas')

3.3. Models and neuron groups 115

http://pandas.pydata.org/

Brian 2 Documentation, Release 2.1.1

>>> group.tau
<neurongroup.tau: array([20., 40., 20., 40., 20.]) * msecond>

3.3.9 Linked variables

A NeuronGroup can define parameters that are not stored in this group, but are instead a reference to a state variable
in another group. For this, a group defines a parameter as linked and then uses linked_var() to specify the
linking. This can for example be useful to model shared noise between cells:

inp = NeuronGroup(1, 'dnoise/dt = -noise/tau + tau**-0.5*xi : 1')

neurons = NeuronGroup(100, '''noise : 1 (linked)
dv/dt = (-v + noise_strength*noise)/tau : volt''')

neurons.noise = linked_var(inp, 'noise')

If the two groups have the same size, the linking will be done in a 1-to-1 fashion. If the source group has the size one
(as in the above example) or if the source parameter is a shared variable, then the linking will be done as 1-to-all. In
all other cases, you have to specify the indices to use for the linking explicitly:

two inputs with different phases
inp = NeuronGroup(2, '''phase : 1

dx/dt = 1*mV/ms*sin(2*pi*100*Hz*t-phase) : volt''')
inp.phase = [0, pi/2]

neurons = NeuronGroup(100, '''inp : volt (linked)
dv/dt = (-v + inp) / tau : volt''')

Half of the cells get the first input, other half gets the second
neurons.inp = linked_var(inp, 'x', index=repeat([0, 1], 50))

3.3.10 Time scaling of noise

Suppose we just had the differential equation

𝑑𝑥/𝑑𝑡 = 𝜉

To solve this numerically, we could compute

𝑥(𝑡 + d𝑡) = 𝑥(𝑡) + 𝜉1

where 𝜉1 is a normally distributed random number with mean 0 and standard deviation 1. However, what happens if
we change the time step? Suppose we used a value of d𝑡/2 instead of d𝑡. Now, we compute

𝑥(𝑡 + d𝑡) = 𝑥(𝑡 + d𝑡/2) + 𝜉1 = 𝑥(𝑡) + 𝜉2 + 𝜉1

The mean value of 𝑥(𝑡+ d𝑡) is 0 in both cases, but the standard deviations are different. The first method 𝑥(𝑡+ d𝑡) =
𝑥(𝑡) + 𝜉1 gives 𝑥(𝑡 + d𝑡) a standard deviation of 1, whereas the second method 𝑥(𝑡 + d𝑡) = 𝑥(𝑡 + d/2) + 𝜉1 =
𝑥(𝑡) + 𝜉2 + 𝜉1 gives 𝑥(𝑡) a variance of 1+1=2 and therefore a standard deviation of

√
2.

In order to solve this problem, we use the rule 𝑥(𝑡 + d𝑡) = 𝑥(𝑡) +
√

d𝑡𝜉1, which makes the mean and standard
deviation of the value at time 𝑡 independent of d𝑡. For this to make sense dimensionally, 𝜉 must have units of 1/
sqrt(second).

For further details, refer to a textbook on stochastic differential equations.

116 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.1.1

3.4 Numerical integration

By default, Brian chooses an integration method automatically, trying to solve the equations exactly first (for linear
equations) and then resorting to numerical algorithms. It will also take care of integrating stochastic differential
equations appropriately.

Note that in some cases, the automatic choice of integration method will not be appropriate, because of a choice of
parameters that couldn’t be determined in advance. In this case, typically you will get nan (not a number) values in
the results, or large oscillations. In this case, Brian will generate a warning to let you know, but will not raise an error.

3.4.1 Method choice

You will get an INFO message telling you which integration method Brian decided to use, together with information
about how much time it took to apply the integration method to your equations. If other methods have been tried
but were not applicable, you will also see the time it took to try out those other methods. In some cases, checking
other methods (in particular the 'exact' method which attempts to solve the equations analytically) can take a
considerable amount of time – to avoid wasting this time, you can always chose the integration method manually (see
below). You can also suppress the message by raising the log level or by explicitly suppressing 'method_choice'
log messages – for details, see Logging.

If you prefer to chose an integration algorithm yourself, you can do so using the method keyword for NeuronGroup,
Synapses, or SpatialNeuron. The complete list of available methods is the following:

• 'exact': exact integration for linear equations (alternative name: 'linear')

• 'exponential_euler': exponential Euler integration for conditionally linear equations

• 'euler': forward Euler integration (for additive stochastic differential equations using the Euler-Maruyama
method)

• 'rk2': second order Runge-Kutta method (midpoint method)

• 'rk4': classical Runge-Kutta method (RK4)

• 'heun': stochastic Heun method for solving Stratonovich stochastic differential equations with non-diagonal
multiplicative noise.

• 'milstein': derivative-free Milstein method for solving stochastic differential equations with diagonal mul-
tiplicative noise

Note: The 'independent' integration method (exact integration for a system of independent equations, where
all the equations can be analytically solved independently) should no longer be used and might be removed in future
versions of Brian.

Note: The following methods are still considered experimental

• 'gsl': default integrator when choosing to integrate equations with the GNU Scientific Library ODE solver:
the rkf45 method. Uses an adaptable time step by default.

• 'gsl_rkf45': Runge-Kutta-Fehlberg method. A good general-purpose integrator according to the GSL
documentation. Uses an adaptable time step by default.

• 'gsl_rk2': Second order Runge-Kutta method using GSL. Uses an adaptable time step by default.

• 'gsl_rk4': Fourth order Runge-Kutta method using GSL. Uses an adaptable time step by default.

3.4. Numerical integration 117

Brian 2 Documentation, Release 2.1.1

• 'gsl_rkck': Runge-Kutta Cash-Karp method using GSL. Uses an adaptable time step by default.

• 'gsl_rk8pd': Runge-Kutta Prince-Dormand method using GSL. Uses an adaptable time step by default.

The following topics are not essential for beginners.

3.4.2 Technical notes

Each class defines its own list of algorithms it tries to apply, NeuronGroup and Synapses will use the first suitable
method out of the methods 'exact', 'euler' and 'heun' while SpatialNeuron objects will use 'exact',
'exponential_euler', 'rk2' or 'heun'.

You can also define your own numerical integrators, see State update for details.

3.4.3 GSL stateupdaters

The stateupdaters preceded with the gsl tag use ODE solvers defined in the GNU Scientific Library. The benefit
of using these integrators over the ones written by Brian internally, is that they are implemented with an adaptable
timestep. Integrating with an adaptable timestep comes with two advantages:

• These methods check whether the estimated error of the solutions returned fall within a certain error bound. For
the non-gsl integrators there is currently no such check.

• Systems no longer need to be simulated with just one time step. That is, a bigger timestep can be chosen
and the integrator will reduce the timestep when increased accuracy is required. This is particularly useful for
systems where both slow and fast time constants coexist, as is the case with for example (networks of neurons
with) Hodgkin-Huxley equations. Note that Brian’s timestep still determines the resolution for monitors, spike
timing, spike propagation etc. Hence, in a network, the simulation error will therefore still be on the order of
dt. The benefit is that short time constants occurring in equations no longer dictate the network time step.

In addition to a choice between different integration methods, there are a few more options that can be specified when
using GSL. These options can be specified by sending a dictionary as the method_options key upon initialization
of the object using the integrator (NeuronGroup, Synapses or SpatialNeuron). The available method options
are:

• 'adaptable_timestep': whether or not to let GSL reduce the timestep to achieve the accuracy defined
with the 'absolute_error' and 'absolute_error_per_variable' options described below. If
this is set to False, the timestep is determined by Brian (i.e. the dt of the respective clock is used, see
Scheduling). If the resulted estimated error exceeds the set error bounds, the simulation is aborted. When using
cython or weave this is reported with an IntegrationError. Defaults to True.

• 'absolute_error': each of the methods has a way of estimating the error that is the result of using numer-
ical integration. You can specify the maximum size of this error to be allowed for any of the to-be-integrated
variables in base units with this keyword. Note that giving very small values makes the simulation slow and
might result in unsuccessful integration. In the case of using the 'absolute_error_per_variable'
option, this is the error for variables that were not specified individually. Defaults to 1e-6.

• 'absolute_error_per_variable': specify the absolute error per variable in its own units. Variables
for which the error is not specified use the error set with the 'absolute_error' option. Defaults to None.

118 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.1.1

• 'max_steps': The maximal number of steps that the integrator will take within a single “Brian timestep” in
order to reach the given error criterion. Can be set to 0 to not set any limits. Note that without limits, it can take
a very long time until the integrator figures out that it cannot reach the desired error level. This will manifest as
a simulation that appears to be stuck. Defaults to 100.

• 'use_last_timestep': with the 'adaptable_timestep' option set to True, GSL tries different time
steps to find a solution that satisfies the set error bounds. It is likely that for Brian’s next time step the GSL time
step will be somewhat similar per neuron (e.g. active neurons will have a shorter GSL time step than inactive
neurons). With this option set to True, the time step GSL found to satisfy the set error bounds is saved per neuron
and given to GSL again in Brian’s next time step. This also means that the final time steps are saved in Brian’s
memory and can thus be recorded with the StateMonitor: it can be accessed under '_last_timestep'.
Note that some extra memory is required to keep track of the last time steps. Defaults to True.

• 'save_failed_steps': if 'adaptable_timestep' is set to True, each time GSL tries a time step and
it results in an estimated error that exceeds the set bounds, one is added to the '_failed_steps' variable.
For purposes of investigating what happens within GSL during an integration step, we offer the option of saving
this variable. Defaults to False.

• 'save_step_count': the same goes for the total number of GSL steps taken in a single Brian time step:
this is optionally saved in the '_step_count' variable. Defaults to False.

Note that at the moment recording '_last_timestep', '_failed_steps', or '_step_count' requires a
call to run() (e.g. with 0 ms) to trigger the code generation process, before the call to StateMonitor.

More information on the GSL ODE solver itself can be found in its documentation.

3.5 Equations

• Equation strings

• External variables and functions

• Flags

• List of special symbols

• Event-driven equations

• Equation objects

• Examples of Equation objects

3.5.1 Equation strings

Equations are used both in NeuronGroup and Synapses to:

• define state variables

• define continuous-updates on these variables, through differential equations

Note: Brian models are defined by systems of first order ordinary differential equations, but you might see the
integrated form of synapses in some textbooks and papers. See Converting from integrated form to ODEs for details
on how to convert between these representations.

Equations are defined by multiline strings.

3.5. Equations 119

https://www.gnu.org/software/gsl/manual/html_node/Ordinary-Differential-Equations.html

Brian 2 Documentation, Release 2.1.1

An Equation is a set of single lines in a string:

1. dx/dt = f : unit (differential equation)

2. x = f : unit (subexpression)

3. x : unit (parameter)

Each equation may be spread out over multiple lines to improve formatting. Comments using # may also be included.
Subunits are not allowed, i.e., one must write volt, not mV. This is to make it clear that the values are internally always
saved in the basic units, so no confusion can arise when getting the values out of a NeuronGroup and discarding the
units. Compound units are of course allowed as well (e.g. farad/meter**2). There are also three special “units”
that can be used: 1 denotes a dimensionless floating point variable, boolean and integer denote dimensionless
variables of the respective kind.

Note: For molar concentration, the base unit that has to be used in the equations is mmolar (or mM), not molar.
This is because 1 molar is 103 mol/m3 in SI units (i.e., it has a “scale” of 103), whereas 1 millimolar corresponds to 1
mol/m3.

Some special variables are defined: t, dt (time) and xi (white noise). Variable names starting with an underscore
and a couple of other names that have special meanings under certain circumstances (e.g. names ending in _pre or
_post) are forbidden.

For stochastic equations with several xi values it is necessary to make clear whether they correspond to the same or
different noise instantiations. To make this distinction, an arbitrary suffix can be used, e.g. using xi_1 several times
refers to the same variable, xi_2 (or xi_inh, xi_alpha, etc.) refers to another. An error will be raised if you
use more than one plain xi. Note that noise is always independent across neurons, you can only work around this
restriction by defining your noise variable as a shared parameter and update it using a user-defined function (e.g. with
run_regularly), or create a group that models the noise and link to its variable (see Linked variables).

3.5.2 External variables and functions

Equations defining neuronal or synaptic equations can contain references to external parameters or functions. These
references are looked up at the time that the simulation is run. If you don’t specify where to look them up, it will look
in the Python local/global namespace (i.e. the block of code where you call run()). If you want to override this, you
can specify an explicit “namespace”. This is a Python dictionary with keys being variable names as they appear in the
equations, and values being the desired value of that variable. This namespace can be specified either in the creation
of the group or when you can the run() function using the namespace keyword argument.

The following three examples show the different ways of providing external variable values, all having the same effect
in this case:

Explicit argument to the NeuronGroup
G = NeuronGroup(1, 'dv/dt = -v / tau : 1', namespace={'tau': 10*ms})
net = Network(G)
net.run(10*ms)

Explicit argument to the run function
G = NeuronGroup(1, 'dv/dt = -v / tau : 1')
net = Network(G)
net.run(10*ms, namespace={'tau': 10*ms})

Implicit namespace from the context
G = NeuronGroup(1, 'dv/dt = -v / tau : 1')
net = Network(G)

120 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.1.1

tau = 10*ms
net.run(10*ms)

See Namespaces for more details.

The following topics are not essential for beginners.

3.5.3 Flags

A flag is a keyword in parentheses at the end of the line, which qualifies the equations. There are several keywords:

event-driven this is only used in Synapses, and means that the differential equation should be updated only at the
times of events. This implies that the equation is taken out of the continuous state update, and instead a event-
based state update statement is generated and inserted into event codes (pre and post). This can only qualify
differential equations of synapses. Currently, only one-dimensional linear equations can be handled (see below).

unless refractory this means the variable is not updated during the refractory period. This can only qualify differential
equations of neuron groups.

constant this means the parameter will not be changed during a run. This allows optimizations in state updaters. This
can only qualify parameters.

constant over dt this means that the subexpression will be only evaluated once at the beginning of the time step.
This can be useful to e.g. approximate a non-linear term as constant over a time step in order to use the
linear numerical integration algorithm. It is also mandatory for subexpressions that refer to stateful func-
tions like rand() to make sure that they are only evaluated once (otherwise e.g. recording the value with a
StateMonitor would re-evaluate it and therefore not record the same values that are used in other places).
This can only qualify subexpressions.

shared this means that a parameter or subexpression is not neuron-/synapse-specific but rather a single value for the
whole NeuronGroup or Synapses. A shared subexpression can only refer to other shared variables.

linked this means that a parameter refers to a parameter in another NeuronGroup. See Linked variables for more
details.

Multiple flags may be specified as follows:

dx/dt = f : unit (flag1,flag2)

3.5.4 List of special symbols

The following lists all of the special symbols that Brian uses in equations and code blocks, and their meanings.

dt Time step width

i Index of a neuron (NeuronGroup) or the pre-synaptic neuron of a synapse (Synapses)

j Index of a post-synaptic neuron of a synapse

lastspike Last time that the neuron spiked (for refractoriness)

lastupdate Time of the last update of synaptic variables in event-driven equations.

3.5. Equations 121

Brian 2 Documentation, Release 2.1.1

N Number of neurons (NeuronGroup) or synapses (Synapses). Use N_pre or N_post for the number of
presynaptic or postsynaptic neurons in the context of Synapses.

not_refractory Boolean variable that is normally true, and false if the neuron is currently in a refractory state

t Current time

xi, xi_* Stochastic differential in equations

3.5.5 Event-driven equations

Equations defined as event-driven are completely ignored in the state update. They are only defined as variables that
can be externally accessed. There are additional constraints:

• An event-driven variable cannot be used by any other equation that is not also event-driven.

• An event-driven equation cannot depend on a differential equation that is not event-driven (directly, or indirectly
through subexpressions). It can depend on a constant parameter.

Currently, automatic event-driven updates are only possible for one-dimensional linear equations, but this may be
extended in the future.

3.5.6 Equation objects

The model definitions for NeuronGroup and Synapses can be simple strings or Equations objects. Such
objects can be combined using the add operator:

eqs = Equations('dx/dt = (y-x)/tau : volt')
eqs += Equations('dy/dt = -y/tau: volt')

Equations allow for the specification of values in the strings, but does this by simple string replacement, e.g. you
can do:

eqs = Equations('dx/dt = x/tau : volt', tau=10*ms)

but this is exactly equivalent to:

eqs = Equations('dx/dt = x/(10*ms) : volt')

The Equations object does some basic syntax checking and will raise an error if two equations defining the same
variable are combined. It does not however do unit checking, checking for unknown identifiers or incorrect flags – all
this will be done during the instantiation of a NeuronGroup or Synapses object.

3.5.7 Examples of Equation objects

Concatenating equations

>>> membrane_eqs = Equations('dv/dt = -(v + I)/ tau : volt')
>>> eqs1 = membrane_eqs + Equations('''I = sin(2*pi*freq*t) : volt
... freq : Hz''')
>>> eqs2 = membrane_eqs + Equations('''I : volt''')
>>> print(eqs1)
I = sin(2*pi*freq*t) : V
dv/dt = -(v + I)/ tau : V
freq : Hz
>>> print(eqs2)

122 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.1.1

dv/dt = -(v + I)/ tau : V
I : V

Substituting variable names

>>> general_equation = 'dg/dt = -g / tau : siemens'
>>> eqs_exc = Equations(general_equation, g='g_e', tau='tau_e')
>>> eqs_inh = Equations(general_equation, g='g_i', tau='tau_i')
>>> print(eqs_exc)
dg_e/dt = -g_e / tau_e : S
>>> print(eqs_inh)
dg_i/dt = -g_i / tau_i : S

Inserting values

>>> eqs = Equations('dv/dt = mu/tau + sigma/tau**.5*xi : volt',
... mu=-65*mV, sigma=3*mV, tau=10*ms)
>>> print(eqs)
dv/dt = (-65. * mvolt)/(10. * msecond) + (3. * mvolt)/(10. * msecond)**.5*xi : V

3.6 Refractoriness

• Defining the refractory period

• Defining model behaviour during refractoriness

• Arbitrary refractoriness

Brian allows you to model the absolute refractory period of a neuron in a flexible way. The definition of refractoriness
consists of two components: the amount of time after a spike that a neuron is considered to be refractory, and what
changes in the neuron during the refractoriness.

3.6.1 Defining the refractory period

The refractory period is specified by the refractory keyword in the NeuronGroup initializer. In the simplest
case, this is simply a fixed time, valid for all neurons:

G = NeuronGroup(N, model='...', threshold='...', reset='...',
refractory=2*ms)

Alternatively, it can be a string expression that evaluates to a time. This expression will be evaluated after every spike
and allows for a changing refractory period. For example, the following will set the refractory period to a random
duration between 1ms and 3ms after every spike:

G = NeuronGroup(N, model='...', threshold='...', reset='...',
refractory='(1 + 2*rand())*ms')

In general, modelling a refractory period that varies across neurons involves declaring a state variable that stores the
refractory period per neuron as a model parameter. The refractory expression can then refer to this parameter:

3.6. Refractoriness 123

Brian 2 Documentation, Release 2.1.1

G = NeuronGroup(N, model='''...
refractory : second''', threshold='...',

reset='...', refractory='refractory')
Set the refractory period for each cell
G.refractory = ...

This state variable can also be a dynamic variable itself. For example, it can serve as an adaptation mechanism by
increasing it after every spike and letting it relax back to a steady-state value between spikes:

refractory_0 = 2*ms
tau_refractory = 50*ms
G = NeuronGroup(N, model='''...

drefractory/dt = (refractory_0 - refractory) / tau_
→˓refractory : second''',

threshold='...', refractory='refractory',
reset='''...

refractory += 1*ms''')
G.refractory = refractory_0

In some cases, the condition for leaving the refractory period is not easily expressed as a certain time span. For
example, in a Hodgkin-Huxley type model the threshold is only used for counting spikes and the refractoriness is used
to prevent to count multiple spikes for a single threshold crossing (the threshold condition would evaluate to True for
several time points). When a neuron should leave the refractory period is not easily expressed as a time span but more
naturally as a condition that the neuron should remain refractory for as long as it stays above the threshold. This can
be achieved by using a string expression for the refractory keyword that evaluates to a boolean condition:

G = NeuronGroup(N, model='...', threshold='v > -20*mV',
refractory='v >= -20*mV')

The refractory keyword should be read as “stay refractory as long as the condition remains true”. In fact, spec-
ifying a time span for the refractoriness will be automatically transformed into a logical expression using the current
time t and the time of the last spike lastspike. Specifying refractory=2*ms is equivalent to specifying
refractory='(t - lastspike) <= 2*ms'.

3.6.2 Defining model behaviour during refractoriness

The refractoriness definition as described above only has a single effect by itself: threshold crossings during the
refractory period are ignored. In the following model, the variable v continues to update during the refractory period
but it does not elicit a spike if it crosses the threshold:

G = NeuronGroup(N, 'dv/dt = -v / tau : 1',
threshold='v > 1', reset='v=0',
refractory=2*ms)

There is also a second implementation of refractoriness that is supported by Brian, one or several state variables can
be clamped during the refractory period. To model this kind of behaviour, variables that should stop being updated
during refractoriness can be marked with the (unless refractory) flag:

G = NeuronGroup(N, '''dv/dt = -(v + w)/ tau_v : 1 (unless refractory)
dw/dt = -w / tau_w : 1''',

threshold='v > 1', reset='v=0; w+=0.1', refractory=2*ms)

In the above model, the v variable is clamped at 0 for 2ms after a spike but the adaptation variable w continues to
update during this time. In addition, a variable of a neuron that is in its refractory period is read-only: incoming
synapses or other code will have no effect on the value of v until it leaves its refractory period.

124 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.1.1

The following topics are not essential for beginners.

3.6.3 Arbitrary refractoriness

In fact, arbitrary behaviours can be defined using Brian’s refractoriness mechanism.

Internally, a NeuronGroup with refractoriness has a boolean variable not_refractory added to the equations,
and this is used to implement the refractoriness behaviour. Specifically, the threshold condition is replaced by
threshold and not_refractory and differential equations that are marked as (unless refractory)
are multiplied by int(not_refractory) (so that they have the value 0 when the neuron is refractory).

This not_refractory variable is also available to the user to define more sophisticated refractoriness behaviour.
For example, the following code updates the w variable with a different time constant during refractoriness:

G = NeuronGroup(N, '''dv/dt = -(v + w)/ tau_v : 1 (unless refractory)
dw/dt = (-w / tau_active)*int(not_refractory) + (-w / tau_

→˓ref)*(1 - int(not_refractory)) : 1''',
threshold='v > 1', reset='v=0; w+=0.1', refractory=2*ms)

3.7 Synapses

For Brian 1 users

Synapses is now the only class for defining synaptic interactions, it replaces Connection, STDP, etc. See the
document Synapses (Brian 1 –> 2 conversion) for details how to convert Brian 1 code.

• Defining synaptic models

• Creating synapses

• Accessing synaptic variables

• Delays

• Monitoring synaptic variables

• Creating synapses with the generator syntax

• Summed variables

• Creating multi-synapses

• Multiple pathways

• Numerical integration

• Technical notes

3.7. Synapses 125

Brian 2 Documentation, Release 2.1.1

3.7.1 Defining synaptic models

The most simple synapse (adding a fixed amount to the target membrane potential on every spike) is described as
follows:

w = 1*mV
S = Synapses(P, Q, on_pre='v += w')

This defines a set of synapses between NeuronGroup P and NeuronGroup Q. If the target group is not specified,
it is identical to the source group by default. The on_pre keyword defines what happens when a presynaptic spike
arrives at a synapse. In this case, the constant w is added to variable v. Because v is not defined as a synaptic variable,
it is assumed by default that it is a postsynaptic variable, defined in the target NeuronGroup Q. Note that this does
not does create synapses (see Creating Synapses), only the synaptic models.

To define more complex models, models can be described as string equations, similar to the models specified in
NeuronGroup:

S = Synapses(P, Q, model='w : volt', on_pre='v += w')

The above specifies a parameter w, i.e. a synapse-specific weight.

Synapses can also specify code that should be executed whenever a postsynaptic spike occurs (keyword on_post)
and a fixed (pre-synaptic) delay for all synapses (keyword delay).

When specifying equations or code for Synapses, there is a possible ambiguity about what a variable name refers
to. For example, if both the Synapses object and the target NeuronGroup have a variable w, what would the code
w += 1 do? The answer is that it will modify the synapse’s variable w. In general, it will first check if there is a
synaptic variable of that name, then a variable of the post-synaptic neurons, and otherwise it will look for an external
constant. To explicitly specify that a variable should be from a pre- or post-synaptic neuron, append the suffix _pre
or _post, so in the situation above w_post += 1 would increase the post-synaptic neuron’s copy of w by 1, not
the synapse’s variable w.

Model syntax

The model follows exactly the same syntax as for NeuronGroup. There can be parameters (e.g. synaptic variable
w above), but there can also be named subexpressions and differential equations, describing the dynamics of synaptic
variables. In all cases, synaptic variables are created, one value per synapse.

Event-driven updates

By default, differential equations are integrated in a clock-driven fashion, as for a NeuronGroup. This is potentially
very time consuming, because all synapses are updated at every timestep and Brian will therefore emit a warning. If
you are sure about integrating the equations at every timestep (e.g. because you want to record the values continu-
ously), then you should specify the flag (clock-driven). To ask Brian 2 to simulate differential equations in an
event-driven fashion use the flag (event-driven). A typical example is pre- and postsynaptic traces in STDP:

model='''w:1
dApre/dt=-Apre/taupre : 1 (event-driven)
dApost/dt=-Apost/taupost : 1 (event-driven)'''

Here, Brian updates the value of Apre for a given synapse only when this synapse receives a spike, whether it is
presynaptic or postsynaptic. More precisely, the variables are updated every time either the on_pre or on_post
code is called for the synapse, so that the values are always up to date when these codes are executed.

126 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.1.1

Automatic event-driven updates are only possible for a subset of equations, in particular for one-dimensional linear
equations. These equations must also be independent of the other ones, that is, a differential equation that is not event-
driven cannot depend on an event-driven equation (since the values are not continuously updated). In other cases, the
user can write event-driven code explicitly in the update codes (see below).

Pre and post codes

The on_pre code is executed at each synapse receiving a presynaptic spike. For example:

on_pre='v+=w'

adds the value of synaptic variable w to postsynaptic variable v. Any sort of code can be executed. For example, the
following code defines stochastic synapses, with a synaptic weight w and transmission probability p:

S=Synapses(input,neurons,model="""w : 1
p : 1""",

on_pre="v+=w*(rand()<p)")

The code means that w is added to v with probability p. The code may also include multiple lines.

Similarly, the on_post code is executed at each synapse where the postsynaptic neuron has fired a spike.

3.7.2 Creating synapses

Creating a Synapses instance does not create synapses, it only specifies their dynamics. The following command
creates a synapse between neuron 5 in the source group and neuron 10 in the target group:

S.connect(i=5, j=10)

Multiple synaptic connections can be created in a single statement:

S.connect()
S.connect(i=[1, 2], j=[3, 4])
S.connect(i=numpy.arange(10), j=1)

The first statement connects all neuron pairs. The second statement creates synapses between neurons 1 and 3, and
between neurons 2 and 4. The third statement creates synapses between the first ten neurons in the source group and
neuron 1 in the target group.

Conditional

One can also create synapses by giving (as a string) the condition for a pair of neurons i and j to be connected by a
synapse, e.g. you could connect neurons that are not very far apart with:

S.connect(condition='abs(i-j)<=5')

The string expressions can also refer to pre- or postsynaptic variables. This can be useful for example for spatial
connectivity: assuming that the pre- and postsynaptic groups have parameters x and y, storing their location, the
following statement connects all cells in a 250 um radius:

S.connect(condition='sqrt((x_pre-x_post)**2 + (y_pre-y_post)**2) < 250*umeter')

3.7. Synapses 127

Brian 2 Documentation, Release 2.1.1

Probabilistic

Synapse creation can also be probabilistic by providing a p argument, providing the connection probability for each
pair of synapses:

S.connect(p=0.1)

This connects all neuron pairs with a probability of 10%. Probabilities can also be given as expressions, for example
to implement a connection probability that depends on distance:

S.connect(condition='i != j',
p='p_max*exp(-(x_pre-x_post)**2+(y_pre-y_post)**2) / (2*(125*umeter)**2)')

If this statement is applied to a Synapses object that connects a group to itself, it prevents self-connections (i !
= j) and connects cells with a probability that is modulated according to a 2-dimensional Gaussian of the distance
between the cells.

One-to-one

You can specify a mapping from i to any function f(i), e.g. the simplest way to give a 1-to-1 connection would be:

S.connect(j='i')

This mapping can also use a restricting condition with if, e.g. to connect neurons 0, 2, 4, 6, . . . to neurons 0, 1, 2, 3,
. . . you could write:

S.connect(j='int(i/2) if i % 2 == 0')

3.7.3 Accessing synaptic variables

Synaptic variables can be accessed in a similar way as NeuronGroup variables. They can be indexed with two
indexes, corresponding to the indexes of pre and postsynaptic neurons, or with string expressions (referring to i and
j as the pre-/post-synaptic indices, or to other state variables of the synapse or the connected neurons). Note that
setting a synaptic variable always refers to the synapses that currently exist, i.e. you have to set them after the relevant
Synapses.connect() call.

Here are a few examples:

S.w[2, 5] = 1*nS
S.w[1, :] = 2*nS
S.w = 1*nS # all synapses assigned
S.w[2, 3] = (1*nS, 2*nS)
S.w[group1, group2] = "(1+cos(i-j))*2*nS"
S.w[:, :] = 'rand()*nS'
S.w['abs(x_pre-x_post) < 250*umetre'] = 1*nS

Note that it is also possible to index synaptic variables with a single index (integer, slice, or array), but in this case
synaptic indices have to be provided.

3.7.4 Delays

There is a special synaptic variable that is automatically created: delay. It is the propagation delay from the presy-
naptic neuron to the synapse, i.e., the presynaptic delay. This is just a convenience syntax for accessing the delay

128 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.1.1

stored in the presynaptic pathway: pre.delay. When there is a postsynaptic code (keyword post), the delay of the
postsynaptic pathway can be accessed as post.delay.

The delay variable(s) can be set and accessed in the same way as other synaptic variables. The same semantics as
for other synaptic variables apply, which means in particular that the delay is only set for the synapses that have been
already created with Synapses.connect(). If you want to set a global delay for all synapses of a Synapses
object, you can directly specify that delay as part of the Synapses initializer:

synapses = Synapses(sources, targets, '...', on_pre='...', delay=1*ms)

When you use this syntax, you can still change the delay afterwards by setting synapses.delay, but you can only
set it to another scalar value. If you need different delays across synapses, do not use this syntax but instead set the
delay variable as any other synaptic variable (see above).

3.7.5 Monitoring synaptic variables

A StateMonitor object can be used to monitor synaptic variables. For example, the following statement creates a
monitor for variable w for the synapses 0 and 1:

M = StateMonitor(S, 'w', record=[0,1])

Note that these are synapse indices, not neuron indices. More convenient is to directly index the Synapses object,
Brian will automatically calculate the indices for you in this case:

M = StateMonitor(S, 'w', record=S[0, :]) # all synapses originating from neuron 0
M = StateMonitor(S, 'w', record=S['i!=j']) # all synapses excluding autapses
M = StateMonitor(S, 'w', record=S['w>0']) # all synapses with non-zero weights (at
→˓this time)

You can also record a synaptic variable for all synapses by passing record=True.

The recorded traces can then be accessed in the usual way, again with the possibility to index the Synapses object:

plot(M.t / ms, M[S[0]].w / nS) # first synapse
plot(M.t / ms, M[S[0, :]].w / nS) # all synapses originating from neuron 0
plot(M.t / ms, M[S['w>0*nS']].w / nS) # all synapses with non-zero weights (at this
→˓time)

Note (for users of Brian’s advanced standalone mode only): the use of the Synapses object for indexing and
record=True only work in the default runtime modes. In standalone mode (see Standalone code generation),
the synapses have not yet been created at this point, so Brian cannot calculate the indices.

3.7.6 Creating synapses with the generator syntax

The most general way of specifying a connection is using the generator syntax, e.g. to connect neuron i to all neurons
j with 0<=j<=i:

S.connect(j='k for k in range(0, i+1)')

There are several parts to this syntax. The general form is:

j='EXPR for VAR in RANGE if COND'

Here EXPR can be any integer-valued expression. VAR is the name of the iteration variable (any name you like can
be specified here). The if COND part is optional and lets you give an additional condition that has to be true for the
synapse to be created. Finally, RANGE can be either:

3.7. Synapses 129

Brian 2 Documentation, Release 2.1.1

1. a Python range, e.g. range(N) is the integers from 0 to N-1, range(A, B) is the integers from A to B-1,
range(low, high, step) is the integers from low to high-1 with steps of size step, or

2. it can be a random sample sample(N, p=0.1) gives a random sample of integers from 0 to N-1 with
10% probability of each integer appearing in the sample. This can have extra arguments like range, e.g.
sample(low, high, step, p=0.1) will give each integer in range(low, high, step) with
probability 10%.

If you try to create an invalid synapse (i.e. connecting neurons that are outside the correct range) then you will get an
error, e.g. you might like to try to do this to connect each neuron to its neighbours:

S.connect(j='i+(-1)**k for k in range(2)')

However this won’t work at for i=0 it gives j=-1 which is invalid. There is an option to just skip any synapses that
are outside the valid range:

S.connect(j='i+(-1)**k for k in range(2)', skip_if_invalid=True)

3.7.7 Summed variables

In many cases, the postsynaptic neuron has a variable that represents a sum of variables over all its synapses. This is
called a “summed variable”. An example is nonlinear synapses (e.g. NMDA):

neurons = NeuronGroup(1, model='''dv/dt=(gtot-v)/(10*ms) : 1
gtot : 1''')

S = Synapses(input, neurons,
model='''dg/dt=-a*g+b*x*(1-g) : 1

gtot_post = g : 1 (summed)
dx/dt=-c*x : 1
w : 1 # synaptic weight''', on_pre='x+=w')

Here, each synapse has a conductance g with nonlinear dynamics. The neuron’s total conductance is gtot. The line
stating gtot_post = g : 1 (summed) specifies the link between the two: gtot in the postsynaptic group is
the summer over all variables g of the corresponding synapses. What happens during the simulation is that at each time
step, presynaptic conductances are summed for each neuron and the result is copied to the variable gtot. Another
example is gap junctions:

neurons = NeuronGroup(N, model='''dv/dt=(v0-v+Igap)/tau : 1
Igap : 1''')

S=Synapses(neurons,model='''w:1 # gap junction conductance
Igap_post = w*(v_pre-v_post): 1 (summed)''')

Here, Igap is the total gap junction current received by the postsynaptic neuron.

Note that you cannot target the same post-synaptic variable from more than one Synapses object. To work around
this restriction, use multiple post-synaptic variables that ar then summed up:

neurons = NeuronGroup(1, model='''dv/dt=(gtot-v)/(10*ms) : 1
gtot = gtot1 + gtot2: 1
gtot1 : 1
gtot2 : 1''')

S1 = Synapses(input, neurons,
model='''dg/dt=-a1*g+b1*x*(1-g) : 1

gtot1_post = g : 1 (summed)
dx/dt=-c1*x : 1
w : 1 # synaptic weight

''', on_pre='x+=w')

130 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.1.1

S2 = Synapses(input, neurons,
model='''dg/dt=-a2*g+b2*x*(1-g) : 1

gtot2_post = g : 1 (summed)
dx/dt=-c2*x : 1
w : 1 # synaptic weight

''', on_pre='x+=w')

3.7.8 Creating multi-synapses

It is also possible to create several synapses for a given pair of neurons:

S.connect(i=numpy.arange(10), j=1, n=3)

This is useful for example if one wants to have multiple synapses with different delays. To distinguish multiple
variables connecting the same pair of neurons in synaptic expressions and statements, you can create a variable storing
the synapse index with the multisynaptic_index keyword:

syn = Synapses(source_group, target_group, model='w : 1', on_pre='v += w',
multisynaptic_index='synapse_number')

syn.connect(i=numpy.arange(10), j=1, n=3)
syn.delay = '1*ms + synapse_number*2*ms'

This index can then be used to set/get synapse-specific values:

S.delay = '(synapse_number + 1)*ms)' # Set delays between 1 and 10ms
S.w['synapse_number<5'] = 0.5
S.w['synapse_number>=5'] = 1

It also enables three-dimensional indexing, the following statement has the same effect as the last one above:

S.w[:, :, 5:] = 1

3.7.9 Multiple pathways

It is possible to have multiple pathways with different update codes from the same presynaptic neuron group. This
may be interesting in cases when different operations must be applied at different times for the same presynaptic spike.
To do this, specify a dictionary of pathway names and codes:

on_pre={'pre_transmission': 'ge+=w',
'pre_plasticity': '''w=clip(w+Apost,0,inf)

Apre+=dApre'''}

This creates two pathways with the given names (in fact, specifying on_pre=code is just a shorter syntax
for on_pre={'pre': code}) through which the delay variables can be accessed. The following state-
ment, for example, sets the delay of the synapse between the first neurons of the source and target groups in the
pre_plasticity pathway:

S.pre_plasticity.delay[0,0] = 3*ms

As mentioned above, pre pathways are generally executed before post pathways. The order of execution of several
pre (or post) pathways is however arbitrary, and simply based on the alphabetical ordering of their names (i.e.
pre_plasticity will be executed before pre_transmission). To explicitly specify the order, set the order
attribute of the pathway, e.g.:

3.7. Synapses 131

Brian 2 Documentation, Release 2.1.1

S.pre_transmission.order = -2

will make sure that the pre_transmission code is executed before the pre_plasticity code in each time
step.

3.7.10 Numerical integration

Differential equation flags

For the integration of differential equations, one can use the same keywords as for NeuronGroup.

Note: Declaring a subexpression as (constant over dt) means that it will be evaluated each timestep for all
synapses, potentially a very costly operation.

Explicit event-driven updates

As mentioned above, it is possible to write event-driven update code for the synaptic variables. For this, two special
variables are provided: t is the current time when the code is executed, and lastupdate is the last time when the
synapse was updated (either through on_pre or on_post code). An example is short-term plasticity (in fact this
could be done automatically with the use of the (event-driven) keyword mentioned above):

S=Synapses(input,neuron,
model='''x : 1

u : 1
w : 1''',

on_pre='''u=U+(u-U)*exp(-(t-lastupdate)/tauf)
x=1+(x-1)*exp(-(t-lastupdate)/taud)
i+=w*u*x
x*=(1-u)
u+=U*(1-u)''')

By default, the pre pathway is executed before the post pathway (both are executed in the 'synapses' scheduling
slot, but the pre pathway has the order attribute -1, wheras the post pathway has order 1. See Scheduling for
more details).

3.7.11 Technical notes

How connection arguments are interpreted

If conditions for connecting neurons are combined with both the n (number of synapses to create) and the p (probability
of a synapse) keywords, they are interpreted in the following way:

For every pair i, j:
if condition(i, j) is fulfilled:

Evaluate p(i, j)
If uniform random number between 0 and 1 < p(i, j):

Create n(i, j) synapses for (i, j)

With the generator syntax j='EXPR for VAR in RANGE if COND', the interpretation is:

For every i:

132 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.1.1

for every VAR in RANGE:
j = EXPR
if COND:

Create n(i, j) synapses for (i, j)

Note that the arguments in RANGE can only depend on i and the values of presynaptic variables. Similarly, the
expression for j, EXPR can depend on i, presynaptic variables, and on the iteration variable VAR. The condition
COND can depend on anything (presynaptic and postsynaptic variables).

With the 1-to-1 mapping syntax j='EXPR' the interpretation is:

For every i:
j = EXPR
Create n(i, j) synapses for (i, j)

Efficiency considerations

If you are connecting a single pair of neurons, the direct form connect(i=5, j=10) is the most efficient. How-
ever, if you are connecting a number of neurons, it will usually be more efficient to construct an array of i and j
values and have a single connect(i=i, j=j) call.

For large connections, you should use one of the string based syntaxes where possible as this will generate compiled
low-level code that will be typically much faster than equivalent Python code.

If you are expecting a majority of pairs of neurons to be connected, then using the condition-based syntax is op-
timal, e.g. connect(condition='i!=j'). However, if relatively few neurons are being connected then the
1-to-1 mapping or generator syntax will be better. For 1-to-1, connect(j='i') will always be faster than
connect(condition='i==j') because the latter has to evaluate all N**2 pairs (i, j) and check if the
condition is true, whereas the former only has to do O(N) operations.

One tricky problem is how to efficiently generate connectivity with a probability p(i, j) that depends on both i and
j, since this requires N*N computations even if the expected number of synapses is proportional to N. Some tricks for
getting around this are shown in Example: efficient_gaussian_connectivity.

3.8 Input stimuli

For Brian 1 users

See the document Inputs (Brian 1 –> 2 conversion) for details how to convert Brian 1 code.

• Poisson inputs

• Spike generation

• Explicit equations

• Timed arrays

• Regular operations

• More on Poisson inputs

• Arbitrary Python code (network operations)

3.8. Input stimuli 133

Brian 2 Documentation, Release 2.1.1

There are various ways of providing “external” input to a network.

3.8.1 Poisson inputs

For generating spikes according to a Poisson point process, PoissonGroup can be used, e.g.:

P = PoissonGroup(100, np.arange(100)*Hz + 10*Hz)
G = NeuronGroup(100, 'dv/dt = -v / (10*ms) : 1')
S = Synapses(P, G, on_pre='v+=0.1')
S.connect(j='i')

See More on Poisson inputs below for further information.

For simulations where the individually generated spikes are just used as a source of input to a neuron, the
PoissonInput class provides a more efficient alternative: see Efficient Poisson inputs via PoissonInput below
for details.

3.8.2 Spike generation

You can also generate an explicit list of spikes given via arrays using SpikeGeneratorGroup. This object behaves
just like a NeuronGroup in that you can connect it to other groups via a Synapses object, but you specify three bits
of information: N the number of neurons in the group; indices an array of the indices of the neurons that will fire;
and times an array of the same length as indices with the times that the neurons will fire a spike. The indices
and times arrays are matching, so for example indices=[0,2,1] and times=[1*ms,2*ms,3*ms] means
that neuron 0 fires at time 1 ms, neuron 2 fires at 2 ms and neuron 1 fires at 3 ms. Example use:

indices = array([0, 2, 1])
times = array([1, 2, 3])*ms
G = SpikeGeneratorGroup(3, indices, times)

The spikes that will be generated by SpikeGeneratorGroup can be changed between runs with the set_spikes
method. This can be useful if the input to a system should depend on its previous output or when running multiple
trials with different input:

inp = SpikeGeneratorGroup(N, indices, times)
G = NeuronGroup(N, '...')
feedforward = Synapses(inp, G, '...', on_pre='...')
feedforward.connect(j='i')
recurrent = Synapses(G, G, '...', on_pre='...')
recurrent.connect('i!=j')
spike_mon = SpikeMonitor(G)
...
run(runtime)
Replay the previous output of group G as input into the group
inp.set_spikes(spike_mon.i, spike_mon.t + runtime)
run(runtime)

3.8.3 Explicit equations

If the input can be explicitly expressed as a function of time (e.g. a sinusoidal input current), then its description can
be directly included in the equations of the respective group:

134 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.1.1

G = NeuronGroup(100, '''dv/dt = (-v + I)/(10*ms) : 1
rates : Hz # each neuron's input has a different rate
size : 1 # and a different amplitude
I = size*sin(2*pi*rates*t) : 1''')

G.rates = '10*Hz + i*Hz'
G.size = '(100-i)/100. + 0.1'

3.8.4 Timed arrays

If the time dependence of the input cannot be expressed in the equations in the way shown above, it is possible to
create a TimedArray . This acts as a function of time where the values at given time points are given explicitly.
This can be especially useful to describe non-continuous stimulation. For example, the following code defines a
TimedArray where stimulus blocks consist of a constant current of random strength for 30ms, followed by no
stimulus for 20ms. Note that in this particular example, numerical integration can use exact methods, since it can
assume that the TimedArray is a constant function of time during a single integration time step.

Note: The semantics of TimedArray changed slightly compared to Brian 1: for TimedArray([x1, x2, ...
], dt=my_dt), the value x1 will be returned for all 0<=t<my_dt, x2 for my_dt<=t<2*my_dt etc., whereas
Brian1 returned x1 for 0<=t<0.5*my_dt, x2 for 0.5*my_dt<=t<1.5*my_dt, etc.

stimulus = TimedArray(np.hstack([[c, c, c, 0, 0]
for c in np.random.rand(1000)]),

dt=10*ms)
G = NeuronGroup(100, 'dv/dt = (-v + stimulus(t))/(10*ms) : 1',

threshold='v>1', reset='v=0')
G.v = '0.5*rand()' # different initial values for the neurons

TimedArray can take a one-dimensional value array (as above) and therefore return the same value for all neurons
or it can take a two-dimensional array with time as the first and (neuron/synapse/. . . -)index as the second dimension.

In the following, this is used to implement shared noise between neurons, all the “even neurons” get the first noise
instantiation, all the “odd neurons” get the second:

runtime = 1*second
stimulus = TimedArray(np.random.rand(int(runtime/defaultclock.dt), 2),

dt=defaultclock.dt)
G = NeuronGroup(100, 'dv/dt = (-v + stimulus(t, i % 2))/(10*ms) : 1',

threshold='v>1', reset='v=0')

3.8.5 Regular operations

An alternative to specifying a stimulus in advance is to run explicitly specified code at certain points during a sim-
ulation. This can be achieved with run_regularly(). One can think of these statements as equivalent to reset
statements but executed unconditionally (i.e. for all neurons) and possibly on a different clock than the rest of the
group. The following code changes the stimulus strength of half of the neurons (randomly chosen) to a new random
value every 50ms. Note that the statement uses logical expressions to have the values only updated for the chosen
subset of neurons (where the newly introduced auxiliary variable change equals 1):

G = NeuronGroup(100, '''dv/dt = (-v + I)/(10*ms) : 1
I : 1 # one stimulus per neuron''')

G.run_regularly('''change = int(rand() < 0.5)

3.8. Input stimuli 135

Brian 2 Documentation, Release 2.1.1

I = change*(rand()*2) + (1-change)*I''',
dt=50*ms)

The following topics are not essential for beginners.

3.8.6 More on Poisson inputs

Setting rates for Poisson inputs

PoissonGroup takes either a constant rate, an array of rates (one rate per neuron, as in the example above), or a
string expression evaluating to a rate as an argument.

If the given value for rates is a constant, then using PoissonGroup(N, rates) is equivalent to:

NeuronGroup(N, 'rates : Hz', threshold='rand()<rates*dt')

and setting the group’s rates attribute.

If rates is a string, then this is equivalent to:

NeuronGroup(N, 'rates = ... : Hz', threshold='rand()<rates*dt')

with the respective expression for the rates. This expression will be evaluated at every time step and therefore allows
the use of time-dependent rates, i.e. inhomogeneous Poisson processes. For example, the following code (see also
Timed arrays) uses a TimedArray to define the rates of a PoissonGroup as a function of time, resulting in five
100ms blocks of 100 Hz stimulation, followed by 100ms of silence:

stimulus = TimedArray(np.tile([100., 0.], 5)*Hz, dt=100.*ms)
P = PoissonGroup(1, rates='stimulus(t)')

Note that, as can be seen in its equivalent NeuronGroup formulation, a PoissonGroup does not work for high
rates where more than one spike might fall into a single timestep. Use several units with lower rates in this case (e.g.
use PoissonGroup(10, 1000*Hz) instead of PoissonGroup(1, 10000*Hz)).

Efficient Poisson inputs via PoissonInput

For simulations where the PoissonGroup is just used as a source of input to a neuron (i.e., the individually generated
spikes are not important, just their impact on the target cell), the PoissonInput class provides a more efficient
alternative: instead of generating spikes, PoissonInput directly updates a target variable based on the sum of
independent Poisson processes:

G = NeuronGroup(100, 'dv/dt = -v / (10*ms) : 1')
P = PoissonInput(G, 'v', 100, 100*Hz, weight=0.1)

The PoissonInput class is however more restrictive than PoissonGroup, it only allows for a constant rate
across all neurons (but you can create several PoissonInput objects, targeting different subgroups). It internally
uses BinomialFunction which will draw a random number each time step, either from a binomial distribution or

136 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.1.1

from a normal distribution as an approximation to the binomial distribution if 𝑛𝑝 > 5 ∧ 𝑛(1− 𝑝) > 5, where 𝑛 is the
number of inputs and 𝑝 = 𝑑𝑡 · 𝑟𝑎𝑡𝑒 the spiking probability for a single input.

3.8.7 Arbitrary Python code (network operations)

If none of the above techniques is general enough to fulfill the requirements of a simulation, Brian allows you to write
a NetworkOperation, an arbitrary Python function that is executed every time step (possible on a different clock
than the rest of the simulation). This function can do arbitrary operations, use conditional statements etc. and it will be
executed as it is (i.e. as pure Python code even if weave code generation is active). Note that one cannot use network
operations in combination with the C++ standalone mode. Network operations are particularly useful when some
condition or calculation depends on operations across neurons, which is currently not possible to express in abstract
code. The following code switches input on for a randomly chosen single neuron every 50 ms:

G = NeuronGroup(10, '''dv/dt = (-v + active*I)/(10*ms) : 1
I = sin(2*pi*100*Hz*t) : 1 (shared) #single input
active : 1 # will be set in the network operation''')

@network_operation(dt=50*ms)
def update_active():

index = np.random.randint(10) # index for the active neuron
G.active_ = 0 # the underscore switches off unit checking
G.active_[index] = 1

Note that the network operation (in the above example: update_active) has to be included in the Network object
if one is constructed explicitly.

Only functions with zero or one arguments can be used as a NetworkOperation. If the function has one argument
then it will be passed the current time t:

@network_operation(dt=1*ms)
def update_input(t):

if t>50*ms and t<100*ms:
pass # do something

Note that this is preferable to accessing defaultclock.t from within the function – if the network operation is
not running on the defaultclock itself, then that value is not guaranteed to be correct.

Instance methods can be used as network operations as well, however in this case they have to be constructed explicitly,
the network_operation() decorator cannot be used:

class Simulation(object):
def __init__(self, data):

self.data = data
self.group = NeuronGroup(...)
self.network_op = NetworkOperation(self.update_func, dt=10*ms)
self.network = Network(self.group, self.network_op)

def update_func(self):
pass # do something

def run(self, runtime):
self.network.run(runtime)

3.9 Recording during a simulation

3.9. Recording during a simulation 137

Brian 2 Documentation, Release 2.1.1

For Brian 1 users

See the document Monitors (Brian 1 –> 2 conversion) for details how to convert Brian 1 code.

• Recording spikes

• Recording variables at spike time

• Recording variables continuously

• Recording population rates

• Getting all data

Recording variables during a simulation is done with “monitor” objects. Specifically, spikes are recorded with
SpikeMonitor, the time evolution of variables with StateMonitor and the firing rate of a population of neurons
with PopulationRateMonitor.

3.9.1 Recording spikes

To record spikes from a group G simply create a SpikeMonitor via SpikeMonitor(G). After the simulation,
you can access the attributes i, t, num_spikes and count of the monitor. The i and t attributes give the array of
neuron indices and times of the spikes. For example, if M.i==[0, 2, 1] and M.t==[1*ms, 2*ms, 3*ms]
it means that neuron 0 fired a spike at 1 ms, neuron 2 fired a spike at 2 ms, and neuron 1 fired a spike at 3 ms.
Alternatively, you can also call the spike_trains method to get a dictionary mapping neuron indices to arrays of
spike times, i.e. in the above example, spike_trains = M.spike_trains(); spike_trains[1] would
return array([3.]) * msecond. The num_spikes attribute gives the total number of spikes recorded, and
count is an array of the length of the recorded group giving the total number of spikes recorded from each neuron.

Example:

G = NeuronGroup(N, model='...')
M = SpikeMonitor(G)
run(runtime)
plot(M.t/ms, M.i, '.')

If you are only interested in summary statistics but not the individual spikes, you can set the record argument to
False. You will then not have access to i and t but you can still get the count and the total number of spikes
(num_spikes).

3.9.2 Recording variables at spike time

By default, a SpikeMonitor only records the time of the spike and the index of the neuron that spiked. Sometimes
it can be useful to addtionaly record other variables, e.g. the membrane potential for models where the threshold is
not at a fixed value. This can be done by providing an extra variables argument, the recorded variable can then be
accessed as an attribute of the SpikeMonitor, e.g.:

G = NeuronGroup(10, 'v : 1', threshold='rand()<100*Hz*dt')
G.run_regularly('v = rand()')
M = SpikeMonitor(G, variables=['v'])
run(100*ms)
plot(M.t/ms, M.v, '.')

138 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.1.1

To conveniently access the values of a recorded variable for a single neuron, the SpikeMonitor.values()
method can be used that returns a dictionary with the values for each neuron.:

G = NeuronGroup(N, '''dv/dt = (1-v)/(10*ms) : 1
v_th : 1''',

threshold='v > v_th',
randomly change the threshold after a spike:
reset='''v=0

v_th = clip(v_th + rand()*0.2 - 0.1, 0.1, 0.9)''')
G.v_th = 0.5
spike_mon = SpikeMonitor(G, variables='v')
run(1*second)
v_values = spike_mon.values('v')
print('Threshold crossing values for neuron 0: {}'.format(v_values[0]))
hist(spike_mon.v, np.arange(0, 1, .1))
show()

Note: Spikes are not the only events that can trigger recordings, see Custom events.

3.9.3 Recording variables continuously

To record how a variable evolves over time, use a StateMonitor, e.g. to record the variable v at every time step
and plot it for neuron 0:

G = NeuronGroup(...)
M = StateMonitor(G, 'v', record=True)
run(...)
plot(M.t/ms, M.v[0]/mV)

In general, you specify the group, variables and indices you want to record from. You specify the variables with a
string or list of strings, and the indices either as an array of indices or True to record all indices (but beware because
this may take a lot of memory).

After the simulation, you can access these variables as attributes of the monitor. They are 2D arrays with shape
(num_indices, num_times). The special attribute t is an array of length num_times with the corresponding
times at which the values were recorded.

Note that you can also use StateMonitor to record from Synapses where the indices are the synapse indices
rather than neuron indices.

In this example, we record two variables v and u, and record from indices 0, 10 and 100. Afterwards, we plot the
recorded values of v and u from neuron 0:

G = NeuronGroup(...)
M = StateMonitor(G, ('v', 'u'), record=[0, 10, 100])
run(...)
plot(M.t/ms, M.v[0]/mV, label='v')
plot(M.t/ms, M.u[0]/mV, label='u')

There are two subtly different ways to get the values for specific neurons: you can either index the 2D array stored in
the attribute with the variable name (as in the example above) or you can index the monitor itself. The former will use
an index relative to the recorded neurons (e.g. M.v[1] will return the values for the second recorded neuron which is
the neuron with the index 10 whereas M.v[10] would raise an error because only three neurons have been recorded),
whereas the latter will use an absolute index corresponding to the recorded group (e.g. M[1].v will raise an error

3.9. Recording during a simulation 139

Brian 2 Documentation, Release 2.1.1

because the neuron with the index 1 has not been recorded and M[10].v will return the values for the neuron with
the index 10). If all neurons have been recorded (e.g. with record=True) then both forms give the same result.

Note that for plotting all recorded values at once, you have to transpose the variable values:

plot(M.t/ms, M.v.T/mV)

Note: In contrast to Brian 1, the values are recorded at the beginning of a time step and not at the end (you can set
the when argument when creating a StateMonitor, details about scheduling can be found here: Custom progress
reporting).

3.9.4 Recording population rates

To record the time-varying firing rate of a population of neurons use PopulationRateMonitor. After the simu-
lation the monitor will have two attributes t and rate, the latter giving the firing rate at each time step corresponding
to the time in t. For example:

G = NeuronGroup(...)
M = PopulationRateMonitor(G)
run(...)
plot(M.t/ms, M.rate/Hz)

To get a smoother version of the rate, use PopulationRateMonitor.smooth_rate().

The following topics are not essential for beginners.

3.9.5 Getting all data

Note that all monitors are implement as “groups”, so you can get all the stored values in a monitor with the Group.
get_states() method, which can be useful to dump all recorded data to disk, for example.

3.10 Running a simulation

For Brian 1 users

See the document Networks and clocks (Brian 1 –> 2 conversion) for details how to convert Brian 1 code.

• Networks

• Setting the simulation time step

140 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.1.1

• Progress reporting

• Continuing/repeating simulations

• Multiple magic runs

• Changing the simulation time step

• Profiling

• Scheduling

• Store/restore

To run a simulation, one either constructs a new Network object and calls its Network.run() method, or uses the
“magic” system and a plain run() call, collecting all the objects in the current namespace.

Note that Brian has several different ways of running the actual computations, and choosing the right one can make
orders of magnitude of difference in terms of simplicity and efficiency. See Computational methods and efficiency for
more details.

3.10.1 Networks

In most straightforward simulations, you do not have to explicitly create a Network object but instead can simply
call run() to run a simulation. This is what is called the “magic” system, because Brian figures out automatically
what you want to do.

When calling run(), Brian runs the collect() function to gather all the objects in the current context. It will
include all the objects that are “visible”, i.e. that you could refer to with an explicit name:

G = NeuronGroup(10, 'dv/dt = -v / tau : volt')
S = Synapses(G, G, model='w:1', on_pre='v+=w')
S.connect('i!=j')
mon = SpikeMonitor(G)

run(10*ms) # will include G, S, mon

Note that it will not automatically include objects that are “hidden” in containers, e.g. if you store several monitors
in a list. Use an explicit Network object in this case. It might be convenient to use the collect() function when
creating the Network object in that case:

G = NeuronGroup(10, 'dv/dt = -v / tau : volt')
S = Synapses(G, G, model='w:1', on_pre='v+=w')
S.connect('i!=j')
monitors = [SpikeMonitor(G), StateMonitor(G, 'v', record=True)]

a simple run would not include the monitors
net = Network(collect()) # automatically include G and S
net.add(monitors) # manually add the monitors

net.run(10*ms)

3.10.2 Setting the simulation time step

To set the simulation time step for every simulated object, set the dt attribute of the defaultclock which is used
by all objects that do not explicitly specify a clock or dt value during construction:

3.10. Running a simulation 141

Brian 2 Documentation, Release 2.1.1

defaultclock.dt = 0.05*ms

If some objects should use a different clock (e.g. to record values with a StateMonitor not at every time step in a
long running simulation), you can provide a dt argument to the respective object:

s_mon = StateMonitor(group, 'v', record=True, dt=1*ms)

To sum up:

• Set defaultclock.dt to the time step that should be used by most (or all) of your objects.

• Set dt explicitly when creating objects that should use a different time step.

Behind the scenes, a new Clock object will be created for each object that defines its own dt value.

3.10.3 Progress reporting

Especially for long simulations it is useful to get some feedback about the progress of the simulation. Brian offers a
few built-in options and an extensible system to report the progress of the simulation. In the Network.run() or
run() call, two arguments determine the output: report and report_period. When report is set to 'text'
or 'stdout', the progress will be printed to the standard output, when it is set to 'stderr', it will be printed to
“standard error”. There will be output at the start and the end of the run, and during the run in report_period
intervals. It is also possible to do custom progress reporting.

3.10.4 Continuing/repeating simulations

To store the current state of the simulation, call store() (use the Network.store() method for a Network).
You can store more than one snapshot of a system by providing a name for the snapshot; if store() is called without
a specified name, 'default' is used as the name. To restore the state, use restore().

The following simple example shows how this system can be used to run several trials of an experiment:

set up the network
G = NeuronGroup(...)
...
spike_monitor = SpikeMonitor(G)

Snapshot the state
store()

Run the trials
spike_counts = []
for trial in range(3):

restore() # Restore the initial state
run(...)
store the results
spike_counts.append(spike_monitor.count)

The following schematic shows how multiple snapshots can be used to run a network with a separate “train” and “test”
phase. After training, the test is run several times based on the trained network. The whole process of training and
testing is repeated several times as well:

set up the network
G = NeuronGroup(..., '''...

test_input : amp
...''')

142 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.1.1

S = Synapses(..., '''...
plastic : boolean (shared)
...''')

G.v = ...
S.connect(...)
S.w = ...

First snapshot at t=0
store('initialized')

Run 3 complete trials
for trial in range(3):

Simulate training phase
restore('initialized')
S.plastic = True
run(...)

Snapshot after learning
store('after_learning')

Run 5 tests after the training
for test_number in range(5):

restore('after_learning')
S.plastic = False # switch plasticity off
G.test_input = test_inputs[test_number]
monitor the activity now
spike_mon = SpikeMonitor(G)
run(...)
Do something with the result
...

The following topics are not essential for beginners.

3.10.5 Multiple magic runs

When you use more than a single run() statement, the magic system tries to detect which of the following two
situations applies:

1. You want to continue a previous simulation

2. You want to start a new simulation

For this, it uses the following heuristic: if a simulation consists only of objects that have not been run, it will start
a new simulation starting at time 0 (corresponding to the creation of a new Network object). If a simulation only
consists of objects that have been simulated in the previous run() call, it will continue that simulation at the previous
time.

If neither of these two situations apply, i.e., the network consists of a mix of previously run objects and new objects,
an error will be raised. If this is not a mistake but intended (e.g. when a new input source and synapses should be
added to a network at a later stage), use an explicit Network object.

3.10. Running a simulation 143

Brian 2 Documentation, Release 2.1.1

In these checks, “non-invalidating” objects (i.e. objects that have BrianObject.
invalidates_magic_network set to False) are ignored, e.g. creating new monitors is always possible.

3.10.6 Changing the simulation time step

You can change the simulation time step after objects have been created or even after a simulation has been run:

defaultclock.dt = 0.1*ms
Set the network
...
run(initial_time)
defaultclock.dt = 0.01*ms
run(full_time - initial_time)

To change the time step between runs for objects that do not use the defaultclock, you cannot directly change their
dt attribute (which is read-only) but instead you have to change the dt of the clock attribute. If you want to change
the dt value of several objects at the same time (but not for all of them, i.e. when you cannot use defaultclock.
dt) then you might consider creating a Clock object explicitly and then passing this clock to each object with the
clock keyword argument (instead of dt). This way, you can later change the dt for several objects at once by
assigning a new value to Clock.dt.

Note that a change of dt has to be compatible with the internal representation of clocks as an integer value (the number
of elapsed time steps). For example, you can simulate an object for 100ms with a time step of 0.1ms (i.e. for 1000
steps) and then switch to a dt of 0.5ms, the time will then be internally represented as 200 steps. You cannot, however,
switch to a dt of 0.3ms, because 100ms are not an integer multiple of 0.3ms.

3.10.7 Profiling

To get an idea which parts of a simulation take the most time, Brian offers a basic profiling mechanism. If a simulation
is run with the profile=True keyword argument, it will collect information about the total simulation time for
each CodeObject. This information can then be retrieved from Network.profiling_info, which contains
a list of (name, time) tuples or a string summary can be obtained by calling profiling_summary(). The
following example shows profiling output after running the CUBA example (where the neuronal state updates take up
the most time):

>>> profiling_summary(show=5) # show the 5 objects that took the longest
Profiling summary
=================
neurongroup_stateupdater 5.54 s 61.32 %
synapses_pre 1.39 s 15.39 %
synapses_1_pre 1.03 s 11.37 %
spikemonitor 0.59 s 6.55 %
neurongroup_thresholder 0.33 s 3.66 %

3.10.8 Scheduling

Every simulated object in Brian has three attributes that can be specified at object creation time: dt, when, and
order. The time step of the simulation is determined by dt, if it is specified, or otherwise by defaultclock.dt.
Changing this will therefore change the dt of all objects that don’t specify one. Alternatively, a clock object can be
specified directly, this can be useful if a clock should be shared between several objects – under most circumstances,
however, a user should not have to deal with the creation of Clock objects and just define dt.

144 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.1.1

During a single time step, objects are updated in an order according first to their when argument’s position in
the schedule. This schedule is determined by Network.schedule which is a list of strings, determining “ex-
ecution slots” and their order. It defaults to: ['start', 'groups', 'thresholds', 'synapses',
'resets', 'end']. In addition to the names provided in the schedule, names such as before_thresholds
or after_synapses can be used that are understood as slots in the respective positions. The default for the when
attribute is a sensible value for most objects (resets will happen in the reset slot, etc.) but sometimes it make sense
to change it, e.g. if one would like a StateMonitor, which by default records in the end slot, to record the mem-
brane potential before a reset is applied (otherwise no threshold crossings will be observed in the membrane potential
traces).

Finally, if during a time step two objects fall in the same execution slot, they will be updated in ascending order
according to their order attribute, an integer number defaulting to 0. If two objects have the same when and order
attribute then they will be updated in an arbitrary but reproducible order (based on the lexicographical order of their
names).

Note that objects that don’t do any computation by themselves but only act as a container for other objects (e.g. a
NeuronGroup which contains a StateUpdater, a Resetter and a Thresholder), don’t have any value for
when, but pass on the given values for dt and order to their containing objects.

To see how the objects in a network are scheduled, you can use the scheduling_summary() function:

>>> group = NeuronGroup(10, 'dv/dt = -v/(10*ms) : 1', threshold='v > 1',
... reset='v = 0')
>>> mon = StateMonitor(group, 'v', record=True, dt=1*ms)
>>> scheduling_summary()

object | part of | Clock
→˓dt | when | order | active
--+-----------------------------+---------------
→˓---------+------------+-------+-------
statemonitor (StateMonitor) | statemonitor (StateMonitor) | 1. ms (every
→˓10 steps) | start | 0 | yes
neurongroup_stateupdater (StateUpdater) | neurongroup (NeuronGroup) | 100. us
→˓(every step) | groups | 0 | yes
neurongroup_thresholder (Thresholder) | neurongroup (NeuronGroup) | 100. us
→˓(every step) | thresholds | 0 | yes
neurongroup_resetter (Resetter) | neurongroup (NeuronGroup) | 100. us
→˓(every step) | resets | 0 | yes

As you can see in the output above, the StateMonitor will only record the membrane potential every 10 time steps,
but when it does, it will do it at the start of the time step, before the numerical integration, the thresholding, and the
reset operation takes place.

Every new Network starts a simulation at time 0; Network.t is a read-only attribute, to go back to a previous
moment in time (e.g. to do another trial of a simulation with a new noise instantiation) use the mechanism described
below.

3.10.9 Store/restore

Note that Network.run(), Network.store() and Network.restore() (or run(), store(),
restore()) are the only way of affecting the time of the clocks. In contrast to Brian1, it is no longer necessary (nor
possible) to directly set the time of the clocks or call a reinit function.

The state of a network can also be stored on disk with the optional filename argument of Network.
store()/store(). This way, you can run the initial part of a simulation once, store it to disk, and then continue
from this state later. Note that the store()/restore()mechanism does not re-create the network as such, you still
need to construct all the NeuronGroup, Synapses, StateMonitor, . . . objects, restoring will only restore all

3.10. Running a simulation 145

Brian 2 Documentation, Release 2.1.1

the state variable values (membrane potential, conductances, synaptic connections/weights/delays, . . .). This restora-
tion does however restore the internal state of the objects as well, e.g. spikes that have not been delivered yet because
of synaptic delays will be delivered correctly.

3.11 Multicompartment models

For Brian 1 users

See the document Multicompartmental models (Brian 1 –> 2 conversion) for details how to convert Brian 1 code.

It is possible to create neuron models with a spatially extended morphology, using the SpatialNeuron class. A
SpatialNeuron is a single neuron with many compartments. Essentially, it works as a NeuronGroup where
elements are compartments instead of neurons.

A SpatialNeuron is specified by a morphology (see Creating a neuron morphology) and a set of equations for
transmembrane currents (see Creating a spatially extended neuron).

3.11.1 Creating a neuron morphology

Schematic morphologies

Morphologies can be created combining geometrical objects:

soma = Soma(diameter=30*um)
cylinder = Cylinder(diameter=1*um, length=100*um, n=10)

The first statement creates a single iso-potential compartment (i.e. with no axial resistance within the compartment),
with its area calculated as the area of a sphere with the given diameter. The second one specifies a cylinder consisting
of 10 compartments with identical diameter and the given total length.

For more precise control over the geometry, you can specify the length and diameter of each individual compartment,
including the diameter at the start of the section (i.e. for n compartments: n length and n+1 diameter values) in a
Section object:

section = Section(diameter=[6, 5, 4, 3, 2, 1]*um, length=[10, 10, 10, 5, 5]*um, n=5)

The individual compartments are modeled as truncated cones, changing the diameter linearly between the given diam-
eters over the length of the compartment. Note that the diameter argument specifies the values at the nodes between
the compartments, but accessing the diameter attribute of a Morphology object will return the diameter at the
center of the compartment (see the note below).

The following table summarizes the different options to create schematic morphologies (the black compartment before
the start of the section represents the parent compartment with diameter 15 𝜇m, not specified in the code below):

146 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.1.1

Example
Soma

Soma always has a single
→˓compartment
Soma(diameter=30*um)

Cylinder
Each compartment has fixed
→˓length and diameter
Cylinder(5, diameter=10*um,
→˓length=50*um)

Section
Length and diameter
→˓individually defined for
→˓each compartment (at start
and end)
Section(5, diameter=[15, 5, 10,
→˓ 5, 10, 5]*um,

length=[10, 20, 5, 5,
→˓10]*um)

Note: For a Section, the diameter argument specifies the diameter between the compartments (and at
the beginning/end of the first/last compartment). the corresponding values can therefore be later retrieved from
the Morphology via the start_diameter and end_diameter attributes. The diameter attribute of
a Morphology does correspond to the diameter at the midpoint of the compartment. For a Cylinder,
start_diameter, diameter, and end_diameter are of course all identical.

The tree structure of a morphology is created by attaching Morphology objects together:

morpho = Soma(diameter=30*um)
morpho.axon = Cylinder(length=100*um, diameter=1*um, n=10)
morpho.dendrite = Cylinder(length=50*um, diameter=2*um, n=5)

These statements create a morphology consisting of a cylindrical axon and a dendrite attached to a spherical soma.
Note that the names axon and dendrite are arbitrary and chosen by the user. For example, the same morphology
can be created as follows:

morpho = Soma(diameter=30*um)
morpho.output_process = Cylinder(length=100*um, diameter=1*um, n=10)
morpho.input_process = Cylinder(length=50*um, diameter=2*um, n=5)

The syntax is recursive, for example two sections can be added at the end of the dendrite as follows:

morpho.dendrite.branch1 = Cylinder(length=50*um, diameter=1*um, n=3)
morpho.dendrite.branch2 = Cylinder(length=50*um, diameter=1*um, n=3)

Equivalently, one can use an indexing syntax:

morpho['dendrite']['branch1'] = Cylinder(length=50*um, diameter=1*um, n=3)
morpho['dendrite']['branch2'] = Cylinder(length=50*um, diameter=1*um, n=3)

3.11. Multicompartment models 147

Brian 2 Documentation, Release 2.1.1

The names given to sections are completely up to the user. However, names that consist of a single digit (1 to 9) or
the letters L (for left) and R (for right) allow for a special short syntax: they can be joined together directly, without
the needs for dots (or dictionary syntax) and therefore allow to quickly navigate through the morphology tree (e.g.
morpho.LRLLR is equivalent to morpho.L.R.L.L.R). This short syntax can also be used to create trees:

morpho = Soma(diameter=30*um)
morpho.L = Cylinder(length=10*um, diameter=1*um, n=3)
morpho.L1 = Cylinder(length=5*um, diameter=1*um, n=3)
morpho.L2 = Cylinder(length=5*um, diameter=1*um, n=3)
morpho.L3 = Cylinder(length=5*um, diameter=1*um, n=3)
morpho.R = Cylinder(length=10*um, diameter=1*um, n=3)
morpho.RL = Cylinder(length=5*um, diameter=1*um, n=3)
morpho.RR = Cylinder(length=5*um, diameter=1*um, n=3)

The above instructions create a dendritic tree with two main sections, three sections attached to the first section and
two to the second. This can be verified with the Morphology.topology() method:

>>> morpho.topology()
() [root]

`---| .L
`---| .L.1
`---| .L.2
`---| .L.3

`---| .R
`---| .R.L
`---| .R.R

Note that an expression such as morpho.L will always refer to the entire subtree. However, accessing the attributes
(e.g. diameter) will only return the values for the given section.

Note: To avoid ambiguities, do not use names for sections that can be interpreted in the abbreviated way detailed
above. For example, do not name a child section L1 (which will be interpreted as the first child of the child L)

The number of compartments in a section can be accessed with morpho.n (or morpho.L.n, etc.), the number
of total sections and compartments in a subtree can be accessed with morpho.total_sections and morpho.
total_compartments respectively.

Adding coordinates

For plotting purposes, it can be useful to add coordinates to a Morphology that was created using the “schematic”
approach described above. This can be done by calling the generate_coordinates method on a morphology,
which will return an identical morphology but with additional 2D or 3D coordinates. By default, this method creates
a morphology according to a deterministic algorithm in 2D:

new_morpho = morpho.generate_coordinates()

148 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.1.1

To get more “realistic” morphologies, this function can also be used to create morphologies in 3D where the orientation
of each section differs from the orientation of the parent section by a random amount:

new_morpho = morpho.generate_coordinates(section_randomness=25)

This algorithm will base the orientation of each section on the orientation of the parent section and then randomly per-
turb this orientation. More precisely, the algorithm first chooses a random vector orthogonal to the orientation of the
parent section. Then, the section will be rotated around this orthogonal vector by a random angle, drawn from an expo-
nential distribution with the 𝛽 parameter (in degrees) given by section_randomness. This 𝛽 parameter specifies
both the mean and the standard deviation of the rotation angle. Note that no maximum rotation angle is enforced,
values for section_randomness should therefore be reasonably small (e.g. using a section_randomness
of 45 would already lead to a probability of ~14% that the section will be rotated by more than 90 degrees, therefore
making the section go “backwards”).

3.11. Multicompartment models 149

Brian 2 Documentation, Release 2.1.1

In addition, also the orientation of each compartment within a section can be randomly varied:

new_morpho = morpho.generate_coordinates(section_randomness=25,
compartment_randomness=15)

The algorithm is the same as the one presented above, but applied individually to each compartment within a section
(still based on the orientation on the parent section, not on the orientation of the previous compartment).

Complex morphologies

Morphologies can also be created from information about the compartment coordinates in 3D space. Such morpholo-
gies can be loaded from a .swc file (a standard format for neuronal morphologies; for a large database of morphologies
in this format see http://neuromorpho.org):

morpho = Morphology.from_file('corticalcell.swc')

To manually create a morphology from a list of points in a similar format to SWC files, see Morphology.
from_points.

Morphologies that are created in such a way will use standard names for the sections that allow for the short syntax
shown in the previous sections: if a section has one or two child sections, then they will be called L and R, otherwise
they will be numbered starting at 1.

Morphologies with coordinates can also be created section by section, following the same syntax as for “schematic”
morphologies:

soma = Soma(diameter=30*um, x=50*um, y=20*um)
cylinder = Cylinder(10, x=[0, 100]*um, diameter=1*um)
section = Section(5,

x=[0, 10, 20, 30, 40, 50]*um,
y=[0, 10, 20, 30, 40, 50]*um,
z=[0, 10, 10, 10, 10, 10]*um,
diameter=[6, 5, 4, 3, 2, 1])*um

Note that the x, y, z attributes of Morphology and SpatialNeuron will return the coordinates at the midpoint
of each compartment (as for all other attributes that vary over the length of a compartment, e.g. diameter or
distance), but during construction the coordinates refer to the start and end of the section (Cylinder), respec-
tively to the coordinates of the nodes between the compartments (Section).

A few additional remarks:

1. In the majority of simulations, coordinates are not used in the neuronal equations, therefore the coordinates are
purely for visualization purposes and do not affect the simulation results in any way.

2. Coordinate specification cannot be combined with length specification – lengths are automatically calculated
from the coordinates.

150 Chapter 3. User’s guide

http://neuromorpho.org

Brian 2 Documentation, Release 2.1.1

3. The coordinate specification can also be 1- or 2-dimensional (as in the first two examples above), the unspecified
coordinate will use 0 𝜇m.

4. All coordinates are interpreted relative to the parent compartment, i.e. the point (0 𝜇m, 0 𝜇m, 0 𝜇m) refers to
the end point of the previous compartment. Most of the time, the first element of the coordinate specification
is therefore 0 𝜇m, to continue a section where the previous one ended. However, it can be convenient to use a
value different from 0 𝜇m for sections connecting to the Soma to make them (visually) connect to a point on
the sphere surface instead of the center of the sphere.

3.11.2 Creating a spatially extended neuron

A SpatialNeuron is a spatially extended neuron. It is created by specifying the morphology as a Morphology
object, the equations for transmembrane currents, and optionally the specific membrane capacitance Cm and intracel-
lular resistivity Ri:

gL = 1e-4*siemens/cm**2
EL = -70*mV
eqs = '''
Im=gL * (EL - v) : amp/meter**2
I : amp (point current)
'''
neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=1*uF/cm**2, Ri=100*ohm*cm)
neuron.v = EL + 10*mV

Several state variables are created automatically: the SpatialNeuron inherits all the geometrical variables of the
compartments (length, diameter, area, volume), as well as the distance variable that gives the distance to
the soma. For morphologies that use coordinates, the x, y and z variables are provided as well. Additionally, a state
variable Cm is created. It is initialized with the value given at construction, but it can be modified on a compartment per
compartment basis (which is useful to model myelinated axons). The membrane potential is stored in state variable v.

Note that for all variable values that vary across a compartment (e.g. distance, x, y, z, v), the value that is reported
is the value at the midpoint of the compartment.

The key state variable, which must be specified at construction, is Im. It is the total transmembrane current, expressed
in units of current per area. This is a mandatory line in the definition of the model. The rest of the string description may
include other state variables (differential equations or subexpressions) or parameters, exactly as in NeuronGroup.
At every timestep, Brian integrates the state variables, calculates the transmembrane current at every point on the
neuronal morphology, and updates v using the transmembrane current and the diffusion current, which is calculated
based on the morphology and the intracellular resistivity. Note that the transmembrane current is a surfacic current,
not the total current in the compartement. This choice means that the model equations are independent of the number
of compartments chosen for the simulation. The space and time constants can obtained for any point of the neuron
with the space_constant respectively time_constant attributes:

l = neuron.space_constant[0]
tau = neuron.time_constant[0]

The calculation is based on the local total conductance (not just the leak conductance), therefore, it can potentially vary
during a simulation (e.g. decrease during an action potential). The reported value is only correct for compartments with
a cylindrical geometry, though, it does not give reasonable values for compartments with strongly varying diameter.

To inject a current I at a particular point (e.g. through an electrode or a synapse), this current must be divided by the
area of the compartment when inserted in the transmembrane current equation. This is done automatically when the
flag point current is specified, as in the example above. This flag can apply only to subexpressions or parameters
with amp units. Internally, the expression of the transmembrane current Im is simply augmented with +I/area. A
current can then be injected in the first compartment of the neuron (generally the soma) as follows:

3.11. Multicompartment models 151

Brian 2 Documentation, Release 2.1.1

neuron.I[0] = 1*nA

State variables of the SpatialNeuron include all the compartments of that neuron (including subtrees). Therefore,
the statement neuron.v = EL + 10*mV sets the membrane potential of the entire neuron at -60 mV.

Subtrees can be accessed by attribute (in the same way as in Morphology objects):

neuron.axon.gNa = 10*gL

Note that the state variables correspond to the entire subtree, not just the main section. That is, if the axon had branches,
then the above statement would change gNa on the main section and all the sections in the subtree. To access the main
section only, use the attribute main:

neuron.axon.main.gNa = 10*gL

A typical use case is when one wants to change parameter values at the soma only. For example, inserting an electrode
current at the soma is done as follows:

neuron.main.I = 1*nA

A part of a section can be accessed as follows:

initial_segment = neuron.axon[10*um:50*um]

Synaptic inputs

There are two methods to have synapses on SpatialNeuron. The first one to insert synaptic equations directly in
the neuron equations:

eqs='''
Im = gL * (EL - v) : amp/meter**2
Is = gs * (Es - v) : amp (point current)
dgs/dt = -gs/taus : siemens
'''
neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=1*uF/cm**2, Ri=100*ohm*cm)

Note that, as for electrode stimulation, the synaptic current must be defined as a point current. Then we use a
Synapses object to connect a spike source to the neuron:

S = Synapses(stimulation, neuron, on_pre='gs += w')
S.connect(i=0, j=50)
S.connect(i=1, j=100)

This creates two synapses, on compartments 50 and 100. One can specify the compartment number with its spatial
position by indexing the morphology:

S.connect(i=0, j=morpho[25*um])
S.connect(i=1, j=morpho.axon[30*um])

In this method for creating synapses, there is a single value for the synaptic conductance in any compartment. This
means that it will fail if there are several synapses onto the same compartment and synaptic equations are nonlinear.
The second method, which works in such cases, is to have synaptic equations in the Synapses object:

eqs='''
Im = gL * (EL - v) : amp/meter**2
Is = gs * (Es - v) : amp (point current)

152 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.1.1

gs : siemens
'''
neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=1 * uF / cm ** 2, Ri=100 *
→˓ohm * cm)
S = Synapses(stimulation, neuron, model='''dg/dt = -g/taus : siemens

gs_post = g : siemens (summed)''',
on_pre='g += w')

Here each synapse (instead of each compartment) has an associated value g, and all values of g for each compartment
(i.e., all synapses targeting that compartment) are collected into the compartmental variable gs.

Detecting spikes

To detect and record spikes, we must specify a threshold condition, essentially in the same way as for a
NeuronGroup:

neuron = SpatialNeuron(morphology=morpho, model=eqs, threshold='v > 0*mV', refractory=
→˓'v > -10*mV')

Here spikes are detected when the membrane potential v reaches 0 mV. Because there is generally no explicit reset in
this type of model (although it is possible to specify one), v remains above 0 mV for some time. To avoid detecting
spikes during this entire time, we specify a refractory period. In this case no spike is detected as long as v is greater
than -10 mV. Another possibility could be:

neuron = SpatialNeuron(morphology=morpho, model=eqs, threshold='m > 0.5', refractory=
→˓'m > 0.4')

where m is the state variable for sodium channel activation (assuming this has been defined in the model). Here a spike
is detected when half of the sodium channels are open.

With the syntax above, spikes are detected in all compartments of the neuron. To detect them in a single compartment,
use the threshold_location keyword:

neuron = SpatialNeuron(morphology=morpho, model=eqs, threshold='m > 0.5', threshold_
→˓location=30,

refractory='m > 0.4')

In this case, spikes are only detecting in compartment number 30. Reset then applies locally to that compartment (if a
reset statement is defined). Again the location of the threshold can be specified with spatial position:

neuron = SpatialNeuron(morphology=morpho, model=eqs, threshold='m > 0.5',
threshold_location=morpho.axon[30*um],
refractory='m > 0.4')

3.12 Computational methods and efficiency

• Runtime code generation

• Standalone code generation

• Compiler settings

3.12. Computational methods and efficiency 153

Brian 2 Documentation, Release 2.1.1

Brian has several different methods for running the computations in a simulation. The default mode is Runtime
code generation, which runs the simulation loop in Python but compiles and executes the modules doing the actual
simulation work (numerical integration, synaptic propagation, etc.) in a defined target language. Brian will select the
best available target language automatically. On Windows, to ensure that you get the advantages of compiled code,
read the instructions on installing a suitable compiler in Windows. Runtime mode has the advantage that you can
combine the computations performed by Brian with arbitrary Python code specified as NetworkOperation.

The fact that the simulation is run in Python means that there is a (potentially big) overhead for each simulated time
step. An alternative is to run Brian in with Standalone code generation – this is in general faster (for certain types of
simulations much faster) but cannot be used for all kinds of simulations. To enable this mode, add the following line
after your Brian import, but before your simulation code:

set_device('cpp_standalone')

For detailed control over the compilation process (both for runtime and standalone code generation), you can change
the Compiler settings that are used.

The following topics are not essential for beginners.

3.12.1 Runtime code generation

Code generation means that Brian takes the Python code and strings in your model and generates code in one of several
possible different languages and actually executes that. The target language for this code generation process is set in
the codegen.target preference. By default, this preference is set to 'auto', meaning that it will chose a compiled
language target if possible and fall back to Python otherwise (it will also raise a warning in this case, set codegen.target
to 'numpy' explicitly to avoid this warning). There are two compiled language targets for Python 2.x, 'weave'
(needing a working installation of a C++ compiler) and 'cython' (needing the Cython package in addition); for
Python 3.x, only 'cython' is available. If you want to chose a code generation target explicitly (e.g. because you
want to get rid of the warning that only the Python fallback is available), set the preference to 'numpy', 'weave'
or 'cython' at the beginning of your script:

from brian2 import *
prefs.codegen.target = 'numpy' # use the Python fallback

See Preferences for different ways of setting preferences.

Warning:

Do not use the weave code generation targets when running multiple simulations in parallel. See
Known issues for more details.

You might find that running simulations in weave or Cython modes won’t work or is not as efficient as you were
expecting. This is probably because you’re using Python functions which are not compatible with weave or Cython.
For example, if you wrote something like this it would not be efficient:

from brian2 import *
prefs.codegen.target = 'cython'
def f(x):

154 Chapter 3. User’s guide

http://cython.org/

Brian 2 Documentation, Release 2.1.1

return abs(x)
G = NeuronGroup(10000, 'dv/dt = -x*f(x) : 1')

The reason is that the function f(x) is a Python function and so cannot be called from C++ directly. To solve this
problem, you need to provide an implementation of the function in the target language. See Functions.

3.12.2 Standalone code generation

Brian supports generating standalone code for multiple devices. In this mode, running a Brian script generates source
code in a project tree for the target device/language. This code can then be compiled and run on the device, and
modified if needed. At the moment, the only “device” supported is standalone C++ code. In some cases, the speed
gains can be impressive, in particular for smaller networks with complicated spike propagation rules (such as STDP).

To use the C++ standalone mode, you only have to make very small changes to your script. The exact change depends
on whether your script has only a single run() (or Network.run()) call, or several of them:

Single run call

At the beginning of the script, i.e. after the import statements, add:

set_device('cpp_standalone')

The CPPStandaloneDevice.build function will be automatically called with default arguments right after the
run() call. If you need non-standard arguments then you can specify them as part of the set_device() call:

set_device('cpp_standalone', directory='my_directory', debug=True)

Multiple run calls

At the beginning of the script, i.e. after the import statements, add:

set_device('cpp_standalone', build_on_run=False)

After the last run() call, call device.build() explicitly:

device.build(directory='output', compile=True, run=True, debug=False)

The build function has several arguments to specify the output directory, whether or not to compile and run the
project after creating it and whether or not to compile it with debugging support or not.

Multiple builds

To run multiple full simulations (i.e. multiple device.build calls, not just multiple run() calls as discussed
above), you have to reinitialize the device again:

device.reinit()
device.activate()

Note that the device “forgets” about all previously set build options provided to set_device() (most importantly
the build_on_run option, but also e.g. the directory), you’ll have to specify them as part of the Device.
activate call. Also, Device.activate will reset the defaultclock, you’ll therefore have to set its dt
after the activate call if you want to use a non-default value.

3.12. Computational methods and efficiency 155

Brian 2 Documentation, Release 2.1.1

Limitations

Not all features of Brian will work with C++ standalone, in particular Python based network operations and some
array based syntax such as S.w[0, :] = ... will not work. If possible, rewrite these using string based syntax
and they should work. Also note that since the Python code actually runs as normal, code that does something like this
may not behave as you would like:

results = []
for val in vals:

set up a network
run()
results.append(result)

The current C++ standalone code generation only works for a fixed number of run statements, not with loops. If you
need to do loops or other features not supported automatically, you can do so by inspecting the generated C++ source
code and modifying it, or by inserting code directly into the main loop as follows:

device.insert_code('main', '''
cout << "Testing direct insertion of code." << endl;
''')

Variables

After a simulation has been run (after the run() call if set_device() has been called with build_on_run set
to True or after the Device.build call with run set to True), state variables and monitored variables can be
accessed using standard syntax, with a few exceptions (e.g. string expressions for indexing).

Multi-threading with OpenMP

Warning: OpenMP code has not yet been well tested and so may be inaccurate.

When using the C++ standalone mode, you have the opportunity to turn on multi-threading, if your C++ compiler is
compatible with OpenMP. By default, this option is turned off and only one thread is used. However, by changing the
preferences of the codegen.cpp_standalone object, you can turn it on. To do so, just add the following line in your
python script:

prefs.devices.cpp_standalone.openmp_threads = XX

XX should be a positive value representing the number of threads that will be used during the simulation. Note that
the speedup will strongly depend on the network, so there is no guarantee that the speedup will be linear as a function
of the number of threads. However, this is working fine for networks with not too small timestep (dt > 0.1ms), and
results do not depend on the number of threads used in the simulation.

Customizing the build process

In standalone mode, a standard “make file” is used to orchestrate the compilation and linking. To pro-
vide additional arguments to the make command (respectively nmake on Windows), you can use the de-
vices.cpp_standalone.extra_make_args_unix or devices.cpp_standalone.extra_make_args_windows preference. On
Linux, this preference is by default set to ['-j'] to enable parallel compilation. Note that you can also use these
arguments to overwrite variables in the make file, e.g. to use clang instead of the default gcc compiler:

156 Chapter 3. User’s guide

https://clang.llvm.org/
https://gcc.gnu.org/

Brian 2 Documentation, Release 2.1.1

prefs.devices.cpp_standalone.extra_make_args_unix += ['CC=clang++']

3.12.3 Compiler settings

If using C++ code generation (either via weave, cython or standalone), the compiler settings can make a big difference
for the speed of the simulation. By default, Brian uses a set of compiler settings that switches on various optimizations
and compiles for running on the same architecture where the code is compiled. This allows the compiler to make use
of as many advanced instructions as possible, but reduces portability of the generated executable (which is not usually
an issue).

If there are any issues with these compiler settings, for example because you are using an older version of the C++
compiler or because you want to run the generated code on a different architecture, you can change the settings by man-
ually specifying the codegen.cpp.extra_compile_args preference (or by using codegen.cpp.extra_compile_args_gcc or
codegen.cpp.extra_compile_args_msvc if you want to specify the settings for either compiler only).

3.13 Converting from integrated form to ODEs

Brian requires models to be expressed as systems of first order ordinary differential equations, and the effect of spikes
to be expressed as (possibly delayed) one-off changes. However, many neuron models are given in integrated form.
For example, one form of the Spike Response Model (SRM; Gerstner and Kistler 2002) is defined as

𝑉 (𝑡) =
∑︁
𝑖

𝑤𝑖

∑︁
𝑡𝑖

PSP(𝑡− 𝑡𝑖) + 𝑉rest

where 𝑉 (𝑡) is the membrane potential, 𝑉rest is the rest potential, 𝑤𝑖 is the synaptic weight of synapse 𝑖, and 𝑡𝑖 are the
timings of the spikes coming from synapse 𝑖, and PSP is a postsynaptic potential function.

An example PSP is the 𝛼-function PSP(𝑡) = (𝑡/𝜏)𝑒−𝑡/𝜏 . For this function, we could rewrite the equation above in
the following ODE form:

𝜏
d𝑉

d𝑡
= 𝑉rest − 𝑉 + 𝑔

𝜏
d𝑔

d𝑡
= −𝑔

𝑔 ← 𝑔 + 𝑤𝑖 upon spike from synapse 𝑖

This could then be written in Brian as:

eqs = '''
dV/dt = (V_rest-V+g)/tau : 1
dg/dt = -g/tau : 1
'''
G = NeuronGroup(N, eqs, ...)
...
S = Synapses(G, G, 'w : 1', on_pre='g += w')

To see that these two formulations are the same, you first solve the problem for the case of a single synapse and a
single spike at time 0. The initial conditions at 𝑡 = 0 will be 𝑉 (0) = 𝑉rest, 𝑔(0) = 𝑤.

To solve these equations, let’s substitute 𝑠 = 𝑡/𝜏 and take derivatives with respect to 𝑠 instead of 𝑡, set 𝑢 = 𝑉 − 𝑉rest,
and assume 𝑤 = 1. This gives us the equations 𝑢′ = 𝑔 − 𝑢, 𝑔′ = −𝑔 with initial conditions 𝑢(0) = 0, 𝑔(0) = 1. At
this point, you can either consult a textbook on solving linear systems of differential equations, or just plug this into
Wolfram Alpha to get the solution 𝑔(𝑠) = 𝑒−𝑠, 𝑢(𝑠) = 𝑠𝑒−𝑠 which is equal to the PSP given above.

3.13. Converting from integrated form to ODEs 157

https://www.wolframalpha.com/input/?i=u%27(s)%3Dg(s)-u(s),+g%27(s)%3D-g(s),+u(0)%3D0,+g(0)%3D1
https://www.wolframalpha.com/input/?i=u%27(s)%3Dg(s)-u(s),+g%27(s)%3D-g(s),+u(0)%3D0,+g(0)%3D1

Brian 2 Documentation, Release 2.1.1

Now we use the linearity of these differential equations to see that it also works when 𝑤 ̸= 0 and for summing over
multiple spikes at different times.

In general, to convert from integrated form to ODE form, see Köhn and Wörgötter (1998), Sánchez-Montañás (2001),
and Jahnke et al. (1999). However, for some simple and widely used types of synapses, use the list below. In this
list, we assume synapses are postsynaptic potentials, but you can replace 𝑉 (𝑡) with a current or conductance for
postsynaptic currents or conductances. In each case, we give the Brian code with unitless variables, where eqs is the
differential equations for the target NeuronGroup, and on_pre is the argument to Synapses.

Exponential synapse 𝑉 (𝑡) = 𝑒−𝑡/𝜏 :

eqs = '''
dV/dt = -V/tau : 1
'''
on_pre = 'V += w'

Alpha synapse 𝑉 (𝑡) = (𝑡/𝜏)𝑒−𝑡/𝜏 :

eqs = '''
dV/dt = (x-V)/tau : 1
dx/dt = -x/tau : 1
'''
on_pre = 'x += w'

𝑉 (𝑡) reaches a maximum value of 𝑤/𝑒 at time 𝑡 = 𝜏 .

Biexponential synapse 𝑉 (𝑡) = 𝜏2
𝜏2−𝜏1

(︀
𝑒−𝑡/𝜏1 − 𝑒−𝑡/𝜏2

)︀
:

eqs = '''
dV/dt = ((tau_2 / tau_1) ** (tau_1 / (tau_2 - tau_1))*x-V)/tau_1 : 1
dx/dt = -x/tau_2 : 1
'''
on_pre = 'x += w'

𝑉 (𝑡) reaches a maximum value of 𝑤 at time 𝑡 = 𝜏1𝜏2
𝜏2−𝜏1

log
(︁

𝜏2
𝜏1

)︁
.

STDP

The weight update equation of the standard STDP is also often stated in an integrated form and can be converted to an
ODE form. This is covered in Tutorial 2.

158 Chapter 3. User’s guide

http://www.mitpressjournals.org/doi/abs/10.1162/089976698300017061
https://link.springer.com/chapter/10.1007/3-540-45720-8_14
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.20.2284&rep=rep1&type=pdf

CHAPTER 4

Advanced guide

This section has additional information on details not covered in the User’s guide.

4.1 Functions

All equations, expressions and statements in Brian can make use of mathematical functions. However, functions have
to be prepared for use with Brian for two reasons: 1) Brian is strict about checking the consistency of units, therefore
every function has to specify how it deals with units; 2) functions need to be implemented differently for different
code generation targets.

Brian provides a number of default functions that are already prepared for use with numpy and C++ and also provides
a mechanism for preparing new functions for use (see below).

4.1.1 Default functions

The following functions (stored in the DEFAULT_FUNCTIONS dictionary) are ready for use:

• Random numbers: rand(), randn() (Note that these functions should be called without arguments, the code
generation process will take care of generating an array of numbers for numpy).

• Elementary functions: sqrt, exp, log, log10, abs, sign

• Trigonometric functions: sin, cos, tan, sinh, cosh, tanh, arcsin, arccos, arctan

• General utility functions: clip, floor, ceil

Brian also provides a special purpose function int, which can be used to convert a an expression or variable into an
integer value. This is especially useful for boolean values (which will be converted into 0 or 1), for example to have
a conditional evaluation as part of an equation or statement which sometimes allows to circumvent the lack of an if
statement. For example, the following reset statement resets the variable v to either v_r1 or v_r2, depending on the
value of w: 'v = v_r1 * int(w <= 0.5) + v_r2 * int(w > 0.5)'

159

Brian 2 Documentation, Release 2.1.1

4.1.2 User-provided functions

Python code generation

If a function is only used in contexts that use Python code generation, preparing a function for use with Brian only
means specifying its units. The simplest way to do this is to use the check_units() decorator:

@check_units(x1=meter, y1=meter, x2=meter, y2=meter, result=meter)
def distance(x1, y1, x2, y2):

return sqrt((x1 - x2)**2 + (y1 - y2)**2)

Another option is to wrap the function in a Function object:

def distance(x1, y1, x2, y2):
return sqrt((x1 - x2)**2 + (y1 - y2)**2)

wrap the distance function
distance = Function(distance, arg_units=[meter, meter, meter, meter],

return_unit=meter)

The use of Brian’s unit system has the benefit of checking the consistency of units for every operation but at the
expense of performance. Consider the following function, for example:

@check_units(I=amp, result=Hz)
def piecewise_linear(I):

return clip((I-1*nA) * 50*Hz/nA, 0*Hz, 100*Hz)

When Brian runs a simulation, the state variables are stored and passed around without units for performance reasons.
If the above function is used, however, Brian adds units to its input argument so that the operations inside the function
do not fail with dimension mismatches. Accordingly, units are removed from the return value so that the function
output can be used with the rest of the code. For better performance, Brian can alter the namespace of the function
when it is executed as part of the simulation and remove all the units, then pass values without units to the function.
In the above example, this means making the symbol nA refer to 1e-9 and Hz to 1. To use this mechanism, add the
decorator implementation() with the discard_units keyword:

@implementation('numpy', discard_units=True)
@check_units(I=amp, result=Hz)
def piecewise_linear(I):

return clip((I-1*nA) * 50*Hz/nA, 0*Hz, 100*Hz)

Note that the use of the function outside of simulation runs is not affected, i.e. using piecewise_linear still
requires a current in Ampere and returns a rate in Hertz. The discard_unitsmechanism does not work in all cases,
e.g. it does not work if the function refers to units as brian2.nA instead of nA, if it uses imports inside the function
(e.g. from brian2 import nA), etc. The discard_units can also be switched on for all functions without
having to use the implementation() decorator by setting the codegen.runtime.numpy.discard_units preference.

Other code generation targets

To make a function available for other code generation targets (e.g. C++), implementations for these targets have to
be added. This can be achieved using the implementation() decorator. The form of the code (e.g. a simple
string or a dictionary of strings) necessary is target-dependent, for C++ both options are allowed, a simple string will
be interpreted as filling the 'support_code' block. Note that both 'cpp' and 'weave' can be used to provide
C++ implementations, the first should be used for generic C++ implementations, and the latter if weave-specific code
is necessary. An implementation for the C++ target could look like this:

160 Chapter 4. Advanced guide

Brian 2 Documentation, Release 2.1.1

@implementation('cpp', '''
double piecewise_linear(double I) {

if (I < 1e-9)
return 0;

if (I > 3e-9)
return 100;

return (I/1e-9 - 1) * 50;
}
''')

@check_units(I=amp, result=Hz)
def piecewise_linear(I):

return clip((I-1*nA) * 50*Hz/nA, 0*Hz, 100*Hz)

Alternatively, FunctionImplementation objects can be added to the Function object.

The same sort of approach as for C++ works for Cython using the 'cython' target. The example above would look
like this:

@implementation('cython', '''
cdef double piecewise_linear(double I):

if I<1e-9:
return 0.0

elif I>3e-9:
return 100.0

return (I/1e-9-1)*50
''')

@check_units(I=amp, result=Hz)
def piecewise_linear(I):

return clip((I-1*nA) * 50*Hz/nA, 0*Hz, 100*Hz)

Arrays vs. scalar values in user-provided functions

Equations, expressions and abstract code statements are always implicitly referring to all the neurons in a
NeuronGroup, all the synapses in a Synapses object, etc. Therefore, function calls also apply to more than a
single value. The way in which this is handled differs between code generation targets that support vectorized ex-
pressions (e.g. the numpy target) and targets that don’t (e.g. the weave target or the cpp_standalone mode).
If the code generation target supports vectorized expressions, it will receive an array of values. For example, in the
piecewise_linear example above, the argument I will be an array of values and the function returns an array
of values. For code generation without support for vectorized expressions, all code will be executed in a loop (over
neurons, over synapses, . . .), the function will therefore be called several times with a single value each time.

In both cases, the function will only receive the “relevant” values, meaning that if for example a function is evaluated
as part of a reset statement, it will only receive values for the neurons that just spiked.

Additional namespace

Some functions need additional data to compute a result, e.g. a TimedArray needs access to the underlying array.
For the numpy target, a function can simply use a reference to an object defined outside the function, there is no need
to explicitly pass values in a namespace. For the other code language targets, values can be passed in the namespace
argument of the implementation() decorator or the add_implementation method. The namespace values
are then accessible in the function code under the given name, prefixed with _namespace. Note that this mechanism
should only be used for numpy arrays or general objects (e.g. function references to call Python functions from weave
or Cython code). Scalar values should be directly included in the function code, by using a “dynamic implemention”
(see add_dynamic_implementation).

4.1. Functions 161

Brian 2 Documentation, Release 2.1.1

See TimedArray and BinomialFunction for examples that use this mechanism.

Data types

By default, functions are assumed to take any type of argument, and return a floating point value. If you want to put
a restriction on the type of an argument, or specify that the return type should be something other than float, either
declare it as a Function (and see its documentation on specifying types) or use the declare_types() decorator,
e.g.:

@check_units(a=1, b=1, result=1)
@declare_types(a='integer', result='highest')
def f(a, b):

return a*b

This is potentially important if you have functions that return integer or boolean values, because Brian’s code genera-
tion optimisation step will make some potentially incorrect simplifications if it assumes that the return type is floating
point.

4.2 Preferences

Brian has a system of global preferences that affect how certain objects behave. These can be set either in scripts by
using the prefs object or in a file. Each preference looks like codegen.c.compiler, i.e. dotted names.

4.2.1 Accessing and setting preferences

Preferences can be accessed and set either keyword-based or attribute-based. The following are equivalent:

prefs['codegen.c.compiler'] = 'gcc'
prefs.codegen.c.compiler = 'gcc'

Using the attribute-based form can be particulary useful for interactive work, e.g. in ipython, as it offers autocom-
pletion and documentation. In ipython, prefs.codegen.c? would display a docstring with all the preferences
available in the codegen.c category.

4.2.2 Preference files

Preferences are stored in a hierarchy of files, with the following order (each step overrides the values in the previous
step but no error is raised if one is missing):

• The global defaults are stored in the installation directory.

• The user default are stored in ~/.brian/user_preferences (which works on Windows as well as Linux).
The ~ symbol refers to the user directory.

• The file brian_preferences in the current directory.

The preference files are of the following form:

a.b.c = 1
Comment line
[a]
b.d = 2

162 Chapter 4. Advanced guide

Brian 2 Documentation, Release 2.1.1

[a.b]
b.e = 3

This would set preferences a.b.c=1, a.b.d=2 and a.b.e=3.

4.2.3 List of preferences

Brian itself defines the following preferences (including their default values):

GSL

Directory containing GSL code

GSL.directory = None Set path to directory containing GSL header files (gsl_odeiv2.h etc.) If this directory is
already in Python’s include (e.g. because of conda installation), this path can be set to None.

codegen

Code generation preferences codegen.loop_invariant_optimisations = True

Whether to pull out scalar expressions out of the statements, so that they are only evaluated once instead
of once for every neuron/synapse/. . . Can be switched off, e.g. because it complicates the code (and the
same optimisation is already performed by the compiler) or because the code generation target does not
deal well with it. Defaults to True.

codegen.string_expression_target = 'numpy'

Default target for the evaluation of string expressions (e.g. when indexing state variables). Should nor-
mally not be changed from the default numpy target, because the overhead of compiling code is not worth
the speed gain for simple expressions.

Accepts the same arguments as codegen.target, except for 'auto'

codegen.target = 'auto'

Default target for code generation.

Can be a string, in which case it should be one of:

• 'auto' the default, automatically chose the best code generation target available.

• 'weave' uses scipy.weave to generate and compile C++ code, should work anywhere where
gcc is installed and available at the command line.

• 'cython', uses the Cython package to generate C++ code. Needs a working installation of Cython
and a C++ compiler.

• 'numpy' works on all platforms and doesn’t need a C compiler but is often less efficient.

Or it can be a CodeObject class.

codegen.cpp

C++ compilation preferences codegen.cpp.compiler = ''

Compiler to use (uses default if empty)

Should be gcc or msvc.

codegen.cpp.define_macros = []

4.2. Preferences 163

Brian 2 Documentation, Release 2.1.1

List of macros to define; each macro is defined using a 2-tuple, where ‘value’ is either the string to define
it to or None to define it without a particular value (equivalent of “#define FOO” in source or -DFOO on
Unix C compiler command line).

codegen.cpp.extra_compile_args = None

Extra arguments to pass to compiler (if None, use either extra_compile_args_gcc or
extra_compile_args_msvc).

codegen.cpp.extra_compile_args_gcc = ['-w', '-O3', '-ffast-math',
'-fno-finite-math-only', '-march=native']

Extra compile arguments to pass to GCC compiler

codegen.cpp.extra_compile_args_msvc = ['/Ox', '/w', '/arch:SSE2', '/MP']

Extra compile arguments to pass to MSVC compiler (the default /arch: flag is determined based on the
processor architecture)

codegen.cpp.extra_link_args = []

Any extra platform- and compiler-specific information to use when linking object files together.

codegen.cpp.headers = []

A list of strings specifying header files to use when compiling the code. The list might look like [“<vec-
tor>”,“‘my_header’”]. Note that the header strings need to be in a form than can be pasted at the end of a
#include statement in the C++ code.

codegen.cpp.include_dirs = []

Include directories to use. Note that $prefix/include will be appended to the end automatically,
where $prefix is Python’s site-specific directory prefix as returned by sys.prefix.

codegen.cpp.libraries = []

List of library names (not filenames or paths) to link against.

codegen.cpp.library_dirs = []

List of directories to search for C/C++ libraries at link time. Note that $prefix/lib will be appended
to the end automatically, where $prefix is Python’s site-specific directory prefix as returned by sys.
prefix.

codegen.cpp.msvc_architecture = ''

MSVC architecture name (or use system architectue by default).

Could take values such as x86, amd64, etc.

codegen.cpp.msvc_vars_location = ''

Location of the MSVC command line tool (or search for best by default).

codegen.cpp.runtime_library_dirs = []

List of directories to search for C/C++ libraries at run time.

codegen.generators

Codegen generator preferences (see subcategories for individual languages)

codegen.generators.cpp

C++ codegen preferences codegen.generators.cpp.flush_denormals = False

164 Chapter 4. Advanced guide

https://docs.python.org/2/library/sys.html#sys.prefix
https://docs.python.org/2/library/sys.html#sys.prefix
https://docs.python.org/2/library/sys.html#sys.prefix

Brian 2 Documentation, Release 2.1.1

Adds code to flush denormals to zero.

The code is gcc and architecture specific, so may not compile on all platforms. The code, for reference is:

#define CSR_FLUSH_TO_ZERO (1 << 15)
unsigned csr = __builtin_ia32_stmxcsr();
csr |= CSR_FLUSH_TO_ZERO;
__builtin_ia32_ldmxcsr(csr);

Found at http://stackoverflow.com/questions/2487653/avoiding-denormal-values-in-c.

codegen.generators.cpp.restrict_keyword = '__restrict'

The keyword used for the given compiler to declare pointers as restricted.

This keyword is different on different compilers, the default works for gcc and MSVS.

codegen.runtime

Runtime codegen preferences (see subcategories for individual targets)

codegen.runtime.cython

Cython runtime codegen preferences codegen.runtime.cython.cache_dir = None

Location of the cache directory for Cython files. By default, will be stored in a
brian_extensions subdirectory where Cython inline stores its temporary files (the result of
get_cython_cache_dir()).

codegen.runtime.cython.multiprocess_safe = True

Whether to use a lock file to prevent simultaneous write access to cython .pyx and .so files.

codegen.runtime.numpy

Numpy runtime codegen preferences codegen.runtime.numpy.discard_units = False

Whether to change the namespace of user-specifed functions to remove units.

core

Core Brian preferences core.default_float_dtype = float64

Default dtype for all arrays of scalars (state variables, weights, etc.).

Currently, this is not supported (only float64 can be used).

core.default_integer_dtype = int32

Default dtype for all arrays of integer scalars.

core.outdated_dependency_error = True

Whether to raise an error for outdated dependencies (True) or just a warning (False).

core.network

Network preferences core.network.default_schedule = ['start', 'groups', 'thresholds',
'synapses', 'resets', 'end']

Default schedule used for networks that don’t specify a schedule.

4.2. Preferences 165

http://stackoverflow.com/questions/2487653/avoiding-denormal-values-in-c

Brian 2 Documentation, Release 2.1.1

devices

Device preferences

devices.cpp_standalone

C++ standalone preferences devices.cpp_standalone.extra_make_args_unix = ['-j']

Additional flags to pass to the GNU make command on Linux/OS-X. Defaults to “-j” for parallel compi-
lation.

devices.cpp_standalone.extra_make_args_windows = []

Additional flags to pass to the nmake command on Windows. By default, no additional flags are passed.

devices.cpp_standalone.openmp_spatialneuron_strategy = None

Which strategy to chose for solving the three tridiagonal systems with OpenMP: 'branches' means
to solve the three systems sequentially, but for all the branches in parallel, 'systems' means to solve
the three systems in parallel, but all the branches within each system sequentially. The 'branches'
approach is usually better for morphologies with many branches and a large number of threads, while the
'systems' strategy should be better for morphologies with few branches (e.g. cables) and/or simula-
tions with no more than three threads. If not specified (the default), the 'systems' strategy will be used
when using no more than three threads or when the morphology has less than three branches in total.

devices.cpp_standalone.openmp_threads = 0

The number of threads to use if OpenMP is turned on. By default, this value is set to 0 and the C++ code is
generated without any reference to OpenMP. If greater than 0, then the corresponding number of threads
are used to launch the simulation.

devices.cpp_standalone.run_environment_variables = {'LD_BIND_NOW': '1'}

Dictionary of environment variables and their values that will be set during the execution of the standalone
code.

logging

Logging system preferences logging.console_log_level = 'INFO'

What log level to use for the log written to the console.

Has to be one of CRITICAL, ERROR, WARNING, INFO, DEBUG or DIAGNOSTIC.

logging.delete_log_on_exit = True

Whether to delete the log and script file on exit.

If set to True (the default), log files (and the copy of the main script) will be deleted after the brian
process has exited, unless an uncaught exception occured. If set to False, all log files will be kept.

logging.file_log = True

Whether to log to a file or not.

If set to True (the default), logging information will be written to a file. The log level can be set via the
logging.file_log_level preference.

logging.file_log_level = 'DIAGNOSTIC'

What log level to use for the log written to the log file.

In case file logging is activated (see logging.file_log), which log level should be used for logging. Has to
be one of CRITICAL, ERROR, WARNING, INFO, DEBUG or DIAGNOSTIC.

166 Chapter 4. Advanced guide

Brian 2 Documentation, Release 2.1.1

logging.save_script = True

Whether to save a copy of the script that is run.

If set to True (the default), a copy of the currently run script is saved to a temporary location. It is
deleted after a successful run (unless logging.delete_log_on_exit is False) but is kept after an uncaught
exception occured. This can be helpful for debugging, in particular when several simulations are running
in parallel.

logging.std_redirection = True

Whether or not to redirect stdout/stderr to null at certain places.

This silences a lot of annoying compiler output, but will also hide error messages making it harder to debug
problems. You can always temporarily switch it off when debugging. If logging.std_redirection_to_file is
set to True as well, then the output is saved to a file and if an error occurs the name of this file will be
printed.

logging.std_redirection_to_file = True

Whether to redirect stdout/stderr to a file.

If both logging.std_redirection and this preference are set to True, all standard output/error
(most importantly output from the compiler) will be stored in files and if an error occurs the name of this
file will be printed. If logging.std_redirection is True and this preference is False, then all standard
output/error will be completely suppressed, i.e. neither be displayed nor stored in a file.

The value of this preference is ignore if logging.std_redirection is set to False.

4.3 Logging

Brian uses a logging system to display warnings and general information messages to the user, as well as writing them
to a file with more detailed information, useful for debugging. Each log message has one of the following “log levels”:

ERROR Only used when an exception is raised, i.e. an error occurs and the current operation is interrupted. Example:
You use a variable name in an equation that Brian does not recognize.

WARNING Brian thinks that something is most likely a bug, but it cannot be sure. Example: You use a Synapses
object without any synapses in your simulation.

INFO Brian wants to make the user aware of some automatic choice that it did for the user. Example: You did not
specify an integration method for a NeuronGroup and therefore Brian chose an appropriate method for you.

DEBUG Additional information that might be useful when a simulation is not working as expected. Example: The
integration timestep used during the simulation.

DIAGNOSTIC Additional information useful when tracking down bugs in Brian itself. Example: The generated code
for a CodeObject.

By default, all messages are written to the log file and all messages of level INFO and above are displayed on the
console. To change what messages are displayed, see below.

Note: By default, the log file is deleted after a successful simulation run, i.e. when the simulation exited without an
error. To keep the log around, set the logging.delete_log_on_exit preference to False.

4.3. Logging 167

Brian 2 Documentation, Release 2.1.1

4.3.1 Showing/hiding log messages

If you want to change what messages are displayed on the console, you can call a method of the method of
BrianLogger:

BrianLogger.log_level_debug() # now also display debug messages

It is also possible to suppress messages for certain sub-hierarchies by using BrianLogger.
suppress_hierarchy:

Suppress code generation messages on the console
BrianLogger.suppress_hierarchy('brian2.codegen')
Suppress preference messages even in the log file
BrianLogger.suppress_hierarchy('brian2.core.preferences',

filter_log_file=True)

Similarly, messages ending in a certain name can be suppressed with BrianLogger.suppress_name:

Suppress resolution conflict warnings
BrianLogger.suppress_name('resolution_conflict')

These functions should be used with care, as they suppresses messages independent of the level, i.e. even warning and
error messages.

4.3.2 Preferences

You can also change details of the logging system via Brian’s Preferences system. With this mechanism, you can
switch the logging to a file off completely (by setting logging.file_log to False) or have it log less messages (by setting
logging.file_log_level to a level higher than DIAGNOSTIC) – this can be important for long-running simulations where
the log might otherwise take up a lot of disk space. For a list of all preferences related to logging, see the documentation
of the brian2.utils.logger module.

Warning: Most of the logging preferences are only taken into account during the initialization of the logging sys-
tem which takes place as soon as brian2 is imported. Therefore, if you use e.g. prefs.logging.file_log
= False in your script, this will not have the intended effect! Instead, set these preferences in a file (see Prefer-
ences).

4.4 Namespaces

Equations can contain references to external parameters or functions. During the initialisation of a NeuronGroup
or a Synapses object, this namespace can be provided as an argument. This is a group-specific namespace that will
only be used for names in the context of the respective group. Note that units and a set of standard functions are
always provided and should not be given explicitly. This namespace does not necessarily need to be exhaustive at the
time of the creation of the NeuronGroup/Synapses, entries can be added (or modified) at a later stage via the
namespace attribute (e.g. G.namespace['tau'] = 10*ms).

At the point of the call to the Network.run() namespace, any group-specific namespace will be augmented by the
“run namespace”. This namespace can be either given explicitly as an argument to the run method or it will be taken
from the locals and globals surrounding the call. A warning will be emitted if a name is defined in more than one
namespace.

168 Chapter 4. Advanced guide

Brian 2 Documentation, Release 2.1.1

To summarize: an external identifier will be looked up in the context of an object such as NeuronGroup or
Synapses. It will follow the following resolution hierarchy:

1. Default unit and function names.

2. Names defined in the explicit group-specific namespace.

3. Names in the run namespace which is either explicitly given or the implicit namespace surrounding the run call.

Note that if you completely specify your namespaces at the Group level, you should probably pass an empty dictionary
as the namespace argument to the run call – this will completely switch off the “implicit namespace” mechanism.

The following three examples show the different ways of providing external variable values, all having the same effect
in this case:

Explicit argument to the NeuronGroup
G = NeuronGroup(1, 'dv/dt = -v / tau : 1', namespace={'tau': 10*ms})
net = Network(G)
net.run(10*ms)

Explicit argument to the run function
G = NeuronGroup(1, 'dv/dt = -v / tau : 1')
net = Network(G)
net.run(10*ms, namespace={'tau': 10*ms})

Implicit namespace from the context
G = NeuronGroup(1, 'dv/dt = -v / tau : 1')
net = Network(G)
tau = 10*ms
net.run(10*ms)

External variables are free to change between runs (but not during one run), the value at the time of the run() call is
used in the simulation.

4.5 Custom progress reporting

4.5.1 Progress reporting

For custom progress reporting (e.g. graphical output, writing to a file, etc.), the report keyword accepts a callable
(i.e. a function or an object with a __call__ method) that will be called with four parameters:

• elapsed: the total (real) time since the start of the run

• completed: the fraction of the total simulation that is completed, i.e. a value between 0 and 1

• start: The start of the simulation (in biological time)

• duration: the total duration (in biological time) of the simulation

The function will be called every report_period during the simulation, but also at the beginning and end with
completed equal to 0.0 and 1.0, respectively.

For the C++ standalone mode, the same standard options are available. It is also possible to implement custom progress
reporting by directly passing the code (as a multi-line string) to the report argument. This code will be filled into
a progress report function template, it should therefore only contain a function body. The simplest use of this might
look like:

net.run(duration, report='std::cout << (int)(completed*100.) << "% completed" <<
→˓std::endl;')

4.5. Custom progress reporting 169

Brian 2 Documentation, Release 2.1.1

Examples of custom reporting

Progress printed to a file

from brian2.core.network import TextReport
report_file = open('report.txt', 'w')
file_reporter = TextReport(report_file)
net.run(duration, report=file_reporter)
report_file.close()

“Graphical” output on the console

This needs a “normal” Linux console, i.e. it might not work in an integrated console in an IDE.

Adapted from http://stackoverflow.com/questions/3160699/python-progress-bar

import sys

class ProgressBar(object):
def __init__(self, toolbar_width):

self.toolbar_width = toolbar_width
self.ticks = 0

def __call__(self, elapsed, complete, start, duration):
if complete == 0.0:

setup toolbar
sys.stdout.write("[%s]" % (" " * self.toolbar_width))
sys.stdout.flush()
sys.stdout.write("\b" * (self.toolbar_width + 1)) # return to start of

→˓line, after '['
else:

ticks_needed = int(round(complete * 40))
if self.ticks < ticks_needed:

sys.stdout.write("-" * (ticks_needed-self.ticks))
sys.stdout.flush()
self.ticks = ticks_needed

if complete == 1.0:
sys.stdout.write("\n")

net.run(duration, report=progress_bar, report_period=1*second)

4.6 Random numbers

Brian provides two basic functions to generate random numbers that can be used in model code and equations:
rand(), to generate uniformly generated random numbers between 0 and 1, and randn(), to generate random
numbers from a standard normal distribution (i.e. normally distributed numbers with a mean of 0 and a standard
deviation of 1). All other stochastic elements of a simulation (probabilistic connections, Poisson-distributed input
generated by PoissonGroup or PoissonInput, differential equations using the noise term xi, . . .) will inter-
nally make use of these two basic functions.

For Runtime code generation, random numbers are generated by numpy.random.rand and numpy.random.
randn respectively, which uses a Mersenne-Twister pseudorandom number generator. When the numpy code gen-
eration target is used, these functions are called directly, but for weave and cython, Brian uses a internal buffers
for uniformly and normally distributed random numbers and calls the numpy functions whenever all numbers from
this buffer have been used. This avoids the overhead of switching between C code and Python code for each ran-
dom number. For Standalone code generation, the random number generation is based on “randomkit”, the same

170 Chapter 4. Advanced guide

http://stackoverflow.com/questions/3160699/python-progress-bar
https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.rand.html#numpy.random.rand
https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.randn.html#numpy.random.randn
https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.randn.html#numpy.random.randn
https://en.wikipedia.org/wiki/Mersenne_Twister

Brian 2 Documentation, Release 2.1.1

Mersenne-Twister implementation that is used by numpy. The source code of this implementation will be included in
every generated standalone project.

4.6.1 Seeding and reproducibility

Runtime mode

As explained above, Runtime code generation makes use of numpy’s random number generator. In principle, us-
ing numpy.random.seed therefore permits reproducing a stream of random numbers. However, for weave and
cython, Brian’s buffer complicates the matter a bit: if a simulation sets numpy’s seed, uses 10000 random numbers,
and then resets the seed, the following 10000 random numbers (assuming the current size of the buffer) will come
out of the pre-generated buffer before numpy’s random number generation functions are called again and take into
account the seed set by the user. Instead, users should use the seed() function provided by Brian 2 itself, this will
take care of setting numpy’s random seed and empty Brian’s internal buffers. This function also has the advantage
that it will continue to work when the simulation is switched to standalone code generation (see below). Note that
random numbers are not guaranteed to be reproducible across different code generation targets or different versions of
Brian, especially if several sources of randomness are used in the same CodeObject (e.g. two noise variables in the
equations of a NeuronGroup). This is because Brian does not guarantee the order of certain operations (e.g. should
it first generate all random numbers for the first noise variable for all neurons, followed by the random numbers for
the second noise variable for all neurons or rather first the random numbers for all noice variables of the first neuron,
then for the second neuron, etc.) Since all random numbers are coming from the same stream of random numbers, the
order of getting the numbers out of this stream matter.

Standalone mode

For Standalone code generation, Brian’s seed() function will insert code to set the random number generator seed
into the generated code. The code will be generated at the position where the seed() call was made, allowing
detailed control over the seeding. For example the following code would generate identical initial conditions every
time it is run, but the noise generated by the xi variable would differ:

G = NeuronGroup(10, 'dv/dt = -v/(10*ms) + 0.1*xi/sqrt(ms) : 1')
seed(4321)
G.v = 'rand()'
seed()
run(100*ms)

Note: In standalone mode, seed() will not set numpy’s random number generator. If you use random numbers
in the Python script itself (e.g. to generate a list of synaptic connections that will be passed to the standalone code
as a pre-calculated array), then you have to explicitly call numpy.random.seed yourself to make these random
numbers reproducible.

Note: Seeding should lead to reproducible random numbers even when using OpenMP with multiple threads (for
repeated simulations with the same number of threads), but this has not been rigorously tested. Use at your own risk.

4.6. Random numbers 171

https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.seed.html#numpy.random.seed
https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.seed.html#numpy.random.seed

Brian 2 Documentation, Release 2.1.1

4.7 Custom events

4.7.1 Overview

In most simulations, a NeuronGroup defines a threshold on its membrane potential that triggers a spike event. This
event can be monitored by a SpikeMonitor, it is used in synaptic interactions, and in integrate-and-fire models it
also leads to the execution of one or more reset statements.

Sometimes, it can be useful to define additional events, e.g. when an ion concentration in the cell crosses a certain
threshold. This can be done with the custom events system in Brian, which is illustrated in this diagram.

spike

evt_other

evt_mon

evt_run

NeuronGroup G

spike

NeuronGroupSynapses

pre

post

other

EventMonitorG.run_on_event

You can see in this diagram that the source NeuronGroup has four types of events, called spike, evt_other,
evt_mon and evt_run. The event spike is the default event. It is triggered when you you include
threshold='...' in a NeuronGroup, and has two potential effects. Firstly, when the event is triggered it
causes the reset code to run, specified by reset='...'. Secondly, if there are Synapses connected, it causes
the on_pre on on_post code to run (depending if the NeuronGroup is presynaptic or postsynaptic for those
Synapses).

In the diagram though, we have three additional event types. We’ve included several event types here to make it clearer,
but you could use the same event for different purposes. Let’s start with the first one, evt_other. To understand this,
we need to look at the Synapses object in a bit more detail. A Synapses object has multiple pathways associated
to it. By default, there are just two, called pre and post. The pre pathway is activated by presynaptic spikes, and
the post pathway by postsynaptic spikes. Specifically, the spike event on the presynaptic NeuronGroup triggers
the pre pathway, and the spike event on the postsynaptic NeuronGroup triggers the post pathway. In the
example in the diagram, we have created a new pathway called other, and the evt_other event in the presynaptic
NeuronGroup triggers this pathway. Note that we can arrange this however we want. We could have spike trigger
the other pathway if we wanted to, or allow it to trigger both the pre and other pathways. We could also allow
evt_other to trigger the pre pathway. See below for details on the syntax for this.

172 Chapter 4. Advanced guide

Brian 2 Documentation, Release 2.1.1

The third type of event in the example is named evt_mon and this is connected to an EventMonitor which
works exactly the same way as SpikeMonitor (which is just an EventMonitor attached by default to the event
spike).

Finally, the fourth type of event in the example is named evt_run, and this causes some code to be run in the
NeuronGroup triggered by the event. To add this code, we call NeuronGroup.run_on_event(). So, when
you set reset='...', this is equivalent to calling NeuronGroup.run_on_event() with the spike event.

4.7.2 Details

Defining an event

This can be done with the events keyword in the NeuronGroup initializer:

group = NeuronGroup(N, '...', threshold='...', reset='...',
events={'custom_event': 'x > x_th'})

In this example, we define an event with the name custom_event that is triggered when the x variable crosses the
threshold x_th. Note that you can define any number of custom events. Each event is defined by its name as the key,
and its condition as the value of the dictionary.

Recording events

Custom events can be recorded with an EventMonitor:

event_mon = EventMonitor(group, 'custom_event')

Such an EventMonitor can be used in the same way as a SpikeMonitor – in fact, creating the SpikeMonitor
is basically identical to recording the spike event with an EventMonitor. An EventMonitor is not limited to
record the event time/neuron index, it can also record other variables of the model at the time of the event:

event_mon = EventMonitor(group, 'custom_event', variables['var1', 'var2'])

Triggering NeuronGroup code

If the event should trigger a series of statements (i.e. the equivalent of reset statements), this can be added by calling
run_on_event:

group.run_on_event('custom_event', 'x=0')

Triggering synaptic pathways

When neurons are connected by Synapses, the pre and post pathways are triggered by spike events on the
presynaptic and postsynaptic NeuronGroup by default. It is possible to change which pathway is triggered by which
event by providing an on_event keyword that either specifies which event to use for all pathways, or a specific event
for each pathway (where non-specified pathways use the default spike event):

synapse_1 = Synapses(group, another_group, '...', on_pre='...', on_event='custom_event
→˓')

The code above causes all pathways to be triggered by an event named custom_event instead of the default spike.

4.7. Custom events 173

Brian 2 Documentation, Release 2.1.1

synapse_2 = Synapses(group, another_group, '...', on_pre='...', on_post='...',
on_event={'pre': 'custom_event'})

In the code above, only the pre pathway is triggered by the custom_event event.

We can also create new pathways and have them be triggered by custom events. For example:

synapse_3 = Synapses(group, another_group, '...',
on_pre={'pre': '....',

'custom_pathway': '...'},
on_event={'pre': 'spike',

'custom_pathway': 'custom_event'})

In this code, the default pre pathway is still triggered by the spike event, but there is a new pathway called
custom_pathway that is triggered by the custom_event event.

Scheduling

By default, custom events are checked after the spiking threshold (in the after_thresholds slots) and statements
are executed after the reset (in the after_resets slots). The slot for the execution of custom event-triggered
statements can be changed when it is added with the usual when and order keyword arguments (see Scheduling for
details). To change the time when the condition is checked, use NeuronGroup.set_event_schedule().

4.8 State update

In Brian, a state updater transforms a set of equations into an abstract state update code (and therefore is automatically
target-independent). In general, any function (or callable object) that takes an Equations object and returns abstract
code (as a string) can be used as a state updater and passed to the NeuronGroup constructor as a method argument.

The more common use case is to specify no state updater at all or chose one by name, see Choice of state updaters
below.

4.8.1 Explicit state update

Explicit state update schemes can be specified in mathematical notation, using the ExplicitStateUpdater class.
A state updater scheme contains a series of statements, defining temporary variables and a final line (starting with
x_new =), giving the updated value for the state variable. The description can make reference to t (the current time),
dt (the size of the time step), x (value of the state variable), and f(x, t) (the definition of the state variable x,
assuming dx/dt = f(x, t). In addition, state updaters supporting stochastic equations additionally make use
of dW (a normal distributed random variable with variance dt) and g(x, t), the factor multiplied with the noise
variable, assuming dx/dt = f(x, t) + g(x, t) * xi.

Using this notation, simple forward Euler integration is specified as:

x_new = x + dt * f(x, t)

A Runge-Kutta 2 (midpoint) method is specified as:

k = dt * f(x,t)
x_new = x + dt * f(x + k/2, t + dt/2)

When creating a new state updater using ExplicitStateUpdater, you can specify the stochastic
keyword argument, determining whether this state updater does not support any stochastic equations (None,

174 Chapter 4. Advanced guide

Brian 2 Documentation, Release 2.1.1

the default), stochastic equations with additive noise only ('additive'), or arbitrary stochastic equations
('multiplicative'). The provided state updaters use the Stratonovich interpretation for stochastic equations
(which is the correct interpretation if the white noise source is seen as the limit of a coloured noise source with a
short time constant). As a result of this, the simple Euler-Maruyama scheme (x_new = x + dt*f(x, t) +
dW*g(x, t)) will only be used for additive noise.

An example for a general state updater that handles arbitrary multiplicative noise (under Stratonovich interpretation)
is the derivative-free Milstein method:

x_support = x + dt*f(x, t) + dt**.5 * g(x, t)
g_support = g(x_support, t)
k = 1/(2*dt**.5)*(g_support - g(x, t))*(dW**2)
x_new = x + dt*f(x,t) + g(x, t) * dW + k

Note that a single line in these descriptions is only allowed to mention g(x, t), respectively f(x, t) only once
(and you are not allowed to write, for example, g(f(x, t), t)). You can work around these restrictions by using
intermediate steps, defining temporary variables, as in the above examples for milstein and rk2.

4.8.2 Choice of state updaters

As mentioned in the beginning, you can pass arbitrary callables to the method argument of a NeuronGroup, as long
as this callable converts an Equations object into abstract code. The best way to add a new state updater, however,
is to register it with brian and provide a method to determine whether it is appropriate for a given set of equations.
This way, it can be automatically chosen when no method is specified and it can be referred to with a name (i.e. you
can pass a string like 'euler' to the method argument instead of importing euler and passing a reference to the
object itself).

If you create a new state updater using the ExplicitStateUpdater class, you have to specify what kind of
stochastic equations it supports. The keyword argument stochastic takes the values None (no stochastic equation
support, the default), 'additive' (support for stochastic equations with additive noise), 'multiplicative'
(support for arbitrary stochastic equations).

After creating the state updater, it has to be registered with StateUpdateMethod:

new_state_updater = ExplicitStateUpdater('...', stochastic='additive')
StateUpdateMethod.register('mymethod', new_state_updater)

The preferred way to do write new general state updaters (i.e. state updaters that cannot be described using the explicit
syntax described above) is to extend the StateUpdateMethod class (but this is not strictly necessary, all that is
needed is an object that implements a __call__ method that operates on an Equations object and a dictionary of
variables). Optionally, the state updater can be registered with StateUpdateMethod as shown above.

4.8.3 Implicit state updates

Note: All of the following is just here for future reference, it’s not implemented yet.

Implicit schemes often use Newton-Raphson or fixed point iterations. These can also be defined by mathematical
statements, but the number of iterations is dynamic and therefore not easily vectorised. However, this might not be a
big issue in C, GPU or even with Numba.

Backward Euler

Backward Euler is defined as follows:

4.8. State update 175

Brian 2 Documentation, Release 2.1.1

x(t+dt)=x(t)+dt*f(x(t+dt),t+dt)

This is not a executable statement because the RHS depends on the future. A simple way is to perform fixed point
iterations:

x(t+dt)=x(t)
x(t+dt)=x(t)+dt*dx=f(x(t+dt),t+dt) until increment<tolerance

This includes a loop with a different number of iterations depending on the neuron.

4.9 How Brian works

In this section we will briefly cover some of the internals of how Brian works. This is included here to understand the
general process that Brian goes through in running a simulation, but it will not be sufficient to understand the source
code of Brian itself or to extend it to do new things. For a more detailed view of this, see the documentation in the
Developer’s guide.

4.9.1 Clock-driven versus event-driven

Brian is a clock-driven simulator. This means that the simulation time is broken into an equally spaced time grid, 0,
dt, 2*dt, 3*dt, At each time step t, the differential equations specifying the models are first integrated giving the
values at time t+dt. Spikes are generated when a condition such as v>vt is satisfied, and spikes can only occur on the
time grid.

The advantage of clock driven simulation is that it is very flexible (arbitrary differential equations can be used) and
computationally efficient. However, the time grid approximation can lead to an overestimate of the amount of syn-
chrony that is present in a network. This is usually not a problem, and can be managed by reducing the time step dt,
but it can be an issue for some models.

Note that the inaccuracy introduced by the spike time approximation is of order O(dt), so the total accuracy of the
simulation is of order O(dt) per time step. This means that in many cases, there is no need to use a higher order
numerical integration method than forward Euler, as it will not improve the order of the error beyond O(dt). See State
update for more details of numerical integration methods.

Some simulators use an event-driven method. With this method, spikes can occur at arbitrary times instead of just
on the grid. This method can be more accurate than a clock-driven simulation, but it is usually substantially more
computationally expensive (especially for larger networks). In addition, they are usually more restrictive in terms of
the class of differential equations that can be solved.

For a review of some of the simulation strategies that have been used, see Brette et al. 2007.

4.9.2 Code overview

The user-visible part of Brian consists of a number of objects such as NeuronGroup, Synapses, Network, etc.
These are all written in pure Python and essentially work to translate the user specified model into the computational
engine. The end state of this translation is a collection of short blocks of code operating on a namespace, which are
called in a sequence by the Network. Examples of these short blocks of code are the “state updaters” which perform
numerical integration, or the synaptic propagation step. The namespaces consist of a mapping from names to values,
where the possible values can be scalar values, fixed-length or dynamically sized arrays, and functions.

176 Chapter 4. Advanced guide

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2638500/

Brian 2 Documentation, Release 2.1.1

4.9.3 Syntax layer

The syntax layer consists of everything that is independent of the way the final simulation is computed (i.e. the lan-
guage and device it is running on). This includes things like NeuronGroup, Synapses, Network, Equations,
etc.

The user-visible part of this is documented fully in the User’s guide and the Advanced guide. In particular, things such
as the analysis of equations and assignment of numerical integrators. The end result of this process, which is passed
to the computational engine, is a specification of the simulation consisting of the following data:

• A collection of variables which are scalar values, fixed-length arrays, dynamically sized arrays, and functions.
These are handled by Variable objects detailed in Variables and indices. Examples: each state variable of
a NeuronGroup is assigned an ArrayVariable; the list of spike indices stored by a SpikeMonitor is
assigned a DynamicArrayVariable; etc.

• A collection of code blocks specified via an “abstract code block” and a template name. The “abstract code
block” is a sequence of statements such as v = vr which are to be executed. In the case that say, v and vr
are arrays, then the statement is to be executed for each element of the array. These abstract code blocks are
either given directly by the user (in the case of neuron threshold and reset, and synaptic pre and post codes),
or generated from differential equations combined with a numerical integrator. The template name is one of a
small set (around 20 total) which give additional context. For example, the code block a = b when considered
as part of a “state update” means execute that for each neuron index. In the context of a reset statement, it means
execute it for each neuron index of a neuron that has spiked. Internally, these templates need to be implemented
for each target language/device, but there are relatively few of them.

• The order of execution of these code blocks, as defined by the Network.

4.9.4 Computational engine

The computational engine covers everything from generating to running code in a particular language or on a particular
device. It starts with the abstract definition of the simulation resulting from the syntax layer described above.

The computational engine is described by a Device object. This is used for allocating memory, generating and
running code. There are two types of device, “runtime” and “standalone”. In runtime mode, everything is managed
by Python, even if individual code blocks are in a different language. Memory is managed using numpy arrays (which
can be passed as pointers to use in other languages). In standalone mode, the output of the process (after calling
Device.build) is a complete source code project that handles everything, including memory management, and is
independent of Python.

For both types of device, one of the key steps that works in the same way is code generation, the creation of a
compilable and runnable block of code from an abstract code block and a collection of variables. This happens in two
stages: first of all, the abstract code block is converted into a code snippet, which is a syntactically correct block of
code in the target language, but not one that can run on its own (it doesn’t handle accessing the variables from memory,
etc.). This code snippet typically represents the inner loop code. This step is handled by a CodeGenerator object.
In some cases it will involve a syntax translation (e.g. the Python syntax x**y in C++ should be pow(x, y)).
The next step is to insert this code snippet into a template to form a compilable code block. This code block is then
passed to a runtime CodeObject. In the case of standalone mode, this doesn’t do anything, but for runtime devices
it handles compiling the code and then running the compiled code block in the given namespace.

4.10 Interfacing with external code

Some neural simulations benefit from a direct connections to external libraries, e.g. to support real-time input from
a sensor (but note that Brian currently does not offer facilities to assure real-time processing) or to perform complex
calculations during a simulation run.

4.10. Interfacing with external code 177

Brian 2 Documentation, Release 2.1.1

If the external library is written in Python (or is a library with Python bindings), then the connection can be made
either using the mechanism for User-provided functions, or using a network operation.

In case of C/C++ libraries, only the User-provided functions mechanism can be used. On the other hand, such simu-
lations can use the same user-provided C++ code to run both with the runtime weave target and with the Standalone
code generation mode. In addition to that code, one generally needs to include additional header files and use com-
piler/linker options to interface with the external code. For this, several preferences can be used that will be taken into
account for weave, cython and the cpp_standalone device. These preferences are mostly equivalent to the
respective keyword arguments for Python’s distutils.core.Extension class, see the documentation of the
cpp_prefs module for more details.

178 Chapter 4. Advanced guide

https://docs.python.org/2/distutils/apiref.html#distutils.core.Extension

CHAPTER 5

Examples

5.1 Example: COBAHH

This is an implementation of a benchmark described in the following review paper:

Simulation of networks of spiking neurons: A review of tools and strategies (2006). Brette, Rudolph, Carnevale,
Hines, Beeman, Bower, Diesmann, Goodman, Harris, Zirpe, Natschläger, Pecevski, Ermentrout, Djurfeldt, Lansner,
Rochel, Vibert, Alvarez, Muller, Davison, El Boustani and Destexhe. Journal of Computational Neuroscience

Benchmark 3: random network of HH neurons with exponential synaptic conductances

Clock-driven implementation (no spike time interpolation)

18. Brette - Dec 2007

from brian2 import *

Parameters
area = 20000*umetre**2
Cm = (1*ufarad*cm**-2) * area
gl = (5e-5*siemens*cm**-2) * area

El = -60*mV
EK = -90*mV
ENa = 50*mV
g_na = (100*msiemens*cm**-2) * area
g_kd = (30*msiemens*cm**-2) * area
VT = -63*mV
Time constants
taue = 5*ms
taui = 10*ms
Reversal potentials
Ee = 0*mV
Ei = -80*mV

179

Brian 2 Documentation, Release 2.1.1

we = 6*nS # excitatory synaptic weight
wi = 67*nS # inhibitory synaptic weight

The model
eqs = Equations('''
dv/dt = (gl*(El-v)+ge*(Ee-v)+gi*(Ei-v)-

g_na*(m*m*m)*h*(v-ENa)-
g_kd*(n*n*n*n)*(v-EK))/Cm : volt

dm/dt = alpha_m*(1-m)-beta_m*m : 1
dn/dt = alpha_n*(1-n)-beta_n*n : 1
dh/dt = alpha_h*(1-h)-beta_h*h : 1
dge/dt = -ge*(1./taue) : siemens
dgi/dt = -gi*(1./taui) : siemens
alpha_m = 0.32*(mV**-1)*(13*mV-v+VT)/

(exp((13*mV-v+VT)/(4*mV))-1.)/ms : Hz
beta_m = 0.28*(mV**-1)*(v-VT-40*mV)/

(exp((v-VT-40*mV)/(5*mV))-1)/ms : Hz
alpha_h = 0.128*exp((17*mV-v+VT)/(18*mV))/ms : Hz
beta_h = 4./(1+exp((40*mV-v+VT)/(5*mV)))/ms : Hz
alpha_n = 0.032*(mV**-1)*(15*mV-v+VT)/

(exp((15*mV-v+VT)/(5*mV))-1.)/ms : Hz
beta_n = .5*exp((10*mV-v+VT)/(40*mV))/ms : Hz
''')

P = NeuronGroup(4000, model=eqs, threshold='v>-20*mV', refractory=3*ms,
method='exponential_euler')

Pe = P[:3200]
Pi = P[3200:]
Ce = Synapses(Pe, P, on_pre='ge+=we')
Ci = Synapses(Pi, P, on_pre='gi+=wi')
Ce.connect(p=0.02)
Ci.connect(p=0.02)

Initialization
P.v = 'El + (randn() * 5 - 5)*mV'
P.ge = '(randn() * 1.5 + 4) * 10.*nS'
P.gi = '(randn() * 12 + 20) * 10.*nS'

Record a few traces
trace = StateMonitor(P, 'v', record=[1, 10, 100])
run(1 * second, report='text')
plot(trace.t/ms, trace[1].v/mV)
plot(trace.t/ms, trace[10].v/mV)
plot(trace.t/ms, trace[100].v/mV)
xlabel('t (ms)')
ylabel('v (mV)')
show()

180 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

5.2 Example: CUBA

This is a Brian script implementing a benchmark described in the following review paper:

Simulation of networks of spiking neurons: A review of tools and strategies (2007). Brette, Rudolph, Carnevale, Hines,
Beeman, Bower, Diesmann, Goodman, Harris, Zirpe, Natschlager, Pecevski, Ermentrout, Djurfeldt, Lansner, Rochel,
Vibert, Alvarez, Muller, Davison, El Boustani and Destexhe. Journal of Computational Neuroscience 23(3):349-98

Benchmark 2: random network of integrate-and-fire neurons with exponential synaptic currents.

Clock-driven implementation with exact subthreshold integration (but spike times are aligned to the grid).

from brian2 import *

taum = 20*ms
taue = 5*ms
taui = 10*ms
Vt = -50*mV
Vr = -60*mV
El = -49*mV

eqs = '''
dv/dt = (ge+gi-(v-El))/taum : volt (unless refractory)

5.2. Example: CUBA 181

Brian 2 Documentation, Release 2.1.1

dge/dt = -ge/taue : volt
dgi/dt = -gi/taui : volt
'''

P = NeuronGroup(4000, eqs, threshold='v>Vt', reset='v = Vr', refractory=5*ms,
method='exact')

P.v = 'Vr + rand() * (Vt - Vr)'
P.ge = 0*mV
P.gi = 0*mV

we = (60*0.27/10)*mV # excitatory synaptic weight (voltage)
wi = (-20*4.5/10)*mV # inhibitory synaptic weight
Ce = Synapses(P, P, on_pre='ge += we')
Ci = Synapses(P, P, on_pre='gi += wi')
Ce.connect('i<3200', p=0.02)
Ci.connect('i>=3200', p=0.02)

s_mon = SpikeMonitor(P)

run(1 * second)

plot(s_mon.t/ms, s_mon.i, ',k')
xlabel('Time (ms)')
ylabel('Neuron index')
show()

182 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

5.3 Example: IF_curve_Hodgkin_Huxley

Input-Frequency curve of a HH model. Network: 100 unconnected Hodgin-Huxley neurons with an input current I.
The input is set differently for each neuron.

This simulation should use exponential Euler integration.

from brian2 import *

num_neurons = 100
duration = 2*second

Parameters
area = 20000*umetre**2
Cm = 1*ufarad*cm**-2 * area
gl = 5e-5*siemens*cm**-2 * area
El = -65*mV
EK = -90*mV
ENa = 50*mV
g_na = 100*msiemens*cm**-2 * area
g_kd = 30*msiemens*cm**-2 * area
VT = -63*mV

The model
eqs = Equations('''
dv/dt = (gl*(El-v) - g_na*(m*m*m)*h*(v-ENa) - g_kd*(n*n*n*n)*(v-EK) + I)/Cm : volt
dm/dt = 0.32*(mV**-1)*(13.*mV-v+VT)/

(exp((13.*mV-v+VT)/(4.*mV))-1.)/ms*(1-m)-0.28*(mV**-1)*(v-VT-40.*mV)/
(exp((v-VT-40.*mV)/(5.*mV))-1.)/ms*m : 1

dn/dt = 0.032*(mV**-1)*(15.*mV-v+VT)/
(exp((15.*mV-v+VT)/(5.*mV))-1.)/ms*(1.-n)-.5*exp((10.*mV-v+VT)/(40.*mV))/ms*n : 1

dh/dt = 0.128*exp((17.*mV-v+VT)/(18.*mV))/ms*(1.-h)-4./(1+exp((40.*mV-v+VT)/(5.*mV)))/
→˓ms*h : 1
I : amp
''')
Threshold and refractoriness are only used for spike counting
group = NeuronGroup(num_neurons, eqs,

threshold='v > -40*mV',
refractory='v > -40*mV',
method='exponential_euler')

group.v = El
group.I = '0.7*nA * i / num_neurons'

monitor = SpikeMonitor(group)

run(duration)

plot(group.I/nA, monitor.count / duration)
xlabel('I (nA)')
ylabel('Firing rate (sp/s)')
show()

5.3. Example: IF_curve_Hodgkin_Huxley 183

Brian 2 Documentation, Release 2.1.1

5.4 Example: IF_curve_LIF

Input-Frequency curve of a IF model. Network: 1000 unconnected integrate-and-fire neurons (leaky IF) with an input
parameter v0. The input is set differently for each neuron.

from brian2 import *

n = 1000
duration = 1*second
tau = 10*ms
eqs = '''
dv/dt = (v0 - v) / tau : volt (unless refractory)
v0 : volt
'''
group = NeuronGroup(n, eqs, threshold='v > 10*mV', reset='v = 0*mV',

refractory=5*ms, method='exact')
group.v = 0*mV
group.v0 = '20*mV * i / (n-1)'

monitor = SpikeMonitor(group)

run(duration)

184 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

plot(group.v0/mV, monitor.count / duration)
xlabel('v0 (mV)')
ylabel('Firing rate (sp/s)')
show()

5.5 Example: adaptive_threshold

A model with adaptive threshold (increases with each spike)

from brian2 import *

eqs = '''
dv/dt = -v/(10*ms) : volt
dvt/dt = (10*mV-vt)/(15*ms) : volt
'''

reset = '''
v = 0*mV
vt += 3*mV
'''

IF = NeuronGroup(1, model=eqs, reset=reset, threshold='v>vt',

5.5. Example: adaptive_threshold 185

Brian 2 Documentation, Release 2.1.1

method='exact')
IF.vt = 10*mV
PG = PoissonGroup(1, 500 * Hz)

C = Synapses(PG, IF, on_pre='v += 3*mV')
C.connect()

Mv = StateMonitor(IF, 'v', record=True)
Mvt = StateMonitor(IF, 'vt', record=True)
Record the value of v when the threshold is crossed
M_crossings = SpikeMonitor(IF, variables='v')
run(2*second, report='text')

subplot(1, 2, 1)
plot(Mv.t / ms, Mv[0].v / mV)
plot(Mvt.t / ms, Mvt[0].vt / mV)
ylabel('v (mV)')
xlabel('t (ms)')
zoom in on the first 100ms
xlim(0, 100)
subplot(1, 2, 2)
hist(M_crossings.v / mV, bins=np.arange(10, 20, 0.5))
xlabel('v at threshold crossing (mV)')
show()

186 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

5.6 Example: non_reliability

Reliability of spike timing. See e.g. Mainen & Sejnowski (1995) for experimental results in vitro.

Here: a constant current is injected in all trials.

from brian2 import *

N = 25
tau = 20*ms
sigma = .015
eqs_neurons = '''
dx/dt = (1.1 - x) / tau + sigma * (2 / tau)**.5 * xi : 1 (unless refractory)
'''
neurons = NeuronGroup(N, model=eqs_neurons, threshold='x > 1', reset='x = 0',

refractory=5*ms, method='euler')
spikes = SpikeMonitor(neurons)

run(500*ms)
plot(spikes.t/ms, spikes.i, '.k')
xlabel('Time (ms)')
ylabel('Neuron index')
show()

5.6. Example: non_reliability 187

Brian 2 Documentation, Release 2.1.1

5.7 Example: phase_locking

Phase locking of IF neurons to a periodic input.

from brian2 import *

tau = 20*ms
n = 100
b = 1.2 # constant current mean, the modulation varies
freq = 10*Hz

eqs = '''
dv/dt = (-v + a * sin(2 * pi * freq * t) + b) / tau : 1
a : 1
'''
neurons = NeuronGroup(n, model=eqs, threshold='v > 1', reset='v = 0',

method='euler')
neurons.v = 'rand()'
neurons.a = '0.05 + 0.7*i/n'
S = SpikeMonitor(neurons)
trace = StateMonitor(neurons, 'v', record=50)

run(1000*ms)
subplot(211)
plot(S.t/ms, S.i, '.k')
xlabel('Time (ms)')
ylabel('Neuron index')
subplot(212)
plot(trace.t/ms, trace.v.T)
xlabel('Time (ms)')
ylabel('v')
tight_layout()
show()

188 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

5.8 Example: reliability

Reliability of spike timing. See e.g. Mainen & Sejnowski (1995) for experimental results in vitro.

from brian2 import *

The common noisy input
N = 25
tau_input = 5*ms
input = NeuronGroup(1, 'dx/dt = -x / tau_input + (2 /tau_input)**.5 * xi : 1')

The noisy neurons receiving the same input
tau = 10*ms
sigma = .015
eqs_neurons = '''
dx/dt = (0.9 + .5 * I - x) / tau + sigma * (2 / tau)**.5 * xi : 1
I : 1 (linked)
'''
neurons = NeuronGroup(N, model=eqs_neurons, threshold='x > 1',

reset='x = 0', refractory=5*ms, method='euler')
neurons.x = 'rand()'
neurons.I = linked_var(input, 'x') # input.x is continuously fed into neurons.I

5.8. Example: reliability 189

Brian 2 Documentation, Release 2.1.1

spikes = SpikeMonitor(neurons)

run(500*ms)
plt.plot(spikes.t/ms, spikes.i, '.k')
xlabel('Time (ms)')
ylabel('Neuron index')
show()

5.9 advanced

5.9.1 Example: compare_GSL_to_conventional

Example using GSL ODE solvers with a variable time step and comparing it to the Brian solver.

For highly accurate simulations, i.e. simulations with a very low desired error, the GSL simulation with a variable time
step can be faster because it uses a low time step only when it is necessary. In biologically detailed models (e.g. of the
Hodgkin-Huxley type), the relevant time constants are very short around an action potential, but much longer when the
neuron is near its resting potential. The following example uses a very simple neuron model (leaky integrate-and-fire),
but simulates a change in relevant time constants by changing the actual time constant every 10ms, independently for
each of 100 neurons. To accurately simulate this model with a fixed time step, the time step has to be very small,
wasting many unnecessary steps for all the neurons where the time constant is long.

190 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

Note that using the GSL ODE solver is much slower, if both methods use a comparable number of steps, i.e. if the
desired accuracy is low enough so that a single step per “Brian time step” is enough.

from brian2 import *
import time

Run settings
start_dt = .1 * ms
method = 'rk2'
error = 1.e-6 # requested accuracy

def runner(method, dt, options=None):
seed(0)
I = 5
group = NeuronGroup(100, '''dv/dt = (-v + I)/tau : 1

tau : second''',
method=method,
method_options=options,
dt=dt)

group.run_regularly('''v = rand()
tau = 0.1*ms + rand()*9.9*ms''', dt=10*ms)

rec_vars = ['v', 'tau']
if 'gsl' in method:

rec_vars += ['_step_count']
net = Network(group)
net.run(0 * ms)
mon = StateMonitor(group, rec_vars, record=True, dt=start_dt)
net.add(mon)
start = time.time()
net.run(1 * second)
mon.add_attribute('run_time')
mon.run_time = time.time() - start
return mon

lin = runner('linear', start_dt)
method_options = {'save_step_count': True,

'absolute_error': error,
'max_steps': 10000}

gsl = runner('gsl_%s' % method, start_dt, options=method_options)

print("Running with GSL integrator and variable time step:")
print('Run time: %.3fs' % gsl.run_time)

check gsl error
assert np.max(np.abs(

lin.v - gsl.v)) < error, "Maximum error gsl integration too large: %f" % np.max(
np.abs(lin.v - gsl.v))

print("average step count: %.1f" % np.mean(gsl._step_count))
print("average absolute error: %g" % np.mean(np.abs(gsl.v - lin.v)))

print("\nRunning with exact integration and fixed time step:")
dt = start_dt
count = 0
dts = []
avg_errors = []
max_errors = []

5.9. advanced 191

Brian 2 Documentation, Release 2.1.1

runtimes = []
while True:

print('Using dt: %s' % str(dt))
brian = runner(method, dt)
print('\tRun time: %.3fs' % brian.run_time)
avg_errors.append(np.mean(np.abs(brian.v - lin.v)))
max_errors.append(np.max(np.abs(brian.v - lin.v)))
dts.append(dt)
runtimes.append(brian.run_time)
if np.max(np.abs(brian.v - lin.v)) > error:

print('\tError too high (%g), decreasing dt' % np.max(
np.abs(brian.v - lin.v)))

dt *= .5
count += 1

else:
break

print("Desired error level achieved:")
print("average step count: %.2fs" % (start_dt / dt))
print("average absolute error: %g" % np.mean(np.abs(brian.v - lin.v)))

print('Run time: %.3fs' % brian.run_time)
if brian.run_time > gsl.run_time:

print("This is %.1f times slower than the simulation with GSL's variable "
"time step method." % (brian.run_time / gsl.run_time))

else:
print("This is %.1f times faster than the simulation with GSL's variable "

"time step method." % (gsl.run_time / brian.run_time))

fig, (ax1, ax2) = plt.subplots(1, 2)
ax2.axvline(1e-6, color='gray')
for label, gsl_error, std_errors, ax in [('average absolute error', np.mean(np.
→˓abs(gsl.v - lin.v)), avg_errors, ax1),

('maximum absolute error', np.max(np.abs(gsl.
→˓v - lin.v)), max_errors, ax2)]:

ax.set(xscale='log', yscale='log')
ax.plot([], [], 'o', color='C0', label='fixed time step') # for the legend entry
for (error, runtime, dt) in zip(std_errors, runtimes, dts):

ax.plot(error, runtime, 'o', color='C0')
ax.annotate('%s' % str(dt), xy=(error, runtime), xytext=(2.5, 5),

textcoords='offset points', color='C0')
ax.plot(gsl_error, gsl.run_time, 'o', color='C1', label='variable time step (GSL)

→˓')
ax.set(xlabel=label, xlim=(10**-10, 10**1))

ax1.set_ylabel('runtime (s)')
ax2.legend(loc='lower left')

plt.show()

192 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

5.9.2 Example: custom_events

Example demonstrating the use of custom events.

Here we have three neurons, the first is Poisson spiking and connects to neuron G, which in turn connects to neuron H.
Neuron G has two variables v and g, and the incoming Poisson spikes cause an instantaneous increase in variable g. g
decays rapidly, and in turn causes a slow increase in v. If v crosses a threshold, it causes a standard spike and reset. If
g crosses a threshold, it causes a custom event gspike, and if it returns below that threshold it causes a custom event
end_gspike. The standard spike event when v crosses a threshold causes an instantaneous increase in variable x in
neuron H (which happens through the standard pre pathway in the synapses), and the gspike event causes an increase
in variable y (which happens through the custom pathway gpath).

from brian2 import *
Input Poisson spikes
inp = PoissonGroup(1, rates=250*Hz)
First group G
eqs_G = '''
dv/dt = (g-v)/(50*ms) : 1
dg/dt = -g/(10*ms) : 1
allow_gspike : boolean
'''
G = NeuronGroup(1, eqs_G, threshold='v>1',

reset='v = 0; g = 0; allow_gspike = True;',

5.9. advanced 193

Brian 2 Documentation, Release 2.1.1

events={'gspike': 'g>1 and allow_gspike',
'end_gspike': 'g<1 and not allow_gspike'})

G.run_on_event('gspike', 'allow_gspike = False')
G.run_on_event('end_gspike', 'allow_gspike = True')
Second group H
eqs_H = '''
dx/dt = -x/(10*ms) : 1
dy/dt = -y/(10*ms) : 1
'''
H = NeuronGroup(1, eqs_H)
Synapses from input Poisson group to G
Sin = Synapses(inp, G, on_pre='g += 0.5')
Sin.connect()
Synapses from G to H
S = Synapses(G, H,

on_pre={'pre': 'x += 1',
'gpath': 'y += 1'},

on_event={'pre': 'spike',
'gpath': 'gspike'})

S.connect()
Monitors
Mstate = StateMonitor(G, ('v', 'g'), record=True)
Mgspike = EventMonitor(G, 'gspike', 'g')
Mspike = SpikeMonitor(G, 'v')
MHstate = StateMonitor(H, ('x', 'y'), record=True)
Initialise and run
G.allow_gspike = True
run(500*ms)
Plot
figure(figsize=(10, 4))
subplot(121)
plot(Mstate.t/ms, Mstate.g[0], '-g', label='g')
plot(Mstate.t/ms, Mstate.v[0], '-b', lw=2, label='V')
plot(Mspike.t/ms, Mspike.v, 'ob', label='_nolegend_')
plot(Mgspike.t/ms, Mgspike.g, 'og', label='_nolegend_')
xlabel('Time (ms)')
title('Presynaptic group G')
legend(loc='best')
subplot(122)
plot(MHstate.t/ms, MHstate.y[0], '-r', label='y')
plot(MHstate.t/ms, MHstate.x[0], '-k', lw=2, label='x')
xlabel('Time (ms)')
title('Postsynaptic group H')
legend(loc='best')
tight_layout()
show()

194 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

5.9.3 Example: opencv_movie

An example that uses a function from external C library (OpenCV in this case). Works for all C-based code generation
targets (i.e. for weave and cpp_standalone device) and for numpy (using the Python bindings).

This example needs a working installation of OpenCV2 and its Python bindings. It has been tested on Ubuntu 14.04
with OpenCV 2.4.8 (libopencv-dev and python-opencv packages).

import os
import urllib2
import cv2 # Import OpenCV2
import cv2.cv as cv # Import the cv subpackage, needed for some constants

from brian2 import *

defaultclock.dt = 1*ms
prefs.codegen.target = 'weave'
prefs.logging.std_redirection = False
set_device('cpp_standalone')
filename = os.path.abspath('Megamind.avi')

if not os.path.exists(filename):
print('Downloading the example video file')
response = urllib2.urlopen('http://docs.opencv.org/2.4/_downloads/Megamind.avi')
data = response.read()
with open(filename, 'wb') as f:

f.write(data)

video = cv2.VideoCapture(filename)
width, height, frame_count = (int(video.get(cv.CV_CAP_PROP_FRAME_WIDTH)),

int(video.get(cv.CV_CAP_PROP_FRAME_HEIGHT)),
int(video.get(cv.CV_CAP_PROP_FRAME_COUNT)))

fps = 24
time_between_frames = 1*second/fps

Links the necessary libraries
prefs.codegen.cpp.libraries += ['opencv_core',

'opencv_highgui']

5.9. advanced 195

Brian 2 Documentation, Release 2.1.1

Includes the header files in all generated files
prefs.codegen.cpp.headers += ['<opencv2/core/core.hpp>',

'<opencv2/highgui/highgui.hpp>']

Pass in values as macros
Note that in general we could also pass in the filename this way, but to get
the string quoting right is unfortunately quite difficult
prefs.codegen.cpp.define_macros += [('VIDEO_WIDTH', width),

('VIDEO_HEIGHT', height)]
@implementation('cpp', '''
double* get_frame(bool new_frame)
{

// The following initializations will only be executed once
static cv::VideoCapture source("VIDEO_FILENAME");
static cv::Mat frame;
static double* grayscale_frame = (double*)malloc(VIDEO_WIDTH*VIDEO_

→˓HEIGHT*sizeof(double));
if (new_frame)
{

source >> frame;
double mean_value = 0;
for (int row=0; row<VIDEO_HEIGHT; row++)

for (int col=0; col<VIDEO_WIDTH; col++)
{

const double grayscale_value = (frame.at<cv::Vec3b>(row, col)[0] +
frame.at<cv::Vec3b>(row, col)[1] +
frame.at<cv::Vec3b>(row, col)[2])/(3.

→˓0*128);
mean_value += grayscale_value / (VIDEO_WIDTH * VIDEO_HEIGHT);
grayscale_frame[row*VIDEO_WIDTH + col] = grayscale_value;

}
// subtract the mean
for (int i=0; i<VIDEO_HEIGHT*VIDEO_WIDTH; i++)

grayscale_frame[i] -= mean_value;
}
return grayscale_frame;

}

double video_input(const int x, const int y)
{

// Get the current frame (or a new frame in case we are asked for the first
// element
double *frame = get_frame(x==0 && y==0);
return frame[y*VIDEO_WIDTH + x];

}
'''.replace('VIDEO_FILENAME', filename))
@check_units(x=1, y=1, result=1)
def video_input(x, y):

we assume this will only be called in the custom operation (and not for
example in a reset or synaptic statement), so we don't need to do indexing
but we can directly return the full result
_, frame = video.read()
grayscale = frame.mean(axis=2)
grayscale /= 128. # scale everything between 0 and 2
return grayscale.ravel() - grayscale.ravel().mean()

196 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

N = width * height
tau, tau_th = 10*ms, time_between_frames
G = NeuronGroup(N, '''dv/dt = (-v + I)/tau : 1

dv_th/dt = -v_th/tau_th : 1
row : integer (constant)
column : integer (constant)
I : 1 # input current''',

threshold='v>v_th', reset='v=0; v_th = 3*v_th + 1.0',
method='exact')

G.v_th = 1
G.row = 'i/width'
G.column = 'i%width'

G.run_regularly('I = video_input(column, row)',
dt=time_between_frames)

mon = SpikeMonitor(G)
runtime = frame_count*time_between_frames
run(runtime, report='text')
device.build(compile=True, run=True)

Avoid going through the whole Brian2 indexing machinery too much
i, t, row, column = mon.i[:], mon.t[:], G.row[:], G.column[:]

import matplotlib.animation as animation

TODO: Use overlapping windows
stepsize = 100*ms
def next_spikes():

step = next_spikes.step
if step*stepsize > runtime:

next_spikes.step=0
raise StopIteration()

spikes = i[(t>=step*stepsize) & (t<(step+1)*stepsize)]
next_spikes.step += 1
yield column[spikes], row[spikes]

next_spikes.step = 0

fig, ax = plt.subplots()
dots, = ax.plot([], [], 'k.', markersize=2, alpha=.25)
ax.set_xlim(0, width)
ax.set_ylim(0, height)
ax.invert_yaxis()
def run(data):

x, y = data
dots.set_data(x, y)

ani = animation.FuncAnimation(fig, run, next_spikes, blit=False, repeat=True,
repeat_delay=1000)

plt.show()

5.9.4 Example: stochastic_odes

Demonstrate the correctness of the “derivative-free Milstein method” for multiplicative noise.

5.9. advanced 197

Brian 2 Documentation, Release 2.1.1

from brian2 import *
We only get exactly the same random numbers for the exact solution and the
simulation if we use the numpy code generation target
prefs.codegen.target = 'numpy'

setting a random seed makes all variants use exactly the same Wiener process
seed = 12347

X0 = 1
mu = 0.5/second # drift
sigma = 0.1/second #diffusion

runtime = 1*second

def simulate(method, dt):
'''
simulate geometrical Brownian with the given method
'''
np.random.seed(seed)
G = NeuronGroup(1, 'dX/dt = (mu - 0.5*second*sigma**2)*X + X*sigma*xi*second**.5:

→˓1',
dt=dt, method=method)

G.X = X0
mon = StateMonitor(G, 'X', record=True)
net = Network(G, mon)
net.run(runtime)
return mon.t_[:], mon.X.flatten()

def exact_solution(t, dt):
'''
Return the exact solution for geometrical Brownian motion at the given
time points
'''
Remove units for simplicity
my_mu = float(mu)
my_sigma = float(sigma)
dt = float(dt)
t = asarray(t)

np.random.seed(seed)
We are calculating the values at the *start* of a time step, as when using
a StateMonitor. Therefore the Brownian motion starts with zero
brownian = np.hstack([0, cumsum(sqrt(dt) * np.random.randn(len(t)-1))])

return (X0 * exp((my_mu - 0.5*my_sigma**2)*(t+dt) + my_sigma*brownian))

figure(1, figsize=(16, 7))
figure(2, figsize=(16, 7))

methods = ['milstein', 'heun']
dts = [1*ms, 0.5*ms, 0.2*ms, 0.1*ms, 0.05*ms, 0.025*ms, 0.01*ms, 0.005*ms]

rows = floor(sqrt(len(dts)))
cols = ceil(1.0 * len(dts) / rows)
errors = dict([(method, zeros(len(dts))) for method in methods])
for dt_idx, dt in enumerate(dts):

198 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

print('dt: %s' % dt)
trajectories = {}
Test the numerical methods
for method in methods:

t, trajectories[method] = simulate(method, dt)
Calculate the exact solution
exact = exact_solution(t, dt)

for method in methods:
plot the trajectories
figure(1)
subplot(rows, cols, dt_idx+1)
plot(t, trajectories[method], label=method, alpha=0.75)

determine the mean absolute error
errors[method][dt_idx] = mean(abs(trajectories[method] - exact))
plot the difference to the real trajectory
figure(2)
subplot(rows, cols, dt_idx+1)
plot(t, trajectories[method] - exact, label=method, alpha=0.75)

figure(1)
plot(t, exact, color='gray', lw=2, label='exact', alpha=0.75)
title('dt = %s' % str(dt))
xticks([])

figure(1)
legend(frameon=False, loc='best')
tight_layout()

figure(2)
legend(frameon=False, loc='best')
tight_layout()

figure(3)
for method in methods:

plot(array(dts) / ms, errors[method], 'o', label=method)
legend(frameon=False, loc='best')
xscale('log')
yscale('log')
xlabel('dt (ms)')
ylabel('Mean absolute error')
tight_layout()

show()

5.9. advanced 199

Brian 2 Documentation, Release 2.1.1

200 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

5.10 compartmental

5.10.1 Example: bipolar_cell

A pseudo MSO neuron, with two dendrites and one axon (fake geometry).

from brian2 import *

Morphology
morpho = Soma(30*um)
morpho.axon = Cylinder(diameter=1*um, length=300*um, n=100)
morpho.L = Cylinder(diameter=1*um, length=100*um, n=50)
morpho.R = Cylinder(diameter=1*um, length=150*um, n=50)

Passive channels
gL = 1e-4*siemens/cm**2
EL = -70*mV
eqs='''
Im = gL * (EL - v) : amp/meter**2
I : amp (point current)
'''

5.10. compartmental 201

Brian 2 Documentation, Release 2.1.1

neuron = SpatialNeuron(morphology=morpho, model=eqs,
Cm=1*uF/cm**2, Ri=100*ohm*cm, method='exponential_euler')

neuron.v = EL
neuron.I = 0*amp

Monitors
mon_soma = StateMonitor(neuron, 'v', record=[0])
mon_L = StateMonitor(neuron.L, 'v', record=True)
mon_R = StateMonitor(neuron, 'v', record=morpho.R[75*um])

run(1*ms)
neuron.I[morpho.L[50*um]] = 0.2*nA # injecting in the left dendrite
run(5*ms)
neuron.I = 0*amp
run(50*ms, report='text')

subplot(211)
plot(mon_L.t/ms, mon_soma[0].v/mV, 'k')
plot(mon_L.t/ms, mon_L[morpho.L[50*um]].v/mV, 'r')
plot(mon_L.t/ms, mon_R[morpho.R[75*um]].v/mV, 'b')
ylabel('v (mV)')
subplot(212)
for x in linspace(0*um, 100*um, 10, endpoint=False):

plot(mon_L.t/ms, mon_L[morpho.L[x]].v/mV)
xlabel('Time (ms)')
ylabel('v (mV)')
show()

202 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

5.10.2 Example: bipolar_with_inputs

A pseudo MSO neuron, with two dendrites (fake geometry). There are synaptic inputs.

from brian2 import *

Morphology
morpho = Soma(30*um)
morpho.L = Cylinder(diameter=1*um, length=100*um, n=50)
morpho.R = Cylinder(diameter=1*um, length=100*um, n=50)

Passive channels
gL = 1e-4*siemens/cm**2
EL = -70*mV
Es = 0*mV
eqs='''
Im = gL*(EL-v) : amp/meter**2
Is = gs*(Es-v) : amp (point current)
gs : siemens
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs,
Cm=1*uF/cm**2, Ri=100*ohm*cm, method='exponential_euler')

5.10. compartmental 203

Brian 2 Documentation, Release 2.1.1

neuron.v = EL

Regular inputs
stimulation = NeuronGroup(2, 'dx/dt = 300*Hz : 1', threshold='x>1', reset='x=0',

method='euler')
stimulation.x = [0, 0.5] # Asynchronous

Synapses
taus = 1*ms
w = 20*nS
S = Synapses(stimulation, neuron, model='''dg/dt = -g/taus : siemens (clock-driven)

gs_post = g : siemens (summed)''',
on_pre='g += w', method='exact')

S.connect(i=0, j=morpho.L[-1])
S.connect(i=1, j=morpho.R[-1])

Monitors
mon_soma = StateMonitor(neuron, 'v', record=[0])
mon_L = StateMonitor(neuron.L, 'v', record=True)
mon_R = StateMonitor(neuron.R, 'v',

record=morpho.R[-1])

run(50*ms, report='text')

subplot(211)
plot(mon_L.t/ms, mon_soma[0].v/mV, 'k')
plot(mon_L.t/ms, mon_L[morpho.L[-1]].v/mV, 'r')
plot(mon_L.t/ms, mon_R[morpho.R[-1]].v/mV, 'b')
ylabel('v (mV)')
subplot(212)
for x in linspace(0*um, 100*um, 10, endpoint=False):

plot(mon_L.t/ms, mon_L[morpho.L[x]].v/mV)
xlabel('Time (ms)')
ylabel('v (mV)')
show()

204 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

5.10.3 Example: bipolar_with_inputs2

A pseudo MSO neuron, with two dendrites (fake geometry). There are synaptic inputs. Second method.

from brian2 import *

Morphology
morpho = Soma(30*um)
morpho.L = Cylinder(diameter=1*um, length=100*um, n=50)
morpho.R = Cylinder(diameter=1*um, length=100*um, n=50)

Passive channels
gL = 1e-4*siemens/cm**2
EL = -70*mV
Es = 0*mV
taus = 1*ms
eqs='''
Im = gL*(EL-v) : amp/meter**2
Is = gs*(Es-v) : amp (point current)
dgs/dt = -gs/taus : siemens
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs,

5.10. compartmental 205

Brian 2 Documentation, Release 2.1.1

Cm=1*uF/cm**2, Ri=100*ohm*cm, method='exponential_euler')
neuron.v = EL

Regular inputs
stimulation = NeuronGroup(2, 'dx/dt = 300*Hz : 1', threshold='x>1', reset='x=0',

method='euler')
stimulation.x = [0, 0.5] # Asynchronous

Synapses
w = 20*nS
S = Synapses(stimulation, neuron,on_pre='gs += w')
S.connect(i=0, j=morpho.L[99.9*um])
S.connect(i=1, j=morpho.R[99.9*um])

Monitors
mon_soma = StateMonitor(neuron, 'v', record=[0])
mon_L = StateMonitor(neuron.L, 'v', record=True)
mon_R = StateMonitor(neuron, 'v', record=morpho.R[99.9*um])

run(50*ms, report='text')

subplot(211)
plot(mon_L.t/ms, mon_soma[0].v/mV, 'k')
plot(mon_L.t/ms, mon_L[morpho.L[99.9*um]].v/mV, 'r')
plot(mon_L.t/ms, mon_R[morpho.R[99.9*um]].v/mV, 'b')
ylabel('v (mV)')
subplot(212)
for i in [0, 5, 10, 15, 20, 25, 30, 35, 40, 45]:

plot(mon_L.t/ms, mon_L.v[i, :]/mV)
xlabel('Time (ms)')
ylabel('v (mV)')
show()

206 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

5.10.4 Example: cylinder

A short cylinder with constant injection at one end.

from brian2 import *

defaultclock.dt = 0.01*ms

Morphology
diameter = 1*um
length = 300*um
Cm = 1*uF/cm**2
Ri = 150*ohm*cm
N = 200
morpho = Cylinder(diameter=diameter, length=length, n=N)

Passive channels
gL = 1e-4*siemens/cm**2
EL = -70*mV
eqs = '''
Im = gL * (EL - v) : amp/meter**2
I : amp (point current)
'''

5.10. compartmental 207

Brian 2 Documentation, Release 2.1.1

neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=Cm, Ri=Ri,
method='exponential_euler')

neuron.v = EL

la = neuron.space_constant[0]
print("Electrotonic length: %s" % la)

neuron.I[0] = 0.02*nA # injecting at the left end
run(100*ms, report='text')

plot(neuron.distance/um, neuron.v/mV, 'kx')
Theory
x = neuron.distance
ra = la * 4 * Ri / (pi * diameter**2)
theory = EL + ra * neuron.I[0] * cosh((length - x) / la) / sinh(length / la)
plot(x/um, theory/mV, 'r')
xlabel('x (um)')
ylabel('v (mV)')
show()

5.10.5 Example: hh_with_spikes

208 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

Hodgkin-Huxley equations (1952). Spikes are recorded along the axon, and then velocity is calculated.

from brian2 import *
from scipy import stats

defaultclock.dt = 0.01*ms

morpho = Cylinder(length=10*cm, diameter=2*238*um, n=1000, type='axon')

El = 10.613*mV
ENa = 115*mV
EK = -12*mV
gl = 0.3*msiemens/cm**2
gNa0 = 120*msiemens/cm**2
gK = 36*msiemens/cm**2

Typical equations
eqs = '''
The same equations for the whole neuron, but possibly different parameter values
distributed transmembrane current
Im = gl * (El-v) + gNa * m**3 * h * (ENa-v) + gK * n**4 * (EK-v) : amp/meter**2
I : amp (point current) # applied current
dm/dt = alpham * (1-m) - betam * m : 1
dn/dt = alphan * (1-n) - betan * n : 1
dh/dt = alphah * (1-h) - betah * h : 1
alpham = (0.1/mV) * (-v+25*mV) / (exp((-v+25*mV) / (10*mV)) - 1)/ms : Hz
betam = 4 * exp(-v/(18*mV))/ms : Hz
alphah = 0.07 * exp(-v/(20*mV))/ms : Hz
betah = 1/(exp((-v+30*mV) / (10*mV)) + 1)/ms : Hz
alphan = (0.01/mV) * (-v+10*mV) / (exp((-v+10*mV) / (10*mV)) - 1)/ms : Hz
betan = 0.125*exp(-v/(80*mV))/ms : Hz
gNa : siemens/meter**2
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs, method="exponential_euler",
refractory="m > 0.4", threshold="m > 0.5",
Cm=1*uF/cm**2, Ri=35.4*ohm*cm)

neuron.v = 0*mV
neuron.h = 1
neuron.m = 0
neuron.n = .5
neuron.I = 0*amp
neuron.gNa = gNa0
M = StateMonitor(neuron, 'v', record=True)
spikes = SpikeMonitor(neuron)

run(50*ms, report='text')
neuron.I[0] = 1*uA # current injection at one end
run(3*ms)
neuron.I = 0*amp
run(50*ms, report='text')

Calculation of velocity
slope, intercept, r_value, p_value, std_err = stats.linregress(spikes.t/second,

neuron.distance[spikes.i]/meter)
print("Velocity = %.2f m/s" % slope)

subplot(211)
for i in range(10):

5.10. compartmental 209

Brian 2 Documentation, Release 2.1.1

plot(M.t/ms, M.v.T[:, i*100]/mV)
ylabel('v')
subplot(212)
plot(spikes.t/ms, spikes.i*neuron.length[0]/cm, '.k')
plot(spikes.t/ms, (intercept+slope*(spikes.t/second))/cm, 'r')
xlabel('Time (ms)')
ylabel('Position (cm)')
show()

5.10.6 Example: hodgkin_huxley_1952

Hodgkin-Huxley equations (1952).

from brian2 import *

morpho = Cylinder(length=10*cm, diameter=2*238*um, n=1000, type='axon')

El = 10.613*mV
ENa = 115*mV
EK = -12*mV
gl = 0.3*msiemens/cm**2
gNa0 = 120*msiemens/cm**2

210 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

gK = 36*msiemens/cm**2

Typical equations
eqs = '''
The same equations for the whole neuron, but possibly different parameter values
distributed transmembrane current
Im = gl * (El-v) + gNa * m**3 * h * (ENa-v) + gK * n**4 * (EK-v) : amp/meter**2
I : amp (point current) # applied current
dm/dt = alpham * (1-m) - betam * m : 1
dn/dt = alphan * (1-n) - betan * n : 1
dh/dt = alphah * (1-h) - betah * h : 1
alpham = (0.1/mV) * (-v+25*mV) / (exp((-v+25*mV) / (10*mV)) - 1)/ms : Hz
betam = 4 * exp(-v/(18*mV))/ms : Hz
alphah = 0.07 * exp(-v/(20*mV))/ms : Hz
betah = 1/(exp((-v+30*mV) / (10*mV)) + 1)/ms : Hz
alphan = (0.01/mV) * (-v+10*mV) / (exp((-v+10*mV) / (10*mV)) - 1)/ms : Hz
betan = 0.125*exp(-v/(80*mV))/ms : Hz
gNa : siemens/meter**2
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=1*uF/cm**2,
Ri=35.4*ohm*cm, method="exponential_euler")

neuron.v = 0*mV
neuron.h = 1
neuron.m = 0
neuron.n = .5
neuron.I = 0
neuron.gNa = gNa0
neuron[5*cm:10*cm].gNa = 0*siemens/cm**2
M = StateMonitor(neuron, 'v', record=True)

run(50*ms, report='text')
neuron.I[0] = 1*uA # current injection at one end
run(3*ms)
neuron.I = 0*amp
run(100*ms, report='text')
for i in range(75, 125, 1):

plot(cumsum(neuron.length)/cm, i+(1./60)*M.v[:, i*5]/mV, 'k')
yticks([])
ylabel('Time [major] v (mV) [minor]')
xlabel('Position (cm)')
axis('tight')
show()

5.10. compartmental 211

Brian 2 Documentation, Release 2.1.1

5.10.7 Example: infinite_cable

An (almost) infinite cable with pulse injection in the middle.

from brian2 import *

defaultclock.dt = 0.001*ms

Morphology
diameter = 1*um
Cm = 1*uF/cm**2
Ri = 100*ohm*cm
N = 500
morpho = Cylinder(diameter=diameter, length=3*mm, n=N)

Passive channels
gL = 1e-4*siemens/cm**2
EL = -70*mV
eqs = '''
Im = gL * (EL-v) : amp/meter**2
I : amp (point current)
'''

212 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=Cm, Ri=Ri,
method = 'exponential_euler')

neuron.v = EL

taum = Cm /gL # membrane time constant
print("Time constant: %s" % taum)
la = neuron.space_constant[0]
print("Characteristic length: %s" % la)

Monitors
mon = StateMonitor(neuron, 'v', record=range(0, N//2, 20))

neuron.I[len(neuron) // 2] = 1*nA # injecting in the middle
run(0.02*ms)
neuron.I = 0*amp
run(10*ms, report='text')

t = mon.t
plot(t/ms, mon.v.T/mV, 'k')
Theory (incorrect near cable ends)
for i in range(0, len(neuron)//2, 20):

x = (len(neuron)/2 - i) * morpho.length[0]
theory = (1/(la*Cm*pi*diameter) * sqrt(taum / (4*pi*(t + defaultclock.dt))) *

exp(-(t+defaultclock.dt)/taum -
taum / (4*(t+defaultclock.dt))*(x/la)**2))

theory = EL + theory * 1*nA * 0.02*ms
plot(t/ms, theory/mV, 'r')

xlabel('Time (ms)')
ylabel('v (mV')
show()

5.10. compartmental 213

Brian 2 Documentation, Release 2.1.1

5.10.8 Example: lfp

Hodgkin-Huxley equations (1952)

We calculate the extracellular field potential at various places.

from brian2 import *
defaultclock.dt = 0.01*ms
morpho = Cylinder(x=[0, 10]*cm, diameter=2*238*um, n=1000, type='axon')

El = 10.613* mV
ENa = 115*mV
EK = -12*mV
gl = 0.3*msiemens/cm**2
gNa0 = 120*msiemens/cm**2
gK = 36*msiemens/cm**2

Typical equations
eqs = '''
The same equations for the whole neuron, but possibly different parameter values
distributed transmembrane current
Im = gl * (El-v) + gNa * m**3 * h * (ENa-v) + gK * n**4 * (EK-v) : amp/meter**2
I : amp (point current) # applied current

214 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

dm/dt = alpham * (1-m) - betam * m : 1
dn/dt = alphan * (1-n) - betan * n : 1
dh/dt = alphah * (1-h) - betah * h : 1
alpham = (0.1/mV) * (-v+25*mV) / (exp((-v+25*mV) / (10*mV)) - 1)/ms : Hz
betam = 4 * exp(-v/(18*mV))/ms : Hz
alphah = 0.07 * exp(-v/(20*mV))/ms : Hz
betah = 1/(exp((-v+30*mV) / (10*mV)) + 1)/ms : Hz
alphan = (0.01/mV) * (-v+10*mV) / (exp((-v+10*mV) / (10*mV)) - 1)/ms : Hz
betan = 0.125*exp(-v/(80*mV))/ms : Hz
gNa : siemens/meter**2
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=1*uF/cm**2,
Ri=35.4*ohm*cm, method="exponential_euler")

neuron.v = 0*mV
neuron.h = 1
neuron.m = 0
neuron.n = .5
neuron.I = 0
neuron.gNa = gNa0
neuron[5*cm:10*cm].gNa = 0*siemens/cm**2
M = StateMonitor(neuron, 'v', record=True)

LFP recorder
Ne = 5 # Number of electrodes
sigma = 0.3*siemens/meter # Resistivity of extracellular field (0.3-0.4 S/m)
lfp = NeuronGroup(Ne,model='''v : volt

x : meter
y : meter
z : meter''')

lfp.x = 7*cm # Off center (to be far from stimulating electrode)
lfp.y = [1*mm, 2*mm, 4*mm, 8*mm, 16*mm]
S = Synapses(neuron,lfp,model='''w : ohm*meter**2 (constant) # Weight in the LFP
→˓calculation

v_post = w*(Ic_pre-Im_pre) : volt (summed)''')
S.summed_updaters['v_post'].when = 'after_groups' # otherwise Ic has not yet been
→˓updated for the current time step.
S.connect()
S.w = 'area_pre/(4*pi*sigma)/((x_pre-x_post)**2+(y_pre-y_post)**2+(z_pre-z_
→˓post)**2)**.5'

Mlfp = StateMonitor(lfp,'v',record=True)

run(50*ms, report='text')
neuron.I[0] = 1*uA # current injection at one end
run(3*ms)
neuron.I = 0*amp
run(100*ms, report='text')

subplot(211)
for i in range(10):

plot(M.t/ms,M.v[i*100]/mV)
ylabel('V_m (mV)')
subplot(212)
for i in range(5):

plot(M.t/ms,Mlfp.v[i]/mV)
ylabel('LFP (mV)')
xlabel('Time (ms)')

5.10. compartmental 215

Brian 2 Documentation, Release 2.1.1

show()

5.10.9 Example: morphotest

from brian2 import *

Morphology
morpho = Soma(30*um)
morpho.L = Cylinder(diameter=1*um, length=100*um, n=5)
morpho.LL = Cylinder(diameter=1*um, length=20*um, n=2)
morpho.R = Cylinder(diameter=1*um, length=100*um, n=5)

Passive channels
gL = 1e-4*siemens/cm**2
EL = -70*mV
eqs = '''
Im = gL * (EL-v) : amp/meter**2
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs,
Cm=1*uF/cm**2, Ri=100*ohm*cm, method='exponential_euler')

neuron.v = arange(0, 13)*volt

216 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

print(neuron.v)
print(neuron.L.v)
print(neuron.LL.v)
print(neuron.L.main.v)

5.10.10 Example: rall

A cylinder plus two branches, with diameters according to Rall’s formula

from brian2 import *

defaultclock.dt = 0.01*ms

Passive channels
gL = 1e-4*siemens/cm**2
EL = -70*mV

Morphology
diameter = 1*um
length = 300*um
Cm = 1*uF/cm**2
Ri = 150*ohm*cm
N = 500
rm = 1 / (gL * pi * diameter) # membrane resistance per unit length
ra = (4 * Ri)/(pi * diameter**2) # axial resistance per unit length
la = sqrt(rm / ra) # space length
morpho = Cylinder(diameter=diameter, length=length, n=N)
d1 = 0.5*um
L1 = 200*um
rm = 1 / (gL * pi * d1) # membrane resistance per unit length
ra = (4 * Ri) / (pi * d1**2) # axial resistance per unit length
l1 = sqrt(rm / ra) # space length
morpho.L = Cylinder(diameter=d1, length=L1, n=N)
d2 = (diameter**1.5 - d1**1.5)**(1. / 1.5)
rm = 1/(gL * pi * d2) # membrane resistance per unit length
ra = (4 * Ri) / (pi * d2**2) # axial resistance per unit length
l2 = sqrt(rm / ra) # space length
L2 = (L1 / l1) * l2
morpho.R = Cylinder(diameter=d2, length=L2, n=N)

eqs='''
Im = gL * (EL-v) : amp/meter**2
I : amp (point current)
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=Cm, Ri=Ri,
method='exponential_euler')

neuron.v = EL

neuron.I[0] = 0.02*nA # injecting at the left end
run(100*ms, report='text')

plot(neuron.main.distance/um, neuron.main.v/mV, 'k')
plot(neuron.L.distance/um, neuron.L.v/mV, 'k')

5.10. compartmental 217

Brian 2 Documentation, Release 2.1.1

plot(neuron.R.distance/um, neuron.R.v/mV, 'k')
Theory
x = neuron.main.distance
ra = la * 4 * Ri/(pi * diameter**2)
l = length/la + L1/l1
theory = EL + ra*neuron.I[0]*cosh(l - x/la)/sinh(l)
plot(x/um, theory/mV, 'r')
x = neuron.L.distance
theory = (EL+ra*neuron.I[0]*cosh(l - neuron.main.distance[-1]/la -

(x - neuron.main.distance[-1])/l1)/sinh(l))
plot(x/um, theory/mV, 'r')
x = neuron.R.distance
theory = (EL+ra*neuron.I[0]*cosh(l - neuron.main.distance[-1]/la -

(x - neuron.main.distance[-1])/l2)/sinh(l))
plot(x/um, theory/mV, 'r')
xlabel('x (um)')
ylabel('v (mV)')
show()

5.10.11 Example: spike_initiation

Ball and stick with Na and K channels

218 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

from brian2 import *

defaultclock.dt = 0.025*ms

Morphology
morpho = Soma(30*um)
morpho.axon = Cylinder(diameter=1*um, length=300*um, n=100)

Channels
gL = 1e-4*siemens/cm**2
EL = -70*mV
ENa = 50*mV
ka = 6*mV
ki = 6*mV
va = -30*mV
vi = -50*mV
EK = -90*mV
vk = -20*mV
kk = 8*mV
eqs = '''
Im = gL*(EL-v)+gNa*m*h*(ENa-v)+gK*n*(EK-v) : amp/meter**2
dm/dt = (minf-m)/(0.3*ms) : 1 # simplified Na channel
dh/dt = (hinf-h)/(3*ms) : 1 # inactivation
dn/dt = (ninf-n)/(5*ms) : 1 # K+
minf = 1/(1+exp((va-v)/ka)) : 1
hinf = 1/(1+exp((v-vi)/ki)) : 1
ninf = 1/(1+exp((vk-v)/kk)) : 1
I : amp (point current)
gNa : siemens/meter**2
gK : siemens/meter**2
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs,
Cm=1*uF/cm**2, Ri=100*ohm*cm, method='exponential_euler')

neuron.v = -65*mV
neuron.I = 0*amp
neuron.axon[30*um:60*um].gNa = 700*gL
neuron.axon[30*um:60*um].gK = 700*gL

Monitors
mon=StateMonitor(neuron, 'v', record=True)

run(1*ms)
neuron.main.I = 0.15*nA
run(50*ms)
neuron.I = 0*amp
run(95*ms, report='text')

plot(mon.t/ms, mon.v[0]/mV, 'r')
plot(mon.t/ms, mon.v[20]/mV, 'g')
plot(mon.t/ms, mon.v[40]/mV, 'b')
plot(mon.t/ms, mon.v[60]/mV, 'k')
plot(mon.t/ms, mon.v[80]/mV, 'y')
xlabel('Time (ms)')
ylabel('v (mV)')
show()

5.10. compartmental 219

Brian 2 Documentation, Release 2.1.1

5.11 frompapers

5.11.1 Example: Brette_2004

Phase locking in leaky integrate-and-fire model

Fig. 2A from: Brette R (2004). Dynamics of one-dimensional spiking neuron models. J Math Biol 48(1): 38-56.

This shows the phase-locking structure of a LIF driven by a sinusoidal current. When the current crosses the threshold
(a<3), the model almost always phase locks (in a measure-theoretical sense).

from brian2 import *

defaultclock.dt = 0.01*ms # for a more precise picture
N = 2000
tau = 100*ms
freq = 1/tau

eqs = '''
dv/dt = (-v + a + 2*sin(2*pi*t/tau))/tau : 1

220 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

a : 1
'''

neurons = NeuronGroup(N, eqs, threshold='v>1', reset='v=0', method='euler')
neurons.a = linspace(2, 4, N)

run(5*second, report='text') # discard the first spikes (wait for convergence)
S = SpikeMonitor(neurons)
run(5*second, report='text')

i, t = S.it
plot((t % tau)/tau, neurons.a[i], ',')
xlabel('Spike phase')
ylabel('Parameter a')
show()

5.11.2 Example: Brette_Gerstner_2005

Adaptive exponential integrate-and-fire model. http://www.scholarpedia.org/article/Adaptive_exponential_
integrate-and-fire_model

Introduced in Brette R. and Gerstner W. (2005), Adaptive Exponential Integrate-and-Fire Model as an Effective De-
scription of Neuronal Activity, J. Neurophysiol. 94: 3637 - 3642.

5.11. frompapers 221

http://www.scholarpedia.org/article/Adaptive_exponential_integrate-and-fire_model
http://www.scholarpedia.org/article/Adaptive_exponential_integrate-and-fire_model

Brian 2 Documentation, Release 2.1.1

from brian2 import *

Parameters
C = 281 * pF
gL = 30 * nS
taum = C / gL
EL = -70.6 * mV
VT = -50.4 * mV
DeltaT = 2 * mV
Vcut = VT + 5 * DeltaT

Pick an electrophysiological behaviour
tauw, a, b, Vr = 144*ms, 4*nS, 0.0805*nA, -70.6*mV # Regular spiking (as in the paper)
#tauw,a,b,Vr=20*ms,4*nS,0.5*nA,VT+5*mV # Bursting
#tauw,a,b,Vr=144*ms,2*C/(144*ms),0*nA,-70.6*mV # Fast spiking

eqs = """
dvm/dt = (gL*(EL - vm) + gL*DeltaT*exp((vm - VT)/DeltaT) + I - w)/C : volt
dw/dt = (a*(vm - EL) - w)/tauw : amp
I : amp
"""

neuron = NeuronGroup(1, model=eqs, threshold='vm>Vcut',
reset="vm=Vr; w+=b", method='euler')

neuron.vm = EL
trace = StateMonitor(neuron, 'vm', record=0)
spikes = SpikeMonitor(neuron)

run(20 * ms)
neuron.I = 1*nA
run(100 * ms)
neuron.I = 0*nA
run(20 * ms)

We draw nicer spikes
vm = trace[0].vm[:]
for t in spikes.t:

i = int(t / defaultclock.dt)
vm[i] = 20*mV

plot(trace.t / ms, vm / mV)
xlabel('time (ms)')
ylabel('membrane potential (mV)')
show()

222 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

5.11.3 Example: Brette_Guigon_2003

Reliability of spike timing

Adapted from Fig. 10D,E of Brette R and E Guigon (2003). Reliability of Spike Timing Is a General Property of
Spiking Model Neurons. Neural Computation 15, 279-308.

This shows that reliability of spike timing is a generic property of spiking neurons, even those that are not leaky. This
is a non-physiological model which can be leaky or anti-leaky depending on the sign of the input I.

All neurons receive the same fluctuating input, scaled by a parameter p that varies across neurons. This shows:

1. reproducibility of spike timing

2. robustness with respect to deterministic changes (parameter)

3. increased reproducibility in the fluctuation-driven regime (input crosses the threshold)

from brian2 import *

N = 500
tau = 33*ms
taux = 20*ms

5.11. frompapers 223

Brian 2 Documentation, Release 2.1.1

sigma = 0.02

eqs_input = '''
dx/dt = -x/taux + (2/taux)**.5*xi : 1
'''

eqs = '''
dv/dt = (v*I + 1)/tau + sigma*(2/tau)**.5*xi : 1
I = 0.5 + 3*p*B : 1
B = 2./(1 + exp(-2*x)) - 1 : 1 (shared)
p : 1
x : 1 (linked)
'''

input = NeuronGroup(1, eqs_input, method='euler')
neurons = NeuronGroup(N, eqs, threshold='v>1', reset='v=0', method='euler')
neurons.p = '1.0*i/N'
neurons.v = 'rand()'
neurons.x = linked_var(input, 'x')

M = StateMonitor(neurons, 'B', record=0)
S = SpikeMonitor(neurons)

run(1000*ms, report='text')

subplot(211) # The input
plot(M.t/ms, M[0].B)
xticks([])
title('shared input')
subplot(212)
plot(S.t/ms, neurons.p[S.i], ',')
plot([0, 1000], [.5, .5], color='C1')
xlabel('time (ms)')
ylabel('p')
title('spiking activity')
show()

224 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

5.11.4 Example: Brunel_Hakim_1999

Dynamics of a network of sparsely connected inhibitory current-based integrate-and-fire neurons. Individual neu-
rons fire irregularly at low rate but the network is in an oscillatory global activity regime where neurons are weakly
synchronized.

Reference: “Fast Global Oscillations in Networks of Integrate-and-Fire Neurons with Low Firing Rates” Nicolas
Brunel & Vincent Hakim Neural Computation 11, 1621-1671 (1999)

from brian2 import *

N = 5000
Vr = 10*mV
theta = 20*mV
tau = 20*ms
delta = 2*ms
taurefr = 2*ms
duration = .1*second
C = 1000
sparseness = float(C)/N
J = .1*mV
muext = 25*mV
sigmaext = 1*mV

5.11. frompapers 225

Brian 2 Documentation, Release 2.1.1

eqs = """
dV/dt = (-V+muext + sigmaext * sqrt(tau) * xi)/tau : volt
"""

group = NeuronGroup(N, eqs, threshold='V>theta',
reset='V=Vr', refractory=taurefr, method='euler')

group.V = Vr
conn = Synapses(group, group, on_pre='V += -J', delay=delta)
conn.connect(p=sparseness)
M = SpikeMonitor(group)
LFP = PopulationRateMonitor(group)

run(duration)

subplot(211)
plot(M.t/ms, M.i, '.')
xlim(0, duration/ms)

subplot(212)
plot(LFP.t/ms, LFP.smooth_rate(window='flat', width=0.5*ms)/Hz)
xlim(0, duration/ms)

show()

226 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

5.11.5 Example: Clopath_et_al_2010_homeostasis

This code contains an adapted version of the voltage-dependent triplet STDP rule from: Clopath et al., Connectivity
reflects coding: a model of voltage-based STDP with homeostasis, Nature Neuroscience, 2010 (http://dx.doi.org/10.
1038/nn.2479)

The plasticity rule is adapted for a leaky integrate & fire model in Brian2. More specifically, the filters v_lowpass1
and v_lowpass2 are incremented by a constant at every post-synaptic spike time, to compensate for the lack of an
actual spike in the integrate & fire model.

As an illustration of the rule, we simulate the competition between inputs projecting on a downstream neuron. We
would like to note that the parameters have been chosen arbitrarily to qualitatively reproduce the behavior of the
original work, but need additional fitting.

We kindly ask to cite the article when using the model presented below.

This code was written by Jacopo Bono, 12/2015

from brian2 import *

##
PLASTICITY MODEL
##

Plasticity Parameters

V_rest = -70.*mV # resting potential
V_thresh = -55.*mV # spiking threshold
Theta_low = V_rest # depolarization threshold for plasticity
x_reset = 1. # spike trace reset value
taux = 15.*ms # spike trace time constant
A_LTD = 1.5e-4 # depression amplitude
A_LTP = 1.5e-2 # potentiation amplitude
tau_lowpass1 = 40*ms # timeconstant for low-pass filtered voltage
tau_lowpass2 = 30*ms # timeconstant for low-pass filtered voltage
tau_homeo = 1000*ms # homeostatic timeconstant
v_target = 12*mV**2 # target depolarisation

Plasticity Equations

equations executed at every timestepC
Syn_model = ('''

w_ampa:1 # synaptic weight (ampa synapse)
''')

equations executed only when a presynaptic spike occurs
Pre_eq = ('''

g_ampa_post += w_ampa*ampa_max_cond
→˓ # increment synaptic conductance

A_LTD_u = A_LTD*(v_homeo**2/v_target)
→˓ # metaplasticity

w_minus = A_LTD_u*(v_lowpass1_post/mV - Theta_low/mV)*int(v_lowpass1_post/
→˓mV - Theta_low/mV > 0) # synaptic depression

w_ampa = clip(w_ampa-w_minus, 0, w_max)
→˓ # hard bounds

''')

equations executed only when a postsynaptic spike occurs

5.11. frompapers 227

http://dx.doi.org/10.1038/nn.2479
http://dx.doi.org/10.1038/nn.2479

Brian 2 Documentation, Release 2.1.1

Post_eq = ('''
v_lowpass1 += 10*mV

→˓ # mimics the depolarisation effect due to a spike
v_lowpass2 += 10*mV

→˓ # mimics the depolarisation effect due to a spike
v_homeo += 0.1*mV

→˓ # mimics the depolarisation effect due to a spike
w_plus = A_LTP*x_trace_pre*(v_lowpass2_post/mV - Theta_low/mV)*int(v_

→˓lowpass2_post/mV - Theta_low/mV > 0) # synaptic potentiation
w_ampa = clip(w_ampa+w_plus, 0, w_max)

→˓ # hard bounds
''')

##
I&F Parameters and equations
##

Neuron parameters

gleak = 30.*nS # leak conductance
C = 300.*pF # membrane capacitance
tau_AMPA = 2.*ms # AMPA synaptic timeconstant
E_AMPA = 0.*mV # reversal potential AMPA

ampa_max_cond = 5.e-8*siemens # Ampa maximal conductance
w_max = 1. # maximal ampa weight

Neuron Equations

We connect 10 presynaptic neurons to 1 downstream neuron

downstream neuron
eqs_neurons = '''
dv/dt = (gleak*(V_rest-v) + I_ext + I_syn)/C: volt # voltage
dv_lowpass1/dt = (v-v_lowpass1)/tau_lowpass1 : volt # low-pass filter of the
→˓voltage
dv_lowpass2/dt = (v-v_lowpass2)/tau_lowpass2 : volt # low-pass filter of the
→˓voltage
dv_homeo/dt = (v-V_rest-v_homeo)/tau_homeo : volt # low-pass filter of the
→˓voltage
I_ext : amp # external current
I_syn = g_ampa*(E_AMPA-v): amp # synaptic current
dg_ampa/dt = -g_ampa/tau_AMPA : siemens # synaptic conductance
dx_trace/dt = -x_trace/taux :1 # spike trace
'''

input neurons
eqs_inputs = '''
dv/dt = gleak*(V_rest-v)/C: volt # voltage
dx_trace/dt = -x_trace/taux :1 # spike trace
rates : Hz # input rates
selected_index : integer (shared) # active neuron
'''

##
Simulation
##

228 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

Parameters

defaultclock.dt = 500.*us # timestep
Nr_neurons = 1 # Number of downstream neurons
Nr_inputs = 5 # Number of input neurons
input_rate = 35*Hz # Rates
init_weight = 0.5 # initial synaptic weight
final_t = 20.*second # end of simulation
input_time = 100.*ms # duration of an input

Create neuron objects

Nrn_downstream = NeuronGroup(Nr_neurons, eqs_neurons, threshold='v>V_thresh',
reset='v=V_rest;x_trace+=x_reset/(taux/ms)',
method='euler')

Nrns_input = NeuronGroup(Nr_inputs, eqs_inputs, threshold='rand()<rates*dt',
reset='v=V_rest;x_trace+=x_reset/(taux/ms)',
method='exact')

create Synapses

Syn = Synapses(Nrns_input, Nrn_downstream,
model=Syn_model,
on_pre=Pre_eq,
on_post=Post_eq
)

Syn.connect(i=numpy.arange(Nr_inputs), j=0)

Monitors and storage
W_evolution = StateMonitor(Syn, 'w_ampa', record=True)

Run

Initial values
Nrn_downstream.v = V_rest
Nrn_downstream.v_lowpass1 = V_rest
Nrn_downstream.v_lowpass2 = V_rest
Nrn_downstream.v_homeo = 0
Nrn_downstream.I_ext = 0.*amp
Nrn_downstream.x_trace = 0.
Nrns_input.v = V_rest
Nrns_input.x_trace = 0.
Syn.w_ampa = init_weight

Switch on a different input every 100ms
Nrns_input.run_regularly('''

selected_index = int(floor(rand()*Nr_inputs))
rates = input_rate * int(selected_index == i) # All rates

→˓are zero except for the selected neuron
''', dt=input_time)

run(final_t, report='text')

##
Plots
##
stitle = 'Synaptic Competition'

5.11. frompapers 229

Brian 2 Documentation, Release 2.1.1

fig = figure(figsize=(8, 5))
for kk in range(Nr_inputs):

plt.plot(W_evolution.t, W_evolution.w_ampa[kk], '-', linewidth=2)
xlabel('Time [ms]', fontsize=22)
ylabel('Weight [a.u.]', fontsize=22)
plt.subplots_adjust(bottom=0.2, left=0.15, right=0.95, top=0.85)
title(stitle, fontsize=22)
plt.show()

5.11.6 Example: Clopath_et_al_2010_no_homeostasis

This code contains an adapted version of the voltage-dependent triplet STDP rule from: Clopath et al., Connectivity
reflects coding: a model of voltage-based STDP with homeostasis, Nature Neuroscience, 2010 (http://dx.doi.org/10.
1038/nn.2479)

The plasticity rule is adapted for a leaky integrate & fire model in Brian2. In particular, the filters v_lowpass1 and
v_lowpass2 are incremented by a constant at every post-synaptic spike time, to compensate for the lack of an actual
spike in the integrate & fire model. Moreover, this script does not include the homeostatic metaplasticity.

As an illustration of the Rule, we simulate a plot analogous to figure 2b in the above article, showing the frequency
dependence of plasticity as measured in: Sjöström et al., Rate, timing and cooperativity jointly determine cortical
synaptic plasticity. Neuron, 2001. We would like to note that the parameters have been chosen arbitrarily to qualita-
tively reproduce the behavior of the original works, but need additional fitting.

We kindly ask to cite both articles when using the model presented below.

This code was written by Jacopo Bono, 12/2015

230 Chapter 5. Examples

http://dx.doi.org/10.1038/nn.2479
http://dx.doi.org/10.1038/nn.2479

Brian 2 Documentation, Release 2.1.1

from brian2 import *
##
PLASTICITY MODEL
##

Plasticity Parameters

V_rest = -70.*mV # resting potential
V_thresh = -50.*mV # spiking threshold
Theta_low = V_rest # depolarization threshold for plasticity
x_reset = 1. # spike trace reset value
taux = 15.*ms # spike trace time constant
A_LTD = 1.5e-4 # depression amplitude
A_LTP = 1.5e-2 # potentiation amplitude
tau_lowpass1 = 40*ms # timeconstant for low-pass filtered voltage
tau_lowpass2 = 30*ms # timeconstant for low-pass filtered voltage

Plasticity Equations

equations executed at every timestep
Syn_model = '''

w_ampa:1 # synaptic weight (ampa synapse)
'''

equations executed only when a presynaptic spike occurs
Pre_eq = '''

g_ampa_post += w_ampa*ampa_max_cond
→˓ # increment synaptic conductance

w_minus = A_LTD*(v_lowpass1_post/mV - Theta_low/mV)*int(v_lowpass1_post/mV -
→˓Theta_low/mV > 0) # synaptic depression

w_ampa = clip(w_ampa-w_minus,0,w_max)
→˓ # hard bounds

'''

equations executed only when a postsynaptic spike occurs
Post_eq = '''

v_lowpass1 += 10*mV
→˓ # mimics the depolarisation by a spike

v_lowpass2 += 10*mV
→˓ # mimics the depolarisation by a spike

w_plus = A_LTP*x_trace_pre*(v_lowpass2_post/mV - Theta_low/mV)*int(v_
→˓lowpass2_post/mV - Theta_low/mV > 0) # synaptic potentiation

w_ampa = clip(w_ampa+w_plus,0,w_max)
→˓ # hard bounds

'''

##
I&F Parameters and equations
##

Neuron parameters

gleak = 30.*nS # leak conductance
C = 300.*pF # membrane capacitance
tau_AMPA = 2.*ms # AMPA synaptic timeconstant

5.11. frompapers 231

Brian 2 Documentation, Release 2.1.1

E_AMPA = 0.*mV # reversal potential AMPA

ampa_max_cond = 5.e-10*siemens # Ampa maximal conductance
w_max = 1. # maximal ampa weight

Neuron Equations

eqs_neurons = '''
dv/dt = (gleak*(V_rest-v) + I_ext + I_syn)/C: volt # voltage
dv_lowpass1/dt = (v-v_lowpass1)/tau_lowpass1 : volt # low-pass filter of the
→˓voltage
dv_lowpass2/dt = (v-v_lowpass2)/tau_lowpass2 : volt # low-pass filter of the
→˓voltage
I_ext : amp # external current
I_syn = g_ampa*(E_AMPA-v): amp # synaptic current
dg_ampa/dt = -g_ampa/tau_AMPA : siemens # synaptic conductance
dx_trace/dt = -x_trace/taux :1 # spike trace
'''

##
Simulation
##

Parameters

defaultclock.dt = 100.*us # timestep
Nr_neurons = 2 # Number of neurons
rate_array = [1., 5., 10., 15., 20., 30., 50.]*Hz # Rates
init_weight = 0.5 # initial synaptic weight
reps = 15 # Number of pairings

Create neuron objects

Nrns = NeuronGroup(Nr_neurons, eqs_neurons, threshold='v>V_thresh',
reset='v=V_rest;x_trace+=x_reset/(taux/ms)', method='euler')#

create Synapses

Syn = Synapses(Nrns, Nrns,
model=Syn_model,
on_pre=Pre_eq,
on_post=Post_eq
)

Syn.connect('i!=j')

Monitors and storage
weight_result = np.zeros((2,len(rate_array))) # to save the final
→˓weights

Run

loop over rates
for jj, rate in enumerate(rate_array):

232 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

Calculate interval between pairs
pair_interval = 1./rate - 10*ms
print('Starting simulations for %s' % rate)

Initial values
Nrns.v = V_rest
Nrns.v_lowpass1 = V_rest
Nrns.v_lowpass2 = V_rest
Nrns.I_ext = 0*amp
Nrns.x_trace = 0.
Syn.w_ampa = init_weight

loop over pairings
for ii in range(reps):

1st SPIKE
Nrns.v[0] = V_thresh + 1*mV
2nd SPIKE
run(10*ms)
Nrns.v[1] = V_thresh + 1*mV
run
run(pair_interval)
print('Pair %d out of %d' % (ii+1, reps))

#store weight changes
weight_result[0, jj] = 100.*Syn.w_ampa[0]/init_weight
weight_result[1, jj] = 100.*Syn.w_ampa[1]/init_weight

##
Plots
##

stitle = 'Pairings'
scolor = 'k'

figure(figsize=(8, 5))
plot(rate_array,weight_result[0, :], '-', linewidth=2, color=scolor)
plot(rate_array,weight_result[1, :], ':', linewidth=2, color=scolor)
xlabel('Pairing frequency [Hz]', fontsize=22)
ylabel('Normalised Weight [%]', fontsize=22)
legend(['Pre-Post', 'Post-Pre'], loc='best')
subplots_adjust(bottom=0.2, left=0.15, right=0.95, top=0.85)
title(stitle)
show()

5.11. frompapers 233

Brian 2 Documentation, Release 2.1.1

5.11.7 Example: Destexhe_et_al_1998

Reproduces Figure 12 (simplified three-compartment model) from the following paper: Dendritic Low-Threshold
Calcium Currents in Thalamic Relay Cells Alain Destexhe, Mike Neubig, Daniel Ulrich, John Huguenard Journal of
Neuroscience 15 May 1998, 18 (10) 3574-3588

The original NEURON code is available on ModelDB: https://senselab.med.yale.edu/modeldb/ShowModel.cshtml?
model=279

Reference for the original morphology: Rat VB neuron (thalamocortical cell), given by J. Huguenard, stained with
biocytin and traced by A. Destexhe, December 1992. The neuron is described in: J.R. Huguenard & D.A. Prince,
A novel T-type current underlies prolonged calcium-dependent burst firing in GABAergic neurons of rat thalamic
reticular nucleus. J. Neurosci. 12: 3804-3817, 1992.

Available at NeuroMorpho.org: http://neuromorpho.org/neuron_info.jsp?neuron_name=tc200 NeuroMorpho.Org ID
:NMO_00881

Notes

• Completely removed the “Fast mechanism for submembranal Ca++ concentration (cai)” – it did not affect the
results presented here

• Time constants for the I_T current are slightly different from the equations given in the paper – the paper
calculation seems to be based on 36 degree Celsius but the temperature that is used is 34 degrees.

• To reproduce Figure 12C, the “presence of dendritic shunt conductances” meant setting g_L to 0.15 mS/cm^2
for the whole neuron.

234 Chapter 5. Examples

https://senselab.med.yale.edu/modeldb/ShowModel.cshtml?model=279
https://senselab.med.yale.edu/modeldb/ShowModel.cshtml?model=279
http://neuromorpho.org/neuron_info.jsp?neuron_name=tc200

Brian 2 Documentation, Release 2.1.1

• Other small discrepancies with the paper – values from the NEURON code were used whenever different from
the values stated in the paper

from __future__ import print_function
from brian2 import *
from brian2.units.constants import (zero_celsius, faraday_constant as F,

gas_constant as R)

defaultclock.dt = 0.01*ms

VT = -52*mV
El = -76.5*mV # from code, text says: -69.85*mV

E_Na = 50*mV
E_K = -100*mV
C_d = 7.954 # dendritic correction factor

T = 34*kelvin + zero_celsius # 34 degC (current-clamp experiments)
tadj_HH = 3.0**((34-36)/10.0) # temperature adjustment for Na & K (original
→˓recordings at 36 degC)
tadj_m_T = 2.5**((34-24)/10.0)
tadj_h_T = 2.5**((34-24)/10.0)

shift_I_T = -1*mV

gamma = F/(R*T) # R=gas constant, F=Faraday constant
Z_Ca = 2 # Valence of Calcium ions
Ca_i = 240*nM # intracellular Calcium concentration
Ca_o = 2*mM # extracellular Calcium concentration

eqs = Equations('''
Im = gl*(El-v) - I_Na - I_K - I_T: amp/meter**2
I_inj : amp (point current)
gl : siemens/meter**2

HH-type currents for spike initiation
g_Na : siemens/meter**2
g_K : siemens/meter**2
I_Na = g_Na * m**3 * h * (v-E_Na) : amp/meter**2
I_K = g_K * n**4 * (v-E_K) : amp/meter**2
v2 = v - VT : volt # shifted membrane potential (Traub convention)
dm/dt = (0.32*(mV**-1)*(13.*mV-v2)/

(exp((13.*mV-v2)/(4.*mV))-1.)*(1-m)-0.28*(mV**-1)*(v2-40.*mV)/
(exp((v2-40.*mV)/(5.*mV))-1.)*m) / ms * tadj_HH: 1

dn/dt = (0.032*(mV**-1)*(15.*mV-v2)/
(exp((15.*mV-v2)/(5.*mV))-1.)*(1.-n)-.5*exp((10.*mV-v2)/(40.*mV))*n) / ms *

→˓tadj_HH: 1
dh/dt = (0.128*exp((17.*mV-v2)/(18.*mV))*(1.-h)-4./(1+exp((40.*mV-v2)/(5.*mV)))*h) /
→˓ms * tadj_HH: 1

Low-threshold Calcium current (I_T) -- nonlinear function of voltage
I_T = P_Ca * m_T**2*h_T * G_Ca : amp/meter**2
P_Ca : meter/second # maximum Permeability to Calcium
G_Ca = Z_Ca**2*F*v*gamma*(Ca_i - Ca_o*exp(-Z_Ca*gamma*v))/(1 - exp(-Z_Ca*gamma*v)) :
→˓coulomb/meter**3
dm_T/dt = -(m_T - m_T_inf)/tau_m_T : 1
dh_T/dt = -(h_T - h_T_inf)/tau_h_T : 1
m_T_inf = 1/(1 + exp(-(v/mV + 56)/6.2)) : 1
h_T_inf = 1/(1 + exp((v/mV + 80)/4)) : 1

5.11. frompapers 235

Brian 2 Documentation, Release 2.1.1

tau_m_T = (0.612 + 1.0/(exp(-(v/mV + 131)/16.7) + exp((v/mV + 15.8)/18.2))) * ms /
→˓tadj_m_T: second
tau_h_T = (int(v<-81*mV) * exp((v/mV + 466)/66.6) +

int(v>=-81*mV) * (28 + exp(-(v/mV + 21)/10.5))) * ms / tadj_h_T: second
''')

Simplified three-compartment morphology
morpho = Cylinder(x=[0, 38.42]*um, diameter=26*um)
morpho.dend = Cylinder(x=[0, 12.49]*um, diameter=10.28*um)
morpho.dend.distal = Cylinder(x=[0, 84.67]*um, diameter=8.5*um)
neuron = SpatialNeuron(morpho, eqs, Cm=0.88*uF/cm**2, Ri=173*ohm*cm,

method='exponential_euler')

neuron.v = -74*mV
Only the soma has Na/K channels
neuron.main.g_Na = 100*msiemens/cm**2
neuron.main.g_K = 100*msiemens/cm**2
Apply the correction factor to the dendrites

neuron.dend.Cm *= C_d
neuron.m_T = 'm_T_inf'
neuron.h_T = 'h_T_inf'

mon = StateMonitor(neuron, ['v'], record=True)

store('initial state')

def do_experiment(currents, somatic_density, dendritic_density,
dendritic_conductance=0.0379*msiemens/cm**2,
HH_currents=True):

restore('initial state')
voltages = []
neuron.P_Ca = somatic_density
neuron.dend.distal.P_Ca = dendritic_density * C_d
dendritic conductance (shunting conductance used for Fig 12C)
neuron.gl = dendritic_conductance
neuron.dend.gl = dendritic_conductance * C_d
if not HH_currents:

Shut off spiking (for Figures 12B and 12C)
neuron.g_Na = 0*msiemens/cm**2
neuron.g_K = 0*msiemens/cm**2

run(180*ms)
store('before current')
for current in currents:

restore('before current')
neuron.main.I_inj = current
print('.', end='')
run(320*ms)
voltages.append(mon[morpho].v[:]) # somatic voltage

return voltages

Run the various variants of the model to reproduce Figure 12
mpl.rcParams['lines.markersize'] = 3.0
fig, axes = plt.subplots(2, 2)
print('Running experiments for Figure A1 ', end='')
voltages = do_experiment([50, 75]*pA, somatic_density=1.7e-5*cm/second,

236 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

dendritic_density=1.7e-5*cm/second)
print(' done.')
cut_off = 100*ms # Do not display first part of simulation
axes[0, 0].plot((mon.t - cut_off) / ms, voltages[0] / mV, color='gray')
axes[0, 0].plot((mon.t - cut_off) / ms, voltages[1] / mV, color='black')
axes[0, 0].set(xlim=(0, 400), ylim=(-80, 40), xticks=[],

title='A1: Uniform T-current density', ylabel='Voltage (mV)')
axes[0, 0].spines['right'].set_visible(False)
axes[0, 0].spines['top'].set_visible(False)
axes[0, 0].spines['bottom'].set_visible(False)

print('Running experiments for Figure A2 ', end='')
voltages = do_experiment([50, 75]*pA, somatic_density=1.7e-5*cm/second,

dendritic_density=9.5e-5*cm/second)
print(' done.')
cut_off = 100*ms # Do not display first part of simulation
axes[1, 0].plot((mon.t - cut_off) / ms, voltages[0] / mV, color='gray')
axes[1, 0].plot((mon.t - cut_off) / ms, voltages[1] / mV, color='black')
axes[1, 0].set(xlim=(0, 400), ylim=(-80, 40),

title='A2: High T-current density in dendrites',
xlabel='Time (ms)', ylabel='Voltage (mV)')

axes[1, 0].spines['right'].set_visible(False)
axes[1, 0].spines['top'].set_visible(False)

print('Running experiments for Figure B ', end='')
currents = np.linspace(0, 200, 41)*pA
voltages_somatic = do_experiment(currents, somatic_density=56.36e-5*cm/second,

dendritic_density=0*cm/second,
HH_currents=False)

voltages_somatic_dendritic = do_experiment(currents, somatic_density=1.7e-5*cm/second,
dendritic_density=9.5e-5*cm/second,
HH_currents=False)

print(' done.')
maxima_somatic = Quantity(voltages_somatic).max(axis=1)
maxima_somatic_dendritic = Quantity(voltages_somatic_dendritic).max(axis=1)
axes[0, 1].yaxis.tick_right()
axes[0, 1].plot(currents/pA, maxima_somatic/mV,

'o-', color='black', label='Somatic only')
axes[0, 1].plot(currents/pA, maxima_somatic_dendritic/mV,

's-', color='black', label='Somatic & dendritic')
axes[0, 1].set(xlabel='Injected current (pA)', ylabel='Peak LTS (mV)',

ylim=(-80, 0))
axes[0, 1].legend(loc='best', frameon=False)

print('Running experiments for Figure C ', end='')
currents = np.linspace(200, 400, 41)*pA
voltages_somatic = do_experiment(currents, somatic_density=56.36e-5*cm/second,

dendritic_density=0*cm/second,
dendritic_conductance=0.15*msiemens/cm**2,
HH_currents=False)

voltages_somatic_dendritic = do_experiment(currents, somatic_density=1.7e-5*cm/second,
dendritic_density=9.5e-5*cm/second,
dendritic_conductance=0.15*msiemens/cm**2,
HH_currents=False)

print(' done.')
maxima_somatic = Quantity(voltages_somatic).max(axis=1)
maxima_somatic_dendritic = Quantity(voltages_somatic_dendritic).max(axis=1)
axes[1, 1].yaxis.tick_right()

5.11. frompapers 237

Brian 2 Documentation, Release 2.1.1

axes[1, 1].plot(currents/pA, maxima_somatic/mV,
'o-', color='black', label='Somatic only')

axes[1, 1].plot(currents/pA, maxima_somatic_dendritic/mV,
's-', color='black', label='Somatic & dendritic')

axes[1, 1].set(xlabel='Injected current (pA)', ylabel='Peak LTS (mV)',
ylim=(-80, 0))

axes[1, 1].legend(loc='best', frameon=False)

plt.tight_layout()
plt.show()

5.11.8 Example: Diesmann_et_al_1999

Synfire chains

M. Diesmann et al. (1999). Stable propagation of synchronous spiking in cortical neural networks. Nature 402,
529-533.

from brian2 import *

duration = 100*ms

238 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

Neuron model parameters
Vr = -70*mV
Vt = -55*mV
taum = 10*ms
taupsp = 0.325*ms
weight = 4.86*mV
Neuron model
eqs = Equations('''
dV/dt = (-(V-Vr)+x)*(1./taum) : volt
dx/dt = (-x+y)*(1./taupsp) : volt
dy/dt = -y*(1./taupsp)+25.27*mV/ms+

(39.24*mV/ms**0.5)*xi : volt
''')

Neuron groups
n_groups = 10
group_size = 100
P = NeuronGroup(N=n_groups*group_size, model=eqs,

threshold='V>Vt', reset='V=Vr', refractory=1*ms,
method='euler')

Pinput = SpikeGeneratorGroup(85, np.arange(85),
np.random.randn(85)*1*ms + 50*ms)

The network structure
S = Synapses(P, P, on_pre='y+=weight')
S.connect(j='k for k in range((int(i/group_size)+1)*group_size, (int(i/group_
→˓size)+2)*group_size) '

'if i<N_pre-group_size')
Sinput = Synapses(Pinput, P[:group_size], on_pre='y+=weight')
Sinput.connect()

Record the spikes
Mgp = SpikeMonitor(P)
Minput = SpikeMonitor(Pinput)
Setup the network, and run it
P.V = 'Vr + rand() * (Vt - Vr)'
run(duration)

plot(Mgp.t/ms, 1.0*Mgp.i/group_size, '.')
plot([0, duration/ms], np.arange(n_groups).repeat(2).reshape(-1, 2).T, 'k-')
ylabel('group number')
yticks(np.arange(n_groups))
xlabel('time (ms)')
show()

5.11. frompapers 239

Brian 2 Documentation, Release 2.1.1

5.11.9 Example: Kremer_et_al_2011_barrel_cortex

Late Emergence of the Whisker Direction Selectivity Map in the Rat Barrel Cortex. Kremer Y, Leger JF, Goodman
DF, Brette R, Bourdieu L (2011). J Neurosci 31(29):10689-700.

Development of direction maps with pinwheels in the barrel cortex. Whiskers are deflected with random moving bars.
N.B.: network construction can be long.

from brian2 import *
import time

t1 = time.time()

PARAMETERS
Neuron numbers
M4, M23exc, M23inh = 22, 25, 12 # size of each barrel (in neurons)
N4, N23exc, N23inh = M4**2, M23exc**2, M23inh**2 # neurons per barrel
barrelarraysize = 5 # Choose 3 or 4 if memory error
Nbarrels = barrelarraysize**2
Stimulation
stim_change_time = 5*ms
Fmax = .5/stim_change_time # maximum firing rate in layer 4 (.5 spike / stimulation)
Neuron parameters

240 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

taum, taue, taui = 10*ms, 2*ms, 25*ms
El = -70*mV
Vt, vt_inc, tauvt = -55*mV, 2*mV, 50*ms # adaptive threshold
STDP
taup, taud = 5*ms, 25*ms
Ap, Ad= .05, -.04
EPSPs/IPSPs
EPSP, IPSP = 1*mV, -1*mV
EPSC = EPSP * (taue/taum)**(taum/(taue-taum))
IPSC = IPSP * (taui/taum)**(taum/(taui-taum))
Ap, Ad = Ap*EPSC, Ad*EPSC

Layer 4, models the input stimulus
eqs_layer4 = '''
rate = int(is_active)*clip(cos(direction - selectivity), 0, inf)*Fmax: Hz
is_active = abs((barrel_x + 0.5 - bar_x) * cos(direction) + (barrel_y + 0.5 - bar_y)
→˓* sin(direction)) < 0.5: boolean
barrel_x : integer # The x index of the barrel
barrel_y : integer # The y index of the barrel
selectivity : 1
Stimulus parameters (same for all neurons)
bar_x = cos(direction)*(t - stim_start_time)/(5*ms) + stim_start_x : 1 (shared)
bar_y = sin(direction)*(t - stim_start_time)/(5*ms) + stim_start_y : 1 (shared)
direction : 1 (shared) # direction of the current stimulus
stim_start_time : second (shared) # start time of the current stimulus
stim_start_x : 1 (shared) # start position of the stimulus
stim_start_y : 1 (shared) # start position of the stimulus
'''
layer4 = NeuronGroup(N4*Nbarrels, eqs_layer4, threshold='rand() < rate*dt',

method='euler', name='layer4')
layer4.barrel_x = '(i / N4) % barrelarraysize + 0.5'
layer4.barrel_y = 'i / (barrelarraysize*N4) + 0.5'
layer4.selectivity = '(i%N4)/(1.0*N4)*2*pi' # for each barrel, selectivity between 0
→˓and 2*pi

stimradius = (11+1)*.5

Chose a new randomly oriented bar every 60ms
runner_code = '''
direction = rand()*2*pi
stim_start_x = barrelarraysize / 2.0 - cos(direction)*stimradius
stim_start_y = barrelarraysize / 2.0 - sin(direction)*stimradius
stim_start_time = t
'''
layer4.run_regularly(runner_code, dt=60*ms, when='start')

Layer 2/3
Model: IF with adaptive threshold
eqs_layer23 = '''
dv/dt=(ge+gi+El-v)/taum : volt
dge/dt=-ge/taue : volt
dgi/dt=-gi/taui : volt
dvt/dt=(Vt-vt)/tauvt : volt # adaptation
barrel_idx : integer
x : 1 # in "barrel width" units
y : 1 # in "barrel width" units
'''
layer23 = NeuronGroup(Nbarrels*(N23exc+N23inh), eqs_layer23,

5.11. frompapers 241

Brian 2 Documentation, Release 2.1.1

threshold='v>vt', reset='v = El; vt += vt_inc',
refractory=2*ms, method='euler', name='layer23')

layer23.v = El
layer23.vt = Vt

Subgroups for excitatory and inhibitory neurons in layer 2/3
layer23exc = layer23[:Nbarrels*N23exc]
layer23inh = layer23[Nbarrels*N23exc:]

Layer 2/3 excitatory
The units for x and y are the width/height of a single barrel
layer23exc.x = '(i % (barrelarraysize*M23exc)) * (1.0/M23exc)'
layer23exc.y = '(i / (barrelarraysize*M23exc)) * (1.0/M23exc)'
layer23exc.barrel_idx = 'floor(x) + floor(y)*barrelarraysize'

Layer 2/3 inhibitory
layer23inh.x = 'i % (barrelarraysize*M23inh) * (1.0/M23inh)'
layer23inh.y = 'i / (barrelarraysize*M23inh) * (1.0/M23inh)'
layer23inh.barrel_idx = 'floor(x) + floor(y)*barrelarraysize'

print("Building synapses, please wait...")
Feedforward connections (plastic)
feedforward = Synapses(layer4, layer23exc,

model='''w:volt
dA_source/dt = -A_source/taup : volt (event-driven)
dA_target/dt = -A_target/taud : volt (event-driven)''

→˓',
on_pre='''ge+=w

A_source += Ap
w = clip(w+A_target, 0, EPSC)''',

on_post='''
A_target += Ad
w = clip(w+A_source, 0, EPSC)''',

name='feedforward')
Connect neurons in the same barrel with 50% probability
feedforward.connect('(barrel_x_pre + barrelarraysize*barrel_y_pre) == barrel_idx_post
→˓',

p=0.5)
feedforward.w = EPSC*.5

print('excitatory lateral')
Excitatory lateral connections
recurrent_exc = Synapses(layer23exc, layer23, model='w:volt', on_pre='ge+=w',

name='recurrent_exc')
recurrent_exc.connect(p='.15*exp(-.5*(((x_pre-x_post)/.4)**2+((y_pre-y_post)/.4)**2))
→˓')
recurrent_exc.w['j<Nbarrels*N23exc'] = EPSC*.3 # excitatory->excitatory
recurrent_exc.w['j>=Nbarrels*N23exc'] = EPSC # excitatory->inhibitory

Inhibitory lateral connections
print('inhibitory lateral')
recurrent_inh = Synapses(layer23inh, layer23exc, on_pre='gi+=IPSC',

name='recurrent_inh')
recurrent_inh.connect(p='exp(-.5*(((x_pre-x_post)/.2)**2+((y_pre-y_post)/.2)**2))')

if get_device().__class__.__name__=='RuntimeDevice':
print('Total number of connections')

242 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

print('feedforward: %d' % len(feedforward))
print('recurrent exc: %d' % len(recurrent_exc))
print('recurrent inh: %d' % len(recurrent_inh))

t2 = time.time()
print("Construction time: %.1fs" % (t2 - t1))

run(5*second, report='text')

Calculate the preferred direction of each cell in layer23 by doing a
vector average of the selectivity of the projecting layer4 cells, weighted
by the synaptic weight.
_r = bincount(feedforward.j,

weights=feedforward.w * cos(feedforward.selectivity_pre)/feedforward.N_
→˓incoming,

minlength=len(layer23exc))
_i = bincount(feedforward.j,

weights=feedforward.w * sin(feedforward.selectivity_pre)/feedforward.N_
→˓incoming,

minlength=len(layer23exc))
selectivity_exc = (arctan2(_r, _i) % (2*pi))*180./pi

scatter(layer23.x[:Nbarrels*N23exc], layer23.y[:Nbarrels*N23exc],
c=selectivity_exc[:Nbarrels*N23exc],
edgecolors='none', marker='s', cmap='hsv')

vlines(np.arange(barrelarraysize), 0, barrelarraysize, 'k')
hlines(np.arange(barrelarraysize), 0, barrelarraysize, 'k')
clim(0, 360)
colorbar()
show()

5.11. frompapers 243

Brian 2 Documentation, Release 2.1.1

5.11.10 Example: Platkiewicz_Brette_2011

Slope-threshold relationship with noisy inputs, in the adaptive threshold model

Fig. 5E,F from:

Platkiewicz J and R Brette (2011). Impact of Fast Sodium Channel Inactivation on Spike Threshold Dynamics and
Synaptic Integration. PLoS Comp Biol 7(5): e1001129. doi:10.1371/journal.pcbi.1001129

from scipy import optimize
from scipy.stats import linregress

from brian2 import *

N = 200 # 200 neurons to get more statistics, only one is shown
duration = 1*second
--Biophysical parameters
ENa = 60*mV
EL = -70*mV
vT = -55*mV
Vi = -63*mV
tauh = 5*ms

244 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

tau = 5*ms
ka = 5*mV
ki = 6*mV
a = ka / ki
tauI = 5*ms
mu = 15*mV
sigma = 6*mV / sqrt(tauI / (tauI + tau))

--Theoretical prediction for the slope-threshold relationship (approximation:
→˓a=1+epsilon)
thresh = lambda slope, a: Vi - slope * tauh * log(1 + (Vi - vT / a) / (slope * tauh))
-----Exact calculation of the slope-threshold relationship
(note that optimize.fsolve does not work with units, we therefore let th be a
unitless quantity, i.e. the value in volt).
thresh_ex = lambda s: optimize.fsolve(lambda th: (a*s*tauh*exp((Vi-th*volt)/(s*tauh))-
→˓th*volt*(1-a)-a*(s*tauh+Vi)+vT)/volt,

thresh(s, a))*volt

eqs = """
dv/dt=(EL-v+mu+sigma*I)/tau : volt
dtheta/dt=(vT+a*clip(v-Vi, 0*mV, inf*mV)-theta)/tauh : volt
dI/dt=-I/tauI+(2/tauI)**.5*xi : 1 # Ornstein-Uhlenbeck
"""
neurons = NeuronGroup(N, eqs, threshold="v>theta", reset='v=EL',

refractory=5*ms)
neurons.v = EL
neurons.theta = vT
neurons.I = 0
S = SpikeMonitor(neurons)
M = StateMonitor(neurons, 'v', record=True)
Mt = StateMonitor(neurons, 'theta', record=0)

run(duration, report='text')

Linear regression gives depolarization slope before spikes
tx = M.t[(M.t > 0*second) & (M.t < 1.5 * tauh)]
slope, threshold = [], []

for (i, t) in zip(S.i, S.t):
ind = (M.t < t) & (M.t > t - tauh)
mx = M.v[i, ind]
s, _, _, _, _ = linregress(tx[:len(mx)]/ms, mx/mV)
slope.append(s)
threshold.append(mx[-1])

Figure
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 4))

ax1.plot(M.t/ms, M.v[0]/mV, 'k')
ax1.plot(Mt.t/ms, Mt.theta[0]/mV, 'r')
Display spikes on the trace
spike_timesteps = np.round(S.t[S.i == 0]/defaultclock.dt).astype(int)
ax1.vlines(S.t[S.i == 0]/ms,

M.v[0, spike_timesteps]/mV,
0, color='r')

ax1.plot(S.t[S.i == 0]/ms, M.v[0, spike_timesteps]/mV, 'ro', ms=3)
ax1.set(xlabel='Time (ms)', ylabel='Voltage (mV)', xlim=(0, 500),

ylim=(-75, -35))

5.11. frompapers 245

Brian 2 Documentation, Release 2.1.1

ax2.plot(slope, Quantity(threshold)/mV, 'r.')
sx = linspace(0.5*mV/ms, 4*mV/ms, 100)
t = Quantity([thresh_ex(s) for s in sx])
ax2.plot(sx/(mV/ms), t/mV, 'k')
ax2.set(xlim=(0.5, 4), xlabel='Depolarization slope (mV/ms)',

ylabel='Threshold (mV)')

fig.tight_layout()
plt.show()

5.11.11 Example: Rossant_et_al_2011bis

5.11.12 Distributed synchrony example

Fig. 14 from:

Rossant C, Leijon S, Magnusson AK, Brette R (2011). “Sensitivity of noisy neurons to coincident inputs”.
Journal of Neuroscience, 31(47).

5000 independent E/I Poisson inputs are injected into a leaky integrate-and-fire neuron. Synchronous events, following
an independent Poisson process at 40 Hz, are considered, where 15 E Poisson spikes are randomly shifted to be
synchronous at those events. The output firing rate is then significantly higher, showing that the spike timing of less
than 1% of the excitatory synapses have an important impact on the postsynaptic firing.

from brian2 import *

neuron parameters
theta = -55*mV
El = -65*mV
vmean = -65*mV
taum = 5*ms
taue = 3*ms
taui = 10*ms
eqs = Equations("""

dv/dt = (ge+gi-(v-El))/taum : volt

246 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

dge/dt = -ge/taue : volt
dgi/dt = -gi/taui : volt
""")

input parameters
p = 15
ne = 4000
ni = 1000
lambdac = 40*Hz
lambdae = lambdai = 1*Hz

synapse parameters
we = .5*mV/(taum/taue)**(taum/(taue-taum))
wi = (vmean-El-lambdae*ne*we*taue)/(lambdae*ni*taui)

NeuronGroup definition
group = NeuronGroup(N=2, model=eqs, reset='v = El',

threshold='v>theta',
refractory=5*ms, method='exact')

group.v = El
group.ge = group.gi = 0

independent E/I Poisson inputs
p1 = PoissonInput(group[0:1], 'ge', N=ne, rate=lambdae, weight=we)
p2 = PoissonInput(group[0:1], 'gi', N=ni, rate=lambdai, weight=wi)

independent E/I Poisson inputs + synchronous E events
p3 = PoissonInput(group[1:], 'ge', N=ne, rate=lambdae-(p*1.0/ne)*lambdac, weight=we)
p4 = PoissonInput(group[1:], 'gi', N=ni, rate=lambdai, weight=wi)
p5 = PoissonInput(group[1:], 'ge', N=1, rate=lambdac, weight=p*we)

run the simulation
M = SpikeMonitor(group)
SM = StateMonitor(group, 'v', record=True)
BrianLogger.log_level_info()
run(1*second)
plot trace and spikes
for i in [0, 1]:

spikes = (M.t[M.i == i] - defaultclock.dt)/ms
val = SM[i].v
subplot(2,1,i+1)
plot(SM.t/ms, val)
plot(tile(spikes, (2,1)),

vstack((val[array(spikes, dtype=int)],
zeros(len(spikes)))), 'C0')

title("%s: %d spikes/second" % (["uncorrelated inputs", "correlated inputs"][i],
M.count[i]))

tight_layout()
show()

5.11. frompapers 247

Brian 2 Documentation, Release 2.1.1

5.11.13 Example: Rothman_Manis_2003

Cochlear neuron model of Rothman & Manis

Rothman JS, Manis PB (2003) The roles potassium currents play in regulating the electrical activity of ventral cochlear
nucleus neurons. J Neurophysiol 89:3097-113.

All model types differ only by the maximal conductances.

Adapted from their Neuron implementation by Romain Brette

from brian2 import *

#defaultclock.dt=0.025*ms # for better precision

'''
Simulation parameters: choose current amplitude and neuron type
(from type1c, type1t, type12, type 21, type2, type2o)
'''
neuron_type = 'type1c'
Ipulse = 250*pA

248 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

C = 12*pF
Eh = -43*mV
EK = -70*mV # -77*mV in mod file
El = -65*mV
ENa = 50*mV
nf = 0.85 # proportion of n vs p kinetics
zss = 0.5 # steady state inactivation of glt
temp = 22. # temperature in degree celcius
q10 = 3. ** ((temp - 22) / 10.)
hcno current (octopus cell)
frac = 0.0
qt = 4.5 ** ((temp - 33.) / 10.)

Maximal conductances of different cell types in nS
maximal_conductances = dict(
type1c=(1000, 150, 0, 0, 0.5, 0, 2),
type1t=(1000, 80, 0, 65, 0.5, 0, 2),
type12=(1000, 150, 20, 0, 2, 0, 2),
type21=(1000, 150, 35, 0, 3.5, 0, 2),
type2=(1000, 150, 200, 0, 20, 0, 2),
type2o=(1000, 150, 600, 0, 0, 40, 2) # octopus cell
)
gnabar, gkhtbar, gkltbar, gkabar, ghbar, gbarno, gl = [x * nS for x in maximal_
→˓conductances[neuron_type]]

Classical Na channel
eqs_na = """
ina = gnabar*m**3*h*(ENa-v) : amp
dm/dt=q10*(minf-m)/mtau : 1
dh/dt=q10*(hinf-h)/htau : 1
minf = 1./(1+exp(-(vu + 38.) / 7.)) : 1
hinf = 1./(1+exp((vu + 65.) / 6.)) : 1
mtau = ((10. / (5*exp((vu+60.) / 18.) + 36.*exp(-(vu+60.) / 25.))) + 0.04)*ms :
→˓second
htau = ((100. / (7*exp((vu+60.) / 11.) + 10.*exp(-(vu+60.) / 25.))) + 0.6)*ms :
→˓second
"""

KHT channel (delayed-rectifier K+)
eqs_kht = """
ikht = gkhtbar*(nf*n**2 + (1-nf)*p)*(EK-v) : amp
dn/dt=q10*(ninf-n)/ntau : 1
dp/dt=q10*(pinf-p)/ptau : 1
ninf = (1 + exp(-(vu + 15) / 5.))**-0.5 : 1
pinf = 1. / (1 + exp(-(vu + 23) / 6.)) : 1
ntau = ((100. / (11*exp((vu+60) / 24.) + 21*exp(-(vu+60) / 23.))) + 0.7)*ms : second
ptau = ((100. / (4*exp((vu+60) / 32.) + 5*exp(-(vu+60) / 22.))) + 5)*ms : second
"""

Ih channel (subthreshold adaptive, non-inactivating)
eqs_ih = """
ih = ghbar*r*(Eh-v) : amp
dr/dt=q10*(rinf-r)/rtau : 1
rinf = 1. / (1+exp((vu + 76.) / 7.)) : 1
rtau = ((100000. / (237.*exp((vu+60.) / 12.) + 17.*exp(-(vu+60.) / 14.))) + 25.)*ms :
→˓second
"""

5.11. frompapers 249

Brian 2 Documentation, Release 2.1.1

KLT channel (low threshold K+)
eqs_klt = """
iklt = gkltbar*w**4*z*(EK-v) : amp
dw/dt=q10*(winf-w)/wtau : 1
dz/dt=q10*(zinf-z)/wtau : 1
winf = (1. / (1 + exp(-(vu + 48.) / 6.)))**0.25 : 1
zinf = zss + ((1.-zss) / (1 + exp((vu + 71.) / 10.))) : 1
wtau = ((100. / (6.*exp((vu+60.) / 6.) + 16.*exp(-(vu+60.) / 45.))) + 1.5)*ms : second
ztau = ((1000. / (exp((vu+60.) / 20.) + exp(-(vu+60.) / 8.))) + 50)*ms : second
"""

Ka channel (transient K+)
eqs_ka = """
ika = gkabar*a**4*b*c*(EK-v): amp
da/dt=q10*(ainf-a)/atau : 1
db/dt=q10*(binf-b)/btau : 1
dc/dt=q10*(cinf-c)/ctau : 1
ainf = (1. / (1 + exp(-(vu + 31) / 6.)))**0.25 : 1
binf = 1. / (1 + exp((vu + 66) / 7.))**0.5 : 1
cinf = 1. / (1 + exp((vu + 66) / 7.))**0.5 : 1
atau = ((100. / (7*exp((vu+60) / 14.) + 29*exp(-(vu+60) / 24.))) + 0.1)*ms : second
btau = ((1000. / (14*exp((vu+60) / 27.) + 29*exp(-(vu+60) / 24.))) + 1)*ms : second
ctau = ((90. / (1 + exp((-66-vu) / 17.))) + 10)*ms : second
"""

Leak
eqs_leak = """
ileak = gl*(El-v) : amp
"""

h current for octopus cells
eqs_hcno = """
ihcno = gbarno*(h1*frac + h2*(1-frac))*(Eh-v) : amp
dh1/dt=(hinfno-h1)/tau1 : 1
dh2/dt=(hinfno-h2)/tau2 : 1
hinfno = 1./(1+exp((vu+66.)/7.)) : 1
tau1 = bet1/(qt*0.008*(1+alp1))*ms : second
tau2 = bet2/(qt*0.0029*(1+alp2))*ms : second
alp1 = exp(1e-3*3*(vu+50)*9.648e4/(8.315*(273.16+temp))) : 1
bet1 = exp(1e-3*3*0.3*(vu+50)*9.648e4/(8.315*(273.16+temp))) : 1
alp2 = exp(1e-3*3*(vu+84)*9.648e4/(8.315*(273.16+temp))) : 1
bet2 = exp(1e-3*3*0.6*(vu+84)*9.648e4/(8.315*(273.16+temp))) : 1
"""

eqs = """
dv/dt = (ileak + ina + ikht + iklt + ika + ih + ihcno + I)/C : volt
vu = v/mV : 1 # unitless v
I : amp
"""
eqs += eqs_leak + eqs_ka + eqs_na + eqs_ih + eqs_klt + eqs_kht + eqs_hcno

neuron = NeuronGroup(1, eqs, method='exponential_euler')
neuron.v = El

run(50*ms, report='text') # Go to rest

M = StateMonitor(neuron, 'v', record=0)
neuron.I = Ipulse

250 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

run(100*ms, report='text')

plot(M.t / ms, M[0].v / mV)
xlabel('t (ms)')
ylabel('v (mV)')
show()

5.11.14 Example: Sturzl_et_al_2000

Adapted from Theory of Arachnid Prey Localization W. Sturzl, R. Kempter, and J. L. van Hemmen PRL 2000

Poisson inputs are replaced by integrate-and-fire neurons

Romain Brette

from brian2 import *

Parameters
degree = 2 * pi / 360.
duration = 500*ms
R = 2.5*cm # radius of scorpion
vr = 50*meter/second # Rayleigh wave speed

5.11. frompapers 251

Brian 2 Documentation, Release 2.1.1

phi = 144*degree # angle of prey
A = 250*Hz
deltaI = .7*ms # inhibitory delay
gamma = (22.5 + 45 * arange(8)) * degree # leg angle
delay = R / vr * (1 - cos(phi - gamma)) # wave delay

Wave (vector w)
time = arange(int(duration / defaultclock.dt) + 1) * defaultclock.dt
Dtot = 0.
w = 0.
for f in arange(150, 451)*Hz:

D = exp(-(f/Hz - 300) ** 2 / (2 * (50 ** 2)))
rand_angle = 2 * pi * rand()
w += 100 * D * cos(2 * pi * f * time + rand_angle)
Dtot += D

w = .01 * w / Dtot

Rates from the wave
rates = TimedArray(w, dt=defaultclock.dt)

Leg mechanical receptors
tau_legs = 1 * ms
sigma = .01
eqs_legs = """
dv/dt = (1 + rates(t - d) - v)/tau_legs + sigma*(2./tau_legs)**.5*xi:1
d : second
"""
legs = NeuronGroup(8, model=eqs_legs, threshold='v > 1', reset='v = 0',

refractory=1*ms, method='euler')
legs.d = delay
spikes_legs = SpikeMonitor(legs)

Command neurons
tau = 1 * ms
taus = 1.001 * ms
wex = 7
winh = -2
eqs_neuron = '''
dv/dt = (x - v)/tau : 1
dx/dt = (y - x)/taus : 1 # alpha currents
dy/dt = -y/taus : 1
'''
neurons = NeuronGroup(8, model=eqs_neuron, threshold='v>1', reset='v=0',

method='exact')
synapses_ex = Synapses(legs, neurons, on_pre='y+=wex')
synapses_ex.connect(j='i')
synapses_inh = Synapses(legs, neurons, on_pre='y+=winh', delay=deltaI)
synapses_inh.connect('abs(((j - i) % N_post) - N_post/2) <= 1')
spikes = SpikeMonitor(neurons)

run(duration, report='text')

nspikes = spikes.count
phi_est = imag(log(sum(nspikes * exp(gamma * 1j))))
print("True angle (deg): %.2f" % (phi/degree))
print("Estimated angle (deg): %.2f" % (phi_est/degree))
rmax = amax(nspikes)/duration/Hz
polar(concatenate((gamma, [gamma[0] + 2 * pi])),

252 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

concatenate((nspikes, [nspikes[0]])) / duration / Hz,
c='k')

axvline(phi, ls='-', c='g')
axvline(phi_est, ls='-', c='b')
show()

5.11.15 Example: Touboul_Brette_2008

Chaos in the AdEx model

Fig. 8B from: Touboul, J. and Brette, R. (2008). Dynamics and bifurcations of the adaptive exponential integrate-and-
fire model. Biological Cybernetics 99(4-5):319-34.

This shows the bifurcation structure when the reset value is varied (vertical axis shows the values of w at spike times
for a given a reset value Vr).

from brian2 import *

defaultclock.dt = 0.01*ms

C = 281*pF

5.11. frompapers 253

Brian 2 Documentation, Release 2.1.1

gL = 30*nS
EL = -70.6*mV
VT = -50.4*mV
DeltaT = 2*mV
tauw = 40*ms
a = 4*nS
b = 0.08*nA
I = .8*nA
Vcut = VT + 5 * DeltaT # practical threshold condition
N = 200

eqs = """
dvm/dt=(gL*(EL-vm)+gL*DeltaT*exp((vm-VT)/DeltaT)+I-w)/C : volt
dw/dt=(a*(vm-EL)-w)/tauw : amp
Vr:volt
"""

neuron = NeuronGroup(N, model=eqs, threshold='vm > Vcut',
reset="vm = Vr; w += b", method='euler')

neuron.vm = EL
neuron.w = a * (neuron.vm - EL)
neuron.Vr = linspace(-48.3 * mV, -47.7 * mV, N) # bifurcation parameter

init_time = 3*second
run(init_time, report='text') # we discard the first spikes

states = StateMonitor(neuron, "w", record=True, when='start')
spikes = SpikeMonitor(neuron)
run(1 * second, report='text')

Get the values of Vr and w for each spike
Vr = neuron.Vr[spikes.i]
w = states.w[spikes.i, int_((spikes.t-init_time)/defaultclock.dt)]

figure()
plot(Vr / mV, w / nA, '.k')
xlabel('Vr (mV)')
ylabel('w (nA)')
show()

254 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

5.11.16 Example: Vogels_et_al_2011

Inhibitory synaptic plasticity in a recurrent network model

(F. Zenke, 2011) (from the 2012 Brian twister)

Adapted from: Vogels, T. P., H. Sprekeler, F. Zenke, C. Clopath, and W. Gerstner. Inhibitory Plasticity Balances
Excitation and Inhibition in Sensory Pathways and Memory Networks. Science (November 10, 2011).

from brian2 import *

###
Defining network model parameters
###

NE = 8000 # Number of excitatory cells
NI = NE/4 # Number of inhibitory cells

tau_ampa = 5.0*ms # Glutamatergic synaptic time constant
tau_gaba = 10.0*ms # GABAergic synaptic time constant
epsilon = 0.02 # Sparseness of synaptic connections

5.11. frompapers 255

Brian 2 Documentation, Release 2.1.1

tau_stdp = 20*ms # STDP time constant

simtime = 10*second # Simulation time

###
Neuron model
###

gl = 10.0*nsiemens # Leak conductance
el = -60*mV # Resting potential
er = -80*mV # Inhibitory reversal potential
vt = -50.*mV # Spiking threshold
memc = 200.0*pfarad # Membrane capacitance
bgcurrent = 200*pA # External current

eqs_neurons='''
dv/dt=(-gl*(v-el)-(g_ampa*v+g_gaba*(v-er))+bgcurrent)/memc : volt (unless refractory)
dg_ampa/dt = -g_ampa/tau_ampa : siemens
dg_gaba/dt = -g_gaba/tau_gaba : siemens
'''

###
Initialize neuron group
###

neurons = NeuronGroup(NE+NI, model=eqs_neurons, threshold='v > vt',
reset='v=el', refractory=5*ms, method='euler')

Pe = neurons[:NE]
Pi = neurons[NE:]

###
Connecting the network
###

con_e = Synapses(Pe, neurons, on_pre='g_ampa += 0.3*nS')
con_e.connect(p=epsilon)
con_ii = Synapses(Pi, Pi, on_pre='g_gaba += 3*nS')
con_ii.connect(p=epsilon)

###
Inhibitory Plasticity
###

eqs_stdp_inhib = '''
w : 1
dApre/dt=-Apre/tau_stdp : 1 (event-driven)
dApost/dt=-Apost/tau_stdp : 1 (event-driven)
'''
alpha = 3*Hz*tau_stdp*2 # Target rate parameter
gmax = 100 # Maximum inhibitory weight

con_ie = Synapses(Pi, Pe, model=eqs_stdp_inhib,
on_pre='''Apre += 1.

w = clip(w+(Apost-alpha)*eta, 0, gmax)
g_gaba += w*nS''',

on_post='''Apost += 1.
w = clip(w+Apre*eta, 0, gmax)

''')

256 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

con_ie.connect(p=epsilon)
con_ie.w = 1e-10

###
Setting up monitors
###

sm = SpikeMonitor(Pe)

###
Run without plasticity
###
eta = 0 # Learning rate
run(1*second)

###
Run with plasticity
###
eta = 1e-2 # Learning rate
run(simtime-1*second, report='text')

###
Make plots
###

i, t = sm.it
subplot(211)
plot(t/ms, i, 'k.', ms=0.25)
title("Before")
xlabel("")
yticks([])
xlim(0.8*1e3, 1*1e3)
subplot(212)
plot(t/ms, i, 'k.', ms=0.25)
xlabel("time (ms)")
yticks([])
title("After")
xlim((simtime-0.2*second)/ms, simtime/ms)
show()

5.11. frompapers 257

Brian 2 Documentation, Release 2.1.1

5.11.17 Example: Wang_Buszaki_1996

Wang-Buszaki model

J Neurosci. 1996 Oct 15;16(20):6402-13. Gamma oscillation by synaptic inhibition in a hippocampal interneuronal
network model. Wang XJ, Buzsaki G.

Note that implicit integration (exponential Euler) cannot be used, and therefore simulation is rather slow.

from brian2 import *

defaultclock.dt = 0.01*ms

Cm = 1*uF # /cm**2
Iapp = 2*uA
gL = 0.1*msiemens
EL = -65*mV
ENa = 55*mV
EK = -90*mV
gNa = 35*msiemens
gK = 9*msiemens

258 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

eqs = '''
dv/dt = (-gNa*m**3*h*(v-ENa)-gK*n**4*(v-EK)-gL*(v-EL)+Iapp)/Cm : volt
m = alpha_m/(alpha_m+beta_m) : 1
alpha_m = -0.1/mV*(v+35*mV)/(exp(-0.1/mV*(v+35*mV))-1)/ms : Hz
beta_m = 4*exp(-(v+60*mV)/(18*mV))/ms : Hz
dh/dt = 5*(alpha_h*(1-h)-beta_h*h) : 1
alpha_h = 0.07*exp(-(v+58*mV)/(20*mV))/ms : Hz
beta_h = 1./(exp(-0.1/mV*(v+28*mV))+1)/ms : Hz
dn/dt = 5*(alpha_n*(1-n)-beta_n*n) : 1
alpha_n = -0.01/mV*(v+34*mV)/(exp(-0.1/mV*(v+34*mV))-1)/ms : Hz
beta_n = 0.125*exp(-(v+44*mV)/(80*mV))/ms : Hz
'''

neuron = NeuronGroup(1, eqs, method='exponential_euler')
neuron.v = -70*mV
neuron.h = 1
M = StateMonitor(neuron, 'v', record=0)

run(100*ms, report='text')

plot(M.t/ms, M[0].v/mV)
show()

5.11. frompapers 259

Brian 2 Documentation, Release 2.1.1

5.12 frompapers/Brette_2012

5.12.1 Example: Fig1

Brette R (2013). Sharpness of spike initiation in neurons explained by compartmentalization. PLoS Comp Biol, doi:
10.1371/journal.pcbi.1003338.

Fig 1C-E. Somatic voltage-clamp in a ball-and-stick model with Na channels at a particular location.

from brian2 import *
from params import *

defaultclock.dt = 0.025*ms

Morphology
morpho = Soma(50*um) # chosen for a target Rm
morpho.axon = Cylinder(diameter=1*um, length=300*um, n=300)

location = 40*um # where Na channels are placed
duration = 500*ms

Channels
eqs='''
Im = gL*(EL - v) + gclamp*(vc - v) + gNa*m*(ENa - v) : amp/meter**2
dm/dt = (minf - m) / taum: 1 # simplified Na channel
minf = 1 / (1 + exp((va - v) / ka)) : 1
gclamp : siemens/meter**2
gNa : siemens/meter**2
vc = EL + 50*mV * t/duration : volt (shared) # Voltage clamp with a ramping voltage
→˓command
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=Cm, Ri=Ri)
compartment = morpho.axon[location]
neuron.v = EL
neuron.gclamp[0] = gL*500
neuron.gNa[compartment] = gNa_0/neuron.area[compartment]

Monitors
mon = StateMonitor(neuron, ['v', 'vc', 'm'], record=True)

run(duration, report='text')

subplot(221)
plot(mon[0].vc/mV,

-((mon[0].vc - mon[0].v)*(neuron.gclamp[0]))*neuron.area[0]/nA, 'k')
xlabel('V (mV)')
ylabel('I (nA)')
xlim(-75, -45)
title('I-V curve')

subplot(222)
plot(mon[0].vc/mV, mon[compartment].m, 'k')
xlabel('V (mV)')
ylabel('m')
title('Activation curve (m(V))')

260 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

subplot(223)
Number of simulation time steps for each volt increment in the voltage-clamp
dt_per_volt = len(mon.t)/(50*mV)
for v in [-64*mV, -61*mV, -58*mV, -55*mV]:

plot(mon.v[:100 ,int(dt_per_volt*(v - EL))]/mV, 'k')
xlabel('Distance from soma (um)')
ylabel('V (mV)')
title('Voltage across axon')

subplot(224)
plot(mon[compartment].v/mV, mon[compartment].v/mV, 'k--') # Diagonal
plot(mon[0].v/mV, mon[compartment].v/mV, 'k')
xlabel('Vs (mV)')
ylabel('Va (mV)')
tight_layout()
show()

5.12.2 Example: Fig3AB

Brette R (2013). Sharpness of spike initiation in neurons explained by compartmentalization. PLoS Comp Biol, doi:
10.1371/journal.pcbi.1003338.

5.12. frompapers/Brette_2012 261

Brian 2 Documentation, Release 2.1.1

Fig. 3. A, B. Kink with only Nav1.6 channels

from brian2 import *
from params import *

codegen.target='numpy'

defaultclock.dt = 0.025*ms

Morphology
morpho = Soma(50*um) # chosen for a target Rm
morpho.axon = Cylinder(diameter=1*um, length=300*um, n=300)

location = 40*um # where Na channels are placed

Channels
eqs='''
Im = gL*(EL - v) + gNa*m*(ENa - v) : amp/meter**2
dm/dt = (minf - m) / taum : 1 # simplified Na channel
minf = 1 / (1 + exp((va - v) / ka)) : 1
gNa : siemens/meter**2
Iin : amp (point current)
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=Cm, Ri=Ri,
method="exponential_euler")

compartment = morpho.axon[location]
neuron.v = EL
neuron.gNa[compartment] = gNa_0/neuron.area[compartment]
M = StateMonitor(neuron, ['v', 'm'], record=True)

run(20*ms, report='text')
neuron.Iin[0] = gL * 20*mV * neuron.area[0]
run(80*ms, report='text')

subplot(121)
plot(M.t/ms, M[0].v/mV, 'r')
plot(M.t/ms, M[compartment].v/mV, 'k')
plot(M.t/ms, M[compartment].m*(80+60)-80, 'k--') # open channels
ylim(-80, 60)
xlabel('Time (ms)')
ylabel('V (mV)')
title('Voltage traces')

subplot(122)
dm = diff(M[0].v) / defaultclock.dt
dm40 = diff(M[compartment].v) / defaultclock.dt
plot((M[0].v/mV)[1:], dm/(volt/second), 'r')
plot((M[compartment].v/mV)[1:], dm40/(volt/second), 'k')
xlim(-80, 40)
xlabel('V (mV)')
ylabel('dV/dt (V/s)')
title('Phase plot')
tight_layout()
show()

262 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

5.12.3 Example: Fig3CF

Brette R (2013). Sharpness of spike initiation in neurons explained by compartmentalization. PLoS Comp Biol, doi:
10.1371/journal.pcbi.1003338.

Fig. 3C-F. Kink with Nav1.6 and Nav1.2

from brian2 import *
from params import *

defaultclock.dt = 0.01*ms

Morphology
morpho = Soma(50*um) # chosen for a target Rm
morpho.axon = Cylinder(diameter=1*um, length=300*um, n=300)

location16 = 40*um # where Nav1.6 channels are placed
location12 = 15*um # where Nav1.2 channels are placed

va2 = va + 15*mV # depolarized Nav1.2

Channels
duration = 100*ms

5.12. frompapers/Brette_2012 263

Brian 2 Documentation, Release 2.1.1

eqs='''
Im = gL * (EL - v) + gNa*m*(ENa - v) + gNa2*m2*(ENa - v) : amp/meter**2
dm/dt = (minf - m) / taum : 1 # simplified Na channel
minf = 1 / (1 + exp((va - v) / ka)) : 1
dm2/dt = (minf2 - m2) / taum : 1 # simplified Na channel, Nav1.2
minf2 = 1/(1 + exp((va2 - v) / ka)) : 1
gNa : siemens/meter**2
gNa2 : siemens/meter**2 # Nav1.2
Iin : amp (point current)
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=Cm, Ri=Ri,
method="exponential_euler")

compartment16 = morpho.axon[location16]
compartment12 = morpho.axon[location12]
neuron.v = EL
neuron.gNa[compartment16] = gNa_0/neuron.area[compartment16]
neuron.gNa2[compartment12] = 20*gNa_0/neuron.area[compartment12]
Monitors
M = StateMonitor(neuron, ['v', 'm', 'm2'], record=True)

run(20*ms, report='text')
neuron.Iin[0] = gL * 20*mV * neuron.area[0]
run(80*ms, report='text')

subplot(221)
plot(M.t/ms, M[0].v/mV, 'r')
plot(M.t/ms, M[compartment16].v/mV, 'k')
plot(M.t/ms, M[compartment16].m*(80+60)-80, 'k--') # open channels
ylim(-80, 60)
xlabel('Time (ms)')
ylabel('V (mV)')
title('Voltage traces')

subplot(222)
plot(M[0].v/mV, M[compartment16].m,'k')
plot(M[0].v/mV, 1 / (1 + exp((va - M[0].v) / ka)), 'k--')
plot(M[0].v/mV, M[compartment12].m2, 'r')
plot(M[0].v/mV, 1 / (1 + exp((va2 - M[0].v) / ka)), 'r--')
xlim(-70, 0)
xlabel('V (mV)')
ylabel('m')
title('Activation curves')

subplot(223)
dm = diff(M[0].v) / defaultclock.dt
dm40 = diff(M[compartment16].v) / defaultclock.dt
plot((M[0].v/mV)[1:], dm/(volt/second), 'r')
plot((M[compartment16].v/mV)[1:], dm40/(volt/second), 'k')
xlim(-80, 40)
xlabel('V (mV)')
ylabel('dV/dt (V/s)')
title('Phase plot')

subplot(224)
plot((M[0].v/mV)[1:], dm/(volt/second), 'r')
plot((M[compartment16].v/mV)[1:], dm40/(volt/second), 'k')
plot((M[0].v/mV)[1:], 10 + 0*dm/(volt/second), 'k--')

264 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

xlim(-70, -40)
ylim(0, 20)
xlabel('V (mV)')
ylabel('dV/dt (V/s)')
title('Phase plot(zoom)')
tight_layout()
show()

5.12.4 Example: Fig4

Brette R (2013). Sharpness of spike initiation in neurons explained by compartmentalization. PLoS Comp Biol, doi:
10.1371/journal.pcbi.1003338.

Fig. 4E-F. Spatial distribution of Na channels. Tapering axon near soma.

from brian2 import *
from params import *

defaultclock.dt = 0.025*ms

Morphology
morpho = Soma(50*um) # chosen for a target Rm
Tapering (change this for the other figure panels)

5.12. frompapers/Brette_2012 265

Brian 2 Documentation, Release 2.1.1

diameters = hstack([linspace(4, 1, 11), ones(290)])*um
morpho.axon = Section(diameter=diameters, length=ones(300)*um, n=300)

Na channels
Na_start = (25 + 10)*um
Na_end = (40 + 10)*um
linear_distribution = True # True is F, False is E

duration = 500*ms

Channels
eqs='''
Im = gL*(EL - v) + gclamp*(vc - v) + gNa*m*(ENa - v) : amp/meter**2
dm/dt = (minf - m) / taum: 1 # simplified Na channel
minf = 1 / (1 + exp((va - v) / ka)) : 1
gclamp : siemens/meter**2
gNa : siemens/meter**2
vc = EL + 50*mV * t / duration : volt (shared) # Voltage clamp with a ramping
→˓voltage command
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=Cm, Ri=Ri,
method="exponential_euler")

compartments = morpho.axon[Na_start:Na_end]
neuron.v = EL
neuron.gclamp[0] = gL*500

if linear_distribution:
profile = linspace(1, 0, len(compartments))

else:
profile = ones(len(compartments))

profile = profile / sum(profile) # normalization

neuron.gNa[compartments] = gNa_0 * profile / neuron.area[compartments]

Monitors
mon = StateMonitor(neuron, 'v', record=True)

run(duration, report='text')

dt_per_volt = len(mon.t) / (50*mV)
for v in [-64*mV, -61*mV, -58*mV, -55*mV, -52*mV]:

plot(mon.v[:100, int(dt_per_volt * (v - EL))]/mV, 'k')
xlim(0, 50+10)
ylim(-65, -25)
ylabel('V (mV)')
xlabel('Location (um)')
title('Voltage across axon')
tight_layout()
show()

266 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

5.12.5 Example: Fig5A

Brette R (2013). Sharpness of spike initiation in neurons explained by compartmentalization. PLoS Comp Biol, doi:
10.1371/journal.pcbi.1003338.

Fig. 5A. Voltage trace for current injection, with an additional reset when a spike is produced.

Trick: to reset the entire neuron, we use a set of synapses from the spike initiation compartment where the threshold
condition applies to all compartments, and the reset operation (v = EL) is applied there every time a spike is produced.

from brian2 import *
from params import *

defaultclock.dt = 0.025*ms
duration = 500*ms

Morphology
morpho = Soma(50*um) # chosen for a target Rm
morpho.axon = Cylinder(diameter=1*um, length=300*um, n=300)

Input
taux = 5*ms
sigmax = 12*mV
xx0 = 7*mV

5.12. frompapers/Brette_2012 267

Brian 2 Documentation, Release 2.1.1

compartment = 40

Channels
eqs = '''
Im = gL * (EL - v) + gNa * m * (ENa - v) + gLx * (xx0 + xx) : amp/meter**2
dm/dt = (minf - m) / taum : 1 # simplified Na channel
minf = 1 / (1 + exp((va - v) / ka)) : 1
gNa : siemens/meter**2
gLx : siemens/meter**2
dxx/dt = -xx / taux + sigmax * (2 / taux)**.5 *xi : volt
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=Cm, Ri=Ri,
threshold='m>0.5', threshold_location=compartment,
refractory=5*ms)

neuron.v = EL
neuron.gLx[0] = gL
neuron.gNa[compartment] = gNa_0 / neuron.area[compartment]

Reset the entire neuron when there is a spike
reset = Synapses(neuron, neuron, on_pre='v = EL')
reset.connect('i == compartment') # Connects the spike initiation compartment to all
→˓compartments

Monitors
S = SpikeMonitor(neuron)
M = StateMonitor(neuron, 'v', record=0)
run(duration, report='text')

Add spikes for display
v = M[0].v
for t in S.t:

v[int(t / defaultclock.dt)] = 50*mV

plot(M.t/ms, v/mV, 'k')
tight_layout()
show()

268 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

5.12.6 Example: params

Parameters for spike initiation simulations.

from brian2.units import *

Passive parameters
EL = -75*mV
S = 7.85e-9*meter**2 # area (sphere of 50 um diameter)
Cm = 0.75*uF/cm**2
gL = 1. / (30000*ohm*cm**2)
Ri = 150*ohm*cm

Na channels
ENa = 60*mV
ka = 6*mV
va = -40*mV
gNa_0 = gL * 2*S
taum = 0.1*ms

5.12. frompapers/Brette_2012 269

Brian 2 Documentation, Release 2.1.1

5.13 frompapers/Stimberg_et_al_2018

5.13.1 Example: example_1_COBA

Modeling neuron-glia interactions with the Brian 2 simulator Marcel Stimberg, Dan F. M. Goodman, Romain Brette,
Maurizio De Pittà bioRxiv 198366; doi: https://doi.org/10.1101/198366

Figure 1: Modeling of neurons and synapses.

Randomly connected networks with conductance-based synapses (COBA; see Brunel, 2000). Synapses exhibit short-
time plasticity (Tsodyks, 2005; Tsodyks et al., 1998).

from brian2 import *

import plot_utils as pu

seed(11922) # to get identical figures for repeated runs

##
Model parameters
##
General parameters
duration = 1.0*second # Total simulation time
sim_dt = 0.1*ms # Integrator/sampling step
N_e = 3200 # Number of excitatory neurons
N_i = 800 # Number of inhibitory neurons

Neuron parameters
E_l = -60*mV # Leak reversal potential
g_l = 9.99*nS # Leak conductance
E_e = 0*mV # Excitatory synaptic reversal potential
E_i = -80*mV # Inhibitory synaptic reversal potential
C_m = 198*pF # Membrane capacitance
tau_e = 5*ms # Excitatory synaptic time constant
tau_i = 10*ms # Inhibitory synaptic time constant
tau_r = 5*ms # Refractory period
I_ex = 150*pA # External current
V_th = -50*mV # Firing threshold
V_r = E_l # Reset potential

Synapse parameters
w_e = 0.05*nS # Excitatory synaptic conductance
w_i = 1.0*nS # Inhibitory synaptic conductance
U_0 = 0.6 # Synaptic release probability at rest
Omega_d = 2.0/second # Synaptic depression rate
Omega_f = 3.33/second # Synaptic facilitation rate

##
Model definition
##
Set the integration time (in this case not strictly necessary, since we are
using the default value)
defaultclock.dt = sim_dt

Neurons
neuron_eqs = '''

270 Chapter 5. Examples

https://doi.org/10.1101/198366

Brian 2 Documentation, Release 2.1.1

dv/dt = (g_l*(E_l-v) + g_e*(E_e-v) + g_i*(E_i-v) +
I_ex)/C_m : volt (unless refractory)

dg_e/dt = -g_e/tau_e : siemens # post-synaptic exc. conductance
dg_i/dt = -g_i/tau_i : siemens # post-synaptic inh. conductance
'''
neurons = NeuronGroup(N_e + N_i, model=neuron_eqs,

threshold='v>V_th', reset='v=V_r',
refractory='tau_r', method='euler')

Random initial membrane potential values and conductances
neurons.v = 'E_l + rand()*(V_th-E_l)'
neurons.g_e = 'rand()*w_e'
neurons.g_i = 'rand()*w_i'
exc_neurons = neurons[:N_e]
inh_neurons = neurons[N_e:]

Synapses
synapses_eqs = '''
Usage of releasable neurotransmitter per single action potential:
du_S/dt = -Omega_f * u_S : 1 (event-driven)
Fraction of synaptic neurotransmitter resources available:
dx_S/dt = Omega_d *(1 - x_S) : 1 (event-driven)
'''
synapses_action = '''
u_S += U_0 * (1 - u_S)
r_S = u_S * x_S
x_S -= r_S
'''
exc_syn = Synapses(exc_neurons, neurons, model=synapses_eqs,

on_pre=synapses_action+'g_e_post += w_e*r_S')
inh_syn = Synapses(inh_neurons, neurons, model=synapses_eqs,

on_pre=synapses_action+'g_i_post += w_i*r_S')

exc_syn.connect(p=0.05)
inh_syn.connect(p=0.2)
Start from "resting" condition: all synapses have fully-replenished
neurotransmitter resources
exc_syn.x_S = 1
inh_syn.x_S = 1

##
Monitors
##
Note that we could use a single monitor for all neurons instead, but in this
way plotting is a bit easier in the end
exc_mon = SpikeMonitor(exc_neurons)
inh_mon = SpikeMonitor(inh_neurons)

We record some additional data from a single excitatory neuron
ni = 50
Record conductances and membrane potential of neuron ni
state_mon = StateMonitor(exc_neurons, ['v', 'g_e', 'g_i'], record=ni)
We make sure to monitor synaptic variables after synapse are updated in order
to use simple recurrence relations to reconstruct them. Record all synapses
originating from neuron ni
synapse_mon = StateMonitor(exc_syn, ['u_S', 'x_S'],

record=exc_syn[ni, :], when='after_synapses')

##

5.13. frompapers/Stimberg_et_al_2018 271

Brian 2 Documentation, Release 2.1.1

Simulation run
##
run(duration, report='text')

##
Analysis and plotting
##
plt.style.use('figures.mplstyle')

Spiking activity (w/ rate)
fig1, ax = plt.subplots(nrows=2, ncols=1, sharex=False,

gridspec_kw={'height_ratios': [3, 1],
'left': 0.18, 'bottom': 0.18, 'top': 0.95,
'hspace': 0.1},

figsize=(3.07, 3.07))
ax[0].plot(exc_mon.t[exc_mon.i <= N_e//4]/ms,

exc_mon.i[exc_mon.i <= N_e//4], '|', color='C0')
ax[0].plot(inh_mon.t[inh_mon.i <= N_i//4]/ms,

inh_mon.i[inh_mon.i <= N_i//4]+N_e//4, '|', color='C1')
pu.adjust_spines(ax[0], ['left'])
ax[0].set(xlim=(0.,duration/ms), ylim=(0,(N_e+N_i)//4), ylabel='neuron index')

Generate frequencies
bin_size = 1*ms
spk_count, bin_edges = np.histogram(np.r_[exc_mon.t/ms, inh_mon.t/ms],

int(duration/ms))
rate = double(spk_count)/(N_e + N_i)/bin_size/Hz
ax[1].plot(bin_edges[:-1], rate, '-', color='k')
pu.adjust_spines(ax[1], ['left', 'bottom'])
ax[1].set(xlim=(0.,duration/ms), ylim=(0, 10.),

xlabel='time (ms)', ylabel='rate (Hz)')
pu.adjust_ylabels(ax, x_offset=-0.18)

Dynamics of a single neuron
fig2, ax = plt.subplots(4, sharex=False,

gridspec_kw={'left': 0.27, 'bottom': 0.18, 'top': 0.95,
'hspace': 0.2},

figsize=(3.07, 3.07))
Postsynaptic conductances
ax[0].plot(state_mon.t/ms, state_mon.g_e[0]/nS, color='C0')
ax[0].plot(state_mon.t/ms, -state_mon.g_i[0]/nS, color='C1')
ax[0].plot([state_mon.t[0]/ms, state_mon.t[-1]/ms], [0, 0], color='grey',

linestyle=':')
Adjust axis
pu.adjust_spines(ax[0], ['left'])
ax[0].set(xlim=(0., duration/ms), ylim=(-5.0,0.25),

ylabel='postsyn.\nconduct.\n(${0}$)'.format(sympy.latex(nS)))

Membrane potential
ax[1].axhline(V_th/mV, color='C2', linestyle=':') # Threshold
Artificially insert spikes
ax[1].plot(state_mon.t/ms, state_mon.v[0]/mV, color='black')
ax[1].vlines(exc_mon.t[exc_mon.i == ni]/ms, V_th/mV, 0, color='black')
pu.adjust_spines(ax[1], ['left'])
ax[1].set(xlim=(0., duration/ms), ylim=(-1+V_r/mV,0.),

ylabel='membrane\npotential\n(${0}$)'.format(sympy.latex(mV)))

Synaptic variables

272 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

Retrieves indexes of spikes in the synaptic monitor using the fact that we
are sampling spikes and synaptic variables by the same dt
spk_index = np.in1d(synapse_mon.t, exc_mon.t[exc_mon.i == ni])
ax[2].plot(synapse_mon.t[spk_index]/ms, synapse_mon.x_S[0][spk_index], '.',

ms=4, color='C3')
ax[2].plot(synapse_mon.t[spk_index]/ms, synapse_mon.u_S[0][spk_index], '.',

ms=4, color='C4')
Super-impose reconstructed solutions
time = synapse_mon.t # time vector
tspk = Quantity(synapse_mon.t, copy=True) # Spike times
for ts in exc_mon.t[exc_mon.i == ni]:

tspk[time >= ts] = ts
ax[2].plot(synapse_mon.t/ms, 1 + (synapse_mon.x_S[0]-1)*exp(-(time-tspk)*Omega_d),

'-', color='C3')
ax[2].plot(synapse_mon.t/ms, synapse_mon.u_S[0]*exp(-(time-tspk)*Omega_f),

'-', color='C4')
Adjust axis
pu.adjust_spines(ax[2], ['left'])
ax[2].set(xlim=(0., duration/ms), ylim=(-0.05, 1.05),

ylabel='synaptic\nvariables\n$u_S,\,x_S$')

nspikes = np.sum(spk_index)
x_S_spike = synapse_mon.x_S[0][spk_index]
u_S_spike = synapse_mon.u_S[0][spk_index]
ax[3].vlines(synapse_mon.t[spk_index]/ms, np.zeros(nspikes),

x_S_spike*u_S_spike/(1-u_S_spike))
pu.adjust_spines(ax[3], ['left', 'bottom'])
ax[3].set(xlim=(0., duration/ms), ylim=(-0.01, 0.62),

yticks=np.arange(0, 0.62, 0.2), xlabel='time (ms)', ylabel='r_S')

pu.adjust_ylabels(ax, x_offset=-0.20)

plt.show()

5.13. frompapers/Stimberg_et_al_2018 273

Brian 2 Documentation, Release 2.1.1

5.13.2 Example: example_2_gchi_astrocyte

Modeling neuron-glia interactions with the Brian 2 simulator Marcel Stimberg, Dan F. M. Goodman, Romain Brette,
Maurizio De Pittà bioRxiv 198366; doi: https://doi.org/10.1101/198366

Figure 2: Modeling of synaptically-activated astrocytes

Two astrocytes (one stochastic and the other deterministic) activated by synapses (connecting “dummy” groups of
neurons) (see De Pitta’ et al., 2009)

from brian2 import *

import plot_utils as pu

set_device('cpp_standalone', directory=None) # Use fast "C++ standalone mode"
seed(790824) # to get identical figures for repeated runs

##
Model parameters
##
General parameters
duration = 30*second # Total simulation time
sim_dt = 1*ms # Integrator/sampling step

Neuron parameters
f_0 = 0.5*Hz # Spike rate of the "source" neurons

Synapse parameters
rho_c = 0.001 # Synaptic vesicle-to-extracellular space volume ratio
Y_T = 500*mmolar # Total vesicular neurotransmitter concentration
Omega_c = 40/second # Neurotransmitter clearance rate

Astrocyte parameters
--- Calcium fluxes
O_P = 0.9*umolar/second # Maximal Ca^2+ uptake rate by SERCAs

274 Chapter 5. Examples

https://doi.org/10.1101/198366

Brian 2 Documentation, Release 2.1.1

K_P = 0.1 * umolar # Ca2+ affinity of SERCAs
C_T = 2*umolar # Total cell free Ca^2+ content
rho_A = 0.18 # ER-to-cytoplasm volume ratio
Omega_C = 6/second # Maximal rate of Ca^2+ release by IP_3Rs
Omega_L = 0.1/second # Maximal rate of Ca^2+ leak from the ER
--- IP_3R kinectics
d_1 = 0.13*umolar # IP_3 binding affinity
d_2 = 1.05*umolar # Ca^2+ inactivation dissociation constant
O_2 = 0.2/umolar/second # IP_3R binding rate for Ca^2+ inhibition
d_3 = 0.9434*umolar # IP_3 dissociation constant
d_5 = 0.08*umolar # Ca^2+ activation dissociation constant
--- Agonist-dependent IP_3 production
O_beta = 5*umolar/second # Maximal rate of IP_3 production by PLCbeta
O_N = 0.3/umolar/second # Agonist binding rate
Omega_N = 0.5/second # Maximal inactivation rate
K_KC = 0.5*umolar # Ca^2+ affinity of PKC
zeta = 10 # Maximal reduction of receptor affinity by PKC
--- IP_3 production
O_delta = 0.2 *umolar/second # Maximal rate of IP_3 production by PLCdelta
kappa_delta = 1.5 * umolar # Inhibition constant of PLC_delta by IP_3
K_delta = 0.3*umolar # Ca^2+ affinity of PLCdelta
--- IP_3 degradation
Omega_5P = 0.1/second # Maximal rate of IP_3 degradation by IP-5P
K_D = 0.5*umolar # Ca^2+ affinity of IP3-3K
K_3K = 1*umolar # IP_3 affinity of IP_3-3K
O_3K = 4.5*umolar/second # Maximal rate of IP_3 degradation by IP_3-3K
--- IP_3 external production
F_ex = 0.09*umolar/second # Maximal exogenous IP3 flow
I_Theta = 0.3*umolar # Threshold gradient for IP_3 diffusion
omega_I = 0.05*umolar # Scaling factor of diffusion

##
Model definition
##
defaultclock.dt = sim_dt # Set the integration time

"Neurons"
(We are only interested in the activity of the synapse, so we replace the
neurons by trivial "dummy" groups
Regular spiking neuron
source_neurons = NeuronGroup(1, 'dx/dt = f_0 : 1', threshold='x>1',

reset='x=0', method='euler')
Dummy neuron
target_neurons = NeuronGroup(1, '')

Synapses
Our synapse model is trivial, we are only interested in its neurotransmitter
release
synapses_eqs = 'dY_S/dt = -Omega_c * Y_S : mmolar (clock-driven)'
synapses_action = 'Y_S += rho_c * Y_T'
synapses = Synapses(source_neurons, target_neurons,

model=synapses_eqs, on_pre=synapses_action,
method='exact')

synapses.connect()

Astrocytes
We are modelling two astrocytes, the first is deterministic while the second

5.13. frompapers/Stimberg_et_al_2018 275

Brian 2 Documentation, Release 2.1.1

displays stochastic dynamics
astro_eqs = '''
Fraction of activated astrocyte receptors:
dGamma_A/dt = O_N * Y_S * (1 - Gamma_A) -

Omega_N*(1 + zeta * C/(C + K_KC)) * Gamma_A : 1

IP_3 dynamics:
dI/dt = J_beta + J_delta - J_3K - J_5P + J_ex : mmolar
J_beta = O_beta * Gamma_A : mmolar/second
J_delta = O_delta/(1 + I/kappa_delta) *

C**2/(C**2 + K_delta**2) : mmolar/second
J_3K = O_3K * C**4/(C**4 + K_D**4) * I/(I + K_3K) : mmolar/second
J_5P = Omega_5P*I : mmolar/second
delta_I_bias = I - I_bias : mmolar
J_ex = -F_ex/2*(1 + tanh((abs(delta_I_bias) - I_Theta)/omega_I)) *

sign(delta_I_bias) : mmolar/second
I_bias : mmolar (constant)

Ca^2+-induced Ca^2+ release:
dC/dt = J_r + J_l - J_p : mmolar
IP3R de-inactivation probability
dh/dt = (h_inf - h_clipped)/tau_h *

(1 + noise*xi*tau_h**0.5) : 1
h_clipped = clip(h,0,1) : 1
J_r = (Omega_C * m_inf**3 * h_clipped**3) *

(C_T - (1 + rho_A)*C) : mmolar/second
J_l = Omega_L * (C_T - (1 + rho_A)*C) : mmolar/second
J_p = O_P * C**2/(C**2 + K_P**2) : mmolar/second
m_inf = I/(I + d_1) * C/(C + d_5) : 1
h_inf = Q_2/(Q_2 + C) : 1
tau_h = 1/(O_2 * (Q_2 + C)) : second
Q_2 = d_2 * (I + d_1)/(I + d_3) : mmolar

Neurotransmitter concentration in the extracellular space
Y_S : mmolar
Noise flag
noise : 1 (constant)
'''
Milstein integration method for the multiplicative noise
astrocytes = NeuronGroup(2, astro_eqs, method='milstein')
astrocytes.h = 0.9 # IP3Rs are initially mostly available for CICR

The first astrocyte is deterministic ("zero noise"), the second stochastic
astrocytes.noise = [0, 1]
Connection between synapses and astrocytes (both astrocytes receive the
same input from the synapse). Note that in this special case, where each
astrocyte is only influenced by the neurotransmitter from a single synapse,
the '(linked)' variable mechanism could be used instead. The mechanism used
below is more general and can add the contribution of several synapses.
ecs_syn_to_astro = Synapses(synapses, astrocytes,

'Y_S_post = Y_S_pre : mmolar (summed)')
ecs_syn_to_astro.connect()
##
Monitors
##
astro_mon = StateMonitor(astrocytes, variables=['Gamma_A', 'C', 'h', 'I'],

record=True)

276 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

##
Simulation run
##
run(duration, report='text')

##
Analysis and plotting
##
from matplotlib.ticker import FormatStrFormatter
plt.style.use('figures.mplstyle')

Plot Gamma_A
fig, ax = plt.subplots(4, 1, figsize=(6.26894, 6.26894*0.66))
ax[0].plot(astro_mon.t/second, astro_mon.Gamma_A.T)
ax[0].set(xlim=(0., duration/second), ylim=[-0.05, 1.02], yticks=[0.0, 0.5, 1.0],

ylabel=r'Γ_{A}')
Adjust axis
pu.adjust_spines(ax[0], ['left'])

Plot I
ax[1].plot(astro_mon.t/second, astro_mon.I.T/umolar)
ax[1].set(xlim=(0., duration/second), ylim=[-0.1, 5.0],

yticks=arange(0.0, 5.1, 1., dtype=float),
ylabel=r'I (μM)')

ax[1].yaxis.set_major_formatter(FormatStrFormatter('%.1f'))
ax[1].legend(['deterministic', 'stochastic'], loc='upper left')
pu.adjust_spines(ax[1], ['left'])

Plot C
ax[2].plot(astro_mon.t/second, astro_mon.C.T/umolar)
ax[2].set(xlim=(0., duration/second), ylim=[-0.1, 1.3],

ylabel=r'C (μM)')
pu.adjust_spines(ax[2], ['left'])

Plot h
ax[3].plot(astro_mon.t/second, astro_mon.h.T)
ax[3].set(xlim=(0., duration/second),

ylim=[0.4, 1.02],
ylabel='h', xlabel='time (s)')

pu.adjust_spines(ax[3], ['left', 'bottom'])

pu.adjust_ylabels(ax, x_offset=-0.1)

plt.show()

5.13. frompapers/Stimberg_et_al_2018 277

Brian 2 Documentation, Release 2.1.1

5.13.3 Example: example_3_io_synapse

Modeling neuron-glia interactions with the Brian 2 simulator Marcel Stimberg, Dan F. M. Goodman, Romain Brette,
Maurizio De Pittà bioRxiv 198366; doi: https://doi.org/10.1101/198366

Figure 3: Modeling of modulation of synaptic release by gliotransmission.

Three synapses: the first one without astrocyte, the remaining two respectively with open-loop and close-loop glio-
transmission (see De Pitta’ et al., 2011, 2016)

from brian2 import *

import plot_utils as pu

set_device('cpp_standalone', directory=None) # Use fast "C++ standalone mode"

##
Model parameters
##
General parameters
transient = 16.5*second
duration = transient + 600*ms # Total simulation time
sim_dt = 1*ms # Integrator/sampling step

Synapse parameters
rho_c = 0.005 # Synaptic vesicle-to-extracellular space volume ratio
Y_T = 500*mmolar # Total vesicular neurotransmitter concentration
Omega_c = 40/second # Neurotransmitter clearance rate

278 Chapter 5. Examples

https://doi.org/10.1101/198366

Brian 2 Documentation, Release 2.1.1

U_0__star = 0.6 # Resting synaptic release probability
Omega_f = 3.33/second # Synaptic facilitation rate
Omega_d = 2.0/second # Synaptic depression rate
--- Presynaptic receptors
O_G = 1.5/umolar/second # Agonist binding (activating) rate
Omega_G = 0.5/(60*second) # Agonist release (deactivating) rate

Astrocyte parameters
--- Calcium fluxes
O_P = 0.9*umolar/second # Maximal Ca^2+ uptake rate by SERCAs
K_P = 0.05 * umolar # Ca2+ affinity of SERCAs
C_T = 2*umolar # Total cell free Ca^2+ content
rho_A = 0.18 # ER-to-cytoplasm volume ratio
Omega_C = 6/second # Maximal rate of Ca^2+ release by IP_3Rs
Omega_L = 0.1/second # Maximal rate of Ca^2+ leak from the ER
--- IP_3R kinectics
d_1 = 0.13*umolar # IP_3 binding affinity
d_2 = 1.05*umolar # Ca^2+ inactivation dissociation constant
O_2 = 0.2/umolar/second # IP_3R binding rate for Ca^2+ inhibition
d_3 = 0.9434*umolar # IP_3 dissociation constant
d_5 = 0.08*umolar # Ca^2+ activation dissociation constant
--- IP_3 production
O_delta = 0.6*umolar/second # Maximal rate of IP_3 production by PLCdelta
kappa_delta = 1.5* umolar # Inhibition constant of PLC_delta by IP_3
K_delta = 0.1*umolar # Ca^2+ affinity of PLCdelta
--- IP_3 degradation
Omega_5P = 0.05/second # Maximal rate of IP_3 degradation by IP-5P
K_D = 0.7*umolar # Ca^2+ affinity of IP3-3K
K_3K = 1.0*umolar # IP_3 affinity of IP_3-3K
O_3K = 4.5*umolar/second # Maximal rate of IP_3 degradation by IP_3-3K
--- IP_3 diffusion
F_ex = 2.0*umolar/second # Maximal exogenous IP3 flow
I_Theta = 0.3*umolar # Threshold gradient for IP_3 diffusion
omega_I = 0.05*umolar # Scaling factor of diffusion
--- Gliotransmitter release and time course
C_Theta = 0.5*umolar # Ca^2+ threshold for exocytosis
Omega_A = 0.6/second # Gliotransmitter recycling rate
U_A = 0.6 # Gliotransmitter release probability
G_T = 200*mmolar # Total vesicular gliotransmitter concentration
rho_e = 6.5e-4 # Astrocytic vesicle-to-extracellular volume ratio
Omega_e = 60/second # Gliotransmitter clearance rate
alpha = 0.0 # Gliotransmission nature

##
Model definition
##
defaultclock.dt = sim_dt # Set the integration time

"Neurons"
We are only interested in the activity of the synapse, so we replace the
neurons by trivial "dummy" groups
spikes = [0, 50, 100, 150, 200,

300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400]*ms
spikes += transient # allow for some initial transient
source_neurons = SpikeGeneratorGroup(1, np.zeros(len(spikes)), spikes)
target_neurons = NeuronGroup(1, '')

Synapses

5.13. frompapers/Stimberg_et_al_2018 279

Brian 2 Documentation, Release 2.1.1

Note that the synapse does not actually have any effect on the post-synaptic
target
Also note that for easier plotting we do not use the "event-driven" flag here,
even though the value of u_S and x_S only needs to be updated on the arrival
of a spike
synapses_eqs = '''
Neurotransmitter
dY_S/dt = -Omega_c * Y_S : mmolar (clock-driven)
Fraction of activated presynaptic receptors
dGamma_S/dt = O_G * G_A * (1 - Gamma_S) -

Omega_G * Gamma_S : 1 (clock-driven)
Usage of releasable neurotransmitter per single action potential:
du_S/dt = -Omega_f * u_S : 1 (clock-driven)
Fraction of synaptic neurotransmitter resources available:
dx_S/dt = Omega_d *(1 - x_S) : 1 (clock-driven)
released synaptic neurotransmitter resources:
r_S : 1
gliotransmitter concentration in the extracellular space:
G_A : mmolar
'''
synapses_action = '''
U_0 = (1 - Gamma_S) * U_0__star + alpha * Gamma_S
u_S += U_0 * (1 - u_S)
r_S = u_S * x_S
x_S -= r_S
Y_S += rho_c * Y_T * r_S
'''
synapses = Synapses(source_neurons, target_neurons,

model=synapses_eqs, on_pre=synapses_action,
method='exact')

We create three synapses, only the second and third ones are modulated by astrocytes
synapses.connect(True, n=3)

Astrocytes
The astrocyte emits gliotransmitter when its Ca^2+ concentration crosses
a threshold
astro_eqs = '''
IP_3 dynamics:
dI/dt = J_delta - J_3K - J_5P + J_ex : mmolar
J_delta = O_delta/(1 + I/kappa_delta) * C**2/(C**2 + K_delta**2) : mmolar/second
J_3K = O_3K * C**4/(C**4 + K_D**4) * I/(I + K_3K) : mmolar/second
J_5P = Omega_5P*I : mmolar/second
Exogenous stimulation
delta_I_bias = I - I_bias : mmolar
J_ex = -F_ex/2*(1 + tanh((abs(delta_I_bias) - I_Theta)/omega_I)) *

sign(delta_I_bias) : mmolar/second
I_bias : mmolar (constant)

Ca^2+-induced Ca^2+ release:
dC/dt = (Omega_C * m_inf**3 * h**3 + Omega_L) * (C_T - (1 + rho_A)*C) -

O_P * C**2/(C**2 + K_P**2) : mmolar
dh/dt = (h_inf - h)/tau_h : 1 # IP3R de-inactivation probability
m_inf = I/(I + d_1) * C/(C + d_5) : 1
h_inf = Q_2/(Q_2 + C) : 1
tau_h = 1/(O_2 * (Q_2 + C)) : second
Q_2 = d_2 * (I + d_1)/(I + d_3) : mmolar
Fraction of gliotransmitter resources available:
dx_A/dt = Omega_A * (1 - x_A) : 1

280 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

gliotransmitter concentration in the extracellular space:
dG_A/dt = -Omega_e*G_A : mmolar
'''
glio_release = '''
G_A += rho_e * G_T * U_A * x_A
x_A -= U_A * x_A
'''
The following formulation makes sure that a "spike" is only triggered at the
first threshold crossing -- the astrocyte is considered "refractory" (i.e.,
not allowed to trigger another event) as long as the Ca2+ concentration
remains above threshold
The gliotransmitter release happens when the threshold is crossed, in Brian
terms it can therefore be considered a "reset"
astrocyte = NeuronGroup(2, astro_eqs,

threshold='C>C_Theta',
refractory='C>C_Theta',
reset=glio_release,
method='rk4')

Different length of stimulation
astrocyte.x_A = 1.0
astrocyte.h = 0.9
astrocyte.I = 0.4*umolar
astrocyte.I_bias = np.asarray([0.8, 1.25])*umolar

Connection between astrocytes and the second synapse. Note that in this
special case, where the synapse is only influenced by the gliotransmitter from
a single astrocyte, the '(linked)' variable mechanism could be used instead.
The mechanism used below is more general and can add the contribution of
several astrocytes
ecs_astro_to_syn = Synapses(astrocyte, synapses,

'G_A_post = G_A_pre : mmolar (summed)')
Connect second and third synapse to a different astrocyte
ecs_astro_to_syn.connect(j='i+1')

##
Monitors
##
Note that we cannot use "record=True" for synapses in C++ standalone mode --
the StateMonitor needs to know the number of elements to record from during
its initialization, but in C++ standalone mode, no synapses have been created
yet. We therefore explicitly state to record from the three synapses.
syn_mon = StateMonitor(synapses, variables=['u_S', 'x_S', 'r_S', 'Y_S'],

record=[0, 1, 2])
ast_mon = StateMonitor(astrocyte, variables=['C', 'G_A'], record=True)

##
Simulation run
##
run(duration, report='text')

##
Analysis and plotting
##
from matplotlib import cycler
plt.style.use('figures.mplstyle')

fig, ax = plt.subplots(nrows=7, ncols=1,figsize=(6.26894, 6.26894 * 1.2),
gridspec_kw={'height_ratios': [3, 2, 1, 1, 3, 3, 3],

5.13. frompapers/Stimberg_et_al_2018 281

Brian 2 Documentation, Release 2.1.1

'top': 0.98, 'bottom': 0.08,
'left': 0.15, 'right': 0.95})

Ca^2+ traces of the two astrocytes
ax[0].plot((ast_mon.t-transient)/second, ast_mon.C[0]/umolar, '-', color='C2')
ax[0].plot((ast_mon.t-transient)/second, ast_mon.C[1]/umolar, '-', color='C3')
Add threshold for gliotransmitter release
ax[0].plot(np.asarray([-transient/second,0.0]),

np.asarray([C_Theta,C_Theta])/umolar, ':', color='gray')
ax[0].set(xlim=[-transient/second, 0.0], yticks=[0., 0.4, 0.8, 1.2],

ylabel=r'C (μM)')
pu.adjust_spines(ax[0], ['left'])

Gliotransmitter concentration in the extracellular space
ax[1].plot((ast_mon.t-transient)/second, ast_mon.G_A[0]/umolar, '-', color='C2')
ax[1].plot((ast_mon.t-transient)/second, ast_mon.G_A[1]/umolar, '-', color='C3')
ax[1].set(yticks=[0., 50., 100.], xlim=[-transient/second, 0.0],

xlabel='time (s)', ylabel=r'G_A (μM)')
pu.adjust_spines(ax[1], ['left', 'bottom'])

Turn off one axis to display x-labeling of ax[1] correctly
ax[2].axis('off')

Synaptic stimulation
ax[3].vlines((spikes-transient)/ms, 0, 1, clip_on=False)
ax[3].set(xlim=(0, (duration-transient)/ms))
ax[3].axis('off')

Synaptic variables
Use a custom cycle that uses black as the first color
prop_cycle = cycler(color='k').concat(matplotlib.rcParams['axes.prop_cycle'][2:])
ax[4].set(xlim=(0, (duration-transient)/ms), ylim=[0., 1.],

yticks=np.arange(0, 1.1, .25), ylabel='u_S',
prop_cycle=prop_cycle)

ax[4].plot((syn_mon.t-transient)/ms, syn_mon.u_S.T)
pu.adjust_spines(ax[4], ['left'])

ax[5].set(xlim=(0, (duration-transient)/ms), ylim=[-0.05, 1.],
yticks=np.arange(0,1.1,.25), ylabel='x_S',
prop_cycle=prop_cycle)

ax[5].plot((syn_mon.t-transient)/ms, syn_mon.x_S.T)
pu.adjust_spines(ax[5], ['left'])

ax[6].set(xlim=(0, (duration-transient)/ms), ylim=(-5., 1500),
xticks=np.arange(0, (duration-transient)/ms, 100), xlabel='time (ms)',
yticks=[0, 500, 1000, 1500], ylabel=r'Y_S (μM)',
prop_cycle=prop_cycle)

ax[6].plot((syn_mon.t-transient)/ms, syn_mon.Y_S.T/umolar)
ax[6].legend(['no gliotransmission',

'weak gliotransmission',
'stronger gliotransmission'], loc='upper right')

pu.adjust_spines(ax[6], ['left', 'bottom'])

pu.adjust_ylabels(ax, x_offset=-0.11)

plt.show()

282 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

5.13.4 Example: example_4_rsmean

Modeling neuron-glia interactions with the Brian 2 simulator Marcel Stimberg, Dan F. M. Goodman, Romain Brette,
Maurizio De Pittà bioRxiv 198366; doi: https://doi.org/10.1101/198366

Figure 4C: Closed-loop gliotransmission.

5.13. frompapers/Stimberg_et_al_2018 283

https://doi.org/10.1101/198366

Brian 2 Documentation, Release 2.1.1

I/O curves in terms average per-spike release vs. rate of stimulation for three synapses: one without gliotransmission,
and the other two with open- and close-loop gliotransmssion.

from brian2 import *

import plot_utils as pu

set_device('cpp_standalone', directory=None) # Use fast "C++ standalone mode"
seed(1929) # to get identical figures for repeated runs

##
Model parameters
##
General parameters
N_synapses = 100
N_astro = 2
transient = 15*second
duration = transient + 180*second # Total simulation time
sim_dt = 1*ms # Integrator/sampling step

Neuron parameters

Synapse parameters
Synapse parameters
rho_c = 0.005 # Synaptic vesicle-to-extracellular space volume ratio
Y_T = 500*mmolar # Total vesicular neurotransmitter concentration
Omega_c = 40/second # Neurotransmitter clearance rate
U_0__star = 0.6 # Resting synaptic release probability
Omega_f = 3.33/second # Synaptic facilitation rate
Omega_d = 2.0/second # Synaptic depression rate
--- Presynaptic receptors
O_G = 1.5/umolar/second # Agonist binding (activating) rate
Omega_G = 0.5/(60*second) # Agonist release (deactivating) rate

Astrocyte parameters
--- Calcium fluxes
O_P = 0.9*umolar/second # Maximal Ca^2+ uptake rate by SERCAs
K_P = 0.05 * umolar # Ca2+ affinity of SERCAs
C_T = 2*umolar # Total cell free Ca^2+ content
rho_A = 0.18 # ER-to-cytoplasm volume ratio
Omega_C = 6/second # Maximal rate of Ca^2+ release by IP_3Rs
Omega_L = 0.1/second # Maximal rate of Ca^2+ leak from the ER
--- IP_3R kinectics
d_1 = 0.13*umolar # IP_3 binding affinity
d_2 = 1.05*umolar # Ca^2+ inactivation dissociation constant
O_2 = 0.2/umolar/second # IP_3R binding rate for Ca^2+ inhibition
d_3 = 0.9434*umolar # IP_3 dissociation constant
d_5 = 0.08*umolar # Ca^2+ activation dissociation constant
--- IP_3 production
--- Agonist-dependent IP_3 production
O_beta = 3.2*umolar/second # Maximal rate of IP_3 production by PLCbeta
O_N = 0.3/umolar/second # Agonist binding rate
Omega_N = 0.5/second # Maximal inactivation rate
K_KC = 0.5*umolar # Ca^2+ affinity of PKC
zeta = 10 # Maximal reduction of receptor affinity by PKC
--- Endogenous IP3 production
O_delta = 0.6*umolar/second # Maximal rate of IP_3 production by PLCdelta
kappa_delta = 1.5* umolar # Inhibition constant of PLC_delta by IP_3
K_delta = 0.1*umolar # Ca^2+ affinity of PLCdelta

284 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

--- IP_3 degradation
Omega_5P = 0.05/second # Maximal rate of IP_3 degradation by IP-5P
K_D = 0.7*umolar # Ca^2+ affinity of IP3-3K
K_3K = 1.0*umolar # IP_3 affinity of IP_3-3K
O_3K = 4.5*umolar/second # Maximal rate of IP_3 degradation by IP_3-3K
--- IP_3 diffusion
F_ex = 2.0*umolar/second # Maximal exogenous IP3 flow
I_Theta = 0.3*umolar # Threshold gradient for IP_3 diffusion
omega_I = 0.05*umolar # Scaling factor of diffusion
--- Gliotransmitter release and time course
C_Theta = 0.5*umolar # Ca^2+ threshold for exocytosis
Omega_A = 0.6/second # Gliotransmitter recycling rate
U_A = 0.6 # Gliotransmitter release probability
G_T = 200*mmolar # Total vesicular gliotransmitter concentration
rho_e = 6.5e-4 # Astrocytic vesicle-to-extracellular volume ratio
Omega_e = 60/second # Gliotransmitter clearance rate
alpha = 0.0 # Gliotransmission nature

##
Model definition
##
defaultclock.dt = sim_dt # Set the integration time

f_vals = np.logspace(-1, 2, N_synapses)*Hz
source_neurons = PoissonGroup(N_synapses, rates=f_vals)
target_neurons = NeuronGroup(N_synapses, '')

Synapses
Note that the synapse does not actually have any effect on the post-synaptic
target
Also note that for easier plotting we do not use the "event-driven" flag here,
even though the value of u_S and x_S only needs to be updated on the arrival
of a spike
synapses_eqs = '''
Neurotransmitter
dY_S/dt = -Omega_c * Y_S : mmolar (clock-driven)
Fraction of activated presynaptic receptors
dGamma_S/dt = O_G * G_A * (1 - Gamma_S) - Omega_G * Gamma_S : 1 (clock-driven)
Usage of releasable neurotransmitter per single action potential:
du_S/dt = -Omega_f * u_S : 1 (event-driven)
Fraction of synaptic neurotransmitter resources available for release:
dx_S/dt = Omega_d *(1 - x_S) : 1 (event-driven)
r_S : 1 # released synaptic neurotransmitter resources
G_A : mmolar # gliotransmitter concentration in the extracellular space
'''
synapses_action = '''
U_0 = (1 - Gamma_S) * U_0__star + alpha * Gamma_S
u_S += U_0 * (1 - u_S)
r_S = u_S * x_S
x_S -= r_S
Y_S += rho_c * Y_T * r_S
'''
synapses = Synapses(source_neurons, target_neurons,

model=synapses_eqs, on_pre=synapses_action,
method='exact')

We create three synapses per connection: only the first two are modulated by
the astrocyte however. Note that we could also create three synapses per
connection with a single connect call by using connect(j='i', n=3), but this

5.13. frompapers/Stimberg_et_al_2018 285

Brian 2 Documentation, Release 2.1.1

would create synapses arranged differently (synapses connection pairs
(0, 0), (0, 0), (0, 0), (1, 1), (1, 1), (1, 1), ..., instead of
connections (0, 0), (1, 1), ..., (0, 0), (1, 1), ..., (0, 0), (1, 1), ...)
making the later connection descriptions more complicated.
synapses.connect(j='i') # closed-loop modulation
synapses.connect(j='i') # open modulation
synapses.connect(j='i') # no modulation
synapses.x_S = 1.0

Astrocytes
The astrocyte emits gliotransmitter when its Ca^2+ concentration crosses
a threshold
astro_eqs = '''
Fraction of activated astrocyte receptors:
dGamma_A/dt = O_N * Y_S * (1 - Gamma_A) -

Omega_N*(1 + zeta * C/(C + K_KC)) * Gamma_A : 1

IP_3 dynamics:
dI/dt = J_beta + J_delta - J_3K - J_5P + J_ex : mmolar
J_beta = O_beta * Gamma_A : mmolar/second
J_delta = O_delta/(1 + I/kappa_delta) *

C**2/(C**2 + K_delta**2) : mmolar/second
J_3K = O_3K * C**4/(C**4 + K_D**4) * I/(I + K_3K) : mmolar/second
J_5P = Omega_5P*I : mmolar/second
delta_I_bias = I - I_bias : mmolar
J_ex = -F_ex/2*(1 + tanh((abs(delta_I_bias) - I_Theta)/omega_I)) *

sign(delta_I_bias) : mmolar/second
I_bias : mmolar (constant)

Ca^2+-induced Ca^2+ release:
dC/dt = (Omega_C * m_inf**3 * h**3 + Omega_L) * (C_T - (1 + rho_A)*C) -

O_P * C**2/(C**2 + K_P**2) : mmolar
dh/dt = (h_inf - h)/tau_h : 1 # IP3R de-inactivation probability
m_inf = I/(I + d_1) * C/(C + d_5) : 1
h_inf = Q_2/(Q_2 + C) : 1
tau_h = 1/(O_2 * (Q_2 + C)) : second
Q_2 = d_2 * (I + d_1)/(I + d_3) : mmolar

Fraction of gliotransmitter resources available for release
dx_A/dt = Omega_A * (1 - x_A) : 1
gliotransmitter concentration in the extracellular space
dG_A/dt = -Omega_e*G_A : mmolar
Neurotransmitter concentration in the extracellular space
Y_S : mmolar
'''
glio_release = '''
G_A += rho_e * G_T * U_A * x_A
x_A -= U_A * x_A
'''
astrocyte = NeuronGroup(N_astro*N_synapses, astro_eqs,

The following formulation makes sure that a "spike" is
only triggered at the first threshold crossing
threshold='C>C_Theta',
refractory='C>C_Theta',
The gliotransmitter release happens when the threshold
is crossed, in Brian terms it can therefore be
considered a "reset"
reset=glio_release,

286 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

method='rk4')
astrocyte.h = 0.9
astrocyte.x_A = 1.0
Only the second group of N_synapses astrocytes are activated by external stimulation
astrocyte.I_bias = (np.r_[np.zeros(N_synapses), np.ones(N_synapses)])*1.0*umolar

Connections
ecs_syn_to_astro = Synapses(synapses, astrocyte,

'Y_S_post = Y_S_pre : mmolar (summed)')
Connect the first N_synapses synapses--astrocyte pairs
ecs_syn_to_astro.connect(j='i if i < N_synapses')

ecs_astro_to_syn = Synapses(astrocyte, synapses,
'G_A_post = G_A_pre : mmolar (summed)')

Connect the first N_synapses astrocytes--pairs
(closed-loop configuration)
ecs_astro_to_syn.connect(j='i if i < N_synapses')
Connect the second N_synapses astrocyte--synapses pairs
(open-loop configuration)
ecs_astro_to_syn.connect(j='i if i >= N_synapses and i < 2*N_synapses')

##
Monitors
##
syn_mon = StateMonitor(synapses, 'r_S',

record=np.arange(N_synapses*(N_astro+1)))

##
Simulation run
##
run(duration, report='text')

##
Analysis and plotting
##
plt.style.use('figures.mplstyle')

fig, ax = plt.subplots(nrows=4, ncols=1, figsize=(3.07, 3.07*1.33), sharex=False,
gridspec_kw={'height_ratios': [1, 3, 3, 3],

'top': 0.98, 'bottom': 0.12,
'left': 0.22, 'right': 0.93})

Turn off one axis to display accordingly to the other figure in example_4_synrel.py
ax[0].axis('off')

ax[1].errorbar(f_vals/Hz, np.mean(syn_mon.r_S[2*N_synapses:], axis=1),
np.std(syn_mon.r_S[2*N_synapses:], axis=1),
fmt='o', color='black', lw=0.5)

ax[1].set(xlim=(0.08, 100), xscale='log',
ylim=(0., 0.7),
ylabel=r'$\langle r_S \rangle$')

pu.adjust_spines(ax[1], ['left'])

ax[2].errorbar(f_vals/Hz, np.mean(syn_mon.r_S[N_synapses:2*N_synapses], axis=1),
np.std(syn_mon.r_S[N_synapses:2*N_synapses], axis=1),
fmt='o', color='C2', lw=0.5)

ax[2].set(xlim=(0.08, 100), xscale='log',
ylim=(0., 0.2), ylabel=r'$\langle r_S \rangle$')

5.13. frompapers/Stimberg_et_al_2018 287

Brian 2 Documentation, Release 2.1.1

pu.adjust_spines(ax[2], ['left'])

ax[3].errorbar(f_vals/Hz, np.mean(syn_mon.r_S[:N_synapses], axis=1),
np.std(syn_mon.r_S[:N_synapses], axis=1),
fmt='o', color='C3', lw=0.5)

ax[3].set(xlim=(0.08, 100), xticks=np.logspace(-1, 2, 4), xscale='log',
ylim=(0., 0.7), xlabel='input frequency (Hz)',
ylabel=r'$\langle r_S \rangle$')

ax[3].xaxis.set_major_formatter(ScalarFormatter())
pu.adjust_spines(ax[3], ['left', 'bottom'])

pu.adjust_ylabels(ax, x_offset=-0.2)

plt.show()

5.13.5 Example: example_4_synrel

Modeling neuron-glia interactions with the Brian 2 simulator Marcel Stimberg, Dan F. M. Goodman, Romain Brette,
Maurizio De Pittà bioRxiv 198366; doi: https://doi.org/10.1101/198366

Figure 4B: Closed-loop gliotransmission.

Extracellular neurotransmitter concentration (averaged across 500 synapses) for three step increases of the presynaptic
rate, for three synapses: one without gliotransmission, and the other two with open- and close-loop gliotransmssion.

from brian2 import *

import plot_utils as pu

288 Chapter 5. Examples

https://doi.org/10.1101/198366

Brian 2 Documentation, Release 2.1.1

set_device('cpp_standalone', directory=None) # Use fast "C++ standalone mode"
seed(16283) # to get identical figures for repeated runs

##
Model parameters
##
General parameters
N_synapses = 500
N_astro = 2
duration = 20*second # Total simulation time
sim_dt = 1*ms # Integrator/sampling step

Neuron parameters

Synapse parameters
Synapse parameters
rho_c = 0.005 # Synaptic vesicle-to-extracellular space volume ratio
Y_T = 500*mmolar # Total vesicular neurotransmitter concentration
Omega_c = 40/second # Neurotransmitter clearance rate
U_0__star = 0.6 # Resting synaptic release probability
Omega_f = 3.33/second # Synaptic facilitation rate
Omega_d = 2.0/second # Synaptic depression rate
--- Presynaptic receptors
O_G = 1.5/umolar/second # Agonist binding (activating) rate
Omega_G = 0.5/(60*second) # Agonist release (deactivating) rate

Astrocyte parameters
--- Calcium fluxes
O_P = 0.9*umolar/second # Maximal Ca^2+ uptake rate by SERCAs
K_P = 0.05 * umolar # Ca2+ affinity of SERCAs
C_T = 2*umolar # Total cell free Ca^2+ content
rho_A = 0.18 # ER-to-cytoplasm volume ratio
Omega_C = 6/second # Maximal rate of Ca^2+ release by IP_3Rs
Omega_L = 0.1/second # Maximal rate of Ca^2+ leak from the ER
--- IP_3R kinectics
d_1 = 0.13*umolar # IP_3 binding affinity
d_2 = 1.05*umolar # Ca^2+ inactivation dissociation constant
O_2 = 0.2/umolar/second # IP_3R binding rate for Ca^2+ inhibition
d_3 = 0.9434*umolar # IP_3 dissociation constant
d_5 = 0.08*umolar # Ca^2+ activation dissociation constant
--- IP_3 production
--- Agonist-dependent IP_3 production
O_beta = 3.2*umolar/second # Maximal rate of IP_3 production by PLCbeta
O_N = 0.3/umolar/second # Agonist binding rate
Omega_N = 0.5/second # Maximal inactivation rate
K_KC = 0.5*umolar # Ca^2+ affinity of PKC
zeta = 10 # Maximal reduction of receptor affinity by PKC
--- Endogenous IP3 production
O_delta = 0.6*umolar/second # Maximal rate of IP_3 production by PLCdelta
kappa_delta = 1.5* umolar # Inhibition constant of PLC_delta by IP_3
K_delta = 0.1*umolar # Ca^2+ affinity of PLCdelta
--- IP_3 diffusion
F = 2*umolar/second # GJC IP_3 permeability
I_Theta = 0.3*umolar # Threshold gradient for IP_3 diffusion
omega_I = 0.05*umolar # Scaling factor of diffusion
--- IP_3 degradation
Omega_5P = 0.05/second # Maximal rate of IP_3 degradation by IP-5P

5.13. frompapers/Stimberg_et_al_2018 289

Brian 2 Documentation, Release 2.1.1

K_D = 0.7*umolar # Ca^2+ affinity of IP3-3K
K_3K = 1.0*umolar # IP_3 affinity of IP_3-3K
O_3K = 4.5*umolar/second # Maximal rate of IP_3 degradation by IP_3-3K
--- IP_3 diffusion
F_ex = 2.0*umolar/second # Maximal exogenous IP3 flow
I_Theta = 0.3*umolar # Threshold gradient for IP_3 diffusion
omega_I = 0.05*umolar # Scaling factor of diffusion
--- Gliotransmitter release and time course
C_Theta = 0.5*umolar # Ca^2+ threshold for exocytosis
Omega_A = 0.6/second # Gliotransmitter recycling rate
U_A = 0.6 # Gliotransmitter release probability
G_T = 200*mmolar # Total vesicular gliotransmitter concentration
rho_e = 6.5e-4 # Astrocytic vesicle-to-extracellular volume ratio
Omega_e = 60/second # Gliotransmitter clearance rate
alpha = 0.0 # Gliotransmission nature

##
Model definition
##
defaultclock.dt = sim_dt # Set the integration time

"Neurons"
rate_in = TimedArray([0.011, 0.11, 1.1, 11] * Hz, dt=5*second)
source_neurons = PoissonGroup(N_synapses, rates='rate_in(t)')
target_neurons = NeuronGroup(N_synapses, '')

Synapses
Note that the synapse does not actually have any effect on the post-synaptic
target
Also note that for easier plotting we do not use the "event-driven" flag here,
even though the value of u_S and x_S only needs to be updated on the arrival
of a spike
synapses_eqs = '''
Neurotransmitter
dY_S/dt = -Omega_c * Y_S : mmolar (clock-driven)
Fraction of activated presynaptic receptors
dGamma_S/dt = O_G * G_A * (1 - Gamma_S) - Omega_G * Gamma_S : 1 (clock-driven)
Usage of releasable neurotransmitter per single action potential:
du_S/dt = -Omega_f * u_S : 1 (event-driven)
Fraction of synaptic neurotransmitter resources available for release:
dx_S/dt = Omega_d *(1 - x_S) : 1 (event-driven)
r_S : 1 # released synaptic neurotransmitter resources
G_A : mmolar # gliotransmitter concentration in the extracellular space
'''
synapses_action = '''
U_0 = (1 - Gamma_S) * U_0__star + alpha * Gamma_S
u_S += U_0 * (1 - u_S)
r_S = u_S * x_S
x_S -= r_S
Y_S += rho_c * Y_T * r_S
'''
synapses = Synapses(source_neurons, target_neurons,

model=synapses_eqs, on_pre=synapses_action,
method='exact')

We create three synapses per connection: only the first two are modulated by
the astrocyte however. Note that we could also create three synapses per
connection with a single connect call by using connect(j='i', n=3), but this
would create synapses arranged differently (synapses connection pairs

290 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

(0, 0), (0, 0), (0, 0), (1, 1), (1, 1), (1, 1), ..., instead of
connections (0, 0), (1, 1), ..., (0, 0), (1, 1), ..., (0, 0), (1, 1), ...)
making the later connection descriptions more complicated.
synapses.connect(j='i') # closed-loop modulation
synapses.connect(j='i') # open modulation
synapses.connect(j='i') # no modulation
synapses.x_S = 1.0

Astrocytes
The astrocyte emits gliotransmitter when its Ca^2+ concentration crosses
a threshold
astro_eqs = '''
Fraction of activated astrocyte receptors:
dGamma_A/dt = O_N * Y_S * (1 - Gamma_A) -

Omega_N*(1 + zeta * C/(C + K_KC)) * Gamma_A : 1

IP_3 dynamics:
dI/dt = J_beta + J_delta - J_3K - J_5P + J_ex : mmolar
J_beta = O_beta * Gamma_A : mmolar/second
J_delta = O_delta/(1 + I/kappa_delta) *

C**2/(C**2 + K_delta**2) : mmolar/second
J_3K = O_3K * C**4/(C**4 + K_D**4) * I/(I + K_3K) : mmolar/second
J_5P = Omega_5P*I : mmolar/second
delta_I_bias = I - I_bias : mmolar
J_ex = -F_ex/2*(1 + tanh((abs(delta_I_bias) - I_Theta)/omega_I)) *

sign(delta_I_bias) : mmolar/second
I_bias : mmolar (constant)

Ca^2+-induced Ca^2+ release:
dC/dt = (Omega_C * m_inf**3 * h**3 + Omega_L) * (C_T - (1 + rho_A)*C) -

O_P * C**2/(C**2 + K_P**2) : mmolar
dh/dt = (h_inf - h)/tau_h : 1 # IP3R de-inactivation probability
m_inf = I/(I + d_1) * C/(C + d_5) : 1
h_inf = Q_2/(Q_2 + C) : 1
tau_h = 1/(O_2 * (Q_2 + C)) : second
Q_2 = d_2 * (I + d_1)/(I + d_3) : mmolar

Fraction of gliotransmitter resources available for release
dx_A/dt = Omega_A * (1 - x_A) : 1
gliotransmitter concentration in the extracellular space
dG_A/dt = -Omega_e*G_A : mmolar
Neurotransmitter concentration in the extracellular space
Y_S : mmolar
'''
glio_release = '''
G_A += rho_e * G_T * U_A * x_A
x_A -= U_A * x_A
'''
astrocyte = NeuronGroup(N_astro*N_synapses, astro_eqs,

The following formulation makes sure that a "spike" is
only triggered at the first threshold crossing
threshold='C>C_Theta',
refractory='C>C_Theta',
The gliotransmitter release happens when the threshold
is crossed, in Brian terms it can therefore be
considered a "reset"
reset=glio_release,
method='rk4')

5.13. frompapers/Stimberg_et_al_2018 291

Brian 2 Documentation, Release 2.1.1

astrocyte.h = 0.9
astrocyte.x_A = 1.0
Only the second group of N_synapses astrocytes are activated by external stimulation
astrocyte.I_bias = (np.r_[np.zeros(N_synapses), np.ones(N_synapses)])*1.0*umolar

Connections
ecs_syn_to_astro = Synapses(synapses, astrocyte,

'Y_S_post = Y_S_pre : mmolar (summed)')
Connect the first N_synapses synapses--astrocyte pairs
ecs_syn_to_astro.connect(j='i if i < N_synapses')
ecs_astro_to_syn = Synapses(astrocyte, synapses,

'G_A_post = G_A_pre : mmolar (summed)')
Connect the first N_synapses astrocytes--pairs (closed-loop)
ecs_astro_to_syn.connect(j='i if i < N_synapses')
Connect the second N_synapses astrocyte--synapses pairs (open-loop)
ecs_astro_to_syn.connect(j='i if i >= N_synapses and i < 2*N_synapses')

##
Monitors
##
syn_mon = StateMonitor(synapses, 'Y_S',

record=np.arange(N_synapses*(N_astro+1)), dt=10*ms)

##
Simulation run
##
run(duration, report='text')

##
Analysis and plotting
##
plt.style.use('figures.mplstyle')

fig, ax = plt.subplots(nrows=4, ncols=1, figsize=(3.07, 3.07*1.33),
sharex=False,
gridspec_kw={'height_ratios': [1, 3, 3, 3],

'top': 0.98, 'bottom': 0.12,
'left': 0.24, 'right': 0.95})

ax[0].semilogy(syn_mon.t/second, rate_in(syn_mon.t), '-', color='black')
ax[0].set(xlim=(0, duration/second), ylim=(0.01, 12),

yticks=[0.01, 0.1, 1, 10], ylabel=r'ν_{in} (Hz)')
ax[0].yaxis.set_major_formatter(ScalarFormatter())
pu.adjust_spines(ax[0], ['left'])

ax[1].plot(syn_mon.t/second,
np.mean(syn_mon.Y_S[2*N_synapses:]/umolar, axis=0),
'-', color='black')

ax[1].set(xlim=(0, duration/second), ylim=(-5, 260),
yticks=np.arange(0, 260, 50),
ylabel=r'$\langle Y_S \rangle$ (μM)')

ax[1].legend(['no gliotransmission'], loc='upper left')
pu.adjust_spines(ax[1], ['left'])

ax[2].plot(syn_mon.t/second,
np.mean(syn_mon.Y_S[N_synapses:2*N_synapses]/umolar, axis=0),
'-', color='C2')

ax[2].set(xlim=(0, duration/second), ylim=(-3, 150),
yticks=np.arange(0, 151, 25),

292 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

ylabel=r'$\langle Y_S \rangle$ (μM)')
ax[2].legend(['open-loop gliotransmission'], loc='upper left')
pu.adjust_spines(ax[2], ['left'])

ax[3].plot(syn_mon.t/second,
np.mean(syn_mon.Y_S[:N_synapses]/umolar, axis=0),
'-', color='C3')

ax[3].set(xlim=(0, duration/second), ylim=(-2, 150),
xticks=np.arange(0., duration/second+1, 5.0),
yticks=np.arange(0, 151, 25),
xlabel='time (s)', ylabel=r'$\langle Y_S \rangle$ (μM)')

ax[3].legend(['closed-loop gliotransmission'], loc='upper left')
pu.adjust_spines(ax[3], ['left', 'bottom'])

pu.adjust_ylabels(ax, x_offset=-0.22)

plt.show()

5.13.6 Example: example_5_astro_ring

Modeling neuron-glia interactions with the Brian 2 simulator Marcel Stimberg, Dan F. M. Goodman, Romain Brette,
Maurizio De Pittà bioRxiv 198366; doi: https://doi.org/10.1101/198366

Figure 5: Astrocytes connected in a network.

Intercellular calcium wave propagation in a ring of 50 astrocytes connected by bidirectional gap junctions (see Gold-
berg et al., 2010)

5.13. frompapers/Stimberg_et_al_2018 293

https://doi.org/10.1101/198366

Brian 2 Documentation, Release 2.1.1

from brian2 import *

import plot_utils as pu

set_device('cpp_standalone', directory=None) # Use fast "C++ standalone mode"

##
Model parameters
##
General parameters
duration = 4000*second # Total simulation time
sim_dt = 50*ms # Integrator/sampling step

Astrocyte parameters
--- Calcium fluxes
O_P = 0.9*umolar/second # Maximal Ca^2+ uptake rate by SERCAs
K_P = 0.05 * umolar # Ca2+ affinity of SERCAs
C_T = 2*umolar # Total cell free Ca^2+ content
rho_A = 0.18 # ER-to-cytoplasm volume ratio
Omega_C = 6/second # Maximal rate of Ca^2+ release by IP_3Rs
Omega_L = 0.1/second # Maximal rate of Ca^2+ leak from the ER
--- IP_3R kinectics
d_1 = 0.13*umolar # IP_3 binding affinity
d_2 = 1.05*umolar # Ca^2+ inactivation dissociation constant
O_2 = 0.2/umolar/second # IP_3R binding rate for Ca^2+ inhibition
d_3 = 0.9434*umolar # IP_3 dissociation constant
d_5 = 0.08*umolar # Ca^2+ activation dissociation constant
--- IP_3 production
O_delta = 0.6*umolar/second # Maximal rate of IP_3 production by PLCdelta
kappa_delta = 1.5* umolar # Inhibition constant of PLC_delta by IP_3
K_delta = 0.1*umolar # Ca^2+ affinity of PLCdelta
--- IP_3 degradation
Omega_5P = 0.05/second # Maximal rate of IP_3 degradation by IP-5P
K_D = 0.7*umolar # Ca^2+ affinity of IP3-3K
K_3K = 1.0*umolar # IP_3 affinity of IP_3-3K
O_3K = 4.5*umolar/second # Maximal rate of IP_3 degradation by IP_3-3K
--- IP_3 diffusion
F_ex = 0.09*umolar/second # Maximal exogenous IP3 flow
F = 0.09*umolar/second # GJC IP_3 permeability
I_Theta = 0.3*umolar # Threshold gradient for IP_3 diffusion
omega_I = 0.05*umolar # Scaling factor of diffusion

##
Model definition
##
defaultclock.dt = sim_dt # Set the integration time

Astrocytes
astro_eqs = '''
dI/dt = J_delta - J_3K - J_5P + J_ex + J_coupling : mmolar
J_delta = O_delta/(1 + I/kappa_delta) * C**2/(C**2 + K_delta**2) : mmolar/second
J_3K = O_3K * C**4/(C**4 + K_D**4) * I/(I + K_3K) : mmolar/second
J_5P = Omega_5P*I : mmolar/second
Exogenous stimulation (rectangular wave with period of 50s and duty factor 0.4)
stimulus = int((t % (50*second))<20*second) : 1
delta_I_bias = I - I_bias*stimulus : mmolar
J_ex = -F_ex/2*(1 + tanh((abs(delta_I_bias) - I_Theta)/omega_I)) *

sign(delta_I_bias) : mmolar/second

294 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

Diffusion between astrocytes
J_coupling : mmolar/second

Ca^2+-induced Ca^2+ release:
dC/dt = J_r + J_l - J_p : mmolar
dh/dt = (h_inf - h)/tau_h : 1
J_r = (Omega_C * m_inf**3 * h**3) * (C_T - (1 + rho_A)*C) : mmolar/second
J_l = Omega_L * (C_T - (1 + rho_A)*C) : mmolar/second
J_p = O_P * C**2/(C**2 + K_P**2) : mmolar/second
m_inf = I/(I + d_1) * C/(C + d_5) : 1
h_inf = Q_2/(Q_2 + C) : 1
tau_h = 1/(O_2 * (Q_2 + C)) : second
Q_2 = d_2 * (I + d_1)/(I + d_3) : mmolar

External IP_3 drive
I_bias : mmolar (constant)
'''

N_astro = 50 # Total number of astrocytes in the network
astrocytes = NeuronGroup(N_astro, astro_eqs, method='rk4')
Asymmetric stimulation on the 50th cell to get some nice chaotic patterns
astrocytes.I_bias[N_astro//2] = 1.0*umolar
astrocytes.h = 0.9
Diffusion between astrocytes
astro_to_astro_eqs = '''
delta_I = I_post - I_pre : mmolar
J_coupling_post = -F/2 * (1 + tanh((abs(delta_I) - I_Theta)/omega_I)) *

sign(delta_I) : mmolar/second (summed)
'''
astro_to_astro = Synapses(astrocytes, astrocytes,

model=astro_to_astro_eqs)
Couple neighboring astrocytes: two connections per astrocyte pair, as
the above formulation will only update the I_coupling term of one of the
astrocytes
astro_to_astro.connect('j == (i + 1) % N_pre or '

'j == (i + N_pre - 1) % N_pre')

##
Monitors
##
astro_mon = StateMonitor(astrocytes, variables=['C'], record=True)

##
Simulation run
##
run(duration, report='text')

##
Analysis and plotting
##
plt.style.use('figures.mplstyle')

fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(6.26894, 6.26894 * 0.66),
gridspec_kw={'left': 0.1, 'bottom': 0.12})

scaling = 1.2
step = 10
ax.plot(astro_mon.t/second,

(astro_mon.C[0:N_astro//2-1].T/astro_mon.C.max() +

5.13. frompapers/Stimberg_et_al_2018 295

Brian 2 Documentation, Release 2.1.1

np.arange(N_astro//2-1)*scaling), color='black')
ax.plot(astro_mon.t/second, (astro_mon.C[N_astro//2:].T/astro_mon.C.max() +

np.arange(N_astro//2, N_astro)*scaling),
color='black')

ax.plot(astro_mon.t/second, (astro_mon.C[N_astro//2-1].T/astro_mon.C.max() +
np.arange(N_astro//2-1, N_astro//2)*scaling),

color='C0')
ax.set(xlim=(0., duration/second), ylim=(0, (N_astro+1.5)*scaling),

xticks=np.arange(0., duration/second, 500), xlabel='time (s)',
yticks=np.arange(0.5*scaling, (N_astro + 1.5)*scaling, step*scaling),
yticklabels=[str(yt) for yt in np.arange(0, N_astro + 1, step)],
ylabel='C/C_{max} (cell index)')

pu.adjust_spines(ax, ['left', 'bottom'])

pu.adjust_ylabels([ax], x_offset=-0.08)

plt.show()

5.13.7 Example: example_6_COBA_with_astro

Modeling neuron-glia interactions with the Brian 2 simulator Marcel Stimberg, Dan F. M. Goodman, Romain Brette,
Maurizio De Pittà bioRxiv 198366; doi: https://doi.org/10.1101/198366

Figure 6: Recurrent neuron-glial network.

Randomly connected COBA network (see Brunel, 2000) with excitatory synapses modulated by release-increasing
gliotransmission from a randomly connected network of astrocytes.

296 Chapter 5. Examples

https://doi.org/10.1101/198366

Brian 2 Documentation, Release 2.1.1

from brian2 import *

import plot_utils as pu

set_device('cpp_standalone', directory=None) # Use fast "C++ standalone mode"
seed(28371) # to get identical figures for repeated runs

##
Model parameters
##
General parameters
N_e = 3200 # Number of excitatory neurons
N_i = 800 # Number of inhibitory neurons
N_a = 3200 # Number of astrocytes

Some metrics parameters needed to establish proper connections
size = 3.75*mmeter # Length and width of the square lattice
distance = 50*umeter # Distance between neurons

Neuron parameters
E_l = -60*mV # Leak reversal potential
g_l = 9.99*nS # Leak conductance
E_e = 0*mV # Excitatory synaptic reversal potential
E_i = -80*mV # Inhibitory synaptic reversal potential
C_m = 198*pF # Membrane capacitance
tau_e = 5*ms # Excitatory synaptic time constant
tau_i = 10*ms # Inhibitory synaptic time constant
tau_r = 5*ms # Refractory period
I_ex = 100*pA # External current
V_th = -50*mV # Firing threshold
V_r = E_l # Reset potential

Synapse parameters
rho_c = 0.005 # Synaptic vesicle-to-extracellular space volume ratio
Y_T = 500.*mmolar # Total vesicular neurotransmitter concentration
Omega_c = 40/second # Neurotransmitter clearance rate
U_0__star = 0.6 # Resting synaptic release probability
Omega_f = 3.33/second # Synaptic facilitation rate
Omega_d = 2.0/second # Synaptic depression rate
w_e = 0.05*nS # Excitatory synaptic conductance
w_i = 1.0*nS # Inhibitory synaptic conductance
--- Presynaptic receptors
O_G = 1.5/umolar/second # Agonist binding (activating) rate
Omega_G = 0.5/(60*second) # Agonist release (deactivating) rate

Astrocyte parameters
--- Calcium fluxes
O_P = 0.9*umolar/second # Maximal Ca^2+ uptake rate by SERCAs
K_P = 0.05*umolar # Ca2+ affinity of SERCAs
C_T = 2*umolar # Total cell free Ca^2+ content
rho_A = 0.18 # ER-to-cytoplasm volume ratio
Omega_C = 6/second # Maximal rate of Ca^2+ release by IP_3Rs
Omega_L = 0.1/second # Maximal rate of Ca^2+ leak from the ER
--- IP_3R kinectics
d_1 = 0.13*umolar # IP_3 binding affinity
d_2 = 1.05*umolar # Ca^2+ inactivation dissociation constant
O_2 = 0.2/umolar/second # IP_3R binding rate for Ca^2+ inhibition
d_3 = 0.9434*umolar # IP_3 dissociation constant

5.13. frompapers/Stimberg_et_al_2018 297

Brian 2 Documentation, Release 2.1.1

d_5 = 0.08*umolar # Ca^2+ activation dissociation constant
--- IP_3 production
--- Agonist-dependent IP_3 production
O_beta = 0.5*umolar/second # Maximal rate of IP_3 production by PLCbeta
O_N = 0.3/umolar/second # Agonist binding rate
Omega_N = 0.5/second # Maximal inactivation rate
K_KC = 0.5*umolar # Ca^2+ affinity of PKC
zeta = 10 # Maximal reduction of receptor affinity by PKC
--- Endogenous IP3 production
O_delta = 1.2*umolar/second # Maximal rate of IP_3 production by PLCdelta
kappa_delta = 1.5*umolar # Inhibition constant of PLC_delta by IP_3
K_delta = 0.1*umolar # Ca^2+ affinity of PLCdelta
--- IP_3 degradation
Omega_5P = 0.05/second # Maximal rate of IP_3 degradation by IP-5P
K_D = 0.7*umolar # Ca^2+ affinity of IP3-3K
K_3K = 1.0*umolar # IP_3 affinity of IP_3-3K
O_3K = 4.5*umolar/second # Maximal rate of IP_3 degradation by IP_3-3K
--- IP_3 diffusion
F = 0.09*umolar/second # GJC IP_3 permeability
I_Theta = 0.3*umolar # Threshold gradient for IP_3 diffusion
omega_I = 0.05*umolar # Scaling factor of diffusion
--- Gliotransmitter release and time course
C_Theta = 0.5*umolar # Ca^2+ threshold for exocytosis
Omega_A = 0.6/second # Gliotransmitter recycling rate
U_A = 0.6 # Gliotransmitter release probability
G_T = 200*mmolar # Total vesicular gliotransmitter concentration
rho_e = 6.5e-4 # Astrocytic vesicle-to-extracellular volume ratio
Omega_e = 60/second # Gliotransmitter clearance rate
alpha = 0.0 # Gliotransmission nature

##
Define HF stimulus
##
stimulus = TimedArray([1.0, 1.2, 1.0, 1.0], dt=2*second)

##
Simulation time (based on the stimulus)
##
duration = 8*second # Total simulation time

##
Model definition
##
Neurons
neuron_eqs = '''
dv/dt = (g_l*(E_l-v) + g_e*(E_e-v) + g_i*(E_i-v) + I_ex*stimulus(t))/C_m : volt
→˓(unless refractory)
dg_e/dt = -g_e/tau_e : siemens # post-synaptic excitatory conductance
dg_i/dt = -g_i/tau_i : siemens # post-synaptic inhibitory conductance
Neuron position in space
x : meter (constant)
y : meter (constant)
'''
neurons = NeuronGroup(N_e + N_i, model=neuron_eqs,

threshold='v>V_th', reset='v=V_r',
refractory='tau_r', method='euler')

exc_neurons = neurons[:N_e]
inh_neurons = neurons[N_e:]

298 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

Arrange excitatory neurons in a grid
N_rows = int(sqrt(N_e))
N_cols = N_e/N_rows
grid_dist = (size / N_cols)
exc_neurons.x = '(i / N_rows)*grid_dist - N_rows/2.0*grid_dist'
exc_neurons.y = '(i % N_rows)*grid_dist - N_cols/2.0*grid_dist'
Random initial membrane potential values and conductances
neurons.v = 'E_l + rand()*(V_th-E_l)'
neurons.g_e = 'rand()*w_e'
neurons.g_i = 'rand()*w_i'

Synapses
synapses_eqs = '''
Neurotransmitter
dY_S/dt = -Omega_c * Y_S : mmolar (clock-driven)
Fraction of activated presynaptic receptors
dGamma_S/dt = O_G * G_A * (1 - Gamma_S) - Omega_G * Gamma_S : 1 (clock-driven)
Usage of releasable neurotransmitter per single action potential:
du_S/dt = -Omega_f * u_S : 1 (event-driven)
Fraction of synaptic neurotransmitter resources available for release:
dx_S/dt = Omega_d *(1 - x_S) : 1 (event-driven)
U_0 : 1
released synaptic neurotransmitter resources:
r_S : 1
gliotransmitter concentration in the extracellular space:
G_A : mmolar
which astrocyte covers this synapse ?
astrocyte_index : integer (constant)
'''
synapses_action = '''
U_0 = (1 - Gamma_S) * U_0__star + alpha * Gamma_S
u_S += U_0 * (1 - u_S)
r_S = u_S * x_S
x_S -= r_S
Y_S += rho_c * Y_T * r_S
'''
exc_syn = Synapses(exc_neurons, neurons, model=synapses_eqs,

on_pre=synapses_action+'g_e_post += w_e*r_S',
method='exact')

exc_syn.connect(True, p=0.05)
exc_syn.x_S = 1.0
inh_syn = Synapses(inh_neurons, neurons, model=synapses_eqs,

on_pre=synapses_action+'g_i_post += w_i*r_S',
method='exact')

inh_syn.connect(True, p=0.2)
inh_syn.x_S = 1.0
Connect excitatory synapses to an astrocyte depending on the position of the
post-synaptic neuron
N_rows_a = int(sqrt(N_a))
N_cols_a = N_a/N_rows_a
grid_dist = size / N_rows_a
exc_syn.astrocyte_index = ('int(x_post/grid_dist) + '

'N_cols_a*int(y_post/grid_dist)')
Astrocytes
The astrocyte emits gliotransmitter when its Ca^2+ concentration crosses
a threshold
astro_eqs = '''
Fraction of activated astrocyte receptors:

5.13. frompapers/Stimberg_et_al_2018 299

Brian 2 Documentation, Release 2.1.1

dGamma_A/dt = O_N * Y_S * (1 - clip(Gamma_A,0,1)) -
Omega_N*(1 + zeta * C/(C + K_KC)) * clip(Gamma_A,0,1) : 1

Intracellular IP_3
dI/dt = J_beta + J_delta - J_3K - J_5P + J_coupling : mmolar
J_beta = O_beta * Gamma_A : mmolar/second
J_delta = O_delta/(1 + I/kappa_delta) * C**2/(C**2 + K_delta**2) : mmolar/second
J_3K = O_3K * C**4/(C**4 + K_D**4) * I/(I + K_3K) : mmolar/second
J_5P = Omega_5P*I : mmolar/second
Diffusion between astrocytes:
J_coupling : mmolar/second

Ca^2+-induced Ca^2+ release:
dC/dt = J_r + J_l - J_p : mmolar
dh/dt = (h_inf - h)/tau_h : 1
J_r = (Omega_C * m_inf**3 * h**3) * (C_T - (1 + rho_A)*C) : mmolar/second
J_l = Omega_L * (C_T - (1 + rho_A)*C) : mmolar/second
J_p = O_P * C**2/(C**2 + K_P**2) : mmolar/second
m_inf = I/(I + d_1) * C/(C + d_5) : 1
h_inf = Q_2/(Q_2 + C) : 1
tau_h = 1/(O_2 * (Q_2 + C)) : second
Q_2 = d_2 * (I + d_1)/(I + d_3) : mmolar

Fraction of gliotransmitter resources available for release:
dx_A/dt = Omega_A * (1 - x_A) : 1
gliotransmitter concentration in the extracellular space:
dG_A/dt = -Omega_e*G_A : mmolar
Neurotransmitter concentration in the extracellular space:
Y_S : mmolar
The astrocyte position in space
x : meter (constant)
y : meter (constant)
'''
glio_release = '''
G_A += rho_e * G_T * U_A * x_A
x_A -= U_A * x_A
'''
astrocytes = NeuronGroup(N_a, astro_eqs,

The following formulation makes sure that a "spike" is
only triggered at the first threshold crossing
threshold='C>C_Theta',
refractory='C>C_Theta',
The gliotransmitter release happens when the threshold
is crossed, in Brian terms it can therefore be
considered a "reset"
reset=glio_release,
method='rk4',
dt=1e-2*second)

Arrange astrocytes in a grid
astrocytes.x = '(i / N_rows_a)*grid_dist - N_rows_a/2.0*grid_dist'
astrocytes.y = '(i % N_rows_a)*grid_dist - N_cols_a/2.0*grid_dist'
Add random initialization
astrocytes.C = 0.01*umolar
astrocytes.h = 0.9
astrocytes.I = 0.01*umolar
astrocytes.x_A = 1.0

ecs_astro_to_syn = Synapses(astrocytes, exc_syn,
'G_A_post = G_A_pre : mmolar (summed)')

300 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

ecs_astro_to_syn.connect('i == astrocyte_index_post')
ecs_syn_to_astro = Synapses(exc_syn, astrocytes,

'Y_S_post = Y_S_pre/N_incoming : mmolar (summed)')
ecs_syn_to_astro.connect('astrocyte_index_pre == j')
Diffusion between astrocytes
astro_to_astro_eqs = '''
delta_I = I_post - I_pre : mmolar
J_coupling_post = -(1 + tanh((abs(delta_I) - I_Theta)/omega_I))*

sign(delta_I)*F/2 : mmolar/second (summed)
'''
astro_to_astro = Synapses(astrocytes, astrocytes,

model=astro_to_astro_eqs)
Connect to all astrocytes less than 75um away
(about 4 connections per astrocyte)
astro_to_astro.connect('i != j and '

'sqrt((x_pre-x_post)**2 +'
' (y_pre-y_post)**2) < 75*um')

##
Monitors
##
Note that we could use a single monitor for all neurons instead, but this
way plotting is a bit easier in the end
exc_mon = SpikeMonitor(exc_neurons)
inh_mon = SpikeMonitor(inh_neurons)
ast_mon = SpikeMonitor(astrocytes)

##
Simulation run
##
run(duration, report='text')

##
Plot of Spiking activity
##
plt.style.use('figures.mplstyle')

fig, ax = plt.subplots(nrows=3, ncols=1, sharex=True, figsize=(6.26894, 6.26894*0.8),
gridspec_kw={'height_ratios': [1, 6, 2],

'left': 0.12, 'top': 0.97})
time_range = np.linspace(0, duration/second, duration/second*100)*second
ax[0].plot(time_range, I_ex*stimulus(time_range)/pA, 'k')
ax[0].set(xlim=(0, duration/second), ylim=(98, 122),

yticks=[100, 120], ylabel='I_{ex} (pA)')
pu.adjust_spines(ax[0], ['left'])

We only plot a fraction of the spikes
fraction = 4
ax[1].plot(exc_mon.t[exc_mon.i <= N_e//fraction]/second,

exc_mon.i[exc_mon.i <= N_e//fraction], '|', color='C0')
ax[1].plot(inh_mon.t[inh_mon.i <= N_i//fraction]/second,

inh_mon.i[inh_mon.i <= N_i//fraction]+N_e//fraction, '|', color='C1')
ax[1].plot(ast_mon.t[ast_mon.i <= N_a//fraction]/second,

ast_mon.i[ast_mon.i <= N_a//fraction]+(N_e+N_i)//fraction,
'|', color='C2')

ax[1].set(xlim=(0, duration/second), ylim=[0,(N_e+N_i+N_a)//fraction],
yticks=np.arange(0, (N_e+N_i+N_a)//fraction+1, 250),
ylabel='cell index')

5.13. frompapers/Stimberg_et_al_2018 301

Brian 2 Documentation, Release 2.1.1

pu.adjust_spines(ax[1], ['left'])

Generate frequencies
bin_size = 1*ms
spk_count, bin_edges = np.histogram(np.r_[exc_mon.t/second, inh_mon.t/second],

int(duration/bin_size))
rate = 1.0*spk_count/(N_e + N_i)/bin_size/Hz
rate[rate<0.001] = 0.001 # Fix 0 lower bound for log scale
ax[2].semilogy(bin_edges[:-1], rate, '-', color='k')
pu.adjust_spines(ax[2], ['left', 'bottom'])
ax[2].set(xlim=(0, duration/second), ylim=(0.1, 150),

xticks=np.arange(0,9), yticks=[0.1, 1, 10, 100],
xlabel='time (s)', ylabel='rate (Hz)')

ax[2].get_yaxis().set_major_formatter(ScalarFormatter())

pu.adjust_ylabels(ax, x_offset=-0.11)

plt.show()

5.13.8 Example: plot_utils

302 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

Module with useful functions for making publication-ready plots.

def adjust_spines(ax, spines, position=5, smart_bounds=False):
"""
Set custom visibility and position of axes

ax : Axes
Axes handle

spines : List
String list of 'left', 'bottom', 'right', 'top' spines to show

position : Integer
Number of points for position of axis

"""
for loc, spine in ax.spines.items():

if loc in spines:
spine.set_position(('outward', position))
spine.set_smart_bounds(smart_bounds)

else:
spine.set_color('none') # don't draw spine

turn off ticks where there is no spine
if 'left' in spines:

ax.yaxis.set_ticks_position('left')
elif 'right' in spines:

ax.yaxis.set_ticks_position('right')
else:

no yaxis ticks
ax.yaxis.set_ticks([])
ax.tick_params(axis='y', which='both', left='off', right='off')

if 'bottom' in spines:
ax.xaxis.set_ticks_position('bottom')

elif 'top' in spines:
ax.xaxis.set_ticks_position('top')

else:
no xaxis ticks
ax.xaxis.set_ticks([])
ax.tick_params(axis='x', which='both', bottom='off', top='off')

def adjust_ylabels(ax,x_offset=0):
'''
Scan all ax list and identify the outmost y-axis position.
Setting all the labels to that position + x_offset.
'''

xc = 0.0
for a in ax:

xc = min(xc, (a.yaxis.get_label()).get_position()[0])

for a in ax:
a.yaxis.set_label_coords(xc + x_offset,

(a.yaxis.get_label()).get_position()[1])

5.13. frompapers/Stimberg_et_al_2018 303

Brian 2 Documentation, Release 2.1.1

5.14 standalone

5.14.1 Example: STDP_standalone

Spike-timing dependent plasticity. Adapted from Song, Miller and Abbott (2000) and Song and Abbott (2001).

This example is modified from synapses_STDP.py and writes a standalone C++ project in the directory
STDP_standalone.

from brian2 import *

set_device('cpp_standalone', directory='STDP_standalone')

N = 1000
taum = 10*ms
taupre = 20*ms
taupost = taupre
Ee = 0*mV
vt = -54*mV
vr = -60*mV
El = -74*mV
taue = 5*ms
F = 15*Hz
gmax = .01
dApre = .01
dApost = -dApre * taupre / taupost * 1.05
dApost *= gmax
dApre *= gmax

eqs_neurons = '''
dv/dt = (ge * (Ee-vr) + El - v) / taum : volt
dge/dt = -ge / taue : 1
'''

input = PoissonGroup(N, rates=F)
neurons = NeuronGroup(1, eqs_neurons, threshold='v>vt', reset='v = vr',

method='exact')
S = Synapses(input, neurons,

'''w : 1
dApre/dt = -Apre / taupre : 1 (event-driven)
dApost/dt = -Apost / taupost : 1 (event-driven)''',

on_pre='''ge += w
Apre += dApre
w = clip(w + Apost, 0, gmax)''',

on_post='''Apost += dApost
w = clip(w + Apre, 0, gmax)''',

)
S.connect()
S.w = 'rand() * gmax'
mon = StateMonitor(S, 'w', record=[0, 1])
s_mon = SpikeMonitor(input)

run(100*second, report='text')

subplot(311)
plot(S.w / gmax, '.k')

304 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

ylabel('Weight / gmax')
xlabel('Synapse index')
subplot(312)
hist(S.w / gmax, 20)
xlabel('Weight / gmax')
subplot(313)
plot(mon.t/second, mon.w.T/gmax)
xlabel('Time (s)')
ylabel('Weight / gmax')
tight_layout()
show()

5.14.2 Example: cuba_openmp

Run the cuba.py example with OpenMP threads.

from brian2 import *

set_device('cpp_standalone', directory='CUBA')
prefs.devices.cpp_standalone.openmp_threads = 4

taum = 20*ms

5.14. standalone 305

Brian 2 Documentation, Release 2.1.1

taue = 5*ms
taui = 10*ms
Vt = -50*mV
Vr = -60*mV
El = -49*mV

eqs = '''
dv/dt = (ge+gi-(v-El))/taum : volt (unless refractory)
dge/dt = -ge/taue : volt (unless refractory)
dgi/dt = -gi/taui : volt (unless refractory)
'''

P = NeuronGroup(4000, eqs, threshold='v>Vt', reset='v = Vr', refractory=5*ms,
method='exact')

P.v = 'Vr + rand() * (Vt - Vr)'
P.ge = 0*mV
P.gi = 0*mV

we = (60*0.27/10)*mV # excitatory synaptic weight (voltage)
wi = (-20*4.5/10)*mV # inhibitory synaptic weight
Ce = Synapses(P, P, on_pre='ge += we')
Ci = Synapses(P, P, on_pre='gi += wi')
Ce.connect('i<3200', p=0.02)
Ci.connect('i>=3200', p=0.02)

s_mon = SpikeMonitor(P)

run(1 * second)

plot(s_mon.t/ms, s_mon.i, ',k')
xlabel('Time (ms)')
ylabel('Neuron index')
show()

306 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

5.15 synapses

5.15.1 Example: STDP

Spike-timing dependent plasticity Adapted from Song, Miller and Abbott (2000) and Song and Abbott (2001)

from brian2 import *

N = 1000
taum = 10*ms
taupre = 20*ms
taupost = taupre
Ee = 0*mV
vt = -54*mV
vr = -60*mV
El = -74*mV
taue = 5*ms
F = 15*Hz
gmax = .01
dApre = .01
dApost = -dApre * taupre / taupost * 1.05
dApost *= gmax

5.15. synapses 307

Brian 2 Documentation, Release 2.1.1

dApre *= gmax

eqs_neurons = '''
dv/dt = (ge * (Ee-vr) + El - v) / taum : volt
dge/dt = -ge / taue : 1
'''

input = PoissonGroup(N, rates=F)
neurons = NeuronGroup(1, eqs_neurons, threshold='v>vt', reset='v = vr',

method='exact')
S = Synapses(input, neurons,

'''w : 1
dApre/dt = -Apre / taupre : 1 (event-driven)
dApost/dt = -Apost / taupost : 1 (event-driven)''',

on_pre='''ge += w
Apre += dApre
w = clip(w + Apost, 0, gmax)''',

on_post='''Apost += dApost
w = clip(w + Apre, 0, gmax)''',

)
S.connect()
S.w = 'rand() * gmax'
mon = StateMonitor(S, 'w', record=[0, 1])
s_mon = SpikeMonitor(input)

run(100*second, report='text')

subplot(311)
plot(S.w / gmax, '.k')
ylabel('Weight / gmax')
xlabel('Synapse index')
subplot(312)
hist(S.w / gmax, 20)
xlabel('Weight / gmax')
subplot(313)
plot(mon.t/second, mon.w.T/gmax)
xlabel('Time (s)')
ylabel('Weight / gmax')
tight_layout()
show()

308 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

5.15.2 Example: efficient_gaussian_connectivity

An example of turning an expensive Synapses.connect() operation into three cheap ones using a mathematical
trick.

Consider the connection probability between neurons i and j given by the Gaussian function 𝑝 = 𝑒−𝛼(𝑖−𝑗)2 (for some
constant 𝛼). If we want to connect neurons with this probability, we can very simply do:

S.connect(p='exp(-alpha*(i-j)**2)')

However, this has a problem. Although we know that this will create 𝑂(𝑁) synapses if N is the number of neurons,
because we have specified p as a function of i and j, we have to evaluate p(i, j) for every pair (i, j), and
therefore it takes 𝑂(𝑁2) operations.

Our first option is to take a cutoff, and say that if 𝑝 < 𝑞 for some small 𝑞, then we assume that 𝑝 ≈ 0. We can work out
which j values are compatible with a given value of i by solving 𝑒−𝛼(𝑖−𝑗)2 < 𝑞 which gives |𝑖−𝑗| <

√︀
− log(𝑞)/𝛼) =

𝑤. Now we implement the rule using the generator syntax to only search for values between i-w and i+w, except
that some of these values will be outside the valid range of values for j so we set skip_if_invalid=True. The
connection code is then:

S.connect(j='k for k in range(i-w, i+w) if rand()<exp(-alpha*(i-j)**2)',
skip_if_invalid=True)

5.15. synapses 309

Brian 2 Documentation, Release 2.1.1

This is a lot faster (see graph labelled “Limited” for this algorithm).

However, it may be a problem that we have to specify a cutoff and so we will lose some synapses doing this: it won’t be
mathematically exact. This isn’t a problem for the Gaussian because w grows very slowly with the cutoff probability
q, but for other probability distributions with more weight in the tails, it could be an issue.

If we want to be exact, we can still do a big improvement. For the case 𝑖−𝑤 ≤ 𝑗 ≤ 𝑖+𝑤 we use the same connection
code, but we also handle the case |𝑖 − 𝑗| > 𝑤. This time, we note that we want to create a synapse with probability
𝑝(𝑖 − 𝑗) and we can rewrite this as 𝑝(𝑖 − 𝑗)/𝑝(𝑤) · 𝑝(𝑤). If |𝑖 − 𝑗| > 𝑤 then this is a product of two probabilities
𝑝(𝑖− 𝑗)/𝑝(𝑤) and 𝑝(𝑤). So in the region |𝑖− 𝑗| > 𝑤 a synapse will be created if two random events both occur, with
these two probabilities. This might seem a little strange until you notice that one of the two probabilities 𝑝(𝑤) doesn’t
depend on i or j. This lets us use the much more efficient sample algorithm to generate a set of candidate j values,
and then add the additional test rand()<p(i-j)/p(w). Here’s the code for that:

w = int(ceil(sqrt(log(q)/-0.1)))
S.connect(j='k for k in range(i-w, i+w) if rand()<exp(-alpha*(i-j)**2)',

skip_if_invalid=True)
pmax = exp(-0.1*w**2)
S.connect(j='k for k in sample(0, i-w, p=pmax) if rand()<exp(-alpha*(i-j)**2)/pmax',

skip_if_invalid=True)
S.connect(j='k for k in sample(i+w, N_post, p=pmax) if rand()<exp(-alpha*(i-j)**2)/
→˓pmax',

skip_if_invalid=True)

This “Divided” method is also much faster than the naive method, and is mathematically correct. Note though that
this method is still 𝑂(𝑁2) but the constants are much, much smaller and this will usually be sufficient. It is possible
to take the ideas developed here even further and get even better scaling, but in most cases it’s unlikely to be worth the
effort.

The code below shows these examples written out, along with some timing code and plots for different values of N.

from brian2 import *
import time

def naive(N):
G = NeuronGroup(N, 'v:1', threshold='v>1', name='G')
S = Synapses(G, G, on_pre='v += 1', name='S')
S.connect(p='exp(-0.1*(i-j)**2)')

def limited(N, q=0.001):
G = NeuronGroup(N, 'v:1', threshold='v>1', name='G')
S = Synapses(G, G, on_pre='v += 1', name='S')
w = int(ceil(sqrt(log(q)/-0.1)))
S.connect(j='k for k in range(i-w, i+w) if rand()<exp(-0.1*(i-j)**2)', skip_if_

→˓invalid=True)

def divided(N, q=0.001):
G = NeuronGroup(N, 'v:1', threshold='v>1', name='G')
S = Synapses(G, G, on_pre='v += 1', name='S')
w = int(ceil(sqrt(log(q)/-0.1)))
S.connect(j='k for k in range(i-w, i+w) if rand()<exp(-0.1*(i-j)**2)', skip_if_

→˓invalid=True)
pmax = exp(-0.1*w**2)
S.connect(j='k for k in sample(0, i-w, p=pmax) if rand()<exp(-0.1*(i-j)**2)/pmax',

→˓ skip_if_invalid=True)
S.connect(j='k for k in sample(i+w, N_post, p=pmax) if rand()<exp(-0.1*(i-j)**2)/

→˓pmax', skip_if_invalid=True)

def repeated_run(f, N, repeats):

310 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

start_time = time.time()
for _ in range(repeats):

f(N)
end_time = time.time()
return (end_time-start_time)/repeats

N = array([100, 500, 1000, 5000, 10000, 20000])
repeats = array([100, 10, 10, 1, 1, 1])*3
naive(10)
limited(10)
divided(10)
print 'Starting naive'
loglog(N, [repeated_run(naive, n, r) for n, r in zip(N, repeats)],

label='Naive', lw=2)
print 'Starting limit'
loglog(N, [repeated_run(limited, n, r) for n, r in zip(N, repeats)],

label='Limited', lw=2)
print 'Starting divided'
loglog(N, [repeated_run(divided, n, r) for n, r in zip(N, repeats)],

label='Divided', lw=2)
xlabel('N')
ylabel('Time (s)')
legend(loc='best', frameon=False)
show()

5.15. synapses 311

Brian 2 Documentation, Release 2.1.1

5.15.3 Example: gapjunctions

Neurons with gap junctions.

from brian2 import *

n = 10
v0 = 1.05
tau = 10*ms

eqs = '''
dv/dt = (v0 - v + Igap) / tau : 1
Igap : 1 # gap junction current
'''

neurons = NeuronGroup(n, eqs, threshold='v > 1', reset='v = 0',
method='exact')

neurons.v = 'i * 1.0 / (n-1)'
trace = StateMonitor(neurons, 'v', record=[0, 5])

S = Synapses(neurons, neurons, '''
w : 1 # gap junction conductance
Igap_post = w * (v_pre - v_post) : 1 (summed)
''')

S.connect()
S.w = .02

run(500*ms)

plot(trace.t/ms, trace[0].v)
plot(trace.t/ms, trace[5].v)
xlabel('Time (ms)')
ylabel('v')
show()

312 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

5.15.4 Example: jeffress

Jeffress model, adapted with spiking neuron models. A sound source (white noise) is moving around the head. Delay
differences between the two ears are used to determine the azimuth of the source. Delays are mapped to a neural place
code using delay lines (each neuron receives input from both ears, with different delays).

from brian2 import *

defaultclock.dt = .02*ms

Sound
sound = TimedArray(10 * randn(50000), dt=defaultclock.dt) # white noise

Ears and sound motion around the head (constant angular speed)
sound_speed = 300*metre/second
interaural_distance = 20*cm # big head!
max_delay = interaural_distance / sound_speed
print("Maximum interaural delay: %s" % max_delay)
angular_speed = 2 * pi / second # 1 turn/second
tau_ear = 1*ms
sigma_ear = .1
eqs_ears = '''
dx/dt = (sound(t-delay)-x)/tau_ear+sigma_ear*(2./tau_ear)**.5*xi : 1 (unless
→˓refractory)

5.15. synapses 313

Brian 2 Documentation, Release 2.1.1

delay = distance*sin(theta) : second
distance : second # distance to the centre of the head in time units
dtheta/dt = angular_speed : radian
'''
ears = NeuronGroup(2, eqs_ears, threshold='x>1', reset='x = 0',

refractory=2.5*ms, name='ears', method='euler')
ears.distance = [-.5 * max_delay, .5 * max_delay]
traces = StateMonitor(ears, 'delay', record=True)
Coincidence detectors
num_neurons = 30
tau = 1*ms
sigma = .1
eqs_neurons = '''
dv/dt = -v / tau + sigma * (2 / tau)**.5 * xi : 1
'''
neurons = NeuronGroup(num_neurons, eqs_neurons, threshold='v>1',

reset='v = 0', name='neurons', method='euler')

synapses = Synapses(ears, neurons, on_pre='v += .5')
synapses.connect()

synapses.delay['i==0'] = '(1.0*j)/(num_neurons-1)*1.1*max_delay'
synapses.delay['i==1'] = '(1.0*(num_neurons-j-1))/(num_neurons-1)*1.1*max_delay'

spikes = SpikeMonitor(neurons)

run(1000*ms)

Plot the results
i, t = spikes.it
subplot(2, 1, 1)
plot(t/ms, i, '.')
xlabel('Time (ms)')
ylabel('Neuron index')
xlim(0, 1000)
subplot(2, 1, 2)
plot(traces.t/ms, traces.delay.T/ms)
xlabel('Time (ms)')
ylabel('Input delay (ms)')
xlim(0, 1000)
tight_layout()
show()

314 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

5.15.5 Example: licklider

Spike-based adaptation of Licklider’s model of pitch processing (autocorrelation with delay lines) with phase locking.

from brian2 import *

defaultclock.dt = .02 * ms

Ear and sound
max_delay = 20*ms # 50 Hz
tau_ear = 1*ms
sigma_ear = 0.0
eqs_ear = '''
dx/dt = (sound-x)/tau_ear+0.1*(2./tau_ear)**.5*xi : 1 (unless refractory)
sound = 5*sin(2*pi*frequency*t)**3 : 1 # nonlinear distortion
#sound = 5*(sin(4*pi*frequency*t)+.5*sin(6*pi*frequency*t)) : 1 # missing fundamental
frequency = (200+200*t*Hz)*Hz : Hz # increasing pitch
'''
receptors = NeuronGroup(2, eqs_ear, threshold='x>1', reset='x=0',

refractory=2*ms, method='euler')
Coincidence detectors
min_freq = 50*Hz
max_freq = 1000*Hz

5.15. synapses 315

Brian 2 Documentation, Release 2.1.1

num_neurons = 300
tau = 1*ms
sigma = .1
eqs_neurons = '''
dv/dt = -v/tau+sigma*(2./tau)**.5*xi : 1
'''

neurons = NeuronGroup(num_neurons, eqs_neurons, threshold='v>1', reset='v=0',
method='euler')

synapses = Synapses(receptors, neurons, on_pre='v += 0.5')
synapses.connect()
synapses.delay = 'i*1.0/exp(log(min_freq/Hz)+(j*1.0/(num_neurons-1))*log(max_freq/min_
→˓freq))*second'

spikes = SpikeMonitor(neurons)

run(500*ms)
plot(spikes.t/ms, spikes.i, '.k')
xlabel('Time (ms)')
ylabel('Frequency')
yticks([0, 99, 199, 299],

array(1. / synapses.delay[1, [0, 99, 199, 299]], dtype=int))
show()

316 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

5.15.6 Example: nonlinear

NMDA synapses.

from brian2 import *

a = 1 / (10*ms)
b = 1 / (10*ms)
c = 1 / (10*ms)

input = NeuronGroup(2, 'dv/dt = 1/(10*ms) : 1', threshold='v>1', reset='v = 0',
method='euler')

neurons = NeuronGroup(1, """dv/dt = (g-v)/(10*ms) : 1
g : 1""", method='exact')

S = Synapses(input, neurons,'''
dg_syn/dt = -a*g_syn+b*x*(1-g_syn) : 1 (clock-driven)
g_post = g_syn : 1 (summed)
dx/dt=-c*x : 1 (clock-driven)
w : 1 # synaptic weight

''', on_pre='x += w') # NMDA synapses

S.connect()
S.w = [1., 10.]
input.v = [0., 0.5]

M = StateMonitor(S, 'g',
If not using standalone mode, this could also simply be
record=True
record=np.arange(len(input)*len(neurons)))

Mn = StateMonitor(neurons, 'g', record=0)

run(1000*ms)

subplot(2, 1, 1)
plot(M.t/ms, M.g.T)
xlabel('Time (ms)')
ylabel('g_syn')
subplot(2, 1, 2)
plot(Mn.t/ms, Mn[0].g)
ylabel('Time (ms)')
ylabel('g')
tight_layout()
show()

5.15. synapses 317

Brian 2 Documentation, Release 2.1.1

5.15.7 Example: spatial_connections

A simple example showing how string expressions can be used to implement spatial (deterministic or stochastic)
connection patterns.

from brian2 import *

rows, cols = 20, 20
G = NeuronGroup(rows * cols, '''x : meter

y : meter''')
initialize the grid positions
grid_dist = 25*umeter
G.x = '(i / rows) * grid_dist - rows/2.0 * grid_dist'
G.y = '(i % rows) * grid_dist - cols/2.0 * grid_dist'

Deterministic connections
distance = 120*umeter
S_deterministic = Synapses(G, G)
S_deterministic.connect('sqrt((x_pre - x_post)**2 + (y_pre - y_post)**2) < distance')

Random connections (no self-connections)
S_stochastic = Synapses(G, G)
S_stochastic.connect('i != j',

318 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

p='1.5 * exp(-((x_pre-x_post)**2 + (y_pre-y_post)**2)/
→˓(2*(60*umeter)**2))')

figure(figsize=(12, 6))

Show the connections for some neurons in different colors
for color in ['g', 'b', 'm']:

subplot(1, 2, 1)
neuron_idx = np.random.randint(0, rows*cols)
plot(G.x[neuron_idx] / umeter, G.y[neuron_idx] / umeter, 'o', mec=color,

mfc='none')
plot(G.x[S_deterministic.j[neuron_idx, :]] / umeter,

G.y[S_deterministic.j[neuron_idx, :]] / umeter, color + '.')
subplot(1, 2, 2)
plot(G.x[neuron_idx] / umeter, G.y[neuron_idx] / umeter, 'o', mec=color,

mfc='none')
plot(G.x[S_stochastic.j[neuron_idx, :]] / umeter,

G.y[S_stochastic.j[neuron_idx, :]] / umeter, color + '.')

for idx, t in enumerate(['determininstic connections',
'random connections']):

subplot(1, 2, idx + 1)
xlim((-rows/2.0 * grid_dist) / umeter, (rows/2.0 * grid_dist) / umeter)
ylim((-cols/2.0 * grid_dist) / umeter, (cols/2.0 * grid_dist) / umeter)
title(t)
xlabel('x')
ylabel('y', rotation='horizontal')
axis('equal')

tight_layout()
show()

5.15. synapses 319

Brian 2 Documentation, Release 2.1.1

5.15.8 Example: state_variables

Set state variable values with a string (using code generation).

from brian2 import *

G = NeuronGroup(100, 'v:volt', threshold='v>-50*mV')
G.v = '(sin(2*pi*i/N) - 70 + 0.25*randn()) * mV'
S = Synapses(G, G, 'w : volt', on_pre='v += w')
S.connect()

space_constant = 200.0
S.w['i > j'] = 'exp(-(i - j)**2/space_constant) * mV'

Generate a matrix for display
w_matrix = np.zeros((len(G), len(G)))
w_matrix[S.i[:], S.j[:]] = S.w[:]

subplot(1, 2, 1)
plot(G.v[:] / mV)
xlabel('Neuron index')
ylabel('v')
subplot(1, 2, 2)
imshow(w_matrix)
xlabel('i')
ylabel('j')
title('Synaptic weight')
tight_layout()
show()

320 Chapter 5. Examples

Brian 2 Documentation, Release 2.1.1

5.15.9 Example: synapses

A simple example of using Synapses.

from brian2 import *

G1 = NeuronGroup(10, 'dv/dt = -v / (10*ms) : 1',
threshold='v > 1', reset='v=0.', method='exact')

G1.v = 1.2
G2 = NeuronGroup(10, 'dv/dt = -v / (10*ms) : 1',

threshold='v > 1', reset='v=0', method='exact')

syn = Synapses(G1, G2, 'dw/dt = -w / (50*ms): 1 (event-driven)', on_pre='v += w')

syn.connect('i == j', p=0.75)

Set the delays
syn.delay = '1*ms + i*ms + 0.25*ms * randn()'
Set the initial values of the synaptic variable
syn.w = 1

mon = StateMonitor(G2, 'v', record=True)
run(20*ms)

5.15. synapses 321

Brian 2 Documentation, Release 2.1.1

plot(mon.t/ms, mon.v.T)
xlabel('Time (ms)')
ylabel('v')
show()

322 Chapter 5. Examples

CHAPTER 6

brian2 package

Brian 2.0

6.1 hears module

This is only a bridge for using Brian 1 hears with Brian 2.

NOTES:

• Slicing sounds with Brian 2 units doesn’t work, you need to either use Brian 1 units or replace calls to
sound[:20*ms] with sound.slice(None, 20*ms), etc.

TODO: handle properties (e.g. sound.duration)

Not working examples:

• time_varying_filter1 (care with units)

Exported members: convert_unit_b1_to_b2, convert_unit_b2_to_b1

Classes

BridgeSound We add a new method slice because slicing with units can’t
work with Brian 2 units.

6.1.1 BridgeSound class

(Shortest import: from brian2.hears import BridgeSound)

class brian2.hears.BridgeSound
Bases: brian2.hears.new_class

We add a new method slice because slicing with units can’t work with Brian 2 units.

323

Brian 2 Documentation, Release 2.1.1

Methods

slice(*args)

Details

slice(*args)

FilterbankGroup(filterbank, targetvar, . . .)

Methods

6.1.2 FilterbankGroup class

(Shortest import: from brian2.hears import FilterbankGroup)

class brian2.hears.FilterbankGroup(filterbank, targetvar, *args, **kwds)
Bases: brian2.groups.neurongroup.NeuronGroup

Methods

reinit()

Details

reinit()

Sound alias of BridgeSound

6.1.3 Sound class

(Shortest import: from brian2.hears import Sound)

brian2.hears.Sound
alias of BridgeSound

WrappedSound alias of new_class

6.1.4 WrappedSound class

(Shortest import: from brian2.hears import WrappedSound)

brian2.hears.WrappedSound
alias of new_class

Functions

324 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

convert_unit_b1_to_b2(val)

6.1.5 convert_unit_b1_to_b2 function

(Shortest import: from brian2.hears import convert_unit_b1_to_b2)

brian2.hears.convert_unit_b1_to_b2(val)

convert_unit_b2_to_b1(val)

6.1.6 convert_unit_b2_to_b1 function

(Shortest import: from brian2.hears import convert_unit_b2_to_b1)

brian2.hears.convert_unit_b2_to_b1(val)

modify_arg(arg) Modify arguments to make them compatible with Brian 1.

6.1.7 modify_arg function

(Shortest import: from brian2.hears import modify_arg)

brian2.hears.modify_arg(arg)
Modify arguments to make them compatible with Brian 1.

• Arrays of units are replaced with straight arrays

• Single values are replaced with Brian 1 equivalents

• Slices are handled so we can use e.g. sound[:20*ms]

The second part was necessary because some functions/classes test if an object is an array or not to see if it is a
sequence, but because brian2.Quantity derives from ndarray this was causing problems.

wrap_units(f) Wrap a function to convert units into a form that Brian 1
can handle.

6.1.8 wrap_units function

(Shortest import: from brian2.hears import wrap_units)

brian2.hears.wrap_units(f)
Wrap a function to convert units into a form that Brian 1 can handle. Also, check the output argument, if it is a
b1h.Sound wrap it.

wrap_units_class(_C) Wrap a class to convert units into a form that Brian 1 can
handle in all methods

6.1. hears module 325

Brian 2 Documentation, Release 2.1.1

6.1.9 wrap_units_class function

(Shortest import: from brian2.hears import wrap_units_class)

brian2.hears.wrap_units_class(_C)
Wrap a class to convert units into a form that Brian 1 can handle in all methods

wrap_units_property(p)

6.1.10 wrap_units_property function

(Shortest import: from brian2.hears import wrap_units_property)

brian2.hears.wrap_units_property(p)

6.2 numpy_ module

A dummy package to allow importing numpy and the unit-aware replacements of numpy functions without having to
know which functions are overwritten.

This can be used for example as import brian2.numpy_ as np

Exported members: add_newdocs, ModuleDeprecationWarning, VisibleDeprecationWarning,
__version__, pkgload(), PackageLoader, show_config(), char, rec, memmap, newaxis,
ndarray, flatiter, nditer, nested_iters, ufunc, arange(), array, zeros, count_nonzero(),
empty, broadcast, dtype, fromstring, fromfile . . . (615 more members)

6.3 only module

A dummy package to allow wildcard import from brian2 without also importing the pylab (numpy + matplotlib)
namespace.

Usage: from brian2.only import *

Functions

restore_initial_state() Restores internal Brian variables to the state they are in
when Brian is imported

6.3.1 restore_initial_state function

(Shortest import: from brian2 import restore_initial_state)

brian2.only.restore_initial_state()
Restores internal Brian variables to the state they are in when Brian is imported

Resets defaultclock.dt = 0.1*ms, BrianGlobalPreferences._restore preferences, and set
BrianObject._scope_current_key back to 0.

326 Chapter 6. brian2 package

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.flatiter.html#numpy.flatiter
https://docs.scipy.org/doc/numpy/reference/generated/numpy.nditer.html#numpy.nditer
https://docs.scipy.org/doc/numpy/reference/generated/numpy.broadcast.html#numpy.broadcast
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype

Brian 2 Documentation, Release 2.1.1

6.4 Subpackages

6.4.1 codegen package

Package providing the code generation framework.

_prefs module

Module declaring general code generation preferences.

Preferences

Code generation preferences codegen.loop_invariant_optimisations = True

Whether to pull out scalar expressions out of the statements, so that they are only evaluated once instead
of once for every neuron/synapse/. . . Can be switched off, e.g. because it complicates the code (and the
same optimisation is already performed by the compiler) or because the code generation target does not
deal well with it. Defaults to True.

codegen.string_expression_target = 'numpy'

Default target for the evaluation of string expressions (e.g. when indexing state variables). Should nor-
mally not be changed from the default numpy target, because the overhead of compiling code is not worth
the speed gain for simple expressions.

Accepts the same arguments as codegen.target, except for 'auto'

codegen.target = 'auto'

Default target for code generation.

Can be a string, in which case it should be one of:

• 'auto' the default, automatically chose the best code generation target available.

• 'weave' uses scipy.weave to generate and compile C++ code, should work anywhere where
gcc is installed and available at the command line.

• 'cython', uses the Cython package to generate C++ code. Needs a working installation of Cython
and a C++ compiler.

• 'numpy' works on all platforms and doesn’t need a C compiler but is often less efficient.

Or it can be a CodeObject class.

codeobject module

Module providing the base CodeObject and related functions.

Exported members: CodeObject, CodeObjectUpdater, constant_or_scalar

Classes

CodeObject(owner, code, variables, . . . [, name]) Executable code object.

6.4. Subpackages 327

Brian 2 Documentation, Release 2.1.1

CodeObject class

(Shortest import: from brian2 import CodeObject)

class brian2.codegen.codeobject.CodeObject(owner, code, variables, variable_indices,
template_name, template_source,
name=’codeobject*’)

Bases: brian2.core.names.Nameable

Executable code object.

The code can either be a string or a brian2.codegen.templates.MultiTemplate.

After initialisation, the code is compiled with the given namespace using code.compile(namespace).

Calling code(key1=val1, key2=val2) executes the code with the given variables inserted into the
namespace.

Attributes

class_name A short name for this type of CodeObject
generator_class The CodeGenerator class used by this

CodeObject

Methods

__call__(**kwds)
compile()
is_available() Whether this target for code generation is available.
run() Runs the code in the namespace.
update_namespace() Update the namespace for this timestep.

Details

class_name
A short name for this type of CodeObject

generator_class
The CodeGenerator class used by this CodeObject

__call__(**kwds)

compile()

classmethod is_available()
Whether this target for code generation is available. Should use a minimal example to check whether code
generation works in general.

run()
Runs the code in the namespace.

Returns return_value : dict

A dictionary with the keys corresponding to the output_variables defined during
the call of CodeGenerator.code_object.

328 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

update_namespace()
Update the namespace for this timestep. Should only deal with variables where the reference changes
every timestep, i.e. where the current reference in namespace is not correct.

Functions

constant_or_scalar(varname, variable) Convenience function to generate code to access the value
of a variable.

constant_or_scalar function

(Shortest import: from brian2.codegen.codeobject import constant_or_scalar)

brian2.codegen.codeobject.constant_or_scalar(varname, variable)
Convenience function to generate code to access the value of a variable. Will return 'varname' if the
variable is a constant, and array_name[0] if it is a scalar array.

create_runner_codeobj(group, code, . . . [, . . .]) Create a CodeObject for the execution of code in the
context of a Group.

create_runner_codeobj function

(Shortest import: from brian2.codegen.codeobject import create_runner_codeobj)

brian2.codegen.codeobject.create_runner_codeobj(group, code, template_name,
run_namespace, user_code=None,
variable_indices=None,
name=None, check_units=True,
needed_variables=None, ad-
ditional_variables=None,
template_kwds=None, over-
ride_conditional_write=None,
codeobj_class=None)

Create a CodeObject for the execution of code in the context of a Group.

Parameters group : Group

The group where the code is to be run

code : str or dict of str

The code to be executed.

template_name : str

The name of the template to use for the code.

run_namespace : dict-like

An additional namespace that is used for variable lookup (either an explicitly defined
namespace or one taken from the local context).

user_code : str, optional

The code that had been specified by the user before other code was added automatically.
If not specified, will be assumed to be identical to code.

variable_indices : dict-like, optional

6.4. Subpackages 329

Brian 2 Documentation, Release 2.1.1

A mapping from Variable objects to index names (strings). If none is given, uses the
corresponding attribute of group.

name : str, optional

A name for this code object, will use group + '_codeobject*' if none is given.

check_units : bool, optional

Whether to check units in the statement. Defaults to True.

needed_variables: list of str, optional :

A list of variables that are neither present in the abstract code, nor in the
USES_VARIABLES statement in the template. This is only rarely necessary, an ex-
ample being a StateMonitor where the names of the variables are neither known to
the template nor included in the abstract code statements.

additional_variables : dict-like, optional

A mapping of names to Variable objects, used in addition to the variables saved in
group.

template_kwds : dict, optional

A dictionary of additional information that is passed to the template.

override_conditional_write: list of str, optional :

A list of variable names which are used as conditions (e.g. for refractoriness) which
should be ignored.

codeobj_class : class, optional

The CodeObject class to run code with. If not specified, defaults to the group’s
codeobj_class attribute.

cpp_prefs module

Preferences related to C++ compilation

Preferences

C++ compilation preferences codegen.cpp.compiler = ''

Compiler to use (uses default if empty)

Should be gcc or msvc.

codegen.cpp.define_macros = []

List of macros to define; each macro is defined using a 2-tuple, where ‘value’ is either the string to define
it to or None to define it without a particular value (equivalent of “#define FOO” in source or -DFOO on
Unix C compiler command line).

codegen.cpp.extra_compile_args = None

Extra arguments to pass to compiler (if None, use either extra_compile_args_gcc or
extra_compile_args_msvc).

codegen.cpp.extra_compile_args_gcc = ['-w', '-O3', '-ffast-math',
'-fno-finite-math-only', '-march=native']

330 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

Extra compile arguments to pass to GCC compiler

codegen.cpp.extra_compile_args_msvc = ['/Ox', '/w', '/arch:SSE2', '/MP']

Extra compile arguments to pass to MSVC compiler (the default /arch: flag is determined based on the
processor architecture)

codegen.cpp.extra_link_args = []

Any extra platform- and compiler-specific information to use when linking object files together.

codegen.cpp.headers = []

A list of strings specifying header files to use when compiling the code. The list might look like [“<vec-
tor>”,“‘my_header’”]. Note that the header strings need to be in a form than can be pasted at the end of a
#include statement in the C++ code.

codegen.cpp.include_dirs = []

Include directories to use. Note that $prefix/include will be appended to the end automatically,
where $prefix is Python’s site-specific directory prefix as returned by sys.prefix.

codegen.cpp.libraries = []

List of library names (not filenames or paths) to link against.

codegen.cpp.library_dirs = []

List of directories to search for C/C++ libraries at link time. Note that $prefix/lib will be appended
to the end automatically, where $prefix is Python’s site-specific directory prefix as returned by sys.
prefix.

codegen.cpp.msvc_architecture = ''

MSVC architecture name (or use system architectue by default).

Could take values such as x86, amd64, etc.

codegen.cpp.msvc_vars_location = ''

Location of the MSVC command line tool (or search for best by default).

codegen.cpp.runtime_library_dirs = []

List of directories to search for C/C++ libraries at run time.

Exported members: get_compiler_and_args

Functions

get_compiler_and_args() Returns the computed compiler and compilation flags

get_compiler_and_args function

(Shortest import: from brian2.codegen.cpp_prefs import get_compiler_and_args)

brian2.codegen.cpp_prefs.get_compiler_and_args()
Returns the computed compiler and compilation flags

update_for_cross_compilation(library_dirs,
. . .)

Update the compiler arguments to allow cross-compilation
for 32bit on a 64bit Linux system.

6.4. Subpackages 331

https://docs.python.org/2/library/sys.html#sys.prefix
https://docs.python.org/2/library/sys.html#sys.prefix
https://docs.python.org/2/library/sys.html#sys.prefix

Brian 2 Documentation, Release 2.1.1

update_for_cross_compilation function

(Shortest import: from brian2.codegen.cpp_prefs import update_for_cross_compilation)

brian2.codegen.cpp_prefs.update_for_cross_compilation(library_dirs, ex-
tra_compile_args, ex-
tra_link_args, logger=None)

Update the compiler arguments to allow cross-compilation for 32bit on a 64bit Linux system. Uses the provided
logger to print an INFO message and modifies the provided lists in-place.

Parameters library_dirs : list

List of library directories (will be modified in-place).

extra_compile_args : list

List of extra compile args (will be modified in-place).

extra_link_args : list

List of extra link args (will be modified in-place).

logger : BrianLogger, optional

The logger to use for the INFO message. Defaults to None (no message).

optimisation module

Simplify and optimise sequences of statements by rewriting and pulling out loop invariants.

Exported members: optimise_statements, ArithmeticSimplifier, Simplifier

Classes

ArithmeticSimplifier(variables) Carries out the following arithmetic simplifications:

ArithmeticSimplifier class

(Shortest import: from brian2.codegen.optimisation import ArithmeticSimplifier)

class brian2.codegen.optimisation.ArithmeticSimplifier(variables)
Bases: brian2.parsing.bast.BrianASTRenderer

Carries out the following arithmetic simplifications:

1. Constant evaluation (e.g. exp(0)=1) by attempting to evaluate the expression in an “assumptions names-
pace”

2. Binary operators, e.g. 0*x=0, 1*x=x, etc. You have to take care that the dtypes match here, e.g. if x is an
integer, then 1.0*x shouldn’t be replaced with x but left as 1.0*x.

Parameters variables : dict of (str, Variable)

Usual definition of variables.

assumptions : sequence of str

Additional assumptions that can be used in simplification, each assumption is a string
statement. These might be the scalar statements for example.

332 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

Methods

render_BinOp(node)
render_node(node) Assumes that the node has already been fully processed

by BrianASTRenderer

Details

render_BinOp(node)

render_node(node)
Assumes that the node has already been fully processed by BrianASTRenderer

Simplifier(variables, scalar_statements[, . . .]) Carry out arithmetic simplifications (see
ArithmeticSimplifier) and loop invariants

Simplifier class

(Shortest import: from brian2.codegen.optimisation import Simplifier)

class brian2.codegen.optimisation.Simplifier(variables, scalar_statements, ex-
tra_lio_prefix=”)

Bases: brian2.parsing.bast.BrianASTRenderer

Carry out arithmetic simplifications (see ArithmeticSimplifier) and loop invariants

Parameters variables : dict of (str, Variable)

Usual definition of variables.

scalar_statements : sequence of Statement

Predefined scalar statements that can be used as part of simplification

Notes

After calling render_expr on a sequence of expressions (coming from vector statements typically), this
object will have some new attributes:

loop_invariants [OrderedDict of (expression, varname)] varname will be of the form _lio_N where N
is some integer, and the expressions will be strings that correspond to scalar-only expressions that can be
evaluated outside of the vector block.

loop_invariant_dtypes [dict of (varname, dtypename)] dtypename will be one of 'boolean',
'integer', 'float'.

Methods

render_expr(expr)
render_node(node) Assumes that the node has already been fully processed

by BrianASTRenderer

6.4. Subpackages 333

Brian 2 Documentation, Release 2.1.1

Details

render_expr(expr)

render_node(node)
Assumes that the node has already been fully processed by BrianASTRenderer

Functions

cancel_identical_terms(primary, inverted) Cancel terms in a collection, e.g.

cancel_identical_terms function

(Shortest import: from brian2.codegen.optimisation import cancel_identical_terms)

brian2.codegen.optimisation.cancel_identical_terms(primary, inverted)
Cancel terms in a collection, e.g. a+b-a should be cancelled to b

Simply renders the nodes into expressions and removes whenever there is a common expression in primary and
inverted.

Parameters primary : list of AST nodes

These are the nodes that are positive with respect to the operator, e.g. in x*y/z it would
be [x, y].

inverted : list of AST nodes

These are the nodes that are inverted with respect to the operator, e.g. in x*y/z it would
be [z].

Returns primary : list of AST nodes

Primary nodes after cancellation

inverted : list of AST nodes

Inverted nodes after cancellation

collect(node) Attempts to collect commutative operations into one and
simplifies them.

collect function

(Shortest import: from brian2.codegen.optimisation import collect)

brian2.codegen.optimisation.collect(node)
Attempts to collect commutative operations into one and simplifies them.

For example, if x and y are scalars, and z is a vector, then (x*z)*y should be rewritten as (x*y)*z to minimise
the number of vector operations. Similarly, ((x*2)*3)*4 should be rewritten as x*24.

Works for either multiplication/division or addition/subtraction nodes.

The final output is a subexpression of the following maximal form:

(((numerical_value*(product of scalars))/(product of scalars))*(product of vectors))/(product of vec-
tors)

334 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

Any possible cancellations will have been done.

Parameters node : Brian AST node

The node to be collected/simplified.

Returns node : Brian AST node

Simplified node.

collect_commutative(node, primary, inverted, . . .)

collect_commutative function

(Shortest import: from brian2.codegen.optimisation import collect_commutative)

brian2.codegen.optimisation.collect_commutative(node, primary, inverted,
terms_primary, terms_inverted,
add_to_inverted=False)

evaluate_expr(expr, ns) Try to evaluate the expression in the given namespace

evaluate_expr function

(Shortest import: from brian2.codegen.optimisation import evaluate_expr)

brian2.codegen.optimisation.evaluate_expr(expr, ns)
Try to evaluate the expression in the given namespace

Returns either (value, True) if successful, or (expr, False) otherwise.

expression_complexity(expr, variables)

expression_complexity function

(Shortest import: from brian2.codegen.optimisation import expression_complexity)

brian2.codegen.optimisation.expression_complexity(expr, variables)

optimise_statements(scalar_statements, . . .) Optimise a sequence of scalar and vector statements

optimise_statements function

(Shortest import: from brian2.codegen.optimisation import optimise_statements)

brian2.codegen.optimisation.optimise_statements(scalar_statements, vector_statements,
variables, blockname=”)

Optimise a sequence of scalar and vector statements

Performs the following optimisations:

1. Constant evaluations (e.g. exp(0) to 1). See evaluate_expr.

2. Arithmetic simplifications (e.g. 0*x to 0). See ArithmeticSimplifier, collect().

6.4. Subpackages 335

Brian 2 Documentation, Release 2.1.1

3. Pulling out loop invariants (e.g. v*exp(-dt/tau) to a=exp(-dt/tau) outside the loop and v*a inside). See
Simplifier.

4. Boolean simplifications (allowing the replacement of expressions with booleans with a sequence of
if/thens). See Simplifier.

Parameters scalar_statements : sequence of Statement

Statements that only involve scalar values and should be evaluated in the scalar block.

vector_statements : sequence of Statement

Statements that involve vector values and should be evaluated in the vector block.

variables : dict of (str, Variable)

Definition of the types of the variables.

blockname : str, optional

Name of the block (used for LIO constant prefixes to avoid name clashes)

Returns new_scalar_statements : sequence of Statement

As above but with loop invariants pulled out from vector statements

new_vector_statements : sequence of Statement

Simplified/optimised versions of statements

reduced_node(terms, op) Reduce a sequence of terms with the given operator

reduced_node function

(Shortest import: from brian2.codegen.optimisation import reduced_node)

brian2.codegen.optimisation.reduced_node(terms, op)
Reduce a sequence of terms with the given operator

For examples, if terms were [a, b, c] and op was multiplication then the reduction would be (a*b)*c.

Parameters terms : list

AST nodes.

op : AST node

Could be ast.Mult or ast.Add.

Examples

>>> import ast
>>> nodes = [ast.Name(id='x'), ast.Num(n=3), ast.Name(id='y')]
>>> ast.dump(reduced_node(nodes, ast.Mult), annotate_fields=False)
"BinOp(BinOp(Name('x'), Mult(), Num(3)), Mult(), Name('y'))"
>>> nodes = [ast.Num(n=17.0)]
>>> ast.dump(reduced_node(nodes, ast.Add), annotate_fields=False)
'Num(17.0)'

336 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

permutation_analysis module

Module for analysing synaptic pre and post code for synapse order independence.

Exported members: OrderDependenceError, check_for_order_independence

Classes

OrderDependenceError

OrderDependenceError class

(Shortest import: from brian2.codegen.permutation_analysis import
OrderDependenceError)

class brian2.codegen.permutation_analysis.OrderDependenceError
Bases: exceptions.Exception

Functions

check_for_order_independence(statements, . . .) Check that the sequence of statements doesn’t depend on
the order in which the indices are iterated through.

check_for_order_independence function

(Shortest import: from brian2.codegen.permutation_analysis import
check_for_order_independence)

brian2.codegen.permutation_analysis.check_for_order_independence(statements,
variables,
indices)

Check that the sequence of statements doesn’t depend on the order in which the indices are iterated through.

statements module

Module providing the Statement class.

Classes

Statement(var, op, expr, comment, dtype[, . . .]) A single line mathematical statement.

Statement class

(Shortest import: from brian2 import Statement)

class brian2.codegen.statements.Statement(var, op, expr, comment, dtype, constant=False,
subexpression=False, scalar=False)

Bases: object

A single line mathematical statement.

The structure is var op expr.

Parameters var : str

6.4. Subpackages 337

https://docs.python.org/2/library/exceptions.html#exceptions.Exception
https://docs.python.org/2/library/functions.html#object

Brian 2 Documentation, Release 2.1.1

The left hand side of the statement, the value being written to.

op : str

The operation, can be any of the standard Python operators (including += etc.) or a
special operator := which means you are defining a new symbol (whereas = means you
are setting the value of an existing symbol).

expr : str, Expression

The right hand side of the statement.

dtype : dtype

The numpy dtype of the value or array var().

constant : bool, optional

Set this flag to True if the value will not change (only applies for op==':='.

subexpression : bool, optional

Set this flag to True if the variable is a subexpression. In some languages (e.g. Python)
you can use this to save a memory copy, because you don’t need to do lhs[:] =
rhs but a redefinition lhs = rhs.

scalar : bool, optional

Set this flag to True if var() and expr are scalar.

Notes

Will compute the following attribute:

inplace True or False depending if the operation is in-place or not.

Boolean simplification notes:

Will initially set the attribute used_boolean_variables to None. This is set by
optimise_statements when it is called on a sequence of statements to the list of boolean vari-
ables that are used in this expression. In addition, the attribute boolean_simplified_expressions
is set to a dictionary with keys consisting of a tuple of pairs (var, value) where var is the name of the
boolean variable (will be in used_boolean_variables) and var is True or False. The values of the
dictionary are strings representing the simplified version of the expression if each var=value substitution is
made for that key. The keys will range over all possible values of the set of boolean variables. The complexity
of the original statement is set as the attribute complexity_std, and the complexity of the simplified
versions are in the dictionary complexities (with the same keys).

This information can be used to generate code that replaces a complex expression that varies depending on the
value of one or more boolean variables with an if/then sequence where each subexpression is simplified. It
is optional to use this (e.g. the numpy codegen does not, but the weave and cython ones do).

targets module

Module that stores all known code generation targets as codegen_targets.

Exported members: codegen_targets

338 Chapter 6. brian2 package

https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype

Brian 2 Documentation, Release 2.1.1

templates module

Handles loading templates from a directory.

Exported members: Templater

Classes

CodeObjectTemplate(template, template_source) Single template object returned by Templater and used
for final code generation

CodeObjectTemplate class

(Shortest import: from brian2.codegen.templates import CodeObjectTemplate)

class brian2.codegen.templates.CodeObjectTemplate(template, template_source)
Bases: object

Single template object returned by Templater and used for final code generation

Should not be instantiated by the user, but only directly by Templater.

Notes

The final code is obtained from this by calling the template (see __call__).

Attributes

allows_scalar_write Does this template allow writing to scalar variables?
iterate_all The indices over which the template iterates completely
variables The set of variables in this template
writes_read_only Read-only variables that are changed by this template

Methods

__call__(scalar_code, vector_code, **kwds) Return a usable code block or blocks from this template.

Details

allows_scalar_write
Does this template allow writing to scalar variables?

iterate_all
The indices over which the template iterates completely

variables
The set of variables in this template

writes_read_only
Read-only variables that are changed by this template

__call__(scalar_code, vector_code, **kwds)

6.4. Subpackages 339

https://docs.python.org/2/library/functions.html#object

Brian 2 Documentation, Release 2.1.1

Return a usable code block or blocks from this template.

Parameters scalar_code : dict

Dictionary of scalar code blocks.

vector_code : dict

Dictionary of vector code blocks

**kwds :

Additional parameters to pass to the template

Notes

Returns either a string (if macros were not used in the template), or a MultiTemplate (if macros were
used).

LazyTemplateLoader(environment, extension) Helper object to load templates only when they are needed.

LazyTemplateLoader class

(Shortest import: from brian2.codegen.templates import LazyTemplateLoader)

class brian2.codegen.templates.LazyTemplateLoader(environment, extension)
Bases: object

Helper object to load templates only when they are needed.

Methods

get_template(name)

Details

get_template(name)

MultiTemplate(module) Code generated by a CodeObjectTemplate with mul-
tiple blocks

MultiTemplate class

(Shortest import: from brian2.codegen.templates import MultiTemplate)

class brian2.codegen.templates.MultiTemplate(module)
Bases: _abcoll.Mapping

Code generated by a CodeObjectTemplate with multiple blocks

Each block is a string stored as an attribute with the block name. The object can also be accessed as a dictionary.

340 Chapter 6. brian2 package

https://docs.python.org/2/library/functions.html#object

Brian 2 Documentation, Release 2.1.1

Templater(package_name, extension[, env_globals]) Class to load and return all the templates a CodeObject
defines.

Templater class

(Shortest import: from brian2.codegen.templates import Templater)

class brian2.codegen.templates.Templater(package_name, extension, env_globals=None)
Bases: object

Class to load and return all the templates a CodeObject defines.

Parameters package_name : str, tuple of str

The package where the templates are saved. If this is a tuple then each template will be
searched in order starting from the first package in the tuple until the template is found.
This allows for derived templates to be used. See also derive.

env_globals : dict (optional)

A dictionary of global values accessible by the templates. Can be used for providing
utility functions. In all cases, the filter ‘autoindent’ is available (see existing templates
for example usage).

Notes

Templates are accessed using templater.template_base_name (the base name is without the file ex-
tension). This returns a CodeObjectTemplate.

Methods

derive(package_name[, extension, env_globals]) Return a new Templater derived from this one, where
the new package name and globals overwrite the old.

Details

derive(package_name, extension=None, env_globals=None)
Return a new Templater derived from this one, where the new package name and globals overwrite the old.

Functions

autoindent(code)

autoindent function

(Shortest import: from brian2.codegen.templates import autoindent)

brian2.codegen.templates.autoindent(code)

6.4. Subpackages 341

https://docs.python.org/2/library/functions.html#object

Brian 2 Documentation, Release 2.1.1

autoindent_postfilter(code)

autoindent_postfilter function

(Shortest import: from brian2.codegen.templates import autoindent_postfilter)

brian2.codegen.templates.autoindent_postfilter(code)

variables_to_array_names(variables[, . . .])

variables_to_array_names function

(Shortest import: from brian2.codegen.templates import variables_to_array_names)

brian2.codegen.templates.variables_to_array_names(variables, access_data=True)

translation module

This module translates a series of statements into a language-specific syntactically correct code block that can be
inserted into a template.

It infers whether or not a variable can be declared as constant, etc. It should handle common subexpressions, and so
forth.

The input information needed:

• The sequence of statements (a multiline string) in standard mathematical form

• The list of known variables, common subexpressions and functions, and for each variable whether or not it is a
value or an array, and if an array what the dtype is.

• The dtype to use for newly created variables

• The language to translate to

Exported members: make_statements(), analyse_identifiers(),
get_identifiers_recursively()

Classes

LineInfo(**kwds) A helper class, just used to store attributes.

LineInfo class

(Shortest import: from brian2.codegen.translation import LineInfo)

class brian2.codegen.translation.LineInfo(**kwds)
Bases: object

A helper class, just used to store attributes.

Functions

342 Chapter 6. brian2 package

https://docs.python.org/2/library/functions.html#object

Brian 2 Documentation, Release 2.1.1

analyse_identifiers(code, variables[, recursive]) Analyses a code string (sequence of statements) to find all
identifiers by type.

analyse_identifiers function

(Shortest import: from brian2 import analyse_identifiers)

brian2.codegen.translation.analyse_identifiers(code, variables, recursive=False)
Analyses a code string (sequence of statements) to find all identifiers by type.

In a given code block, some variable names (identifiers) must be given as inputs to the code block, and some are
created by the code block. For example, the line:

a = b+c

This could mean to create a new variable a from b and c, or it could mean modify the existing value of a from b
or c, depending on whether a was previously known.

Parameters code : str

The code string, a sequence of statements one per line.

variables : dict of Variable, set of names

Specifiers for the model variables or a set of known names

recursive : bool, optional

Whether to recurse down into subexpressions (defaults to False).

Returns newly_defined : set

A set of variables that are created by the code block.

used_known : set

A set of variables that are used and already known, a subset of the known parameter.

unknown : set

A set of variables which are used by the code block but not defined by it and not previ-
ously known. Should correspond to variables in the external namespace.

get_identifiers_recursively(expressions, . . .) Gets all the identifiers in a list of expressions, recursing
down into subexpressions.

get_identifiers_recursively function

(Shortest import: from brian2 import get_identifiers_recursively)

brian2.codegen.translation.get_identifiers_recursively(expressions, variables, in-
clude_numbers=False)

Gets all the identifiers in a list of expressions, recursing down into subexpressions.

Parameters expressions : list of str

List of expressions to check.

variables : dict-like

6.4. Subpackages 343

Brian 2 Documentation, Release 2.1.1

Dictionary of Variable objects

include_numbers : bool, optional

Whether to include number literals in the output. Defaults to False.

is_scalar_expression(expr, variables) Whether the given expression is scalar.

is_scalar_expression function

(Shortest import: from brian2.codegen.translation import is_scalar_expression)

brian2.codegen.translation.is_scalar_expression(expr, variables)
Whether the given expression is scalar.

Parameters expr : str

The expression to check

variables : dict-like

Variable and Function object for all the identifiers used in expr

Returns scalar : bool

Whether expr is a scalar expression

make_statements(code, variables, dtype[, . . .]) Turn a series of abstract code statements into Statement ob-
jects, inferring whether each line is a set/declare operation,
whether the variables are constant or not, and handling the
cacheing of subexpressions.

make_statements function

(Shortest import: from brian2 import make_statements)

brian2.codegen.translation.make_statements(code, variables, dtype, optimise=True, block-
name=”)

Turn a series of abstract code statements into Statement objects, inferring whether each line is a set/declare
operation, whether the variables are constant or not, and handling the cacheing of subexpressions.

Parameters code : str

A (multi-line) string of statements.

variables : dict-like

A dictionary of with Variable and Function objects for every identifier used in
the code.

dtype : dtype

The data type to use for temporary variables

optimise : bool, optional

Whether to optimise expressions, including pulling out loop invariant expressions and
putting them in new scalar constants. Defaults to False, since this function is also
used just to in contexts where we are not interested by this kind of optimisation. For the

344 Chapter 6. brian2 package

https://docs.python.org/2/library/code.html#module-code
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype

Brian 2 Documentation, Release 2.1.1

main code generation stage, its value is set by the codegen.loop_invariant_optimisations
preference.

blockname : str, optional

A name for the block (used to name intermediate variables to avoid name clashes when
multiple blocks are used together)

Returns :

——- :

scalar_statements, vector_statements : (list of Statement, list of Statement)

Lists with statements that are to be executed once and statements that are to be executed
once for every neuron/synapse/. . . (or in a vectorised way)

Notes

If optimise is True, then the scalar_statements may include newly introduced scalar constants that
have been identified as loop-invariant and have therefore been pulled out of the vector statements. The resulting
statements will also use augmented assignments where possible, i.e. a statement such as w = w + 1 will be
replaced by w += 1. Also, statements involving booleans will have additional information added to them (see
Statement for details) describing how the statement can be reformulated as a sequence of if/then statements.
Calls optimise_statements.

Subpackages

generators package

GSL_generator module

GSLCodeGenerators for code that uses the ODE solver provided by the GNU Scientific Library (GSL)

Exported members: GSLCodeGenerator, GSLWeaveCodeGenerator, GSLCythonCodeGenerator

Classes

GSLCodeGenerator(variables, . . . [, . . .]) GSL code generator.

GSLCodeGenerator class

(Shortest import: from brian2 import GSLCodeGenerator)

6.4. Subpackages 345

Brian 2 Documentation, Release 2.1.1

class brian2.codegen.generators.GSL_generator.GSLCodeGenerator(variables, vari-
able_indices,
owner, it-
erate_all,
codeobj_class,
name, tem-
plate_name,
over-
ride_conditional_write=None,
al-
lows_scalar_write=False)

Bases: object

GSL code generator.

Notes

Approach is to first let the already existing code generator for a target language do the bulk of the translating
from abstract_code to actual code. This generated code is slightly adapted to render it GSL compatible. The
most critical part here is that the vector_code that is normally contained in a loop in the `main()` is moved to
the function `_GSL_func` that is sent to the GSL integrator. The variables used in the vector_code are added
to a struct named `dataholder` and their values are set from the Brian namespace just before the scalar
code block.

Methods

add_gsl_variables_as_non_scalar(diff_vars) Add _gsl variables as non-scalar.
add_meta_variables(options)
c_data_type(dtype) Get string version of object dtype that is attached to

Brian variables.
diff_var_to_replace(diff_vars) Add differential variable-related strings that need to be

replaced to go
find_differential_variables(code) Find the variables that were tagged _gsl_{var}_f{ind}

and return var, ind pairs.
find_function_names() Return a list of used function names in the self.variables

dictionary
find_undefined_variables(statements) Find identifiers that are not in self.variables dictionary.
find_used_variables(statements,
other_variables)

Find all the variables used in the right hand side of the
given expressions.

get_dimension_code(diff_num) Generate code for function that sets the dimension of the
ODE system.

initialize_array(varname, values) Initialize a static array with given floating point values.
is_constant_and_cpp_standalone(var_obj) Check whether self.cpp_standalone and variable is Con-

stant.
is_cpp_standalone() Check whether we’re running with cpp_standalone.
make_function_code(lines) Add lines of GSL translated vector code to ‘non-

changing’ _GSL_func code.
scale_array_code(diff_vars, method_options) Return code for definition of _GSL_scale_array in

generated code.
Continued on next page

346 Chapter 6. brian2 package

https://docs.python.org/2/library/functions.html#object

Brian 2 Documentation, Release 2.1.1

Table 6.52 – continued from previous page
to_replace_vector_vars(variables_in_vector) Create dictionary containing key, value pairs with to

be replaced text to translate from conventional Brian to
GSL.

translate(code, dtype) Translates an abstract code block into the target lan-
guage.

translate_scalar_code(code_lines, . . .) Translate scalar code: if calculated variables are used in
the vector_code their value is added to the variable in
the _dataholder.

translate_vector_code(code_lines, to_replace) Translate vector code to GSL compatible code by sub-
stituting fragments of code.

unpack_namespace(variables_in_vector, . . . [, . . .]) Write code that unpacks Brian namespace to cython/cpp
namespace.

unpack_namespace_single(var_obj, in_vector,
. . .)

Writes the code necessary to pull single variable out of
the Brian namespace into the generated code.

var_init_lhs(var, type) Get string version of the left hand side of an initializing
expression

write_dataholder(variables_in_vector) Return string with full code for _dataholder struct.
write_dataholder_single(var_obj) Return string declaring a single variable in the

_dataholder struct.
yvector_code(diff_vars) Generate code for function dealing with GSLs y vector.

Details

add_gsl_variables_as_non_scalar(diff_vars)
Add _gsl variables as non-scalar.

In GSLStateUpdater the differential equation variables are substituted with GSL tags that describe the
information needed to translate the conventional Brian code to GSL compatible code. This function tells
Brian that the variables that contain these tags should always be vector variables. If we don’t do this, Brian
renders the tag-variables as scalar if no vector variables are used in the right hand side of the expression.

Parameters diff_vars : dict

dictionary with variables as keys and differential equation index as value

add_meta_variables(options)

c_data_type(dtype)
Get string version of object dtype that is attached to Brian variables. c pp_generator already has this
function, but the Cython generator does not, but we need it for GSL code generation.

diff_var_to_replace(diff_vars)
Add differential variable-related strings that need to be replaced to go from normal brian to GSL code

From the code generated by Brian’s ‘normal’ generators (cpp_generator or cython_generator a few bits
of text need to be replaced to get GSL compatible code. The bits of text related to differential equation
variables are put in the replacer dictionary in this function.

Parameters diff_vars : dict

dictionary with variables as keys and differential equation index as value

Returns to_replace : dict

dictionary with strings that need to be replaced as keys and the strings that will replace
them as values

6.4. Subpackages 347

Brian 2 Documentation, Release 2.1.1

find_differential_variables(code)
Find the variables that were tagged _gsl_{var}_f{ind} and return var, ind pairs.

GSLStateUpdater tagged differential variables and here we extract the information given in these tags.

Parameters code : list of strings

A list of strings containing gsl tagged variables

Returns diff_vars : dict

A dictionary with variable names as keys and differential equation index as value

find_function_names()
Return a list of used function names in the self.variables dictionary

Functions need to be ignored in the GSL translation process, because the brian generator already suffi-
ciently dealt with them. However, the brian generator also removes them from the variables dict, so there
is no way to check whether an identifier is a function after the brian translation process. This function
is called before this translation process and the list of function names is stored to be used in the GSL
translation.

Returns function_names : list

list of strings that are function names used in the code

find_undefined_variables(statements)
Find identifiers that are not in self.variables dictionary.

Brian does not save the _lio_ variables it uses anywhere. This is problematic for our GSL implementation
because we save the lio variables in the _dataholder struct (for which we need the datatype of the variables).
This function adds the left hand side variables that are used in the vector code to the variable dictionary as
‘AuxiliaryVariable‘s (all we need later is the datatype).

Parameters statements : list

list of statement objects (need to have the dtype attribute)

Notes

I keep self.variables and other_variables separate so I can distinguish what variables are in the Brian
namespace and which ones are defined in the code itself.

find_used_variables(statements, other_variables)
Find all the variables used in the right hand side of the given expressions.

Parameters statements : list

list of statement objects

Returns used_variables : dict

dictionary of variables that are used as variable name (str), Variable pairs.

get_dimension_code(diff_num)
Generate code for function that sets the dimension of the ODE system.

GSL needs to know how many differential variables there are in the ODE system. Since the current
approach is to have the code in the vector loop the same for all simulations, this dimension is set by an
external function. The code for this set_dimension functon is written here. It is assumed the code will be
the same for each target language with the exception of some syntactical differences

Parameters diff_num : int

348 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

Number of differential variables that describe the ODE system

Returns set_dimension_code : str

The code describing the target language function in a single string

initialize_array(varname, values)
Initialize a static array with given floating point values. E.g. in C++, when called with arguments array
and [1.0, 3.0, 2.0], this method should return double array[] = {1.0, 3.0, 2.0}.

Parameters varname : str

The name of the array variable that should be initialized

values : list of float

The values that should be assigned to the array

Returns code : str

One or more lines of array initialization code.

is_constant_and_cpp_standalone(var_obj)
Check whether self.cpp_standalone and variable is Constant.

This check is needed because in the case of using the cpp_standalone device we do not want to apply
our GSL variable conversion (var –> _GSL_dataholder.var), because the cpp_standalone code generation
process involves replacing constants with their actual value (‘freezing’). This results in code that looks like
(if for example var = 1.2): _GSL_dataholder.1.2 = 1.2 and _GSL_dataholder->1.2. To prevent repetitive
calls to get_device() etc. the outcome of is_cpp_standalone is saved.

Parameters var_obj : Variable

instance of brian Variable class describing the variable

Returns is_cpp_standalone : bool

whether the used device is cpp_standalone and the given variable is an instance of Con-
stant

is_cpp_standalone()
Check whether we’re running with cpp_standalone.

Test if get_device() is instance CPPStandaloneDevice.

Returns is_cpp_standalone : bool

whether currently using cpp_standalone device

See also:

is_constant_and_cpp_standalone uses the returned value

make_function_code(lines)
Add lines of GSL translated vector code to ‘non-changing’ _GSL_func code.

Adds nonchanging aspects of GSL _GSL_func code to lines of code written somewhere else
(translate_vector_code). Here these lines are put between the non-changing parts of the code
and the target-language specific syntax is added.

Parameters lines : str

Code containing GSL version of equations

Returns function_code : str

6.4. Subpackages 349

Brian 2 Documentation, Release 2.1.1

code describing _GSL_func that is sent to GSL integrator.

scale_array_code(diff_vars, method_options)
Return code for definition of _GSL_scale_array in generated code.

Parameters diff_vars : dict

dictionary with variable name (str) as key and differential variable index (int) as value

method_options : dict

dictionary containing integrator settings

Returns code : str

full code describing a function returning a array containing doubles with the absolute
errors for each differential variable (according to their assigned index in the GSL State-
Updater)

to_replace_vector_vars(variables_in_vector, ignore=frozenset([]))
Create dictionary containing key, value pairs with to be replaced text to translate from conventional Brian
to GSL.

Parameters variables_in_vector : dict

dictionary with variable name (str), Variable pairs of variables occurring in vector
code

ignore : set, optional

set of strings with variable names that should be ignored

Returns to_replace : dict

dictionary with strings that need to be replaced i.e. _lio_1 will be
_GSL_dataholder._lio_1 (in cython) or _GSL_dataholder->_lio_1 (cpp)

Notes

t will always be added because GSL defines its own t. i.e. for cpp: {‘const t =
_ptr_array_defaultclock_t[0];’ : ‘’}

translate(code, dtype)
Translates an abstract code block into the target language.

translate_scalar_code(code_lines, variables_in_scalar, variables_in_vector)
Translate scalar code: if calculated variables are used in the vector_code their value is added to the variable
in the _dataholder.

Parameters code_lines : list

list of strings containing scalar code

variables_in_vector : dict

dictionary with variable name (str), Variable pairs of variables occurring in vector
code

variables_in_scalar : dict

dictionary with variable name (str), Variable pairs of variables occurring in scalar
code

Returns scalar_code : str

350 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

code fragment that should be injected in the main before the loop

translate_vector_code(code_lines, to_replace)
Translate vector code to GSL compatible code by substituting fragments of code.

Parameters code_lines : list

list of strings describing the vector_code

to_replace: dict :

dictionary with to be replaced strings (see to_replace_vector_vars and
to_replace_diff_vars)

Returns vector_code : str

New code that is now to be added to the function that is sent to the GSL integrator

unpack_namespace(variables_in_vector, variables_in_scalar, ignore=frozenset([]))
Write code that unpacks Brian namespace to cython/cpp namespace.

For vector code this means putting variables in _dataholder (i.e. _GSL_dataholder->var or
_GSL_dataholder.var = . . .) Note that code is written so a variable could occur both in scalar and vec-
tor code

Parameters variables_in_vector : dict

dictionary with variable name (str), Variable pairs of variables occurring in vector
code

variables_in_scalar : dict

dictionary with variable name (str), Variable pairs of variables occurring in
scalar code

ignore : set, optional

set of string names of variables that should be ignored

Returns unpack_namespace_code : str

code fragment unpacking the Brian namespace (setting variables in the _dataholder
struct in case of vector)

unpack_namespace_single(var_obj, in_vector, in_scalar)
Writes the code necessary to pull single variable out of the Brian namespace into the generated code.

The code created is significantly different between cpp and cython, so I decided to not make this func-
tion general over all target languages (i.e. in contrast to most other functions that only have syntactical
differences)

var_init_lhs(var, type)
Get string version of the left hand side of an initializing expression

Parameters var : str

type : str

Returns code : str

For cpp returns type + var, while for cython just var

write_dataholder(variables_in_vector)
Return string with full code for _dataholder struct.

Parameters variables_in_vector : dict

6.4. Subpackages 351

Brian 2 Documentation, Release 2.1.1

dictionary containing variable name as key and Variable as value

Returns code : str

code for _dataholder struct

write_dataholder_single(var_obj)
Return string declaring a single variable in the _dataholder struct.

Parameters var_obj : Variable

Returns code : str

string describing this variable object as required for the _dataholder struct (e.g.
double* _array_neurongroup_v)

yvector_code(diff_vars)
Generate code for function dealing with GSLs y vector.

The values of differential variables have to be transferred from Brian’s namespace to a vector that is given
to GSL. The transferring from Brian –> y and back from y –> Brian after integration happens in separate
functions. The code for these is written here.

Parameters diff_vars : dictionary

Dictionary containing variable names as keys (str) and differential variable index as
value

Returns yvector_code : str

The code for the two functions (_fill_y_vector and _empty_y_vector) as
single string.

GSLCythonCodeGenerator(variables, . . . [, . . .])

Methods

GSLCythonCodeGenerator class

(Shortest import: from brian2 import GSLCythonCodeGenerator)

class brian2.codegen.generators.GSL_generator.GSLCythonCodeGenerator(variables,
vari-
able_indices,
owner,
iter-
ate_all,
codeobj_class,
name,
tem-
plate_name,
over-
ride_conditional_write=None,
al-
lows_scalar_write=False)

Bases: brian2.codegen.generators.GSL_generator.GSLCodeGenerator

352 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

Methods

c_data_type(dtype)
get_array_name(var[, access_data])
initialize_array(varname, values)
unpack_namespace_single(var_obj, in_vector,
. . .)
var_init_lhs(var, type)
var_replace_diff_var_lhs(var, ind)

Details

c_data_type(dtype)

static get_array_name(var, access_data=True)

initialize_array(varname, values)

unpack_namespace_single(var_obj, in_vector, in_scalar)

var_init_lhs(var, type)

var_replace_diff_var_lhs(var, ind)

GSLWeaveCodeGenerator(variables, . . . [, . . .])

Methods

GSLWeaveCodeGenerator class

(Shortest import: from brian2 import GSLWeaveCodeGenerator)

class brian2.codegen.generators.GSL_generator.GSLWeaveCodeGenerator(variables,
vari-
able_indices,
owner,
iter-
ate_all,
codeobj_class,
name,
tem-
plate_name,
over-
ride_conditional_write=None,
al-
lows_scalar_write=False)

Bases: brian2.codegen.generators.GSL_generator.GSLCodeGenerator

Methods

6.4. Subpackages 353

Brian 2 Documentation, Release 2.1.1

c_data_type(dtype)
get_array_name(var[, access_data])
initialize_array(varname, values)
unpack_namespace_single(var_obj, in_vector,
. . .)
var_init_lhs(var, type)
var_replace_diff_var_lhs(var, ind)

Details

c_data_type(dtype)

static get_array_name(var, access_data=True)

initialize_array(varname, values)

unpack_namespace_single(var_obj, in_vector, in_scalar)

var_init_lhs(var, type)

var_replace_diff_var_lhs(var, ind)

Functions

valid_gsl_dir(val) Validate given string to be path containing required GSL
files.

valid_gsl_dir function

(Shortest import: from brian2.codegen.generators.GSL_generator import valid_gsl_dir)

brian2.codegen.generators.GSL_generator.valid_gsl_dir(val)
Validate given string to be path containing required GSL files.

base module

Base class for generating code in different programming languages, gives the methods which should be overridden to
implement a new language.

Exported members: CodeGenerator

Classes

CodeGenerator(variables, variable_indices, . . .) Base class for all languages.

CodeGenerator class

(Shortest import: from brian2 import CodeGenerator)

354 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

class brian2.codegen.generators.base.CodeGenerator(variables, variable_indices,
owner, iterate_all, codeobj_class,
name, template_name, over-
ride_conditional_write=None,
allows_scalar_write=False)

Bases: object

Base class for all languages.

See definition of methods below.

TODO: more details here

Methods

array_read_write(statements) Helper function, gives the set of ArrayVariables that are
read from and written to in the series of statements.

arrays_helper(statements) Combines the two helper func-
tions array_read_write and
get_conditional_write_vars, and updates
the read set.

determine_keywords() A dictionary of values that is made available to the tem-
plated.

get_array_name(var[, access_data]) Get a globally unique name for a ArrayVariable.
get_conditional_write_vars() Helper function, returns a dict of mappings

(varname, condition_var_name) indi-
cating that when varname is written to, it should only
be when condition_var_name is True.

has_repeated_indices(statements) Whether any of the statements potentially uses repeated
indices (e.g.

translate(code, dtype) Translates an abstract code block into the target lan-
guage.

translate_expression(expr) Translate the given expression string into a string in the
target language, returns a string.

translate_one_statement_sequence(statements)
translate_statement(statement) Translate a single line Statement into the target lan-

guage, returns a string.
translate_statement_sequence(. . .) Translate a sequence of Statement into the target lan-

guage, taking care to declare variables, etc.

Details

array_read_write(statements)
Helper function, gives the set of ArrayVariables that are read from and written to in the series of statements.
Returns the pair read, write of sets of variable names.

arrays_helper(statements)
Combines the two helper functions array_read_write and get_conditional_write_vars,
and updates the read set.

determine_keywords()
A dictionary of values that is made available to the templated. This is used for example by the
CPPCodeGenerator to set up all the supporting code

6.4. Subpackages 355

https://docs.python.org/2/library/functions.html#object

Brian 2 Documentation, Release 2.1.1

static get_array_name(var, access_data=True)
Get a globally unique name for a ArrayVariable.

Parameters var : ArrayVariable

The variable for which a name should be found.

access_data : bool, optional

For DynamicArrayVariable objects, specifying True here means the name for
the underlying data is returned. If specifying False, the name of object itself is re-
turned (e.g. to allow resizing).

Returns :

——- :

name : str

A uniqe name for var().

get_conditional_write_vars()
Helper function, returns a dict of mappings (varname, condition_var_name) indicating that
when varname is written to, it should only be when condition_var_name is True.

has_repeated_indices(statements)
Whether any of the statements potentially uses repeated indices (e.g. pre- or postsynaptic indices).

translate(code, dtype)
Translates an abstract code block into the target language.

translate_expression(expr)
Translate the given expression string into a string in the target language, returns a string.

translate_one_statement_sequence(statements, scalar=False)

translate_statement(statement)
Translate a single line Statement into the target language, returns a string.

translate_statement_sequence(scalar_statements, vector_statements)
Translate a sequence of Statement into the target language, taking care to declare variables, etc. if
necessary.

Returns a tuple (scalar_code, vector_code, kwds)where scalar_code is a list of the lines
of code executed before the inner loop, vector_code is a list of the lines of code in the inner loop, and
kwds is a dictionary of values that is made available to the template.

cpp_generator module

Exported members: CPPCodeGenerator, c_data_type()

Classes

CPPCodeGenerator(*args, **kwds) C++ language

CPPCodeGenerator class

(Shortest import: from brian2 import CPPCodeGenerator)

class brian2.codegen.generators.cpp_generator.CPPCodeGenerator(*args, **kwds)

356 Chapter 6. brian2 package

https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False

Brian 2 Documentation, Release 2.1.1

Bases: brian2.codegen.generators.base.CodeGenerator

C++ language

C++ code templates should provide Jinja2 macros with the following names:

main The main loop.

support_code The support code (function definitions, etc.), compiled in a separate file.

For user-defined functions, there are two keys to provide:

support_code The function definition which will be added to the support code.

hashdefine_code The #define code added to the main loop.

See TimedArray for an example of these keys.

Attributes

flush_denormals
restrict

Methods

denormals_to_zero_code()
determine_keywords()
get_array_name(var[, access_data])
translate_expression(expr)
translate_one_statement_sequence(statements)
translate_statement(statement)
translate_to_declarations(statements)
translate_to_read_arrays(statements)
translate_to_statements(statements)
translate_to_write_arrays(statements)

Details

flush_denormals

restrict

denormals_to_zero_code()

determine_keywords()

static get_array_name(var, access_data=True)

translate_expression(expr)

translate_one_statement_sequence(statements, scalar=False)

translate_statement(statement)

translate_to_declarations(statements)

translate_to_read_arrays(statements)

translate_to_statements(statements)

6.4. Subpackages 357

Brian 2 Documentation, Release 2.1.1

translate_to_write_arrays(statements)

Functions

c_data_type(dtype) Gives the C language specifier for numpy data types.

c_data_type function

(Shortest import: from brian2 import c_data_type)

brian2.codegen.generators.cpp_generator.c_data_type(dtype)
Gives the C language specifier for numpy data types. For example, numpy.int32 maps to int32_t in C.

cython_generator module

Exported members: CythonCodeGenerator

Classes

CythonCodeGenerator(*args, **kwds) Cython code generator

CythonCodeGenerator class

(Shortest import: from brian2.codegen.generators.cython_generator import
CythonCodeGenerator)

class brian2.codegen.generators.cython_generator.CythonCodeGenerator(*args,
**kwds)

Bases: brian2.codegen.generators.base.CodeGenerator

Cython code generator

Methods

determine_keywords()
translate_expression(expr)
translate_one_statement_sequence(statements)
translate_statement(statement)

Details

determine_keywords()

translate_expression(expr)

translate_one_statement_sequence(statements, scalar=False)

translate_statement(statement)

358 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

CythonNodeRenderer([use_vectorisation_idx])

Methods

CythonNodeRenderer class

(Shortest import: from brian2.codegen.generators.cython_generator import
CythonNodeRenderer)

class brian2.codegen.generators.cython_generator.CythonNodeRenderer(use_vectorisation_idx=True)
Bases: brian2.parsing.rendering.NodeRenderer

Methods

render_BinOp(node)
render_Name(node)
render_NameConstant(node)

Details

render_BinOp(node)

render_Name(node)

render_NameConstant(node)

Functions

get_cpp_dtype(obj)

get_cpp_dtype function

(Shortest import: from brian2.codegen.generators.cython_generator import
get_cpp_dtype)

brian2.codegen.generators.cython_generator.get_cpp_dtype(obj)

get_numpy_dtype(obj)

get_numpy_dtype function

(Shortest import: from brian2.codegen.generators.cython_generator import
get_numpy_dtype)

brian2.codegen.generators.cython_generator.get_numpy_dtype(obj)

6.4. Subpackages 359

Brian 2 Documentation, Release 2.1.1

numpy_generator module

Exported members: NumpyCodeGenerator

Classes

NumpyCodeGenerator(variables, . . . [, . . .]) Numpy language

NumpyCodeGenerator class

(Shortest import: from brian2 import NumpyCodeGenerator)

class brian2.codegen.generators.numpy_generator.NumpyCodeGenerator(variables,
vari-
able_indices,
owner, it-
erate_all,
codeobj_class,
name,
tem-
plate_name,
over-
ride_conditional_write=None,
al-
lows_scalar_write=False)

Bases: brian2.codegen.generators.base.CodeGenerator

Numpy language

Essentially Python but vectorised.

Methods

conditional_write(line, stmt, variables, . . .)
determine_keywords()
read_arrays(read, write, indices, variables, . . .)
translate_expression(expr)
translate_one_statement_sequence(statements)
translate_statement(statement)
ufunc_at_vectorisation(statement, variables,
. . .)
vectorise_code(statements, variables, . . . [, . . .])
write_arrays(statements, read, write, . . .)

Details

conditional_write(line, stmt, variables, conditional_write_vars, created_vars)

determine_keywords()

read_arrays(read, write, indices, variables, variable_indices)

translate_expression(expr)

360 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

translate_one_statement_sequence(statements, scalar=False)

translate_statement(statement)

ufunc_at_vectorisation(statement, variables, indices, conditional_write_vars, created_vars,
used_variables)

vectorise_code(statements, variables, variable_indices, index=’_idx’)

write_arrays(statements, read, write, variables, variable_indices)

VectorisationError

VectorisationError class

(Shortest import: from brian2.codegen.generators.numpy_generator import
VectorisationError)

class brian2.codegen.generators.numpy_generator.VectorisationError
Bases: exceptions.Exception

Functions

ceil_func(value)

ceil_func function

(Shortest import: from brian2.codegen.generators.numpy_generator import ceil_func)

brian2.codegen.generators.numpy_generator.ceil_func(value)

clip_func(array, a_min, a_max)

clip_func function

(Shortest import: from brian2.codegen.generators.numpy_generator import clip_func)

brian2.codegen.generators.numpy_generator.clip_func(array, a_min, a_max)

floor_func(value)

floor_func function

(Shortest import: from brian2.codegen.generators.numpy_generator import floor_func)

brian2.codegen.generators.numpy_generator.floor_func(value)

int_func(value)

6.4. Subpackages 361

https://docs.python.org/2/library/exceptions.html#exceptions.Exception

Brian 2 Documentation, Release 2.1.1

int_func function

(Shortest import: from brian2.codegen.generators.numpy_generator import int_func)

brian2.codegen.generators.numpy_generator.int_func(value)

rand_func(vectorisation_idx)

rand_func function

(Shortest import: from brian2.codegen.generators.numpy_generator import rand_func)

brian2.codegen.generators.numpy_generator.rand_func(vectorisation_idx)

randn_func(vectorisation_idx)

randn_func function

(Shortest import: from brian2.codegen.generators.numpy_generator import randn_func)

brian2.codegen.generators.numpy_generator.randn_func(vectorisation_idx)

runtime package

Runtime targets for code generation.

Subpackages

GSLcython_rt package

GSLcython_rt module

Module containing the Cython CodeObject for code generation for integration using the ODE solver provided in the
GNU Scientific Library (GSL)

Exported members: GSLCythonCodeObject, IntegrationError

Classes

GSLCompileError

GSLCompileError class

(Shortest import: from brian2.codegen.runtime.GSLcython_rt.GSLcython_rt import
GSLCompileError)

class brian2.codegen.runtime.GSLcython_rt.GSLcython_rt.GSLCompileError
Bases: exceptions.Exception

362 Chapter 6. brian2 package

https://docs.python.org/2/library/exceptions.html#exceptions.Exception

Brian 2 Documentation, Release 2.1.1

GSLCythonCodeObject(owner, code, variables, . . .)

Methods

GSLCythonCodeObject class

(Shortest import: from brian2 import GSLCythonCodeObject)

class brian2.codegen.runtime.GSLcython_rt.GSLcython_rt.GSLCythonCodeObject(owner,
code,
vari-
ables,
vari-
able_indices,
tem-
plate_name,
tem-
plate_source,
name=’cython_code_object*’)

Bases: brian2.codegen.runtime.cython_rt.cython_rt.CythonCodeObject

Methods

compile()

Details

compile()

IntegrationError Error used to signify that GSL was unable to complete in-
tegration (only works for cython)

IntegrationError class

(Shortest import: from brian2 import IntegrationError)

class brian2.codegen.runtime.GSLcython_rt.GSLcython_rt.IntegrationError
Bases: exceptions.Exception

Error used to signify that GSL was unable to complete integration (only works for cython)

GSLweave_rt package

GSLweave_rt module

Module containing the Weave CodeObject for code generation for integration using the ODE solver provided in the
GNU Scientific Library (GSL)

6.4. Subpackages 363

https://docs.python.org/2/library/exceptions.html#exceptions.Exception

Brian 2 Documentation, Release 2.1.1

Exported members: GSLWeaveCodeObject

Classes

GSLCompileError

GSLCompileError class

(Shortest import: from brian2.codegen.runtime.GSLweave_rt.GSLweave_rt import
GSLCompileError)

class brian2.codegen.runtime.GSLweave_rt.GSLweave_rt.GSLCompileError
Bases: exceptions.Exception

GSLWeaveCodeObject(owner, code, variables, . . .)

Methods

GSLWeaveCodeObject class

(Shortest import: from brian2 import GSLWeaveCodeObject)

class brian2.codegen.runtime.GSLweave_rt.GSLweave_rt.GSLWeaveCodeObject(owner,
code,
vari-
ables,
vari-
able_indices,
tem-
plate_name,
tem-
plate_source,
name=’weave_code_object*’)

Bases: brian2.codegen.runtime.weave_rt.weave_rt.WeaveCodeObject

Methods

run()

Details

run()

cython_rt package

cython_rt module

Exported members: CythonCodeObject

364 Chapter 6. brian2 package

https://docs.python.org/2/library/exceptions.html#exceptions.Exception

Brian 2 Documentation, Release 2.1.1

Classes

CythonCodeObject(owner, code, variables, . . .) Execute code using Cython.

CythonCodeObject class

(Shortest import: from brian2 import CythonCodeObject)

class brian2.codegen.runtime.cython_rt.cython_rt.CythonCodeObject(owner,
code, vari-
ables, vari-
able_indices,
tem-
plate_name,
tem-
plate_source,
name=’cython_code_object*’)

Bases: brian2.codegen.runtime.numpy_rt.numpy_rt.NumpyCodeObject

Execute code using Cython.

Methods

compile()
is_available()
run()
update_namespace()
variables_to_namespace()

Details

compile()

classmethod is_available()

run()

update_namespace()

variables_to_namespace()

extension_manager module

Cython automatic extension builder/manager

Inspired by IPython’s Cython cell magics, see: https://github.com/ipython/ipython/blob/master/IPython/extensions/
cythonmagic.py

Exported members: cython_extension_manager

Classes

6.4. Subpackages 365

https://github.com/ipython/ipython/blob/master/IPython/extensions/cythonmagic.py
https://github.com/ipython/ipython/blob/master/IPython/extensions/cythonmagic.py

Brian 2 Documentation, Release 2.1.1

CythonExtensionManager()

Attributes

CythonExtensionManager class

(Shortest import: from brian2.codegen.runtime.cython_rt.extension_manager import
CythonExtensionManager)

class brian2.codegen.runtime.cython_rt.extension_manager.CythonExtensionManager
Bases: object

Attributes

so_ext The extension suffix for compiled modules.

Methods

create_extension(code[, force, name, . . .])

Details

so_ext
The extension suffix for compiled modules.

create_extension(code, force=False, name=None, define_macros=None, include_dirs=None, li-
brary_dirs=None, runtime_library_dirs=None, extra_compile_args=None, ex-
tra_link_args=None, libraries=None, compiler=None, owner_name=”)

Functions

simplify_path_env_var(path)

simplify_path_env_var function

(Shortest import: from brian2.codegen.runtime.cython_rt.extension_manager import
simplify_path_env_var)

brian2.codegen.runtime.cython_rt.extension_manager.simplify_path_env_var(path)

Objects

cython_extension_manager

366 Chapter 6. brian2 package

https://docs.python.org/2/library/functions.html#object

Brian 2 Documentation, Release 2.1.1

cython_extension_manager object

(Shortest import: from brian2.codegen.runtime.cython_rt.extension_manager import
cython_extension_manager)

brian2.codegen.runtime.cython_rt.extension_manager.cython_extension_manager = <brian2.codegen.runtime.cython_rt.extension_manager.CythonExtensionManager object>

numpy_rt package

Numpy runtime implementation.

Preferences

Numpy runtime codegen preferences codegen.runtime.numpy.discard_units = False

Whether to change the namespace of user-specifed functions to remove units.

numpy_rt module

Module providing NumpyCodeObject.

Exported members: NumpyCodeObject

Classes

LazyArange(stop[, start, indices]) A class that can be used as a arange replacement (with an
implied step size of 1) but does not actually create an array
of values until necessary.

LazyArange class

(Shortest import: from brian2.codegen.runtime.numpy_rt.numpy_rt import LazyArange)

class brian2.codegen.runtime.numpy_rt.numpy_rt.LazyArange(stop, start=0, in-
dices=None)

Bases: _abcoll.Iterable

A class that can be used as a arange replacement (with an implied step size of 1) but does not actually create
an array of values until necessary. It is somewhat similar to the range() function in Python 3, but does not use
a generator. It is tailored to a special use case, the _vectorisation_idx variable in numpy templates, and
not meant for general use. The _vectorisation_idx is used for stateless function calls such as rand()
and for the numpy codegen target determines the number of values produced by such a call. This will often be
the number of neurons or synapses, and this class avoids creating a new array of that size at every code object
call when all that is needed is the length of the array.

Examples

>>> from brian2.codegen.runtime.numpy_rt.numpy_rt import LazyArange
>>> ar = LazyArange(10)
>>> len(ar)
10

6.4. Subpackages 367

https://docs.scipy.org/doc/numpy/reference/generated/numpy.arange.html#numpy.arange
https://docs.scipy.org/doc/numpy/reference/generated/numpy.arange.html#numpy.arange

Brian 2 Documentation, Release 2.1.1

>>> len(ar[:5])
5
>>> type(ar[:5])
<class 'brian2.codegen.runtime.numpy_rt.numpy_rt.LazyArange'>
>>> ar[5]
5
>>> for value in ar[3:7]:
... print(value)
...
3
4
5
6
>>> len(ar[np.array([1, 2, 3])])
3

NumpyCodeObject(owner, code, variables, . . .) Execute code using Numpy

NumpyCodeObject class

(Shortest import: from brian2 import NumpyCodeObject)

class brian2.codegen.runtime.numpy_rt.numpy_rt.NumpyCodeObject(owner, code,
variables, vari-
able_indices,
template_name,
tem-
plate_source,
name=’numpy_code_object*’)

Bases: brian2.codegen.codeobject.CodeObject

Execute code using Numpy

Default for Brian because it works on all platforms.

Methods

compile()
is_available()
run()
update_namespace()
variables_to_namespace()

Details

compile()

classmethod is_available()

run()

update_namespace()

variables_to_namespace()

368 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

weave_rt package

Runtime C++ code generation via weave.

weave_rt module

Module providing WeaveCodeObject.

Exported members: WeaveCodeObject, WeaveCodeGenerator

Classes

WeaveCodeGenerator(*args, **kwds)

WeaveCodeGenerator class

(Shortest import: from brian2 import WeaveCodeGenerator)

class brian2.codegen.runtime.weave_rt.weave_rt.WeaveCodeGenerator(*args,
**kwds)

Bases: brian2.codegen.generators.cpp_generator.CPPCodeGenerator

WeaveCodeObject(owner, code, variables, . . .) Weave code object

WeaveCodeObject class

(Shortest import: from brian2 import WeaveCodeObject)

class brian2.codegen.runtime.weave_rt.weave_rt.WeaveCodeObject(owner, code,
variables, vari-
able_indices,
template_name,
tem-
plate_source,
name=’weave_code_object*’)

Bases: brian2.codegen.codeobject.CodeObject

Weave code object

The code should be a MultiTemplate object with two macros defined, main (for the main loop code) and
support_code for any support code (e.g. function definitions).

Methods

compile()
is_available()
run()
update_namespace()
variables_to_namespace()

6.4. Subpackages 369

Brian 2 Documentation, Release 2.1.1

Details

compile()

classmethod is_available()

run()

update_namespace()

variables_to_namespace()

Functions

weave_data_type(dtype) Gives the C language specifier for numpy data types using
weave.

weave_data_type function

(Shortest import: from brian2.codegen.runtime.weave_rt.weave_rt import
weave_data_type)

brian2.codegen.runtime.weave_rt.weave_rt.weave_data_type(dtype)
Gives the C language specifier for numpy data types using weave. For example, numpy.int32 maps to long
in C.

6.4.2 core package

Essential Brian modules, in particular base classes for all kinds of brian objects.

Built-in preferences

Core Brian preferences core.default_float_dtype = float64

Default dtype for all arrays of scalars (state variables, weights, etc.).

Currently, this is not supported (only float64 can be used).

core.default_integer_dtype = int32

Default dtype for all arrays of integer scalars.

core.outdated_dependency_error = True

Whether to raise an error for outdated dependencies (True) or just a warning (False).

base module

All Brian objects should derive from BrianObject.

Exported members: BrianObject, weakproxy_with_fallback(), BrianObjectException,
brian_object_exception()

Classes

370 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

BrianObject(*args, **kwds) All Brian objects derive from this class, defines magic
tracking and update.

BrianObject class

(Shortest import: from brian2 import BrianObject)

class brian2.core.base.BrianObject(*args, **kwds)
Bases: brian2.core.names.Nameable

All Brian objects derive from this class, defines magic tracking and update.

See the documentation for Network for an explanation of which objects get updated in which order.

Parameters dt : Quantity , optional

The time step to be used for the simulation. Cannot be combined with the clock
argument.

clock : Clock, optional

The update clock to be used. If neither a clock, nor the dt argument is specified, the
defaultclock will be used.

when : str, optional

In which scheduling slot to simulate the object during a time step. Defaults to
'start'.

order : int, optional

The priority of this object for operations occurring at the same time step and in the same
scheduling slot. Defaults to 0.

name : str, optional

A unique name for the object - one will be assigned automatically if not provided (of
the form brianobject_1, etc.).

Notes

The set of all BrianObject objects is stored in BrianObject.__instances__().

Attributes

_clock The clock used for simulating this object
_creation_stack A string indicating where this object was created (trace-

back with any parts of Brian code removed)
_network Used to remember the Network in which this object

has been included
_scope_current_key Global key value for ipython cell restrict magic
_scope_key The scope key is used to determine which objects are

collected by magic
active Whether or not the object should be run.

Continued on next page

6.4. Subpackages 371

Brian 2 Documentation, Release 2.1.1

Table 6.101 – continued from previous page
add_to_magic_network Whether or not the object should be added to a

MagicNetwork.
clock The Clock determining when the object should be up-

dated.
code_objects The list of CodeObject contained within the

BrianObject.
contained_objects The list of objects contained within the

BrianObject.
invalidates_magic_network Whether or not MagicNetwork is invalidated when a

new BrianObject of this type is added
name The unique name for this object.
order The order in which objects with the same clock and

when should be updated
updaters The list of Updater that define the runtime behaviour

of this object.
when The ID string determining when the object should be

updated in Network.run().

Methods

add_dependency(obj) Add an object to the list of dependencies.
after_run() Optional method to do work after a run is finished.
before_run(run_namespace) Optional method to prepare the object before a run.
run()

Details

_clock
The clock used for simulating this object

_creation_stack
A string indicating where this object was created (traceback with any parts of Brian code removed)

_network
Used to remember the Network in which this object has been included before, to raise an error if it is
included in a new Network

_scope_current_key
Global key value for ipython cell restrict magic

_scope_key
The scope key is used to determine which objects are collected by magic

active
Whether or not the object should be run.

Inactive objects will not have their update method called in Network.run(). Note that setting or
unsetting the active attribute will set or unset it for all contained_objects.

add_to_magic_network
Whether or not the object should be added to a MagicNetwork. Note that all objects in
BrianObject.contained_objects are automatically added when the parent object is added,
therefore e.g. NeuronGroup should set add_to_magic_network to True, but it should not be
set for all the dependent objects such as StateUpdater

372 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

clock
The Clock determining when the object should be updated.

Note that this cannot be changed after the object is created.

code_objects
The list of CodeObject contained within the BrianObject.

TODO: more details.

Note that this attribute cannot be set directly, you need to modify the underlying list, e.g. obj.
code_objects.extend([A, B]).

contained_objects
The list of objects contained within the BrianObject.

When a BrianObject is added to a Network, its contained objects will be added as well. This allows
for compound objects which contain a mini-network structure.

Note that this attribute cannot be set directly, you need to modify the underlying list, e.g. obj.
contained_objects.extend([A, B]).

invalidates_magic_network
Whether or not MagicNetwork is invalidated when a new BrianObject of this type is added

name
The unique name for this object.

Used when generating code. Should be an acceptable variable name, i.e. starting with a letter character
and followed by alphanumeric characters and _.

order
The order in which objects with the same clock and when should be updated

updaters
The list of Updater that define the runtime behaviour of this object.

TODO: more details.

Note that this attribute cannot be set directly, you need to modify the underlying list, e.g. obj.
updaters.extend([A, B]).

when
The ID string determining when the object should be updated in Network.run().

add_dependency(obj)
Add an object to the list of dependencies. Takes care of handling subgroups correctly (i.e., adds its parent
object).

Parameters obj : BrianObject

The object that this object depends on.

after_run()
Optional method to do work after a run is finished.

Called by Network.after_run() after the main simulation loop terminated.

before_run(run_namespace)
Optional method to prepare the object before a run.

TODO

run()

6.4. Subpackages 373

Brian 2 Documentation, Release 2.1.1

BrianObjectException(message, brianobj, . . .) High level exception that adds extra Brian-specific infor-
mation to exceptions

BrianObjectException class

(Shortest import: from brian2 import BrianObjectException)

class brian2.core.base.BrianObjectException(message, brianobj, original_exception)
Bases: exceptions.Exception

High level exception that adds extra Brian-specific information to exceptions

This exception should only be raised at a fairly high level in Brian code to pass information back to the user. It
adds extra information about where a BrianObject was defined to better enable users to locate the source of
problems.

You should use the brian_object_exception() function to raise this, and it should only be raised in an
except block handling a prior exception.

Parameters message : str

Additional error information to add to the original exception.

brianobj : BrianObject

The object that caused the error to happen.

original_exception : Exception

The original exception that was raised.

Functions

brian_object_exception(message, brianobj, . . .) Returns a BrianObjectException derived from the
original exception.

brian_object_exception function

(Shortest import: from brian2 import brian_object_exception)

brian2.core.base.brian_object_exception(message, brianobj, original_exception)
Returns a BrianObjectException derived from the original exception.

Creates a new class derived from the class of the original exception and BrianObjectException. This al-
lows exception handling code to respond both to the original exception class and BrianObjectException.

See BrianObjectException for arguments and notes.

device_override(name) Decorates a function/method to allow it to be overridden by
the current Device.

device_override function

(Shortest import: from brian2.core.base import device_override)

brian2.core.base.device_override(name)

374 Chapter 6. brian2 package

https://docs.python.org/2/library/exceptions.html#exceptions.Exception

Brian 2 Documentation, Release 2.1.1

Decorates a function/method to allow it to be overridden by the current Device.

The name is the function name in the Device to use as an override if it exists.

The returned function has an additional attribute original_function which is a reference to the original,
undecorated function.

weakproxy_with_fallback(obj) Attempts to create a weakproxy to the object, but falls
back to the object if not possible.

weakproxy_with_fallback function

(Shortest import: from brian2 import weakproxy_with_fallback)

brian2.core.base.weakproxy_with_fallback(obj)
Attempts to create a weakproxy to the object, but falls back to the object if not possible.

clocks module

Clocks for the simulator.

Exported members: Clock, defaultclock

Classes

Clock(dt[, name]) An object that holds the simulation time and the time step.

Clock class

(Shortest import: from brian2 import Clock)

class brian2.core.clocks.Clock(dt, name=’clock*’)
Bases: brian2.groups.group.VariableOwner

An object that holds the simulation time and the time step.

Parameters dt : float

The time step of the simulation as a float

name : str, optional

An explicit name, if not specified gives an automatically generated name

Notes

Clocks are run in the same Network.run() iteration if t is the same. The condition for two clocks to be
considered as having the same time is abs(t1-t2)<epsilon*abs(t1), a standard test for equality of
floating point values. The value of epsilon is 1e-14.

Attributes

6.4. Subpackages 375

Brian 2 Documentation, Release 2.1.1

dt The time step of the simulation in seconds.
dt_ The time step of the simulation as a float (in seconds)
epsilon_dt The relative difference for times (in terms of dt) so that

they are considered identical.

Methods

set_interval(self, start, end) Set the start and end time of the simulation.

Details

dt
The time step of the simulation in seconds.

dt_
The time step of the simulation as a float (in seconds)

epsilon_dt
The relative difference for times (in terms of dt) so that they are considered identical.

set_interval(self, start, end)
Set the start and end time of the simulation.

Sets the start and end value of the clock precisely if possible (using epsilon) or rounding up if not. This
assures that multiple calls to Network.run() will not re-run the same time step.

Tutorials and examples using this

• Example COBAHH

• Example CUBA

DefaultClockProxy Method proxy to access the defaultclock of the currently
active device

DefaultClockProxy class

(Shortest import: from brian2.core.clocks import DefaultClockProxy)

class brian2.core.clocks.DefaultClockProxy
Bases: object

Method proxy to access the defaultclock of the currently active device

Functions

check_dt(new_dt, old_dt, target_t) Check that the target time can be represented equally well
with the new dt.

376 Chapter 6. brian2 package

https://docs.python.org/2/library/functions.html#object

Brian 2 Documentation, Release 2.1.1

check_dt function

(Shortest import: from brian2.core.clocks import check_dt)

brian2.core.clocks.check_dt(new_dt, old_dt, target_t)
Check that the target time can be represented equally well with the new dt.

Parameters new_dt : float

The new dt value

old_dt : float

The old dt value

target_t : float

The target time

Raises

ValueError If using the new dt value would lead to a difference in the target time of more than Clock.
epsilon_dt times new_dt (by default, 0.01% of the new dt).

Examples

>>> from brian2 import *
>>> check_dt(float(17*ms), float(0.1*ms), float(0*ms)) # For t=0s, every dt is
→˓fine
>>> check_dt(float(0.05*ms), float(0.1*ms), float(10*ms)) # t=10*ms can be
→˓represented with the new dt
>>> check_dt(float(0.2*ms), float(0.1*ms), float(10.1*ms)) # t=10.1ms cannot be
→˓represented with dt=0.2ms
Traceback (most recent call last):
...
ValueError: Cannot set dt from 100. us to 200. us, the time 10.1 ms is not a
→˓multiple of 200. us

Objects

defaultclock The standard clock, used for objects that do not specify any
clock or dt

defaultclock object

(Shortest import: from brian2 import defaultclock)

brian2.core.clocks.defaultclock = <brian2.core.clocks.DefaultClockProxy object>
The standard clock, used for objects that do not specify any clock or dt

core_preferences module

Definitions, documentation, default values and validation functions for core Brian preferences.

6.4. Subpackages 377

Brian 2 Documentation, Release 2.1.1

Functions

default_float_dtype_validator(dtype)

default_float_dtype_validator function

(Shortest import: from brian2 import default_float_dtype_validator)

brian2.core.core_preferences.default_float_dtype_validator(dtype)

dtype_repr(dtype)

dtype_repr function

(Shortest import: from brian2 import dtype_repr)

brian2.core.core_preferences.dtype_repr(dtype)

functions module

Exported members: DEFAULT_FUNCTIONS, Function, implementation(), declare_types()

Classes

Function(pyfunc[, sympy_func, arg_units, . . .]) An abstract specification of a function that can be used as
part of model equations, etc.

Function class

(Shortest import: from brian2 import Function)

class brian2.core.functions.Function(pyfunc, sympy_func=None, arg_units=None, re-
turn_unit=None, arg_types=None, return_type=None,
stateless=True)

Bases: object

An abstract specification of a function that can be used as part of model equations, etc.

Parameters pyfunc : function

A Python function that is represented by this Function object.

sympy_func : sympy.Function, optional

A corresponding sympy function (if any). Allows functions to be interpreted by sympy
and potentially make simplifications. For example, sqrt(x**2) could be replaced
by abs(x).

arg_units : list of Unit, optional

If pyfunc does not provide unit information (which typically means that it was not an-
notated with a check_units() decorator), the units of the arguments have to speci-
fied explicitly using this parameter.

return_unit : Unit or callable, optional

378 Chapter 6. brian2 package

https://docs.python.org/2/library/functions.html#object

Brian 2 Documentation, Release 2.1.1

Same as for arg_units: if pyfunc does not provide unit information, this informa-
tion has to be provided explictly here. return_unit can either be a specific Unit,
if the function always returns the same unit, or a function of the input units, e.g. a
“square” function would return the square of its input units, i.e. return_unit could
be specified as lambda u: u**2.

arg_types : list of str, optional

Similar to arg_units, but gives the type of the argument rather than its unit. In
the current version of Brian arguments are specified by one of the following strings:
‘boolean’, ‘integer’, ‘float’, ‘any’. If arg_types is not specified, ‘any’ will be as-
sumed. In future versions, a more refined specification may be possible. Note that any
argument with a type other than float should have no units. If

return_type : str, optional

Similar to return_unit and arg_types. In addition to ‘boolean’, ‘integer’ and
‘float’ you can also use ‘highest’ which will return the highest type of its arguments.
You can also give a function, as for return_unit. If the return type is not specified,
it is assumed to be ‘float’.

stateless : bool, optional

Whether this function does not have an internal state, i.e. if it always returns the same
output when called with the same arguments. This is true for mathematical functions
but not true for rand(), for example. Defaults to True.

Notes

If a function should be usable for code generation targets other than Python/numpy, implementations
for these target languages have to be added using the implementation decorator or using the
add_implementations function.

Attributes

implementations Stores implementations for this function in a

Methods

__call__(*args)
is_locally_constant(dt) Return whether this function (if interpreted as a function

of time) should be considered constant over a timestep.

Details

implementations
Stores implementations for this function in a FunctionImplementationContainer

__call__(*args)

is_locally_constant(dt)
Return whether this function (if interpreted as a function of time) should be considered constant over a
timestep. This is most importantly used by TimedArray so that linear integration can be used. In its

6.4. Subpackages 379

Brian 2 Documentation, Release 2.1.1

standard implementation, always returns False.

Parameters dt : float

The length of a timestep (without units).

Returns constant : bool

Whether the results of this function can be considered constant over one timestep of
length dt.

FunctionImplementation([name, code, . . .]) A simple container object for function implementations.

FunctionImplementation class

(Shortest import: from brian2.core.functions import FunctionImplementation)

class brian2.core.functions.FunctionImplementation(name=None, code=None, names-
pace=None, dependencies=None,
dynamic=False)

Bases: object

A simple container object for function implementations.

Parameters name : str, optional

The name of the function in the target language. Should only be specified if the function
has to be renamed for the target language.

code : language-dependent, optional

A language dependent argument specifying the implementation in the target language,
e.g. a code string or a dictionary of code strings.

namespace : dict-like, optional

A dictionary of mappings from names to values that should be added to the namespace
of a CodeObject using the function.

dependencies : dict-like, optional

A mapping of names to Function objects, for additional functions needed by this
function.

dynamic : bool, optional

Whether this code/namespace is dynamic, i.e. generated for each new context it is
used in. If set to True, code and namespace have to be callable with a Group as
an argument and are expected to return the final code and namespace. Defaults to
False.

Methods

get_code(owner)
get_namespace(owner)

380 Chapter 6. brian2 package

https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/code.html#module-code
https://docs.python.org/2/library/code.html#module-code
https://docs.python.org/2/library/code.html#module-code

Brian 2 Documentation, Release 2.1.1

Details

get_code(owner)

get_namespace(owner)

FunctionImplementationContainer(function) Helper object to store implementations and give access in
a dictionary-like fashion, using CodeGenerator imple-
mentations as a fallback for CodeObject implementa-
tions.

FunctionImplementationContainer class

(Shortest import: from brian2.core.functions import FunctionImplementationContainer)

class brian2.core.functions.FunctionImplementationContainer(function)
Bases: _abcoll.Mapping

Helper object to store implementations and give access in a dictionary-like fashion, using CodeGenerator
implementations as a fallback for CodeObject implementations.

Methods

add_dynamic_implementation(target, code[,
. . .])

Adds an “dynamic implementation” for this function.

add_implementation(target, code[, . . .])
add_numpy_implementation(wrapped_func[,
. . .])

Add a numpy implementation to a Function.

Details

add_dynamic_implementation(target, code, namespace=None, dependencies=None,
name=None)

Adds an “dynamic implementation” for this function. code and namespace arguments are expected to
be callables that will be called in Network.before_run() with the owner of the CodeObject as
an argument. This allows to generate code that depends on details of the context it is run in, e.g. the dt of
a clock.

add_implementation(target, code, namespace=None, dependencies=None, name=None)

add_numpy_implementation(wrapped_func, dependencies=None, discard_units=None)
Add a numpy implementation to a Function.

Parameters function : Function

The function description for which an implementation should be added.

wrapped_func : callable

The original function (that will be used for the numpy implementation)

dependencies : list of Function, optional

A list of functions this function needs.

discard_units : bool, optional

6.4. Subpackages 381

https://docs.python.org/2/library/code.html#module-code

Brian 2 Documentation, Release 2.1.1

See implementation().

SymbolicConstant(name, sympy_obj, value) Class for representing constants (e.g.

SymbolicConstant class

(Shortest import: from brian2.core.functions import SymbolicConstant)

class brian2.core.functions.SymbolicConstant(name, sympy_obj, value)
Bases: brian2.core.variables.Constant

Class for representing constants (e.g. pi) that are understood by sympy.

log10

Methods

log10 class

(Shortest import: from brian2.core.functions import log10)

class brian2.core.functions.log10
Bases: sympy.core.function.Function

Methods

eval(args)

Details

classmethod eval(args)

Functions

declare_types(**types) Decorator to declare argument and result types for a func-
tion

declare_types function

(Shortest import: from brian2 import declare_types)

brian2.core.functions.declare_types(**types)
Decorator to declare argument and result types for a function

Usage is similar to check_units() except that types must be one of {VALID_ARG_TYPES} and the result
type must be one of {VALID_RETURN_TYPES}. Unspecified argument types are assumed to be 'all' (i.e.
anything is permitted), and an unspecified result type is assumed to be 'float'. Note that the 'highest'
option for result type will give the highest type of its argument, e.g. if the arguments were boolean and integer

382 Chapter 6. brian2 package

http://docs.sympy.org/dev/modules/core.html#sympy.core.function.Function

Brian 2 Documentation, Release 2.1.1

then the result would be integer, if the arguments were integer and float it would be float.

implementation(target[, code, namespace, . . .]) A simple decorator to extend user-written Python functions
to work with code generation in other languages.

implementation function

(Shortest import: from brian2 import implementation)

brian2.core.functions.implementation(target, code=None, namespace=None, dependen-
cies=None, discard_units=None)

A simple decorator to extend user-written Python functions to work with code generation in other languages.

Parameters target : str

Name of the code generation target (e.g. 'weave') for which to add an implementa-
tion.

code : str or dict-like, optional

What kind of code the target language expects is language-specific, e.g. C++ code
allows for a dictionary of code blocks instead of a single string.

namespaces : dict-like, optional

A namespace dictionary (i.e. a mapping of names to values) that should be added to a
CodeObject namespace when using this function.

dependencies : dict-like, optional

A mapping of names to Function objects, for additional functions needed by this
function.

discard_units: bool, optional :

Numpy functions can internally make use of the unit system. However, during a
simulation run, state variables are passed around as unitless values for efficiency. If
discard_units is set to False, input arguments will have units added to them so
that the function can still use units internally (the units will be stripped away from the
return value as well). Alternatively, if discard_units is set to True, the func-
tion will receive unitless values as its input. The namespace of the function will be
altered to make references to units (e.g. ms) refer to the corresponding floating point
values so that no unit mismatch errors are raised. Note that this system cannot work
in all cases, e.g. it does not work with functions that internally imports values (e.g.
does from brian2 import ms) or access values with units indirectly (e.g. uses
brian2.ms instead of ms). If no value is given, defaults to the preference setting
codegen.runtime.numpy.discard_units.

Notes

While it is in principle possible to provide a numpy implementation as an argument for this decorator, this is
normally not necessary – the numpy implementation should be provided in the decorated function.

If this decorator is used with other directors such as check_units() or declare_types(), it should be
the uppermost decorator (that is, the last one to be applied).

6.4. Subpackages 383

Brian 2 Documentation, Release 2.1.1

Examples

Sample usage:

@implementation('cpp',"""
#include<math.h>
inline double usersin(double x)
{

return sin(x);
}
""")

def usersin(x):
return sin(x)

magic module

Exported members: MagicNetwork, magic_network, MagicError, run(), stop(), collect(),
store(), restore(), start_scope()

Classes

MagicError Error that is raised when something goes wrong in
MagicNetwork

MagicError class

(Shortest import: from brian2 import MagicError)

class brian2.core.magic.MagicError
Bases: exceptions.Exception

Error that is raised when something goes wrong in MagicNetwork

See notes to MagicNetwork for more details.

MagicNetwork() Network that automatically adds all Brian objects

MagicNetwork class

(Shortest import: from brian2 import MagicNetwork)

class brian2.core.magic.MagicNetwork
Bases: brian2.core.network.Network

Network that automatically adds all Brian objects

In order to avoid bugs, this class will occasionally raise MagicError when the intent of the user is not clear.
See the notes below for more details on this point. If you persistently see this error, then Brian is not able
to safely guess what you intend to do, and you should use a Network object and call Network.run()
explicitly.

Note that this class cannot be instantiated by the user, there can be only one instance magic_network of
MagicNetwork.

See also:

384 Chapter 6. brian2 package

https://docs.python.org/2/library/exceptions.html#exceptions.Exception

Brian 2 Documentation, Release 2.1.1

Network, collect(), run(), stop(), store(), restore()

Notes

All Brian objects that are visible at the point of the run() call will be included in the network. This class is
designed to work in the following two major use cases:

1. You create a collection of Brian objects, and call run() to run the simulation. Subsequently, you may
call run() again to run it again for a further duration. In this case, the Network.t time will start at 0
and for the second call to run() will continue from the end of the previous run.

2. You have a loop in which at each iteration, you create some Brian objects and run a simulation using them.
In this case, time is reset to 0 for each call to run().

In any other case, you will have to explicitly create a Network object yourself and call Network.run() on
this object. Brian has a built in system to guess which of the cases above applies and behave correctly. When it
is not possible to safely guess which case you are in, it raises MagicError. The rules for this guessing system
are explained below.

If a simulation consists only of objects that have not been run, it will assume that you want to start a new
simulation. If a simulation only consists of objects that have been simulated in the previous run() call, it will
continue that simulation at the previous time.

If neither of these two situations apply, i.e., the network consists of a mix of previously run objects and new
objects, an error will be raised.

In these checks, “non-invalidating” objects (i.e. objects that have BrianObject.
invalidates_magic_network set to False) are ignored, e.g. creating new monitors is always
possible.

Methods

add(*objs) You cannot add objects directly to MagicNetwork
after_run()
check_dependencies()
get_states([units, format, subexpressions, . . .]) See Network.get_states().
remove(*objs) You cannot remove objects directly from

MagicNetwork
restore([name, filename, level]) See Network.store().
run(duration[, report, report_period, . . .])
set_states(values[, units, format, level]) See Network.set_states().
store([name, filename, level]) See Network.store().

Details

add(*objs)
You cannot add objects directly to MagicNetwork

after_run()

check_dependencies()

get_states(units=True, format=’dict’, subexpressions=False, level=0)
See Network.get_states().

6.4. Subpackages 385

Brian 2 Documentation, Release 2.1.1

remove(*objs)
You cannot remove objects directly from MagicNetwork

restore(name=’default’, filename=None, level=0)
See Network.store().

run(duration, report=None, report_period=10. * second, namespace=None, profile=False, level=0)

set_states(values, units=True, format=’dict’, level=0)
See Network.set_states().

store(name=’default’, filename=None, level=0)
See Network.store().

Functions

collect([level]) Return the list of BrianObjects that will be simulated if
run() is called.

collect function

(Shortest import: from brian2 import collect)

brian2.core.magic.collect(level=0)
Return the list of BrianObjects that will be simulated if run() is called.

Parameters level : int, optional

How much further up to go in the stack to find the objects. Needs only to be specified if
collect() is called as part of a function and should be increased by 1 for every level
of nesting. Defaults to 0.

Returns objects : set of BrianObject

The objects that will be simulated.

get_objects_in_namespace(level) Get all the objects in the current namespace that derive
from BrianObject.

get_objects_in_namespace function

(Shortest import: from brian2.core.magic import get_objects_in_namespace)

brian2.core.magic.get_objects_in_namespace(level)
Get all the objects in the current namespace that derive from BrianObject. Used to determine the objects for
the MagicNetwork.

Parameters level : int, optional

How far to go back to get the locals/globals. Each function/method call should add 1 to
this argument, functions/method with a decorator have to add 2.

Returns objects : set

A set with weak references to the BrianObjects in the namespace.

restore([name, filename]) Restore the state of the network and all included objects.

386 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

restore function

(Shortest import: from brian2 import restore)

brian2.core.magic.restore(name=’default’, filename=None)
Restore the state of the network and all included objects.

Parameters name : str, optional

The name of the snapshot to restore, if not specified uses 'default'.

filename : str, optional

The name of the file from where the state should be restored. If not specified, it is ex-
pected that the state exist in memory (i.e. Network.store() was previously called
without the filename argument).

See also:

Network.restore()

run(duration[, report, report_period, . . .]) Runs a simulation with all “visible” Brian objects for the
given duration.

run function

(Shortest import: from brian2 import run)

brian2.core.magic.run(duration, report=None, report_period=10*second, namespace=None,
level=0)

Runs a simulation with all “visible” Brian objects for the given duration. Calls collect() to gather all the
objects, the simulation can be stopped by calling the global stop() function.

In order to avoid bugs, this function will occasionally raise MagicError when the intent of the user is not
clear. See the notes to MagicNetwork for more details on this point. If you persistently see this error,
then Brian is not able to safely guess what you intend to do, and you should use a Network object and call
Network.run() explicitly.

Parameters duration : Quantity

The amount of simulation time to run for. If the network consists of new objects since
the last time run() was called, the start time will be reset to 0. If run() is called
twice or more without changing the set of objects, the second and subsequent runs
will start from the end time of the previous run. To explicitly reset the time to 0, do
magic_network.t = 0*second.

report : {None, ‘stdout’, ‘stderr’, ‘graphical’, function}, optional

How to report the progress of the simulation. If None, do not report progress. If
stdout or stderr is specified, print the progress to stdout or stderr. If graphical, Tk-
inter is used to show a graphical progress bar. Alternatively, you can specify a call-
back function(elapsed, complete) which will be passed the amount of time
elapsed (in seconds) and the fraction complete from 0 to 1.

report_period : Quantity

How frequently (in real time) to report progress.

profile : bool, optional

6.4. Subpackages 387

Brian 2 Documentation, Release 2.1.1

Whether to record profiling information (see Network.profiling_info). De-
faults to False.

namespace : dict-like, optional

A namespace in which objects which do not define their own namespace will be run. If
not namespace is given, the locals and globals around the run function will be used.

level : int, optional

How deep to go down the stack frame to look for the locals/global (see namespace
argument). Only necessary under particular circumstances, e.g. when calling the run
function as part of a function call or lambda expression. This is used in tests, e.g.:
assert_raises(MagicError, lambda: run(1*ms, level=3)).

Raises

MagicError Error raised when it was not possible for Brian to safely guess the intended use. See
MagicNetwork for more details.

See also:

Network.run(), MagicNetwork, collect(), start_scope(), stop()

start_scope() Starts a new scope for magic functions

start_scope function

(Shortest import: from brian2 import start_scope)

brian2.core.magic.start_scope()
Starts a new scope for magic functions

All objects created before this call will no longer be automatically included by the magic functions such as
run().

stop() Stops all running simulations.

stop function

(Shortest import: from brian2 import stop)

brian2.core.magic.stop()
Stops all running simulations.

See also:

Network.stop(), run(), reinit

store([name, filename]) Store the state of the network and all included objects.

388 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

store function

(Shortest import: from brian2 import store)

brian2.core.magic.store(name=’default’, filename=None)
Store the state of the network and all included objects.

Parameters name : str, optional

A name for the snapshot, if not specified uses 'default'.

filename : str, optional

A filename where the state should be stored. If not specified, the state will be stored in
memory.

See also:

Network.store()

Objects

magic_network Automatically constructed MagicNetwork of all Brian
objects

magic_network object

(Shortest import: from brian2 import magic_network)

brian2.core.magic.magic_network = MagicNetwork()
Automatically constructed MagicNetwork of all Brian objects

names module

Exported members: Nameable

Classes

Nameable(name) Base class to find a unique name for an object

Nameable class

(Shortest import: from brian2 import Nameable)

class brian2.core.names.Nameable(name)
Bases: brian2.core.tracking.Trackable

Base class to find a unique name for an object

If you specify a name explicitly, and it has already been taken, a ValueError is raised. You can also specify
a name with a wildcard asterisk in the end, i.e. in the form 'name*'. It will then try name first but if this is
already specified, it will try name_1, name__2`, etc. This is the default mechanism used by most core objects
in Brian, e.g. NeuronGroup uses a default name of 'neurongroup*'.

Parameters name : str

An name for the object, possibly ending in * to specify that variants of this name should

6.4. Subpackages 389

Brian 2 Documentation, Release 2.1.1

be tried if the name (without the asterisk) is already taken. If (and only if) the name for
this object has already been set, it is also possible to call the initialiser with None for
the name argument. This situation can arise when a class derives from multiple classes
that derive themselves from Nameable (e.g. Group and CodeRunner) and their
initialisers are called explicitely.

Raises

ValueError If the name is already taken.

Attributes

id A unique id for this object.
name The unique name for this object.

Methods

assign_id() Assign a new id to this object.

Details

id
A unique id for this object.

In contrast to names, which may be reused, the id stays unique. This is used in the dependency checking
to not have to deal with the chore of comparing weak references, weak proxies and strong references.

name
The unique name for this object.

Used when generating code. Should be an acceptable variable name, i.e. starting with a letter character
and followed by alphanumeric characters and _.

assign_id()
Assign a new id to this object. Under most circumstances, this method should only be called once at the
creation of the object to generate a unique id. In the case of the MagicNetwork, however, the id should
change when a new, independent set of objects is simulated.

Functions

find_name(name)

find_name function

(Shortest import: from brian2.core.names import find_name)

brian2.core.names.find_name(name)

390 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

namespace module

Implementation of the namespace system, used to resolve the identifiers in model equations of NeuronGroup and
Synapses

Exported members: get_local_namespace(), DEFAULT_FUNCTIONS, DEFAULT_UNITS,
DEFAULT_CONSTANTS

Functions

get_local_namespace(level) Get the surrounding namespace.

get_local_namespace function

(Shortest import: from brian2 import get_local_namespace)

brian2.core.namespace.get_local_namespace(level)
Get the surrounding namespace.

Parameters level : int, optional

How far to go back to get the locals/globals. Each function/method call should add 1 to
this argument, functions/method with a decorator have to add 2.

Returns namespace : dict

The locals and globals at the given depth of the stack frame.

network module

Module defining the Network object, the basis of all simulation runs.

Preferences

Network preferences core.network.default_schedule = ['start', 'groups', 'thresholds',
'synapses', 'resets', 'end']

Default schedule used for networks that don’t specify a schedule.

Exported members: Network, profiling_summary(), scheduling_summary()

Classes

Network(*objs[, name]) The main simulation controller in Brian

Network class

(Shortest import: from brian2 import Network)

class brian2.core.network.Network(*objs, name=’network*’)
Bases: brian2.core.names.Nameable

The main simulation controller in Brian

Network handles the running of a simulation. It contains a set of Brian objects that are added with add. The

6.4. Subpackages 391

Brian 2 Documentation, Release 2.1.1

run method actually runs the simulation. The main run loop, determining which objects get called in what
order is described in detail in the notes below. The objects in the Network are accesible via their names, e.g.
net['neurongroup'] would return the NeuronGroup with this name.

Parameters objs : (BrianObject, container), optional

A list of objects to be added to the Network immediately, see add.

name : str, optional

An explicit name, if not specified gives an automatically generated name

See also:

MagicNetwork, run(), stop()

Notes

The main run loop performs the following steps:

1. Prepare the objects if necessary, see prepare.

2. Determine the end time of the simulation as t`+``duration`.

3. Determine which set of clocks to update. This will be the clock with the smallest value of t. If there are
several with the same value, then all objects with these clocks will be updated simultaneously. Set t to the
clock time.

4. If the t value of these clocks is past the end time of the simulation, stop running. If the Network.
stop() method or the stop() function have been called, stop running. Set t to the end time of the
simulation.

5. For each object whose clock is set to one of the clocks from the previous steps, call the update method.
This method will not be called if the active flag is set to False. The order in which the objects are
called is described below.

6. Increase Clock.t by Clock.dt for each of the clocks and return to step 2.

The order in which the objects are updated in step 4 is determined by the Network.schedule and the
objects when and order attributes. The schedule is a list of string names. Each when attribute should
be one of these strings, and the objects will be updated in the order determined by the schedule. The de-
fault schedule is ['start', 'groups', 'thresholds', 'synapses', 'resets', 'end'].
In addition to the names provided in the schedule, automatic names starting with before_ and after_ can
be used. That means that all objects with when=='before_start' will be updated first, then those with
when=='start', when=='after_start', when=='before_groups', when=='groups' and so
forth. If several objects have the same when attribute, then the order is determined by the order attribute
(lower first).

Attributes

_stored_state Stored state of objects (store/restore)
objects The list of objects in the Network, should not normally

be modified directly.
profiling_info The time spent in executing the various CodeObjects.
schedule List of when slots in the order they will be updated, can

be modified.
Continued on next page

392 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

Table 6.144 – continued from previous page
t Current simulation time in seconds (Quantity)
t_ Current time as a float

Methods

add(*objs) Add objects to the Network
after_run()
before_run(namespace) Prepares the Network for a run.
check_dependencies()
get_profiling_info(*args, **kwds) The only reason this is not directly implemented in

profiling_info is to allow devices (e.g.
get_states([units, format, subexpressions, . . .]) Return a copy of the current state variable values of ob-

jects in the network..
remove(*objs) Remove an object or sequence of objects from a

Network.
restore([name, filename]) Retore the state of the network and all included objects.
run(duration[, report, report_period, . . .]) Runs the simulation for the given duration.
scheduling_summary() Return a SchedulingSummary object, representing

the scheduling information for all objects included in
the network.

set_states(values[, units, format, level]) Set the state variables of objects in the network.
stop() Stops the network from running, this is reset the next

time Network.run() is called.
store([name, filename]) Store the state of the network and all included objects.

Details

_stored_state
Stored state of objects (store/restore)

objects
The list of objects in the Network, should not normally be modified directly. Note that in a
MagicNetwork, this attribute only contains the objects during a run: it is filled in before_run and
emptied in after_run

profiling_info
The time spent in executing the various CodeObjects.

A list of (name, time) tuples, containing the name of the CodeObject and the total execution time
for simulations of this object (as a Quantity with unit second). The list is sorted descending with
execution time.

Profiling has to be activated using the profile keyword in run() or Network.run().

schedule
List of when slots in the order they will be updated, can be modified.

See notes on scheduling in Network. Note that additional when slots can be added, but the sched-
ule should contain at least all of the names in the default schedule: ['start', 'groups',
'thresholds', 'synapses', 'resets', 'end'].

The schedule can also be set to None, resetting it to the default schedule set by the
core.network.default_schedule preference.

6.4. Subpackages 393

Brian 2 Documentation, Release 2.1.1

t
Current simulation time in seconds (Quantity)

t_
Current time as a float

add(*objs)
Add objects to the Network

Parameters objs : (BrianObject, container)

The BrianObject or container of Brian objects to be added. Specify multiple objects,
or lists (or other containers) of objects. Containers will be added recursively. If the
container is a dict then it will add the values from the dictionary but not the keys. If
you want to add the keys, do add(objs.keys()).

after_run()

before_run(namespace)
Prepares the Network for a run.

Objects in the Network are sorted into the correct running order, and their BrianObject.
before_run() methods are called.

Parameters run_namespace : dict-like, optional

A namespace in which objects which do not define their own namespace will be run.

check_dependencies()

get_profiling_info(*args, **kwds)
The only reason this is not directly implemented in profiling_info is to allow devices (e.g.
CPPStandaloneDevice) to overwrite this.

get_states(units=True, format=’dict’, subexpressions=False, read_only_variables=True, level=0)
Return a copy of the current state variable values of objects in the network.. The returned arrays are
copies of the actual arrays that store the state variable values, therefore changing the values in the returned
dictionary will not affect the state variables.

Parameters vars : list of str, optional

The names of the variables to extract. If not specified, extract all state variables (ex-
cept for internal variables, i.e. names that start with '_'). If the subexpressions
argument is True, the current values of all subexpressions are returned as well.

units : bool, optional

Whether to include the physical units in the return value. Defaults to True.

format : str, optional

The output format. Defaults to 'dict'.

subexpressions: bool, optional :

Whether to return subexpressions when no list of variable names is given. Defaults to
False. This argument is ignored if an explicit list of variable names is given in vars.

read_only_variables : bool, optional

Whether to return read-only variables (e.g. the number of neurons, the time, etc.). Set-
ting it to Falsewill assure that the returned state can later be used with set_states.
Defaults to True.

level : int, optional

394 Chapter 6. brian2 package

https://docs.python.org/2/library/stdtypes.html#dict

Brian 2 Documentation, Release 2.1.1

How much higher to go up the stack to resolve external variables. Only relevant if
extracting subexpressions that refer to external variables.

Returns values : dict

A dictionary mapping object names to the state variables of that object, in the specified
format.

See also:

VariableOwner.get_states()

remove(*objs)
Remove an object or sequence of objects from a Network.

Parameters objs : (BrianObject, container)

The BrianObject or container of Brian objects to be removed. Specify multiple
objects, or lists (or other containers) of objects. Containers will be removed recursively.

restore(name=’default’, filename=None)
Retore the state of the network and all included objects.

Parameters name : str, optional

The name of the snapshot to restore, if not specified uses 'default'.

filename : str, optional

The name of the file from where the state should be restored. If not specified, it is ex-
pected that the state exist in memory (i.e. Network.store() was previously called
without the filename argument).

run(duration, report=None, report_period=60*second, namespace=None, level=0)
Runs the simulation for the given duration.

Parameters duration : Quantity

The amount of simulation time to run for.

report : {None, ‘text’, ‘stdout’, ‘stderr’, function}, optional

How to report the progress of the simulation. If None, do not report progress. If
'text' or 'stdout' is specified, print the progress to stdout. If 'stderr'
is specified, print the progress to stderr. Alternatively, you can specify a call-
back callable(elapsed, complete, duration) which will be passed the
amount of time elapsed as a Quantity , the fraction complete from 0.0 to 1.0 and
the total duration of the simulation (in biological time). The function will always be
called at the beginning and the end (i.e. for fractions 0.0 and 1.0), regardless of the
report_period.

report_period : Quantity

How frequently (in real time) to report progress.

namespace : dict-like, optional

A namespace that will be used in addition to the group-specific namespaces (if defined).
If not specified, the locals and globals around the run function will be used.

profile : bool, optional

Whether to record profiling information (see Network.profiling_info). De-
faults to False.

level : int, optional

6.4. Subpackages 395

Brian 2 Documentation, Release 2.1.1

How deep to go up the stack frame to look for the locals/global (see namespace argu-
ment). Only used by run functions that call this run function, e.g. MagicNetwork.
run() to adjust for the additional nesting.

Notes

The simulation can be stopped by calling Network.stop() or the global stop() function.

scheduling_summary()
Return a SchedulingSummary object, representing the scheduling information for all objects included
in the network.

Returns summary : SchedulingSummary

Object representing the scheduling information.

set_states(values, units=True, format=’dict’, level=0)
Set the state variables of objects in the network.

Parameters values : dict

A dictionary mapping object names to objects of format, setting the states of this
object.

units : bool, optional

Whether the values include physical units. Defaults to True.

format : str, optional

The format of values. Defaults to 'dict'

level : int, optional

How much higher to go up the stack to _resolve external variables. Only relevant when
using string expressions to set values.

See also:

Group.set_states()

stop()
Stops the network from running, this is reset the next time Network.run() is called.

store(name=’default’, filename=None)
Store the state of the network and all included objects.

Parameters name : str, optional

A name for the snapshot, if not specified uses 'default'.

filename : str, optional

A filename where the state should be stored. If not specified, the state will be stored in
memory.

Notes

The state stored to disk can be restored with the Network.restore() function. Note that it will only
restore the internal state of all the objects (including undelivered spikes) – the objects have to exist already
and they need to have the same name as when they were stored. Equations, thresholds, etc. are not stored
– this is therefore not a general mechanism for object serialization. Also, the format of the file is not

396 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

guaranteed to work across platforms or versions. If you are interested in storing the state of a network for
documentation or analysis purposes use Network.get_states() instead.

Tutorials and examples using this

• Tutorial 3-intro-to-brian-simulations

• Example IF_curve_LIF

• Example IF_curve_Hodgkin_Huxley

• Example advanced/compare_GSL_to_conventional

• Example advanced/stochastic_odes

ProfilingSummary(net[, show]) Class to nicely display the results of profiling.

ProfilingSummary class

(Shortest import: from brian2.core.network import ProfilingSummary)

class brian2.core.network.ProfilingSummary(net, show=None)
Bases: object

Class to nicely display the results of profiling. Objects of this class are returned by profiling_summary().

Parameters net : Network

The Network object to profile.

show : int, optional

The number of results to show (the longest results will be shown). If not specified, all
results will be shown.

See also:

Network.profiling_info

SchedulingSummary(objects) Object representing the schedule that is used to simulate
the objects in a network.

SchedulingSummary class

(Shortest import: from brian2.core.network import SchedulingSummary)

class brian2.core.network.SchedulingSummary(objects)
Bases: object

Object representing the schedule that is used to simulate the objects in a network. Objects of this type are
returned by scheduling_summary(), they should not be created manually by the user.

Parameters objects : list of BrianObject

The sorted list of objects that are simulated by the network.

6.4. Subpackages 397

https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#object

Brian 2 Documentation, Release 2.1.1

TextReport(stream) Helper object to report simulation progress in Network.
run().

TextReport class

(Shortest import: from brian2.core.network import TextReport)

class brian2.core.network.TextReport(stream)
Bases: object

Helper object to report simulation progress in Network.run().

Parameters stream : file

The stream to write to, commonly sys.stdout or sys.stderr.

Methods

__call__(elapsed, completed, start, duration)

Details

__call__(elapsed, completed, start, duration)

Functions

profiling_summary([net, show]) Returns a ProfilingSummary of the profiling info for
a run.

profiling_summary function

(Shortest import: from brian2 import profiling_summary)

brian2.core.network.profiling_summary(net=None, show=None)
Returns a ProfilingSummary of the profiling info for a run. This object can be transformed to a string
explicitly but on an interactive console simply calling profiling_summary() is enough since it will auto-
matically convert the ProfilingSummary object.

Parameters net : {Network, None} optional

The Network object to profile, or magic_network if not specified.

show : int

The number of results to show (the longest results will be shown). If not specified, all
results will be shown.

schedule_propagation_offset([net]) Returns the minimal time difference for a post-synaptic ef-
fect after a spike.

398 Chapter 6. brian2 package

https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/sys.html#sys.stdout
https://docs.python.org/2/library/sys.html#sys.stderr

Brian 2 Documentation, Release 2.1.1

schedule_propagation_offset function

(Shortest import: from brian2.core.network import schedule_propagation_offset)

brian2.core.network.schedule_propagation_offset(net=None)
Returns the minimal time difference for a post-synaptic effect after a spike. With the default schedule, this time
difference is 0, since the thresholds slot precedes the synapses slot. For the GeNN device, however, a
post-synaptic effect will occur in the following time step, this function therefore returns one dt.

Parameters net : Network

The network to check (uses the magic network if not specified).

Returns offset : Quantity

The minimum spike propagation delay: 0*ms for the standard schedule but dt for
schedules where synapses precedes thresholds.

Notes

This function always returns 0*ms or defaultclock.dt – no attempt is made to deal with other clocks.

scheduling_summary([net]) Returns a SchedulingSummary object, representing
the scheduling information for all objects included in the
given Network (or the “magic” network, if none is speci-
fied).

scheduling_summary function

(Shortest import: from brian2 import scheduling_summary)

brian2.core.network.scheduling_summary(net=None)
Returns a SchedulingSummary object, representing the scheduling information for all objects included in
the given Network (or the “magic” network, if none is specified). The returned objects can be printed or
converted to a string to give an ASCII table representation of the schedule. In a Jupyter notebook, the output
can be displayed as a HTML table.

Parameters net : Network, optional

The network for which the scheduling information should be displayed. Defaults to the
“magic” network.

Returns summary : SchedulingSummary

An object that represents the scheduling information.

operations module

Exported members: NetworkOperation, network_operation()

Classes

NetworkOperation(function[, dt, clock, . . .]) Object with function that is called every time step.

6.4. Subpackages 399

Brian 2 Documentation, Release 2.1.1

NetworkOperation class

(Shortest import: from brian2 import NetworkOperation)

class brian2.core.operations.NetworkOperation(function, dt=None, clock=None,
when=’start’, order=0)

Bases: brian2.core.base.BrianObject

Object with function that is called every time step.

Parameters function : function

The function to call every time step, should take either no arguments in which case it
is called as function() or one argument, in which case it is called with the current
Clock time (Quantity).

dt : Quantity , optional

The time step to be used for the simulation. Cannot be combined with the clock
argument.

clock : Clock, optional

The update clock to be used. If neither a clock, nor the dt argument is specified, the
defaultclock will be used.

when : str, optional

In which scheduling slot to execute the operation during a time step. Defaults to
'start'.

order : int, optional

The priority of this operation for operations occurring at the same time step and in the
same scheduling slot. Defaults to 0.

See also:

network_operation(), Network, BrianObject

Attributes

function The function to be called each time step

Methods

run()

Details

function
The function to be called each time step

run()

Functions

400 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

network_operation([when]) Decorator to make a function get called every time step of
a simulation.

network_operation function

(Shortest import: from brian2 import network_operation)

brian2.core.operations.network_operation(when=None)
Decorator to make a function get called every time step of a simulation.

The function being decorated should either have no arguments, or a single argument which will be called with
the current time t.

Parameters dt : Quantity , optional

The time step to be used for the simulation. Cannot be combined with the clock
argument.

clock : Clock, optional

The update clock to be used. If neither a clock, nor the dt argument is specified, the
defaultclock will be used.

when : str, optional

In which scheduling slot to execute the operation during a time step. Defaults to
'start'.

order : int, optional

The priority of this operation for operations occurring at the same time step and in the
same scheduling slot. Defaults to 0.

See also:

NetworkOperation, Network, BrianObject

Notes

Converts the function into a NetworkOperation.

If using the form:

@network_operations(when='end')
def f():

...

Then the arguments to network_operation must be keyword arguments.

Examples

Print something each time step: >>> from brian2 import * >>> @network_operation . . . def f(): . . .
print(‘something’) . . . >>> net = Network(f)

Print the time each time step:

6.4. Subpackages 401

Brian 2 Documentation, Release 2.1.1

>>> @network_operation
... def f(t):
... print('The time is', t)
...
>>> net = Network(f)

Specify a dt, etc.:

>>> @network_operation(dt=0.5*ms, when='end')
... def f():
... print('This will happen at the end of each timestep.')
...
>>> net = Network(f)

preferences module

Brian global preferences are stored as attributes of a BrianGlobalPreferences object prefs.

Exported members: PreferenceError, BrianPreference, prefs, brian_prefs

Classes

BrianGlobalPreferences() Class of the prefs object.

BrianGlobalPreferences class

(Shortest import: from brian2.core.preferences import BrianGlobalPreferences)

class brian2.core.preferences.BrianGlobalPreferences
Bases: _abcoll.MutableMapping

Class of the prefs object.

Used for getting/setting/validating/registering preference values. All preferences must be registered via
register_preferences. To get or set a preference, you can either use a dictionary-based or an attribute-
based interface:

prefs['core.default_float_dtype'] = float32
prefs.core.default_float_dtype = float32

Preferences can be read from files, see load_preferences and read_preference_file. Note that
load_preferences is called automatically when Brian has finished importing.

Attributes

as_file Get a Brian preference doc file format string for the cur-
rent preferences

defaults_as_file Get a Brian preference doc file format string for the de-
fault preferences

toplevel_categories The toplevel preference categories

402 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

Methods

check_all_validated() Checks that all preferences that have been set have been
validated.

do_validation() Validates preferences that have not yet been validated.
eval_pref(value) Evaluate a string preference in the units namespace
get_documentation([basename, link_targets]) Generates a string documenting all preferences with the

given basename.
load_preferences() Load all the preference files, but do not validate them.
read_preference_file(file) Reads a Brian preferences file
register_preferences(prefbasename, . . .) Registers a set of preference names, docs and validation

functions.
reset_to_defaults() Resets the parameters to their default values.

Details

as_file
Get a Brian preference doc file format string for the current preferences

defaults_as_file
Get a Brian preference doc file format string for the default preferences

toplevel_categories
The toplevel preference categories

check_all_validated()
Checks that all preferences that have been set have been validated.

Logs a warning if not. Should be called by Network.run() or other key Brian functions.

do_validation()
Validates preferences that have not yet been validated.

eval_pref(value)
Evaluate a string preference in the units namespace

get_documentation(basename=None, link_targets=True)
Generates a string documenting all preferences with the given basename. If no basename is given, all
preferences are documented.

load_preferences()
Load all the preference files, but do not validate them.

Preference files are read in the following order:

1. brian2/default_preferences from the Brian installation directory.

2. ~/.brian/user_preferences from the user’s home directory

3. ./brian_preferences from the current directory

Files that are missing are ignored. Preferences read at each step override preferences from previous steps.

See also:

read_preference_file

read_preference_file(file)
Reads a Brian preferences file

6.4. Subpackages 403

Brian 2 Documentation, Release 2.1.1

The file format for Brian preferences is a plain text file of the form:

a.b.c = 1
Comment line
[a]
b.d = 2
[a.b]
e = 3

Blank and comment lines are ignored, all others should be of one of the following two forms:

key = value
[section]

eval is called on the values, so strings should be written as, e.g. '3' rather than 3. The eval is called
with all unit names available. Within a section, the section name is prepended to the key. So in the above
example, it would give the following unvalidated dictionary:

{'a.b.c': 1,
'a.b.d': 2,
'a.b.e': 3,
}

Parameters file : file, str

The file object or filename of the preference file.

register_preferences(prefbasename, prefbasedoc, **prefs)
Registers a set of preference names, docs and validation functions.

Parameters prefbasename : str

The base name of the preference.

prefbasedoc : str

Documentation for this base name

**prefs : dict of (name, BrianPreference) pairs

The preference names to be defined. The full preference name will be
prefbasename.name, and the BrianPreference value is used to define the
default value, docs, and validation function.

Raises

PreferenceError If the base name is already registered.

See also:

BrianPreference

reset_to_defaults()
Resets the parameters to their default values.

BrianGlobalPreferencesView(basename,
all_prefs)

A class allowing for accessing preferences in a subcate-
gory.

404 Chapter 6. brian2 package

https://docs.python.org/2/library/functions.html#eval

Brian 2 Documentation, Release 2.1.1

BrianGlobalPreferencesView class

(Shortest import: from brian2.core.preferences import BrianGlobalPreferencesView)

class brian2.core.preferences.BrianGlobalPreferencesView(basename, all_prefs)
Bases: _abcoll.MutableMapping

A class allowing for accessing preferences in a subcategory. It forwards requests to
BrianGlobalPreferences and provides documentation and autocompletion support for all prefer-
ences in the given category. This object is used to allow accessing preferences via attributes of the prefs
object.

Parameters basename : str

The name of the preference category. Has to correspond to a key in
BrianGlobalPreferences.pref_register.

all_prefs : BrianGlobalPreferences

A reference to the main object storing the preferences.

BrianPreference(default, docs[, validator, . . .]) Used for defining a Brian preference.

BrianPreference class

(Shortest import: from brian2 import BrianPreference)

class brian2.core.preferences.BrianPreference(default, docs, validator=None,
representor=<built-in function repr>)

Bases: object

Used for defining a Brian preference.

Parameters default : object

The default value.

docs : str

Documentation for the preference value.

validator : func

A function that True or False depending on whether the preference value is valid or not.
If not specified, uses the DefaultValidator for the default value provided (check
if the class is the same, and for Quantity objects, whether the units are consistent).

representor : func

A function that returns a string representation of a valid preference value that can be
passed to eval. By default, uses repr which works in almost all cases.

DefaultValidator(value) Default preference validator

DefaultValidator class

(Shortest import: from brian2.core.preferences import DefaultValidator)

class brian2.core.preferences.DefaultValidator(value)

6.4. Subpackages 405

https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#eval
https://docs.python.org/2/library/functions.html#repr

Brian 2 Documentation, Release 2.1.1

Bases: object

Default preference validator

Used by BrianPreference as the default validator if none is given. First checks if the provided value is of
the same class as the default value, and then if the default is a Quantity , checks that the units match.

Methods

__call__(value)

Details

__call__(value)

ErrorRaiser

ErrorRaiser class

(Shortest import: from brian2.core.preferences import ErrorRaiser)

class brian2.core.preferences.ErrorRaiser
Bases: object

PreferenceError Exception relating to the Brian preferences system.

PreferenceError class

(Shortest import: from brian2 import PreferenceError)

class brian2.core.preferences.PreferenceError
Bases: exceptions.Exception

Exception relating to the Brian preferences system.

Functions

check_preference_name(name) Make sure that a preference name is valid.

check_preference_name function

(Shortest import: from brian2.core.preferences import check_preference_name)

brian2.core.preferences.check_preference_name(name)
Make sure that a preference name is valid. This currently checks that the name does not contain illegal characters
and does not clash with method names such as “keys” or “items”.

Parameters name : str

The name to check.

406 Chapter 6. brian2 package

https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/exceptions.html#exceptions.Exception

Brian 2 Documentation, Release 2.1.1

Raises

PreferenceError In case the name is invalid.

parse_preference_name(name) Split a preference name into a base and end name.

parse_preference_name function

(Shortest import: from brian2.core.preferences import parse_preference_name)

brian2.core.preferences.parse_preference_name(name)
Split a preference name into a base and end name.

Parameters name : str

The full name of the preference.

Returns basename : str

The first part of the name up to the final ..

endname : str

The last part of the name from the final . onwards.

Examples

>>> parse_preference_name('core.weave_compiler')
('core', 'weave_compiler')
>>> parse_preference_name('codegen.cpp.compiler')
('codegen.cpp', 'compiler')

Objects

brian_prefs

brian_prefs object

(Shortest import: from brian2 import brian_prefs)

brian2.core.preferences.brian_prefs = <brian2.core.preferences.ErrorRaiser object>

prefs Preference categories:

prefs object

(Shortest import: from brian2 import prefs)

brian2.core.preferences.prefs = <BrianGlobalPreferences with top-level categories: "core", "logging", "devices", "codegen", "GSL">
Preference categories:

** core ** Core Brian preferences

6.4. Subpackages 407

Brian 2 Documentation, Release 2.1.1

** logging ** Logging system preferences

** devices ** Device preferences

** codegen ** Code generation preferences

** GSL ** Directory containing GSL code

spikesource module

Exported members: SpikeSource

Classes

SpikeSource A source of spikes.

SpikeSource class

(Shortest import: from brian2 import SpikeSource)

class brian2.core.spikesource.SpikeSource
Bases: object

A source of spikes.

An object that can be used as a source of spikes for objects such as SpikeMonitor, Synapses, etc.

The defining properties of SpikeSource are that it should have:

• A length that can be extracted with len(obj), where the maximum spike index possible is
len(obj)-1.

• An attribute spikes, an array of ints each from 0 to len(obj)-1 with no repeats (but possibly not in
sorted order). This should be updated each time step.

• A clock attribute, this will be used as the default clock for objects with this as a source.

spikes
An array of ints, each from 0 to len(obj)-1 with no repeats (but possibly not in sorted order). Updated
each time step.

clock
The clock on which the spikes will be updated.

tracking module

Exported members: Trackable

Classes

InstanceFollower Keep track of all instances of classes derived from
Trackable

InstanceFollower class

(Shortest import: from brian2.core.tracking import InstanceFollower)

408 Chapter 6. brian2 package

https://docs.python.org/2/library/functions.html#object

Brian 2 Documentation, Release 2.1.1

class brian2.core.tracking.InstanceFollower
Bases: object

Keep track of all instances of classes derived from Trackable

The variable __instancesets__ is a dictionary with keys which are class objects, and values which are
InstanceTrackerSet, so __instanceset__[cls] is a set tracking all of the instances of class cls
(or a subclass).

Methods

add(value)
get(cls)

Details

add(value)

get(cls)

InstanceTrackerSet A set of weakref.ref to all existing objects of a cer-
tain class.

InstanceTrackerSet class

(Shortest import: from brian2.core.tracking import InstanceTrackerSet)

class brian2.core.tracking.InstanceTrackerSet
Bases: set

A set of weakref.ref to all existing objects of a certain class.

Should not normally be directly used.

Methods

add(value) Adds a weakref.ref to the value
remove(value) Removes the value (which should be a weakref) if it

is in the set

Details

add(value)
Adds a weakref.ref to the value

remove(value)
Removes the value (which should be a weakref) if it is in the set

Sometimes the value will have been removed from the set by clear, so we ignore KeyError in this
case.

6.4. Subpackages 409

https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/stdtypes.html#set
https://docs.python.org/2/library/weakref.html#weakref.ref
https://docs.python.org/2/library/stdtypes.html#set
https://docs.python.org/2/library/stdtypes.html#set
https://docs.python.org/2/library/weakref.html#weakref.ref
https://docs.python.org/2/library/weakref.html#weakref.ref
https://docs.python.org/2/library/weakref.html#weakref.ref

Brian 2 Documentation, Release 2.1.1

Trackable Classes derived from this will have their instances tracked.

Trackable class

(Shortest import: from brian2 import Trackable)

class brian2.core.tracking.Trackable
Bases: object

Classes derived from this will have their instances tracked.

The classmethod __instances__() will return an InstanceTrackerSet of the instances of that
class, and its subclasses.

variables module

Classes used to specify the type of a function, variable or common sub-expression.

Exported members: Variable, Constant, ArrayVariable, DynamicArrayVariable,
Subexpression, AuxiliaryVariable, VariableView , Variables, LinkedVariable,
linked_var()

Classes

ArrayVariable(name, owner, size, device[, . . .]) An object providing information about a model variable
stored in an array (for example, all state variables).

ArrayVariable class

(Shortest import: from brian2.core.variables import ArrayVariable)

class brian2.core.variables.ArrayVariable(name, owner, size, device, dimen-
sions=Dimension(), dtype=None, con-
stant=False, scalar=False, read_only=False,
dynamic=False, unique=False)

Bases: brian2.core.variables.Variable

An object providing information about a model variable stored in an array (for example, all state variables).
Most of the time Variables.add_array should be used instead of instantiating this class directly.

Parameters name : ‘str’

The name of the variable. Note that this refers to the original name in the owning group.
The same variable may be known under other names in other groups (e.g. the variable
v of a NeuronGroup is known as v_post in a Synapse connecting to the group).

dimensions : Dimension, optional

The physical dimensions of the variable

owner : Nameable

The object that “owns” this variable, e.g. the NeuronGroup or Synapses object
that declares the variable in its model equations.

size : int

410 Chapter 6. brian2 package

https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#classmethod

Brian 2 Documentation, Release 2.1.1

The size of the array

device : Device

The device responsible for the memory access.

dtype : dtype, optional

The dtype used for storing the variable. If none is given, defaults to
core.default_float_dtype.

constant : bool, optional

Whether the variable’s value is constant during a run. Defaults to False.

scalar : bool, optional

Whether this array is a 1-element array that should be treated like a scalar (e.g. for a
single delay value across synapses). Defaults to False.

read_only : bool, optional

Whether this is a read-only variable, i.e. a variable that is set internally and cannot be
changed by the user. Defaults to False.

unique : bool, optional

Whether the values in this array are all unique. This information is only important for
variables used as indices and does not have to reflect the actual contents of the array but
only the possibility of non-uniqueness (e.g. synaptic indices are always unique but the
corresponding pre- and post-synaptic indices are not). Defaults to False.

Attributes

conditional_write Another variable, on which the write is conditioned (e.g.
device The Device responsible for memory access.
size The size of this variable.
unique Wether all values in this arrays are necessarily unique

(only relevant for index variables).

Methods

get_addressable_value(name, group)
get_addressable_value_with_unit(name,
group)
get_len()
get_value()
set_conditional_write(var)
set_value(value)

Details

conditional_write
Another variable, on which the write is conditioned (e.g. a variable denoting the absence of refractoriness)

device

6.4. Subpackages 411

https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype

Brian 2 Documentation, Release 2.1.1

The Device responsible for memory access.

size
The size of this variable.

unique
Wether all values in this arrays are necessarily unique (only relevant for index variables).

get_addressable_value(name, group)

get_addressable_value_with_unit(name, group)

get_len()

get_value()

set_conditional_write(var)

set_value(value)

AuxiliaryVariable(name[, dimensions, dtype, . . .]) Variable description for an auxiliary variable (most likely
one that is added automatically to abstract code, e.g.

AuxiliaryVariable class

(Shortest import: from brian2.core.variables import AuxiliaryVariable)

class brian2.core.variables.AuxiliaryVariable(name, dimensions=Dimension(),
dtype=None, scalar=False)

Bases: brian2.core.variables.Variable

Variable description for an auxiliary variable (most likely one that is added automatically to abstract code,
e.g. _cond for a threshold condition), specifying its type and unit for code generation. Most of the time
Variables.add_auxiliary_variable should be used instead of instantiating this class directly.

Parameters name : str

The name of the variable

dimensions : Dimension, optional

The physical dimensions of the variable.

dtype : dtype, optional

The dtype used for storing the variable. If none is given, defaults to
core.default_float_dtype.

scalar : bool, optional

Whether the variable is a scalar value (True) or vector-valued, e.g. defined for every
neuron (False). Defaults to False.

Methods

get_value()

412 Chapter 6. brian2 package

https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype

Brian 2 Documentation, Release 2.1.1

Details

get_value()

Constant(name, value[, dimensions, owner]) A scalar constant (e.g.

Constant class

(Shortest import: from brian2.core.variables import Constant)

class brian2.core.variables.Constant(name, value, dimensions=Dimension(), owner=None)
Bases: brian2.core.variables.Variable

A scalar constant (e.g. the number of neurons N). Information such as the dtype or whether this variable is a
boolean are directly derived from the value. Most of the time Variables.add_constant should be used
instead of instantiating this class directly.

Parameters name : str

The name of the variable

dimensions : Dimension, optional

The physical dimensions of the variable. Note that the variable itself (as referenced by
value) should never have units attached.

value: reference to the variable value :

The value of the constant.

owner : Nameable, optional

The object that “owns” this variable, for constants that belong to a specific group, e.g.
the N constant for a NeuronGroup. External constants will have None (the default
value).

Attributes

value The constant’s value

Methods

get_value()

Details

value
The constant’s value

get_value()

6.4. Subpackages 413

Brian 2 Documentation, Release 2.1.1

DynamicArrayVariable(name, owner, size, device) An object providing information about a model variable
stored in a dynamic array (used in Synapses).

DynamicArrayVariable class

(Shortest import: from brian2.core.variables import DynamicArrayVariable)

class brian2.core.variables.DynamicArrayVariable(name, owner, size, device,
dimensions=Dimension(),
dtype=None, constant=False,
needs_reference_update=False,
resize_along_first=False,
scalar=False, read_only=False,
unique=False)

Bases: brian2.core.variables.ArrayVariable

An object providing information about a model variable stored in a dynamic array (used in Synapses). Most
of the time Variables.add_dynamic_array should be used instead of instantiating this class directly.

Parameters name : ‘str’

The name of the variable. Note that this refers to the original name in the owning group.
The same variable may be known under other names in other groups (e.g. the variable
v of a NeuronGroup is known as v_post in a Synapse connecting to the group).

dimensions : Dimension, optional

The physical dimensions of the variable.

owner : Nameable

The object that “owns” this variable, e.g. the NeuronGroup or Synapses object
that declares the variable in its model equations.

size : int or tuple of int

The (initial) size of the variable.

device : Device

The device responsible for the memory access.

dtype : dtype, optional

The dtype used for storing the variable. If none is given, defaults to
core.default_float_dtype.

constant : bool, optional

Whether the variable’s value is constant during a run. Defaults to False.

needs_reference_update : bool, optional

Whether the code objects need a new reference to the underlying data at every time step.
This should be set if the size of the array can be changed by other code objects. Defaults
to False.

scalar : bool, optional

Whether this array is a 1-element array that should be treated like a scalar (e.g. for a
single delay value across synapses). Defaults to False.

414 Chapter 6. brian2 package

https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype

Brian 2 Documentation, Release 2.1.1

read_only : bool, optional

Whether this is a read-only variable, i.e. a variable that is set internally and cannot be
changed by the user. Defaults to False.

unique : bool, optional

Whether the values in this array are all unique. This information is only important for
variables used as indices and does not have to reflect the actual contents of the array but
only the possibility of non-uniqueness (e.g. synaptic indices are always unique but the
corresponding pre- and post-synaptic indices are not). Defaults to False.

Attributes

dimensions
ndim The number of dimensions
needs_reference_update Whether this variable needs an update of the reference

to the
resize_along_first Whether this array will be only resized along the first

dimension

Methods

resize(new_size) Resize the dynamic array.

Details

dimensions

ndim
The number of dimensions

needs_reference_update
Whether this variable needs an update of the reference to the underlying data whenever it is passed to a
code object

resize_along_first
Whether this array will be only resized along the first dimension

resize(new_size)
Resize the dynamic array. Calls self.device.resize to do the actual resizing.

Parameters new_size : int or tuple of int

The new size.

LinkedVariable(group, name, variable[, index]) A simple helper class to make linking variables explicit.

LinkedVariable class

(Shortest import: from brian2.core.variables import LinkedVariable)

class brian2.core.variables.LinkedVariable(group, name, variable, index=None)

6.4. Subpackages 415

Brian 2 Documentation, Release 2.1.1

Bases: object

A simple helper class to make linking variables explicit. Users should use linked_var() instead.

Parameters group : Group

The group through which the variable is accessed (not necessarily the same as
variable.owner.

name : str

The name of variable in group (not necessarily the same as variable.
name).

variable : Variable

The variable that should be linked.

index : str or ndarray, optional

An indexing array (or the name of a state variable), providing a mapping from the entries
in the link source to the link target.

Subexpression(name, owner, expr, device[, . . .]) An object providing information about a named subexpres-
sion in a model.

Subexpression class

(Shortest import: from brian2.core.variables import Subexpression)

class brian2.core.variables.Subexpression(name, owner, expr, device, dimen-
sions=Dimension(), dtype=None,
scalar=False)

Bases: brian2.core.variables.Variable

An object providing information about a named subexpression in a model. Most of the time Variables.
add_subexpression should be used instead of instantiating this class directly.

Parameters name : str

The name of the subexpression.

dimensions : Dimension, optional

The physical dimensions of the subexpression.

owner : Group

The group to which the expression refers.

expr : str

The subexpression itself.

device : Device

The device responsible for the memory access.

dtype : dtype, optional

The dtype used for the expression. Defaults to core.default_float_dtype.

scalar: bool, optional :

Whether this is an expression only referring to scalar variables. Defaults to False

416 Chapter 6. brian2 package

https://docs.python.org/2/library/functions.html#object
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype

Brian 2 Documentation, Release 2.1.1

Attributes

device The Device responsible for memory access
expr The expression defining the subexpression
identifiers The identifiers used in the expression

Methods

get_addressable_value(name, group)
get_addressable_value_with_unit(name,
group)

Details

device
The Device responsible for memory access

expr
The expression defining the subexpression

identifiers
The identifiers used in the expression

get_addressable_value(name, group)

get_addressable_value_with_unit(name, group)

Variable(name[, dimensions, owner, dtype, . . .]) An object providing information about model variables (in-
cluding implicit variables such as t or xi).

Variable class

(Shortest import: from brian2.core.variables import Variable)

class brian2.core.variables.Variable(name, dimensions=Dimension(), owner=None,
dtype=None, scalar=False, constant=False,
read_only=False, dynamic=False, array=False)

Bases: brian2.utils.caching.CacheKey

An object providing information about model variables (including implicit variables such as t or xi). This class
should never be instantiated outside of testing code, use one of its subclasses instead.

Parameters name : ‘str’

The name of the variable. Note that this refers to the original name in the owning group.
The same variable may be known under other names in other groups (e.g. the variable
v of a NeuronGroup is known as v_post in a Synapse connecting to the group).

dimensions : Dimension, optional

The physical dimensions of the variable.

owner : Nameable, optional

6.4. Subpackages 417

Brian 2 Documentation, Release 2.1.1

The object that “owns” this variable, e.g. the NeuronGroup or Synapses object
that declares the variable in its model equations. Defaults to None (the value used for
Variable objects without an owner, e.g. external Constants).

dtype : dtype, optional

The dtype used for storing the variable. Defaults to the preference core.
default_scalar.dtype.

scalar : bool, optional

Whether the variable is a scalar value (True) or vector-valued, e.g. defined for every
neuron (False). Defaults to False.

constant: bool, optional :

Whether the value of this variable can change during a run. Defaults to False.

read_only : bool, optional

Whether this is a read-only variable, i.e. a variable that is set internally and cannot be
changed by the user (this is used for example for the variable N, the number of neurons
in a group). Defaults to False.

array : bool, optional

Whether this variable is an array. Allows for simpler check than testing
isinstance(var, ArrayVariable). Defaults to False.

Attributes

array Whether the variable is an array
constant Whether the variable is constant during a run
dim The variable’s dimensions.
dtype The dtype used for storing the variable.
dtype_str String representation of the numpy dtype
dynamic Whether the variable is dynamically sized (only for non-

scalars)
is_boolean
is_integer
name The variable’s name.
owner The Group to which this variable belongs.
read_only Whether the variable is read-only
scalar Whether the variable is a scalar
unit The Unit of this variable

Methods

get_addressable_value(name, group) Get the value (without units) of this variable in a form
that can be indexed in the context of a group.

get_addressable_value_with_unit(name,
group)

Get the value (with units) of this variable in a form that
can be indexed in the context of a group.

get_len() Get the length of the value associated with the variable
or 0 for a scalar variable.

Continued on next page

418 Chapter 6. brian2 package

https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype

Brian 2 Documentation, Release 2.1.1

Table 6.193 – continued from previous page
get_value() Return the value associated with the variable (without

units).
get_value_with_unit() Return the value associated with the variable (with

units).
set_value(value) Set the value associated with the variable.

Details

array
Whether the variable is an array

constant
Whether the variable is constant during a run

dim
The variable’s dimensions.

dtype
The dtype used for storing the variable.

dtype_str
String representation of the numpy dtype

dynamic
Whether the variable is dynamically sized (only for non-scalars)

is_boolean

is_integer

name
The variable’s name.

owner
The Group to which this variable belongs.

read_only
Whether the variable is read-only

scalar
Whether the variable is a scalar

unit
The Unit of this variable

get_addressable_value(name, group)
Get the value (without units) of this variable in a form that can be indexed in the context of a group. For
example, if a postsynaptic variable x is accessed in a synapse S as S.x_post, the synaptic indexing
scheme can be used.

Parameters name : str

The name of the variable

group : Group

The group providing the context for the indexing. Note that this group is not neces-
sarily the same as Variable.owner: a variable owned by a NeuronGroup can be
indexed in a different way if accessed via a Synapses object.

Returns variable : object

6.4. Subpackages 419

Brian 2 Documentation, Release 2.1.1

The variable in an indexable form (without units).

get_addressable_value_with_unit(name, group)
Get the value (with units) of this variable in a form that can be indexed in the context of a group. For
example, if a postsynaptic variable x is accessed in a synapse S as S.x_post, the synaptic indexing
scheme can be used.

Parameters name : str

The name of the variable

group : Group

The group providing the context for the indexing. Note that this group is not neces-
sarily the same as Variable.owner: a variable owned by a NeuronGroup can be
indexed in a different way if accessed via a Synapses object.

Returns variable : object

The variable in an indexable form (with units).

get_len()
Get the length of the value associated with the variable or 0 for a scalar variable.

get_value()
Return the value associated with the variable (without units). This is the way variables are accessed in
generated code.

get_value_with_unit()
Return the value associated with the variable (with units).

set_value(value)
Set the value associated with the variable.

VariableView(name, variable, group[, dimensions]) A view on a variable that allows to treat it as an numpy
array while allowing special indexing (e.g.

VariableView class

(Shortest import: from brian2.core.variables import VariableView)

class brian2.core.variables.VariableView(name, variable, group, dimensions=None)
Bases: object

A view on a variable that allows to treat it as an numpy array while allowing special indexing (e.g. with strings)
in the context of a Group.

Parameters name : str

The name of the variable (not necessarily the same as variable.name).

variable : Variable

The variable description.

group : Group

The group through which the variable is accessed (not necessarily the same as
variable.owner).

dimensions : Dimension, optional

420 Chapter 6. brian2 package

https://docs.python.org/2/library/functions.html#object

Brian 2 Documentation, Release 2.1.1

The physical dimensions to be used for the variable, should be None when a variable is
accessed without units (e.g. when accessing G.var_).

Attributes

dtype
shape
unit The Unit of this variable

Methods

get_item(item[, level, namespace]) Get the value of this variable.
get_subexpression_with_index_array(*args,
**kwds)
get_with_expression(*args, **kwds) Gets a variable using a string expression.
get_with_index_array(*args, **kwds)
set_item(item, value[, level, namespace]) Set this variable.
set_with_expression(*args, **kwds) Sets a variable using a string expression.
set_with_expression_conditional(*args,
**kwds)

Sets a variable using a string expression and string con-
dition.

set_with_index_array(*args, **kwds)

Details

dtype

shape

unit
The Unit of this variable

get_item(item, level=0, namespace=None)
Get the value of this variable. Called by __getitem__.

Parameters item : slice, ndarray or string

The index for the setting operation

level : int, optional

How much farther to go up in the stack to find the implicit namespace (if used, see
run_namespace).

namespace : dict-like, optional

An additional namespace that is used for variable lookup (if not defined, the implicit
namespace of local variables is used).

get_subexpression_with_index_array(*args, **kwds)

get_with_expression(*args, **kwds)
Gets a variable using a string expression. Is called by VariableView.get_item for statements such
as print G.v['g_syn > 0'].

Parameters code : str

6.4. Subpackages 421

https://docs.python.org/2/library/constants.html#None
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Brian 2 Documentation, Release 2.1.1

An expression that states a condition for elements that should be selected. Can contain
references to indices, such as i or j and to state variables. For example: 'i>3 and
v>0*mV'.

run_namespace : dict-like

An additional namespace that is used for variable lookup (either an explicitly defined
namespace or one taken from the local context).

get_with_index_array(*args, **kwds)

set_item(item, value, level=0, namespace=None)
Set this variable. This function is called by __setitem__ but there is also a situation where it should be
called directly: if the context for string-based expressions is higher up in the stack, this function allows to
set the level argument accordingly.

Parameters item : slice, ndarray or string

The index for the setting operation

value : Quantity , ndarray or number

The value for the setting operation

level : int, optional

How much farther to go up in the stack to find the implicit namespace (if used, see
run_namespace).

namespace : dict-like, optional

An additional namespace that is used for variable lookup (if not defined, the implicit
namespace of local variables is used).

set_with_expression(*args, **kwds)
Sets a variable using a string expression. Is called by VariableView.set_item for statements such
as S.var[:, :] = 'exp(-abs(i-j)/space_constant)*nS'

Parameters item : ndarray

The indices for the variable (in the context of this group).

code : str

The code that should be executed to set the variable values. Can contain references to
indices, such as i or j

run_namespace : dict-like, optional

An additional namespace that is used for variable lookup (if not defined, the implicit
namespace of local variables is used).

check_units : bool, optional

Whether to check the units of the expression.

run_namespace : dict-like, optional

An additional namespace that is used for variable lookup (if not defined, the implicit
namespace of local variables is used).

set_with_expression_conditional(*args, **kwds)
Sets a variable using a string expression and string condition. Is called by VariableView.set_item
for statements such as S.var['i!=j'] = 'exp(-abs(i-j)/space_constant)*nS'

Parameters cond : str

422 Chapter 6. brian2 package

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Brian 2 Documentation, Release 2.1.1

The string condition for which the variables should be set.

code : str

The code that should be executed to set the variable values.

run_namespace : dict-like, optional

An additional namespace that is used for variable lookup (if not defined, the implicit
namespace of local variables is used).

check_units : bool, optional

Whether to check the units of the expression.

set_with_index_array(*args, **kwds)

Variables(owner[, default_index]) A container class for storing Variable objects.

Variables class

(Shortest import: from brian2.core.variables import Variables)

class brian2.core.variables.Variables(owner, default_index=’_idx’)
Bases: _abcoll.Mapping

A container class for storing Variable objects. Instances of this class are used as the Group.variables
attribute and can be accessed as (read-only) dictionaries.

Parameters owner : Nameable

The object (typically a Group) “owning” the variables.

default_index : str, optional

The index to use for the variables (only relevant for ArrayVariable and
DynamicArrayVariable). Defaults to '_idx'.

Attributes

indices A dictionary given the index name for every array name
owner A reference to the Group owning these variables

Methods

add_arange(name, size[, start, dtype, . . .]) Add an array, initialized with a range of integers.
add_array(name, size[, dimensions, values, . . .]) Add an array (initialized with zeros).
add_arrays(names, size[, dimensions, dtype, . . .]) Adds several arrays (initialized with zeros) with the

same attributes (size, units, etc.).
add_auxiliary_variable(name[, dimensions,
. . .])

Add an auxiliary variable (most likely one that is added
automatically to abstract code, e.g.

add_constant(name, value[, dimensions]) Add a scalar constant (e.g.
add_dynamic_array(name, size[, dimensions,
. . .])

Add a dynamic array.

add_object(name, obj) Add an arbitrary Python object.
Continued on next page

6.4. Subpackages 423

Brian 2 Documentation, Release 2.1.1

Table 6.199 – continued from previous page
add_reference(name, group[, varname, index]) Add a reference to a variable defined somewhere else

(possibly under a different name).
add_references(group, varnames[, index]) Add all Variable objects from a name to Variable

mapping with the same name as in the original mapping.
add_referred_subexpression(name, group,
. . .)
add_subexpression(name, expr[, dimensions,
. . .])

Add a named subexpression.

create_clock_variables(clock[, prefix]) Convenience function to add the t and dt attributes of
a clock.

Details

indices
A dictionary given the index name for every array name

owner
A reference to the Group owning these variables

add_arange(name, size, start=0, dtype=<type ’numpy.int32’>, constant=True, read_only=True,
unique=True, index=None)

Add an array, initialized with a range of integers.

Parameters name : str

The name of the variable.

size : int

The size of the array.

start : int

The start value of the range.

dtype : dtype, optional

The dtype used for storing the variable. If none is given, defaults to np.int32.

constant : bool, optional

Whether the variable’s value is constant during a run. Defaults to True.

read_only : bool, optional

Whether this is a read-only variable, i.e. a variable that is set internally and cannot be
changed by the user. Defaults to True.

index : str, optional

The index to use for this variable. Defaults to Variables.default_index.

unique : bool, optional

See ArrayVariable. Defaults to True here.

add_array(name, size, dimensions=Dimension(), values=None, dtype=None, constant=False,
read_only=False, scalar=False, unique=False, index=None)

Add an array (initialized with zeros).

Parameters name : str

The name of the variable.

424 Chapter 6. brian2 package

https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype

Brian 2 Documentation, Release 2.1.1

dimensions : Dimension, optional

The physical dimensions of the variable.

size : int

The size of the array.

values : ndarray, optional

The values to initalize the array with. If not specified, the array is initialized to zero.

dtype : dtype, optional

The dtype used for storing the variable. If none is given, defaults to
core.default_float_dtype.

constant : bool, optional

Whether the variable’s value is constant during a run. Defaults to False.

scalar : bool, optional

Whether this is a scalar variable. Defaults to False, if set to True, also implies that
size() equals 1.

read_only : bool, optional

Whether this is a read-only variable, i.e. a variable that is set internally and cannot be
changed by the user. Defaults to False.

index : str, optional

The index to use for this variable. Defaults to Variables.default_index.

unique : bool, optional

See ArrayVariable. Defaults to False.

add_arrays(names, size, dimensions=Dimension(), dtype=None, constant=False, read_only=False,
scalar=False, unique=False, index=None)

Adds several arrays (initialized with zeros) with the same attributes (size, units, etc.).

Parameters names : list of str

The names of the variable.

dimensions : Dimension, optional

The physical dimensions of the variable.

size : int

The sizes of the arrays.

dtype : dtype, optional

The dtype used for storing the variables. If none is given, defaults to
core.default_float_dtype.

constant : bool, optional

Whether the variables’ values are constant during a run. Defaults to False.

scalar : bool, optional

Whether these are scalar variables. Defaults to False, if set to True, also implies that
size() equals 1.

read_only : bool, optional

6.4. Subpackages 425

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype

Brian 2 Documentation, Release 2.1.1

Whether these are read-only variables, i.e. variables that are set internally and cannot
be changed by the user. Defaults to False.

index : str, optional

The index to use for these variables. Defaults to Variables.default_index.

unique : bool, optional

See ArrayVariable. Defaults to False.

add_auxiliary_variable(name, dimensions=Dimension(), dtype=None, scalar=False)
Add an auxiliary variable (most likely one that is added automatically to abstract code, e.g. _cond for a
threshold condition), specifying its type and unit for code generation.

Parameters name : str

The name of the variable

dimensions : Dimension

The physical dimensions of the variable.

dtype : dtype, optional

The dtype used for storing the variable. If none is given, defaults to
core.default_float_dtype.

scalar : bool, optional

Whether the variable is a scalar value (True) or vector-valued, e.g. defined for every
neuron (False). Defaults to False.

add_constant(name, value, dimensions=Dimension())
Add a scalar constant (e.g. the number of neurons N).

Parameters name : str

The name of the variable

value: reference to the variable value :

The value of the constant.

dimensions : Dimension, optional

The physical dimensions of the variable. Note that the variable itself (as referenced by
value) should never have units attached.

add_dynamic_array(name, size, dimensions=Dimension(), values=None, dtype=None, con-
stant=False, needs_reference_update=False, resize_along_first=False,
read_only=False, unique=False, scalar=False, index=None)

Add a dynamic array.

Parameters name : str

The name of the variable.

dimensions : Dimension, optional

The physical dimensions of the variable.

size : int or tuple of int

The (initital) size of the array.

values : ndarray, optional

The values to initalize the array with. If not specified, the array is initialized to zero.

426 Chapter 6. brian2 package

https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Brian 2 Documentation, Release 2.1.1

dtype : dtype, optional

The dtype used for storing the variable. If none is given, defaults to
core.default_float_dtype.

constant : bool, optional

Whether the variable’s value is constant during a run. Defaults to False.

needs_reference_update : bool, optional

Whether the code objects need a new reference to the underlying data at every time step.
This should be set if the size of the array can be changed by other code objects. Defaults
to False.

scalar : bool, optional

Whether this is a scalar variable. Defaults to False, if set to True, also implies that
size() equals 1.

read_only : bool, optional

Whether this is a read-only variable, i.e. a variable that is set internally and cannot be
changed by the user. Defaults to False.

index : str, optional

The index to use for this variable. Defaults to Variables.default_index.

unique : bool, optional

See DynamicArrayVariable. Defaults to False.

add_object(name, obj)
Add an arbitrary Python object. This is only meant for internal use and therefore only names starting with
an underscore are allowed.

Parameters name : str

The name used for this object (has to start with an underscore).

obj : object

An arbitrary Python object that needs to be accessed directly from a CodeObject.

add_reference(name, group, varname=None, index=None)
Add a reference to a variable defined somewhere else (possibly under a different name). This is for example
used in Subgroup and Synapses to refer to variables in the respective NeuronGroup.

Parameters name : str

The name of the variable (in this group, possibly a different name from var.name).

group : Group

The group from which var() is referenced

varname : str, optional

The variable to refer to. If not given, defaults to name.

index : str, optional

The index that should be used for this variable (defaults to Variables.
default_index).

6.4. Subpackages 427

https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype

Brian 2 Documentation, Release 2.1.1

add_references(group, varnames, index=None)
Add all Variable objects from a name to Variable mapping with the same name as in the original
mapping.

Parameters group : Group

The group from which the variables are referenced

varnames : iterable of str

The variables that should be referred to in the current group

index : str, optional

The index to use for all the variables (defaults to Variables.default_index)

add_referred_subexpression(name, group, subexpr, index)

add_subexpression(name, expr, dimensions=Dimension(), dtype=None, scalar=False, in-
dex=None)

Add a named subexpression.

Parameters name : str

The name of the subexpression.

dimensions : Dimension

The physical dimensions of the subexpression.

expr : str

The subexpression itself.

dtype : dtype, optional

The dtype used for the expression. Defaults to core.default_float_dtype.

scalar : bool, optional

Whether this is an expression only referring to scalar variables. Defaults to False

index : str, optional

The index to use for this variable. Defaults to Variables.default_index.

create_clock_variables(clock, prefix=”)
Convenience function to add the t and dt attributes of a clock.

Parameters clock : Clock

The clock that should be used for t and dt.

prefix : str, optional

A prefix for the variable names. Used for example in monitors to not confuse the dy-
namic array of recorded times with the current time in the recorded group.

Functions

get_dtype(obj) Helper function to return the numpy.dtype of an arbi-
trary object.

428 Chapter 6. brian2 package

https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype

Brian 2 Documentation, Release 2.1.1

get_dtype function

(Shortest import: from brian2.core.variables import get_dtype)

brian2.core.variables.get_dtype(obj)
Helper function to return the numpy.dtype of an arbitrary object.

Parameters obj : object

Any object (but typically some kind of number or array).

Returns dtype : numpy.dtype

The type of the given object.

get_dtype_str(val) Returns canonical string representation of the dtype of a
value or dtype

get_dtype_str function

(Shortest import: from brian2.core.variables import get_dtype_str)

brian2.core.variables.get_dtype_str(val)
Returns canonical string representation of the dtype of a value or dtype

Returns dtype_str : str

The numpy dtype name

linked_var(group_or_variable[, name, index]) Represents a link target for setting a linked variable.

linked_var function

(Shortest import: from brian2 import linked_var)

brian2.core.variables.linked_var(group_or_variable, name=None, index=None)
Represents a link target for setting a linked variable.

Parameters group_or_variable : NeuronGroup or VariableView

Either a reference to the target NeuronGroup (e.g. G) or a direct reference to a
VariableView object (e.g. G.v). In case only the group is specified, name has
to be specified as well.

name : str, optional

The name of the target variable, necessary if group_or_variable is a
NeuronGroup.

index : str or ndarray, optional

An indexing array (or the name of a state variable), providing a mapping from the entries
in the link source to the link target.

6.4. Subpackages 429

https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Brian 2 Documentation, Release 2.1.1

Examples

>>> from brian2 import *
>>> G1 = NeuronGroup(10, 'dv/dt = -v / (10*ms) : volt')
>>> G2 = NeuronGroup(10, 'v : volt (linked)')
>>> G2.v = linked_var(G1, 'v')
>>> G2.v = linked_var(G1.v) # equivalent

variables_by_owner(variables, owner)

variables_by_owner function

(Shortest import: from brian2.core.variables import variables_by_owner)

brian2.core.variables.variables_by_owner(variables, owner)

6.4.3 devices package

Package providing the “devices” infrastructure.

device module

Module containing the Device base class as well as the RuntimeDevice implementation and some helper func-
tions to access/set devices.

Exported members: Device, RuntimeDevice, get_device(), set_device(), all_devices,
reinit_devices, reset_device, device, seed()

Classes

CurrentDeviceProxy Method proxy for access to the currently active device

CurrentDeviceProxy class

(Shortest import: from brian2.devices.device import CurrentDeviceProxy)

class brian2.devices.device.CurrentDeviceProxy
Bases: object

Method proxy for access to the currently active device

Device() Base Device object.

Device class

(Shortest import: from brian2.devices import Device)

class brian2.devices.device.Device
Bases: object

430 Chapter 6. brian2 package

https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#object

Brian 2 Documentation, Release 2.1.1

Base Device object.

Attributes

network_schedule The network schedule that this device supports.

Methods

activate([build_on_run]) Called when this device is set as the current device.
add_array(var) Add an array to this device.
build(**kwds) For standalone projects, called when the project is ready

to be built.
code_object(owner, name, abstract_code, . . .)
code_object_class([codeobj_class, fall-
back_pref])

Return CodeObject class according to input/default
settings

fill_with_array(var, arr) Fill an array with the values given in another array.
get_array_name(var[, access_data]) Return a globally unique name for var().
get_len(array) Return the length of the array.
init_with_arange(var, start, dtype) Initialize an array with an integer range.
init_with_zeros(var, dtype) Initialize an array with zeros.
insert_code(slot, code) Insert code directly into a given slot in the device.
insert_device_code(slot, code)
reinit() Reinitialize the device.
resize(var, new_size) Resize a DynamicArrayVariable.
resize_along_first(var, new_size)
seed([seed]) Set the seed for the random number generator.
spike_queue(source_start, source_end) Create and return a new SpikeQueue for this

Device.

Details

network_schedule
The network schedule that this device supports. If the device only supports a specific, fixed schedule, it
has to set this attribute to the respective schedule (see Network.schedule for details). If it supports
arbitrary schedules, it should be set to None (the default).

activate(build_on_run=True, **kwargs)
Called when this device is set as the current device.

add_array(var)
Add an array to this device.

Parameters var : ArrayVariable

The array to add.

build(**kwds)
For standalone projects, called when the project is ready to be built. Does nothing for runtime mode.

code_object(owner, name, abstract_code, variables, template_name, variable_indices,
codeobj_class=None, template_kwds=None, override_conditional_write=None)

6.4. Subpackages 431

Brian 2 Documentation, Release 2.1.1

code_object_class(codeobj_class=None, fallback_pref=’codegen.target’)
Return CodeObject class according to input/default settings

Parameters codeobj_class : a CodeObject class, optional

If this is keyword is set to None or no arguments are given, this method will return the
default.

fallback_pref : str, optional

String describing which attribute of prefs to access to retrieve the ‘default’ target. Usu-
ally this is codegen.target, but in some cases we want to use object-specific targets such
as codegen.string_expression_target.

Returns codeobj_class : class

The CodeObject class that should be used

fill_with_array(var, arr)
Fill an array with the values given in another array.

Parameters var : ArrayVariable

The array to fill.

arr : ndarray

The array values that should be copied to var().

get_array_name(var, access_data=True)
Return a globally unique name for var().

Parameters access_data : bool, optional

For DynamicArrayVariable objects, specifying True here means the name for
the underlying data is returned. If specifying False, the name of object itself is re-
turned (e.g. to allow resizing).

Returns name : str

The name for var().

get_len(array)
Return the length of the array.

Parameters array : ArrayVariable

The array for which the length is requested.

Returns l : int

The length of the array.

init_with_arange(var, start, dtype)
Initialize an array with an integer range.

Parameters var : ArrayVariable

The array to fill with the integer range.

start : int

The start value for the integer range

dtype : dtype

The data type to use for the array.

432 Chapter 6. brian2 package

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype

Brian 2 Documentation, Release 2.1.1

init_with_zeros(var, dtype)
Initialize an array with zeros.

Parameters var : ArrayVariable

The array to initialize with zeros.

dtype : dtype

The data type to use for the array.

insert_code(slot, code)
Insert code directly into a given slot in the device. By default does nothing.

insert_device_code(slot, code)

reinit()
Reinitialize the device. For standalone devices, clears all the internal state of the device.

resize(var, new_size)
Resize a DynamicArrayVariable.

Parameters var : DynamicArrayVariable

The variable that should be resized.

new_size : int

The new size of the variable

resize_along_first(var, new_size)

seed(seed=None)
Set the seed for the random number generator.

Parameters seed : int, optional

The seed value for the random number generator, or None (the default) to set a random
seed.

spike_queue(source_start, source_end)
Create and return a new SpikeQueue for this Device.

Parameters source_start : int

The start index of the source group (necessary for subgroups)

source_end : int

The end index of the source group (necessary for subgroups)

Dummy Dummy object

Dummy class

(Shortest import: from brian2.devices.device import Dummy)

class brian2.devices.device.Dummy
Bases: object

Dummy object

6.4. Subpackages 433

https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/2/library/functions.html#object

Brian 2 Documentation, Release 2.1.1

Methods

__call__(*args, **kwds)

Details

__call__(*args, **kwds)

Tutorials and examples using this

• Example frompapers/Stimberg_et_al_2018/example_2_gchi_astrocyte

RuntimeDevice() The default device used in Brian, state variables are stored
as numpy arrays in memory.

RuntimeDevice class

(Shortest import: from brian2.devices import RuntimeDevice)

class brian2.devices.device.RuntimeDevice
Bases: brian2.devices.device.Device

The default device used in Brian, state variables are stored as numpy arrays in memory.

Attributes

arrays Mapping from Variable objects to numpy arrays (or
DynamicArray objects).

Methods

add_array(var)
fill_with_array(var, arr)
get_array_name(var[, access_data])
get_value(var[, access_data])
init_with_arange(var, start, dtype)
init_with_zeros(var, dtype)
resize(var, new_size)
resize_along_first(var, new_size)
seed([seed]) Set the seed for the random number generator.
set_value(var, value)
spike_queue(source_start, source_end)

434 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

Details

arrays
Mapping from Variable objects to numpy arrays (or DynamicArray objects). Arrays in this dictio-
nary will disappear as soon as the last reference to the Variable object used as a key is gone

add_array(var)

fill_with_array(var, arr)

get_array_name(var, access_data=True)

get_value(var, access_data=True)

init_with_arange(var, start, dtype)

init_with_zeros(var, dtype)

resize(var, new_size)

resize_along_first(var, new_size)

seed(seed=None)
Set the seed for the random number generator.

Parameters seed : int, optional

The seed value for the random number generator, or None (the default) to set a random
seed.

set_value(var, value)

spike_queue(source_start, source_end)

Tutorials and examples using this

• Example frompapers/Kremer_et_al_2011_barrel_cortex

Functions

auto_target() Automatically chose a code generation target (invoked
when the codegen.target preference is set to 'auto'.

auto_target function

(Shortest import: from brian2.devices.device import auto_target)

brian2.devices.device.auto_target()
Automatically chose a code generation target (invoked when the codegen.target preference is set to 'auto'.
Caches its result so it only does the check once. Prefers weave > cython > numpy.

Returns target : class derived from CodeObject

The target to use

get_device() Gets the actve Device object

6.4. Subpackages 435

Brian 2 Documentation, Release 2.1.1

get_device function

(Shortest import: from brian2 import get_device)

brian2.devices.device.get_device()
Gets the actve Device object

reinit_devices() Reinitialize all devices, call Device.activate again
on the current device and reset the preferences.

reinit_devices function

(Shortest import: from brian2.devices import reinit_devices)

brian2.devices.device.reinit_devices()
Reinitialize all devices, call Device.activate again on the current device and reset the preferences. Used as
a “teardown” function in testing, if users want to reset their device (e.g. for multiple standalone runs in a single
script), calling device.reinit() followed by device.activate() should normally be sufficient.

Notes

This also resets the defaultclock, i.e. a non-standard dt has to be set again.

reset_device([device]) Reset to a previously used device.

reset_device function

(Shortest import: from brian2.devices import reset_device)

brian2.devices.device.reset_device(device=None)
Reset to a previously used device. Restores also the previously specified build options (see set_device())
for the device. Mostly useful for internal Brian code and testing on various devices.

Parameters device : Device or str, optional

The device to go back to. If none is specified, go back to the device chosen with
set_device() before the current one.

seed([seed]) Set the seed for the random number generator.

seed function

(Shortest import: from brian2 import seed)

brian2.devices.device.seed(seed=None)
Set the seed for the random number generator.

Parameters seed : int, optional

The seed value for the random number generator, or None (the default) to set a random
seed.

436 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

Notes

This function delegates the call to Device.seed of the current device.

set_device(device[, build_on_run]) Set the device used for simulations.

set_device function

(Shortest import: from brian2 import set_device)

brian2.devices.device.set_device(device, build_on_run=True, **kwargs)
Set the device used for simulations.

Parameters device : Device or str

The Device object or the name of the device.

build_on_run : bool, optional

Whether a call to run() (or Network.run()) should directly trigger a Device.
build. This is only relevant for standalone devices and means that a run call directly
triggers the start of a simulation. If the simulation consists of multiple run calls, set
build_on_run to False and call Device.build explicitly. Defaults to True.

kwargs : dict, optional

Only relevant when build_on_run is True: additional arguments that will be given
to the Device.build call.

Objects

active_device The currently active device (set with set_device())

active_device object

(Shortest import: from brian2.devices.device import active_device)

brian2.devices.device.active_device = <brian2.devices.device.RuntimeDevice object>
The currently active device (set with set_device())

device Proxy object to access methods of the current device

device object

(Shortest import: from brian2 import device)

brian2.devices.device.device = <brian2.devices.device.CurrentDeviceProxy object>
Proxy object to access methods of the current device

runtime_device The default device used in Brian, state variables are stored
as numpy arrays in memory.

6.4. Subpackages 437

Brian 2 Documentation, Release 2.1.1

runtime_device object

(Shortest import: from brian2.devices.device import runtime_device)

brian2.devices.device.runtime_device = <brian2.devices.device.RuntimeDevice object>
The default device used in Brian, state variables are stored as numpy arrays in memory.

Subpackages

cpp_standalone package

Package implementing the C++ “standalone” Device and CodeObject.

GSLcodeobject module

Module containing CPPStandalone CodeObject for code generation for integration using the ODE solver provided in
the GNU Scientific Library

Classes

GSLCPPStandaloneCodeObject(owner, code, . . .)

GSLCPPStandaloneCodeObject class

(Shortest import: from brian2.devices.cpp_standalone import GSLCPPStandaloneCodeObject)

class brian2.devices.cpp_standalone.GSLcodeobject.GSLCPPStandaloneCodeObject(owner,
code,
vari-
ables,
vari-
able_indices,
tem-
plate_name,
tem-
plate_source,
name=’codeobject*’)

Bases: brian2.codegen.codeobject.CodeObject

codeobject module

Module implementing the C++ “standalone” CodeObject

Exported members: CPPStandaloneCodeObject

Classes

CPPStandaloneCodeObject(owner, code, . . . [,
name])

C++ standalone code object

438 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

CPPStandaloneCodeObject class

(Shortest import: from brian2.devices.cpp_standalone import CPPStandaloneCodeObject)

class brian2.devices.cpp_standalone.codeobject.CPPStandaloneCodeObject(owner,
code,
vari-
ables,
vari-
able_indices,
tem-
plate_name,
tem-
plate_source,
name=’codeobject*’)

Bases: brian2.codegen.codeobject.CodeObject

C++ standalone code object

The code should be a MultiTemplate object with two macros defined, main (for the main loop code) and
support_code for any support code (e.g. function definitions).

Methods

__call__(**kwds)
run()

Details

__call__(**kwds)

run()

Functions

generate_rand_code(rand_func, owner)

generate_rand_code function

(Shortest import: from brian2.devices.cpp_standalone.codeobject import
generate_rand_code)

brian2.devices.cpp_standalone.codeobject.generate_rand_code(rand_func, owner)

openmp_pragma(pragma_type)

openmp_pragma function

(Shortest import: from brian2.devices.cpp_standalone.codeobject import
openmp_pragma)

brian2.devices.cpp_standalone.codeobject.openmp_pragma(pragma_type)

6.4. Subpackages 439

Brian 2 Documentation, Release 2.1.1

device module

Module implementing the C++ “standalone” device.

Classes

CPPStandaloneDevice() The Device used for C++ standalone simulations.

CPPStandaloneDevice class

(Shortest import: from brian2.devices.cpp_standalone.device import
CPPStandaloneDevice)

class brian2.devices.cpp_standalone.device.CPPStandaloneDevice
Bases: brian2.devices.device.Device

The Device used for C++ standalone simulations.

Attributes

arange_arrays List of all arrays to be filled with numbers (list of
array_cache Dictionary mapping ArrayVariable objects to their

value or to None if the value (potentially) depends on
executed code.

arrays Dictionary mapping ArrayVariable objects to their
globally

build_on_run Whether a run should trigger a build
build_options build options
dynamic_arrays List of all dynamic arrays
dynamic_arrays_2d Dictionary mapping DynamicArrayVariable ob-

jects with 2 dimensions
has_been_run Whether the simulation has been run
static_arrays Dict of all static saved arrays
zero_arrays List of all arrays to be filled with zeros (list of (var, var-

name))

Methods

add_array(var)
build([directory, compile, run, debug, . . .]) Build the project
check_openmp_compatible(nb_threads)
code_object(owner, name, abstract_code, . . .)
code_object_class([codeobj_class, fall-
back_pref])

Return CodeObject class (either
CPPStandaloneCodeObject class or input)

compile_source(directory, compiler, debug, clean)
copy_source_files(writer, directory)
fill_with_array(var, arr)
find_synapses()
freeze(code, ns)

Continued on next page

440 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

Table 6.229 – continued from previous page
generate_codeobj_source(writer)
generate_main_source(writer)
generate_makefile(writer, compiler, . . .)
generate_network_source(writer, compiler)
generate_objects_source(writer, . . .)
generate_run_source(writer)
generate_synapses_classes_source(writer)
get_array_filename(var[, basedir]) Return a file name for a variable.
get_array_name(var[, access_data]) Return a globally unique name for var().
get_value(var[, access_data])
init_with_arange(var, start, dtype)
init_with_zeros(var, dtype)
insert_code(slot, code) Insert code directly into main.cpp
network_get_profiling_info(net)
network_restore(net, *args, **kwds)
network_run(net, duration[, report, . . .])
network_store(net, *args, **kwds)
reinit()
resize(var, new_size)
run(directory, with_output, run_args)
run_function(name[, include_in_parent]) Context manager to divert code into a function
seed([seed]) Set the seed for the random number generator.
static_array(name, arr)
variableview_get_subexpression_with_index_array(. . .)
variableview_get_with_expression(. . . [,
. . .])
variableview_set_with_index_array(. . .)
write_static_arrays(directory)

Details

arange_arrays
List of all arrays to be filled with numbers (list of (var, varname, start) tuples

array_cache
Dictionary mapping ArrayVariable objects to their value or to None if the value (potentially) depends
on executed code. This mechanism allows to access state variables in standalone mode if their value is
known at run time

arrays
Dictionary mapping ArrayVariable objects to their globally unique name

build_on_run
Whether a run should trigger a build

build_options
build options

dynamic_arrays
List of all dynamic arrays Dictionary mapping DynamicArrayVariable objects with 1 dimension to
their globally unique name

dynamic_arrays_2d
Dictionary mapping DynamicArrayVariable objects with 2 dimensions to their globally unique
name

6.4. Subpackages 441

Brian 2 Documentation, Release 2.1.1

has_been_run
Whether the simulation has been run

static_arrays
Dict of all static saved arrays

zero_arrays
List of all arrays to be filled with zeros (list of (var, varname))

add_array(var)

build(directory=’output’, compile=True, run=True, debug=False, clean=False, with_output=True, ad-
ditional_source_files=None, run_args=None, direct_call=True, **kwds)

Build the project

TODO: more details

Parameters directory : str, optional

The output directory to write the project to, any existing files will be overwritten. If the
given directory name is None, then a temporary directory will be used (used in the test
suite to avoid problems when running several tests in parallel). Defaults to 'output'.

compile : bool, optional

Whether or not to attempt to compile the project. Defaults to True.

run : bool, optional

Whether or not to attempt to run the built project if it successfully builds. Defaults to
True.

debug : bool, optional

Whether to compile in debug mode. Defaults to False.

with_output : bool, optional

Whether or not to show the stdout of the built program when run. Output will be
shown in case of compilation or runtime error. Defaults to True.

clean : bool, optional

Whether or not to clean the project before building. Defaults to False.

additional_source_files : list of str, optional

A list of additional .cpp files to include in the build.

direct_call : bool, optional

Whether this function was called directly. Is used internally to distinguish an automatic
build due to the build_on_run option from a manual device.build call.

check_openmp_compatible(nb_threads)

code_object(owner, name, abstract_code, variables, template_name, variable_indices,
codeobj_class=None, template_kwds=None, override_conditional_write=None)

code_object_class(codeobj_class=None, fallback_pref=None)
Return CodeObject class (either CPPStandaloneCodeObject class or input)

Parameters codeobj_class : a CodeObject class, optional

If this is keyword is set to None or no arguments are given, this method will return the
default (CPPStandaloneCodeObject class).

fallback_pref : str, optional

442 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

For the cpp_standalone device this option is ignored.

Returns codeobj_class : class

The CodeObject class that should be used

compile_source(directory, compiler, debug, clean)

copy_source_files(writer, directory)

fill_with_array(var, arr)

find_synapses()

freeze(code, ns)

generate_codeobj_source(writer)

generate_main_source(writer)

generate_makefile(writer, compiler, compiler_flags, linker_flags, nb_threads, debug)

generate_network_source(writer, compiler)

generate_objects_source(writer, arange_arrays, synapses, static_array_specs, networks)

generate_run_source(writer)

generate_synapses_classes_source(writer)

get_array_filename(var, basedir=’results’)
Return a file name for a variable.

Parameters var : ArrayVariable

The variable to get a filename for.

basedir : str

The base directory for the filename, defaults to 'results'.

Returns :

——- :

filename : str

A filename of the form 'results/'+varname+'_'+str(hash(varname)),
where varname is the name returned by get_array_name.

Notes

The reason that the filename is not simply 'results/' + varname is that this could lead to file names
that are not unique in file systems that are not case sensitive (e.g. on Windows).

get_array_name(var, access_data=True)
Return a globally unique name for var().

Parameters access_data : bool, optional

For DynamicArrayVariable objects, specifying True here means the name for
the underlying data is returned. If specifying False, the name of object itself is re-
turned (e.g. to allow resizing).

get_value(var, access_data=True)

init_with_arange(var, start, dtype)

6.4. Subpackages 443

https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False

Brian 2 Documentation, Release 2.1.1

init_with_zeros(var, dtype)

insert_code(slot, code)
Insert code directly into main.cpp

network_get_profiling_info(net)

network_restore(net, *args, **kwds)

network_run(net, duration, report=None, report_period=10. * second, namespace=None, pro-
file=False, level=0, **kwds)

network_store(net, *args, **kwds)

reinit()

resize(var, new_size)

run(directory, with_output, run_args)

run_function(name, include_in_parent=True)
Context manager to divert code into a function

Code that happens within the scope of this context manager will go into the named function.

Parameters name : str

The name of the function to divert code into.

include_in_parent : bool

Whether or not to include a call to the newly defined function in the parent context.

seed(seed=None)
Set the seed for the random number generator.

Parameters seed : int, optional

The seed value for the random number generator, or None (the default) to set a random
seed.

static_array(name, arr)

variableview_get_subexpression_with_index_array(variableview, item,
run_namespace=None)

variableview_get_with_expression(variableview, code, run_namespace=None)

variableview_set_with_index_array(variableview, item, value, check_units)

write_static_arrays(directory)

CPPWriter(project_dir)

Methods

CPPWriter class

(Shortest import: from brian2.devices.cpp_standalone.device import CPPWriter)

class brian2.devices.cpp_standalone.device.CPPWriter(project_dir)
Bases: object

444 Chapter 6. brian2 package

https://docs.python.org/2/library/functions.html#object

Brian 2 Documentation, Release 2.1.1

Methods

write(filename, contents)

Details

write(filename, contents)

RunFunctionContext(name, include_in_parent)

RunFunctionContext class

(Shortest import: from brian2.devices.cpp_standalone.device import
RunFunctionContext)

class brian2.devices.cpp_standalone.device.RunFunctionContext(name, in-
clude_in_parent)

Bases: object

Functions

invert_dict(x)

invert_dict function

(Shortest import: from brian2.devices.cpp_standalone.device import invert_dict)

brian2.devices.cpp_standalone.device.invert_dict(x)

Objects

cpp_standalone_device The Device used for C++ standalone simulations.

cpp_standalone_device object

(Shortest import: from brian2.devices.cpp_standalone import cpp_standalone_device)

brian2.devices.cpp_standalone.device.cpp_standalone_device = <brian2.devices.cpp_standalone.device.CPPStandaloneDevice object>
The Device used for C++ standalone simulations.

6.4.4 equations package

Module handling equations and “code strings”, expressions or statements, used for example for the reset and threshold
definition of a neuron.

Exported members: Equations, Expression, Statements

6.4. Subpackages 445

https://docs.python.org/2/library/functions.html#object

Brian 2 Documentation, Release 2.1.1

codestrings module

Module defining CodeString, a class for a string of code together with information about its namespace. Only
serves as a parent class, its subclasses Expression and Statements are the ones that are actually used.

Exported members: Expression, Statements

Classes

CodeString(code) A class for representing “code strings”, i.e.

CodeString class

(Shortest import: from brian2.equations.codestrings import CodeString)

class brian2.equations.codestrings.CodeString(code)
Bases: _abcoll.Hashable

A class for representing “code strings”, i.e. a single Python expression or a sequence of Python statements.

Parameters code : str

The code string, may be an expression or a statement(s) (possibly multi-line).

Attributes

code The code string

Details

code
The code string

Expression([code, sympy_expression]) Class for representing an expression.

Expression class

(Shortest import: from brian2 import Expression)

class brian2.equations.codestrings.Expression(code=None, sympy_expression=None)
Bases: brian2.equations.codestrings.CodeString

Class for representing an expression.

Parameters code : str, optional

The expression. Note that the expression has to be written in a form that is
parseable by sympy. Alternatively, a sympy expression can be provided (in the
sympy_expression argument).

sympy_expression : sympy expression, optional

A sympy expression. Alternatively, a plain string expression can be provided (in the
code argument).

446 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

Attributes

stochastic_variables Stochastic variables in this expression

Methods

split_stochastic() Split the expression into a stochastic and non-stochastic
part.

Details

stochastic_variables
Stochastic variables in this expression

split_stochastic()
Split the expression into a stochastic and non-stochastic part.

Splits the expression into a tuple of one Expression objects f (the non-stochastic part) and a dictionary
mapping stochastic variables to Expression objects. For example, an expression of the form f + g

* xi_1 + h * xi_2 would be returned as: (f, {'xi_1': g, 'xi_2': h}) Note that the
Expression objects for the stochastic parts do not include the stochastic variable itself.

Returns (f, d) : (Expression, dict)

A tuple of an Expression object and a dictionary, the first expression being the non-
stochastic part of the equation and the dictionary mapping stochastic variables (xi
or starting with xi_) to Expression objects. If no stochastic variable is present
in the code string, a tuple (self, None) will be returned with the unchanged
Expression object.

Statements(code) Class for representing statements.

Statements class

(Shortest import: from brian2 import Statements)

class brian2.equations.codestrings.Statements(code)
Bases: brian2.equations.codestrings.CodeString

Class for representing statements.

Parameters code : str

The statement or statements. Several statements can be given as a multi-line string or
separated by semicolons.

Notes

Currently, the implementation of this class does not add anything to CodeString, but it should be used
instead of that class for clarity and to allow for future functionality that is only relevant to statements and not to
expressions.

6.4. Subpackages 447

Brian 2 Documentation, Release 2.1.1

Functions

is_constant_over_dt(expression, variables, . . .) Check whether an expression can be considered as constant
over a time step.

is_constant_over_dt function

(Shortest import: from brian2.equations.codestrings import is_constant_over_dt)

brian2.equations.codestrings.is_constant_over_dt(expression, variables, dt_value)
Check whether an expression can be considered as constant over a time step. This is not the case when the
expression either:

1. contains the variable t (except as the argument of a function that can be considered as constant over a time
step, e.g. a TimedArray with a dt equal to or greater than the dt used to evaluate this expression)

2. refers to a stateful function such as rand().

Parameters expression : sympy.Expr

The (sympy) expression to analyze

variables : dict

The variables dictionary.

dt_value : float or None

The length of a timestep (without units), can be None if the time step is not yet known.

Returns is_constant : bool

Whether the expression can be considered to be constant over a time step.

equations module

Differential equations for Brian models.

Exported members: Equations

Classes

EquationError Exception type related to errors in an equation definition.

EquationError class

(Shortest import: from brian2.equations.equations import EquationError)

class brian2.equations.equations.EquationError
Bases: exceptions.Exception

Exception type related to errors in an equation definition.

Equations(eqns, **kwds) Container that stores equations from which models can be
created.

448 Chapter 6. brian2 package

https://docs.python.org/2/library/exceptions.html#exceptions.Exception

Brian 2 Documentation, Release 2.1.1

Equations class

(Shortest import: from brian2 import Equations)

class brian2.equations.equations.Equations(eqns, **kwds)
Bases: _abcoll.Hashable, _abcoll.Mapping

Container that stores equations from which models can be created.

String equations can be of any of the following forms:

1. dx/dt = f : unit (flags) (differential equation)

2. x = f : unit (flags) (equation)

3. x : unit (flags) (parameter)

String equations can span several lines and contain Python-style comments starting with #

Parameters eqs : str or list of SingleEquation objects

A multiline string of equations (see above) – for internal purposes also a list of
SingleEquation objects can be given. This is done for example when adding new
equations to implement the refractory mechanism. Note that in this case the variable
names are not checked to allow for “internal names”, starting with an underscore.

kwds: keyword arguments :

Keyword arguments can be used to replace variables in the equation string. Arguments
have to be of the form varname=replacement, where varname has to correspond
to a variable name in the given equation. The replacement can be either a string (replac-
ing a name with a new name, e.g. tau='tau_e') or a value (replacing the variable
name with the value, e.g. tau=tau_e or tau=10*ms).

Attributes

_substituted_expressions Cache for equations with the subexpressions substituted
diff_eq_expressions A list of (variable name, expression) tuples of all differ-

ential equations.
diff_eq_names All differential equation names.
dimensions Dictionary of all internal variables and their correspond-

ing physical dimensions.
eq_expressions A list of (variable name, expression) tuples of all equa-

tions.
eq_names All equation names (including subexpressions).
identifier_checks A set of functions that are used to check identifiers (class

attribute).
identifiers Set of all identifiers used in the equations, excluding the

variables defined in the equations
is_stochastic Whether the equations are stochastic.
names All variable names defined in the equations.
ordered A list of all equations, sorted according to the order in

which they should be updated
parameter_names All parameter names.
stochastic_type Returns the type of stochastic differential equations (ad-

ditivive or multiplicative).
Continued on next page

6.4. Subpackages 449

https://docs.python.org/2/library/functions.html#str

Brian 2 Documentation, Release 2.1.1

Table 6.244 – continued from previous page
stochastic_variables
subexpr_names All subexpression names.

Methods

check_flags(allowed_flags[, incompatible_flags]) Check the list of flags.
check_identifier(identifier) Perform all the registered checks.
check_identifiers() Check all identifiers for conformity with the rules.
check_units(group, run_namespace) Check all the units for consistency.
get_substituted_expressions([variables,
. . .])

Return a list of (varname, expr) tuples, contain-
ing all differential equations (and optionally subexpres-
sions) with all the subexpression variables substituted
with the respective expressions.

register_identifier_check(func) Register a function for checking identifiers.
substitute(**kwds)

Details

_substituted_expressions
Cache for equations with the subexpressions substituted

diff_eq_expressions
A list of (variable name, expression) tuples of all differential equations.

diff_eq_names
All differential equation names.

dimensions
Dictionary of all internal variables and their corresponding physical dimensions.

eq_expressions
A list of (variable name, expression) tuples of all equations.

eq_names
All equation names (including subexpressions).

identifier_checks
A set of functions that are used to check identifiers (class attribute). Functions can be registered with the
static method Equations.register_identifier_check and will be automatically used when
checking identifiers

identifiers
Set of all identifiers used in the equations, excluding the variables defined in the equations

is_stochastic
Whether the equations are stochastic.

names
All variable names defined in the equations.

ordered
A list of all equations, sorted according to the order in which they should be updated

parameter_names
All parameter names.

450 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

stochastic_type
Returns the type of stochastic differential equations (additivive or multiplicative). The system is only
classified as additive if all equations have only additive noise (or no noise).

Returns type : str

Either None (no noise variables), 'additive' (factors for all noise variables are
independent of other state variables or time), 'multiplicative' (at least one of
the noise factors depends on other state variables and/or time).

stochastic_variables

subexpr_names
All subexpression names.

check_flags(allowed_flags, incompatible_flags=None)
Check the list of flags.

Parameters allowed_flags : dict

A dictionary mapping equation types (PARAMETER, DIFFERENTIAL_EQUATION,
SUBEXPRESSION) to a list of strings (the allowed flags for that equation type)

incompatible_flags : list of tuple

A list of flag combinations that are not allowed for the same equation.

Notes :

—– :

Not specifying allowed flags for an equation type is the same as :

specifying an empty list for it. :

Raises

ValueError If any flags are used that are not allowed.

static check_identifier(identifier)
Perform all the registered checks. Checks can be registered via Equations.
register_identifier_check.

Parameters identifier : str

The identifier that should be checked

Raises

ValueError If any of the registered checks fails.

check_identifiers()
Check all identifiers for conformity with the rules.

Raises

ValueError If an identifier does not conform to the rules.

6.4. Subpackages 451

Brian 2 Documentation, Release 2.1.1

See also:

Equations.check_identifier The function that is called for each identifier.

check_units(group, run_namespace)
Check all the units for consistency.

Parameters group : Group

The group providing the context

run_namespace : dict-like, optional

An additional namespace that is used for variable lookup (if not defined, the implicit
namespace of local variables is used).

level : int, optional

How much further to go up in the stack to find the calling frame

Raises

DimensionMismatchError In case of any inconsistencies.

get_substituted_expressions(variables=None, include_subexpressions=False)
Return a list of (varname, expr) tuples, containing all differential equations (and optionally subex-
pressions) with all the subexpression variables substituted with the respective expressions.

Parameters variables : dict, optional

A mapping of variable names to Variable/Function objects.

include_subexpressions : bool

Whether also to return substituted subexpressions. Defaults to False.

Returns expr_tuples : list of (str, CodeString)

A list of (varname, expr) tuples, where expr is a CodeString object with all
subexpression variables substituted with the respective expression.

static register_identifier_check(func)
Register a function for checking identifiers.

Parameters func : callable

The function has to receive a single argument, the name of the identifier to check, and
raise a ValueError if the identifier violates any rule.

substitute(**kwds)

Tutorials and examples using this

• Example COBAHH

• Example IF_curve_Hodgkin_Huxley

• Example frompapers/Destexhe_et_al_1998

• Example frompapers/Clopath_et_al_2010_homeostasis

• Example frompapers/Clopath_et_al_2010_no_homeostasis

452 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

• Example frompapers/Diesmann_et_al_1999

• Example frompapers/Rossant_et_al_2011bis

SingleEquation(type, varname, dimensions[, . . .]) Class for internal use, encapsulates a single equation or pa-
rameter.

SingleEquation class

(Shortest import: from brian2.equations.equations import SingleEquation)

class brian2.equations.equations.SingleEquation(type, varname, dimensions,
var_type=’float’, expr=None,
flags=None)

Bases: _abcoll.Hashable, brian2.utils.caching.CacheKey

Class for internal use, encapsulates a single equation or parameter.

Note: This class should never be used directly, it is only useful as part of the Equations class.

Parameters type : {PARAMETER, DIFFERENTIAL_EQUATION, SUBEXPRESSION}

The type of the equation.

varname : str

The variable that is defined by this equation.

dimensions : Dimension

The physical dimensions of the variable

var_type : {FLOAT, INTEGER, BOOLEAN}

The type of the variable (floating point value or boolean).

expr : Expression, optional

The expression defining the variable (or None for parameters).

flags: list of str, optional :

A list of flags that give additional information about this equation. What flags are pos-
sible depends on the type of the equation and the context.

Attributes

identifiers All identifiers in the RHS of this equation.
stochastic_variables Stochastic variables in the RHS of this equation
unit The Unit of this equation.

Details

identifiers
All identifiers in the RHS of this equation.

6.4. Subpackages 453

Brian 2 Documentation, Release 2.1.1

stochastic_variables
Stochastic variables in the RHS of this equation

unit
The Unit of this equation.

Functions

check_identifier_basic(identifier) Check an identifier (usually resulting from an equation
string provided by the user) for conformity with the rules.

check_identifier_basic function

(Shortest import: from brian2.equations.equations import check_identifier_basic)

brian2.equations.equations.check_identifier_basic(identifier)
Check an identifier (usually resulting from an equation string provided by the user) for conformity with the
rules. The rules are:

1. Only ASCII characters

2. Starts with a character, then mix of alphanumerical characters and underscore

3. Is not a reserved keyword of Python

Parameters identifier : str

The identifier that should be checked

Raises

ValueError If the identifier does not conform to the above rules.

check_identifier_constants(identifier) Make sure that identifier names do not clash with function
names.

check_identifier_constants function

(Shortest import: from brian2.equations.equations import check_identifier_constants)

brian2.equations.equations.check_identifier_constants(identifier)
Make sure that identifier names do not clash with function names.

check_identifier_functions(identifier) Make sure that identifier names do not clash with function
names.

check_identifier_functions function

(Shortest import: from brian2.equations.equations import check_identifier_functions)

brian2.equations.equations.check_identifier_functions(identifier)
Make sure that identifier names do not clash with function names.

454 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

check_identifier_reserved(identifier) Check that an identifier is not using a reserved special vari-
able name.

check_identifier_reserved function

(Shortest import: from brian2.equations.equations import check_identifier_reserved)

brian2.equations.equations.check_identifier_reserved(identifier)
Check that an identifier is not using a reserved special variable name. The special variables are: ‘t’, ‘dt’, and
‘xi’, as well as everything starting with xi_.

Parameters identifier: str :

The identifier that should be checked

Raises

ValueError If the identifier is a special variable name.

check_identifier_units(identifier) Make sure that identifier names do not clash with unit
names.

check_identifier_units function

(Shortest import: from brian2.equations.equations import check_identifier_units)

brian2.equations.equations.check_identifier_units(identifier)
Make sure that identifier names do not clash with unit names.

check_subexpressions(group, equations, . . .) Checks the subexpressions in the equations and raises an
error if a subexpression refers to stateful functions without
being marked as “constant over dt”.

check_subexpressions function

(Shortest import: from brian2.equations.equations import check_subexpressions)

brian2.equations.equations.check_subexpressions(group, equations, run_namespace)
Checks the subexpressions in the equations and raises an error if a subexpression refers to stateful functions
without being marked as “constant over dt”.

Parameters group : Group

The group providing the context.

equations : Equations

The equations to check.

run_namespace : dict

The run namespace for resolving variables.

6.4. Subpackages 455

Brian 2 Documentation, Release 2.1.1

Raises

SyntaxError For subexpressions not marked as “constant over dt” that refer to stateful functions.

dimensions_and_type_from_string(unit_string) Returns the physical dimensions that results from evaluat-
ing a string like “siemens / metre ** 2”, allowing for the
special string “1” to signify dimensionless units, the string
“boolean” for a boolean and “integer” for an integer vari-
able.

dimensions_and_type_from_string function

(Shortest import: from brian2.equations.equations import dimensions_and_type_from_string)

brian2.equations.equations.dimensions_and_type_from_string(unit_string)
Returns the physical dimensions that results from evaluating a string like “siemens / metre ** 2”, allowing for
the special string “1” to signify dimensionless units, the string “boolean” for a boolean and “integer” for an
integer variable.

Parameters unit_string : str

The string that should evaluate to a unit

Returns d, type : (Dimension, {FLOAT, INTEGER or BOOL})

The resulting physical dimensions and the type of the variable.

Raises

ValueError If the string cannot be evaluated to a unit.

extract_constant_subexpressions(eqs)

extract_constant_subexpressions function

(Shortest import: from brian2.equations.equations import extract_constant_subexpressions)

brian2.equations.equations.extract_constant_subexpressions(eqs)

is_stateful(expression, variables) Whether the given expression refers to stateful functions
(and is therefore not guaranteed to give the same result if
called repetively).

is_stateful function

(Shortest import: from brian2.equations.equations import is_stateful)

brian2.equations.equations.is_stateful(expression, variables)

456 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

Whether the given expression refers to stateful functions (and is therefore not guaranteed to give the same result
if called repetively).

Parameters expression : sympy.Expression

The sympy expression to check.

variables : dict

The dictionary mapping variable names to Variable or Function objects.

Returns stateful : bool

True, if the given expression refers to a stateful function like rand() and False
otherwise.

parse_string_equations(eqns) Parse a string defining equations.

parse_string_equations function

(Shortest import: from brian2.equations.equations import parse_string_equations)

brian2.equations.equations.parse_string_equations(eqns)
Parse a string defining equations.

Parameters eqns : str

The (possibly multi-line) string defining the equations. See the documentation of the
Equations class for details.

Returns equations : dict

A dictionary mapping variable names to Equations objects

refractory module

Module implementing Brian’s refractory mechanism.

Exported members: add_refractoriness

Functions

add_refractoriness(eqs) Extends a given set of equations with the refractory mech-
anism.

add_refractoriness function

(Shortest import: from brian2.equations.refractory import add_refractoriness)

brian2.equations.refractory.add_refractoriness(eqs)
Extends a given set of equations with the refractory mechanism. New parameters are added and differential
equations with the “unless refractory” flag are changed so that their right-hand side is 0 when the neuron is
refractory (by multiplication with the not_refractory variable).

Parameters eqs : Equations

The equations without refractory mechanism.

6.4. Subpackages 457

Brian 2 Documentation, Release 2.1.1

Returns new_eqs : Equations

New equations, with added parameters and changed differential equations having the
“unless refractory” flag.

check_identifier_refractory(identifier) Check that the identifier is not using a name reserved for
the refractory mechanism.

check_identifier_refractory function

(Shortest import: from brian2.equations.refractory import check_identifier_refractory)

brian2.equations.refractory.check_identifier_refractory(identifier)
Check that the identifier is not using a name reserved for the refractory mechanism. The reserved names are
not_refractory, refractory, refractory_until.

Parameters identifier : str

The identifier to check.

Raises

ValueError If the identifier is a variable name used for the refractory mechanism.

unitcheck module

Utility functions for handling the units in Equations.

Exported members: unit_from_expression, check_dimensions, check_units_statements

Functions

check_dimensions(expression, dimensions, . . .) Compares the physical dimensions of an expression to ex-
pected dimensions in a given namespace.

check_dimensions function

(Shortest import: from brian2.equations.unitcheck import check_dimensions)

brian2.equations.unitcheck.check_dimensions(expression, dimensions, variables)
Compares the physical dimensions of an expression to expected dimensions in a given namespace.

Parameters expression : str

The expression to evaluate.

dimensions : Dimension

The expected physical dimensions for the expression.

variables : dict

Dictionary of all variables (including external constants) used in the expression.

458 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

Raises

KeyError In case on of the identifiers cannot be resolved.

DimensionMismatchError If an unit mismatch occurs during the evaluation.

check_units_statements(code, variables) Check the units for a series of statements.

check_units_statements function

(Shortest import: from brian2.equations.unitcheck import check_units_statements)

brian2.equations.unitcheck.check_units_statements(code, variables)
Check the units for a series of statements. Setting a model variable has to use the correct unit. For newly
introduced temporary variables, the unit is determined and used to check the following statements to ensure
consistency.

Parameters code : str

The statements as a (multi-line) string

variables : dict of Variable objects

The information about all variables used in code (including Constant objects for
external variables)

Raises

KeyError In case on of the identifiers cannot be resolved.

DimensionMismatchError If an unit mismatch occurs during the evaluation.

6.4.5 groups package

Package providing groups such as NeuronGroup or PoissonGroup.

group module

This module defines the VariableOwner class, a mix-in class for everything that saves state variables, e.g. Clock
or NeuronGroup, the class Group for objects that in addition to storing state variables also execute code, i.e. objects
such as NeuronGroup or StateMonitor but not Clock, and finally CodeRunner, a class to run code in the
context of a Group.

Exported members: Group, VariableOwner, CodeRunner

Classes

CodeRunner(group, template[, code, . . .]) A “code runner” that runs a CodeObject every timestep
and keeps a reference to the Group.

6.4. Subpackages 459

https://docs.python.org/2/library/code.html#module-code

Brian 2 Documentation, Release 2.1.1

CodeRunner class

(Shortest import: from brian2 import CodeRunner)

class brian2.groups.group.CodeRunner(group, template, code=”, user_code=None,
dt=None, clock=None, when=’start’, order=0,
name=’coderunner*’, check_units=True, tem-
plate_kwds=None, needed_variables=None, over-
ride_conditional_write=None, codeobj_class=None,
generate_empty_code=True)

Bases: brian2.core.base.BrianObject

A “code runner” that runs a CodeObject every timestep and keeps a reference to the Group. Used in
NeuronGroup for Thresholder, Resetter and StateUpdater.

On creation, we try to run the before_run method with an empty additional namespace (see Network.
before_run()). If the namespace is already complete this might catch unit mismatches.

Parameters group : Group

The group to which this object belongs.

template : Template

The template that should be used for code generation

code : str, optional

The abstract code that should be executed every time step. The
update_abstract_code method might generate this code dynamically be-
fore every run instead.

dt : Quantity , optional

The time step to be used for the simulation. Cannot be combined with the clock
argument.

user_code : str, optional

The abstract code as specified by the user, i.e. without any additions of internal code
that the user not necessarily knows about. This will be used for warnings and error
messages.

clock : Clock, optional

The update clock to be used. If neither a clock, nor the dt argument is specified, the
defaultclock will be used.

when : str, optional

In which scheduling slot to execute the operation during a time step. Defaults to
'start'.

order : int, optional

The priority of this operation for operations occurring at the same time step and in the
same scheduling slot. Defaults to 0.

name : str, optional

The name for this object.

check_units : bool, optional

460 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

Whether the units should be checked for consistency before a run. Is activated (True)
by default but should be switched off for state updaters (units are already checked for
the equations and the generated abstract code might have already replaced variables
with their unit-less values)

template_kwds : dict, optional

A dictionary of additional information that is passed to the template.

needed_variables: list of str, optional :

A list of variables that are neither present in the abstract code, nor in the
USES_VARIABLES statement in the template. This is only rarely necessary, an ex-
ample being a StateMonitor where the names of the variables are neither known to
the template nor included in the abstract code statements.

override_conditional_write: list of str, optional :

A list of variable names which are used as conditions (e.g. for refractoriness) which
should be ignored.

codeobj_class : class, optional

The CodeObject class to run code with. If not specified, defaults to the group’s
codeobj_class attribute.

generate_empty_code : bool, optional

Whether to generate a CodeObject if there is no abstract code to execute. Defaults
to True but should be switched off e.g. for a StateUpdater when there is nothing
to do.

Methods

before_run(run_namespace)
update_abstract_code(run_namespace) Update the abstract code for the code object.

Details

before_run(run_namespace)

update_abstract_code(run_namespace)
Update the abstract code for the code object. Will be called in before_run and should update the
CodeRunner.abstract_code attribute.

Does nothing by default.

Group(*args, **kwds)

Methods

Group class

(Shortest import: from brian2 import Group)

6.4. Subpackages 461

Brian 2 Documentation, Release 2.1.1

class brian2.groups.group.Group(*args, **kwds)
Bases: brian2.groups.group.VariableOwner, brian2.core.base.BrianObject

Methods

custom_operation(*args, **kwds)
resolve_all(identifiers, run_namespace[, . . .]) Resolve a list of identifiers.
run_regularly(code[, dt, clock, when, . . .]) Run abstract code in the group’s namespace.
runner(*args, **kwds)

Details

custom_operation(*args, **kwds)

resolve_all(identifiers, run_namespace, user_identifiers=None, additional_variables=None)
Resolve a list of identifiers. Calls Group._resolve() for each identifier.

Parameters identifiers : iterable of str

The names to look up.

run_namespace : dict-like, optional

An additional namespace that is used for variable lookup (if not defined, the implicit
namespace of local variables is used).

user_identifiers : iterable of str, optional

The names in identifiers that were provided by the user (i.e. are part of user-
specified equations, abstract code, etc.). Will be used to determine when to issue
namespace conflict warnings. If not specified, will be assumed to be identical to
identifiers.

additional_variables : dict-like, optional

An additional mapping of names to Variable objects that will be checked before
Group.variables.

Returns variables : dict of Variable or Function

A mapping from name to Variable/Function object for each of the names given
in identifiers

Raises

KeyError If one of the names in identifier cannot be resolved

run_regularly(code, dt=None, clock=None, when=’start’, order=0, name=None,
codeobj_class=None)

Run abstract code in the group’s namespace. The created CodeRunner object will be automatically
added to the group, it therefore does not need to be added to the network manually. However, a reference
to the object will be returned, which can be used to later remove it from the group or to set it to inactive.

Parameters code : str

The abstract code to run.

462 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

dt : Quantity , optional

The time step to use for this custom operation. Cannot be combined with the clock
argument.

clock : Clock, optional

The update clock to use for this operation. If neither a clock nor the dt argument is
specified, defaults to the clock of the group.

when : str, optional

When to run within a time step, defaults to the 'start' slot.

name : str, optional

A unique name, if non is given the name of the group appended with ‘run_regularly’,
‘run_regularly_1’, etc. will be used. If a name is given explicitly, it will be used as
given (i.e. the group name will not be prepended automatically).

codeobj_class : class, optional

The CodeObject class to run code with. If not specified, defaults to the group’s
codeobj_class attribute.

Returns obj : CodeRunner

A reference to the object that will be run.

runner(*args, **kwds)

IndexWrapper(group) Convenience class to allow access to the indices via index-
ing syntax.

IndexWrapper class

(Shortest import: from brian2.groups.group import IndexWrapper)

class brian2.groups.group.IndexWrapper(group)
Bases: object

Convenience class to allow access to the indices via indexing syntax. This allows for example to get all indices
for synapses originating from neuron 10 by writing synapses.indices[10, :] instead of synapses.
_indices.((10, slice(None)).

Indexing(group[, default_index]) Object responsible for calculating flat index arrays from ar-
bitrary group- specific indices.

Indexing class

(Shortest import: from brian2.groups.group import Indexing)

class brian2.groups.group.Indexing(group, default_index=’_idx’)
Bases: object

Object responsible for calculating flat index arrays from arbitrary group- specific indices. Stores strong refer-
ences to the necessary variables so that basic indexing (i.e. slicing, integer arrays/values, . . .) works even when
the respective VariableOwner no longer exists. Note that this object does not handle string indexing.

6.4. Subpackages 463

https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#object

Brian 2 Documentation, Release 2.1.1

Methods

__call__([item, index_var]) Return flat indices to index into state variables from ar-
bitrary group specific indices.

Details

__call__(item=slice(None, None, None), index_var=None)
Return flat indices to index into state variables from arbitrary group specific indices. In the default imple-
mentation, raises an error for multidimensional indices and transforms slices into arrays.

Parameters item : slice, array, int

The indices to translate.

Returns indices : numpy.ndarray

The flat indices corresponding to the indices given in item.

See also:

SynapticIndexing

VariableOwner(name) Mix-in class for accessing arrays by attribute.

VariableOwner class

(Shortest import: from brian2 import VariableOwner)

class brian2.groups.group.VariableOwner(name)
Bases: brian2.core.names.Nameable

Mix-in class for accessing arrays by attribute.

TODO: Overwrite the __dir__ method to return the state variables # (should make autocompletion work)

Methods

add_attribute(name) Add a new attribute to this group.
check_variable_write(variable) Function that can be overwritten to raise an error if writ-

ing to a variable should not be allowed.
get_states([vars, units, format, . . .]) Return a copy of the current state variable values.
set_states(values[, units, format, level]) Set the state variables.
state(name[, use_units, level]) Return the state variable in a way that properly supports

indexing in

Details

add_attribute(name)
Add a new attribute to this group. Using this method instead of simply assigning to the new attribute name
is necessary because Brian will raise an error in that case, to avoid bugs passing unnoticed (misspelled
state variable name, un-declared state variable, . . .).

464 Chapter 6. brian2 package

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Brian 2 Documentation, Release 2.1.1

Parameters name : str

The name of the new attribute

Raises

AttributeError If the name already exists as an attribute or a state variable.

check_variable_write(variable)
Function that can be overwritten to raise an error if writing to a variable should not be allowed. Note that
this does not deal with incorrect writes that are general to all kind of variables (incorrect units, writing to
a read-only variable, etc.). This function is only used for type-specific rules, e.g. for raising an error in
Synapses when writing to a synaptic variable before any connect call.

By default this function does nothing.

Parameters variable : Variable

The variable that the user attempts to set.

get_states(vars=None, units=True, format=’dict’, subexpressions=False,
read_only_variables=True, level=0)

Return a copy of the current state variable values. The returned arrays are copies of the actual arrays that
store the state variable values, therefore changing the values in the returned dictionary will not affect the
state variables.

Parameters vars : list of str, optional

The names of the variables to extract. If not specified, extract all state variables (ex-
cept for internal variables, i.e. names that start with '_'). If the subexpressions
argument is True, the current values of all subexpressions are returned as well.

units : bool, optional

Whether to include the physical units in the return value. Defaults to True.

format : str, optional

The output format. Defaults to 'dict'.

subexpressions: bool, optional :

Whether to return subexpressions when no list of variable names is given. Defaults to
False. This argument is ignored if an explicit list of variable names is given in vars.

read_only_variables : bool, optional

Whether to return read-only variables (e.g. the number of neurons, the time, etc.). Set-
ting it to Falsewill assure that the returned state can later be used with set_states.
Defaults to True.

level : int, optional

How much higher to go up the stack to resolve external variables. Only relevant if
extracting subexpressions that refer to external variables.

Returns values : dict or specified format

The variables specified in vars, in the specified format.

set_states(values, units=True, format=’dict’, level=0)
Set the state variables.

Parameters values : depends on format

6.4. Subpackages 465

Brian 2 Documentation, Release 2.1.1

The values according to format.

units : bool, optional

Whether the values include physical units. Defaults to True.

format : str, optional

The format of values. Defaults to 'dict'

level : int, optional

How much higher to go up the stack to resolve external variables. Only relevant when
using string expressions to set values.

state(name, use_units=True, level=0)
Return the state variable in a way that properly supports indexing in the context of this group

Parameters name : str

The name of the state variable

use_units : bool, optional

Whether to use the state variable’s unit.

level : int, optional

How much farther to go down in the stack to find the namespace.

Returns :

——- :

var : VariableView or scalar value

The state variable’s value that can be indexed (for non-scalar values).

Functions

get_dtype(equation[, dtype]) Helper function to interpret the dtype keyword argument
in NeuronGroup etc.

get_dtype function

(Shortest import: from brian2.groups.group import get_dtype)

brian2.groups.group.get_dtype(equation, dtype=None)
Helper function to interpret the dtype keyword argument in NeuronGroup etc.

Parameters equation : SingleEquation

The equation for which a dtype should be returned

dtype : dtype or dict, optional

Either the dtype to be used as a default dtype for all float variables (instead of the
core.default_float_dtype preference) or a dictionary stating the dtype for some vari-
ables; all other variables will use the preference default

Returns d : dtype

The dtype for the variable defined in equation

466 Chapter 6. brian2 package

https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype

Brian 2 Documentation, Release 2.1.1

neurongroup module

This model defines the NeuronGroup, the core of most simulations.

Exported members: NeuronGroup

Classes

NeuronGroup(N, model[, method, . . .]) A group of neurons.

NeuronGroup class

(Shortest import: from brian2 import NeuronGroup)

class brian2.groups.neurongroup.NeuronGroup(N, model, method=(’exact’, ’euler’,
’heun’), method_options=None, thresh-
old=None, reset=None, refractory=False,
events=None, namespace=None,
dtype=None, dt=None, clock=None,
order=0, name=’neurongroup*’,
codeobj_class=None)

Bases: brian2.groups.group.Group, brian2.core.spikesource.SpikeSource

A group of neurons.

Parameters N : int

Number of neurons in the group.

model : (str, Equations)

The differential equations defining the group

method : (str, function), optional

The numerical integration method. Either a string with the name of a registered method
(e.g. “euler”) or a function that receives an Equations object and returns the cor-
responding abstract code. If no method is specified, a suitable method will be chosen
automatically.

threshold : str, optional

The condition which produces spikes. Should be a single line boolean expression.

reset : str, optional

The (possibly multi-line) string with the code to execute on reset.

refractory : {str, Quantity}, optional

Either the length of the refractory period (e.g. 2*ms), a string expression that evaluates
to the length of the refractory period after each spike (e.g. '(1 + rand())*ms'),
or a string expression evaluating to a boolean value, given the condition under which
the neuron stays refractory after a spike (e.g. 'v > -20*mV')

events : dict, optional

User-defined events in addition to the “spike” event defined by the threshold. Has to
be a mapping of strings (the event name) to strings (the condition) that will be checked.

namespace: dict, optional :

6.4. Subpackages 467

Brian 2 Documentation, Release 2.1.1

A dictionary mapping identifier names to objects. If not given, the namespace will be
filled in at the time of the call of Network.run(), with either the values from the
namespace argument of the Network.run() method or from the local context, if
no such argument is given.

dtype : (dtype, dict), optional

The numpy.dtype that will be used to store the values, or a dictionary specifying the
type for variable names. If a value is not provided for a variable (or no value is provided
at all), the preference setting core.default_float_dtype is used.

codeobj_class : class, optional

The CodeObject class to run code with.

dt : Quantity , optional

The time step to be used for the simulation. Cannot be combined with the clock
argument.

clock : Clock, optional

The update clock to be used. If neither a clock, nor the dt argument is specified, the
defaultclock will be used.

order : int, optional

The priority of of this group for operations occurring at the same time step and in the
same scheduling slot. Defaults to 0.

name : str, optional

A unique name for the group, otherwise use neurongroup_0, etc.

Notes

NeuronGroup contains a StateUpdater, Thresholder and Resetter, and these are run at the
‘groups’, ‘thresholds’ and ‘resets’ slots (i.e. the values of their when attribute take these values). The order
attribute will be passed down to the contained objects but can be set individually by setting the order attribute
of the state_updater, thresholder and resetter attributes, respectively.

Attributes

_refractory The refractory condition or timespan
event_codes Code that is triggered on events (e.g.
events Events supported by this group
method_choice The state update method selected by the user
namespace The group-specific namespace
resetter Reset neurons which have spiked (or perform arbitrary

actions for
spikes The spikes returned by the most recent thresholding op-

eration.
state_updater Performs numerical integration step
subexpression_updater Update the “constant over a time step” subexpressions
thresholder Checks the spike threshold (or abitrary user-defined

events)
Continued on next page

468 Chapter 6. brian2 package

https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype

Brian 2 Documentation, Release 2.1.1

Table 6.273 – continued from previous page
user_equations The original equations as specified by the user (i.e.

Methods

before_run([run_namespace])
run_on_event(event, code[, when, order]) Run code triggered by a custom-defined event (see

NeuronGroup documentation for the specification of
events).The created Resetter object will be automat-
ically added to the group, it therefore does not need to
be added to the network manually.

set_event_schedule(event[, when, order]) Change the scheduling slot for checking the condition
of an event.

state(name[, use_units, level])

Details

_refractory
The refractory condition or timespan

event_codes
Code that is triggered on events (e.g. reset)

events
Events supported by this group

method_choice
The state update method selected by the user

namespace
The group-specific namespace

resetter
Reset neurons which have spiked (or perform arbitrary actions for user-defined events)

spikes
The spikes returned by the most recent thresholding operation.

state_updater
Performs numerical integration step

subexpression_updater
Update the “constant over a time step” subexpressions

thresholder
Checks the spike threshold (or abitrary user-defined events)

user_equations
The original equations as specified by the user (i.e. without the multiplied int(not_refractory)
term for equations marked as (unless refractory))

before_run(run_namespace=None)

run_on_event(event, code, when=’after_resets’, order=None)
Run code triggered by a custom-defined event (see NeuronGroup documentation for the specification
of events).The created Resetter object will be automatically added to the group, it therefore does not
need to be added to the network manually. However, a reference to the object will be returned, which can
be used to later remove it from the group or to set it to inactive.

6.4. Subpackages 469

Brian 2 Documentation, Release 2.1.1

Parameters event : str

The name of the event that should trigger the code

code : str

The code that should be executed

when : str, optional

The scheduling slot that should be used to execute the code. Defaults to
'after_resets'.

order : int, optional

The order for operations in the same scheduling slot. Defaults to the order of the
NeuronGroup.

Returns obj : Resetter

A reference to the object that will be run.

set_event_schedule(event, when=’after_thresholds’, order=None)
Change the scheduling slot for checking the condition of an event.

Parameters event : str

The name of the event for which the scheduling should be changed

when : str, optional

The scheduling slot that should be used to check the condition. Defaults to
'after_thresholds'.

order : int, optional

The order for operations in the same scheduling slot. Defaults to the order of the
NeuronGroup.

state(name, use_units=True, level=0)

Tutorials and examples using this

• Tutorial 1-intro-to-brian-neurons

• Tutorial 2-intro-to-brian-synapses

• Tutorial 3-intro-to-brian-simulations

• Example COBAHH

• Example IF_curve_LIF

• Example phase_locking

• Example CUBA

• Example non_reliability

• Example IF_curve_Hodgkin_Huxley

• Example reliability

• Example adaptive_threshold

• Example standalone/cuba_openmp

470 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

• Example standalone/STDP_standalone

• Example synapses/state_variables

• Example synapses/jeffress

• Example synapses/licklider

• Example synapses/nonlinear

• Example synapses/gapjunctions

• Example synapses/efficient_gaussian_connectivity

• Example synapses/spatial_connections

• Example synapses/STDP

• Example synapses/synapses

• Example frompapers/Rothman_Manis_2003

• Example frompapers/Platkiewicz_Brette_2011

• Example frompapers/Vogels_et_al_2011

• Example frompapers/Brette_Guigon_2003

• Example frompapers/Touboul_Brette_2008

• Example frompapers/Sturzl_et_al_2000

• Example frompapers/Clopath_et_al_2010_homeostasis

• Example frompapers/Clopath_et_al_2010_no_homeostasis

• Example frompapers/Wang_Buszaki_1996

• Example frompapers/Brette_Gerstner_2005

• Example frompapers/Brette_2004

• Example frompapers/Diesmann_et_al_1999

• Example frompapers/Kremer_et_al_2011_barrel_cortex

• Example frompapers/Brunel_Hakim_1999

• Example frompapers/Rossant_et_al_2011bis

• Example frompapers/Stimberg_et_al_2018/example_4_rsmean

• Example frompapers/Stimberg_et_al_2018/example_6_COBA_with_astro

• Example frompapers/Stimberg_et_al_2018/example_3_io_synapse

• Example frompapers/Stimberg_et_al_2018/example_1_COBA

• Example frompapers/Stimberg_et_al_2018/example_4_synrel

• Example frompapers/Stimberg_et_al_2018/example_5_astro_ring

• Example frompapers/Stimberg_et_al_2018/example_2_gchi_astrocyte

• Example compartmental/lfp

• Example compartmental/bipolar_with_inputs

• Example compartmental/bipolar_with_inputs2

• Example advanced/compare_GSL_to_conventional

6.4. Subpackages 471

Brian 2 Documentation, Release 2.1.1

• Example advanced/custom_events

• Example advanced/stochastic_odes

• Example advanced/opencv_movie

Resetter(group[, when, order, event]) The CodeRunner that applies the reset statement(s) to the
state variables of neurons that have spiked in this timestep.

Resetter class

(Shortest import: from brian2.groups.neurongroup import Resetter)

class brian2.groups.neurongroup.Resetter(group, when=’resets’, order=None,
event=’spike’)

Bases: brian2.groups.group.CodeRunner

The CodeRunner that applies the reset statement(s) to the state variables of neurons that have spiked in this
timestep.

Methods

update_abstract_code(run_namespace)

Details

update_abstract_code(run_namespace)

StateUpdater(group, method[, method_options]) The CodeRunner that updates the state variables of a
NeuronGroup at every timestep.

StateUpdater class

(Shortest import: from brian2.groups.neurongroup import StateUpdater)

class brian2.groups.neurongroup.StateUpdater(group, method, method_options=None)
Bases: brian2.groups.group.CodeRunner

The CodeRunner that updates the state variables of a NeuronGroup at every timestep.

Methods

update_abstract_code(run_namespace)

Details

update_abstract_code(run_namespace)

472 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

SubexpressionUpdater(group, subexpressions) The CodeRunner that updates the state variables stor-
ing the values of subexpressions that have been marked as
“constant over dt”.

SubexpressionUpdater class

(Shortest import: from brian2.groups.neurongroup import SubexpressionUpdater)

class brian2.groups.neurongroup.SubexpressionUpdater(group, subexpressions,
when=’before_start’)

Bases: brian2.groups.group.CodeRunner

The CodeRunner that updates the state variables storing the values of subexpressions that have been marked
as “constant over dt”.

Thresholder(group[, when, event]) The CodeRunner that applies the threshold condition to
the state variables of a NeuronGroup at every timestep
and sets its spikes and refractory_until at-
tributes.

Thresholder class

(Shortest import: from brian2.groups.neurongroup import Thresholder)

class brian2.groups.neurongroup.Thresholder(group, when=’thresholds’, event=’spike’)
Bases: brian2.groups.group.CodeRunner

The CodeRunner that applies the threshold condition to the state variables of a NeuronGroup at every
timestep and sets its spikes and refractory_until attributes.

Methods

update_abstract_code(run_namespace)

Details

update_abstract_code(run_namespace)

Functions

check_identifier_pre_post(identifier) Do not allow names ending in _pre or _post to avoid
confusion.

check_identifier_pre_post function

(Shortest import: from brian2.groups.neurongroup import check_identifier_pre_post)

brian2.groups.neurongroup.check_identifier_pre_post(identifier)
Do not allow names ending in _pre or _post to avoid confusion.

6.4. Subpackages 473

Brian 2 Documentation, Release 2.1.1

subgroup module

Exported members: Subgroup

Classes

Subgroup(source, start, stop[, name]) Subgroup of any Group

Subgroup class

(Shortest import: from brian2 import Subgroup)

class brian2.groups.subgroup.Subgroup(source, start, stop, name=None)
Bases: brian2.groups.group.Group, brian2.core.spikesource.SpikeSource

Subgroup of any Group

Parameters source : SpikeSource

The source object to subgroup.

start, stop : int

Select only spikes with indices from start to stop-1.

name : str, optional

A unique name for the group, or use source.name+'_subgroup_0', etc.

Attributes

spikes

Details

spikes

6.4.6 importexport package

Package providing import/export support.

Exported members: ImportExport

dictlike module

Module providing DictImportExport and PandasImportExport (requiring a working installation of pan-
das).

Classes

DictImportExport An importer/exporter for variables in format of dict of
numpy arrays.

474 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

DictImportExport class

(Shortest import: from brian2.importexport import DictImportExport)

class brian2.importexport.dictlike.DictImportExport
Bases: brian2.importexport.importexport.ImportExport

An importer/exporter for variables in format of dict of numpy arrays.

Attributes

name

Methods

export_data(group, variables[, units, level])
import_data(group, data[, units, level])

Details

name

static export_data(group, variables, units=True, level=0)

static import_data(group, data, units=True, level=0)

PandasImportExport An importer/exporter for variables in pandas DataFrame
format.

PandasImportExport class

(Shortest import: from brian2.importexport import PandasImportExport)

class brian2.importexport.dictlike.PandasImportExport
Bases: brian2.importexport.importexport.ImportExport

An importer/exporter for variables in pandas DataFrame format.

Attributes

name

Methods

export_data(group, variables[, units, level])
import_data(group, data[, units, level])

6.4. Subpackages 475

Brian 2 Documentation, Release 2.1.1

Details

name

static export_data(group, variables, units=True, level=0)

static import_data(group, data, units=True, level=0)

importexport module

Module defining the ImportExport class that enables getting state variable data in and out of groups in various
formats (see Group.get_states() and Group.set_states()).

Classes

ImportExport Class for registering new import/export methods (via static
methods).

ImportExport class

(Shortest import: from brian2 import ImportExport)

class brian2.importexport.importexport.ImportExport
Bases: object

Class for registering new import/export methods (via static methods). Also the base class that should
be extended for such methods (ImportExport.export_data, ImportExport.import_data, and
ImportExport.name have to be overwritten).

See also:

VariableOwner.get_states(), VariableOwner.set_states()

Attributes

methods A dictionary mapping import/export methods names to
ImportExport objects

name Abstract property giving a method name.

Methods

export_data(group, variables) Asbtract static export data method with two obligatory
parameters.

import_data(group, data) Import and set state variables.
register(importerexporter) Register a import/export method.

Details

methods
A dictionary mapping import/export methods names to ImportExport objects

name

476 Chapter 6. brian2 package

https://docs.python.org/2/library/functions.html#object

Brian 2 Documentation, Release 2.1.1

Abstract property giving a method name.

static export_data(group, variables)
Asbtract static export data method with two obligatory parameters. It should return a copy of the current
state variable values. The returned arrays are copies of the actual arrays that store the state variable values,
therefore changing the values in the returned dictionary will not affect the state variables.

Parameters group : Group

Group object.

variables : list of str

The names of the variables to extract.

static import_data(group, data)
Import and set state variables.

Parameters group : Group

Group object.

data : dict_like

Data to import with variable names.

static register(importerexporter)
Register a import/export method. Registered methods can be referred to via their name.

Parameters importerexporter : ImportExport

The importerexporter object, e.g. an DictImportExport.

6.4.7 input package

Classes for providing external input to a network.

binomial module

Implementation of BinomialFunction

Exported members: BinomialFunction

Classes

BinomialFunction(n, p[, approximate, name]) A function that generates samples from a binomial distri-
bution.

BinomialFunction class

(Shortest import: from brian2 import BinomialFunction)

class brian2.input.binomial.BinomialFunction(n, p, approximate=True,
name=’_binomial*’)

Bases: brian2.core.functions.Function, brian2.core.names.Nameable

A function that generates samples from a binomial distribution.

Parameters n : int

6.4. Subpackages 477

Brian 2 Documentation, Release 2.1.1

Number of samples

p : float

Probablility

approximate : bool, optional

Whether to approximate the binomial with a normal distribution if 𝑛𝑝 > 5∧𝑛(1−𝑝) >
5. Defaults to True.

Attributes

implementations Container for implementing functions for different tar-
gets

Details

implementations
Container for implementing functions for different targets This container can be extended by other code-
generation targets/devices The key has to be the name of the target, the value a function that takes three
parameters (n, p, use_normal) and returns a tuple of (code, dependencies)

poissongroup module

Implementation of PoissonGroup.

Exported members: PoissonGroup

Classes

PoissonGroup(*args, **kwds) Poisson spike source

PoissonGroup class

(Shortest import: from brian2 import PoissonGroup)

class brian2.input.poissongroup.PoissonGroup(*args, **kwds)
Bases: brian2.groups.group.Group, brian2.core.spikesource.SpikeSource

Poisson spike source

Parameters N : int

Number of neurons

rates : Quantity , str

Single rate, array of rates of length N, or a string expression evaluating to a rate. This
string expression will be evaluated at every time step, it can therefore be time-dependent
(e.g. refer to a TimedArray).

dt : Quantity , optional

The time step to be used for the simulation. Cannot be combined with the clock
argument.

478 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

clock : Clock, optional

The update clock to be used. If neither a clock, nor the dt argument is specified, the
defaultclock will be used.

when : str, optional

When to run within a time step, defaults to the 'thresholds' slot.

order : int, optional

The priority of of this group for operations occurring at the same time step and in the
same scheduling slot. Defaults to 0.

name : str, optional

Unique name, or use poissongroup, poissongroup_1, etc.

Attributes

namespace The group-specific namespace
spikes The spikes returned by the most recent thresholding op-

eration.

Methods

before_run([run_namespace])

Details

namespace
The group-specific namespace

spikes
The spikes returned by the most recent thresholding operation.

before_run(run_namespace=None)

Tutorials and examples using this

• Tutorial 3-intro-to-brian-simulations

• Example adaptive_threshold

• Example standalone/STDP_standalone

• Example synapses/STDP

• Example frompapers/Stimberg_et_al_2018/example_4_rsmean

• Example frompapers/Stimberg_et_al_2018/example_4_synrel

• Example advanced/custom_events

6.4. Subpackages 479

Brian 2 Documentation, Release 2.1.1

poissoninput module

Implementation of PoissonInput.

Exported members: PoissonInput

Classes

PoissonInput(target, target_var, N, rate, weight) Adds independent Poisson input to a target variable of a
Group.

PoissonInput class

(Shortest import: from brian2 import PoissonInput)

class brian2.input.poissoninput.PoissonInput(target, target_var, N, rate, weight,
when=’synapses’, order=0)

Bases: brian2.groups.group.CodeRunner

Adds independent Poisson input to a target variable of a Group. For large numbers of inputs, this is much more
efficient than creating a PoissonGroup. The synaptic events are generated randomly during the simulation
and are not preloaded and stored in memory. All the inputs must target the same variable, have the same
frequency and same synaptic weight. All neurons in the target Group receive independent realizations of
Poisson spike trains.

Parameters target : Group

The group that is targeted by this input.

target_var : str

The variable of target that is targeted by this input.

N : int

The number of inputs

rate : Quantity

The rate of each of the inputs

weight : str or Quantity

Either a string expression (that can be interpreted in the context of target) or a
Quantity that will be added for every event to the target_var of target. The
unit has to match the unit of target_var

when : str, optional

When to update the target variable during a time step. Defaults to the synapses
scheduling slot.

order : int, optional

The priority of of the update compared to other operations occurring at the same time
step and in the same scheduling slot. Defaults to 0.

Attributes

480 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

N The number of inputs
rate The rate of each input

Methods

before_run(run_namespace)

Details

N
The number of inputs

rate
The rate of each input

before_run(run_namespace)

Tutorials and examples using this

• Example frompapers/Rossant_et_al_2011bis

spikegeneratorgroup module

Module defining SpikeGeneratorGroup.

Exported members: SpikeGeneratorGroup

Classes

SpikeGeneratorGroup(N, indices, times[, dt, . . .]) A group emitting spikes at given times.

SpikeGeneratorGroup class

(Shortest import: from brian2 import SpikeGeneratorGroup)

class brian2.input.spikegeneratorgroup.SpikeGeneratorGroup(N, indices,
times, dt=None,
clock=None, pe-
riod=1e100*second,
when=’thresholds’,
order=0,
sorted=False,
name=’spikegeneratorgroup*’,
codeobj_class=None)

Bases: brian2.groups.group.Group, brian2.groups.group.CodeRunner, brian2.core.
spikesource.SpikeSource

A group emitting spikes at given times.

Parameters N : int

The number of “neurons” in this group

6.4. Subpackages 481

Brian 2 Documentation, Release 2.1.1

indices : array of integers

The indices of the spiking cells

times : Quantity

The spike times for the cells given in indices. Has to have the same length as
indices.

period : Quantity , optional

If this is specified, it will repeat spikes with this period.

dt : Quantity , optional

The time step to be used for the simulation. Cannot be combined with the clock
argument.

clock : Clock, optional

The update clock to be used. If neither a clock, nor the dt argument is specified, the
defaultclock will be used.

when : str, optional

When to run within a time step, defaults to the 'thresholds' slot.

order : int, optional

The priority of of this group for operations occurring at the same time step and in the
same scheduling slot. Defaults to 0.

sorted : bool, optional

Whether the given indices and times are already sorted. Set to True if your events
are already sorted (first by spike time, then by index), this can save significant time at
construction if your arrays contain large numbers of spikes. Defaults to False.

Notes

• In a time step, SpikeGeneratorGroup emits all spikes that happened at 𝑡 − 𝑑𝑡 < 𝑡𝑠𝑝𝑖𝑘𝑒 ≤ 𝑡. This
might lead to unexpected or missing spikes if you change the time step dt between runs.

• SpikeGeneratorGroup does not currently raise any warning if a neuron spikes more that once during
a time step, but other code (e.g. for synaptic propagation) might assume that neurons only spike once per
time step and will therefore not work properly.

• If sorted is set to True, the given arrays will not be copied (only affects runtime mode)..

Attributes

_previous_dt Remember the dt we used the last time when we
checked the spike bins

_spikes_changed “Dirty flag” that will be set when spikes are changed
after the

spikes The spikes returned by the most recent thresholding op-
eration.

482 Chapter 6. brian2 package

https://docs.python.org/2/library/functions.html#sorted

Brian 2 Documentation, Release 2.1.1

Methods

before_run(run_namespace)
set_spikes(indices, times[, period, sorted]) Change the spikes that this group will generate.

Details

_previous_dt
Remember the dt we used the last time when we checked the spike bins to not repeat the work for multiple
runs with the same dt

_spikes_changed
“Dirty flag” that will be set when spikes are changed after the before_run check

spikes
The spikes returned by the most recent thresholding operation.

before_run(run_namespace)

set_spikes(indices, times, period=1e100*second, sorted=False)
Change the spikes that this group will generate.

This can be used to set the input for a second run of a model based on the output of a first run (if the input
for the second run is already known before the first run, then all the information should simply be included
in the initial SpikeGeneratorGroup initializer call, instead).

Parameters indices : array of integers

The indices of the spiking cells

times : Quantity

The spike times for the cells given in indices. Has to have the same length as
indices.

period : Quantity , optional

If this is specified, it will repeat spikes with this period.

sorted : bool, optional

Whether the given indices and times are already sorted. Set to True if your events
are already sorted (first by spike time, then by index), this can save significant time at
construction if your arrays contain large numbers of spikes. Defaults to False.

Tutorials and examples using this

• Tutorial 3-intro-to-brian-simulations

• Example frompapers/Diesmann_et_al_1999

• Example frompapers/Stimberg_et_al_2018/example_3_io_synapse

timedarray module

Implementation of TimedArray .

Exported members: TimedArray

6.4. Subpackages 483

Brian 2 Documentation, Release 2.1.1

Classes

TimedArray(values, dt[, name]) A function of time built from an array of values.

TimedArray class

(Shortest import: from brian2 import TimedArray)

class brian2.input.timedarray.TimedArray(values, dt, name=None)
Bases: brian2.core.functions.Function, brian2.core.names.Nameable

A function of time built from an array of values. The returned object can be used as a function, including in
model equations etc. The resulting function has to be called as funcion_name(t) if the provided value array
is one-dimensional and as function_name(t, i) if it is two-dimensional.

Parameters values : ndarray or Quantity

An array of values providing the values at various points in time. This array can either
be one- or two-dimensional. If it is two-dimensional it’s first dimension should be the
time.

dt : Quantity

The time distance between values in the values array.

name : str, optional

A unique name for this object, see Nameable for details. Defaults to
'_timedarray*'.

Notes

For time values corresponding to elements outside of the range of values provided, the first respectively last
element is returned.

Examples

>>> from brian2 import *
>>> ta = TimedArray([1, 2, 3, 4] * mV, dt=0.1*ms)
>>> print(ta(0.3*ms))
4. mV
>>> G = NeuronGroup(1, 'v = ta(t) : volt')
>>> mon = StateMonitor(G, 'v', record=True)
>>> net = Network(G, mon)
>>> net.run(1*ms)
...
>>> print(mon[0].v)
[1. 2. 3. 4. 4. 4. 4. 4. 4. 4.] mV
>>> ta2d = TimedArray([[1, 2], [3, 4], [5, 6]]*mV, dt=0.1*ms)
>>> G = NeuronGroup(4, 'v = ta2d(t, i%2) : volt')
>>> mon = StateMonitor(G, 'v', record=True)
>>> net = Network(G, mon)
>>> net.run(0.2*ms)
...
>>> print mon.v[:]

484 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

[[1. 3.]
[2. 4.]
[1. 3.]
[2. 4.]] mV

Methods

is_locally_constant(dt)

Details

is_locally_constant(dt)

Tutorials and examples using this

• Tutorial 3-intro-to-brian-simulations

• Example synapses/jeffress

• Example frompapers/Sturzl_et_al_2000

• Example frompapers/Stimberg_et_al_2018/example_6_COBA_with_astro

• Example frompapers/Stimberg_et_al_2018/example_4_synrel

6.4.8 memory package

dynamicarray module

TODO: rewrite this (verbatim from Brian 1.x), more efficiency

Exported members: DynamicArray , DynamicArray1D

Classes

DynamicArray(shape[, dtype, factor, . . .]) An N-dimensional dynamic array class

DynamicArray class

(Shortest import: from brian2.memory.dynamicarray import DynamicArray)

class brian2.memory.dynamicarray.DynamicArray(shape, dtype=<type ’float’>, fac-
tor=2, use_numpy_resize=False, re-
fcheck=True)

Bases: object

An N-dimensional dynamic array class

The array can be resized in any dimension, and the class will handle allocating a new block of data and copying
when necessary.

6.4. Subpackages 485

https://docs.python.org/2/library/functions.html#object

Brian 2 Documentation, Release 2.1.1

Warning: The data will NOT be contiguous for >1D arrays. To ensure this, you will either need to use 1D
arrays, or to copy the data, or use the shrink method with the current size (although note that in both cases
you negate the memory and efficiency benefits of the dynamic array).

Initialisation arguments:

shape, dtype The shape and dtype of the array to initialise, as in Numpy. For 1D arrays, shape can be a
single int, for ND arrays it should be a tuple.

factor The resizing factor (see notes below). Larger values tend to lead to more wasted memory, but more
computationally efficient code.

use_numpy_resize, refcheck Normally, when you resize the array it creates a new array and copies the
data. Sometimes, it is possible to resize an array without a copy, and if this option is set it will attempt to
do this. However, this can cause memory problems if you are not careful so the option is off by default.
You need to ensure that you do not create slices of the array so that no references to the memory exist other
than the main array object. If you are sure you know what you’re doing, you can switch this reference
check off. Note that resizing in this way is only done if you resize in the first dimension.

The array is initialised with zeros. The data is stored in the attribute data which is a Numpy array.

Some numpy methods are implemented and can work directly on the array object, including len(arr),
arr[...] and arr[...]=.... In other cases, use the data attribute.

Notes

The dynamic array returns a data attribute which is a view on the larger _data attribute. When a resize
operation is performed, and a specific dimension is enlarged beyond the size in the _data attribute, the size is
increased to the larger of cursize*factor and newsize. This ensures that the amortized cost of increasing
the size of the array is O(1).

Examples

>>> x = DynamicArray((2, 3), dtype=int)
>>> x[:] = 1
>>> x.resize((3, 3))
>>> x[:] += 1
>>> x.resize((3, 4))
>>> x[:] += 1
>>> x.resize((4, 4))
>>> x[:] += 1
>>> x.data[:] = x.data**2
>>> x.data
array([[16, 16, 16, 4],

[16, 16, 16, 4],
[9, 9, 9, 4],
[1, 1, 1, 1]])

Methods

486 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

resize(newshape) Resizes the data to the new shape, which can be a dif-
ferent size to the current data, but should have the same
rank, i.e.

resize_along_first(newshape)
shrink(newshape) Reduces the data to the given shape, which should be

smaller than the current shape.

Details

resize(newshape)
Resizes the data to the new shape, which can be a different size to the current data, but should have the
same rank, i.e. same number of dimensions.

resize_along_first(newshape)

shrink(newshape)
Reduces the data to the given shape, which should be smaller than the current shape. resize() can also
be used with smaller values, but it will not shrink the allocated memory, whereas shrink will reallocate
the memory. This method should only be used infrequently, as if it is used frequently it will negate the
computational efficiency benefits of the DynamicArray.

DynamicArray1D(shape[, dtype, factor, . . .]) Version of DynamicArray with specialised resize
method designed to be more efficient.

DynamicArray1D class

(Shortest import: from brian2.memory.dynamicarray import DynamicArray1D)

class brian2.memory.dynamicarray.DynamicArray1D(shape, dtype=<type ’float’>, fac-
tor=2, use_numpy_resize=False, re-
fcheck=True)

Bases: brian2.memory.dynamicarray.DynamicArray

Version of DynamicArray with specialised resize method designed to be more efficient.

Methods

resize(newshape)

Details

resize(newshape)

Functions

getslices(shape)

getslices function

(Shortest import: from brian2.memory.dynamicarray import getslices)

6.4. Subpackages 487

Brian 2 Documentation, Release 2.1.1

brian2.memory.dynamicarray.getslices(shape)

6.4.9 monitors package

ratemonitor module

Exported members: PopulationRateMonitor

Classes

PopulationRateMonitor(source[, name, . . .]) Record instantaneous firing rates, averaged across neurons
from a NeuronGroup or other spike source.

PopulationRateMonitor class

(Shortest import: from brian2 import PopulationRateMonitor)

class brian2.monitors.ratemonitor.PopulationRateMonitor(source,
name=’ratemonitor*’,
codeobj_class=None)

Bases: brian2.groups.group.Group, brian2.groups.group.CodeRunner

Record instantaneous firing rates, averaged across neurons from a NeuronGroup or other spike source.

Parameters source : (NeuronGroup, SpikeSource)

The source of spikes to record.

name : str, optional

A unique name for the object, otherwise will use source.
name+'_ratemonitor_0', etc.

codeobj_class : class, optional

The CodeObject class to run code with.

Notes

Currently, this monitor can only monitor the instantaneous firing rates at each time step of the source clock. Any
binning/smoothing of the firing rates has to be done manually afterwards.

Attributes

source The group we are recording from

Methods

reinit() Clears all recorded rates
resize(new_size)
smooth_rate(self[, window, width]) Return a smooth version of the population rate.

488 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

Details

source
The group we are recording from

reinit()
Clears all recorded rates

resize(new_size)

smooth_rate(self, window=’gaussian’, width=None)
Return a smooth version of the population rate.

Parameters window : str, ndarray

The window to use for smoothing. Can be a string to chose a predefined win-
dow('flat' for a rectangular, and 'gaussian' for a Gaussian-shaped window).
In this case the width of the window is determined by the width argument. Note that
for the Gaussian window, the width parameter specifies the standard deviation of the
Gaussian, the width of the actual window is 4*width + dt (rounded to the nearest
dt). For the flat window, the width is rounded to the nearest odd multiple of dt to avoid
shifting the rate in time. Alternatively, an arbitrary window can be given as a numpy
array (with an odd number of elements). In this case, the width in units of time de-
pends on the dt of the simulation, and no width argument can be specified. The given
window will be automatically normalized to a sum of 1.

width : Quantity , optional

The width of the window in seconds (for a predefined window).

Returns rate : Quantity

The population rate in Hz, smoothed with the given window. Note that the rates are
smoothed and not re-binned, i.e. the length of the returned array is the same as the length
of the rate attribute and can be plotted against the PopulationRateMonitor ‘s
t attribute.

Tutorials and examples using this

• Example frompapers/Brunel_Hakim_1999

spikemonitor module

Exported members: EventMonitor, SpikeMonitor

Classes

EventMonitor(source, event[, variables, . . .]) Record events from a NeuronGroup or another event
source.

EventMonitor class

(Shortest import: from brian2 import EventMonitor)

6.4. Subpackages 489

Brian 2 Documentation, Release 2.1.1

class brian2.monitors.spikemonitor.EventMonitor(source, event, variables=None,
record=True, when=None, or-
der=None, name=’eventmonitor*’,
codeobj_class=None)

Bases: brian2.groups.group.Group, brian2.groups.group.CodeRunner

Record events from a NeuronGroup or another event source.

The recorded events can be accessed in various ways: the attributes i and t store all the indices and event
times, respectively. Alternatively, you can get a dictionary mapping neuron indices to event trains, by calling
the event_trains method.

Parameters source : NeuronGroup, SpikeSource

The source of events to record.

event : str

The name of the event to record

variables : str or sequence of str, optional

Which variables to record at the time of the event (in addition to the index of the neuron).
Can be the name of a variable or a list of names.

record : bool, optional

Whether or not to record each event in i and t (the count will always be recorded).
Defaults to True.

when : str, optional

When to record the events, by default records events in the same slot where the event is
emitted.

order : int, optional

The priority of of this group for operations occurring at the same time step and in the
same scheduling slot. Defaults to the order where the event is emitted + 1, i.e. it will be
recorded directly afterwards.

name : str, optional

A unique name for the object, otherwise will use source.
name+'_eventmonitor_0', etc.

codeobj_class : class, optional

The CodeObject class to run code with.

See also:

SpikeMonitor

Attributes

count The array of event counts (length = size of target group)
event The event that we are listening to
it Returns the pair (i, t).
it_ Returns the pair (i, t_).
num_events Returns the total number of recorded events.

Continued on next page

490 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

Table 6.316 – continued from previous page
record Whether to record times and indices of events
record_variables The additional variables that will be recorded
source The source we are recording from

Methods

all_values() Return a dictionary mapping recorded variable names
(including t) to a dictionary mapping neuron indices to
arrays of variable values at the time of the events (sorted
by time).

event_trains() Return a dictionary mapping event indices to arrays of
event times.

reinit() Clears all recorded spikes
resize(new_size)
values(var) Return a dictionary mapping neuron indices to arrays of

variable values at the time of the events (sorted by time).

Details

count
The array of event counts (length = size of target group)

event
The event that we are listening to

it
Returns the pair (i, t).

it_
Returns the pair (i, t_).

num_events
Returns the total number of recorded events.

record
Whether to record times and indices of events

record_variables
The additional variables that will be recorded

source
The source we are recording from

all_values()
Return a dictionary mapping recorded variable names (including t) to a dictionary mapping neuron indices
to arrays of variable values at the time of the events (sorted by time). This is equivalent to (but more
efficient than) calling values for each variable and storing the result in a dictionary.

Returns all_values : dict

Dictionary mapping variable names to dictionaries which themselves are mapping neu-
ron indicies to arrays of variable values at the time of the events.

6.4. Subpackages 491

Brian 2 Documentation, Release 2.1.1

Examples

>>> from brian2 import *
>>> G = NeuronGroup(2, """dv/dt = 100*Hz : 1
... v_th : 1""", threshold='v>v_th', reset='v=0')
>>> G.v_th = [0.5, 1]
>>> mon = EventMonitor(G, event='spike', variables='v')
>>> run(20*ms)
>>> all_values = mon.all_values()
>>> all_values['t'][0]
array([4.9, 9.9, 14.9, 19.9]) * msecond
>>> all_values['v'][0]
array([0.5, 0.5, 0.5, 0.5])

event_trains()
Return a dictionary mapping event indices to arrays of event times. Equivalent to calling values('t').

Returns event_trains : dict

Dictionary that stores an array with the event times for each neuron index.

See also:

SpikeMonitor.spike_trains()

reinit()
Clears all recorded spikes

resize(new_size)

values(var)
Return a dictionary mapping neuron indices to arrays of variable values at the time of the events (sorted
by time).

Parameters var : str

The name of the variable.

Returns values : dict

Dictionary mapping each neuron index to an array of variable values at the time of the
events

Examples

>>> from brian2 import *
>>> G = NeuronGroup(2, """dv/dt = 100*Hz : 1
... v_th : 1""", threshold='v>v_th', reset='v=0')
>>> G.v_th = [0.5, 1]
>>> mon = EventMonitor(G, event='spike', variables='v')
>>> run(20*ms)
>>> v_values = mon.values('v')
>>> v_values[0]
array([0.5, 0.5, 0.5, 0.5])
>>> v_values[1]
array([1., 1.])

492 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

Tutorials and examples using this

• Example advanced/custom_events

SpikeMonitor(source[, variables, record, . . .]) Record spikes from a NeuronGroup or other spike
source.

SpikeMonitor class

(Shortest import: from brian2 import SpikeMonitor)

class brian2.monitors.spikemonitor.SpikeMonitor(source, variables=None,
record=True, when=None, or-
der=None, name=’spikemonitor*’,
codeobj_class=None)

Bases: brian2.monitors.spikemonitor.EventMonitor

Record spikes from a NeuronGroup or other spike source.

The recorded spikes can be accessed in various ways (see Examples below): the attributes i and t store all
the indices and spike times, respectively. Alternatively, you can get a dictionary mapping neuron indices to
spike trains, by calling the spike_trains method. If you record additional variables with the variables
argument, these variables can be accessed by their name (see Examples).

Parameters source : (NeuronGroup, SpikeSource)

The source of spikes to record.

variables : str or sequence of str, optional

Which variables to record at the time of the spike (in addition to the index of the neuron).
Can be the name of a variable or a list of names.

record : bool, optional

Whether or not to record each spike in i and t (the count will always be recorded).
Defaults to True.

when : str, optional

When to record the events, by default records events in the same slot where the event is
emitted.

order : int, optional

The priority of of this group for operations occurring at the same time step and in the
same scheduling slot. Defaults to the order where the event is emitted + 1, i.e. it will be
recorded directly afterwards.

name : str, optional

A unique name for the object, otherwise will use source.
name+'_spikemonitor_0', etc.

codeobj_class : class, optional

The CodeObject class to run code with.

6.4. Subpackages 493

Brian 2 Documentation, Release 2.1.1

Examples

>>> from brian2 import *
>>> spikes = SpikeGeneratorGroup(3, [0, 1, 2], [0, 1, 2]*ms)
>>> spike_mon = SpikeMonitor(spikes)
>>> net = Network(spikes, spike_mon)
>>> net.run(3*ms)
>>> print(spike_mon.i[:])
[0 1 2]
>>> print(spike_mon.t[:])
[0. 1. 2.] ms
>>> print(spike_mon.t_[:])
[0. 0.001 0.002]
>>> G = NeuronGroup(1, """dv/dt = (1 - v)/(10*ms) : 1
... dv_th/dt = (0.5 - v_th)/(20*ms) : 1""",
... threshold='v>v_th',
... reset='v = 0; v_th += 0.1')
>>> crossings = SpikeMonitor(G, variables='v', name='crossings')
>>> net = Network(G, crossings)
>>> net.run(10*ms)
>>> crossings.t
<crossings.t: array([0. , 1.4, 4.6, 9.7]) * msecond>
>>> crossings.v
<crossings.v: array([0.00995017, 0.13064176, 0.27385096, 0.39950442])>

Attributes

count The array of spike counts (length = size of target group)
num_spikes Returns the total number of recorded spikes.

Methods

all_values() Return a dictionary mapping recorded variable names
(including t) to a dictionary mapping neuron indices to
arrays of variable values at the time of the spikes (sorted
by time).

spike_trains() Return a dictionary mapping spike indices to arrays of
spike times.

values(var) Return a dictionary mapping neuron indices to arrays of
variable values at the time of the spikes (sorted by time).

Details

count
The array of spike counts (length = size of target group)

num_spikes
Returns the total number of recorded spikes.

all_values()
Return a dictionary mapping recorded variable names (including t) to a dictionary mapping neuron indices
to arrays of variable values at the time of the spikes (sorted by time). This is equivalent to (but more

494 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

efficient than) calling values for each variable and storing the result in a dictionary.

Returns all_values : dict

Dictionary mapping variable names to dictionaries which themselves are mapping neu-
ron indicies to arrays of variable values at the time of the spikes.

Examples

>>> from brian2 import *
>>> G = NeuronGroup(2, """dv/dt = 100*Hz : 1
... v_th : 1""", threshold='v>v_th', reset='v=0')
>>> G.v_th = [0.5, 1]
>>> mon = SpikeMonitor(G, variables='v')
>>> run(20*ms)
>>> all_values = mon.all_values()
>>> all_values['t'][0]
array([4.9, 9.9, 14.9, 19.9]) * msecond
>>> all_values['v'][0]
array([0.5, 0.5, 0.5, 0.5])

spike_trains()
Return a dictionary mapping spike indices to arrays of spike times.

Returns spike_trains : dict

Dictionary that stores an array with the spike times for each neuron index.

Examples

>>> from brian2 import *
>>> spikes = SpikeGeneratorGroup(3, [0, 1, 2], [0, 1, 2]*ms)
>>> spike_mon = SpikeMonitor(spikes)
>>> run(3*ms)
>>> spike_trains = spike_mon.spike_trains()
>>> spike_trains[1]
array([1.]) * msecond

values(var)
Return a dictionary mapping neuron indices to arrays of variable values at the time of the spikes (sorted by
time).

Parameters var : str

The name of the variable.

Returns values : dict

Dictionary mapping each neuron index to an array of variable values at the time of the
spikes.

Examples

>>> from brian2 import *
>>> G = NeuronGroup(2, """dv/dt = 100*Hz : 1
... v_th : 1""", threshold='v>v_th', reset='v=0')

6.4. Subpackages 495

Brian 2 Documentation, Release 2.1.1

>>> G.v_th = [0.5, 1]
>>> mon = SpikeMonitor(G, variables='v')
>>> run(20*ms)
>>> v_values = mon.values('v')
>>> v_values[0]
array([0.5, 0.5, 0.5, 0.5])
>>> v_values[1]
array([1., 1.])

Tutorials and examples using this

• Tutorial 1-intro-to-brian-neurons

• Tutorial 3-intro-to-brian-simulations

• Example IF_curve_LIF

• Example phase_locking

• Example CUBA

• Example non_reliability

• Example IF_curve_Hodgkin_Huxley

• Example reliability

• Example adaptive_threshold

• Example standalone/cuba_openmp

• Example standalone/STDP_standalone

• Example synapses/jeffress

• Example synapses/licklider

• Example synapses/STDP

• Example frompapers/Platkiewicz_Brette_2011

• Example frompapers/Vogels_et_al_2011

• Example frompapers/Brette_Guigon_2003

• Example frompapers/Touboul_Brette_2008

• Example frompapers/Sturzl_et_al_2000

• Example frompapers/Brette_Gerstner_2005

• Example frompapers/Brette_2004

• Example frompapers/Diesmann_et_al_1999

• Example frompapers/Brunel_Hakim_1999

• Example frompapers/Rossant_et_al_2011bis

• Example frompapers/Brette_2012/Fig5A

• Example frompapers/Stimberg_et_al_2018/example_6_COBA_with_astro

• Example frompapers/Stimberg_et_al_2018/example_1_COBA

• Example compartmental/hh_with_spikes

496 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

• Example advanced/custom_events

• Example advanced/opencv_movie

statemonitor module

Exported members: StateMonitor

Classes

StateMonitor(source, variables, record[, . . .]) Record values of state variables during a run

StateMonitor class

(Shortest import: from brian2 import StateMonitor)

class brian2.monitors.statemonitor.StateMonitor(source, variables, record, dt=None,
clock=None, when=’start’, or-
der=0, name=’statemonitor*’,
codeobj_class=None)

Bases: brian2.groups.group.Group, brian2.groups.group.CodeRunner

Record values of state variables during a run

To extract recorded values after a run, use the t attribute for the array of times at which values were recorded,
and variable name attribute for the values. The values will have shape (len(indices), len(t)), where
indices are the array indices which were recorded. When indexing the StateMonitor directly, the re-
turned object can be used to get the recorded values for the specified indices, i.e. the indexing semantic refers to
the indices in source, not to the relative indices of the recorded values. For example, when recording only neu-
rons with even numbers, mon[[0, 2]].v will return the values for neurons 0 and 2, whereas mon.v[[0,
2]] will return the values for the first and third recorded neurons, i.e. for neurons 0 and 4.

Parameters source : Group

Which object to record values from.

variables : str, sequence of str, True

Which variables to record, or True to record all variables (note that this may use a
great deal of memory).

record : bool, sequence of ints

Which indices to record, nothing is recorded for False, everything is recorded for
True (warning: may use a great deal of memory), or a specified subset of indices.

dt : Quantity , optional

The time step to be used for the monitor. Cannot be combined with the clock argu-
ment.

clock : Clock, optional

The update clock to be used. If neither a clock, nor the dt argument is specified, the
clock of the source() will be used.

when : str, optional

At which point during a time step the values should be recorded. Defaults to 'start'.

order : int, optional

6.4. Subpackages 497

Brian 2 Documentation, Release 2.1.1

The priority of of this group for operations occurring at the same time step and in the
same scheduling slot. Defaults to 0.

name : str, optional

A unique name for the object, otherwise will use source.
name+'statemonitor_0', etc.

codeobj_class : CodeObject, optional

The CodeObject class to create.

Notes

Since this monitor by default records in the 'start' time slot, recordings of the membrane potential in
integrate-and-fire models may look unexpected: the recorded membrane potential trace will never be above
threshold in an integrate-and-fire model, because the reset statement will have been applied already. Set the
when keyword to a different value if this is not what you want.

Note that record=True only works in runtime mode for synaptic variables. This is because the actual array
of indices has to be calculated and this is not possible in standalone mode, where the synapses have not been
created yet at this stage. Consider using an explicit array of indices instead, i.e. something like record=np.
arange(n_synapses).

Examples

Record all variables, first 5 indices:

eqs = """
dV/dt = (2-V)/(10*ms) : 1
"""
threshold = 'V>1'
reset = 'V = 0'
G = NeuronGroup(100, eqs, threshold=threshold, reset=reset)
G.V = rand(len(G))
M = StateMonitor(G, True, record=range(5))
run(100*ms)
plot(M.t, M.V.T)
show()

Attributes

record The array of recorded indices
record_variables The variables to record

Methods

record_single_timestep() Records a single time step.
reinit()
resize(new_size)

498 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

Details

record
The array of recorded indices

record_variables
The variables to record

record_single_timestep()
Records a single time step. Useful for recording the values at the end of the simulation – otherwise a
StateMonitor will not record the last simulated values since its when attribute defaults to 'start',
i.e. the last recording is at the beginning of the last time step.

Notes

This function will only work if the StateMonitor has been already run, but a run with a length of 0*ms
does suffice.

Examples

>>> from brian2 import *
>>> G = NeuronGroup(1, 'dv/dt = -v/(5*ms) : 1')
>>> G.v = 1
>>> mon = StateMonitor(G, 'v', record=True)
>>> run(0.5*ms)
>>> mon.v
array([[1. , 0.98019867, 0.96078944, 0.94176453, 0.92311635]])
>>> mon.t[:]
array([0., 100., 200., 300., 400.]) * usecond
>>> G.v[:] # last value had not been recorded
array([0.90483742])
>>> mon.record_single_timestep()
>>> mon.t[:]
array([0., 100., 200., 300., 400., 500.]) * usecond
>>> mon.v[:]
array([[1. , 0.98019867, 0.96078944, 0.94176453, 0.92311635,

0.90483742]])

reinit()

resize(new_size)

Tutorials and examples using this

• Tutorial 1-intro-to-brian-neurons

• Tutorial 2-intro-to-brian-synapses

• Tutorial 3-intro-to-brian-simulations

• Example COBAHH

• Example phase_locking

• Example adaptive_threshold

6.4. Subpackages 499

Brian 2 Documentation, Release 2.1.1

• Example standalone/STDP_standalone

• Example synapses/jeffress

• Example synapses/nonlinear

• Example synapses/gapjunctions

• Example synapses/STDP

• Example synapses/synapses

• Example frompapers/Rothman_Manis_2003

• Example frompapers/Platkiewicz_Brette_2011

• Example frompapers/Destexhe_et_al_1998

• Example frompapers/Brette_Guigon_2003

• Example frompapers/Touboul_Brette_2008

• Example frompapers/Clopath_et_al_2010_homeostasis

• Example frompapers/Wang_Buszaki_1996

• Example frompapers/Brette_Gerstner_2005

• Example frompapers/Rossant_et_al_2011bis

• Example frompapers/Brette_2012/Fig5A

• Example frompapers/Brette_2012/Fig3CF

• Example frompapers/Brette_2012/Fig1

• Example frompapers/Brette_2012/Fig3AB

• Example frompapers/Brette_2012/Fig4

• Example frompapers/Stimberg_et_al_2018/example_4_rsmean

• Example frompapers/Stimberg_et_al_2018/example_3_io_synapse

• Example frompapers/Stimberg_et_al_2018/example_1_COBA

• Example frompapers/Stimberg_et_al_2018/example_4_synrel

• Example frompapers/Stimberg_et_al_2018/example_5_astro_ring

• Example frompapers/Stimberg_et_al_2018/example_2_gchi_astrocyte

• Example compartmental/hh_with_spikes

• Example compartmental/hodgkin_huxley_1952

• Example compartmental/lfp

• Example compartmental/infinite_cable

• Example compartmental/spike_initiation

• Example compartmental/bipolar_with_inputs

• Example compartmental/bipolar_cell

• Example compartmental/bipolar_with_inputs2

• Example advanced/compare_GSL_to_conventional

• Example advanced/custom_events

500 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

• Example advanced/stochastic_odes

StateMonitorView(monitor, item)

StateMonitorView class

(Shortest import: from brian2.monitors.statemonitor import StateMonitorView)

class brian2.monitors.statemonitor.StateMonitorView(monitor, item)
Bases: object

6.4.10 parsing package

bast module

Brian AST representation

This is a standard Python AST representation with additional information added.

Exported members: brian_ast, BrianASTRenderer, dtype_hierarchy

Classes

BrianASTRenderer(variables[, copy_variables]) This class is modelled after NodeRenderer - see there
for details.

BrianASTRenderer class

(Shortest import: from brian2.parsing.bast import BrianASTRenderer)

class brian2.parsing.bast.BrianASTRenderer(variables, copy_variables=True)
Bases: object

This class is modelled after NodeRenderer - see there for details.

Methods

render_BinOp(node)
render_BoolOp(node)
render_Call(node)
render_Compare(node)
render_Name(node)
render_NameConstant(node)
render_Num(node)
render_UnaryOp(node)
render_node(node)

Details

render_BinOp(node)

6.4. Subpackages 501

https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#object

Brian 2 Documentation, Release 2.1.1

render_BoolOp(node)

render_Call(node)

render_Compare(node)

render_Name(node)

render_NameConstant(node)

render_Num(node)

render_UnaryOp(node)

render_node(node)

Functions

brian_ast(expr, variables) Returns an AST tree representation with additional infor-
mation

brian_ast function

(Shortest import: from brian2.parsing.bast import brian_ast)

brian2.parsing.bast.brian_ast(expr, variables)
Returns an AST tree representation with additional information

Each node will be a standard Python ast node with the following additional attributes:

dtype One of 'boolean', 'integer' or 'float', referring to the data type of the value of this node.

scalar Either True or False if the node uses any vector-valued variables.

complexity An integer representation of the computational complexity of the node. This is a very rough rep-
resentation used for things like 2*(x+y) is less complex than 2*x+2*y and exp(x) is more complex
than 2*x but shouldn’t be relied on for fine distinctions between expressions.

Parameters expr : str

The expression to convert into an AST representation

variables : dict

The dictionary of Variable objects used in the expression.

brian_dtype_from_dtype(dtype) Returns ‘boolean’, ‘integer’ or ‘float’

brian_dtype_from_dtype function

(Shortest import: from brian2.parsing.bast import brian_dtype_from_dtype)

brian2.parsing.bast.brian_dtype_from_dtype(dtype)
Returns ‘boolean’, ‘integer’ or ‘float’

brian_dtype_from_value(value) Returns ‘boolean’, ‘integer’ or ‘float’

502 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

brian_dtype_from_value function

(Shortest import: from brian2.parsing.bast import brian_dtype_from_value)

brian2.parsing.bast.brian_dtype_from_value(value)
Returns ‘boolean’, ‘integer’ or ‘float’

is_boolean(value)

is_boolean function

(Shortest import: from brian2.parsing.bast import is_boolean)

brian2.parsing.bast.is_boolean(value)

is_boolean_dtype(obj)

is_boolean_dtype function

(Shortest import: from brian2.parsing.bast import is_boolean_dtype)

brian2.parsing.bast.is_boolean_dtype(obj)

is_float(value)

is_float function

(Shortest import: from brian2.parsing.bast import is_float)

brian2.parsing.bast.is_float(value)

is_float_dtype(obj)

is_float_dtype function

(Shortest import: from brian2.parsing.bast import is_float_dtype)

brian2.parsing.bast.is_float_dtype(obj)

is_integer(value)

is_integer function

(Shortest import: from brian2.parsing.bast import is_integer)

brian2.parsing.bast.is_integer(value)

6.4. Subpackages 503

Brian 2 Documentation, Release 2.1.1

is_integer_dtype(obj)

is_integer_dtype function

(Shortest import: from brian2.parsing.bast import is_integer_dtype)

brian2.parsing.bast.is_integer_dtype(obj)

dependencies module

Exported members: abstract_code_dependencies

Functions

abstract_code_dependencies(code[, . . .]) Analyses identifiers used in abstract code blocks

abstract_code_dependencies function

(Shortest import: from brian2.parsing.dependencies import abstract_code_dependencies)

brian2.parsing.dependencies.abstract_code_dependencies(code, known_vars=None,
known_funcs=None)

Analyses identifiers used in abstract code blocks

Parameters code : str

The abstract code block.

known_vars : set

The set of known variable names.

known_funcs : set

The set of known function names.

Returns results : namedtuple with the following fields

all The set of all identifiers that appear in this code block, including functions.

read The set of values that are read, excluding functions.

write The set of all values that are written to.

funcs The set of all function names.

known_all The set of all identifiers that appear in this code block and are known.

known_read The set of known values that are read, excluding functions.

known_write The set of known values that are written to.

known_funcs The set of known functions that are used.

unknown_read The set of all unknown variables whose values are read. Equal to
read-known_vars.

unknown_write The set of all unknown variables written to. Equal to
write-known_vars.

504 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

unknown_funcs The set of all unknown function names, equal to
funcs-known_funcs.

undefined_read The set of all unknown variables whose values are read before
they are written to. If this set is nonempty it usually indicates an error, since a variable
that is read should either have been defined in the code block (in which case it will
appear in newly_defined) or already be known.

newly_defined The set of all variable names which are newly defined in this ab-
stract code block.

get_read_write_funcs(parsed_code)

get_read_write_funcs function

(Shortest import: from brian2.parsing.dependencies import get_read_write_funcs)

brian2.parsing.dependencies.get_read_write_funcs(parsed_code)

expressions module

AST parsing based analysis of expressions

Exported members: parse_expression_dimensions

Functions

is_boolean_expression(expr, variables) Determines if an expression is of boolean type or not

is_boolean_expression function

(Shortest import: from brian2.parsing.expressions import is_boolean_expression)

brian2.parsing.expressions.is_boolean_expression(expr, variables)
Determines if an expression is of boolean type or not

Parameters expr : str

The expression to test

variables : dict-like of Variable

The variables used in the expression.

Returns isbool : bool

Whether or not the expression is boolean.

Raises

SyntaxError If the expression ought to be boolean but is not, for example x<y and z where z is not a
boolean variable.

6.4. Subpackages 505

Brian 2 Documentation, Release 2.1.1

Notes

We test the following cases recursively on the abstract syntax tree:

• The node is a boolean operation. If all the subnodes are boolean expressions we return True, otherwise
we raise the SyntaxError.

• The node is a function call, we return True or False depending on whether the function description has
the _returns_bool attribute set.

• The node is a variable name, we return True or False depending on whether is_boolean attribute is
set or if the name is True or False.

• The node is a comparison, we return True.

• The node is a unary operation, we return True if the operation is not, otherwise False.

• Otherwise we return False.

parse_expression_dimensions(expr, variables) Returns the unit value of an expression, and checks its va-
lidity

parse_expression_dimensions function

(Shortest import: from brian2.parsing.expressions import parse_expression_dimensions)

brian2.parsing.expressions.parse_expression_dimensions(expr, variables)
Returns the unit value of an expression, and checks its validity

Parameters expr : str

The expression to check.

variables : dict

Dictionary of all variables used in the expr (including Constant objects for external
variables)

Returns unit : Quantity

The output unit of the expression

Raises

SyntaxError If the expression cannot be parsed, or if it uses a**b for b anything other than a constant
number.

DimensionMismatchError If any part of the expression is dimensionally inconsistent.

functions module

Exported members: AbstractCodeFunction, abstract_code_from_function,
extract_abstract_code_functions, substitute_abstract_code_functions

Classes

506 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

AbstractCodeFunction(name, args, code, . . .) The information defining an abstract code function

AbstractCodeFunction class

(Shortest import: from brian2.parsing.functions import AbstractCodeFunction)

class brian2.parsing.functions.AbstractCodeFunction(name, args, code, return_expr)
Bases: object

The information defining an abstract code function

Has attributes corresponding to initialisation parameters

Parameters name : str

The function name.

args : list of str

The arguments to the function.

code : str

The abstract code string consisting of the body of the function less the return statement.

return_expr : str or None

The expression returned, or None if there is nothing returned.

FunctionRewriter(func[, numcalls]) Inlines a function call using temporary variables

FunctionRewriter class

(Shortest import: from brian2.parsing.functions import FunctionRewriter)

class brian2.parsing.functions.FunctionRewriter(func, numcalls=0)
Bases: ast.NodeTransformer

Inlines a function call using temporary variables

numcalls is the number of times the function rewriter has been called so far, this is used to make sure that when
recursively inlining there is no name aliasing. The substitute_abstract_code_functions ensures that this is kept
up to date between recursive runs.

The pre attribute is the set of lines to be inserted above the currently being processed line, i.e. the inline code.

The visit method returns the current line processed so that the function call is replaced with the output of the
inlining.

Methods

visit_Call(node)

Details

visit_Call(node)

6.4. Subpackages 507

https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/ast.html#ast.NodeTransformer

Brian 2 Documentation, Release 2.1.1

VarRewriter(pre) Rewrites all variable names in names by prepending pre

VarRewriter class

(Shortest import: from brian2.parsing.functions import VarRewriter)

class brian2.parsing.functions.VarRewriter(pre)
Bases: ast.NodeTransformer

Rewrites all variable names in names by prepending pre

Methods

visit_Call(node)
visit_Name(node)

Details

visit_Call(node)

visit_Name(node)

Functions

abstract_code_from_function(func) Converts the body of the function to abstract code

abstract_code_from_function function

(Shortest import: from brian2.parsing.functions import abstract_code_from_function)

brian2.parsing.functions.abstract_code_from_function(func)
Converts the body of the function to abstract code

Parameters func : function, str or ast.FunctionDef

The function object to convert. Note that the arguments to the function are ignored.

Returns func : AbstractCodeFunction

The corresponding abstract code function

Raises

SyntaxError If unsupported features are used such as if statements or indexing.

extract_abstract_code_functions(code) Returns a set of abstract code functions from function defi-
nitions.

508 Chapter 6. brian2 package

https://docs.python.org/2/library/ast.html#ast.NodeTransformer

Brian 2 Documentation, Release 2.1.1

extract_abstract_code_functions function

(Shortest import: from brian2.parsing.functions import extract_abstract_code_functions)

brian2.parsing.functions.extract_abstract_code_functions(code)
Returns a set of abstract code functions from function definitions.

Returns all functions defined at the top level and ignores any other code in the string.

Parameters code : str

The code string defining some functions.

Returns funcs : dict

A mapping (name, func) for func an AbstractCodeFunction.

substitute_abstract_code_functions(code,
funcs)

Performs inline substitution of all the functions in the code

substitute_abstract_code_functions function

(Shortest import: from brian2.parsing.functions import substitute_abstract_code_functions)

brian2.parsing.functions.substitute_abstract_code_functions(code, funcs)
Performs inline substitution of all the functions in the code

Parameters code : str

The abstract code to make inline substitutions into.

funcs : list, dict or set of AbstractCodeFunction

The function substitutions to use, note in the case of a dict, the keys are ignored and the
function name is used.

Returns code : str

The code with inline substitutions performed.

rendering module

Exported members: NodeRenderer, NumpyNodeRenderer, CPPNodeRenderer, SympyNodeRenderer

Classes

CPPNodeRenderer([use_vectorisation_idx])

Methods

CPPNodeRenderer class

(Shortest import: from brian2.parsing.rendering import CPPNodeRenderer)

6.4. Subpackages 509

Brian 2 Documentation, Release 2.1.1

class brian2.parsing.rendering.CPPNodeRenderer(use_vectorisation_idx=True)
Bases: brian2.parsing.rendering.NodeRenderer

Methods

render_Assign(node)
render_BinOp(node)
render_Name(node)
render_NameConstant(node)

Details

render_Assign(node)

render_BinOp(node)

render_Name(node)

render_NameConstant(node)

NodeRenderer([use_vectorisation_idx])

Methods

NodeRenderer class

(Shortest import: from brian2.parsing.rendering import NodeRenderer)

class brian2.parsing.rendering.NodeRenderer(use_vectorisation_idx=True)
Bases: object

Methods

render_Assign(node)
render_AugAssign(node)
render_BinOp(node)
render_BinOp_parentheses(left, right, op)
render_BoolOp(node)
render_Call(node)
render_Compare(node)
render_Name(node)
render_NameConstant(node)
render_Num(node)
render_UnaryOp(node)
render_code(code)
render_element_parentheses(node) Render an element with parentheses around it or leave

them away for numbers, names and function calls.
Continued on next page

510 Chapter 6. brian2 package

https://docs.python.org/2/library/functions.html#object

Brian 2 Documentation, Release 2.1.1

Table 6.351 – continued from previous page
render_expr(expr[, strip])
render_func(node)
render_node(node)

Details

render_Assign(node)

render_AugAssign(node)

render_BinOp(node)

render_BinOp_parentheses(left, right, op)

render_BoolOp(node)

render_Call(node)

render_Compare(node)

render_Name(node)

render_NameConstant(node)

render_Num(node)

render_UnaryOp(node)

render_code(code)

render_element_parentheses(node)
Render an element with parentheses around it or leave them away for numbers, names and function calls.

render_expr(expr, strip=True)

render_func(node)

render_node(node)

NumpyNodeRenderer([use_vectorisation_idx])

Methods

NumpyNodeRenderer class

(Shortest import: from brian2.parsing.rendering import NumpyNodeRenderer)

class brian2.parsing.rendering.NumpyNodeRenderer(use_vectorisation_idx=True)
Bases: brian2.parsing.rendering.NodeRenderer

Methods

render_UnaryOp(node)

6.4. Subpackages 511

Brian 2 Documentation, Release 2.1.1

Details

render_UnaryOp(node)

SympyNodeRenderer([use_vectorisation_idx])

Methods

SympyNodeRenderer class

(Shortest import: from brian2.parsing.rendering import SympyNodeRenderer)

class brian2.parsing.rendering.SympyNodeRenderer(use_vectorisation_idx=True)
Bases: brian2.parsing.rendering.NodeRenderer

Methods

render_BinOp(node)
render_BoolOp(node)
render_Call(node)
render_Compare(node)
render_Name(node)
render_NameConstant(node)
render_Num(node)
render_UnaryOp(node)
render_func(node)

Details

render_BinOp(node)

render_BoolOp(node)

render_Call(node)

render_Compare(node)

render_Name(node)

render_NameConstant(node)

render_Num(node)

render_UnaryOp(node)

render_func(node)

statements module

Functions

512 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

parse_statement(code) Parses a single line of code into “var op expr”.

parse_statement function

(Shortest import: from brian2.parsing.statements import parse_statement)

brian2.parsing.statements.parse_statement(code)
Parses a single line of code into “var op expr”.

Parameters code : str

A string containing a single statement of the form var op expr # comment,
where the # comment part is optional.

Returns var, op, expr, comment : str, str, str, str

The four parts of the statement.

Examples

>>> parse_statement('v = -65*mV # reset the membrane potential')
('v', '=', '-65*mV', 'reset the membrane potential')
>>> parse_statement('v += dt*(-v/tau)')
('v', '+=', 'dt*(-v/tau)', '')

sympytools module

Utility functions for parsing expressions and statements.

Classes

CustomSympyPrinter([settings]) Printer that overrides the printing of some basic sympy ob-
jects.

CustomSympyPrinter class

(Shortest import: from brian2.parsing.sympytools import CustomSympyPrinter)

class brian2.parsing.sympytools.CustomSympyPrinter(settings=None)
Bases: sympy.printing.str.StrPrinter

Printer that overrides the printing of some basic sympy objects. E.g. print “a and b” instead of “And(a, b)”.

Functions

check_expression_for_multiple_stateful_functions(. . .)

check_expression_for_multiple_stateful_functions function

(Shortest import: from brian2.parsing.sympytools import check_expression_for_multiple_stateful_functions)

6.4. Subpackages 513

http://docs.sympy.org/dev/modules/printing.html#sympy.printing.str.StrPrinter

Brian 2 Documentation, Release 2.1.1

brian2.parsing.sympytools.check_expression_for_multiple_stateful_functions(expr,
vari-
ables)

expression_complexity(expr[, complexity]) Returns the complexity of an expression (either string or
sympy)

expression_complexity function

(Shortest import: from brian2.parsing.sympytools import expression_complexity)

brian2.parsing.sympytools.expression_complexity(expr, complexity=None)
Returns the complexity of an expression (either string or sympy)

The complexity is defined as 1 for each arithmetic operation except divide which is 2, and all other operations
are 20. This can be overridden using the complexity argument.

Note: calling this on a statement rather than an expression is likely to lead to errors.

Parameters expr: ‘sympy.Expr‘ or str :

The expression.

complexity: None or dict (optional) :

A dictionary mapping expression names to their complexity, to overwrite default be-
haviour.

Returns complexity: int :

The complexity of the expression.

str_to_sympy(expr[, variables]) Parses a string into a sympy expression.

str_to_sympy function

(Shortest import: from brian2.parsing.sympytools import str_to_sympy)

brian2.parsing.sympytools.str_to_sympy(expr, variables=None)
Parses a string into a sympy expression. There are two reasons for not using sympify directly: 1) sympify
does a from sympy import *, adding all functions to its namespace. This leads to issues when trying to
use sympy function names as variable names. For example, both beta and factor – quite reasonable names
for variables – are sympy functions, using them as variables would lead to a parsing error. 2) We want to use a
common syntax across expressions and statements, e.g. we want to allow to use and (instead of &) and function
names like ceil (instead of ceiling).

Parameters expr : str

The string expression to parse.

variables : dict, optional

Dictionary mapping variable/function names in the expr to their respective
Variable/Function objects.

Returns s_expr :

A sympy expression

514 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

Raises

SyntaxError In case of any problems during parsing.

sympy_to_str(sympy_expr) Converts a sympy expression into a string.

sympy_to_str function

(Shortest import: from brian2.parsing.sympytools import sympy_to_str)

brian2.parsing.sympytools.sympy_to_str(sympy_expr)
Converts a sympy expression into a string. This could be as easy as str(sympy_exp) but it is possible
that the sympy expression contains functions like Abs (for example, if an expression such as sqrt(x**2)
appeared somewhere). We do want to re-translate Abs into abs in this case.

Parameters sympy_expr : sympy.core.expr.Expr

The expression that should be converted to a string.

Returns :

str_expr : str

A string representing the sympy expression.

Objects

PRINTER Printer that overrides the printing of some basic sympy ob-
jects.

PRINTER object

(Shortest import: from brian2.parsing.sympytools import PRINTER)

brian2.parsing.sympytools.PRINTER = <brian2.parsing.sympytools.CustomSympyPrinter object>
Printer that overrides the printing of some basic sympy objects. E.g. print “a and b” instead of “And(a, b)”.

6.4.11 random package

6.4.12 spatialneuron package

morphology module

Neuronal morphology module. This module defines classes to load and build neuronal morphologies.

Exported members: Morphology , Section, Cylinder, Soma

Classes

Children(owner) Helper class to represent the children (sub trees) of a sec-
tion.

6.4. Subpackages 515

Brian 2 Documentation, Release 2.1.1

Children class

(Shortest import: from brian2.spatialneuron.morphology import Children)

class brian2.spatialneuron.morphology.Children(owner)
Bases: object

Helper class to represent the children (sub trees) of a section. Can be used like a dictionary (mapping names to
Morphology objects), but iterates over the values (sub trees) instead of over the keys (names).

Methods

add(name, subtree[, automatic_name]) Add a new child to the morphology.
name(child) Return the given name (i.e.
remove(name) Remove a subtree from this morphology.

Details

add(name, subtree, automatic_name=False)
Add a new child to the morphology.

Parameters name : str

The name (e.g. "axon", "soma") to use for this sub tree.

subtree : Morphology

The subtree to link as a child.

automatic_name : bool, optional

Whether to chose a new name automatically, if a subtree of the same name already
exists (uses e.g. "dend2" instead "dend"). Defaults to False and will raise an
error instead.

name(child)
Return the given name (i.e. not the automatic name such as 1) for a child subtree.

Parameters child : Morphology

Returns name : str

The given name for the child.

remove(name)
Remove a subtree from this morphology.

Parameters name : str

The name of the sub tree to remove.

Cylinder(*args, **kwds) A cylindrical section.

Cylinder class

(Shortest import: from brian2 import Cylinder)

516 Chapter 6. brian2 package

https://docs.python.org/2/library/functions.html#object

Brian 2 Documentation, Release 2.1.1

class brian2.spatialneuron.morphology.Cylinder(*args, **kwds)
Bases: brian2.spatialneuron.morphology.Section

A cylindrical section. For sections with more complex geometry (varying length and/or diameter of each com-
partment), use the Section class.

Parameters diameter : Quantity

The diameter of the cylinder.

n : int, optional

The number of compartments in this section. Defaults to 1.

length : Quantity , optional

The length of the cylinder. Cannot be combined with the specification of coordinates.

x : Quantity , optional

A sequence of two values, the start and the end point of the cylinder. The coordinates
are interpreted as relative to the end point of the parent compartment (if any), so in most
cases the start point should be 0*um. The common exception is a cylinder connecting
to a Soma, here the start point can be used to make the cylinder start at the surface of the
sphere instead of at its center. You can specify all of x, y, or z to specify a morphology
in 3D, or only one or two out of them to specify a morphology in 1D or 2D.

y : Quantity , optional

See x

z : Quantity , optional

See x

type : str, optional

The type (e.g. "axon") of this Cylinder.

Attributes

area The membrane surface area of each compartment in this
section.

diameter The diameter at the middle of each compartment in this
section.

end_diameter The diameter at the end of each compartment in this sec-
tion.

r_length_1 The geometry-dependent term to calculate the conduc-
tance between the start and the midpoint of each com-
partment.

r_length_2 The geometry-dependent term to calculate the conduc-
tance between the midpoint and the end of each com-
partment.

start_diameter The diameter at the start of each compartment in this
section.

volume The volume of each compartment in this section.

6.4. Subpackages 517

Brian 2 Documentation, Release 2.1.1

Methods

copy_section()

Details

area
The membrane surface area of each compartment in this section. The surface area of each compartment is
calculated as 𝜋𝑑𝑙, where 𝑙 is the length of the compartment, and 𝑑 is its diameter. Note that this surface
area does not contain the area of the two disks at the two sides of the cylinder.

diameter
The diameter at the middle of each compartment in this section.

end_diameter
The diameter at the end of each compartment in this section.

r_length_1
The geometry-dependent term to calculate the conductance between the start and the midpoint of each
compartment. Dividing this value by the Intracellular resistivity gives the conductance.

r_length_2
The geometry-dependent term to calculate the conductance between the midpoint and the end of each
compartment. Dividing this value by the Intracellular resistivity gives the conductance.

start_diameter
The diameter at the start of each compartment in this section.

volume
The volume of each compartment in this section. The volume of each compartment is calculated as 𝜋 𝑑

2

2
𝑙 ,

where 𝑙 is the length of the compartment, and 𝑑 is its diameter.

copy_section()

Tutorials and examples using this

• Example frompapers/Destexhe_et_al_1998

• Example frompapers/Brette_2012/Fig5A

• Example frompapers/Brette_2012/Fig3CF

• Example frompapers/Brette_2012/Fig1

• Example frompapers/Brette_2012/Fig3AB

• Example compartmental/cylinder

• Example compartmental/hh_with_spikes

• Example compartmental/hodgkin_huxley_1952

• Example compartmental/lfp

• Example compartmental/infinite_cable

• Example compartmental/spike_initiation

• Example compartmental/bipolar_with_inputs

• Example compartmental/morphotest

518 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

• Example compartmental/bipolar_cell

• Example compartmental/bipolar_with_inputs2

• Example compartmental/rall

Morphology(*args, **kwds) Neuronal morphology (tree structure).

Morphology class

(Shortest import: from brian2 import Morphology)

class brian2.spatialneuron.morphology.Morphology(*args, **kwds)
Bases: object

Neuronal morphology (tree structure).

The data structure is a tree where each node is an un-branched section consisting of a number of connected
compartments, each one defined by its geometrical properties (length, area, diameter, position).

Notes

You cannot create objects of this class, create a Soma, a Section, or a Cylinder instead.

Attributes

area The membrane surface area of each compartment in this
section.

children The children (as a Children object) of this section.
coordinates Array with all coordinates at the start- and end-points of

each compartment in this section.
coordinates_ Array with all coordinates (as unitless floating point

numbers) at the start- and end-points of each compart-
ment in this section.

diameter The diameter at the middle of each compartment in this
section.

distance The total distance between the midpoint of each com-
partment and the root of the morphology.

end_distance The distance to the root of the morphology at the end of
this section.

end_x The x coordinate at the end of each compartment.
end_x_ The x coordinate (as a unitless floating point number) at

the end of each compartment.
end_y The y coordinate at the end of each compartment.
end_y_ The y coordinate (as a unitless floating point number) at

the end of each compartment.
end_z The z coordinate at the end of each compartment.
end_z_ The z coordinate (as a unitless floating point number) at

the end of each compartment.
length The length of each compartment in this section.
n The number of compartments in this section.

Continued on next page

6.4. Subpackages 519

https://docs.python.org/2/library/functions.html#object

Brian 2 Documentation, Release 2.1.1

Table 6.369 – continued from previous page
parent The parent section of this section.
r_length_1 The geometry-dependent term to calculate the conduc-

tance between the start and the midpoint of each com-
partment.

r_length_2 The geometry-dependent term to calculate the conduc-
tance between the midpoint and the end of each com-
partment.

start_x The x coordinate at the beginning of each compartment.
start_x_ The x coordinate (as a unitless floating point number) at

the beginning of each compartment.
start_y The y coordinate at the beginning of each compartment.
start_y_ The y coordinate (as a unitless floating point number) at

the beginning of each compartment.
start_z The z coordinate at the beginning of each compartment.
start_z_ The z coordinate (as a unitless floating point number) at

the beginning of each compartment.
total_compartments The total number of compartments in this subtree (i.e.
total_sections The total number of sections in this subtree.
volume The volume of each compartment in this section.
x The x coordinate at the midpoint of each compartment.
x_ The x coordinate (as a unitless floating point number) at

the midpoint of each compartment.
y The y coordinate at the midpoint of each compartment.
y_ The y coordinate (as a unitless floating point number) at

the midpoint of each compartment.
z The y coordinate at the midpoint of each compartment.
z_ The z coordinate (as a unitless floating point number) at

the midpoint of each compartment.

Methods

copy_section() Create a copy of the current section (attributes of this
section only,

from_file(filename[, spherical_soma]) Convencience method to load a morphology from a
given file.

from_points(points[, spherical_soma]) Create a morphology from a sequence of points
(similar to the SWC format, see Morphology.
from_swc_file).

from_swc_file(filename[, spherical_soma]) Load a morphology from a SWC file.
generate_coordinates([section_randomness,
. . .])

Create a new Morphology , with coordinates filled in
place where the previous morphology did not have any.

topology() Return a representation of the topology

Details

area
The membrane surface area of each compartment in this section.

children
The children (as a Children object) of this section.

520 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

coordinates
Array with all coordinates at the start- and end-points of each compartment in this section. The array has
size (𝑛 + 1) × 3, where 𝑛 is the number of compartments in this section. Each row is one point (start
point of first compartment, end point of first compartment, end point of second compartment, . . .), with
the columns being the x, y, and z coordinates. Returns None for morphologies without coordinates.

coordinates_
Array with all coordinates (as unitless floating point numbers) at the start- and end-points of each compart-
ment in this section. The array has size (𝑛+1)×3, where 𝑛 is the number of compartments in this section.
Each row is one point (start point of first compartment, end point of first compartment, end point of second
compartment, . . .), with the columns being the x, y, and z coordinates. Returns None for morphologies
without coordinates.

diameter
The diameter at the middle of each compartment in this section.

distance
The total distance between the midpoint of each compartment and the root of the morphology.

end_distance
The distance to the root of the morphology at the end of this section.

end_x
The x coordinate at the end of each compartment. Returns None for morphologies without coordinates.

end_x_
The x coordinate (as a unitless floating point number) at the end of each compartment. Returns None for
morphologies without coordinates.

end_y
The y coordinate at the end of each compartment. Returns None for morphologies without coordinates.

end_y_
The y coordinate (as a unitless floating point number) at the end of each compartment. Returns None for
morphologies without coordinates.

end_z
The z coordinate at the end of each compartment. Returns None for morphologies without coordinates.

end_z_
The z coordinate (as a unitless floating point number) at the end of each compartment. Returns None for
morphologies without coordinates.

length
The length of each compartment in this section.

n
The number of compartments in this section.

parent
The parent section of this section.

r_length_1
The geometry-dependent term to calculate the conductance between the start and the midpoint of each
compartment. Dividing this value by the Intracellular resistivity gives the conductance.

r_length_2
The geometry-dependent term to calculate the conductance between the midpoint and the end of each
compartment. Dividing this value by the Intracellular resistivity gives the conductance.

6.4. Subpackages 521

Brian 2 Documentation, Release 2.1.1

start_x
The x coordinate at the beginning of each compartment. Returns None for morphologies without coordi-
nates.

start_x_
The x coordinate (as a unitless floating point number) at the beginning of each compartment. Returns
None for morphologies without coordinates.

start_y
The y coordinate at the beginning of each compartment. Returns None for morphologies without coordi-
nates.

start_y_
The y coordinate (as a unitless floating point number) at the beginning of each compartment. Returns
None for morphologies without coordinates.

start_z
The z coordinate at the beginning of each compartment. Returns None for morphologies without coordi-
nates.

start_z_
The z coordinate (as a unitless floating point number) at the beginning of each compartment. Returns
None for morphologies without coordinates.

total_compartments
The total number of compartments in this subtree (i.e. the number of compartments in this section plus all
the compartments in the sections deeper in the tree).

total_sections
The total number of sections in this subtree.

volume
The volume of each compartment in this section.

x
The x coordinate at the midpoint of each compartment. Returns None for morphologies without coordi-
nates.

x_
The x coordinate (as a unitless floating point number) at the midpoint of each compartment. Returns None
for morphologies without coordinates.

y
The y coordinate at the midpoint of each compartment. Returns None for morphologies without coordi-
nates.

y_
The y coordinate (as a unitless floating point number) at the midpoint of each compartment. Returns None
for morphologies without coordinates.

z
The y coordinate at the midpoint of each compartment. Returns None for morphologies without coordi-
nates.

z_
The z coordinate (as a unitless floating point number) at the midpoint of each compartment. Returns None
for morphologies without coordinates.

copy_section()
Create a copy of the current section (attributes of this section only, not re-creating the parent/children
relation)

522 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

Returns copy : Morphology

A copy of this section (without the links to the parent/children)

static from_file(filename, spherical_soma=True)
Convencience method to load a morphology from a given file. At the moment, only SWC files are sup-
ported, calling this function is therefore equivalent to calling Morphology.from_swc_file directly.

Parameters filename : str

The name of a file storing a morphology.

spherical_soma : bool, optional

Whether to model the soma as a sphere.

Returns :

——- :

morphology : Morphology

The morphology stored in the given file.

static from_points(points, spherical_soma=True)
Create a morphology from a sequence of points (similar to the SWC format, see Morphology.
from_swc_file). Each point has to be a 7-tuple: (index, name, x, y, z, diameter,
parent)

Note that the values should not use units, but are instead all taken to be in micrometers.

Parameters points : sequence of 7-tuples

The points of the morphology.

spherical_soma : bool, optional

Whether to model a soma as a sphere.

Returns :

——- :

morphology : Morphology

Notes

This format closely follows the SWC format (see Morphology.from_swc_file) with two differ-
ences: the type should be a string (e.g. 'soma') instead of an integer and the 6-th element should be
the diameter and not the radius.

static from_swc_file(filename, spherical_soma=True)
Load a morphology from a SWC file. A large database of morphologies in this format can be found at
http://neuromorpho.org

The format consists of an optional header of lines starting with # (ignored), followed by a sequence of
points, each described in a line following the format:

index type x y z radius parent

index is an integer label (starting at 1) that identifies the current point and increases by one each line.
type is an integer representing the type of the neural segment. The only type that changes the interpreta-
tion by Brian is the type 1 which signals a soma. Types 2 (axon), 3 (dendrite), and 4 (apical dendrite) are
used to give corresponding names to the respective sections. All other types are ignored. x, y, and z are

6.4. Subpackages 523

http://neuromorpho.org

Brian 2 Documentation, Release 2.1.1

the cartesian coordinates at each point and r is its radius. parent refers to the index of the parent point
or is -1 for the root point.

Parameters filename : str

The name of the SWC file.

spherical_soma : bool, optional

Whether to model the soma as a sphere.

Returns morpho : Morphology

The morphology stored in the given file.

generate_coordinates(section_randomness=0.0, compartment_randomness=0.0, over-
write_existing=False)

Create a new Morphology , with coordinates filled in place where the previous morphology did not have
any. This is mostly useful for plotting a morphology, it does not affect its electrical properties.

Parameters section_randomness : float, optional

The randomness when deciding the direction vector for each new section. The given
number is the 𝛽 parameter of an exponential distribution (in degrees) which will be
used to determine the deviation from the direction of the parent section. If the given
value equals 0 (the default), then a deterministic algorithm will be used instead.

compartment_randomness : float, optional

The randomness when deciding the direction vector for each compartment within a
section. The given number is the 𝛽 parameter of an exponential distribution (in degrees)
which will be used to determine the deviation from the main direction of the current
section. If the given value equals 0 (the default), then all compartments will be along a
straight line.

overwrite_existing : bool, optional

Whether to overwrite existing coordinates in the morphology. This is by default set
to False, meaning that only sections that do not currently have any coordinates set
will get new coordinates. This allows to conveniently generate a morphology that
can be plotted for a morphology that is based on points but also has artificially added
sections (the most common case: an axon added to a reconstructed morphology). If
set to True, all sections will get new coordinates. This can be useful to either get
a schematic representation of the morphology (with section_randomness and
compartment_randomness both 0) or to simply generate a new random variation
of a morphology (which will still be electrically equivalent, of course).

Returns morpho_with_coordinates : Morphology

The same morphology, but with coordinates

topology()
Return a representation of the topology

Returns topology : Topology

An object representing the topology (can be converted to a string by using str(...)
or simply by printing it with print.)

Tutorials and examples using this

• Example frompapers/Brette_2012/Fig5A

524 Chapter 6. brian2 package

https://docs.python.org/2/library/functions.html#print

Brian 2 Documentation, Release 2.1.1

• Example frompapers/Brette_2012/Fig3CF

• Example frompapers/Brette_2012/Fig1

• Example frompapers/Brette_2012/Fig3AB

• Example frompapers/Brette_2012/Fig4

• Example compartmental/cylinder

• Example compartmental/infinite_cable

• Example compartmental/spike_initiation

• Example compartmental/bipolar_with_inputs

• Example compartmental/morphotest

• Example compartmental/bipolar_cell

• Example compartmental/bipolar_with_inputs2

• Example compartmental/rall

MorphologyIndexWrapper(morphology) A simpler version of IndexWrapper, not allowing for
string indexing (Morphology is not a Group).

MorphologyIndexWrapper class

(Shortest import: from brian2.spatialneuron.morphology import
MorphologyIndexWrapper)

class brian2.spatialneuron.morphology.MorphologyIndexWrapper(morphology)
Bases: object

A simpler version of IndexWrapper, not allowing for string indexing (Morphology is not a Group). It
allows to use morphology.indices[...] instead of morphology[...]._indices().

Node

Attributes

Node class

(Shortest import: from brian2.spatialneuron.morphology import Node)

class brian2.spatialneuron.morphology.Node
Bases: tuple

Attributes

children Alias for field number 7
comp_name Alias for field number 1
diameter Alias for field number 5

Continued on next page

6.4. Subpackages 525

https://docs.python.org/2/library/functions.html#object

Brian 2 Documentation, Release 2.1.1

Table 6.373 – continued from previous page
index Alias for field number 0
parent Alias for field number 6
x Alias for field number 2
y Alias for field number 3
z Alias for field number 4

Details

children
Alias for field number 7

comp_name
Alias for field number 1

diameter
Alias for field number 5

index
Alias for field number 0

parent
Alias for field number 6

x
Alias for field number 2

y
Alias for field number 3

z
Alias for field number 4

Section(*args, **kwds) A section (unbranched structure), described as a sequence
of truncated cones with potentially varying diameters and
lengths per compartment.

Section class

(Shortest import: from brian2 import Section)

class brian2.spatialneuron.morphology.Section(*args, **kwds)
Bases: brian2.spatialneuron.morphology.Morphology

A section (unbranched structure), described as a sequence of truncated cones with potentially varying diameters
and lengths per compartment.

Parameters diameter : Quantity

Either a single value (the constant diameter along the whole section), or a value of length
n+1. When n+1 values are given, they will be interpreted as the diameters at the start
of the first compartment and the diameters at the end of each compartment (which is
equivalent to: the diameter at the start of each compartment and the diameter at the end
of the last compartment.

n : int, optional

The number of compartments in this section. Defaults to 1.

526 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

length : Quantity , optional

Either a single value (the total length of the section), or a value of length n, the length
of each individual compartment. Cannot be combined with the specification of coordi-
nates.

x : Quantity , optional

n+1 values, specifying the x coordinates of the start point of the first compartment and
the end-points of all compartments (which is equivalent to: the start point of all com-
partments and the end point of the last compartment). The coordinates are interpreted
as relative to the end point of the parent compartment (if any), so in most cases the start
point should be 0*um. The common exception is a cylinder connecting to a Soma, here
the start point can be used to make the cylinder start at the surface of the sphere instead
of at its center. You can specify all of x, y, or z to specify a morphology in 3D, or only
one or two out of them to specify a morphology in 1D or 2D.

y : Quantity , optional

See x

z : Quantity , optional

See x

type : str, optional

The type (e.g. "axon") of this Section.

Attributes

area The membrane surface area of each compartment in this
section.

diameter The diameter at the middle of each compartment in this
section.

distance The total distance between the midpoint of each com-
partment and the root of the morphology.

end_diameter The diameter at the end of each compartment in this sec-
tion.

end_distance The distance to the root of the morphology at the end of
this section.

end_x_ The x coordinate (as a unitless floating point number) at
the end of each compartment.

end_y_ The y coordinate (as a unitless floating point number) at
the end of each compartment.

end_z_ The z coordinate (as a unitless floating point number) at
the end of each compartment.

length The length of each compartment in this section.
r_length_1 The geometry-dependent term to calculate the conduc-

tance between the start and the midpoint of each com-
partment.

r_length_2 The geometry-dependent term to calculate the conduc-
tance between the midpoint and the end of each com-
partment.

Continued on next page

6.4. Subpackages 527

Brian 2 Documentation, Release 2.1.1

Table 6.375 – continued from previous page
start_diameter The diameter at the start of each compartment in this

section.
start_x_ The x coordinate (as a unitless floating point number) at

the beginning of each compartment.
start_y_ The y coordinate (as a unitless floating point number) at

the beginning of each compartment.
start_z_ The z coordinate (as a unitless floating point number) at

the beginning of each compartment.
volume The volume of each compartment in this section.
x_ The x coordinate (as a unitless floating point number) at

the midpoint of each compartment.
y_ The y coordinate (as a unitless floating point number) at

the midpoint of each compartment.
z_ The z coordinate (as a unitless floating point number) at

the midpoint of each compartment.

Methods

copy_section()

Details

area
The membrane surface area of each compartment in this section. The surface area of each compartment is

calculated as 𝜋
2 (𝑑1 + 𝑑2)

√︁
(𝑑1−𝑑2)2

4 + 𝑙2), where 𝑙 is the length of the compartment, and 𝑑1 and 𝑑2 are the
diameter at the start and end of the compartment, respectively. Note that this surface area does not contain
the area of the two disks at the two sides of the truncated cone.

diameter
The diameter at the middle of each compartment in this section.

distance
The total distance between the midpoint of each compartment and the root of the morphology.

end_diameter
The diameter at the end of each compartment in this section.

end_distance
The distance to the root of the morphology at the end of this section.

end_x_
The x coordinate (as a unitless floating point number) at the end of each compartment. Returns None for
morphologies without coordinates.

end_y_
The y coordinate (as a unitless floating point number) at the end of each compartment. Returns None for
morphologies without coordinates.

end_z_
The z coordinate (as a unitless floating point number) at the end of each compartment. Returns None for
morphologies without coordinates.

length
The length of each compartment in this section.

528 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

r_length_1
The geometry-dependent term to calculate the conductance between the start and the midpoint of each
compartment. Dividing this value by the Intracellular resistivity gives the conductance.

r_length_2
The geometry-dependent term to calculate the conductance between the midpoint and the end of each
compartment. Dividing this value by the Intracellular resistivity gives the conductance.

start_diameter
The diameter at the start of each compartment in this section.

start_x_
The x coordinate (as a unitless floating point number) at the beginning of each compartment. Returns
None for morphologies without coordinates.

start_y_
The y coordinate (as a unitless floating point number) at the beginning of each compartment. Returns
None for morphologies without coordinates.

start_z_
The z coordinate (as a unitless floating point number) at the beginning of each compartment. Returns
None for morphologies without coordinates.

volume
The volume of each compartment in this section. The volume of each compartment is calculated as
𝜋
12 𝑙(𝑑

2
1 + 𝑑1𝑑2 + 𝑑22), where 𝑙 is the length of the compartment, and 𝑑1 and 𝑑2 are the diameter at the

start and end of the compartment, respectively.

x_
The x coordinate (as a unitless floating point number) at the midpoint of each compartment. Returns None
for morphologies without coordinates.

y_
The y coordinate (as a unitless floating point number) at the midpoint of each compartment. Returns None
for morphologies without coordinates.

z_
The z coordinate (as a unitless floating point number) at the midpoint of each compartment. Returns None
for morphologies without coordinates.

copy_section()

Tutorials and examples using this

• Example frompapers/Brette_2012/Fig4

Soma(*args, **kwds) A spherical, iso-potential soma.

Soma class

(Shortest import: from brian2 import Soma)

class brian2.spatialneuron.morphology.Soma(*args, **kwds)
Bases: brian2.spatialneuron.morphology.Morphology

A spherical, iso-potential soma.

Parameters diameter : Quantity

6.4. Subpackages 529

Brian 2 Documentation, Release 2.1.1

Diameter of the sphere.

x : Quantity , optional

The x coordinate of the position of the soma.

y : Quantity , optional

The y coordinate of the position of the soma.

z : Quantity , optional

The z coordinate of the position of the soma.

type : str, optional

The type of this section, defaults to 'soma'.

Attributes

area The membrane surface area of this section (as an array
of length 1).

diameter The diameter of this section (as an array of length 1).
distance The total distance between the midpoint of this section

and the root of the morphology.
end_distance The distance to the root of the morphology at the end of

this section.
end_x_ The x-coordinate of the current section (as an array of

length 1).
end_y_ The y-coordinate of the current section (as an array of

length 1).
end_z_ The z-coordinate of the current section (as an array of

length 1).
length The “length” (equal to diameter) of this section (as

an array of length 1).
r_length_1 The geometry-dependent term to calculate the conduc-

tance between the start and the midpoint of each com-
partment.

r_length_2 The geometry-dependent term to calculate the conduc-
tance between the midpoint and the end of each com-
partment.

start_x_ The x-coordinate of the current section (as an array of
length 1).

start_y_ The y-coordinate of the current section (as an array of
length 1).

start_z_ The z-coordinate of the current section (as an array of
length 1).

volume The volume of this section (as an array of length 1).
x_ The x-coordinate of the current section (as an array of

length 1).
y_ The y-coordinate of the current section (as an array of

length 1).
z_ The z-coordinate of the current section (as an array of

length 1).

530 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

Methods

copy_section()

Details

area
The membrane surface area of this section (as an array of length 1).

diameter
The diameter of this section (as an array of length 1).

distance
The total distance between the midpoint of this section and the root of the morphology. The Soma is most
likely the root of the morphology, and therefore the distance is 0.

end_distance
The distance to the root of the morphology at the end of this section. Note that since a Soma is modeled
as a point (see docs of x, etc.), it does not add anything to the total distance, e.g. a section connecting to a
Soma has a distance of 0 um at its start.

end_x_
The x-coordinate of the current section (as an array of length 1). Note that a Soma is modelled as a “point”
with finite surface/volume, equivalent to that of a sphere with the given diameter. It’s start-, midpoint-,
and end-coordinates are therefore identical.

end_y_
The y-coordinate of the current section (as an array of length 1). Note that a Soma is modelled as a “point”
with finite surface/volume, equivalent to that of a sphere with the given diameter. It’s start-, midpoint-,
and end-coordinates are therefore identical.

end_z_
The z-coordinate of the current section (as an array of length 1). Note that a Soma is modelled as a “point”
with finite surface/volume, equivalent to that of a sphere with the given diameter. It’s start-, midpoint-,
and end-coordinates are therefore identical.

length
The “length” (equal to diameter) of this section (as an array of length 1).

r_length_1
The geometry-dependent term to calculate the conductance between the start and the midpoint of each
compartment. Returns a fixed (high) value for a Soma, corresponding to a section with very low intracel-
lular resistance.

r_length_2
The geometry-dependent term to calculate the conductance between the midpoint and the end of each com-
partment. Returns a fixed (high) value for a Soma, corresponding to a section with very low intracellular
resistance.

start_x_
The x-coordinate of the current section (as an array of length 1). Note that a Soma is modelled as a “point”
with finite surface/volume, equivalent to that of a sphere with the given diameter. It’s start-, midpoint-,
and end-coordinates are therefore identical.

start_y_
The y-coordinate of the current section (as an array of length 1). Note that a Soma is modelled as a “point”
with finite surface/volume, equivalent to that of a sphere with the given diameter. It’s start-, midpoint-,
and end-coordinates are therefore identical.

6.4. Subpackages 531

Brian 2 Documentation, Release 2.1.1

start_z_
The z-coordinate of the current section (as an array of length 1). Note that a Soma is modelled as a “point”
with finite surface/volume, equivalent to that of a sphere with the given diameter. It’s start-, midpoint-,
and end-coordinates are therefore identical.

volume
The volume of this section (as an array of length 1).

x_
The x-coordinate of the current section (as an array of length 1). Note that a Soma is modelled as a “point”
with finite surface/volume, equivalent to that of a sphere with the given diameter. It’s start-, midpoint-,
and end-coordinates are therefore identical.

y_
The y-coordinate of the current section (as an array of length 1). Note that a Soma is modelled as a “point”
with finite surface/volume, equivalent to that of a sphere with the given diameter. It’s start-, midpoint-,
and end-coordinates are therefore identical.

z_
The z-coordinate of the current section (as an array of length 1). Note that a Soma is modelled as a “point”
with finite surface/volume, equivalent to that of a sphere with the given diameter. It’s start-, midpoint-,
and end-coordinates are therefore identical.

copy_section()

Tutorials and examples using this

• Example frompapers/Brette_2012/Fig5A

• Example frompapers/Brette_2012/Fig3CF

• Example frompapers/Brette_2012/Fig1

• Example frompapers/Brette_2012/Fig3AB

• Example frompapers/Brette_2012/Fig4

• Example compartmental/spike_initiation

• Example compartmental/bipolar_with_inputs

• Example compartmental/morphotest

• Example compartmental/bipolar_cell

• Example compartmental/bipolar_with_inputs2

SubMorphology(morphology, i, j) A view on a subset of a section in a morphology.

SubMorphology class

(Shortest import: from brian2.spatialneuron.morphology import SubMorphology)

class brian2.spatialneuron.morphology.SubMorphology(morphology, i, j)
Bases: object

A view on a subset of a section in a morphology.

532 Chapter 6. brian2 package

https://docs.python.org/2/library/functions.html#object

Brian 2 Documentation, Release 2.1.1

Attributes

area The membrane surface area of each compartment in this
sub-section.

diameter The diameter at the middle of each compartment in this
sub-section.

distance The total distance between the midpoint of each com-
partment in this sub-section and the root of the morphol-
ogy.

end_x The x coordinate at the end of each compartment in this
sub-section.

end_x_ The x coordinate (as a unitless floating point number) at
the end of each compartment in this sub-section.

end_y The y coordinate at the end of each compartment in this
sub-section.

end_y_ The y coordinate (as a unitless floating point number) at
the end of each compartment in this sub-section.

end_z The z coordinate at the end of each compartment in this
sub-section.

end_z_ The z coordinate (as a unitless floating point number) at
the end of each compartment in this sub-section.

length The length of each compartment in this sub-section.
n The number of compartments in this sub-section.
n_sections The number of sections in this sub-section (always 1).
r_length_1 The geometry-dependent term to calculate the conduc-

tance between the start and the midpoint of each com-
partment in this sub-section.

r_length_2 The geometry-dependent term to calculate the conduc-
tance between the midpoint and the end of each com-
partment in this sub-section.

start_x The x coordinate at the beginning of each compartment
in this sub-section.

start_x_ The x coordinate (as a unitless floating point number) at
the beginning of each compartment in this sub-section.

start_y The y coordinate at the beginning of each compartment
in this sub-section.

start_y_ The y coordinate (as a unitless floating point number) at
the beginning of each compartment in this sub-section.

start_z The x coordinate at the beginning of each compartment
in this sub-section.

start_z_ The z coordinate (as a unitless floating point number) at
the beginning of each compartment in this sub-section.

volume The volume of each compartment in this sub-section.
x The x coordinate at the midpoint of each compartment

in this sub-section.
x_ The x coordinate (as a unitless floating point number) at

the midpoint of each compartment in this sub-section.
y The y coordinate at the midpoint of each compartment

in this sub-section.
y_ The y coordinate (as a unitless floating point number) at

the midpoint of each compartment in this sub-section.
Continued on next page

6.4. Subpackages 533

Brian 2 Documentation, Release 2.1.1

Table 6.381 – continued from previous page
z The z coordinate at the midpoint of each compartment

in this sub-section.
z_ The z coordinate (as a unitless floating point number) at

the midpoint of each compartment in this sub-section.

Details

area
The membrane surface area of each compartment in this sub-section.

diameter
The diameter at the middle of each compartment in this sub-section.

distance
The total distance between the midpoint of each compartment in this sub-section and the root of the mor-
phology.

end_x
The x coordinate at the end of each compartment in this sub-section. Returns None for morphologies
without coordinates.

end_x_
The x coordinate (as a unitless floating point number) at the end of each compartment in this sub-section.
Returns None for morphologies without coordinates.

end_y
The y coordinate at the end of each compartment in this sub-section. Returns None for morphologies
without coordinates.

end_y_
The y coordinate (as a unitless floating point number) at the end of each compartment in this sub-section.
Returns None for morphologies without coordinates.

end_z
The z coordinate at the end of each compartment in this sub-section. Returns None for morphologies
without coordinates.

end_z_
The z coordinate (as a unitless floating point number) at the end of each compartment in this sub-section.
Returns None for morphologies without coordinates.

length
The length of each compartment in this sub-section.

n
The number of compartments in this sub-section.

n_sections
The number of sections in this sub-section (always 1).

r_length_1
The geometry-dependent term to calculate the conductance between the start and the midpoint of each
compartment in this sub-section. Dividing this value by the Intracellular resistivity gives the conductance.

r_length_2
The geometry-dependent term to calculate the conductance between the midpoint and the end of each
compartment in this sub-section. Dividing this value by the Intracellular resistivity gives the conductance.

534 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

start_x
The x coordinate at the beginning of each compartment in this sub-section. Returns None for morpholo-
gies without coordinates.

start_x_
The x coordinate (as a unitless floating point number) at the beginning of each compartment in this sub-
section. Returns None for morphologies without coordinates.

start_y
The y coordinate at the beginning of each compartment in this sub-section. Returns None for morpholo-
gies without coordinates.

start_y_
The y coordinate (as a unitless floating point number) at the beginning of each compartment in this sub-
section. Returns None for morphologies without coordinates.

start_z
The x coordinate at the beginning of each compartment in this sub-section. Returns None for morpholo-
gies without coordinates.

start_z_
The z coordinate (as a unitless floating point number) at the beginning of each compartment in this sub-
section. Returns None for morphologies without coordinates.

volume
The volume of each compartment in this sub-section.

x
The x coordinate at the midpoint of each compartment in this sub-section. Returns None for morphologies
without coordinates.

x_
The x coordinate (as a unitless floating point number) at the midpoint of each compartment in this sub-
section. Returns None for morphologies without coordinates.

y
The y coordinate at the midpoint of each compartment in this sub-section. Returns None for morphologies
without coordinates.

y_
The y coordinate (as a unitless floating point number) at the midpoint of each compartment in this sub-
section. Returns None for morphologies without coordinates.

z
The z coordinate at the midpoint of each compartment in this sub-section. Returns None for morphologies
without coordinates.

z_
The z coordinate (as a unitless floating point number) at the midpoint of each compartment in this sub-
section. Returns None for morphologies without coordinates.

Topology(morphology) A representation of the topology of a Morphology .

Topology class

(Shortest import: from brian2.spatialneuron.morphology import Topology)

class brian2.spatialneuron.morphology.Topology(morphology)
Bases: object

6.4. Subpackages 535

https://docs.python.org/2/library/functions.html#object

Brian 2 Documentation, Release 2.1.1

A representation of the topology of a Morphology . Has a useful string representation, inspired by NEURON’s
topology function.

spatialneuron module

Compartmental models. This module defines the SpatialNeuron class, which defines multicompartmental models.

Exported members: SpatialNeuron

Classes

FlatMorphology(morphology) Container object to store the flattened representation of a
morphology.

FlatMorphology class

(Shortest import: from brian2.spatialneuron.spatialneuron import FlatMorphology)

class brian2.spatialneuron.spatialneuron.FlatMorphology(morphology)
Bases: object

Container object to store the flattened representation of a morphology. Note that all values are stored as numpy
arrays without unit information (i.e. in base units).

SpatialNeuron([morphology, model, . . .]) A single neuron with a morphology and possibly many
compartments.

SpatialNeuron class

(Shortest import: from brian2 import SpatialNeuron)

class brian2.spatialneuron.spatialneuron.SpatialNeuron(morphology=None,
model=None, thresh-
old=None, refrac-
tory=False, reset=None,
events=None, thresh-
old_location=None,
dt=None, clock=None,
order=0, Cm=0.009 * metre
** -4 * kilogram ** -1 * sec-
ond ** 4 * amp ** 2, Ri=1.5
* metre ** 3 * kilogram *
second ** -3 * amp ** -2,
name=’spatialneuron*’,
dtype=None,
namespace=None,
method=(’exact’, ’exponen-
tial_euler’, ’rk2’, ’heun’),
method_options=None)

Bases: brian2.groups.neurongroup.NeuronGroup

A single neuron with a morphology and possibly many compartments.

Parameters morphology : Morphology

536 Chapter 6. brian2 package

https://docs.python.org/2/library/functions.html#object

Brian 2 Documentation, Release 2.1.1

The morphology of the neuron.

model : (str, Equations)

The equations defining the group.

method : (str, function), optional

The numerical integration method. Either a string with the name of a registered method
(e.g. “euler”) or a function that receives an Equations object and returns the cor-
responding abstract code. If no method is specified, a suitable method will be chosen
automatically.

threshold : str, optional

The condition which produces spikes. Should be a single line boolean expression.

threshold_location : (int, Morphology), optional

Compartment where the threshold condition applies, specified as an integer (com-
partment index) or a Morphology object corresponding to the compartment (e.g.
morpho.axon[10*um]). If unspecified, the threshold condition applies at all com-
partments.

Cm : Quantity , optional

Specific capacitance in uF/cm**2 (default 0.9). It can be accessed and modified later as
a state variable. In particular, its value can differ in different compartments.

Ri : Quantity , optional

Intracellular resistivity in ohm.cm (default 150). It can be accessed as a shared state
variable, but modified only before the first run. It is uniform across the neuron.

reset : str, optional

The (possibly multi-line) string with the code to execute on reset.

events : dict, optional

User-defined events in addition to the “spike” event defined by the threshold. Has to
be a mapping of strings (the event name) to strings (the condition) that will be checked.

refractory : {str, Quantity}, optional

Either the length of the refractory period (e.g. 2*ms), a string expression that evaluates
to the length of the refractory period after each spike (e.g. '(1 + rand())*ms'),
or a string expression evaluating to a boolean value, given the condition under which
the neuron stays refractory after a spike (e.g. 'v > -20*mV')

namespace : dict, optional

A dictionary mapping identifier names to objects. If not given, the namespace will be
filled in at the time of the call of Network.run(), with either the values from the
namespace argument of the Network.run() method or from the local context, if
no such argument is given.

dtype : (dtype, dict), optional

The numpy.dtype that will be used to store the values, or a dictionary specifying the
type for variable names. If a value is not provided for a variable (or no value is provided
at all), the preference setting core.default_float_dtype is used.

dt : Quantity , optional

6.4. Subpackages 537

https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype

Brian 2 Documentation, Release 2.1.1

The time step to be used for the simulation. Cannot be combined with the clock
argument.

clock : Clock, optional

The update clock to be used. If neither a clock, nor the dt argument is specified, the
defaultclock will be used.

order : int, optional

The priority of of this group for operations occurring at the same time step and in the
same scheduling slot. Defaults to 0.

name : str, optional

A unique name for the group, otherwise use spatialneuron_0, etc.

Attributes

user_equations The original equations as specified by the user (i.e.

Methods

spatialneuron_attribute(neuron, name) Selects a subtree from SpatialNeuron neuron and
returns a SpatialSubgroup.

spatialneuron_segment(neuron, item) Selects a segment from SpatialNeuron neuron,
where item is a slice of either compartment indexes or
distances.

Details

user_equations
The original equations as specified by the user (i.e. before inserting point-currents into the membrane
equation, before adding all the internally used variables and constants, etc.).

static spatialneuron_attribute(neuron, name)
Selects a subtree from SpatialNeuron neuron and returns a SpatialSubgroup. If it does not exist,
returns the Group attribute.

static spatialneuron_segment(neuron, item)
Selects a segment from SpatialNeuron neuron, where item is a slice of either compartment indexes or
distances. Note a: segment is not a SpatialNeuron, only a Group.

Tutorials and examples using this

• Example frompapers/Destexhe_et_al_1998

• Example frompapers/Brette_2012/Fig5A

• Example frompapers/Brette_2012/Fig3CF

• Example frompapers/Brette_2012/Fig1

• Example frompapers/Brette_2012/Fig3AB

• Example frompapers/Brette_2012/Fig4

538 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

• Example compartmental/cylinder

• Example compartmental/hh_with_spikes

• Example compartmental/hodgkin_huxley_1952

• Example compartmental/lfp

• Example compartmental/infinite_cable

• Example compartmental/spike_initiation

• Example compartmental/bipolar_with_inputs

• Example compartmental/morphotest

• Example compartmental/bipolar_cell

• Example compartmental/bipolar_with_inputs2

• Example compartmental/rall

SpatialStateUpdater(group, method, clock[, . . .]) The CodeRunner that updates the state variables of a
SpatialNeuron at every timestep.

SpatialStateUpdater class

(Shortest import: from brian2.spatialneuron.spatialneuron import
SpatialStateUpdater)

class brian2.spatialneuron.spatialneuron.SpatialStateUpdater(group, method,
clock, order=0)

Bases: brian2.groups.group.CodeRunner, brian2.groups.group.Group

The CodeRunner that updates the state variables of a SpatialNeuron at every timestep.

Methods

before_run(run_namespace)

Details

before_run(run_namespace)

SpatialSubgroup(source, start, stop, morphology) A subgroup of a SpatialNeuron.

SpatialSubgroup class

(Shortest import: from brian2.spatialneuron.spatialneuron import SpatialSubgroup)

class brian2.spatialneuron.spatialneuron.SpatialSubgroup(source, start, stop, mor-
phology, name=None)

Bases: brian2.groups.subgroup.Subgroup

A subgroup of a SpatialNeuron.

6.4. Subpackages 539

Brian 2 Documentation, Release 2.1.1

Parameters source : int

First compartment.

stop : int

Ending compartment, not included (as in slices).

morphology : Morphology

Morphology corresponding to the subgroup (not the full morphology).

name : str, optional

Name of the subgroup.

6.4.13 stateupdaters package

Module for transforming model equations into “abstract code” that can be then be further translated into executable
code by the codegen module.

GSL module

Module containg the StateUpdateMethod for integration using the ODE solver provided in the GNU Scientific Library
(GSL)

Exported members: gsl_rk2, gsl_rk4, gsl_rkf45, gsl_rkck, gsl_rk8pd

Classes

GSLContainer(method_options, integrator[, . . .]) Class that contains information (equation- or integrator-
related) required

GSLContainer class

(Shortest import: from brian2.stateupdaters.GSL import GSLContainer)

class brian2.stateupdaters.GSL.GSLContainer(method_options, integrator, ab-
stract_code=None, needed_variables=[],
variable_flags=[])

Bases: object

Class that contains information (equation- or integrator-related) required for later code generation

Methods

__call__(obj) Transfer the code object class saved in self to the object
sent as an argument.

get_codeobj_class() Return codeobject class based on target language and
device.

540 Chapter 6. brian2 package

https://docs.python.org/2/library/functions.html#object

Brian 2 Documentation, Release 2.1.1

Details

__call__(obj)
Transfer the code object class saved in self to the object sent as an argument.

This method is returned when calling GSLStateUpdater. This class inherits from
StateUpdateMethod which orignally only returns abstract code. However, with GSL this re-
turns a method because more is needed than just the abstract code: the state updater requires its own
CodeObject that is different from the other NeuronGroup objects. This method adds this CodeObject
to the StateUpdater object (and also adds the variables ‘t’, ‘dt’, and other variables that are needed in
the GSLCodeGenerator.

Parameters obj : GSLStateUpdater

the object that the codeobj_class and other variables need to be transferred to

Returns abstract_code : str

The abstract code (translated equations), that is returned conventionally by brian and
used for later code generation in the CodeGenerator.translate() method.

get_codeobj_class()
Return codeobject class based on target language and device.

Choose which version of the GSL CodeObject to use. If `isinstance(device,
CPPStandaloneDevice)`, then we want the GSLCPPStandaloneCodeObject. Otherwise the
return value is based on prefs.codegen.target.

Returns code_object : class

The respective CodeObject class (i.e. either GSLWeaveCodeObject,
GSLCythonCodeObject, or GSLCPPStandaloneCodeObject).

GSLStateUpdater(integrator) A statupdater that rewrites the differential equations so that
the GSL generator knows how to write the code in the target
language.

GSLStateUpdater class

(Shortest import: from brian2.stateupdaters.GSL import GSLStateUpdater)

class brian2.stateupdaters.GSL.GSLStateUpdater(integrator)
Bases: brian2.stateupdaters.base.StateUpdateMethod

A statupdater that rewrites the differential equations so that the GSL generator knows how to write the code in
the target language.

New in version 2.1.

Methods

__call__(equations[, variables, method_options]) Translate equations to abstract_code.

6.4. Subpackages 541

Brian 2 Documentation, Release 2.1.1

Details

__call__(equations, variables=None, method_options=None)
Translate equations to abstract_code.

Parameters equations : Equations

object containing the equations that describe the ODE systemTransferClass(self)

variables : dict

dictionary containing str, Variable pairs

Returns method : callable

Method that needs to be called with StateUpdater to add CodeObject class and
some other variables so these can be sent to the CodeGenerator

Objects

gsl_rk2 A statupdater that rewrites the differential equations so that
the GSL generator knows how to write the code in the target
language.

gsl_rk2 object

(Shortest import: from brian2 import gsl_rk2)

brian2.stateupdaters.GSL.gsl_rk2 = <brian2.stateupdaters.GSL.GSLStateUpdater object>
A statupdater that rewrites the differential equations so that the GSL generator knows how to write the code in
the target language.

New in version 2.1.

gsl_rk4 A statupdater that rewrites the differential equations so that
the GSL generator knows how to write the code in the target
language.

gsl_rk4 object

(Shortest import: from brian2 import gsl_rk4)

brian2.stateupdaters.GSL.gsl_rk4 = <brian2.stateupdaters.GSL.GSLStateUpdater object>
A statupdater that rewrites the differential equations so that the GSL generator knows how to write the code in
the target language.

New in version 2.1.

gsl_rk8pd A statupdater that rewrites the differential equations so that
the GSL generator knows how to write the code in the target
language.

542 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

gsl_rk8pd object

(Shortest import: from brian2 import gsl_rk8pd)

brian2.stateupdaters.GSL.gsl_rk8pd = <brian2.stateupdaters.GSL.GSLStateUpdater object>
A statupdater that rewrites the differential equations so that the GSL generator knows how to write the code in
the target language.

New in version 2.1.

gsl_rkck A statupdater that rewrites the differential equations so that
the GSL generator knows how to write the code in the target
language.

gsl_rkck object

(Shortest import: from brian2 import gsl_rkck)

brian2.stateupdaters.GSL.gsl_rkck = <brian2.stateupdaters.GSL.GSLStateUpdater object>
A statupdater that rewrites the differential equations so that the GSL generator knows how to write the code in
the target language.

New in version 2.1.

gsl_rkf45 A statupdater that rewrites the differential equations so that
the GSL generator knows how to write the code in the target
language.

gsl_rkf45 object

(Shortest import: from brian2 import gsl_rkf45)

brian2.stateupdaters.GSL.gsl_rkf45 = <brian2.stateupdaters.GSL.GSLStateUpdater object>
A statupdater that rewrites the differential equations so that the GSL generator knows how to write the code in
the target language.

New in version 2.1.

base module

This module defines the StateUpdateMethod class that acts as a base class for all stateupdaters and allows to
register stateupdaters so that it is able to return a suitable stateupdater object for a given set of equations. This is used
for example in NeuronGroup when no state updater is given explicitly.

Exported members: StateUpdateMethod

Classes

StateUpdateMethod

Attributes

6.4. Subpackages 543

Brian 2 Documentation, Release 2.1.1

StateUpdateMethod class

(Shortest import: from brian2 import StateUpdateMethod)

class brian2.stateupdaters.base.StateUpdateMethod
Bases: object

Attributes

stateupdaters A dictionary mapping state updater names to
StateUpdateMethod objects

Methods

__call__(equations[, variables, method_options]) Generate abstract code from equations.
apply_stateupdater(equations, variables,
method)

Applies a given state updater to equations.

register(name, stateupdater) Register a state updater.

Details

stateupdaters
A dictionary mapping state updater names to StateUpdateMethod objects

__call__(equations, variables=None, method_options=None)
Generate abstract code from equations. The method also gets the the variables because some state updaters
have to check whether variable names reflect other state variables (which can change from timestep to
timestep) or are external values (which stay constant during a run) For convenience, this arguments are
optional – this allows to directly see what code a state updater generates for a set of equations by simply
writing euler(eqs), for example.

Parameters equations : Equations

The model equations.

variables : dict, optional

The Variable objects for the model variables.

method_options : dict, optional

Additional options specific to the state updater.

Returns :

——- :

code : str

The abstract code performing a state update step.

static apply_stateupdater(equations, variables, method, method_options=None,
group_name=None)

Applies a given state updater to equations. If a method is given, the state updater with the given name is
used or if is a callable, then it is used directly. If a method is a list of names, all the methods will be tried
until one that doesn’t raise an UnsupportedEquationsException is found.

544 Chapter 6. brian2 package

https://docs.python.org/2/library/functions.html#object

Brian 2 Documentation, Release 2.1.1

Parameters equations : Equations

The model equations.

variables : dict

The dictionary of Variable objects, describing the internal model variables.

method : {callable, str, list of str}

A callable usable as a state updater, the name of a registered state updater or a list of
names of state updaters.

Returns abstract_code : str

The code integrating the given equations.

static register(name, stateupdater)
Register a state updater. Registered state updaters can be referred to via their name.

Parameters name : str

A short name for the state updater (e.g. 'euler')

stateupdater : StateUpdaterMethod

The state updater object, e.g. an ExplicitStateUpdater.

UnsupportedEquationsException

UnsupportedEquationsException class

(Shortest import: from brian2.stateupdaters.base import UnsupportedEquationsException)

class brian2.stateupdaters.base.UnsupportedEquationsException
Bases: exceptions.Exception

Functions

extract_method_options(method_options, . . .) Helper function to check method_options against op-
tions understood by this state updater, and setting default
values for all unspecified options.

extract_method_options function

(Shortest import: from brian2.stateupdaters.base import extract_method_options)

brian2.stateupdaters.base.extract_method_options(method_options, default_options)
Helper function to check method_options against options understood by this state updater, and setting
default values for all unspecified options.

Parameters method_options : dict or None

The options that the user specified for the state update.

default_options : dict

The default option values for this state updater (each admissible option needs to be
present in this dictionary). To specify that a state updater does not take any options,

6.4. Subpackages 545

https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/exceptions.html#exceptions.Exception

Brian 2 Documentation, Release 2.1.1

provide an empty dictionary as the argument.

Returns options : dict

The final dictionary with all the options either at their default or at the user-specified
value.

Raises

KeyError If the user specifies an option that is not understood by this state updater.

Examples

>>> options = extract_method_options({'a': True}, default_options={'b': False, 'c
→˓': False})
Traceback (most recent call last):
...
KeyError: 'method_options specifies "a", but this is not an option for this state
→˓updater. Avalaible options are: "b", "c".'
>>> options = extract_method_options({'a': True}, default_options={})
Traceback (most recent call last):
...
KeyError: 'method_options specifies "a", but this is not an option for this state
→˓updater. This state updater does not accept any options.'
>>> options = extract_method_options({'a': True}, default_options={'a': False, 'b
→˓': False})
>>> sorted(options.items())
[('a', True), ('b', False)]

exact module

Exact integration for linear equations.

Exported members: linear, exact, independent

Classes

IndependentStateUpdater A state update for equations that do not depend on other
state variables, i.e.

IndependentStateUpdater class

(Shortest import: from brian2.stateupdaters.exact import IndependentStateUpdater)

class brian2.stateupdaters.exact.IndependentStateUpdater
Bases: brian2.stateupdaters.base.StateUpdateMethod

A state update for equations that do not depend on other state variables, i.e. 1-dimensional differential equations.
The individual equations are solved by sympy.

Deprecated since version 2.1: This method might be removed from future versions of Brian.

546 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

Methods

__call__(equations[, variables, method_options])

Details

__call__(equations, variables=None, method_options=None)

LinearStateUpdater A state updater for linear equations.

LinearStateUpdater class

(Shortest import: from brian2.stateupdaters.exact import LinearStateUpdater)

class brian2.stateupdaters.exact.LinearStateUpdater
Bases: brian2.stateupdaters.base.StateUpdateMethod

A state updater for linear equations. Derives a state updater step from the analytical solution given by sympy.
Uses the matrix exponential (which is only implemented for diagonalizable matrices in sympy).

Methods

__call__(equations[, variables, method_options])

Details

__call__(equations, variables=None, method_options=None)

Functions

get_linear_system(eqs, variables) Convert equations into a linear system using sympy.

get_linear_system function

(Shortest import: from brian2.stateupdaters.exact import get_linear_system)

brian2.stateupdaters.exact.get_linear_system(eqs, variables)
Convert equations into a linear system using sympy.

Parameters eqs : Equations

The model equations.

Returns (diff_eq_names, coefficients, constants) : (list of str, sympy.Matrix, sympy.
Matrix)

A tuple containing the variable names (diff_eq_names) corresponding to the rows
of the matrix coefficients and the vector constants, representing the system
of equations in the form M * X + B

6.4. Subpackages 547

Brian 2 Documentation, Release 2.1.1

Raises

ValueError If the equations cannot be converted into an M * X + B form.

Objects

exact A state updater for linear equations.

exact object

(Shortest import: from brian2 import exact)

brian2.stateupdaters.exact.exact = LinearStateUpdater()
A state updater for linear equations. Derives a state updater step from the analytical solution given by sympy.
Uses the matrix exponential (which is only implemented for diagonalizable matrices in sympy).

independent A state update for equations that do not depend on other
state variables, i.e.

independent object

(Shortest import: from brian2 import independent)

brian2.stateupdaters.exact.independent = <brian2.stateupdaters.exact.IndependentStateUpdater object>
A state update for equations that do not depend on other state variables, i.e. 1-dimensional differential equations.
The individual equations are solved by sympy.

Deprecated since version 2.1: This method might be removed from future versions of Brian.

linear A state updater for linear equations.

linear object

(Shortest import: from brian2 import linear)

brian2.stateupdaters.exact.linear = LinearStateUpdater()
A state updater for linear equations. Derives a state updater step from the analytical solution given by sympy.
Uses the matrix exponential (which is only implemented for diagonalizable matrices in sympy).

explicit module

Numerical integration functions.

Exported members: milstein, heun, euler, rk2, rk4, ExplicitStateUpdater

Classes

ExplicitStateUpdater(description[, . . .]) An object that can be used for defining state updaters via a
simple description (see below).

548 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

ExplicitStateUpdater class

(Shortest import: from brian2 import ExplicitStateUpdater)

class brian2.stateupdaters.explicit.ExplicitStateUpdater(description, stochas-
tic=None, cus-
tom_check=None)

Bases: brian2.stateupdaters.base.StateUpdateMethod

An object that can be used for defining state updaters via a simple description (see below). Resulting instances
can be passed to the method argument of the NeuronGroup constructor. As other state updater functions the
ExplicitStateUpdater objects are callable, returning abstract code when called with an Equations
object.

A description of an explicit state updater consists of a (multi-line) string, containing assignments to variables
and a final “x_new = . . . ”, stating the integration result for a single timestep. The assignments can be used to
define an arbitrary number of intermediate results and can refer to f(x, t) (the function being integrated, as
a function of x, the previous value of the state variable and t, the time) and dt, the size of the timestep.

For example, to define a Runge-Kutta 4 integrator (already provided as rk4), use:

k1 = dt*f(x,t)
k2 = dt*f(x+k1/2,t+dt/2)
k3 = dt*f(x+k2/2,t+dt/2)
k4 = dt*f(x+k3,t+dt)
x_new = x+(k1+2*k2+2*k3+k4)/6

Note that for stochastic equations, the function f only corresponds to the non-stochastic part of the equation.
The additional function g corresponds to the stochastic part that has to be multiplied with the stochastic variable
xi (a standard normal random variable – if the algorithm needs a random variable with a different variance/mean
you have to multiply/add it accordingly). Equations with more than one stochastic variable do not have to be
treated differently, the part referring to g is repeated for all stochastic variables automatically.

Stochastic integrators can also make reference to dW (a normal distributed random number with variance dt)
and g(x, t), the stochastic part of an equation. A stochastic state updater could therefore use a description
like:

x_new = x + dt*f(x,t) + g(x, t) * dW

For simplicity, the same syntax is used for state updaters that only support additive noise, even though g(x,
t) does not depend on x or t in that case.

There a some restrictions on the complexity of the expressions (but most can be worked around by using inter-
mediate results as in the above Runge- Kutta example): Every statement can only contain the functions f and g
once; The expressions have to be linear in the functions, e.g. you can use dt*f(x, t) but not f(x, t)**2.

Parameters description : str

A state updater description (see above).

stochastic : {None, ‘additive’, ‘multiplicative’}

What kind of stochastic equations this state updater supports: None means no support
of stochastic equations, 'additive' means only equations with additive noise and
'multiplicative' means supporting arbitrary stochastic equations.

Raises

ValueError If the parsing of the description failed.

6.4. Subpackages 549

Brian 2 Documentation, Release 2.1.1

See also:

euler, rk2, rk4, milstein

Notes

Since clocks are updated after the state update, the time t used in the state update step is still at its previous
value. Enumerating the states and discrete times, x_new = x + dt*f(x, t) is therefore understood as
𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑡𝑓(𝑥𝑖, 𝑡𝑖), yielding the correct forward Euler integration. If the integrator has to refer to the time
at the end of the timestep, simply use t + dt instead of t.

Attributes

DESCRIPTION A complete state updater description
EXPRESSION A single expression
OUTPUT The last line of a state updater description
STATEMENT An assignment statement
TEMP_VAR Legal names for temporary variables

Methods

DESCRIPTION A complete state updater description
EXPRESSION A single expression
OUTPUT The last line of a state updater description
STATEMENT An assignment statement
TEMP_VAR Legal names for temporary variables
__call__(eqs[, variables, method_options]) Apply a state updater description to model equations.
replace_func(x, t, expr, temp_vars, eq_symbols) Used to replace a single occurance of f(x, t) or

g(x, t): expr is the non-stochastic (in the case of
f) or stochastic part (g) of the expression defining the
right-hand-side of the differential equation describing
var().

Details

DESCRIPTION = {[Group:({~{"x_new"} W:(abcd...,abcd...) Suppress:("=") rest of line})]... Group:({Suppress:("x_new") Suppress:("=") rest of line})}
A complete state updater description

EXPRESSION = rest of line
A single expression

OUTPUT = Group:({Suppress:("x_new") Suppress:("=") rest of line})
The last line of a state updater description

STATEMENT = Group:({~{"x_new"} W:(abcd...,abcd...) Suppress:("=") rest of line})
An assignment statement

TEMP_VAR = {~{"x_new"} W:(abcd...,abcd...)}
Legal names for temporary variables

DESCRIPTION()
Requires all given C{ParseExpression}s to be found in the given order. Expressions may be separated

550 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

by whitespace. May be constructed using the C{‘+’} operator. May also be constructed using the C{‘-‘}
operator, which will suppress backtracking.

Example:: integer = Word(nums) name_expr = OneOrMore(Word(alphas))

expr = And([integer(“id”),name_expr(“name”),integer(“age”)]) # more easily written as: expr = inte-
ger(“id”) + name_expr(“name”) + integer(“age”)

EXPRESSION()
Token for matching strings that match a given regular expression. Defined with string specifying the
regular expression in a form recognized by the inbuilt Python re module. If the given regex contains
named groups (defined using C{(?P<name>. . .)}), these will be preserved as named parse results.

Example:: realnum = Regex(r”[+-]?d+.d*”) date = Regex(r’(?P<year>d{4})-
(?P<month>dd?)-(?P<day>dd?)’) # ref: http://stackoverflow.com/questions/267399/
how-do-you-match-only-valid-roman-numerals-with-a-regular-expression roman =
Regex(r”M{0,4}(CM|CD|D?C{0,3})(XC|XL|L?X{0,3})(IX|IV|V?I{0,3})”)

OUTPUT()
Converter to return the matched tokens as a list - useful for returning tokens of C{L{ZeroOrMore}} and
C{L{OneOrMore}} expressions.

Example:: ident = Word(alphas) num = Word(nums) term = ident | num func = ident + Op-
tional(delimitedList(term)) print(func.parseString(“fn a,b,100”)) # -> [‘fn’, ‘a’, ‘b’, ‘100’]

func = ident + Group(Optional(delimitedList(term))) print(func.parseString(“fn a,b,100”)) # -> [‘fn’,
[‘a’, ‘b’, ‘100’]]

STATEMENT()
Converter to return the matched tokens as a list - useful for returning tokens of C{L{ZeroOrMore}} and
C{L{OneOrMore}} expressions.

Example:: ident = Word(alphas) num = Word(nums) term = ident | num func = ident + Op-
tional(delimitedList(term)) print(func.parseString(“fn a,b,100”)) # -> [‘fn’, ‘a’, ‘b’, ‘100’]

func = ident + Group(Optional(delimitedList(term))) print(func.parseString(“fn a,b,100”)) # -> [‘fn’,
[‘a’, ‘b’, ‘100’]]

TEMP_VAR()
Requires all given C{ParseExpression}s to be found in the given order. Expressions may be separated
by whitespace. May be constructed using the C{‘+’} operator. May also be constructed using the C{‘-‘}
operator, which will suppress backtracking.

Example:: integer = Word(nums) name_expr = OneOrMore(Word(alphas))

expr = And([integer(“id”),name_expr(“name”),integer(“age”)]) # more easily written as: expr = inte-
ger(“id”) + name_expr(“name”) + integer(“age”)

__call__(eqs, variables=None, method_options=None)
Apply a state updater description to model equations.

Parameters eqs : Equations

The equations describing the model

variables: dict-like, optional :

The Variable objects for the model. Ignored by the explicit state updater.

method_options : dict, optional

Additional options to the state updater (not used at the moment for the explicit state
updaters).

6.4. Subpackages 551

http://stackoverflow.com/questions/267399/how-do-you-match-only-valid-roman-numerals-with-a-regular-expression
http://stackoverflow.com/questions/267399/how-do-you-match-only-valid-roman-numerals-with-a-regular-expression

Brian 2 Documentation, Release 2.1.1

Examples

>>> from brian2 import *
>>> eqs = Equations('dv/dt = -v / tau : volt')
>>> print(euler(eqs))
_v = -dt*v/tau + v
v = _v
>>> print(rk4(eqs))
__k_1_v = -dt*v/tau
__k_2_v = -dt*(0.5*__k_1_v + v)/tau
__k_3_v = -dt*(0.5*__k_2_v + v)/tau
__k_4_v = -dt*(__k_3_v + v)/tau
_v = 0.166666666666667*__k_1_v + 0.333333333333333*__k_2_v + 0.
→˓333333333333333*__k_3_v + 0.166666666666667*__k_4_v + v
v = _v

replace_func(x, t, expr, temp_vars, eq_symbols, stochastic_variable=None)
Used to replace a single occurance of f(x, t) or g(x, t): expr is the non-stochastic (in the case
of f) or stochastic part (g) of the expression defining the right-hand-side of the differential equation de-
scribing var(). It replaces the variable var() with the value given as x and t by the value given for t.
Intermediate variables will be replaced with the appropriate replacements as well.

For example, in the rk2 integrator, the second step involves the calculation of f(k/2 + x, dt/2 +
t). If var() is v and expr is -v / tau, this will result in -(_k_v/2 + v)/tau.

Note that this deals with only one state variable var(), given as an argument to the surrounding
_generate_RHS function.

Functions

diagonal_noise(equations, variables) Checks whether we deal with diagonal noise, i.e.

diagonal_noise function

(Shortest import: from brian2.stateupdaters.explicit import diagonal_noise)

brian2.stateupdaters.explicit.diagonal_noise(equations, variables)
Checks whether we deal with diagonal noise, i.e. one independent noise variable per variable.

Raises

UnsupportedEquationsException If the noise is not diagonal.

split_expression(expr) Split an expression into a part containing the function f and
another one containing the function g.

split_expression function

(Shortest import: from brian2.stateupdaters.explicit import split_expression)

brian2.stateupdaters.explicit.split_expression(expr)
Split an expression into a part containing the function f and another one containing the function g. Returns a

552 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

tuple of the two expressions (as sympy expressions).

Parameters expr : str

An expression containing references to functions f and g.

Returns (non_stochastic, stochastic) : tuple of sympy expressions

A pair of expressions representing the non-stochastic (containing function-independent
terms and terms involving f) and the stochastic part of the expression (terms involving
g and/or dW).

Examples

>>> split_expression('dt * __f(__x, __t)')
(dt*__f(__x, __t), None)
>>> split_expression('dt * __f(__x, __t) + __dW * __g(__x, __t)')
(dt*__f(__x, __t), __dW*__g(__x, __t))
>>> split_expression('1/(2*dt**.5)*(__g_support - __g(__x, __t))*(__dW**2)')
(0, __dW**2*__g_support*dt**(-0.5)/2 - __dW**2*dt**(-0.5)*__g(__x, __t)/2)

Objects

euler Forward Euler state updater

euler object

(Shortest import: from brian2 import euler)

brian2.stateupdaters.explicit.euler = ExplicitStateUpdater('''x_new = __dW*__g(__x, __t) + __x + dt*__f(__x, __t)''', stochastic='additive')
Forward Euler state updater

heun Stochastic Heun method (for multiplicative Stratonovic
SDEs with non-diagonal

heun object

(Shortest import: from brian2 import heun)

brian2.stateupdaters.explicit.heun = ExplicitStateUpdater('''__x_support = __dW*__g(__x, __t) + __x __g_support = __g(__x_support, __t + dt) x_new = 0.5*__dW*(__g_support + __g(__x, __t)) + __x + dt*__f(__x, __t)''', stochastic='multiplicative')
Stochastic Heun method (for multiplicative Stratonovic SDEs with non-diagonal diffusion matrix)

milstein Derivative-free Milstein method

milstein object

(Shortest import: from brian2 import milstein)

brian2.stateupdaters.explicit.milstein = ExplicitStateUpdater('''__x_support = __x + dt**0.5*__g(__x, __t) + dt*__f(__x, __t) __g_support = __g(__x_support, __t) __k = 0.5*__dW**2.0*dt**(-0.5)*(__g_support - __g(__x, __t)) x_new = __dW*__g(__x, __t) + __k + __x + dt*__f(__x, __t)''', stochastic='multiplicative')
Derivative-free Milstein method

6.4. Subpackages 553

Brian 2 Documentation, Release 2.1.1

rk2 Second order Runge-Kutta method (midpoint method)

rk2 object

(Shortest import: from brian2 import rk2)

brian2.stateupdaters.explicit.rk2 = ExplicitStateUpdater('''__k = dt*__f(__x, __t) x_new = __x + dt*__f(0.5*__k + __x, __t + 0.5*dt)''', stochastic=None)
Second order Runge-Kutta method (midpoint method)

rk4 Classical Runge-Kutta method (RK4)

rk4 object

(Shortest import: from brian2 import rk4)

brian2.stateupdaters.explicit.rk4 = ExplicitStateUpdater('''__k_1 = dt*__f(__x, __t) __k_2 = dt*__f(0.5*__k_1 + __x, __t + 0.5*dt) __k_3 = dt*__f(0.5*__k_2 + __x, __t + 0.5*dt) __k_4 = dt*__f(__k_3 + __x, __t + dt) x_new = 0.166666666666667*__k_1 + 0.333333333333333*__k_2 + 0.333333333333333*__k_3 + 0.166666666666667*__k_4 + __x''', stochastic=None)
Classical Runge-Kutta method (RK4)

exponential_euler module

Exported members: exponential_euler

Classes

ExponentialEulerStateUpdater A state updater for conditionally linear equations, i.e.

ExponentialEulerStateUpdater class

(Shortest import: from brian2.stateupdaters.exponential_euler import
ExponentialEulerStateUpdater)

class brian2.stateupdaters.exponential_euler.ExponentialEulerStateUpdater
Bases: brian2.stateupdaters.base.StateUpdateMethod

A state updater for conditionally linear equations, i.e. equations where each variable only depends linearly on
itself (but possibly non-linearly on other variables). Typical Hodgkin-Huxley equations fall into this category, it
is therefore the default integration method used in the GENESIS simulator, for example.

Methods

__call__(equations[, variables, method_options]) Generate abstract code from equations.

Details

__call__(equations, variables=None, method_options=None)
Generate abstract code from equations. The method also gets the the variables because some state updaters
have to check whether variable names reflect other state variables (which can change from timestep to
timestep) or are external values (which stay constant during a run) For convenience, this arguments are

554 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

optional – this allows to directly see what code a state updater generates for a set of equations by simply
writing euler(eqs), for example.

Parameters equations : Equations

The model equations.

variables : dict, optional

The Variable objects for the model variables.

method_options : dict, optional

Additional options specific to the state updater.

Returns :

——- :

code : str

The abstract code performing a state update step.

Functions

get_conditionally_linear_system(eqs[, vari-
ables])

Convert equations into a linear system using sympy.

get_conditionally_linear_system function

(Shortest import: from brian2.stateupdaters.exponential_euler import
get_conditionally_linear_system)

brian2.stateupdaters.exponential_euler.get_conditionally_linear_system(eqs,
vari-
ables=None)

Convert equations into a linear system using sympy.

Parameters eqs : Equations

The model equations.

Returns coefficients : dict of (sympy expression, sympy expression) tuples

For every variable x, a tuple (M, B) containing the coefficients M and B (as sympy
expressions) for M * x + B

Raises

ValueError If one of the equations cannot be converted into a M * x + B form.

Examples

>>> from brian2 import Equations
>>> eqs = Equations("""
... dv/dt = (-v + w**2) / tau : 1
... dw/dt = -w / tau : 1
... """)
>>> system = get_conditionally_linear_system(eqs)

6.4. Subpackages 555

Brian 2 Documentation, Release 2.1.1

>>> print(system['v'])
(-1/tau, w**2.0/tau)
>>> print(system['w'])
(-1/tau, 0)

Objects

exponential_euler A state updater for conditionally linear equations, i.e.

exponential_euler object

(Shortest import: from brian2 import exponential_euler)

brian2.stateupdaters.exponential_euler.exponential_euler = <brian2.stateupdaters.exponential_euler.ExponentialEulerStateUpdater object>
A state updater for conditionally linear equations, i.e. equations where each variable only depends linearly on
itself (but possibly non-linearly on other variables). Typical Hodgkin-Huxley equations fall into this category, it
is therefore the default integration method used in the GENESIS simulator, for example.

6.4.14 synapses package

Package providing synapse support.

parse_synaptic_generator_syntax module

Exported members: parse_synapse_generator

Functions

handle_range(*args, **kwds) Checks the arguments/keywords for the range iterator

handle_range function

(Shortest import: from brian2.synapses.parse_synaptic_generator_syntax import
handle_range)

brian2.synapses.parse_synaptic_generator_syntax.handle_range(*args, **kwds)
Checks the arguments/keywords for the range iterator

Should have 1-3 positional arguments.

Returns a dict with keys low, high, step. Default values are low=0, step=1.

handle_sample(*args, **kwds) Checks the arguments/keywords for the sample iterator

handle_sample function

(Shortest import: from brian2.synapses.parse_synaptic_generator_syntax import
handle_sample)

brian2.synapses.parse_synaptic_generator_syntax.handle_sample(*args, **kwds)

556 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

Checks the arguments/keywords for the sample iterator

Should have 1-3 positional arguments and 1 keyword argument (either p or size).

Returns a dict with keys low, high, step, sample_size, p, size. Default values are low=0,
step=1`. Sample size will be either ``'random' or 'fixed'. In the first case, pwill have
a value and size will be None (and vice versa for the second case).

parse_synapse_generator(expr) Returns a parsed form of a synapse generator expression.

parse_synapse_generator function

(Shortest import: from brian2.synapses.parse_synaptic_generator_syntax import
parse_synapse_generator)

brian2.synapses.parse_synaptic_generator_syntax.parse_synapse_generator(expr)
Returns a parsed form of a synapse generator expression.

The general form is:

element for iteration_variable in iterator_func(...)

or

element for iteration_variable in iterator_func(...) if if_expression

Returns a dictionary with keys:

original_expression The original expression as a string.

element As above, a string expression.

iteration_variable A variable name, as above.

iterator_func String. Either range or sample.

if_expression String expression or None.

iterator_kwds Dictionary of key/value pairs representing the keywords. See handle_range and
handle_sample.

spikequeue module

The spike queue class stores future synaptic events produced by a given presynaptic neuron group (or postsynaptic for
backward propagation in STDP).

Exported members: SpikeQueue

Classes

SpikeQueue(source_start, source_end) Data structure saving the spikes and taking care of delays.

SpikeQueue class

(Shortest import: from brian2.synapses.spikequeue import SpikeQueue)

class brian2.synapses.spikequeue.SpikeQueue(source_start, source_end)
Bases: object

6.4. Subpackages 557

https://docs.python.org/2/library/functions.html#object

Brian 2 Documentation, Release 2.1.1

Data structure saving the spikes and taking care of delays.

Parameters source_start : int

The start of the source indices (for subgroups)

source_end : int

The end of the source indices (for subgroups)

Notes :

—– :

Data structure :

A spike queue is implemented as a 2D array ‘X‘ that is circular in the time :

direction (rows) and dynamic in the events direction (columns). The :

row index corresponding to the current timestep is ‘currentime‘. :

Each element contains the target synapse index. :

Offsets :

Offsets are used to solve the problem of inserting multiple synaptic events :

with the same delay. This is difficult to vectorise. If there are n synaptic :

events with the same delay, these events are given an offset between 0 and :

n-1, corresponding to their relative position in the data structure. :

Attributes

_dt The dt used for storing the spikes (will be set in
prepare)

_source_end The end of the source indices (for subgroups)
_source_start The start of the source indices (for subgroups)
currenttime The current time (in time steps)
n number of events in each time step

Methods

advance() Advances by one timestep
peek() Returns the all the synaptic events corresponding to the

current time, as an array of synapse indexes.
prepare(delays, dt, synapse_sources) Prepare the data structures
push(sources) Push spikes to the queue.

Details

_dt
The dt used for storing the spikes (will be set in prepare)

_source_end
The end of the source indices (for subgroups)

558 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

_source_start
The start of the source indices (for subgroups)

currenttime
The current time (in time steps)

n
number of events in each time step

advance()
Advances by one timestep

peek()
Returns the all the synaptic events corresponding to the current time, as an array of synapse indexes.

prepare(delays, dt, synapse_sources)
Prepare the data structures

This is called every time the network is run. The size of the of the data structure (number of rows) is
adjusted to fit the maximum delay in delays, if necessary. A flag is set if delays are homogeneous, in
which case insertion will use a faster method implemented in insert_homogeneous.

push(sources)
Push spikes to the queue.

Parameters sources : ndarray of int

The indices of the neurons that spiked.

synapses module

Module providing the Synapses class and related helper classes/functions.

Exported members: Synapses

Classes

StateUpdater(group, method, clock, order[, . . .]) The CodeRunner that updates the state variables of a
Synapses at every timestep.

StateUpdater class

(Shortest import: from brian2.synapses.synapses import StateUpdater)

class brian2.synapses.synapses.StateUpdater(group, method, clock, order,
method_options=None)

Bases: brian2.groups.group.CodeRunner

The CodeRunner that updates the state variables of a Synapses at every timestep.

Methods

update_abstract_code([run_namespace, level])

6.4. Subpackages 559

Brian 2 Documentation, Release 2.1.1

Details

update_abstract_code(run_namespace=None, level=0)

SummedVariableUpdater(expression, . . .) The CodeRunner that updates a value in the target group
with the sum over values in the Synapses object.

SummedVariableUpdater class

(Shortest import: from brian2.synapses.synapses import SummedVariableUpdater)

class brian2.synapses.synapses.SummedVariableUpdater(expression, target_varname,
synapses, target, tar-
get_size_name, index_var)

Bases: brian2.groups.group.CodeRunner

The CodeRunner that updates a value in the target group with the sum over values in the Synapses object.

Synapses(source[, target, model, on_pre, . . .]) Class representing synaptic connections.

Synapses class

(Shortest import: from brian2 import Synapses)

class brian2.synapses.synapses.Synapses(source, target=None, model=None, on_pre=None,
pre=None, on_post=None, post=None, con-
nect=None, delay=None, on_event=’spike’,
multisynaptic_index=None, namespace=None,
dtype=None, codeobj_class=None, dt=None,
clock=None, order=0, method=(’exact’,
’euler’, ’heun’), method_options=None,
name=’synapses*’)

Bases: brian2.groups.group.Group

Class representing synaptic connections.

Creating a new Synapses object does by default not create any synapses, you have to call the Synapses.
connect() method for that.

Parameters source : SpikeSource

The source of spikes, e.g. a NeuronGroup.

target : Group, optional

The target of the spikes, typically a NeuronGroup. If none is given, the same as
source()

model : str, Equations, optional

The model equations for the synapses.

on_pre : str, dict, optional

The code that will be executed after every pre-synaptic spike. Can be either a single
(possibly multi-line) string, or a dictionary mapping pathway names to code strings. In
the first case, the pathway will be called pre and made available as an attribute of the

560 Chapter 6. brian2 package

https://docs.python.org/2/library/functions.html#str

Brian 2 Documentation, Release 2.1.1

same name. In the latter case, the given names will be used as the pathway/attribute
names. Each pathway has its own code and its own delays.

pre : str, dict, optional

Deprecated. Use on_pre instead.

on_post : str, dict, optional

The code that will be executed after every post-synaptic spike. Same conventions as for
on_pre`, the default name for the pathway is post.

post : str, dict, optional

Deprecated. Use on_post instead.

delay : Quantity , dict, optional

The delay for the “pre” pathway (same for all synapses) or a dictionary mapping path-
way names to delays. If a delay is specified in this way for a pathway, it is stored as a
single scalar value. It can still be changed afterwards, but only to a single scalar value.
If you want to have delays that vary across synapses, do not use the keyword argument,
but instead set the delays via the attribute of the pathway, e.g. S.pre.delay = ...
(or S.delay = ... as an abbreviation), S.post.delay = ..., etc.

on_event : str or dict, optional

Define the events which trigger the pre and post pathways. By default, both pathways
are triggered by the 'spike' event, i.e. the event that is triggered by the threshold
condition in the connected groups.

multisynaptic_index : str, optional

The name of a variable (which will be automatically created) that stores the “synapse
number”. This number enumerates all synapses between the same source and target so
that they can be distinguished. For models where each source-target pair has only a
single connection, this number only wastes memory (it would always default to 0), it is
therefore not stored by default. Defaults to None (no variable).

namespace : dict, optional

A dictionary mapping identifier names to objects. If not given, the namespace will be
filled in at the time of the call of Network.run(), with either the values from the
namespace argument of the Network.run() method or from the local context, if
no such argument is given.

dtype : dtype, dict, optional

The numpy.dtype that will be used to store the values, or a dictionary specifying the
type for variable names. If a value is not provided for a variable (or no value is provided
at all), the preference setting core.default_float_dtype is used.

codeobj_class : class, optional

The CodeObject class to use to run code.

dt : Quantity , optional

The time step to be used for the update of the state variables. Cannot be combined with
the clock argument.

clock : Clock, optional

The update clock to be used. If neither a clock, nor the dt argument is specified, the
defaultclock will be used.

6.4. Subpackages 561

https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype

Brian 2 Documentation, Release 2.1.1

order : int, optional

The priority of of this group for operations occurring at the same time step and in the
same scheduling slot. Defaults to 0.

method : str, StateUpdateMethod, optional

The numerical integration method to use. If none is given, an appropriate one is auto-
matically determined.

name : str, optional

The name for this object. If none is given, a unique name of the form synapses,
synapses_1, etc. will be automatically chosen.

Attributes

_connect_called remember whether connect was called to raise an error
if an

_pathways List of all SynapticPathway objects
_registered_variables Set of Variable objects that should be resized when

the
_synaptic_updaters List of names of all updaters, e.g.
events “Events” for all the pathways
namespace The group-specific namespace
state_updater Performs numerical integration step
subexpression_updater Update the “constant over a time step” subexpressions
summed_updaters “Summed variable” mechanism – sum over all synapses

of a

Methods

before_run(run_namespace)
check_variable_write(variable) Checks that Synapses.connect() has been called

before setting a synaptic variable.
connect(*args, **kwds) Add synapses.
register_variable(variable) Register a DynamicArray to be automatically resized

when the size of the indices change.
unregister_variable(variable) Unregister a DynamicArray from the automatic re-

sizing mechanism.

Details

_connect_called
remember whether connect was called to raise an error if an assignment to a synaptic variable is attempted
without a preceding connect.

_pathways
List of all SynapticPathway objects

_registered_variables
Set of Variable objects that should be resized when the number of synapses changes

_synaptic_updaters

562 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

List of names of all updaters, e.g. [‘pre’, ‘post’]

events
“Events” for all the pathways

namespace
The group-specific namespace

state_updater
Performs numerical integration step

subexpression_updater
Update the “constant over a time step” subexpressions

summed_updaters
“Summed variable” mechanism – sum over all synapses of a pre-/postsynaptic target

before_run(run_namespace)

check_variable_write(variable)
Checks that Synapses.connect() has been called before setting a synaptic variable.

Parameters variable : Variable

The variable that the user attempts to set.

Raises

TypeError If Synapses.connect() has not been called yet.

connect(*args, **kwds)
Add synapses.

See Synapses for details.

Parameters condition : str, bool, optional

A boolean or string expression that evaluates to a boolean. The expression can depend
on indices i and j and on pre- and post-synaptic variables. Can be combined with
arguments n, and p but not i or j.

i : int, ndarray of int, optional

The presynaptic neuron indices (in the form of an index or an array of indices). Must
be combined with j argument.

j : int, ndarray of int, str, optional

The postsynaptic neuron indices. It can be an index or array of indices if combined with
the i argument, or it can be a string generator expression.

p : float, str, optional

The probability to create n synapses wherever the condition evaluates to true. Can-
not be used with generator syntax for j.

n : int, str, optional

The number of synapses to create per pre/post connection pair. Defaults to 1.

skip_if_invalid : bool, optional

If set to True, rather than raising an error if you try to create an invalid/out of range pair
(i, j) it will just quietly skip those synapses.

6.4. Subpackages 563

Brian 2 Documentation, Release 2.1.1

namespace : dict-like, optional

A namespace that will be used in addition to the group-specific namespaces (if defined).
If not specified, the locals and globals around the run function will be used.

level : int, optional

How deep to go up the stack frame to look for the locals/global (see namespace
argument).

Examples

>>> from brian2 import *
>>> import numpy as np
>>> G = NeuronGroup(10, 'dv/dt = -v / tau : 1', threshold='v>1', reset='v=0')
>>> S = Synapses(G, G, 'w:1', on_pre='v+=w')
>>> S.connect(condition='i != j') # all-to-all but no self-connections
>>> S.connect(i=0, j=0) # connect neuron 0 to itself
>>> S.connect(i=np.array([1, 2]), j=np.array([2, 1])) # connect 1->2 and 2->1
>>> S.connect() # connect all-to-all
>>> S.connect(condition='i != j', p=0.1) # Connect neurons with 10%
→˓probability, exclude self-connections
>>> S.connect(j='i', n=2) # Connect all neurons to themselves with 2 synapses
>>> S.connect(j='k for k in range(i+1)') # Connect neuron i to all j with 0<=j
→˓<=i
>>> S.connect(j='i+(-1)**k for k in range(2) if i>0 and i<N_pre-1') # connect
→˓neuron i to its neighbours if it has both neighbours
>>> S.connect(j='k for k in sample(N_post, p=i*1.0/(N_pre-1))') # neuron i
→˓connects to j with probability i/(N-1)

register_variable(variable)
Register a DynamicArray to be automatically resized when the size of the indices change. Called
automatically when a SynapticArrayVariable specifier is created.

unregister_variable(variable)
Unregister a DynamicArray from the automatic resizing mechanism.

Tutorials and examples using this

• Tutorial 1-intro-to-brian-neurons

• Tutorial 2-intro-to-brian-synapses

• Tutorial 3-intro-to-brian-simulations

• Example COBAHH

• Example CUBA

• Example adaptive_threshold

• Example standalone/cuba_openmp

• Example standalone/STDP_standalone

• Example synapses/state_variables

• Example synapses/jeffress

• Example synapses/licklider

564 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

• Example synapses/nonlinear

• Example synapses/gapjunctions

• Example synapses/efficient_gaussian_connectivity

• Example synapses/spatial_connections

• Example synapses/STDP

• Example synapses/synapses

• Example frompapers/Vogels_et_al_2011

• Example frompapers/Sturzl_et_al_2000

• Example frompapers/Clopath_et_al_2010_homeostasis

• Example frompapers/Clopath_et_al_2010_no_homeostasis

• Example frompapers/Diesmann_et_al_1999

• Example frompapers/Kremer_et_al_2011_barrel_cortex

• Example frompapers/Brunel_Hakim_1999

• Example frompapers/Brette_2012/Fig5A

• Example frompapers/Stimberg_et_al_2018/example_4_rsmean

• Example frompapers/Stimberg_et_al_2018/example_6_COBA_with_astro

• Example frompapers/Stimberg_et_al_2018/example_3_io_synapse

• Example frompapers/Stimberg_et_al_2018/example_1_COBA

• Example frompapers/Stimberg_et_al_2018/example_4_synrel

• Example frompapers/Stimberg_et_al_2018/example_5_astro_ring

• Example frompapers/Stimberg_et_al_2018/example_2_gchi_astrocyte

• Example compartmental/lfp

• Example compartmental/bipolar_with_inputs

• Example compartmental/bipolar_with_inputs2

• Example advanced/custom_events

SynapticIndexing(synapses)

Methods

SynapticIndexing class

(Shortest import: from brian2.synapses.synapses import SynapticIndexing)

class brian2.synapses.synapses.SynapticIndexing(synapses)
Bases: object

6.4. Subpackages 565

https://docs.python.org/2/library/functions.html#object

Brian 2 Documentation, Release 2.1.1

Methods

__call__([index, index_var]) Returns synaptic indices for index, which can be a tu-
ple of indices (including arrays and slices), a single in-
dex or a string.

Details

__call__(index=None, index_var=’_idx’)
Returns synaptic indices for index, which can be a tuple of indices (including arrays and slices), a single
index or a string.

SynapticPathway(synapses, code, prepost[, . . .]) The CodeRunner that applies the pre/post statement(s) to
the state variables of synapses where the pre-/postsynaptic
group spiked in this time step.

SynapticPathway class

(Shortest import: from brian2.synapses.synapses import SynapticPathway)

class brian2.synapses.synapses.SynapticPathway(synapses, code, prepost, objname=None,
delay=None, event=’spike’)

Bases: brian2.groups.group.CodeRunner, brian2.groups.group.Group

The CodeRunner that applies the pre/post statement(s) to the state variables of synapses where the pre-
/postsynaptic group spiked in this time step.

Parameters synapses : Synapses

Reference to the main Synapses object

prepost : {‘pre’, ‘post’}

Whether this object should react to pre- or postsynaptic spikes

objname : str, optional

The name to use for the object, will be appendend to the name of synapses to create
a name in the sense of Nameable. If None is provided (the default), prepost will
be used.

delay : Quantity , optional

A scalar delay (same delay for all synapses) for this pathway. If not given, delays are
expected to vary between synapses.

Attributes

_initialise_queue_codeobj The CodeObject initalising the SpikeQueue at the
begin of a run

queue The SpikeQueue

566 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

Methods

before_run(*args, **kwds)
initialise_queue()
push_spikes()
update_abstract_code(*args, **kwds)

Details

_initialise_queue_codeobj
The CodeObject initalising the SpikeQueue at the begin of a run

queue
The SpikeQueue

before_run(*args, **kwds)

initialise_queue()

push_spikes()

update_abstract_code(*args, **kwds)

SynapticSubgroup(synapses, indices) A simple subgroup of Synapses that can be used for in-
dexing.

SynapticSubgroup class

(Shortest import: from brian2.synapses.synapses import SynapticSubgroup)

class brian2.synapses.synapses.SynapticSubgroup(synapses, indices)
Bases: object

A simple subgroup of Synapses that can be used for indexing.

Parameters indices : ndarray of int

The synaptic indices represented by this subgroup.

synaptic_pre : DynamicArrayVariable

References to all pre-synaptic indices. Only used to throw an error when new synapses
where added after creating this object.

Functions

find_synapses(index, synaptic_neuron)

find_synapses function

(Shortest import: from brian2.synapses.synapses import find_synapses)

brian2.synapses.synapses.find_synapses(index, synaptic_neuron)

6.4. Subpackages 567

https://docs.python.org/2/library/functions.html#object
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Brian 2 Documentation, Release 2.1.1

slice_to_test(x) Returns a testing function corresponding to whether an in-
dex is in slice x.

slice_to_test function

(Shortest import: from brian2.synapses.synapses import slice_to_test)

brian2.synapses.synapses.slice_to_test(x)
Returns a testing function corresponding to whether an index is in slice x. x can also be an int.

6.4.15 units package

The unit system.

Exported members: pamp, namp, uamp, mamp, amp, kamp, Mamp, Gamp, Tamp, kelvin, kilogram, pmetre,
nmetre, umetre, mmetre, metre, kmetre, Mmetre, Gmetre, Tmetre, pmeter, nmeter, umeter,
mmeter, meter . . . (216 more members)

allunits module

THIS FILE IS AUTOMATICALLY GENERATED BY A STATIC CODE GENERATION TOOL DO NOT EDIT BY
HAND

Instead edit the template:

dev/tools/static_codegen/units_template.py

Exported members: metre, meter, kilogram, second, amp, ampere, kelvin, mole, mol, candle,
kilogramme, gram, gramme, molar, radian, steradian, hertz, newton, pascal, joule, watt,
coulomb, volt, farad, ohm . . . (2045 more members)

Objects

celsius A dummy object to raise errors when celsius is used.

celsius object

(Shortest import: from brian2.units.allunits import celsius)

brian2.units.allunits.celsius = <brian2.units.allunits._Celsius object>
A dummy object to raise errors when celsius is used. The use of celsius can lead to ambiguities when
mixed with temperatures in kelvin, so its use is no longer supported. See github issue #817 for details.

constants module

A module providing some physical units as Quantity objects. Note that these units are not imported by wildcard
imports (e.g. from brian2 import *), they have to be imported explicitly. You can use import ... as
... to import them with shorter names, e.g.:

from brian2.units.constants import faraday_constant as F

The available constants are:

568 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

Constant Symbol(s) Brian name Value
Avogadro constant 𝑁𝐴, 𝐿 avogadro_constant 6.022140857× 1023 mol−1

Boltzmann constant 𝑘 boltzmann_constant 1.38064852× 10−23 J K−1

Electric constant 𝜖0 electric_constant 8.854187817× 10−12 F m−1

Electron mass 𝑚𝑒 electron_mass 9.10938356× 10−31 kg
Elementary charge 𝑒 elementary_charge 1.6021766208× 10−19 C

Faraday constant 𝐹 faraday_constant 96485.33289 C mol−1

Gas constant 𝑅 gas_constant 8.3144598 J mol−1 K−1

Magnetic constant 𝜇0 magnetic_constant 12.566370614× 10−7 N A−2

Molar mass constant 𝑀𝑢 molar_mass_constant 1× 10−3 kg mol−1

0°C zero_celsius 273.15 K

fundamentalunits module

Defines physical units and quantities

Quantity Unit Symbol
Length metre m
Mass kilogram kg
Time second s
Electric current ampere A
Temperature kelvin K
Quantity of substance mole mol
Luminosity candle cd

Exported members: DimensionMismatchError, get_or_create_dimension(),
get_dimensions(), is_dimensionless(), have_same_dimensions(), in_unit(),
in_best_unit(), Quantity , Unit, register_new_unit(), check_units(),
is_scalar_type(), get_unit(), unit_checking

Classes

Dimension(dims) Stores the indices of the 7 basic SI unit dimension (length,
mass, etc.).

Dimension class

(Shortest import: from brian2.units.fundamentalunits import Dimension)

class brian2.units.fundamentalunits.Dimension(dims)
Bases: object

Stores the indices of the 7 basic SI unit dimension (length, mass, etc.).

Provides a subset of arithmetic operations appropriate to dimensions: multiplication, division and powers, and
equality testing.

Parameters dims : sequence of float

The dimension indices of the 7 basic SI unit dimensions.

6.4. Subpackages 569

https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#float

Brian 2 Documentation, Release 2.1.1

Notes

Users shouldn’t use this class directly, it is used internally in Quantity and Unit. Even internally, never use
Dimension(...) to create a new instance, use get_or_create_dimension() instead. This function
makes sure that only one Dimension instance exists for every combination of indices, allowing for a very fast
dimensionality check with is.

Attributes

dim Returns the Dimension object itself.
is_dimensionless Whether this Dimension is dimensionless.

Methods

get_dimension(d) Return a specific dimension.

Details

dim
Returns the Dimension object itself. This can be useful, because it allows to check for the dimension of
an object by checking its dim attribute – this will return a Dimension object for Quantity , Unit and
Dimension.

is_dimensionless
Whether this Dimension is dimensionless.

Notes

Normally, instead one should check dimension for being identical to DIMENSIONLESS.

get_dimension(d)
Return a specific dimension.

Parameters d : str

A string identifying the SI basic unit dimension. Can be either a description like
“length” or a basic unit like “m” or “metre”.

Returns dim : float

The dimensionality of the dimension d.

DimensionMismatchError(description, *dims) Exception class for attempted operations with inconsistent
dimensions.

DimensionMismatchError class

(Shortest import: from brian2 import DimensionMismatchError)

class brian2.units.fundamentalunits.DimensionMismatchError(description, *dims)
Bases: exceptions.Exception

570 Chapter 6. brian2 package

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/exceptions.html#exceptions.Exception

Brian 2 Documentation, Release 2.1.1

Exception class for attempted operations with inconsistent dimensions.

For example, 3*mvolt + 2*amp raises this exception. The purpose of this class is to help catch errors based
on incorrect units. The exception will print a representation of the dimensions of the two inconsistent objects
that were operated on.

Parameters description : str

A description of the type of operation being performed, e.g. Addition, Multiplication,
etc.

dims : Dimension

The physical dimensions of the objects involved in the operation, any number of them
is possible

Tutorials and examples using this

• Tutorial 1-intro-to-brian-neurons

Quantity A number with an associated physical dimension.

Quantity class

(Shortest import: from brian2 import Quantity)

class brian2.units.fundamentalunits.Quantity
Bases: numpy.ndarray, object

A number with an associated physical dimension. In most cases, it is not necessary to create a Quantity object
by hand, instead use multiplication and division of numbers with the constant unit names second, kilogram,
etc.

See also:

Unit

Notes

The Quantity class defines arithmetic operations which check for consistency of dimensions and raise the
DimensionMismatchError exception if they are inconsistent. It also defines default and other representations for
a number for printing purposes.

See the documentation on the Unit class for more details about the available unit names like mvolt, etc.

Casting rules

The rules that define the casting operations for Quantity object are:

1. Quantity op Quantity = Quantity Performs dimension checking if appropriate

2. (Scalar or Array) op Quantity = Quantity Assumes that the scalar or array is dimensionless

There is one exception to the above rule, the number 0 is interpreted as having “any dimension”.

6.4. Subpackages 571

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/2/library/functions.html#object

Brian 2 Documentation, Release 2.1.1

Examples

>>> from brian2 import *
>>> I = 3 * amp # I is a Quantity object
>>> R = 2 * ohm # same for R
>>> I * R
6. * volt
>>> (I * R).in_unit(mvolt)
'6000. mV'
>>> (I * R) / mvolt
6000.0
>>> X = I + R
Traceback (most recent call last):

...
DimensionMismatchError: Addition, dimensions were (A) (m^2 kg s^-3 A^-2)
>>> Is = np.array([1, 2, 3]) * amp
>>> Is * R
array([2., 4., 6.]) * volt
>>> np.asarray(Is * R) # gets rid of units
array([2., 4., 6.])

Attributes

dimensions The physical dimensions of this quantity.
is_dimensionless Whether this is a dimensionless quantity.
dim The physical dimensions of this quantity.

Methods

with_dimensions(value, *args, **keywords) Create a Quantity object with dim.
has_same_dimensions(other) Return whether this object has the same dimensions as

another.
in_unit(u[, precision, python_code]) Represent the quantity in a given unit.
in_best_unit([precision, python_code]) Represent the quantity in the “best” unit.

Details

dimensions
The physical dimensions of this quantity.

is_dimensionless
Whether this is a dimensionless quantity.

dim
The physical dimensions of this quantity.

static with_dimensions(value, *args, **keywords)
Create a Quantity object with dim.

Parameters value : {array_like, number}

The value of the dimension

572 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

args : {Dimension, sequence of float}

Either a single argument (a Dimension) or a sequence of 7 values.

kwds :

Keywords defining the dim, see Dimension for details.

Returns q : Quantity

A Quantity object with the given dim

Examples

All of these define an equivalent Quantity object:

>>> from brian2 import *
>>> Quantity.with_dimensions(2, get_or_create_dimension(length=1))
2. * metre
>>> Quantity.with_dimensions(2, length=1)
2. * metre
>>> 2 * metre
2. * metre

has_same_dimensions(other)
Return whether this object has the same dimensions as another.

Parameters other : {Quantity , array-like, number}

The object to compare the dimensions against.

Returns same : bool

True if other has the same dimensions.

in_unit(u, precision=None, python_code=False)
Represent the quantity in a given unit. If python_code is True, this will return valid python code, i.e.
a string like 5.0 * um ** 2 instead of 5.0 um^2

Parameters u : {Quantity , Unit}

The unit in which to show the quantity.

precision : int, optional

The number of digits of precision (in the given unit, see Examples). If no value is given,
numpy’s get_printoptions() value is used.

python_code : bool, optional

Whether to return valid python code (True) or a human readable string (False, the
default).

Returns s : str

String representation of the object in unit u.

See also:

in_unit()

6.4. Subpackages 573

https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#str

Brian 2 Documentation, Release 2.1.1

Examples

>>> from brian2.units import *
>>> from brian2.units.stdunits import *
>>> x = 25.123456 * mV
>>> x.in_unit(volt)
'0.02512346 V'
>>> x.in_unit(volt, 3)
'0.025 V'
>>> x.in_unit(mV, 3)
'25.123 mV'

in_best_unit(precision=None, python_code=False, *regs)
Represent the quantity in the “best” unit.

Parameters python_code : bool, optional

If set to False (the default), will return a string like 5.0 um^2 which is not a valid
Python expression. If set to True, it will return 5.0 * um ** 2 instead.

precision : int, optional

The number of digits of precision (in the best unit, see Examples). If no value is given,
numpy’s get_printoptions() value is used.

regs : UnitRegistry objects

The registries where to search for units. If none are given, the standard, user-defined
and additional registries are searched in that order.

Returns representation : str

A string representation of this Quantity .

See also:

in_best_unit()

Examples

>>> from brian2.units import *

>>> x = 0.00123456 * volt

>>> x.in_best_unit()
'1.23456 mV'

>>> x.in_best_unit(3)
'1.235 mV'

Tutorials and examples using this

• Example frompapers/Platkiewicz_Brette_2011

• Example frompapers/Destexhe_et_al_1998

• Example frompapers/Stimberg_et_al_2018/example_1_COBA

574 Chapter 6. brian2 package

https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#str

Brian 2 Documentation, Release 2.1.1

Unit(value[, dim, scale, name, dispname, . . .]) A physical unit.

Unit class

(Shortest import: from brian2 import Unit)

class brian2.units.fundamentalunits.Unit(value, dim=None, scale=0, name=None, disp-
name=None, latexname=”, iscompound=False)

Bases: brian2.units.fundamentalunits.Quantity

A physical unit.

Normally, you do not need to worry about the implementation of units. They are derived from the
Quantity object with some additional information (name and string representation).

Basically, a unit is just a number with given dimensions, e.g. mvolt = 0.001 with the dimensions of
voltage. The units module defines a large number of standard units, and you can also define your
own (see below).

The unit class also keeps track of various things that were used to define it so as to generate a nice
string representation of it. See below.

When creating scaled units, you can use the following prefixes:

Factor Name Prefix
10^24 yotta Y
10^21 zetta Z
10^18 exa E
10^15 peta P
10^12 tera T
10^9 giga G
10^6 mega M
10^3 kilo k
10^2 hecto h
10^1 deka da
1
10^-1 deci d
10^-2 centi c
10^-3 milli m
10^-6 micro u (mu in SI)
10^-9 nano n
10^-12 pico p
10^-15 femto f
10^-18 atto a
10^-21 zepto z
10^-24 yocto y

Defining your own

It can be useful to define your own units for printing purposes. So for example, to define the newton
metre, you write

>>> from brian2 import *
>>> from brian2.units.allunits import newton
>>> Nm = newton * metre

6.4. Subpackages 575

Brian 2 Documentation, Release 2.1.1

You can then do

>>> (1*Nm).in_unit(Nm)
'1. N m'

New “compound units”, i.e. units that are composed of other units will be automatically registered
and from then on used for display. For example, imagine you define total conductance for a mem-
brane, and the total area of that membrane:

>>> conductance = 10.*nS
>>> area = 20000*um**2

If you now ask for the conductance density, you will get an “ugly” display in basic SI dimensions, as
Brian does not know of a corresponding unit:

>>> conductance/area
0.5 * metre ** -4 * kilogram ** -1 * second ** 3 * amp ** 2

By using an appropriate unit once, it will be registered and from then on used for display when
appropriate:

>>> usiemens/cm**2
usiemens / cmetre ** 2
>>> conductance/area # same as before, but now Brian nows about uS/cm^2
50. * usiemens / cmetre ** 2

Note that user-defined units cannot override the standard units (volt, second, etc.) that are prede-
fined by Brian. For example, the unit Nm has the dimensions “length2·mass/time2”, and therefore the
same dimensions as the standard unit joule. The latter will be used for display purposes:

>>> 3*joule
3. * joule
>>> 3*Nm
3. * joule

Attributes

_dispname The display name of this unit.
_latexname A LaTeX expression for the name of this unit.
_name The full name of this unit.
dim The Dimensions of this unit
dispname The display name of the unit
iscompound Whether this unit is a combination of other units.
latexname The LaTeX name of the unit
name The name of the unit
scale The scale for this unit (as the integer exponent of 10),

i.e.

Methods

576 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

create(dim, name, dispname[, latexname, scale]) Create a new named unit.
create_scaled_unit(baseunit, scalefactor) Create a scaled unit from a base unit.
set_display_name(name) Sets the display name for the unit.
set_latex_name(name) Sets the LaTeX name for the unit.
set_name(name) Sets the name for the unit.

Details

_dispname
The display name of this unit.

_latexname
A LaTeX expression for the name of this unit.

_name
The full name of this unit.

dim
The Dimensions of this unit

dispname
The display name of the unit

iscompound
Whether this unit is a combination of other units.

latexname
The LaTeX name of the unit

name
The name of the unit

scale
The scale for this unit (as the integer exponent of 10), i.e. a scale of 3 means 10^3, e.g. for a “k” prefix.

static create(dim, name, dispname, latexname=None, scale=0)
Create a new named unit.

Parameters dim : Dimension

The dimensions of the unit.

name : str

The full name of the unit, e.g. 'volt'

dispname : str

The display name, e.g. 'V'

latexname : str, optional

The name as a LaTeX expression (math mode is assumed, do not add $ signs or similar),
e.g. '\omega'. If no latexname is specified, dispname will be used.

scale : int, optional

The scale of this unit as an exponent of 10, e.g. -3 for a unit that is 1/1000 of the base
scale. Defaults to 0 (i.e. a base unit).

Returns u : Unit

The new unit.

6.4. Subpackages 577

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str

Brian 2 Documentation, Release 2.1.1

static create_scaled_unit(baseunit, scalefactor)
Create a scaled unit from a base unit.

Parameters baseunit : Unit

The unit of which to create a scaled version, e.g. volt, amp.

scalefactor : str

The scaling factor, e.g. "m" for mvolt, mamp

Returns u : Unit

The new unit.

set_display_name(name)
Sets the display name for the unit.

Deprecated since version 2.1: Create a new unit with Unit.create instead.

set_latex_name(name)
Sets the LaTeX name for the unit.

Deprecated since version 2.1: Create a new unit with Unit.create instead.

set_name(name)
Sets the name for the unit.

Deprecated since version 2.1: Create a new unit with Unit.create instead.

UnitRegistry() Stores known units for printing in best units.

UnitRegistry class

(Shortest import: from brian2.units.fundamentalunits import UnitRegistry)

class brian2.units.fundamentalunits.UnitRegistry
Bases: object

Stores known units for printing in best units.

All a user needs to do is to use the register_new_unit() function.

Default registries:

The units module defines three registries, the standard units, user units, and additional units. Finding best
units is done by first checking standard, then user, then additional. New user units are added by using the
register_new_unit() function.

Standard units includes all the basic non-compound unit names built in to the module, including volt, amp, etc.
Additional units defines some compound units like newton metre (Nm) etc.

Methods

add(u) Add a unit to the registry
__getitem__(x) Returns the best unit for quantity x

578 Chapter 6. brian2 package

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#object

Brian 2 Documentation, Release 2.1.1

Details

add(u)
Add a unit to the registry

__getitem__(x)
Returns the best unit for quantity x

The algorithm is to consider the value:

m=abs(x/u)

for all matching units u. We select the unit where this ratio is the closest to 10 (if it is an array with several
values, we select the unit where the deviations from that are the smallest. More precisely, the unit that
minimizes the sum of (log10(m)-1)**2 over all entries).

Functions

check_units(**au) Decorator to check units of arguments passed to a function

check_units function

(Shortest import: from brian2 import check_units)

brian2.units.fundamentalunits.check_units(**au)
Decorator to check units of arguments passed to a function

Raises

DimensionMismatchError In case the input arguments or the return value do not have the expected di-
mensions.

TypeError If an input argument or return value was expected to be a boolean but is not.

Notes

This decorator will destroy the signature of the original function, and replace it with the signature (*args,
**kwds). Other decorators will do the same thing, and this decorator critically needs to know the signature of
the function it is acting on, so it is important that it is the first decorator to act on a function. It cannot be used
in combination with another decorator that also needs to know the signature of the function.

Note that the bool type is “strict”, i.e. it expects a proper boolean value and does not accept 0 or 1. This is not
the case the other way round, declaring an argument or return value as “1” does allow for a True or False
value.

Examples

>>> from brian2.units import *
>>> @check_units(I=amp, R=ohm, wibble=metre, result=volt)
... def getvoltage(I, R, **k):
... return I*R

6.4. Subpackages 579

Brian 2 Documentation, Release 2.1.1

You don’t have to check the units of every variable in the function, and you can define what the units should be
for variables that aren’t explicitly named in the definition of the function. For example, the code above checks
that the variable wibble should be a length, so writing

>>> getvoltage(1*amp, 1*ohm, wibble=1)
Traceback (most recent call last):
...
DimensionMismatchError: Function "getvoltage" variable "wibble" has wrong
→˓dimensions, dimensions were (1) (m)

fails, but

>>> getvoltage(1*amp, 1*ohm, wibble=1*metre)
1. * volt

passes. String arguments or None are not checked

>>> getvoltage(1*amp, 1*ohm, wibble='hello')
1. * volt

By using the special name result, you can check the return value of the function.

You can also use 1 or bool as a special value to check for a unitless number or a boolean value, respectively:
>>> @check_units(value=1, absolute=bool, result=bool) . . . def is_high(value, absolute=False): . . . if absolute:
. . . return abs(value) >= 5 . . . else: . . . return value >= 5

This will then again raise an error if the argument if not of the expected type: >>> is_high(7) True >>> is_high(-
7, True) True >>> is_high(3, 4) # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last):
. . . TypeError: Function “is_high” expected a boolean value for argument “absolute” but got 4.

fail_for_dimension_mismatch(obj1[, obj2, . . .]) Compare the dimensions of two objects.

fail_for_dimension_mismatch function

(Shortest import: from brian2.units.fundamentalunits import fail_for_dimension_mismatch)

brian2.units.fundamentalunits.fail_for_dimension_mismatch(obj1, obj2=None, er-
ror_message=None,
**error_quantities)

Compare the dimensions of two objects.

Parameters obj1, obj2 : {array-like, Quantity}

The object to compare. If obj2 is None, assume it to be dimensionless

error_message : str, optional

An error message that is used in the DimensionMismatchError

error_quantities : dict mapping str to Quantity , optional

Quantities in this dictionary will be converted using the _short_str helper method
and inserted into the error_message (which should have placeholders with the cor-
responding names). The reason for doing this in a somewhat complicated way instead of
directly including all the details in error_messsage is that converting large quantity
arrays to strings can be rather costly and we don’t want to do it if no error occured.

Returns dim1, dim2 : Dimension, Dimension

580 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

The physical dimensions of the two arguments (so that later code does not need to get
the dimensions again).

Raises

DimensionMismatchError If the dimensions of obj1 and obj2 do not match (or, if obj2 is None, in
case obj1 is not dimensionsless).

Notes

Implements special checking for 0, treating it as having “any dimensions”.

get_dimensions(obj) Return the dimensions of any object that has them.

get_dimensions function

(Shortest import: from brian2 import get_dimensions)

brian2.units.fundamentalunits.get_dimensions(obj)
Return the dimensions of any object that has them.

Slightly more general than Quantity.dimensions because it will return DIMENSIONLESS if the object
is of number type but not a Quantity (e.g. a float or int).

Parameters obj : object

The object to check.

Returns dim: ‘Dimension‘ :

The physical dimensions of the obj.

get_or_create_dimension(*args, **kwds) Create a new Dimension object or get a reference to an ex-
isting one.

get_or_create_dimension function

(Shortest import: from brian2 import get_or_create_dimension)

brian2.units.fundamentalunits.get_or_create_dimension(*args, **kwds)
Create a new Dimension object or get a reference to an existing one. This function takes care of only creating
new objects if they were not created before and otherwise returning a reference to an existing object. This allows
to compare dimensions very efficiently using is.

Parameters args : sequence of float

A sequence with the indices of the 7 elements of an SI dimension.

kwds : keyword arguments

a sequence of keyword=value pairs where the keywords are the names of the SI
dimensions, or the standard unit.

6.4. Subpackages 581

https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#float

Brian 2 Documentation, Release 2.1.1

Notes

The 7 units are (in order):

Length, Mass, Time, Electric Current, Temperature, Quantity of Substance, Luminosity

and can be referred to either by these names or their SI unit names, e.g. length, metre, and m all refer to the
same thing here.

Examples

The following are all definitions of the dimensions of force

>>> from brian2 import *
>>> get_or_create_dimension(length=1, mass=1, time=-2)
metre * kilogram * second ** -2
>>> get_or_create_dimension(m=1, kg=1, s=-2)
metre * kilogram * second ** -2
>>> get_or_create_dimension([1, 1, -2, 0, 0, 0, 0])
metre * kilogram * second ** -2

get_unit(d) Find an unscaled unit (e.g.

get_unit function

(Shortest import: from brian2 import get_unit)

brian2.units.fundamentalunits.get_unit(d)
Find an unscaled unit (e.g. volt but not mvolt) for a Dimension.

Parameters d : Dimension

The dimension to find a unit for.

Returns u : Unit

A registered unscaled Unit for the dimensions d, or a new Unit if no unit was found.

get_unit_for_display(d) Return a string representation of an appropriate unscaled
unit or '1' for a dimensionless quantity.

get_unit_for_display function

(Shortest import: from brian2.units.fundamentalunits import get_unit_for_display)

brian2.units.fundamentalunits.get_unit_for_display(d)
Return a string representation of an appropriate unscaled unit or '1' for a dimensionless quantity.

Parameters d : Dimension

The dimension to find a unit for.

Returns s : str

A string representation of the respective unit or the string '1'.

582 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

have_same_dimensions(obj1, obj2) Test if two values have the same dimensions.

have_same_dimensions function

(Shortest import: from brian2 import have_same_dimensions)

brian2.units.fundamentalunits.have_same_dimensions(obj1, obj2)
Test if two values have the same dimensions.

Parameters obj1, obj2 : {Quantity , array-like, number}

The values of which to compare the dimensions.

Returns same : bool

True if obj1 and obj2 have the same dimensions.

in_best_unit(x[, precision]) Represent the value in the “best” unit.

in_best_unit function

(Shortest import: from brian2 import in_best_unit)

brian2.units.fundamentalunits.in_best_unit(x, precision=None)
Represent the value in the “best” unit.

Parameters x : {Quantity , array-like, number}

The value to display

precision : int, optional

The number of digits of precision (in the best unit, see Examples). If no value is given,
numpy’s get_printoptions() value is used.

Returns representation : str

A string representation of this Quantity .

See also:

Quantity.in_best_unit()

Examples

>>> from brian2.units import *
>>> in_best_unit(0.00123456 * volt)
'1.23456 mV'
>>> in_best_unit(0.00123456 * volt, 2)
'1.23 mV'
>>> in_best_unit(0.123456)
'0.123456'
>>> in_best_unit(0.123456, 2)
'0.12'

6.4. Subpackages 583

https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#str

Brian 2 Documentation, Release 2.1.1

in_unit(x, u[, precision]) Display a value in a certain unit with a given precision.

in_unit function

(Shortest import: from brian2 import in_unit)

brian2.units.fundamentalunits.in_unit(x, u, precision=None)
Display a value in a certain unit with a given precision.

Parameters x : {Quantity , array-like, number}

The value to display

u : {Quantity , Unit}

The unit to display the value x in.

precision : int, optional

The number of digits of precision (in the given unit, see Examples). If no value is given,
numpy’s get_printoptions() value is used.

Returns s : str

A string representation of x in units of u.

See also:

Quantity.in_unit()

Examples

>>> from brian2 import *
>>> in_unit(3 * volt, mvolt)
'3000. mV'
>>> in_unit(123123 * msecond, second, 2)
'123.12 s'
>>> in_unit(10 * uA/cm**2, nA/um**2)
'1.00000000e-04 nA/um^2'
>>> in_unit(10 * mV, ohm * amp)
'0.01 ohm A'
>>> in_unit(10 * nS, ohm)
...
Traceback (most recent call last):

...
DimensionMismatchError: Non-matching unit for method "in_unit",
dimensions were (m^-2 kg^-1 s^3 A^2) (m^2 kg s^-3 A^-2)

is_dimensionless(obj) Test if a value is dimensionless or not.

is_dimensionless function

(Shortest import: from brian2 import is_dimensionless)

brian2.units.fundamentalunits.is_dimensionless(obj)
Test if a value is dimensionless or not.

584 Chapter 6. brian2 package

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#str

Brian 2 Documentation, Release 2.1.1

Parameters obj : object

The object to check.

Returns dimensionless : bool

True if obj is dimensionless.

is_scalar_type(obj) Tells you if the object is a 1d number type.

is_scalar_type function

(Shortest import: from brian2 import is_scalar_type)

brian2.units.fundamentalunits.is_scalar_type(obj)
Tells you if the object is a 1d number type.

Parameters obj : object

The object to check.

Returns scalar : bool

True if obj is a scalar that can be interpreted as a dimensionless Quantity .

quantity_with_dimensions(floatval, dims) Create a new Quantity with the given dimensions.

quantity_with_dimensions function

(Shortest import: from brian2.units.fundamentalunits import quantity_with_dimensions)

brian2.units.fundamentalunits.quantity_with_dimensions(floatval, dims)
Create a new Quantity with the given dimensions. Calls get_or_create_dimensionswith the dimen-
sion tuple of the dims argument to make sure that unpickling (which calls this function) does not accidentally
create new Dimension objects which should instead refer to existing ones.

Parameters floatval : float

The floating point value of the quantity.

dims : Dimension

The physical dimensions of the quantity.

Returns q : Quantity

A quantity with the given dimensions.

See also:

get_or_create_dimensions

Examples

>>> from brian2 import *
>>> quantity_with_dimensions(0.001, volt.dim)
1. * mvolt

6.4. Subpackages 585

https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#float

Brian 2 Documentation, Release 2.1.1

register_new_unit(u) Register a new unit for automatic displaying of quantities

register_new_unit function

(Shortest import: from brian2 import register_new_unit)

brian2.units.fundamentalunits.register_new_unit(u)
Register a new unit for automatic displaying of quantities

Parameters u : Unit

The unit that should be registered.

Examples

>>> from brian2 import *
>>> 2.0*farad/metre**2
2. * metre ** -4 * kilogram ** -1 * second ** 4 * amp ** 2
>>> register_new_unit(pfarad / mmetre**2)
>>> 2.0*farad/metre**2
2000000. * pfarad / mmetre ** 2

wrap_function_change_dimensions(func, . . .) Returns a new function that wraps the given function func
so that it changes the dimensions of its input.

wrap_function_change_dimensions function

(Shortest import: from brian2.units.fundamentalunits import wrap_function_change_dimensions)

brian2.units.fundamentalunits.wrap_function_change_dimensions(func,
change_dim_func)

Returns a new function that wraps the given function func so that it changes the dimensions of its input.
Quantities are transformed to unitless numpy arrays before calling func, the output is a quantity with the
original dimensions passed through the function change_dim_func. A typical use would be a sqrt function
that uses lambda d: d ** 0.5 as change_dim_func.

These transformations apply only to the very first argument, all other arguments are ignored/untouched.

wrap_function_dimensionless(func) Returns a new function that wraps the given function func
so that it raises a DimensionMismatchError if the function
is called on a quantity with dimensions (excluding dimen-
sionless quantities).

wrap_function_dimensionless function

(Shortest import: from brian2.units.fundamentalunits import wrap_function_dimensionless)

brian2.units.fundamentalunits.wrap_function_dimensionless(func)

586 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

Returns a new function that wraps the given function func so that it raises a DimensionMismatchError if the
function is called on a quantity with dimensions (excluding dimensionless quantities). Quantities are trans-
formed to unitless numpy arrays before calling func.

These checks/transformations apply only to the very first argument, all other arguments are ignored/untouched.

wrap_function_keep_dimensions(func) Returns a new function that wraps the given function func
so that it keeps the dimensions of its input.

wrap_function_keep_dimensions function

(Shortest import: from brian2.units.fundamentalunits import wrap_function_keep_dimensions)

brian2.units.fundamentalunits.wrap_function_keep_dimensions(func)
Returns a new function that wraps the given function func so that it keeps the dimensions of its input. Quan-
tities are transformed to unitless numpy arrays before calling func, the output is a quantity with the original
dimensions re-attached.

These transformations apply only to the very first argument, all other arguments are ignored/untouched, allowing
to work functions like sum to work as expected with additional axis etc. arguments.

wrap_function_remove_dimensions(func) Returns a new function that wraps the given function func
so that it removes any dimensions from its input.

wrap_function_remove_dimensions function

(Shortest import: from brian2.units.fundamentalunits import wrap_function_remove_dimensions)

brian2.units.fundamentalunits.wrap_function_remove_dimensions(func)
Returns a new function that wraps the given function func so that it removes any dimensions from its input.
Useful for functions that are returning integers (indices) or booleans, irrespective of the datatype contained in
the array.

These transformations apply only to the very first argument, all other arguments are ignored/untouched.

Objects

DIMENSIONLESS The singleton object for dimensionless Dimensions.

DIMENSIONLESS object

(Shortest import: from brian2.units.fundamentalunits import DIMENSIONLESS)

brian2.units.fundamentalunits.DIMENSIONLESS = Dimension()
The singleton object for dimensionless Dimensions.

additional_unit_register UnitRegistry containing additional units (new-
ton*metre, farad / metre, . . .)

6.4. Subpackages 587

Brian 2 Documentation, Release 2.1.1

additional_unit_register object

(Shortest import: from brian2.units.fundamentalunits import additional_unit_register)

brian2.units.fundamentalunits.additional_unit_register = <brian2.units.fundamentalunits.UnitRegistry object>
UnitRegistry containing additional units (newton*metre, farad / metre, . . .)

standard_unit_register UnitRegistry containing all the standard units (metre,
kilogram, um2. . .)

standard_unit_register object

(Shortest import: from brian2.units.fundamentalunits import standard_unit_register)

brian2.units.fundamentalunits.standard_unit_register = <brian2.units.fundamentalunits.UnitRegistry object>
UnitRegistry containing all the standard units (metre, kilogram, um2. . .)

user_unit_register UnitRegistry containing all units defined by the user

user_unit_register object

(Shortest import: from brian2.units.fundamentalunits import user_unit_register)

brian2.units.fundamentalunits.user_unit_register = <brian2.units.fundamentalunits.UnitRegistry object>
UnitRegistry containing all units defined by the user

stdunits module

Optional short unit names

This module defines the following short unit names:

mV, mA, uA (micro_amp), nA, pA, mF, uF, nF, nS, mS, uS, ms, Hz, kHz, MHz, cm, cm2, cm3, mm, mm2, mm3, um,
um2, um3

Exported members: mV, mA, uA, nA, pA, pF, uF, nF, nS, uS, mS, ms, us, Hz, kHz, MHz, cm, cm2, cm3, mm, mm2,
mm3, um, um2, um3 . . . (3 more members)

unitsafefunctions module

Unit-aware replacements for numpy functions.

Exported members: log(), log10(), exp(), sin(), cos(), tan(), arcsin(), arccos(), arctan(),
sinh(), cosh(), tanh(), arcsinh(), arccosh(), arctanh(), diagonal(), ravel(), trace(),
dot(), where(), ones_like(), zeros_like(), arange(), linspace()

Functions

arange([start,] stop[, step,][, dtype]) Return evenly spaced values within a given interval.

588 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

arange function

(Shortest import: from brian2 import arange)

brian2.units.unitsafefunctions.arange([start], stop[, step], dtype=None)
Return evenly spaced values within a given interval.

Values are generated within the half-open interval [start, stop) (in other words, the interval including
start but excluding stop()). For integer arguments the function is equivalent to the Python built-in range
function, but returns an ndarray rather than a list.

When using a non-integer step, such as 0.1, the results will often not be consistent. It is better to use linspace
for these cases.

Parameters start : number, optional

Start of interval. The interval includes this value. The default start value is 0.

stop : number

End of interval. The interval does not include this value, except in some cases where
step is not an integer and floating point round-off affects the length of out.

step : number, optional

Spacing between values. For any output out, this is the distance between two adjacent
values, out[i+1] - out[i]. The default step size is 1. If step is specified,
start must also be given.

dtype : dtype

The type of the output array. If dtype is not given, infer the data type from the other
input arguments.

Returns arange : ndarray

Array of evenly spaced values.

For floating point arguments, the length of the result is ceil((stop - start)/
step). Because of floating point overflow, this rule may result in the last element of
out being greater than stop().

See also:

linspace() Evenly spaced numbers with careful handling of endpoints.

ogrid Arrays of evenly spaced numbers in N-dimensions.

mgrid Grid-shaped arrays of evenly spaced numbers in N-dimensions.

Examples

>>> np.arange(3)
array([0, 1, 2])
>>> np.arange(3.0)
array([0., 1., 2.])
>>> np.arange(3,7)
array([3, 4, 5, 6])
>>> np.arange(3,7,2)
array([3, 5])

6.4. Subpackages 589

http://docs.python.org/lib/built-in-funcs.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype

Brian 2 Documentation, Release 2.1.1

arccos(x, /[, out, where, casting, order, . . .]) Trigonometric inverse cosine, element-wise.

arccos function

(Shortest import: from brian2 import arccos)

brian2.units.unitsafefunctions.arccos(x, /, out=None, *, where=True, casting=’same_kind’,
order=’K’, dtype=None, subok=True[, signature, ex-
tobj])

Trigonometric inverse cosine, element-wise.

The inverse of cos() so that, if y = cos(x), then x = arccos(y).

Parameters x : array_like

x-coordinate on the unit circle. For real arguments, the domain is [-1, 1].

out : ndarray, None, or tuple of ndarray and None, optional

A location into which the result is stored. If provided, it must have a shape that the
inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A
tuple (possible only as a keyword argument) must have length equal to the number of
outputs.

where : array_like, optional

Values of True indicate to calculate the ufunc at that position, values of False indicate
to leave the value in the output alone.

**kwargs :

For other keyword-only arguments, see the ufunc docs.

Returns angle : ndarray

The angle of the ray intersecting the unit circle at the given x-coordinate in radians [0,
pi]. If x is a scalar then a scalar is returned, otherwise an array of the same shape as x
is returned.

See also:

cos(), arctan(), arcsin(), emath.arccos

Notes

arccos() is a multivalued function: for each x there are infinitely many numbers z such that cos(z) = x.
The convention is to return the angle z whose real part lies in [0, pi].

For real-valued input data types, arccos() always returns real output. For each value that cannot be expressed
as a real number or infinity, it yields nan and sets the invalid floating point error flag.

For complex-valued input, arccos() is a complex analytic function that has branch cuts [-inf, -1] and
[1, inf] and is continuous from above on the former and from below on the latter.

The inverse cos() is also known as acos or cos^-1.

590 Chapter 6. brian2 package

https://docs.python.org/2/library/constants.html#None
https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

Brian 2 Documentation, Release 2.1.1

References

M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, 10th printing, 1964, pp. 79. http:
//www.math.sfu.ca/~cbm/aands/

Examples

We expect the arccos of 1 to be 0, and of -1 to be pi:

>>> np.arccos([1, -1])
array([0. , 3.14159265])

Plot arccos:

>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-1, 1, num=100)
>>> plt.plot(x, np.arccos(x))
>>> plt.axis('tight')
>>> plt.show()

arccosh(x, /[, out, where, casting, order, . . .]) Inverse hyperbolic cosine, element-wise.

arccosh function

(Shortest import: from brian2 import arccosh)

brian2.units.unitsafefunctions.arccosh(x, /, out=None, *, where=True, cast-
ing=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj])

Inverse hyperbolic cosine, element-wise.

Parameters x : array_like

Input array.

out : ndarray, None, or tuple of ndarray and None, optional

A location into which the result is stored. If provided, it must have a shape that the
inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A
tuple (possible only as a keyword argument) must have length equal to the number of
outputs.

where : array_like, optional

Values of True indicate to calculate the ufunc at that position, values of False indicate
to leave the value in the output alone.

**kwargs :

For other keyword-only arguments, see the ufunc docs.

Returns arccosh : ndarray

Array of the same shape as x.

See also:

cosh(), arcsinh(), sinh(), arctanh(), tanh()

6.4. Subpackages 591

http://www.math.sfu.ca/~cbm/aands/
http://www.math.sfu.ca/~cbm/aands/
https://docs.python.org/2/library/constants.html#None
https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

Brian 2 Documentation, Release 2.1.1

Notes

arccosh() is a multivalued function: for each x there are infinitely many numbers z such that cosh(z) =
x. The convention is to return the z whose imaginary part lies in [-pi, pi] and the real part in [0, inf].

For real-valued input data types, arccosh() always returns real output. For each value that cannot be ex-
pressed as a real number or infinity, it yields nan and sets the invalid floating point error flag.

For complex-valued input, arccosh() is a complex analytical function that has a branch cut [-inf, 1]
and is continuous from above on it.

References

[R13], [R14]

Examples

>>> np.arccosh([np.e, 10.0])
array([1.65745445, 2.99322285])
>>> np.arccosh(1)
0.0

arcsin(x, /[, out, where, casting, order, . . .]) Inverse sine, element-wise.

arcsin function

(Shortest import: from brian2 import arcsin)

brian2.units.unitsafefunctions.arcsin(x, /, out=None, *, where=True, casting=’same_kind’,
order=’K’, dtype=None, subok=True[, signature, ex-
tobj])

Inverse sine, element-wise.

Parameters x : array_like

y-coordinate on the unit circle.

out : ndarray, None, or tuple of ndarray and None, optional

A location into which the result is stored. If provided, it must have a shape that the
inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A
tuple (possible only as a keyword argument) must have length equal to the number of
outputs.

where : array_like, optional

Values of True indicate to calculate the ufunc at that position, values of False indicate
to leave the value in the output alone.

**kwargs :

For other keyword-only arguments, see the ufunc docs.

Returns angle : ndarray

592 Chapter 6. brian2 package

https://docs.python.org/2/library/constants.html#None
https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

Brian 2 Documentation, Release 2.1.1

The inverse sine of each element in x, in radians and in the closed interval [-pi/2,
pi/2]. If x is a scalar, a scalar is returned, otherwise an array.

See also:

sin(), cos(), arccos(), tan(), arctan(), arctan2, emath.arcsin

Notes

arcsin() is a multivalued function: for each x there are infinitely many numbers z such that 𝑠𝑖𝑛(𝑧) = 𝑥.
The convention is to return the angle z whose real part lies in [-pi/2, pi/2].

For real-valued input data types, arcsin always returns real output. For each value that cannot be expressed as a
real number or infinity, it yields nan and sets the invalid floating point error flag.

For complex-valued input, arcsin() is a complex analytic function that has, by convention, the branch cuts
[-inf, -1] and [1, inf] and is continuous from above on the former and from below on the latter.

The inverse sine is also known as asin or sin^{-1}.

References

Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions, 10th printing, New York: Dover,
1964, pp. 79ff. http://www.math.sfu.ca/~cbm/aands/

Examples

>>> np.arcsin(1) # pi/2
1.5707963267948966
>>> np.arcsin(-1) # -pi/2
-1.5707963267948966
>>> np.arcsin(0)
0.0

arcsinh(x, /[, out, where, casting, order, . . .]) Inverse hyperbolic sine element-wise.

arcsinh function

(Shortest import: from brian2 import arcsinh)

brian2.units.unitsafefunctions.arcsinh(x, /, out=None, *, where=True, cast-
ing=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj])

Inverse hyperbolic sine element-wise.

Parameters x : array_like

Input array.

out : ndarray, None, or tuple of ndarray and None, optional

A location into which the result is stored. If provided, it must have a shape that the
inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A

6.4. Subpackages 593

http://www.math.sfu.ca/~cbm/aands/
https://docs.python.org/2/library/constants.html#None

Brian 2 Documentation, Release 2.1.1

tuple (possible only as a keyword argument) must have length equal to the number of
outputs.

where : array_like, optional

Values of True indicate to calculate the ufunc at that position, values of False indicate
to leave the value in the output alone.

**kwargs :

For other keyword-only arguments, see the ufunc docs.

Returns out : ndarray

Array of of the same shape as x.

Notes

arcsinh() is a multivalued function: for each x there are infinitely many numbers z such that sinh(z) =
x. The convention is to return the z whose imaginary part lies in [-pi/2, pi/2].

For real-valued input data types, arcsinh() always returns real output. For each value that cannot be ex-
pressed as a real number or infinity, it returns nan and sets the invalid floating point error flag.

For complex-valued input, arccos() is a complex analytical function that has branch cuts [1j, infj] and
[-1j, -infj] and is continuous from the right on the former and from the left on the latter.

The inverse hyperbolic sine is also known as asinh or sinh^-1.

References

[R15], [R16]

Examples

>>> np.arcsinh(np.array([np.e, 10.0]))
array([1.72538256, 2.99822295])

arctan(x, /[, out, where, casting, order, . . .]) Trigonometric inverse tangent, element-wise.

arctan function

(Shortest import: from brian2 import arctan)

brian2.units.unitsafefunctions.arctan(x, /, out=None, *, where=True, casting=’same_kind’,
order=’K’, dtype=None, subok=True[, signature, ex-
tobj])

Trigonometric inverse tangent, element-wise.

The inverse of tan, so that if y = tan(x) then x = arctan(y).

Parameters x : array_like

out : ndarray, None, or tuple of ndarray and None, optional

594 Chapter 6. brian2 package

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

Brian 2 Documentation, Release 2.1.1

A location into which the result is stored. If provided, it must have a shape that the
inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A
tuple (possible only as a keyword argument) must have length equal to the number of
outputs.

where : array_like, optional

Values of True indicate to calculate the ufunc at that position, values of False indicate
to leave the value in the output alone.

**kwargs :

For other keyword-only arguments, see the ufunc docs.

Returns out : ndarray

Out has the same shape as x. Its real part is in [-pi/2, pi/2] (arctan(+/-inf)
returns +/-pi/2). It is a scalar if x is a scalar.

See also:

arctan2 The “four quadrant” arctan of the angle formed by (x, y) and the positive x-axis.

angle() Argument of complex values.

Notes

arctan() is a multi-valued function: for each x there are infinitely many numbers z such that tan(z) = x. The
convention is to return the angle z whose real part lies in [-pi/2, pi/2].

For real-valued input data types, arctan() always returns real output. For each value that cannot be expressed
as a real number or infinity, it yields nan and sets the invalid floating point error flag.

For complex-valued input, arctan() is a complex analytic function that has [1j, infj] and [-1j,
-infj] as branch cuts, and is continuous from the left on the former and from the right on the latter.

The inverse tangent is also known as atan or tan^{-1}.

References

Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions, 10th printing, New York: Dover,
1964, pp. 79. http://www.math.sfu.ca/~cbm/aands/

Examples

We expect the arctan of 0 to be 0, and of 1 to be pi/4:

>>> np.arctan([0, 1])
array([0. , 0.78539816])

>>> np.pi/4
0.78539816339744828

Plot arctan:

6.4. Subpackages 595

https://docs.python.org/2/library/constants.html#None
https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs
http://www.math.sfu.ca/~cbm/aands/

Brian 2 Documentation, Release 2.1.1

>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-10, 10)
>>> plt.plot(x, np.arctan(x))
>>> plt.axis('tight')
>>> plt.show()

arctanh(x, /[, out, where, casting, order, . . .]) Inverse hyperbolic tangent element-wise.

arctanh function

(Shortest import: from brian2 import arctanh)

brian2.units.unitsafefunctions.arctanh(x, /, out=None, *, where=True, cast-
ing=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj])

Inverse hyperbolic tangent element-wise.

Parameters x : array_like

Input array.

out : ndarray, None, or tuple of ndarray and None, optional

A location into which the result is stored. If provided, it must have a shape that the
inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A
tuple (possible only as a keyword argument) must have length equal to the number of
outputs.

where : array_like, optional

Values of True indicate to calculate the ufunc at that position, values of False indicate
to leave the value in the output alone.

**kwargs :

For other keyword-only arguments, see the ufunc docs.

Returns out : ndarray

Array of the same shape as x.

See also:

emath.arctanh

Notes

arctanh() is a multivalued function: for each x there are infinitely many numbers z such that tanh(z) =
x. The convention is to return the z whose imaginary part lies in [-pi/2, pi/2].

For real-valued input data types, arctanh() always returns real output. For each value that cannot be ex-
pressed as a real number or infinity, it yields nan and sets the invalid floating point error flag.

For complex-valued input, arctanh() is a complex analytical function that has branch cuts [-1, -inf]
and [1, inf] and is continuous from above on the former and from below on the latter.

The inverse hyperbolic tangent is also known as atanh or tanh^-1.

596 Chapter 6. brian2 package

https://docs.python.org/2/library/constants.html#None
https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

Brian 2 Documentation, Release 2.1.1

References

[R17], [R18]

Examples

>>> np.arctanh([0, -0.5])
array([0. , -0.54930614])

cos(x, /[, out, where, casting, order, . . .]) Cosine element-wise.

cos function

(Shortest import: from brian2 import cos)

brian2.units.unitsafefunctions.cos(x, /, out=None, *, where=True, casting=’same_kind’, or-
der=’K’, dtype=None, subok=True[, signature, extobj])

Cosine element-wise.

Parameters x : array_like

Input array in radians.

out : ndarray, None, or tuple of ndarray and None, optional

A location into which the result is stored. If provided, it must have a shape that the
inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A
tuple (possible only as a keyword argument) must have length equal to the number of
outputs.

where : array_like, optional

Values of True indicate to calculate the ufunc at that position, values of False indicate
to leave the value in the output alone.

**kwargs :

For other keyword-only arguments, see the ufunc docs.

Returns y : ndarray

The corresponding cosine values.

Notes

If out is provided, the function writes the result into it, and returns a reference to out. (See Examples)

References

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972.

6.4. Subpackages 597

https://docs.python.org/2/library/constants.html#None
https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

Brian 2 Documentation, Release 2.1.1

Examples

>>> np.cos(np.array([0, np.pi/2, np.pi]))
array([1.00000000e+00, 6.12303177e-17, -1.00000000e+00])
>>>
>>> # Example of providing the optional output parameter
>>> out2 = np.cos([0.1], out1)
>>> out2 is out1
True
>>>
>>> # Example of ValueError due to provision of shape mis-matched `out`
>>> np.cos(np.zeros((3,3)),np.zeros((2,2)))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: invalid return array shape

cosh(x, /[, out, where, casting, order, . . .]) Hyperbolic cosine, element-wise.

cosh function

(Shortest import: from brian2 import cosh)

brian2.units.unitsafefunctions.cosh(x, /, out=None, *, where=True, casting=’same_kind’, or-
der=’K’, dtype=None, subok=True[, signature, extobj])

Hyperbolic cosine, element-wise.

Equivalent to 1/2 * (np.exp(x) + np.exp(-x)) and np.cos(1j*x).

Parameters x : array_like

Input array.

out : ndarray, None, or tuple of ndarray and None, optional

A location into which the result is stored. If provided, it must have a shape that the
inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A
tuple (possible only as a keyword argument) must have length equal to the number of
outputs.

where : array_like, optional

Values of True indicate to calculate the ufunc at that position, values of False indicate
to leave the value in the output alone.

**kwargs :

For other keyword-only arguments, see the ufunc docs.

Returns out : ndarray

Output array of same shape as x.

Examples

>>> np.cosh(0)
1.0

598 Chapter 6. brian2 package

https://docs.python.org/2/library/constants.html#None
https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

Brian 2 Documentation, Release 2.1.1

The hyperbolic cosine describes the shape of a hanging cable:

>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-4, 4, 1000)
>>> plt.plot(x, np.cosh(x))
>>> plt.show()

diagonal(x, *args, **kwds) Return specified diagonals.

diagonal function

(Shortest import: from brian2 import diagonal)

brian2.units.unitsafefunctions.diagonal(x, *args, **kwds)
Return specified diagonals.

If a is 2-D, returns the diagonal of a with the given offset, i.e., the collection of elements of the form a[i,
i+offset]. If a has more than two dimensions, then the axes specified by axis1 and axis2 are used to
determine the 2-D sub-array whose diagonal is returned. The shape of the resulting array can be determined by
removing axis1 and axis2 and appending an index to the right equal to the size of the resulting diagonals.

In versions of NumPy prior to 1.7, this function always returned a new, independent array containing a copy of
the values in the diagonal.

In NumPy 1.7 and 1.8, it continues to return a copy of the diagonal, but depending on this fact is deprecated.
Writing to the resulting array continues to work as it used to, but a FutureWarning is issued.

Starting in NumPy 1.9 it returns a read-only view on the original array. Attempting to write to the resulting
array will produce an error.

In some future release, it will return a read/write view and writing to the returned array will alter your original
array. The returned array will have the same type as the input array.

If you don’t write to the array returned by this function, then you can just ignore all of the above.

If you depend on the current behavior, then we suggest copying the returned array explicitly, i.e., use np.
diagonal(a).copy() instead of just np.diagonal(a). This will work with both past and future ver-
sions of NumPy.

Parameters a : array_like

Array from which the diagonals are taken.

offset : int, optional

Offset of the diagonal from the main diagonal. Can be positive or negative. Defaults to
main diagonal (0).

axis1 : int, optional

Axis to be used as the first axis of the 2-D sub-arrays from which the diagonals should
be taken. Defaults to first axis (0).

axis2 : int, optional

Axis to be used as the second axis of the 2-D sub-arrays from which the diagonals
should be taken. Defaults to second axis (1).

Returns array_of_diagonals : ndarray

6.4. Subpackages 599

Brian 2 Documentation, Release 2.1.1

If a is 2-D and not a matrix, a 1-D array of the same type as a containing the diagonal
is returned. If a is a matrix, a 1-D array containing the diagonal is returned in order
to maintain backward compatibility. If the dimension of a is greater than two, then an
array of diagonals is returned, “packed” from left-most dimension to right-most (e.g., if
a is 3-D, then the diagonals are “packed” along rows).

Raises

ValueError If the dimension of a is less than 2.

See also:

diag() MATLAB work-a-like for 1-D and 2-D arrays.

diagflat() Create diagonal arrays.

trace() Sum along diagonals.

Examples

>>> a = np.arange(4).reshape(2,2)
>>> a
array([[0, 1],

[2, 3]])
>>> a.diagonal()
array([0, 3])
>>> a.diagonal(1)
array([1])

A 3-D example:

>>> a = np.arange(8).reshape(2,2,2); a
array([[[0, 1],

[2, 3]],
[[4, 5],
[6, 7]]])

>>> a.diagonal(0, # Main diagonals of two arrays created by skipping
... 0, # across the outer(left)-most axis last and
... 1) # the "middle" (row) axis first.
array([[0, 6],

[1, 7]])

The sub-arrays whose main diagonals we just obtained; note that each corresponds to fixing the right-most
(column) axis, and that the diagonals are “packed” in rows.

>>> a[:,:,0] # main diagonal is [0 6]
array([[0, 2],

[4, 6]])
>>> a[:,:,1] # main diagonal is [1 7]
array([[1, 3],

[5, 7]])

dot(a, b[, out]) Dot product of two arrays.

600 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

dot function

(Shortest import: from brian2 import dot)

brian2.units.unitsafefunctions.dot(a, b, out=None)
Dot product of two arrays.

For 2-D arrays it is equivalent to matrix multiplication, and for 1-D arrays to inner product of vectors (without
complex conjugation). For N dimensions it is a sum product over the last axis of a and the second-to-last of b:

dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m])

Parameters a : array_like

First argument.

b : array_like

Second argument.

out : ndarray, optional

Output argument. This must have the exact kind that would be returned if it was not
used. In particular, it must have the right type, must be C-contiguous, and its dtype
must be the dtype that would be returned for dot(a,b). This is a performance feature.
Therefore, if these conditions are not met, an exception is raised, instead of attempting
to be flexible.

Returns output : ndarray

Returns the dot product of a and b. If a and b are both scalars or both 1-D arrays then
a scalar is returned; otherwise an array is returned. If out is given, then it is returned.

Raises

ValueError If the last dimension of a is not the same size as the second-to-last dimension of b.

See also:

vdot Complex-conjugating dot product.

tensordot() Sum products over arbitrary axes.

einsum() Einstein summation convention.

matmul ‘@’ operator as method with out parameter.

Examples

>>> np.dot(3, 4)
12

Neither argument is complex-conjugated:

>>> np.dot([2j, 3j], [2j, 3j])
(-13+0j)

6.4. Subpackages 601

Brian 2 Documentation, Release 2.1.1

For 2-D arrays it is the matrix product:

>>> a = [[1, 0], [0, 1]]
>>> b = [[4, 1], [2, 2]]
>>> np.dot(a, b)
array([[4, 1],

[2, 2]])

>>> a = np.arange(3*4*5*6).reshape((3,4,5,6))
>>> b = np.arange(3*4*5*6)[::-1].reshape((5,4,6,3))
>>> np.dot(a, b)[2,3,2,1,2,2]
499128
>>> sum(a[2,3,2,:] * b[1,2,:,2])
499128

exp(x, /[, out, where, casting, order, . . .]) Calculate the exponential of all elements in the input array.

exp function

(Shortest import: from brian2 import exp)

brian2.units.unitsafefunctions.exp(x, /, out=None, *, where=True, casting=’same_kind’, or-
der=’K’, dtype=None, subok=True[, signature, extobj])

Calculate the exponential of all elements in the input array.

Parameters x : array_like

Input values.

out : ndarray, None, or tuple of ndarray and None, optional

A location into which the result is stored. If provided, it must have a shape that the
inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A
tuple (possible only as a keyword argument) must have length equal to the number of
outputs.

where : array_like, optional

Values of True indicate to calculate the ufunc at that position, values of False indicate
to leave the value in the output alone.

**kwargs :

For other keyword-only arguments, see the ufunc docs.

Returns out : ndarray

Output array, element-wise exponential of x.

See also:

expm1 Calculate exp(x) - 1 for all elements in the array.

exp2 Calculate 2**x for all elements in the array.

602 Chapter 6. brian2 package

https://docs.python.org/2/library/constants.html#None
https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

Brian 2 Documentation, Release 2.1.1

Notes

The irrational number e is also known as Euler’s number. It is approximately 2.718281, and is the base of the
natural logarithm, ln (this means that, if 𝑥 = ln 𝑦 = log𝑒 𝑦, then 𝑒𝑥 = 𝑦. For real input, exp(x) is always
positive.

For complex arguments, x = a + ib, we can write 𝑒𝑥 = 𝑒𝑎𝑒𝑖𝑏. The first term, 𝑒𝑎, is already known (it is
the real argument, described above). The second term, 𝑒𝑖𝑏, is cos 𝑏 + 𝑖 sin 𝑏, a function with magnitude 1 and a
periodic phase.

References

[R19], [R20]

Examples

Plot the magnitude and phase of exp(x) in the complex plane:

>>> import matplotlib.pyplot as plt

>>> x = np.linspace(-2*np.pi, 2*np.pi, 100)
>>> xx = x + 1j * x[:, np.newaxis] # a + ib over complex plane
>>> out = np.exp(xx)

>>> plt.subplot(121)
>>> plt.imshow(np.abs(out),
... extent=[-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi], cmap='gray')
>>> plt.title('Magnitude of exp(x)')

>>> plt.subplot(122)
>>> plt.imshow(np.angle(out),
... extent=[-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi], cmap='hsv')
>>> plt.title('Phase (angle) of exp(x)')
>>> plt.show()

linspace(start, stop[, num, endpoint, . . .]) Return evenly spaced numbers over a specified interval.

linspace function

(Shortest import: from brian2 import linspace)

brian2.units.unitsafefunctions.linspace(start, stop, num=50, endpoint=True, retstep=False,
dtype=None)

Return evenly spaced numbers over a specified interval.

Returns num evenly spaced samples, calculated over the interval [start, stop()].

The endpoint of the interval can optionally be excluded.

Parameters start : scalar

The starting value of the sequence.

6.4. Subpackages 603

Brian 2 Documentation, Release 2.1.1

stop : scalar

The end value of the sequence, unless endpoint is set to False. In that case, the se-
quence consists of all but the last of num + 1 evenly spaced samples, so that stop()
is excluded. Note that the step size changes when endpoint is False.

num : int, optional

Number of samples to generate. Default is 50. Must be non-negative.

endpoint : bool, optional

If True, stop() is the last sample. Otherwise, it is not included. Default is True.

retstep : bool, optional

If True, return (samples, step), where step is the spacing between samples.

dtype : dtype, optional

The type of the output array. If dtype is not given, infer the data type from the other
input arguments.

New in version 1.9.0.

Returns samples : ndarray

There are num equally spaced samples in the closed interval [start, stop] or the
half-open interval [start, stop) (depending on whether endpoint is True or
False).

step : float, optional

Only returned if retstep is True

Size of spacing between samples.

See also:

arange() Similar to linspace(), but uses a step size (instead of the number of samples).

logspace() Samples uniformly distributed in log space.

Examples

>>> np.linspace(2.0, 3.0, num=5)
array([2. , 2.25, 2.5 , 2.75, 3.])
>>> np.linspace(2.0, 3.0, num=5, endpoint=False)
array([2. , 2.2, 2.4, 2.6, 2.8])
>>> np.linspace(2.0, 3.0, num=5, retstep=True)
(array([2. , 2.25, 2.5 , 2.75, 3.]), 0.25)

Graphical illustration:

>>> import matplotlib.pyplot as plt
>>> N = 8
>>> y = np.zeros(N)
>>> x1 = np.linspace(0, 10, N, endpoint=True)
>>> x2 = np.linspace(0, 10, N, endpoint=False)
>>> plt.plot(x1, y, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.plot(x2, y + 0.5, 'o')

604 Chapter 6. brian2 package

https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype

Brian 2 Documentation, Release 2.1.1

[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.ylim([-0.5, 1])
(-0.5, 1)
>>> plt.show()

log(x, /[, out, where, casting, order, . . .]) Natural logarithm, element-wise.

log function

(Shortest import: from brian2 import log)

brian2.units.unitsafefunctions.log(x, /, out=None, *, where=True, casting=’same_kind’, or-
der=’K’, dtype=None, subok=True[, signature, extobj])

Natural logarithm, element-wise.

The natural logarithm log() is the inverse of the exponential function, so that log(exp(x)) = x. The
natural logarithm is logarithm in base e.

Parameters x : array_like

Input value.

out : ndarray, None, or tuple of ndarray and None, optional

A location into which the result is stored. If provided, it must have a shape that the
inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A
tuple (possible only as a keyword argument) must have length equal to the number of
outputs.

where : array_like, optional

Values of True indicate to calculate the ufunc at that position, values of False indicate
to leave the value in the output alone.

**kwargs :

For other keyword-only arguments, see the ufunc docs.

Returns y : ndarray

The natural logarithm of x, element-wise.

See also:

log10(), log2, log1p, emath.log

Notes

Logarithm is a multivalued function: for each x there is an infinite number of z such that exp(z) = x. The
convention is to return the z whose imaginary part lies in [-pi, pi].

For real-valued input data types, log() always returns real output. For each value that cannot be expressed as
a real number or infinity, it yields nan and sets the invalid floating point error flag.

For complex-valued input, log() is a complex analytical function that has a branch cut [-inf, 0] and
is continuous from above on it. log() handles the floating-point negative zero as an infinitesimal negative
number, conforming to the C99 standard.

6.4. Subpackages 605

https://docs.python.org/2/library/constants.html#None
https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

Brian 2 Documentation, Release 2.1.1

References

[R21], [R22]

Examples

>>> np.log([1, np.e, np.e**2, 0])
array([0., 1., 2., -Inf])

ravel(x, *args, **kwds) Return a contiguous flattened array.

ravel function

(Shortest import: from brian2 import ravel)

brian2.units.unitsafefunctions.ravel(x, *args, **kwds)
Return a contiguous flattened array.

A 1-D array, containing the elements of the input, is returned. A copy is made only if needed.

As of NumPy 1.10, the returned array will have the same type as the input array. (for example, a masked array
will be returned for a masked array input)

Parameters a : array_like

Input array. The elements in a are read in the order specified by order, and packed as
a 1-D array.

order : {‘C’,’F’, ‘A’, ‘K’}, optional

The elements of a are read using this index order. ‘C’ means to index the elements in
row-major, C-style order, with the last axis index changing fastest, back to the first axis
index changing slowest. ‘F’ means to index the elements in column-major, Fortran-style
order, with the first index changing fastest, and the last index changing slowest. Note
that the ‘C’ and ‘F’ options take no account of the memory layout of the underlying
array, and only refer to the order of axis indexing. ‘A’ means to read the elements in
Fortran-like index order if a is Fortran contiguous in memory, C-like order otherwise.
‘K’ means to read the elements in the order they occur in memory, except for reversing
the data when strides are negative. By default, ‘C’ index order is used.

Returns y : array_like

If a is a matrix, y is a 1-D ndarray, otherwise y is an array of the same subtype as a. The
shape of the returned array is (a.size,). Matrices are special cased for backward
compatibility.

See also:

ndarray.flat 1-D iterator over an array.

ndarray.flatten 1-D array copy of the elements of an array in row-major order.

ndarray.reshape Change the shape of an array without changing its data.

606 Chapter 6. brian2 package

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.flat.html#numpy.ndarray.flat
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.flatten.html#numpy.ndarray.flatten
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.reshape.html#numpy.ndarray.reshape

Brian 2 Documentation, Release 2.1.1

Notes

In row-major, C-style order, in two dimensions, the row index varies the slowest, and the column index the
quickest. This can be generalized to multiple dimensions, where row-major order implies that the index along
the first axis varies slowest, and the index along the last quickest. The opposite holds for column-major, Fortran-
style index ordering.

When a view is desired in as many cases as possible, arr.reshape(-1) may be preferable.

Examples

It is equivalent to reshape(-1, order=order).

>>> x = np.array([[1, 2, 3], [4, 5, 6]])
>>> print(np.ravel(x))
[1 2 3 4 5 6]

>>> print(x.reshape(-1))
[1 2 3 4 5 6]

>>> print(np.ravel(x, order='F'))
[1 4 2 5 3 6]

When order is ‘A’, it will preserve the array’s ‘C’ or ‘F’ ordering:

>>> print(np.ravel(x.T))
[1 4 2 5 3 6]
>>> print(np.ravel(x.T, order='A'))
[1 2 3 4 5 6]

When order is ‘K’, it will preserve orderings that are neither ‘C’ nor ‘F’, but won’t reverse axes:

>>> a = np.arange(3)[::-1]; a
array([2, 1, 0])
>>> a.ravel(order='C')
array([2, 1, 0])
>>> a.ravel(order='K')
array([2, 1, 0])

>>> a = np.arange(12).reshape(2,3,2).swapaxes(1,2); a
array([[[0, 2, 4],

[1, 3, 5]],
[[6, 8, 10],
[7, 9, 11]]])

>>> a.ravel(order='C')
array([0, 2, 4, 1, 3, 5, 6, 8, 10, 7, 9, 11])
>>> a.ravel(order='K')
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])

setup() Setup function for doctests (used by nosetest).

6.4. Subpackages 607

Brian 2 Documentation, Release 2.1.1

setup function

(Shortest import: from brian2.units.unitsafefunctions import setup)

brian2.units.unitsafefunctions.setup()
Setup function for doctests (used by nosetest). We do not want to test this module’s docstrings as they are
inherited from numpy.

sin(x, /[, out, where, casting, order, . . .]) Trigonometric sine, element-wise.

sin function

(Shortest import: from brian2 import sin)

brian2.units.unitsafefunctions.sin(x, /, out=None, *, where=True, casting=’same_kind’, or-
der=’K’, dtype=None, subok=True[, signature, extobj])

Trigonometric sine, element-wise.

Parameters x : array_like

Angle, in radians (2𝜋 rad equals 360 degrees).

out : ndarray, None, or tuple of ndarray and None, optional

A location into which the result is stored. If provided, it must have a shape that the
inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A
tuple (possible only as a keyword argument) must have length equal to the number of
outputs.

where : array_like, optional

Values of True indicate to calculate the ufunc at that position, values of False indicate
to leave the value in the output alone.

**kwargs :

For other keyword-only arguments, see the ufunc docs.

Returns y : array_like

The sine of each element of x.

See also:

arcsin(), sinh(), cos()

Notes

The sine is one of the fundamental functions of trigonometry (the mathematical study of triangles). Consider
a circle of radius 1 centered on the origin. A ray comes in from the +𝑥 axis, makes an angle at the origin
(measured counter-clockwise from that axis), and departs from the origin. The 𝑦 coordinate of the outgoing
ray’s intersection with the unit circle is the sine of that angle. It ranges from -1 for 𝑥 = 3𝜋/2 to +1 for 𝜋/2.
The function has zeroes where the angle is a multiple of 𝜋. Sines of angles between 𝜋 and 2𝜋 are negative. The
numerous properties of the sine and related functions are included in any standard trigonometry text.

608 Chapter 6. brian2 package

https://docs.python.org/2/library/constants.html#None
https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

Brian 2 Documentation, Release 2.1.1

Examples

Print sine of one angle:

>>> np.sin(np.pi/2.)
1.0

Print sines of an array of angles given in degrees:

>>> np.sin(np.array((0., 30., 45., 60., 90.)) * np.pi / 180.)
array([0. , 0.5 , 0.70710678, 0.8660254 , 1.])

Plot the sine function:

>>> import matplotlib.pylab as plt
>>> x = np.linspace(-np.pi, np.pi, 201)
>>> plt.plot(x, np.sin(x))
>>> plt.xlabel('Angle [rad]')
>>> plt.ylabel('sin(x)')
>>> plt.axis('tight')
>>> plt.show()

sinh(x, /[, out, where, casting, order, . . .]) Hyperbolic sine, element-wise.

sinh function

(Shortest import: from brian2 import sinh)

brian2.units.unitsafefunctions.sinh(x, /, out=None, *, where=True, casting=’same_kind’, or-
der=’K’, dtype=None, subok=True[, signature, extobj])

Hyperbolic sine, element-wise.

Equivalent to 1/2 * (np.exp(x) - np.exp(-x)) or -1j * np.sin(1j*x).

Parameters x : array_like

Input array.

out : ndarray, None, or tuple of ndarray and None, optional

A location into which the result is stored. If provided, it must have a shape that the
inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A
tuple (possible only as a keyword argument) must have length equal to the number of
outputs.

where : array_like, optional

Values of True indicate to calculate the ufunc at that position, values of False indicate
to leave the value in the output alone.

**kwargs :

For other keyword-only arguments, see the ufunc docs.

Returns y : ndarray

The corresponding hyperbolic sine values.

6.4. Subpackages 609

https://docs.python.org/2/library/constants.html#None
https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

Brian 2 Documentation, Release 2.1.1

Notes

If out is provided, the function writes the result into it, and returns a reference to out. (See Examples)

References

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972, pg. 83.

Examples

>>> np.sinh(0)
0.0
>>> np.sinh(np.pi*1j/2)
1j
>>> np.sinh(np.pi*1j) # (exact value is 0)
1.2246063538223773e-016j
>>> # Discrepancy due to vagaries of floating point arithmetic.

>>> # Example of providing the optional output parameter
>>> out2 = np.sinh([0.1], out1)
>>> out2 is out1
True

>>> # Example of ValueError due to provision of shape mis-matched `out`
>>> np.sinh(np.zeros((3,3)),np.zeros((2,2)))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: invalid return array shape

tan(x, /[, out, where, casting, order, . . .]) Compute tangent element-wise.

tan function

(Shortest import: from brian2 import tan)

brian2.units.unitsafefunctions.tan(x, /, out=None, *, where=True, casting=’same_kind’, or-
der=’K’, dtype=None, subok=True[, signature, extobj])

Compute tangent element-wise.

Equivalent to np.sin(x)/np.cos(x) element-wise.

Parameters x : array_like

Input array.

out : ndarray, None, or tuple of ndarray and None, optional

A location into which the result is stored. If provided, it must have a shape that the
inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A
tuple (possible only as a keyword argument) must have length equal to the number of
outputs.

where : array_like, optional

610 Chapter 6. brian2 package

https://docs.python.org/2/library/constants.html#None

Brian 2 Documentation, Release 2.1.1

Values of True indicate to calculate the ufunc at that position, values of False indicate
to leave the value in the output alone.

**kwargs :

For other keyword-only arguments, see the ufunc docs.

Returns y : ndarray

The corresponding tangent values.

Notes

If out is provided, the function writes the result into it, and returns a reference to out. (See Examples)

References

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972.

Examples

>>> from math import pi
>>> np.tan(np.array([-pi,pi/2,pi]))
array([1.22460635e-16, 1.63317787e+16, -1.22460635e-16])
>>>
>>> # Example of providing the optional output parameter illustrating
>>> # that what is returned is a reference to said parameter
>>> out2 = np.cos([0.1], out1)
>>> out2 is out1
True
>>>
>>> # Example of ValueError due to provision of shape mis-matched `out`
>>> np.cos(np.zeros((3,3)),np.zeros((2,2)))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: invalid return array shape

tanh(x, /[, out, where, casting, order, . . .]) Compute hyperbolic tangent element-wise.

tanh function

(Shortest import: from brian2 import tanh)

brian2.units.unitsafefunctions.tanh(x, /, out=None, *, where=True, casting=’same_kind’, or-
der=’K’, dtype=None, subok=True[, signature, extobj])

Compute hyperbolic tangent element-wise.

Equivalent to np.sinh(x)/np.cosh(x) or -1j * np.tan(1j*x).

Parameters x : array_like

Input array.

out : ndarray, None, or tuple of ndarray and None, optional

6.4. Subpackages 611

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

Brian 2 Documentation, Release 2.1.1

A location into which the result is stored. If provided, it must have a shape that the
inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A
tuple (possible only as a keyword argument) must have length equal to the number of
outputs.

where : array_like, optional

Values of True indicate to calculate the ufunc at that position, values of False indicate
to leave the value in the output alone.

**kwargs :

For other keyword-only arguments, see the ufunc docs.

Returns y : ndarray

The corresponding hyperbolic tangent values.

Notes

If out is provided, the function writes the result into it, and returns a reference to out. (See Examples)

References

[R23], [R24]

Examples

>>> np.tanh((0, np.pi*1j, np.pi*1j/2))
array([0. +0.00000000e+00j, 0. -1.22460635e-16j, 0. +1.63317787e+16j])

>>> # Example of providing the optional output parameter illustrating
>>> # that what is returned is a reference to said parameter
>>> out2 = np.tanh([0.1], out1)
>>> out2 is out1
True

>>> # Example of ValueError due to provision of shape mis-matched `out`
>>> np.tanh(np.zeros((3,3)),np.zeros((2,2)))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: invalid return array shape

trace(x, *args, **kwds) Return the sum along diagonals of the array.

trace function

(Shortest import: from brian2 import trace)

brian2.units.unitsafefunctions.trace(x, *args, **kwds)
Return the sum along diagonals of the array.

If a is 2-D, the sum along its diagonal with the given offset is returned, i.e., the sum of elements a[i,

612 Chapter 6. brian2 package

https://docs.python.org/2/library/constants.html#None
https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

Brian 2 Documentation, Release 2.1.1

i+offset] for all i.

If a has more than two dimensions, then the axes specified by axis1 and axis2 are used to determine the 2-D
sub-arrays whose traces are returned. The shape of the resulting array is the same as that of a with axis1 and
axis2 removed.

Parameters a : array_like

Input array, from which the diagonals are taken.

offset : int, optional

Offset of the diagonal from the main diagonal. Can be both positive and negative.
Defaults to 0.

axis1, axis2 : int, optional

Axes to be used as the first and second axis of the 2-D sub-arrays from which the
diagonals should be taken. Defaults are the first two axes of a.

dtype : dtype, optional

Determines the data-type of the returned array and of the accumulator where the ele-
ments are summed. If dtype has the value None and a is of integer type of precision less
than the default integer precision, then the default integer precision is used. Otherwise,
the precision is the same as that of a.

out : ndarray, optional

Array into which the output is placed. Its type is preserved and it must be of the right
shape to hold the output.

Returns sum_along_diagonals : ndarray

If a is 2-D, the sum along the diagonal is returned. If a has larger dimensions, then an
array of sums along diagonals is returned.

See also:

diag(), diagonal(), diagflat()

Examples

>>> np.trace(np.eye(3))
3.0
>>> a = np.arange(8).reshape((2,2,2))
>>> np.trace(a)
array([6, 8])

>>> a = np.arange(24).reshape((2,2,2,3))
>>> np.trace(a).shape
(2, 3)

where(condition, [x, y]) Return elements, either from x or y, depending on
condition.

6.4. Subpackages 613

Brian 2 Documentation, Release 2.1.1

where function

(Shortest import: from brian2 import where)

brian2.units.unitsafefunctions.where(condition[, x, y])
Return elements, either from x or y, depending on condition.

If only condition is given, return condition.nonzero().

Parameters condition : array_like, bool

When True, yield x, otherwise yield y.

x, y : array_like, optional

Values from which to choose. x, y and condition need to be broadcastable to some
shape.

Returns out : ndarray or tuple of ndarrays

If both x and y are specified, the output array contains elements of x where
condition is True, and elements from y elsewhere.

If only condition is given, return the tuple condition.nonzero(), the indices
where condition is True.

See also:

nonzero(), choose()

Notes

If x and y are given and input arrays are 1-D, where() is equivalent to:

[xv if c else yv for (c,xv,yv) in zip(condition,x,y)]

Examples

>>> np.where([[True, False], [True, True]],
... [[1, 2], [3, 4]],
... [[9, 8], [7, 6]])
array([[1, 8],

[3, 4]])

>>> np.where([[0, 1], [1, 0]])
(array([0, 1]), array([1, 0]))

>>> x = np.arange(9.).reshape(3, 3)
>>> np.where(x > 5)
(array([2, 2, 2]), array([0, 1, 2]))
>>> x[np.where(x > 3.0)] # Note: result is 1D.
array([4., 5., 6., 7., 8.])
>>> np.where(x < 5, x, -1) # Note: broadcasting.
array([[0., 1., 2.],

[3., 4., -1.],
[-1., -1., -1.]])

614 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

Find the indices of elements of x that are in goodvalues.

>>> goodvalues = [3, 4, 7]
>>> ix = np.isin(x, goodvalues)
>>> ix
array([[False, False, False],

[True, True, False],
[False, True, False]], dtype=bool)

>>> np.where(ix)
(array([1, 1, 2]), array([0, 1, 1]))

wrap_function_to_method(func) Wraps a function so that it calls the corresponding method
on the Quantities object (if called with a Quantities object
as the first argument).

wrap_function_to_method function

(Shortest import: from brian2.units.unitsafefunctions import
wrap_function_to_method)

brian2.units.unitsafefunctions.wrap_function_to_method(func)
Wraps a function so that it calls the corresponding method on the Quantities object (if called with a Quantities
object as the first argument). All other arguments are left untouched.

6.4.16 utils package

Utility functions for Brian.

arrays module

Helper module containing functions that operate on numpy arrays.

Functions

calc_repeats(delay) Calculates offsets corresponding to an array, where re-
peated values are subsequently numbered, i.e.

calc_repeats function

(Shortest import: from brian2.utils.arrays import calc_repeats)

brian2.utils.arrays.calc_repeats(delay)
Calculates offsets corresponding to an array, where repeated values are subsequently numbered, i.e. if there
n identical values, the returned array will have values from 0 to n-1 at their positions. The code is complex
because tricks are needed for vectorisation.

This function is used in the Python SpikeQueue to calculate the offset array for the insertion of spikes with
their respective delays into the queue and in the numpy code for synapse creation to calculate how many synapses
for each source-target pair exist.

6.4. Subpackages 615

Brian 2 Documentation, Release 2.1.1

Examples

>>> import numpy as np
>>> print(calc_repeats(np.array([7, 5, 7, 3, 7, 5])))
[0 0 1 0 2 1]

caching module

Module to support caching of function results to memory (used to cache results of parsing, generation of state update
code, etc.). Provides the cached decorator.

Classes

CacheKey Mixin class for objects that will be used as keys for caching
(e.g.

CacheKey class

(Shortest import: from brian2.utils.caching import CacheKey)

class brian2.utils.caching.CacheKey
Bases: object

Mixin class for objects that will be used as keys for caching (e.g. Variable objects) and have to define
a certain “identity” with respect to caching. This “identity” is different from standard Python hashing and
equality checking: a Variable for example would be considered “identical” for caching purposes regardless
which object (e.g. NeuronGroup) it belongs to (because this does not matter for parsing, creating abstract
code, etc.) but this of course matters for the values it refers to and therefore for comparison of equality to other
variables.

Classes that mix in the CacheKey class should re-define the _cache_irrelevant_attributes at-
tribute to note all the attributes that should be ignored. The property _state_tuple will refer to a tuple of
all attributes that were not excluded in such a way; this tuple will be used as the key for caching purposes.

Attributes

_cache_irrelevant_attributes Set of attributes that should not be considered for
caching of state update code, etc.

Details

_cache_irrelevant_attributes
Set of attributes that should not be considered for caching of state update code, etc.

Functions

cached(func) Decorator to cache a function so that it will not be re-
evaluated when called with the same arguments.

616 Chapter 6. brian2 package

https://docs.python.org/2/library/functions.html#object

Brian 2 Documentation, Release 2.1.1

cached function

(Shortest import: from brian2.utils.caching import cached)

brian2.utils.caching.cached(func)
Decorator to cache a function so that it will not be re-evaluated when called with the same arguments. Uses the
_hashable function to make arguments usable as a dictionary key even though they mutable (lists, dictionar-
ies, etc.).

Parameters func : function

The function to decorate.

Returns decorated : function

The decorated function.

Notes

This is not a general-purpose caching decorator in any way comparable to functools.lru_cache or
joblib’s caching functions. It is very simplistic (no maximum cache size, no normalization of calls, e.g. foo(3)
and foo(x=3) are not considered equivalent function calls) and makes very specific assumptions for our use
case. Most importantly, Variable objects are considered to be identical when they refer to the same object,
even though the actually stored values might have changed.

environment module

Utility functions to get information about the environment Brian is running in.

Functions

running_from_ipython() Check whether we are currently running under ipython.

running_from_ipython function

(Shortest import: from brian2.utils.environment import running_from_ipython)

brian2.utils.environment.running_from_ipython()
Check whether we are currently running under ipython.

Returns ipython : bool

Whether running under ipython or not.

filetools module

File system tools

Exported members: ensure_directory , ensure_directory_of_file, in_directory ,
copy_directory

Classes

6.4. Subpackages 617

Brian 2 Documentation, Release 2.1.1

in_directory(new_dir) Safely temporarily work in a subdirectory

in_directory class

(Shortest import: from brian2.utils.filetools import in_directory)

class brian2.utils.filetools.in_directory(new_dir)
Bases: object

Safely temporarily work in a subdirectory

Usage:

with in_directory(directory):
... do stuff here

Guarantees that the code in the with block will be executed in directory, and that after the block is completed
we return to the original directory.

Functions

copy_directory(source, target) Copies directory source to target.

copy_directory function

(Shortest import: from brian2.utils.filetools import copy_directory)

brian2.utils.filetools.copy_directory(source, target)
Copies directory source to target.

ensure_directory(d) Ensures that a given directory exists (creates it if necessary)

ensure_directory function

(Shortest import: from brian2.utils.filetools import ensure_directory)

brian2.utils.filetools.ensure_directory(d)
Ensures that a given directory exists (creates it if necessary)

ensure_directory_of_file(f) Ensures that a directory exists for filename to go in (creates
if necessary), and returns the directory path.

ensure_directory_of_file function

(Shortest import: from brian2.utils.filetools import ensure_directory_of_file)

brian2.utils.filetools.ensure_directory_of_file(f)
Ensures that a directory exists for filename to go in (creates if necessary), and returns the directory path.

618 Chapter 6. brian2 package

https://docs.python.org/2/library/functions.html#object

Brian 2 Documentation, Release 2.1.1

logger module

Brian’s logging module.

Preferences

Logging system preferences logging.console_log_level = 'INFO'

What log level to use for the log written to the console.

Has to be one of CRITICAL, ERROR, WARNING, INFO, DEBUG or DIAGNOSTIC.

logging.delete_log_on_exit = True

Whether to delete the log and script file on exit.

If set to True (the default), log files (and the copy of the main script) will be deleted after the brian
process has exited, unless an uncaught exception occured. If set to False, all log files will be kept.

logging.file_log = True

Whether to log to a file or not.

If set to True (the default), logging information will be written to a file. The log level can be set via the
logging.file_log_level preference.

logging.file_log_level = 'DIAGNOSTIC'

What log level to use for the log written to the log file.

In case file logging is activated (see logging.file_log), which log level should be used for logging. Has to
be one of CRITICAL, ERROR, WARNING, INFO, DEBUG or DIAGNOSTIC.

logging.save_script = True

Whether to save a copy of the script that is run.

If set to True (the default), a copy of the currently run script is saved to a temporary location. It is
deleted after a successful run (unless logging.delete_log_on_exit is False) but is kept after an uncaught
exception occured. This can be helpful for debugging, in particular when several simulations are running
in parallel.

logging.std_redirection = True

Whether or not to redirect stdout/stderr to null at certain places.

This silences a lot of annoying compiler output, but will also hide error messages making it harder to debug
problems. You can always temporarily switch it off when debugging. If logging.std_redirection_to_file is
set to True as well, then the output is saved to a file and if an error occurs the name of this file will be
printed.

logging.std_redirection_to_file = True

Whether to redirect stdout/stderr to a file.

If both logging.std_redirection and this preference are set to True, all standard output/error
(most importantly output from the compiler) will be stored in files and if an error occurs the name of this
file will be printed. If logging.std_redirection is True and this preference is False, then all standard
output/error will be completely suppressed, i.e. neither be displayed nor stored in a file.

The value of this preference is ignore if logging.std_redirection is set to False.

6.4. Subpackages 619

Brian 2 Documentation, Release 2.1.1

Exported members: get_logger(), BrianLogger, std_silent

Classes

BrianLogger(name) Convenience object for logging.

BrianLogger class

(Shortest import: from brian2 import BrianLogger)

class brian2.utils.logger.BrianLogger(name)
Bases: object

Convenience object for logging. Call get_logger() to get an instance of this class.

Parameters name : str

The name used for logging, normally the name of the module.

Attributes

_log_messages Class attribute for remembering log messages that
should only be

exception_occured Class attribute to remember whether any exception oc-
cured

file_handler The logging.FileHandler responsible for log-
ging to the temporary log

tmp_log The name of the temporary log file (by default deleted
after the run if

tmp_script The name of the temporary copy of the main script file
(by default

Methods

debug(msg[, name_suffix, once]) Log a debug message.
diagnostic(msg[, name_suffix, once]) Log a diagnostic message.
error(msg[, name_suffix, once]) Log an error message.
info(msg[, name_suffix, once]) Log an info message.
initialize() Initialize Brian’s logging system.
log_level_debug() Set the log level to “debug”.
log_level_diagnostic() Set the log level to “diagnostic”.
log_level_error() Set the log level to “error”.
log_level_info() Set the log level to “info”.
log_level_warn() Set the log level to “warn”.
suppress_hierarchy(name[, filter_log_file]) Suppress all log messages in a given hiearchy.
suppress_name(name[, filter_log_file]) Suppress all log messages with a given name.
warn(msg[, name_suffix, once]) Log a warn message.

620 Chapter 6. brian2 package

https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/logging.handlers.html#logging.FileHandler

Brian 2 Documentation, Release 2.1.1

Details

_log_messages
Class attribute for remembering log messages that should only be displayed once

exception_occured
Class attribute to remember whether any exception occured

file_handler
The logging.FileHandler responsible for logging to the temporary log file

tmp_log
The name of the temporary log file (by default deleted after the run if no exception occurred), if any

tmp_script
The name of the temporary copy of the main script file (by default deleted after the run if no exception
occurred), if any

debug(msg, name_suffix=None, once=False)
Log a debug message.

Parameters msg : str

The message to log.

name_suffix : str, optional

A suffix to add to the name, e.g. a class or function name.

once : bool, optional

Whether this message should be logged only once and not repeated if sent another time.

diagnostic(msg, name_suffix=None, once=False)
Log a diagnostic message.

Parameters msg : str

The message to log.

name_suffix : str, optional

A suffix to add to the name, e.g. a class or function name.

once : bool, optional

Whether this message should be logged only once and not repeated if sent another time.

error(msg, name_suffix=None, once=False)
Log an error message.

Parameters msg : str

The message to log.

name_suffix : str, optional

A suffix to add to the name, e.g. a class or function name.

once : bool, optional

Whether this message should be logged only once and not repeated if sent another time.

info(msg, name_suffix=None, once=False)
Log an info message.

Parameters msg : str

6.4. Subpackages 621

https://docs.python.org/2/library/logging.handlers.html#logging.FileHandler

Brian 2 Documentation, Release 2.1.1

The message to log.

name_suffix : str, optional

A suffix to add to the name, e.g. a class or function name.

once : bool, optional

Whether this message should be logged only once and not repeated if sent another time.

static initialize()
Initialize Brian’s logging system. This function will be called automatically when Brian is imported.

static log_level_debug()
Set the log level to “debug”.

static log_level_diagnostic()
Set the log level to “diagnostic”.

static log_level_error()
Set the log level to “error”.

static log_level_info()
Set the log level to “info”.

static log_level_warn()
Set the log level to “warn”.

static suppress_hierarchy(name, filter_log_file=False)
Suppress all log messages in a given hiearchy.

Parameters name : str

Suppress all log messages in the given name hierarchy. For example, specify-
ing 'brian2' suppresses all messages logged by Brian, specifying 'brian2.
codegen' suppresses all messages generated by the code generation modules.

filter_log_file : bool, optional

Whether to suppress the messages also in the log file. Defaults to False meaning that
suppressed messages are not displayed on the console but are still saved to the log file.

static suppress_name(name, filter_log_file=False)
Suppress all log messages with a given name.

Parameters name : str

Suppress all log messages ending in the given name. For example,
specifying 'resolution_conflict' would suppress messages with
names such as brian2.equations.codestrings.CodeString.
resolution_conflict or brian2.equations.equations.Equations.
resolution_conflict.

filter_log_file : bool, optional

Whether to suppress the messages also in the log file. Defaults to False meaning that
suppressed messages are not displayed on the console but are still saved to the log file.

warn(msg, name_suffix=None, once=False)
Log a warn message.

Parameters msg : str

The message to log.

name_suffix : str, optional

622 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

A suffix to add to the name, e.g. a class or function name.

once : bool, optional

Whether this message should be logged only once and not repeated if sent another time.

Tutorials and examples using this

• Example frompapers/Rossant_et_al_2011bis

HierarchyFilter(name) A class for suppressing all log messages in a subtree of the
name hierarchy.

HierarchyFilter class

(Shortest import: from brian2.utils.logger import HierarchyFilter)

class brian2.utils.logger.HierarchyFilter(name)
Bases: object

A class for suppressing all log messages in a subtree of the name hierarchy. Does exactly the opposite as the
logging.Filter class, which allows messages in a certain name hierarchy to pass.

Parameters name : str

The name hiearchy to suppress. See BrianLogger.suppress_hierarchy for
details.

Methods

filter(record) Filter out all messages in a subtree of the name hierar-
chy.

Details

filter(record)
Filter out all messages in a subtree of the name hierarchy.

LogCapture(log_list[, log_level]) A class for capturing log warnings.

LogCapture class

(Shortest import: from brian2.utils.logger import LogCapture)

class brian2.utils.logger.LogCapture(log_list, log_level=30)
Bases: logging.Handler

A class for capturing log warnings. This class is used by catch_logs to allow testing in a similar way as with
warnings.catch_warnings.

6.4. Subpackages 623

https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/logging.html#logging.Filter
https://docs.python.org/2/library/warnings.html#warnings.catch_warnings

Brian 2 Documentation, Release 2.1.1

Methods

emit(record)
install() Install this handler to catch all warnings.
uninstall() Uninstall this handler and re-connect the previously in-

stalled handlers.

Details

emit(record)

install()
Install this handler to catch all warnings. Temporarily disconnect all other handlers.

uninstall()
Uninstall this handler and re-connect the previously installed handlers.

NameFilter(name) A class for suppressing log messages ending with a certain
name.

NameFilter class

(Shortest import: from brian2.utils.logger import NameFilter)

class brian2.utils.logger.NameFilter(name)
Bases: object

A class for suppressing log messages ending with a certain name.

Parameters name : str

The name to suppress. See BrianLogger.suppress_name for details.

Methods

filter(record) Filter out all messages ending with a certain name.

Details

filter(record)
Filter out all messages ending with a certain name.

catch_logs([log_level]) A context manager for catching log messages.

catch_logs class

(Shortest import: from brian2.utils.logger import catch_logs)

class brian2.utils.logger.catch_logs(log_level=30)
Bases: object

624 Chapter 6. brian2 package

https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#object

Brian 2 Documentation, Release 2.1.1

A context manager for catching log messages. Use this for testing the messages that are logged. Defaults to
catching warning/error messages and this is probably the only real use case for testing. Note that while this
context manager is active, all log messages are suppressed. Using this context manager returns a list of (log
level, name, message) tuples.

Parameters log_level : int or str, optional

The log level above which messages are caught.

Examples

>>> logger = get_logger('brian2.logtest')
>>> logger.warn('An uncaught warning')
WARNING brian2.logtest: An uncaught warning
>>> with catch_logs() as l:
... logger.warn('a caught warning')
... print('l contains: %s' % l)
...
l contains: [('WARNING', 'brian2.logtest', 'a caught warning')]

std_silent([alwaysprint]) Context manager that temporarily silences stdout and stderr
but keeps the output saved in a temporary file and writes it
if an exception is raised.

std_silent class

(Shortest import: from brian2 import std_silent)

class brian2.utils.logger.std_silent(alwaysprint=False)
Bases: object

Context manager that temporarily silences stdout and stderr but keeps the output saved in a temporary file and
writes it if an exception is raised.

Attributes

dest_stderr
dest_stdout

Methods

close()

Details

dest_stderr = None

dest_stdout = None

classmethod close()

6.4. Subpackages 625

https://docs.python.org/2/library/functions.html#object

Brian 2 Documentation, Release 2.1.1

Functions

brian_excepthook(exc_type, exc_obj, exc_tb) Display a message mentioning the debug log in case of an
uncaught exception.

brian_excepthook function

(Shortest import: from brian2.utils.logger import brian_excepthook)

brian2.utils.logger.brian_excepthook(exc_type, exc_obj, exc_tb)
Display a message mentioning the debug log in case of an uncaught exception.

clean_up_logging() Shutdown the logging system and delete the debug log file
if no error occured.

clean_up_logging function

(Shortest import: from brian2.utils.logger import clean_up_logging)

brian2.utils.logger.clean_up_logging()
Shutdown the logging system and delete the debug log file if no error occured.

get_logger([module_name]) Get an object that can be used for logging.

get_logger function

(Shortest import: from brian2 import get_logger)

brian2.utils.logger.get_logger(module_name=’brian2’)
Get an object that can be used for logging.

Parameters module_name : str

The name used for logging, should normally be the module name as returned by
__name__.

Returns logger : BrianLogger

log_level_validator(log_level)

log_level_validator function

(Shortest import: from brian2.utils.logger import log_level_validator)

brian2.utils.logger.log_level_validator(log_level)

stringtools module

A collection of tools for string formatting tasks.

626 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

Exported members: indent, deindent, word_substitute, replace,
get_identifiers, strip_empty_lines, stripped_deindented_lines,
strip_empty_leading_and_trailing_lines, code_representation, SpellChecker

Classes

SpellChecker(words[, alphabet]) A simple spell checker that will be used to suggest the cor-
rect name if the user made a typo (e.g.

SpellChecker class

(Shortest import: from brian2.utils.stringtools import SpellChecker)

class brian2.utils.stringtools.SpellChecker(words, alpha-
bet=’abcdefghijklmnopqrstuvwxyz0123456789_’)

Bases: object

A simple spell checker that will be used to suggest the correct name if the user made a typo (e.g. for state
variable names).

Parameters words : iterable of str

The known words

alphabet : iterable of str, optional

The allowed characters. Defaults to the characters allowed for identifiers, i.e. ascii
characters, digits and the underscore.

Methods

edits1(word)
known(words)
known_edits2(word)
suggest(word)

Details

edits1(word)

known(words)

known_edits2(word)

suggest(word)

Functions

code_representation(code) Returns a string representation for several different formats
of code

code_representation function

(Shortest import: from brian2.utils.stringtools import code_representation)

6.4. Subpackages 627

https://docs.python.org/2/library/functions.html#object

Brian 2 Documentation, Release 2.1.1

brian2.utils.stringtools.code_representation(code)
Returns a string representation for several different formats of code

Formats covered include: - A single string - A list of statements/strings - A dict of strings - A dict of lists of
statements/strings

deindent(text[, numtabs, spacespertab, . . .]) Returns a copy of the string with the common indentation
removed.

deindent function

(Shortest import: from brian2.utils.stringtools import deindent)

brian2.utils.stringtools.deindent(text, numtabs=None, spacespertab=4, docstring=False)
Returns a copy of the string with the common indentation removed.

Note that all tab characters are replaced with spacespertab spaces.

If the docstring flag is set, the first line is treated differently and is assumed to be already correctly tabulated.

If the numtabs option is given, the amount of indentation to remove is given explicitly and not the common
indentation.

Examples

Normal strings, e.g. function definitions:

>>> multiline = """ def f(x):
... return x**2"""
>>> print(multiline)

def f(x):
return x**2

>>> print(deindent(multiline))
def f(x):

return x**2
>>> print(deindent(multiline, docstring=True))

def f(x):
return x**2
>>> print(deindent(multiline, numtabs=1, spacespertab=2))
def f(x):

return x**2

Docstrings:

>>> docstring = """First docstring line.
... This line determines the indentation."""
>>> print(docstring)
First docstring line.

This line determines the indentation.
>>> print(deindent(docstring, docstring=True))
First docstring line.
This line determines the indentation.

628 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

get_identifiers(expr[, include_numbers]) Return all the identifiers in a given string expr, that is
everything that matches a programming language variable
like expression, which is here implemented as the regexp
\b[A-Za-z_][A-Za-z0-9_]*\b.

get_identifiers function

(Shortest import: from brian2.utils.stringtools import get_identifiers)

brian2.utils.stringtools.get_identifiers(expr, include_numbers=False)
Return all the identifiers in a given string expr, that is everything that matches a programming language variable
like expression, which is here implemented as the regexp \b[A-Za-z_][A-Za-z0-9_]*\b.

Parameters expr : str

The string to analyze

include_numbers : bool, optional

Whether to include number literals in the output. Defaults to False.

Returns identifiers : set

A set of all the identifiers (and, optionally, numbers) in expr.

Examples

>>> expr = '3-a*_b+c5+8+f(A - .3e-10, tau_2)*17'
>>> ids = get_identifiers(expr)
>>> print(sorted(list(ids)))
['A', '_b', 'a', 'c5', 'f', 'tau_2']
>>> ids = get_identifiers(expr, include_numbers=True)
>>> print(sorted(list(ids)))
['.3e-10', '17', '3', '8', 'A', '_b', 'a', 'c5', 'f', 'tau_2']

indent(text[, numtabs, spacespertab, tab]) Indents a given multiline string.

indent function

(Shortest import: from brian2.utils.stringtools import indent)

brian2.utils.stringtools.indent(text, numtabs=1, spacespertab=4, tab=None)
Indents a given multiline string.

By default, indentation is done using spaces rather than tab characters. To use tab characters, specify the tab
character explictly, e.g.:

indent(text, tab=' ')

Note that in this case spacespertab is ignored.

6.4. Subpackages 629

Brian 2 Documentation, Release 2.1.1

Examples

>>> multiline = """def f(x):
... return x*x"""
>>> print(multiline)
def f(x):

return x*x
>>> print(indent(multiline))

def f(x):
return x*x

>>> print(indent(multiline, numtabs=2))
def f(x):

return x*x
>>> print(indent(multiline, spacespertab=2))
def f(x):

return x*x
>>> print(indent(multiline, tab='####'))
####def f(x):
return x*x

replace(s, substitutions) Applies a dictionary of substitutions.

replace function

(Shortest import: from brian2.utils.stringtools import replace)

brian2.utils.stringtools.replace(s, substitutions)
Applies a dictionary of substitutions. Simpler than word_substitute, it does not attempt to only replace
words

strip_empty_leading_and_trailing_lines(s) Removes all empty leading and trailing lines in the multi-
line string s.

strip_empty_leading_and_trailing_lines function

(Shortest import: from brian2.utils.stringtools import strip_empty_leading_and_trailing_lines)

brian2.utils.stringtools.strip_empty_leading_and_trailing_lines(s)
Removes all empty leading and trailing lines in the multi-line string s.

strip_empty_lines(s) Removes all empty lines from the multi-line string s.

strip_empty_lines function

(Shortest import: from brian2.utils.stringtools import strip_empty_lines)

brian2.utils.stringtools.strip_empty_lines(s)
Removes all empty lines from the multi-line string s.

630 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.1.1

Examples

>>> multiline = """A string with
...
... an empty line."""
>>> print(strip_empty_lines(multiline))
A string with
an empty line.

stripped_deindented_lines(code) Returns a list of the lines in a multi-line string, deindented.

stripped_deindented_lines function

(Shortest import: from brian2.utils.stringtools import stripped_deindented_lines)

brian2.utils.stringtools.stripped_deindented_lines(code)
Returns a list of the lines in a multi-line string, deindented.

word_substitute(expr, substitutions) Applies a dict of word substitutions.

word_substitute function

(Shortest import: from brian2.utils.stringtools import word_substitute)

brian2.utils.stringtools.word_substitute(expr, substitutions)
Applies a dict of word substitutions.

The dict substitutions consists of pairs (word, rep) where each word word appearing in expr is
replaced by rep. Here a ‘word’ means anything matching the regexp \bword\b.

Examples

>>> expr = 'a*_b+c5+8+f(A)'
>>> print(word_substitute(expr, {'a':'banana', 'f':'func'}))
banana*_b+c5+8+func(A)

topsort module

Exported members: topsort

Functions

topsort(graph) Topologically sort a graph

topsort function

(Shortest import: from brian2.utils.topsort import topsort)

brian2.utils.topsort.topsort(graph)

6.4. Subpackages 631

Brian 2 Documentation, Release 2.1.1

Topologically sort a graph

The graph should be of the form {node: [list of nodes], ...}.

632 Chapter 6. brian2 package

CHAPTER 7

Developer’s guide

This section is intended as a guide to how Brian functions internally for people developing Brian itself, or extensions
to Brian. It may also be of some interest to others wishing to better understand how Brian works internally.

7.1 Coding guidelines

The basic principles of developing Brian are:

1. For the user, the emphasis is on making the package flexible, readable and easy to use. See the paper “The Brian
simulator” in Frontiers in Neuroscience for more details.

2. For the developer, the emphasis is on keeping the package maintainable by a small number of people. To this
end, we use stable, well maintained, existing open source packages whenever possible, rather than writing our
own code.

7.1.1 Development workflow

Brian development is done in a git repository on github. Continuous integration testing is provided by travis CI, code
coverage is measured with coveralls.io.

The repository structure

Brian’s repository structure is very simple, as we are normally not supporting older versions with bugfixes or other
complicated things. The master branch of the repository is the basis for releases, a release is nothing more than adding
a tag to the branch, creating the tarball, etc. The master branch should always be in a deployable state, i.e. one should
be able to use it as the base for everyday work without worrying about random breakages due to updates. To ensure
this, no commit ever goes into the master branch without passing the test suite before (see below). The only exception
to this rule is if a commit not touches any code files, e.g. additions to the README file or to the documentation (but
even in this case, care should be taken that the documentation is still built correctly).

For every feature that a developer works on, a new branch should be opened (normally based on the master branch),
with a descriptive name (e.g. add-numba-support). For developers that are members of “brian-team”, the branch

633

https://git-scm.com/
https://github.com/
https://travis-ci.org/
https://coveralls.io/

Brian 2 Documentation, Release 2.1.1

should ideally be created in the main repository. This way, one can easily get an overview over what the “core team”
is currently working on. Developers who are not members of the team should fork the repository and work in their
own repository (if working on multiple issues/features, also using branches).

Implementing a feature/fixing a bug

Every new feature or bug fix should be done in a dedicated branch and have an issue in the issue database. For bugs,
it is important to not only fix the bug but also to introduce a new test case (see Testing) that makes sure that the bug
will not ever be reintroduced by other changes. It is often a good idea to first define the test cases (that should fail)
and then work on the fix so that the tests pass. As soon as the feature/fix is complete or as soon as specific feedback
on the code is needed, open a “pull request” to merge the changes from your branch into master. In this pull request,
others can comment on the code and make suggestions for improvements. New commits to the respective branch
automatically appear in the pull request which makes it a great tool for iterative code review. Even more useful, travis
will automatically run the test suite on the result of the merge. As a reviewer, always wait for the result of this test (it
can take up to 30 minutes or so until it appears) before doing the merge and never merge when a test fails. As soon
as the reviewer (someone from the core team and not the author of the feature/fix) decides that the branch is ready
to merge, he/she can merge the pull request and optionally delete the corresponding branch (but it will be hidden by
default, anyway).

Useful links

• The Brian repository: https://github.com/brian-team/brian2

• Travis testing for Brian: https://travis-ci.org/brian-team/brian2

• Code Coverage for Brian: https://coveralls.io/github/brian-team/brian2

• The Pro Git book: https://git-scm.com/book/en/v2

• github’s documentation on pull requests: https://help.github.com/articles/using-pull-requests

7.1.2 Coding conventions

General recommendations

Syntax is chosen as much as possible from the user point of view, to reflect the concepts as directly as possible. Ideally,
a Brian script should be readable by someone who doesn’t know Python or Brian, although this isn’t always possible.
Function, class and keyword argument names should be explicit rather than abbreviated and consistent across Brian.
See Romain’s paper On the design of script languages for neural simulators for a discussion.

We use the PEP-8 coding conventions for our code. This in particular includes the following conventions:

• Use 4 spaces instead of tabs per indentation level

• Use spaces after commas and around the following binary operators: assignment (=), augmented assignment
(+=, -= etc.), comparisons (==, <, >, !=, <>, <=, >=, in, not in, is, is not), Booleans (and, or, not).

• Do not use spaces around the equals sign in keyword arguments or when specifying default values. Neither put
spaces immediately inside parentheses, brackets or braces, immediately before the open parenthesis that starts
the argument list of a function call, or immediately before the open parenthesis that starts an indexing or slicing.

• Avoid using a backslash for continuing lines whenever possible, instead use Python’s implicit line joining inside
parentheses, brackets and braces.

• The core code should only contain ASCII characters, no encoding has to be declared

634 Chapter 7. Developer’s guide

https://github.com/brian-team/brian2
https://travis-ci.org/brian-team/brian2
https://coveralls.io/github/brian-team/brian2
https://git-scm.com/book/en/v2
https://help.github.com/articles/using-pull-requests
http://briansimulator.org/WordPress/wp-content/uploads/2012/05/On-the-design-of-script-languages-for-neural-simulation.pdf
https://www.python.org/dev/peps/pep-0008/

Brian 2 Documentation, Release 2.1.1

• imports should be on different lines (e.g. do not use import sys, os) and should be grouped in the follow-
ing order, using blank lines between each group:

1. standard library imports

2. third-party library imports (e.g. numpy, scipy, sympy, . . .)

3. brian imports

• Use absolute imports for everything outside of “your” package, e.g. if you are working in brian2.
equations, import functions from the stringtools modules via from brian2.utils.stringtools
import Use the full path when importing, e.g. do from brian2.units.fundamentalunits
import seconds instead of from brian2 import seconds.

• Use “new-style” relative imports for everything in “your” package, e.g. in brian2.codegen.functions.
py import the Function class as from .specifiers import Function.

• Do not use wildcard imports (from brian2 import *), instead import only the identifiers you need, e.g.
from brian2 import NeuronGroup, Synapses. For packages like numpy that are used a lot, use
import numpy as np. But note that the user should still be able to do something like from brian2
import * (and this style can also be freely used in examples and tests, for example). Modules always have to
use the __all__ mechanism to specify what is being made available with a wildcard import. As an exception
from this rule, the main brian2/__init__.py may use wildcard imports.

Python 2 vs. Python 3

Brian is written in Python 2 but runs on Python 3 using the 2to3 conversion tool (which is automatically applied if
Brian is installed using the standard python setup.py install mechanism). To make this possible without
too much effort, Brian no longer supports Python 2.5 and can therefore make use of a couple of forward-compatible
(but backward-incompatible) idioms introduced in Python 2.6. The Porting to Python 3 book is available online and
has a lot of information on these topics. Here are some things to keep in mind when developing Brian:

• If you are working with integers and using division, consider using // for flooring division (default behaviour
for / in python 2) and switch the behaviour of / to floating point division by using from __future__
import division .

• If importing modules from the standard library (which have changed quite a bit from Python 2 to Python 3), only
use simple import statements like import itertools instead of from itertools import izip –
2to3 is otherwise unable to make the correct conversion.

• If you are using the print statement (which should only occur in tests, in particular doctests – always use the
Logging framework if you want to present messages to the user otherwise), try “cheating” and use the functional
style in Python 2, i.e. write print('some text') instead of print 'some text'. More complicated
print statements should be avoided, e.g instead of print >>sys.stderr, 'Error message use sys.
stderr.write('Error message\n') (or, again, use logging).

• Exception stacktraces look a bit different in Python 2 and 3: For non-standard exceptions, Python 2 only prints
the Exception class name (e.g. DimensionMismatchError) whereas Python 3 prints the name includ-
ing the module name (e.g. brian2.units.fundamentalunits.DimensionMismatchError). This
will make doctests fail that match the exception message. In this case, write the doctest in the style of Python
2 but add the doctest directive #doctest: +IGNORE_EXCEPTION_DETAIL to the statement leading to
the exception. This unfortunately has the side effect of also ignoring the text of the exception, but it will still fail
for an incorrect exception type.

• If you write code reading and writing strings to files, make sure you make the distinction between bytes and
unicode (see “separate binary data and strings”) In general, strings within Brian are unicode strings and only
converted to bytes when reading from or writing to a file (or something like a network stream, for example).

• If you are sorting lists or dictionaries, have a look at “when sorting, use key instead of cmp”

7.1. Coding guidelines 635

https://docs.python.org/2/library/2to3.html
http://python3porting.com/
http://python3porting.com/preparing.html#separate-binary-data-and-strings
http://python3porting.com/preparing.html#when-sorting-use-key-instead-of-cmp

Brian 2 Documentation, Release 2.1.1

• Make sure to define a __hash__ function for objects that define an __eq__ function (and to define it consis-
tently). Python 3 is more strict about this, an object with __eq__ but without __hash__ is unhashable.

7.1.3 Representing Brian objects

__repr__ and __str__

Every class should specify or inherit useful __repr__ and __str__ methods. The __repr__ method should
give the “official” representation of the object; if possible, this should be a valid Python expression, ideally allowing
for eval(repr(x)) == x. The __str__ method on the other hand, gives an “informal” representation of the
object. This can be anything that is helpful but does not have to be Python code. For example:

>>> import numpy as np
>>> ar = np.array([1, 2, 3]) * mV
>>> print(ar) # uses __str__
[1. 2. 3.] mV
>>> ar # uses __repr__
array([1., 2., 3.]) * mvolt

If the representation returned by __repr__ is not Python code, it should be enclosed in <...>, e.g. a Synapses
representation might be <Synapses object with 64 synapses>.

If you don’t want to make the distinction between __repr__ and __str__, simply define only a __repr__
function, it will be used instead of __str__ automatically (no need to write __str__ = __repr__). Finally,
if you include the class name in the representation (which you should in most cases), use self.__class__.
__name__ instead of spelling out the name explicitly – this way it will automatically work correctly for subclasses.
It will also prevent you from forgetting to update the class name in the representation if you decide to rename the class.

LaTeX representations with sympy

Brian objects dealing with mathematical expressions and equations often internally use sympy. Sympy’s latex
function does a nice job of converting expressions into LaTeX code, using fractions, root symbols, etc. as well as
converting greek variable names into corresponding symbols and handling sub- and superscripts. For the conversion
of variable names to work, they should use an underscore for subscripts and two underscores for superscripts:

>>> from sympy import latex, Symbol
>>> tau_1__e = Symbol('tau_1__e')
>>> print latex(tau_1__e)
\tau^{e}_{1}

Sympy’s printer supports formatting arbitrary objects, all they have to do is to implement a _latex method (no
trailing underscore). For most Brian objects, this is unnecessary as they will never be formatted with sympy’s LaTeX
printer. For some core objects, in particular the units, is is useful, however, as it can be reused in LaTeX representations
for ipython (see below). Note that the _latex method should not return $ or \begin{equation} (sympy’s
method includes a mode argument that wraps the output automatically).

Representations for ipython

“Old” ipython console

In particular for representations involing arrays or lists, it can be useful to break up the representation into chunks, or
indent parts of the representation. This is supported by the ipython console’s “pretty printer”. To make this work for

636 Chapter 7. Developer’s guide

http://docs.sympy.org/dev/modules/printing.html#sympy.printing.latex.latex

Brian 2 Documentation, Release 2.1.1

a class, add a _repr_pretty_(self, p, cycle) (note the single underscores) method. You can find more
information in the ipython documentation .

“New” ipython console (qtconsole and notebook)

The new ipython consoles, the qtconsole and the ipython notebook support a much richer set of representations
for objects. As Brian deals a lot with mathematical objects, in particular the LaTeX and to a lesser extent the
HTML formatting capabilities of the ipython notebook are interesting. To support LaTeX representation, implement
a _repr_latex_ method returning the LaTeX code (including $, \begin{equation} or similar). If the object
already has a _latex method (see LaTeX representations with sympy above), this can be as simple as:

def _repr_latex_(self):
return sympy.latex(self, mode='inline') # wraps the expression in $.. $

The LaTeX rendering only supports a single mathematical block. For complex objects, e.g. NeuronGroup it might
be useful to have a richer representation. This can be achieved by returning HTML code from _repr_html_ – this
HTML code is processed by MathJax so it can include literal LaTeX code that will be transformed before it is rendered
as HTML. An object containing two equations could therefore be represented with a method like this:

def _repr_html_(self):
return '''
<h3> Equation 1 </h3>
{eq_1}
<h3> Equation 2 </h3>
{eq_2}'''.format(eq_1=sympy.latex(self.eq_1, mode='equation'),

eq_2=sympy.latex(self.eq_2, mode='equation'))

7.1.4 Defensive programming

One idea for Brian 2 is to make it so that it’s more likely that errors are raised rather than silently causing weird bugs.
Some ideas in this line:

Synapses.source should be stored internally as a weakref Synapses._source, and Synapses.source should be a com-
puted attribute that dereferences this weakref. Like this, if the source object isn’t kept by the user, Synapses won’t
store a reference to it, and so won’t stop it from being deallocated.

We should write an automated test that takes a piece of correct code like:

NeuronGroup(N, eqs, reset='V>Vt')

and tries replacing all arguments by nonsense arguments, it should always raise an error in this case (forcing us to
write code to validate the inputs). For example, you could create a new NonsenseObject class, and do this:

nonsense = NonsenseObject()
NeuronGroup(nonsense, eqs, reset='V>Vt')
NeuronGroup(N, nonsense, reset='V>Vt')
NeuronGroup(N, eqs, nonsense)

In general, the idea should be to make it hard for something incorrect to run without raising an error, preferably at the
point where the user makes the error and not in some obscure way several lines later.

The preferred way to validate inputs is one that handles types in a Pythonic way. For example, instead of doing
something like:

7.1. Coding guidelines 637

http://ipython.org/ipython-doc/dev/api/generated/IPython.lib.pretty.html#extending

Brian 2 Documentation, Release 2.1.1

if not isinstance(arg, (float, int)):
raise TypeError(...)

Do something like:

arg = float(arg)

(or use try/except to raise a more specific error). In contrast to the isinstance check it does not make any assump-
tions about the type except for its ability to be converted to a float.

This approach is particular useful for numpy arrays:

arr = np.asarray(arg)

(or np.asanyarray if you want to allow for array subclasses like arrays with units or masked arrays). This approach
has also the nice advantage that it allows all “array-like” arguments, e.g. a list of numbers.

7.1.5 Documentation

It is very important to maintain documentation. We use the Sphinx documentation generator tools. The documen-
tation is all hand written. Sphinx source files are stored in the docs_sphinx folder (currently: dev/brian2/
docs_sphinx). The HTML files can be generated via the script dev/tools/docs/build_html_brian2.
py and end up in the docs folder (currently: dev/brian2/docs).

Most of the documentation is stored directly in the Sphinx source text files, but reference documentation for important
Brian classes and functions are kept in the documentation strings of those classes themselves. This is automatically
pulled from these classes for the reference manual section of the documentation. The idea is to keep the definitive
reference documentation near the code that it documents, serving as both a comment for the code itself, and to keep
the documentation up to date with the code.

The reference documentation includes all classes, functions and other objects that are defined in the modules and only
documents them in the module where they were defined. This makes it possible to document a class like Quantity
only in brian2.units.fundamentalunits and not additionally in brian2.units and brian2. This
mechanism relies on the __module__ attribute, in some cases, in particular when wrapping a function with a deco-
rator (e.g. check_units), this attribute has to be set manually:

foo.__module__ = __name__

Without this manual setting, the function might not be documented at all or in the wrong module.

In addition to the reference, all the examples in the examples folder are automatically included in the documentation.

Note that you can directly link to github issues using :issue:`issue number`, e.g. writing :issue:`33`
links to a github issue about running benchmarks for Brian 2: #33. This feature should rarely be used in the main
documentation, reserve its use for release notes and important known bugs.

Docstrings

Every module, class, method or function has to start with a docstring, unless it is a private or special method (i.e.
starting with _ or __) and it is obvious what it does. For example, there is normally no need to document __str__
with “Return a string representation.”.

For the docstring format, we use the our own sphinx extension (in brian2.utils.sphinxext) based on numpy-
doc, allowing to write docstrings that are well readable both in sourcecode as well as in the rendered HTML. We
generally follow the format used by numpy

638 Chapter 7. Developer’s guide

http://www.sphinx-doc.org/en/stable/
https://github.com/brian-team/brian2/issues/33
https://pypi.python.org/pypi/numpydoc/
https://pypi.python.org/pypi/numpydoc/
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt

Brian 2 Documentation, Release 2.1.1

When the docstring uses variable, class or function names, these should be enclosed in single backticks. Class and
function/method names will be automatically linked to the corresponding documentation. For classes imported in
the main brian2 package, you do not have to add the package name, e.g. writing `NeuronGroup` is enough. For
other classes, you have to give the full path, e.g. `brian2.units.fundamentalunits.UnitRegistry`.
If it is clear from the context where the class is (e.g. within the documentation of UnitRegistry), consider using
the ~ abbreviation: `~brian2.units.fundamentalunits.UnitRegistry` displays only the class name:
UnitRegistry . Note that you do not have to enclose the exception name in a “Raises” or “Warns” section, or the
class/method/function name in a “See Also” section in backticks, they will be automatically linked (putting backticks
there will lead to incorrect display or an error message),

Inline source fragments should be enclosed in double backticks.

Class docstrings follow the same conventions as method docstrings and should document the __init__ method, the
__init__ method itself does not need a docstring.

Documenting functions and methods

The docstring for a function/method should start with a one-line description of what the function does, without re-
ferring to the function name or the names of variables. Use a “command style” for this summary, e.g. “Return the
result.” instead of “Returns the result.” If the signature of the function cannot be automatically extracted because of
an decorator (e.g. check_units()), place a signature in the very first row of the docstring, before the one-line
description.

For methods, do not document the self parameter, nor give information about the method being static or a class
method (this information will be automatically added to the documentation).

Documenting classes

Class docstrings should use the same “Parameters” and “Returns” sections as method and function docstrings for
documenting the __init__ constructor. If a class docstring does not have any “Attributes” or “Methods” section,
these sections will be automatically generated with all documented (i.e. having a docstring), public (i.e. not starting
with _) attributes respectively methods of the class. Alternatively, you can provide these sections manually. This is
useful for example in the Quantity class, which would otherwise include the documentation of many ndarray
methods, or when you want to include documentation for functions like __getitem__ which would otherwise not
be documented. When specifying these sections, you only have to state the names of documented methods/attributes
but you can also provide direct documentation. For example:

Attributes

foo
bar
baz

This is a description.

This can be used for example for class or instance attributes which do not have “classical” docstrings. However, you
can also use a special syntax: When defining class attributes in the class body or instance attributes in __init__ you
can use the following variants (here shown for instance attributes):

def __init__(a, b, c):
#: The docstring for the instance attribute a.
#: Can also span multiple lines
self.a = a

self.b = b #: The docstring for self.b (only one line).

7.1. Coding guidelines 639

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Brian 2 Documentation, Release 2.1.1

self.c = c
'The docstring for self.c, directly *after* its definition'

Long example of a function docstring

This is a very long docstring, showing all the possible sections. Most of the time no See Also, Notes or References
section is needed:

def foo(var1, var2, long_var_name='hi') :
"""
A one-line summary that does not use variable names or the function name.

Several sentences providing an extended description. Refer to
variables using back-ticks, e.g. `var1`.

Parameters

var1 : array_like

Array_like means all those objects -- lists, nested lists, etc. --
that can be converted to an array. We can also refer to
variables like `var1`.

var2 : int
The type above can either refer to an actual Python type
(e.g. ``int``), or describe the type of the variable in more
detail, e.g. ``(N,) ndarray`` or ``array_like``.

Long_variable_name : {'hi', 'ho'}, optional
Choices in brackets, default first when optional.

Returns

describe : type

Explanation
output : type

Explanation
tuple : type

Explanation
items : type

even more explaining

Raises

BadException

Because you shouldn't have done that.

See Also

otherfunc : relationship (optional)
newfunc : Relationship (optional), which could be fairly long, in which

case the line wraps here.
thirdfunc, fourthfunc, fifthfunc

Notes

Notes about the implementation algorithm (if needed).

This can have multiple paragraphs.

640 Chapter 7. Developer’s guide

Brian 2 Documentation, Release 2.1.1

You may include some math:

.. math:: X(e^{j\omega }) = x(n)e^{ - j\omega n}

And even use a greek symbol like :math:`omega` inline.

References

Cite the relevant literature, e.g. [1]_. You may also cite these
references in the notes section above.

.. [1] O. McNoleg, "The integration of GIS, remote sensing,
expert systems and adaptive co-kriging for environmental habitat
modelling of the Highland Haggis using object-oriented, fuzzy-logic
and neural-network techniques," Computers & Geosciences, vol. 22,
pp. 585-588, 1996.

Examples

These are written in doctest format, and should illustrate how to
use the function.

>>> a=[1,2,3]
>>> print [x + 3 for x in a]
[4, 5, 6]
>>> print "a\n\nb"
a
b

"""

pass

7.1.6 Logging

For a description of logging from the users point of view, see Logging.

Logging in Brian is based on the logging module in Python’s standard library.

Every brian module that needs logging should start with the following line, using the get_logger() function to
get an instance of BrianLogger:

logger = get_logger(__name__)

In the code, logging can then be done via:

logger.diagnostic('A diagnostic message')
logger.debug('A debug message')
logger.info('An info message')
logger.warn('A warning message')
logger.error('An error message')

If a module logs similar messages in different places or if it might be useful to be able to suppress a subset of messages
in a module, add an additional specifier to the logging command, specifying the class or function name, or a method
name including the class name (do not include the module name, it will be automatically added as a prefix):

7.1. Coding guidelines 641

https://docs.python.org/2/library/logging.html#module-logging

Brian 2 Documentation, Release 2.1.1

logger.debug('A debug message', 'CodeString')
logger.debug('A debug message', 'NeuronGroup.update')
logger.debug('A debug message', 'reinit')

If you want to log a message only once, e.g. in a function that is called repeatedly, set the optional once keyword to
True:

logger.debug('Will only be shown once', once=True)
logger.debug('Will only be shown once', once=True)

The output of debugging looks like this in the log file:

2012-10-02 14:41:41,484 DEBUG brian2.equations.equations.CodeString: A debug
→˓message

and like this on the console (if the log level is set to “debug”):

DEBUG A debug message [brian2.equations.equations.CodeString]

Log level recommendations

diagnostic Low-level messages that are not of any interest to the normal user but useful for debugging Brian itself. A
typical example is the source code generated by the code generation module.

debug Messages that are possibly helpful for debugging the user’s code. For example, this shows which objects were
included in the network, which clocks the network uses and when simulations start and stop.

info Messages which are not strictly necessary, but are potentially helpful for the user. In particular, this will show
messages about the chosen state updater and other information that might help the user to achieve better per-
formance and/or accuracy in the simulations (e.g. using (event-driven) in synaptic equations, avoiding
incompatible dt values between TimedArray and the NeuronGroup using it, . . .)

warn Messages that alert the user to a potential mistake in the code, e.g. two possible solutions for an identifier in an
equation. It can also be used to make the user aware that he/she is using an experimental feature, an unsupported
compiler or similar. In this case, normally the once=True option should be used to raise this warning only
once. As a rule of thumb, “common” scripts like the examples provided in the examples folder should normally
not lead to any warnings.

error This log level is not used currently in Brian, an exception should be raised instead. It might be useful in
“meta-code”, running scripts and catching any errors that occur.

The default log level shown to the user is info. As a general rule, all messages that the user sees in the de-
fault configuration (i.e., info and warn level) should be avoidable by simple changes in the user code, e.g. the
renaming of variables, explicitly specifying a state updater instead of relying on the automatic system, adding
(clock-driven)/(event-driven) to synaptic equations, etc.

Testing log messages

It is possible to test whether code emits an expected log message using the catch_logs context manager. This
is normally not necessary for debug and info messages, but should be part of the unit tests for warning messages
(catch_logs by default only catches warning and error messages):

with catch_logs() as logs:
code that is expected to trigger a warning
...
assert len(logs) == 1

642 Chapter 7. Developer’s guide

Brian 2 Documentation, Release 2.1.1

logs contains tuples of (log level, name, message)
assert logs[0][0] == 'WARNING' and logs[0][1].endswith('warning_type')

7.1.7 Testing

Brian uses the nose package for its testing framework. To check the code coverage of the test suite, we use coverage.py.

Running the test suite

The nosetests tool automatically finds tests in the code. When brian2 is in your Python path or when you are in the
main brian2 directory, you can start the test suite with:

$ nosetests brian2 --with-doctest

This should show no errors or failures but usually a number of skipped tests. The recommended way however is to
import brian2 and call the test function, which gives you convenient control over which tests are run:

>>> import brian2
>>> brian2.test()

By default, this runs the test suite for all available (runtime) code generation targets. If you only want to test a specific
target, provide it as an argument:

>>> brian2.test('numpy')

If you want to test several targets, use a list of targets:

>>> brian2.test(['weave', 'cython'])

In addition to the tests specific to a code generation target, the test suite will also run a set of indepen-
dent tests (e.g. parsing of equations, unit system, utility functions, etc.). To exclude these tests, set the
test_codegen_independent argument to False. Not all available tests are run by default, tests that take
a long time are excluded. To include these, set long_tests to True.

To run the C++ standalone tests, you have to set the test_standalone argument to the name of a standalone
device. If you provide an empty argument for the runtime code generation targets, you will only run the standalone
tests:

>>> brian2.test([], test_standalone='cpp_standalone')

Checking the code coverage

To check the code coverage under Linux (with coverage and nosetests in your path) and generate a report, use the fol-
lowing commands (this assumes the source code of Brian with the file .coveragerc in the directory /path/to/brian):

$ coverage run --rcfile=/path/to/brian/.coveragerc $(which nosetests) --with-doctest
→˓brian2
$ coverage report

Using coverage html you can also generate a HTML report which will end up in the directory htmlcov.

7.1. Coding guidelines 643

https://nose.readthedocs.io/en/latest/
http://coverage.readthedocs.io/en/latest/

Brian 2 Documentation, Release 2.1.1

Writing tests

Generally speaking, we aim for a 100% code coverage by the test suite. Less coverage means that some code paths
are never executed so there’s no way of knowing whether a code change broke something in that path.

Unit tests

The most basic tests are unit tests, tests that test one kind of functionality or feature. To write a new unit test, add a
function called test_... to one of the test_... files in the brian2.tests package. Test files should roughly
correspond to packages, test functions should roughly correspond to tests for one function/method/feature. In the test
functions, use assertions that will raise an AssertionError when they are violated, e.g.:

G = NeuronGroup(42, model='dv/dt = -v / (10*ms) : 1')
assert len(G) == 42

When comparing arrays, use the array_equal() function from numpy.testing.utils which takes care of
comparing types, shapes and content and gives a nicer error message in case the assertion fails. Never make tests
depend on external factors like random numbers – tests should always give the same result when run on the same
codebase. You should not only test the expected outcome for the correct use of functions and classes but also that
errors are raised when expected. For that you can use the assert_raises function (also in numpy.testing.
utils) which takes an Exception type and a callable as arguments:

assert_raises(DimensionMismatchError, lambda: 3*volt + 5*second)

Note that you cannot simply write 3*volt + 5*second in the above example, this would raise an excep-
tion before calling assert_raises. Using a callable like the simple lambda expression above makes it possible for
assert_raises to catch the error and compare it against the expected type. You can also check whether expected
warnings are raised, see the documentation of the logging mechanism for details

For simple functions, doctests (see below) are a great alternative to writing classical unit tests.

By default, all tests are executed for all selected runtime code generation targets (see Running the test suite above).
This is not useful for all tests, some basic tests that for example test equation syntax or the use of physical units do
not depend on code generation and need therefore not to be repeated. To execute such tests only once, they can be
annotated with a codegen-independent attribute, using the attr decorator:

from nose.plugins.attrib import attr
from brian2 import NeuronGroup

@attr('codegen-independent')
def test_simple():

Test that the length of a NeuronGroup is correct
group = NeuronGroup(5, '')
assert len(group) == 5

Tests that are not “codegen-independent” are by default only executed for the runtimes device, i.e. not for the
cpp_standalone device, for example. However, many of those tests follow a common pattern that is com-
patible with standalone devices as well: they set up a network, run it, and check the state of the network after-
wards. Such tests can be marked as standalone-compatible, using the attr decorator in the same way as for
codegen-independent tests. Since standalone devices usually have an internal state where they store informa-
tion about arrays, array assignments, etc., they need to be reinitialized after such a test. For that use the with_setup
decorator and provide the reinit_devices function as the teardown argument:

from nose import with_setup
from nose.plugins.attrib import attr
from numpy.testing.utils import assert_equal

644 Chapter 7. Developer’s guide

Brian 2 Documentation, Release 2.1.1

from brian2 import *
from brian2.devices.device import reinit_devices

@attr('standalone-compatible')
@with_setup(teardown=reinit_devices)
def test_simple_run():

Check that parameter values of a neuron don't change after a run
group = NeuronGroup(5, 'v : volt')
group.v = 'i*mV'
run(1*ms)
assert_equal(group.v[:], np.arange(5)*mV)

Tests that have more than a single run function but are otherwise compatible with standalone mode (e.g. they don’t
need access to the number of synapses or results of the simulation before the end of the simulation), can be marked as
standalone-compatible and multiple-runs. They then have to use an explicit device.build(...)
call of the form shown below:

from nose import with_setup
from nose.plugins.attrib import attr
from numpy.testing.utils import assert_equal
from brian2 import *
from brian2.devices.device import reinit_devices

@attr('standalone-compatible', 'multiple-runs')
@with_setup(teardown=reinit_devices)
def test_multiple_runs():

Check that multiple runs advance the clock as expected
group = NeuronGroup(5, 'v : volt')
mon = StateMonitor(group, 'v', record=True)
run(1 * ms)
run(1 * ms)
device.build(direct_call=False, **device.build_options)
assert_equal(defaultclock.t, 2 * ms)
assert_equal(mon.t[0], 0 * ms)
assert_equal(mon.t[-1], 2 * ms - defaultclock.dt)

Tests can also be written specifically for a standalone device (they then have to include the set_device call
and possibly the build call explicitly). In this case tests have to be annotated with the name of the device (e.g.
'cpp_standalone') and with 'standalone-only' to exclude this test from the runtime tests. Also, the de-
vice should be reset in the teardown function. Such code would look like this for a single run() call, i.e. using the
automatic “build on run” feature:

from nose import with_setup
from nose.plugins.attrib import attr
from brian2 import *
from brian2.devices.device import reinit_devices

@attr('cpp_standalone', 'standalone-only')
@with_setup(teardown=reinit_devices)
def test_cpp_standalone():

set_device('cpp_standalone', directory=None)
set up simulation
run simulation
run(...)
check simulation results

7.1. Coding guidelines 645

Brian 2 Documentation, Release 2.1.1

If the code uses more than one run() statement, it needs an explicit build call:

from nose import with_setup
from nose.plugins.attrib import attr
from brian2 import *
from brian2.devices.device import reinit_devices

@attr('cpp_standalone', 'standalone-only')
@with_setup(teardown=reinit_devices)
def test_cpp_standalone():

set_device('cpp_standalone', build_on_run=False)
set up simulation
run simulation
run(...)
do something
run again
run(...)
device.build(directory=None)
check simulation results

Summary

@attr attributes Executed
for devices

needs
teardown=reinit_devices?

explicit use of device

codegen-independent indepen-
dent of
devices

no none

none Runtime
targets

no none

standalone-compatibleRuntime
and stan-
dalone

yes none

standalone-compatible,
multiple-runs

Runtime
and stan-
dalone

yes device.build(direct_call=False,

**device.build_options)

cpp_standalone,
standalone-only

C++ stan-
dalone
device

yes set_device('cpp_standalone')
... device.
build(directory=None)

my_device,
standalone-only

“My de-
vice”

yes set_device('my_device') ...
device.build(directory=None)

Doctests

Doctests are executable documentation. In the Examples block of a class or function documentation, simply write
code copied from an interactive Python session (to do this from ipython, use %doctestmode), e.g.:

>>> expr = 'a*_b+c5+8+f(A)'
>>> print word_substitute(expr, {'a':'banana', 'f':'func'})
banana*_b+c5+8+func(A)

During testing, the actual output will be compared to the expected output and an error will be raised if they don’t
match. Note that this comparison is strict, e.g. trailing whitespace is not ignored. There are various ways of working

646 Chapter 7. Developer’s guide

Brian 2 Documentation, Release 2.1.1

around some problems that arise because of this expected exactness (e.g. the stacktrace of a raised exception will
never be identical because it contains file names), see the doctest documentation for details.

Doctests can (and should) not only be used in docstrings, but also in the hand-written documentation, making sure that
the examples actually work. To turn a code example into a doc test, use the .. doctest:: directive, see Equations
for examples written as doctests. For all doctests, everything that is available after from brian2 import * can
be used directly. For everything else, add import statements to the doctest code or – if you do not want the import
statements to appear in the document – add them in a .. testsetup:: block. See the documentation for Sphinx’s
doctest extension for more details.

Doctests are a great way of testing things as they not only make sure that the code does what it is supposed to do but
also that the documentation is up to date!

Correctness tests

[These do not exist yet for brian2]. Unit tests test a specific function or feature in isolation. In addition, we want to
have tests where a complex piece of code (e.g. a complete simulation) is tested. Even if it is sometimes impossible
to really check whether the result is correct (e.g. in the case of the spiking activity of a complex network), a useful
check is also whether the result is consistent. For example, the spiking activity should be the same when using code
generation for Python or C++. Or, a network could be pickled before running and then the result of the run could be
compared to a second run that starts from the unpickled network.

7.1.8 Releasing a new version of Brian

TODO: This needs more info about the basic process

Authentification tokens

The test servers will automatically upload new conda packages to our channel at anaconda.org. To do this, travis.
yml and appveyor.yml contain an encrypted version of an authentification token. To generate a token, you need
to be a member of the brian-team organization and have the anaconda-client package installed (alternatively,
you can create a token on the website).

To create the token, run:

anaconda auth -c -o brian-team -n brian-team-token -s "repos conda api"

Warning: Do not share the generated token, it servers as a username + password replacement and could be used
to upload/delete/modify packages in our channel.

Now, encrypt the generated token for inclusing in travis.yml and appveyor.yml.

Encryption for travis

More information: https://docs.travis-ci.com/user/encryption-keys/

First, install the travis CLI tool, if you do not already have it.

gem install travis

Then, navigate into your brian2 working copy (i.e. your checked out git repository), and run:

7.1. Coding guidelines 647

https://docs.python.org/2/library/doctest.html
http://www.sphinx-doc.org/en/stable/ext/doctest.html
http://www.sphinx-doc.org/en/stable/ext/doctest.html
https://docs.travis-ci.com/user/encryption-keys/

Brian 2 Documentation, Release 2.1.1

travis encrypt BINSTAR_TOKEN="...your token..."

Copy the returned secure: line into travis.yml (into the env: global section at the top).

Encryption for appveyor

Log into appveyor using the brianteam team account and navigate to the “Encrypt data” website (will automatically
ask you to log in if you are not): https://ci.appveyor.com/tools/encrypt

Paste in the token returned by anaconda auth earlier (just the token, not BINSTAR_TOKEN=...)

Add the encrypted value to appveyor.yml (into the environment: BINSTAR_TOKEN section at the top).

7.2 Units

7.2.1 Casting rules

In Brian 1, a distinction is made between scalars and numpy arrays (including scalar arrays): Scalars could be multi-
plied with a unit, resulting in a Quantity object whereas the multiplication of an array with a unit resulted in a (unitless)
array. Accordingly, scalars were considered as dimensionless quantities for the purpose of unit checking (e.g.. 1 + 1
* mV raised an error) whereas arrays were not (e.g. array(1) + 1 * mV resulted in 1.001 without any errors). Brian
2 no longer makes this distinction and treats both scalars and arrays as dimensionless for unit checking and make all
operations involving quantities return a quantity.:

>>> 1 + 1*second
Traceback (most recent call last):
...
DimensionMismatchError: Cannot calculate 1. s + 1, units do not match (units are
→˓second and 1).

>>> np.array([1]) + 1*second
Traceback (most recent call last):
...
DimensionMismatchError: Cannot calculate 1. s + [1], units do not match (units are
→˓second and 1).

>>> 1*second + 1*second
2. * second
>>> np.array([1])*second + 1*second
array([2.]) * second

As one exception from this rule, a scalar or array 0 is considered as having “any unit”, i.e. 0 + 1 * second will
result in 1 * second without a dimension mismatch error and 0 == 0 * mV will evaluate to True. This seems
reasonable from a mathematical viewpoint and makes some sources of error disappear. For example, the Python builtin
sum (not numpy’s version) adds the value of the optional argument start, which defaults to 0, to its main argument.
Without this exception, sum([1 * mV, 2 * mV]) would therefore raise an error.

The above rules also apply to all comparisons (e.g. == or <) with one further exception: inf and -inf also have
“any unit”, therefore an expression like v <= inf will never raise an exception (and always return True).

648 Chapter 7. Developer’s guide

https://ci.appveyor.com/tools/encrypt

Brian 2 Documentation, Release 2.1.1

7.2.2 Functions and units

ndarray methods

All methods that make sense on quantities should work, i.e. they check for the correct units of their arguments and
return quantities with units were appropriate. Most of the methods are overwritten using thin function wrappers:

wrap_function_keep_dimension: Strips away the units before giving the array to the method of ndarray,
then reattaches the unit to the result (examples: sum, mean, max)

wrap_function_change_dimension: Changes the dimensions in a simple way that is independent of function
arguments, the shape of the array, etc. (examples: sqrt, var, power)

wrap_function_dimensionless: Raises an error if the method is called on a quantity with dimensions (i.e. it
works on dimensionless quantities).

List of methods

all, any, argmax, argsort, clip, compress, conj, conjugate, copy, cumsum, diagonal, dot,
dump, dumps, fill, flatten, getfield, item, itemset, max, mean, min, newbyteorder, nonzero,
prod, ptp, put, ravel, repeat, reshape, round, searchsorted, setasflat, setfield, setflags,
sort, squeeze, std, sum, take, tolist, trace, transpose, var, view

Notes

• Methods directly working on the internal data buffer (setfield, getfield, newbyteorder) ignore the
dimensions of the quantity.

• The type of a quantity cannot be int, therefore astype does not quite work when trying to convert the array
into integers.

• choose is only defined for integer arrays and therefore does not work

• tostring and tofile only return/save the pure array data without the unit (but you can use dump or dumps
to pickle a quantity array)

• resize does not work: ValueError: cannot resize this array: it does not own
its data

• cumprod would result in different dimensions for different elements and is therefore forbidden

• item returns a pure Python float by definition

• itemset does not check for units

Numpy ufuncs

All of the standard numpy ufuncs (functions that operate element-wise on numpy arrays) are supported, meaning that
they check for correct units and return appropriate arrays. These functions are often called implicitly, for example
when using operators like < or **.

Math operations: add, subtract, multiply, divide, logaddexp, logaddexp2, true_divide,
floor_divide, negative, power, remainder, mod, fmod, absolute, rint, sign, conj,
conjugate, exp, exp2, log, log2, log10, expm1, log1p, sqrt, square, reciprocal,
ones_like

Trigonometric functions: sin, cos, tan, arcsin, arccos, arctan, arctan2, hypot, sinh, cosh, tanh,
arcsinh, arccosh, arctanh, deg2rad, rad2deg

Bitwise functions: bitwise_and, bitwise_or, bitwise_xor, invert, left_shift, right_shift

7.2. Units 649

http://docs.scipy.org/doc/numpy/reference/ufuncs.html

Brian 2 Documentation, Release 2.1.1

Comparison functions: greater, greater_equal, less, less_equal, not_equal, equal,
logical_and, logical_or, logical_xor, logical_not, maximum, minimum

Floating functions: isreal, iscomplex, isfinite, isinf, isnan, floor, ceil, trunc, fmod

Not taken care of yet: signbit, copysign, nextafter, modf, ldexp, frexp

Notes

• Everything involving log or exp, as well as trigonometric functions only works on dimensionless array (for
arctan2 and hypot this is questionable, though)

• Unit arrays can only be raised to a scalar power, not to an array of exponents as this would lead to differing
dimensions across entries. For simplicity, this is enforced even for dimensionless quantities.

• Bitwise functions never works on quantities (numpy will by itself throw a TypeError because they are floats
not integers).

• All comparisons only work for matching dimensions (with the exception of always allowing comparisons to 0)
and return a pure boolean array.

• All logical functions treat quantities as boolean values in the same way as floats are treated as boolean: Any
non-zero value is True.

Numpy functions

Many numpy functions are functional versions of ndarray methods (e.g. mean, sum, clip). They therefore work
automatically when called on quantities, as numpy propagates the call to the respective method.

There are some functions in numpy that do not propagate their call to the corresponding method (because they use
np.asarray instead of np.asanyarray, which might actually be a bug in numpy): trace, diagonal, ravel, dot.
For these, wrapped functions in unitsafefunctions.py are provided.

Wrapped numpy functions in unitsafefunctions.py

These functions are thin wrappers around the numpy functions to correctly check for units and return quantities when
appropriate:

log, exp, sin, cos, tan, arcsin, arccos, arctan, sinh, cosh, tanh, arcsinh, arccosh, arctanh,
diagonal, ravel, trace, dot

numpy functions that work unchanged

This includes all functional counterparts of the methods mentioned above (with the exceptions mentioned above).
Some other functions also work correctly, as they are only using functions/methods that work with quantities:

• linspace, diff, digitize1

• trim_zeros, fliplr, flipud, roll, rot90, shuffle

• corrcoeff1

numpy functions that return a pure numpy array instead of quantities

• arange

• cov

• random.permutation

• histogram, histogram2d

• cross, inner, outer
1 But does not care about the units of its input.

650 Chapter 7. Developer’s guide

Brian 2 Documentation, Release 2.1.1

• where

numpy functions that do something wrong

• insert, delete (return a quantity array but without units)

• correlate (returns a quantity with wrong units)

• histogramdd (raises a DimensionMismatchError)

User-defined functions and units

For performance and simplicity reasons, code within the Brian core does not use Quantity objects but unitless numpy
arrays instead. See Adding support for new functions for details on how to make use user-defined functions with
Brian’s unit system.

7.3 Equations and namespaces

7.3.1 Equation parsing

Parsing is done via pyparsing, for now find the grammar at the top of the brian2.equations.equations file.

7.3.2 Variables

Each Brian object that saves state variables (e.g. NeuronGroup, Synapses, StateMonitor) has a variables
attribute, a dictionary mapping variable names to Variable objects (in fact a Variables object, not a simple
dictionary). Variable objects contain information about the variable (name, dtype, units) as well as access to the
variable’s value via a get_value method. Some will also allow setting the values via a corresponding set_value
method. These objects can therefore act as proxies to the variables’ “contents”.

Variable objects provide the “abstract namespace” corresponding to a chunk of “abstract code”, they are all that is
needed to check for syntactic correctness, unit consistency, etc.

7.3.3 Namespaces

The namespace attribute of a group can contain information about the external (variable or function) names used
in the equations. It specifies a group-specific namespace used for resolving names in that group. At run time, this
namespace is combined with a “run namespace”. This namespace is either explicitly provided to the Network.
run() method, or the implicit namespace consisting of the locals and globals around the point where the run function
is called is used. This namespace is then passed down to all the objects via Network.before_fun which calls all
the individual BrianObject.before_run() methods with this namespace.

7.4 Variables and indices

7.4.1 Introduction

To be able to generate the proper code out of abstract code statements, the code generation process has to have access
to information about the variables (their type, size, etc.) as well as to the indices that should be used for indexing
arrays (e.g. a state variable of a NeuronGroup will be indexed differently in the NeuronGroup state updater and
in synaptic propagation code). Most of this information is stored in the variables attribute of a VariableOwner

7.3. Equations and namespaces 651

http://pyparsing.wikispaces.com/

Brian 2 Documentation, Release 2.1.1

(this includes NeuronGroup, Synapses, PoissonGroup and everything else that has state variables). The
variables attribute can be accessed as a (read-only) dictionary, mapping variable names to Variable objects
storing the information about the respective variable. However, it is not a simple dictionary but an instance of the
Variables class. Let’s have a look at its content for a simple example:

>>> tau = 10*ms
>>> G = NeuronGroup(10, 'dv/dt = -v / tau : volt')
>>> for name, var in G.variables.items():
... print('%r : %s' % (name, var))
...

'_spikespace' : <ArrayVariable(unit=Unit(1), dtype=<type 'numpy.int32'>,
→˓scalar=False, constant=False, read_only=False)>
'i' : <ArrayVariable(unit=Unit(1), dtype=<type 'numpy.int32'>, scalar=False,
→˓constant=True, read_only=True)>
'N' : <Constant(unit=Unit(1), dtype=<type 'numpy.int64'>, scalar=True,
→˓constant=True, read_only=True)>
't' : <ArrayVariable(unit=second, dtype=<type 'numpy.float64'>, scalar=True,
→˓constant=False, read_only=True)>
'v' : <ArrayVariable(unit=volt, dtype=<type 'numpy.float64'>, scalar=False,
→˓constant=False, read_only=False)>
'dt' : <ArrayVariable(unit=second, dtype=<type 'float'>, scalar=True, constant=True,
→˓ read_only=True)>

The state variable v we specified for the NeuronGroup is represented as an ArrayVariable, all the other vari-
ables were added automatically. By convention, internal names for variables that should not be directly accessed by
the user start with an underscore, in the above example the only variable of this kind is '_spikespace', the inter-
nal datastructure used to store the spikes that occured in the current time step. There’s another array i, the neuronal
indices (simply an array of integers from 0 to 9), that is used for string expressions involving neuronal indices. The
constant N represents the total number of neurons. At the first sight it might be surprising that t, the current time of
the clock and dt, its timestep, are ArrayVariable objects as well. This is because those values can change during
a run (for t) or between runs (for dt), and storing them as arrays with a single value (note the scalar=True) is
the easiest way to share this value – all code accessing it only needs a reference to the array and can access its only
element.

The information stored in the Variable objects is used to do various checks on the level of the abstract code, i.e.
before any programming language code is generated. Here are some examples of errors that are caught this way:

>>> G.v = 3*ms # G.variables['v'].unit is volt
Traceback (most recent call last):
...
DimensionMismatchError: v should be set with a value with units volt, but got 3. ms
→˓(unit is second).
>>> G.N = 5 # G.variables['N'] is read-only
Traceback (most recent call last):
...
TypeError: Variable N is read-only
>>> G2 = NeuronGroup(10, 'dv/dt = -v / tau : volt', threshold='v') #G2.variables['v
→˓'].is_bool is False
Traceback (most recent call last):
...
TypeError: Threshold condition "v" is not a boolean expression

7.4.2 Creating variables

Each variable that should be accessible as a state variable and/or should be available for use in abstract code has to
be created as a Variable. For this, first a Variables container with a reference to the group has to be created,

652 Chapter 7. Developer’s guide

Brian 2 Documentation, Release 2.1.1

individual variables can then be added using the various add_... methods:

self.variables = Variables(self)
self.variables.add_array('an_array', unit=volt, size=100)
self.variables.add_constant('N', unit=Unit(1), value=self._N, dtype=np.int32)
self.variables.create_clock_variables(self.clock)

As an additional argument, array variables can be specified with a specific index (see Indices below).

7.4.3 References

For each variable, only one Variable object exists even if it is used in different contexts. Let’s consider the following
example:

G = NeuronGroup(5, 'dv/dt = -v / tau : volt')
subG = G[2:]
S = Synapses(G, G, on_pre='v+=1*mV')
S.connect()

All allow an access to the state variable v (note the different shapes, these arise from the different indices used, see
below):

>>> G.v
<neurongroup.v: array([0., 0., 0., 0., 0.]) * volt>
>>> subG.v
<neurongroup_subgroup.v: array([0., 0., 0.]) * volt>
>>> S.v
<synapses.v: array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) * volt>

In all of these cases, the Variables object stores references to the same ArrayVariable object:

>>> id(G.variables['v'])
108610960
>>> id(subG.variables['v'])
108610960
>>> id(S.variables['v'])
108610960

Such a reference can be added using Variables.add_reference, note that the name used for the reference is
not necessarily the same as in the original group, e.g. in the above example S.variables also stores references to
v under the names v_pre and v_post.

7.4.4 Indices

In subgroups and especially in synapses, the transformation of abstract code into executable code is not straightforward
because it can involve variables from different contexts. Here is a simple example:

G = NeuronGroup(5, 'dv/dt = -v / tau : volt')
S = Synapses(G, G, 'w : volt', on_pre='v+=w')

The seemingly trivial operation v+=w involves the variable v of the NeuronGroup and the variable w of the
Synapses object which have to be indexed in the appropriate way. Since this statement is executed in the con-
text of S, the variable indices stored there are relevant:

7.4. Variables and indices 653

Brian 2 Documentation, Release 2.1.1

>>> S.variables.indices['w']
'_idx'
>>> S.variables.indices['v']
'_postsynaptic_idx'

The index _idx has a special meaning and always refers to the “natural” index for a group (e.g. all neurons for a
NeuronGroup, all synapses for a Synapses object, etc.). All other indices have to refer to existing arrays:

>>> S.variables['_postsynaptic_idx']
<DynamicArrayVariable(unit=Unit(1), dtype=<type 'numpy.int32'>, scalar=False,
→˓constant=False, is_bool=False, read_only=False)>

In this case, _postsynaptic_idx refers to a dynamic array that stores the postsynaptic targets for each synapse
(since it is an array itself, it also has an index. It is defined for each synapse so its index is _idx – in fact there is
currently no support for an additional level of indirection in Brian: a variable representing an index has to have _idx
as its own index). Using this index information, the following C++ code (slightly simplified) is generated:

for(int _spiking_synapse_idx=0;
_spiking_synapse_idx<_num_spiking_synapses;
_spiking_synapse_idx++)

{
const int _idx = _spiking_synapses[_spiking_synapse_idx];
const int _postsynaptic_idx = _ptr_array_synapses__synaptic_post[_idx];
const double w = _ptr_array_synapses_w[_idx];
double v = _ptr_array_neurongroup_v[_postsynaptic_idx];
v += w;
_ptr_array_neurongroup_v[_postsynaptic_idx] = v;

}

In this case, the “natural” index _idx iterates over all the synapses that received a spike (this is defined in the template)
and _postsynaptic_idx refers to the postsynaptic targets for these synapses. The variables w and v are then
pulled out of their respective arrays with these indices so that the statement v += w; does the right thing.

7.4.5 Getting and setting state variables

When a state variable is accessed (e.g. using G.v), the group does not return a reference to the underlying array itself
but instead to a VariableView object. This is because a state variable can be accessed in different contexts and
indexing it with a number/array (e.g. obj.v[0]) or a string (e.g. obj.v['i>3']) can refer to different values in
the underlying array depending on whether the object is the NeuronGroup, a Subgroup or a Synapses object.

The __setitem__ and __getitem__ methods in VariableView delegate to VariableView.set_item
and VariableView.get_item respectively (which can also be called directly under special circumstances). They
analyze the arguments (is the index a number, a slice or a string? Is the target value an array or a string expression?)
and delegate the actual retrieval/setting of the values to a specific method:

• Getting with a numerical (or slice) index (e.g. G.v[0]): VariableView.get_with_index_array

• Getting with a string index (e.g. G.v['i>3']): VariableView.get_with_expression

• Setting with a numerical (or slice) index and a numerical target value (e.g. G.v[5:] = -70*mV):
VariableView.set_with_index_array

• Setting with a numerical (or slice) index and a string expression value (e.g. G.v[5:] = (-70+i)*mV):
VariableView.set_with_expression

• Setting with a string index and a string expression value (e.g. G.v['i>5'] = (-70+i)*mV):
VariableView.set_with_expression_conditional

654 Chapter 7. Developer’s guide

Brian 2 Documentation, Release 2.1.1

These methods are annotated with the device_override decorator and can therefore be implemented in a different
way in certain devices. The standalone device, for example, overrides the all the getting functions and the setting with
index arrays. Note that for standalone devices, the “setter” methods do not actually set the values but only note them
down for later code generation.

7.4.6 Additional variables and indices

The variables stored in the variables attribute of a VariableOwner can be used everywhere (e.g. in the state
updater, in the threshold, the reset, etc.). Objects that depend on these variables, e.g. the Thresholder of a
NeuronGroup add additional variables, in particular AuxiliaryVariables that are automatically added to the
abstract code: a threshold condition v > 1 is converted into the statement _cond = v > 1; to specify the meaning
of the variable _cond for the code generation stage (in particular, C++ code generation needs to know the data type)
an AuxiliaryVariable object is created.

In some rare cases, a specific variable_indices dictionary is provided that overrides the indices for variables
stored in the variables attribute. This is necessary for synapse creation because the meaning of the variables
changes in this context: an expression v>0 does not refer to the v variable of all the connected postsynaptic variables,
as it does under other circumstances in the context of a Synapses object, but to the v variable of all possible targets.

7.5 Preferences system

Each preference looks like codegen.c.compiler, i.e. dotted names. Each preference has to be registered and
validated. The idea is that registering all preferences ensures that misspellings of a preference value by a user causes
an error, e.g. if they wrote codgen.c.compiler it would raise an error. Validation means that the value is checked
for validity, so codegen.c.compiler = 'gcc' would be allowed, but codegen.c.compiler = 'hcc'
would cause an error.

An additional requirement is that the preferences system allows for extension modules to define their own preferences,
including extending the existing core brian preferences. For example, an extension might want to define extension.
* but it might also want to define a new language for codegen, e.g. codegen.lisp.*. However, extensions cannot
add preferences to an existing category.

7.5.1 Accessing and setting preferences

Preferences can be accessed and set either keyword-based or attribute-based. To set/get the value for the preference
example mentioned before, the following are equivalent:

prefs['codegen.c.compiler'] = 'gcc'
prefs.codegen.c.compiler = 'gcc'

if prefs['codegen.c.compiler'] == 'gcc':
...

if prefs.codegen.c.compiler == 'gcc':
...

Using the attribute-based form can be particulary useful for interactive work, e.g. in ipython, as it offers autocom-
pletion and documentation. In ipython, prefs.codegen.c? would display a docstring with all the preferences
available in the codegen.c category.

7.5. Preferences system 655

Brian 2 Documentation, Release 2.1.1

7.5.2 Preference files

Preferences are stored in a hierarchy of files, with the following order (each step overrides the values in the previous
step but no error is raised if one is missing):

• The global defaults are stored in the installation directory.

• The user default are stored in ~/.brian/preferences (which works on Windows as well as Linux).

• The file brian_preferences in the current directory.

7.5.3 Registration

Registration of preferences is performed by a call to BrianGlobalPreferences.register_preferences,
e.g.:

register_preferences(
'codegen.c',
'Code generation preferences for the C language',
'compiler'= BrianPreference(

validator=is_compiler,
docs='...',
default='gcc'),

...
)

The first argument 'codegen.c' is the base name, and every preference of the form codegen.c.* has to be regis-
tered by this function (preferences in subcategories such as codegen.c.somethingelse.* have to be specified
separately). In other words, by calling register_preferences, a module takes ownership of all the preferences
with one particular base name. The second argument is a descriptive text explaining what this category is about. The
preferences themselves are provided as keyword arguments, each set to a BrianPreference object.

7.5.4 Validation functions

A validation function takes a value for the preference and returns True (if the value is a valid value) or False. If
no validation function is specified, a default validator is used that compares the value against the default value: Both
should belong to the same class (e.g. int or str) and, in the case of a Quantity have the same unit.

7.5.5 Validation

Setting the value of a preference with a registered base name instantly triggers validation. Trying to set an unregistered
preference using keyword or attribute access raises an error. The only exception from this rule is when the preferences
are read from configuration files (see below). Since this happens before the user has the chance to import extensions
that potentially define new preferences, this uses a special function (_set_preference). In this case,for base
names that are not yet registered, validation occurs when the base name is registered. If, at the time that Network.
run() is called, there are unregistered preferences set, a PreferenceError is raised.

7.5.6 File format

The preference files are of the following form:

656 Chapter 7. Developer’s guide

Brian 2 Documentation, Release 2.1.1

a.b.c = 1
Comment line
[a]
b.d = 2
[a.b]
b.e = 3

This would set preferences a.b.c=1, a.b.d=2 and a.b.e=3.

7.5.7 Built-in preferences

Brian itself defines the following preferences:

GSL

Directory containing GSL code

GSL.directory = None Set path to directory containing GSL header files (gsl_odeiv2.h etc.) If this directory is
already in Python’s include (e.g. because of conda installation), this path can be set to None.

codegen

Code generation preferences

codegen.loop_invariant_optimisations = True

Whether to pull out scalar expressions out of the statements, so that they are only evaluated once instead
of once for every neuron/synapse/. . . Can be switched off, e.g. because it complicates the code (and the
same optimisation is already performed by the compiler) or because the code generation target does not
deal well with it. Defaults to True.

codegen.string_expression_target = 'numpy'

Default target for the evaluation of string expressions (e.g. when indexing state variables). Should nor-
mally not be changed from the default numpy target, because the overhead of compiling code is not worth
the speed gain for simple expressions.

Accepts the same arguments as codegen.target, except for 'auto'

codegen.target = 'auto'

Default target for code generation.

Can be a string, in which case it should be one of:

• 'auto' the default, automatically chose the best code generation target available.

• 'weave' uses scipy.weave to generate and compile C++ code, should work anywhere where
gcc is installed and available at the command line.

• 'cython', uses the Cython package to generate C++ code. Needs a working installation of Cython
and a C++ compiler.

• 'numpy' works on all platforms and doesn’t need a C compiler but is often less efficient.

Or it can be a CodeObject class.

7.5. Preferences system 657

Brian 2 Documentation, Release 2.1.1

codegen.cpp

C++ compilation preferences

codegen.cpp.compiler = ''

Compiler to use (uses default if empty)

Should be gcc or msvc.

codegen.cpp.define_macros = []

List of macros to define; each macro is defined using a 2-tuple, where ‘value’ is either the string to define
it to or None to define it without a particular value (equivalent of “#define FOO” in source or -DFOO on
Unix C compiler command line).

codegen.cpp.extra_compile_args = None

Extra arguments to pass to compiler (if None, use either extra_compile_args_gcc or
extra_compile_args_msvc).

codegen.cpp.extra_compile_args_gcc = ['-w', '-O3', '-ffast-math',
'-fno-finite-math-only', '-march=native']

Extra compile arguments to pass to GCC compiler

codegen.cpp.extra_compile_args_msvc = ['/Ox', '/w', '/arch:SSE2', '/MP']

Extra compile arguments to pass to MSVC compiler (the default /arch: flag is determined based on the
processor architecture)

codegen.cpp.extra_link_args = []

Any extra platform- and compiler-specific information to use when linking object files together.

codegen.cpp.headers = []

A list of strings specifying header files to use when compiling the code. The list might look like [“<vec-
tor>”,“‘my_header’”]. Note that the header strings need to be in a form than can be pasted at the end of a
#include statement in the C++ code.

codegen.cpp.include_dirs = []

Include directories to use. Note that $prefix/include will be appended to the end automatically,
where $prefix is Python’s site-specific directory prefix as returned by sys.prefix.

codegen.cpp.libraries = []

List of library names (not filenames or paths) to link against.

codegen.cpp.library_dirs = []

List of directories to search for C/C++ libraries at link time. Note that $prefix/lib will be appended
to the end automatically, where $prefix is Python’s site-specific directory prefix as returned by sys.
prefix.

codegen.cpp.msvc_architecture = ''

MSVC architecture name (or use system architectue by default).

Could take values such as x86, amd64, etc.

codegen.cpp.msvc_vars_location = ''

Location of the MSVC command line tool (or search for best by default).

codegen.cpp.runtime_library_dirs = []

658 Chapter 7. Developer’s guide

https://docs.python.org/2/library/sys.html#sys.prefix
https://docs.python.org/2/library/sys.html#sys.prefix
https://docs.python.org/2/library/sys.html#sys.prefix

Brian 2 Documentation, Release 2.1.1

List of directories to search for C/C++ libraries at run time.

codegen.generators

Codegen generator preferences (see subcategories for individual languages)

codegen.generators.cpp

C++ codegen preferences

codegen.generators.cpp.flush_denormals = False

Adds code to flush denormals to zero.

The code is gcc and architecture specific, so may not compile on all platforms. The code, for reference is:

#define CSR_FLUSH_TO_ZERO (1 << 15)
unsigned csr = __builtin_ia32_stmxcsr();
csr |= CSR_FLUSH_TO_ZERO;
__builtin_ia32_ldmxcsr(csr);

Found at http://stackoverflow.com/questions/2487653/avoiding-denormal-values-in-c.

codegen.generators.cpp.restrict_keyword = '__restrict'

The keyword used for the given compiler to declare pointers as restricted.

This keyword is different on different compilers, the default works for gcc and MSVS.

codegen.runtime

Runtime codegen preferences (see subcategories for individual targets)

codegen.runtime.cython

Cython runtime codegen preferences

codegen.runtime.cython.cache_dir = None

Location of the cache directory for Cython files. By default, will be stored in a
brian_extensions subdirectory where Cython inline stores its temporary files (the result of
get_cython_cache_dir()).

codegen.runtime.cython.multiprocess_safe = True

Whether to use a lock file to prevent simultaneous write access to cython .pyx and .so files.

codegen.runtime.numpy

Numpy runtime codegen preferences

codegen.runtime.numpy.discard_units = False

Whether to change the namespace of user-specifed functions to remove units.

core

Core Brian preferences

core.default_float_dtype = float64

Default dtype for all arrays of scalars (state variables, weights, etc.).

Currently, this is not supported (only float64 can be used).

core.default_integer_dtype = int32

7.5. Preferences system 659

http://stackoverflow.com/questions/2487653/avoiding-denormal-values-in-c

Brian 2 Documentation, Release 2.1.1

Default dtype for all arrays of integer scalars.

core.outdated_dependency_error = True

Whether to raise an error for outdated dependencies (True) or just a warning (False).

core.network

Network preferences

core.network.default_schedule = ['start', 'groups', 'thresholds', 'synapses',
'resets', 'end']

Default schedule used for networks that don’t specify a schedule.

devices

Device preferences

devices.cpp_standalone

C++ standalone preferences

devices.cpp_standalone.extra_make_args_unix = ['-j']

Additional flags to pass to the GNU make command on Linux/OS-X. Defaults to “-j” for parallel compi-
lation.

devices.cpp_standalone.extra_make_args_windows = []

Additional flags to pass to the nmake command on Windows. By default, no additional flags are passed.

devices.cpp_standalone.openmp_spatialneuron_strategy = None

Which strategy to chose for solving the three tridiagonal systems with OpenMP: 'branches' means
to solve the three systems sequentially, but for all the branches in parallel, 'systems' means to solve
the three systems in parallel, but all the branches within each system sequentially. The 'branches'
approach is usually better for morphologies with many branches and a large number of threads, while the
'systems' strategy should be better for morphologies with few branches (e.g. cables) and/or simula-
tions with no more than three threads. If not specified (the default), the 'systems' strategy will be used
when using no more than three threads or when the morphology has less than three branches in total.

devices.cpp_standalone.openmp_threads = 0

The number of threads to use if OpenMP is turned on. By default, this value is set to 0 and the C++ code is
generated without any reference to OpenMP. If greater than 0, then the corresponding number of threads
are used to launch the simulation.

devices.cpp_standalone.run_environment_variables = {'LD_BIND_NOW': '1'}

Dictionary of environment variables and their values that will be set during the execution of the standalone
code.

logging

Logging system preferences

logging.console_log_level = 'INFO'

What log level to use for the log written to the console.

Has to be one of CRITICAL, ERROR, WARNING, INFO, DEBUG or DIAGNOSTIC.

logging.delete_log_on_exit = True

660 Chapter 7. Developer’s guide

Brian 2 Documentation, Release 2.1.1

Whether to delete the log and script file on exit.

If set to True (the default), log files (and the copy of the main script) will be deleted after the brian
process has exited, unless an uncaught exception occured. If set to False, all log files will be kept.

logging.file_log = True

Whether to log to a file or not.

If set to True (the default), logging information will be written to a file. The log level can be set via the
logging.file_log_level preference.

logging.file_log_level = 'DIAGNOSTIC'

What log level to use for the log written to the log file.

In case file logging is activated (see logging.file_log), which log level should be used for logging. Has to
be one of CRITICAL, ERROR, WARNING, INFO, DEBUG or DIAGNOSTIC.

logging.save_script = True

Whether to save a copy of the script that is run.

If set to True (the default), a copy of the currently run script is saved to a temporary location. It is
deleted after a successful run (unless logging.delete_log_on_exit is False) but is kept after an uncaught
exception occured. This can be helpful for debugging, in particular when several simulations are running
in parallel.

logging.std_redirection = True

Whether or not to redirect stdout/stderr to null at certain places.

This silences a lot of annoying compiler output, but will also hide error messages making it harder to debug
problems. You can always temporarily switch it off when debugging. If logging.std_redirection_to_file is
set to True as well, then the output is saved to a file and if an error occurs the name of this file will be
printed.

logging.std_redirection_to_file = True

Whether to redirect stdout/stderr to a file.

If both logging.std_redirection and this preference are set to True, all standard output/error
(most importantly output from the compiler) will be stored in files and if an error occurs the name of this
file will be printed. If logging.std_redirection is True and this preference is False, then all standard
output/error will be completely suppressed, i.e. neither be displayed nor stored in a file.

The value of this preference is ignore if logging.std_redirection is set to False.

7.6 Adding support for new functions

For a description of Brian’s function system from the user point of view, see Functions.

The default functions available in Brian are stored in the DEFAULT_FUNCTIONS dictionary. New Function objects
can be added to this dictionary to make them available to all Brian code, independent of its namespace.

To add a new implementation for a code generation target, a FunctionImplementation can be added to the
Function.implementations dictionary. The key for this dictionary has to be either a CodeGenerator class
object, or a CodeObject class object. The CodeGenerator of a CodeObject (e.g. CPPCodeGenerator for
WeaveCodeObject) is used as a fallback if no implementation specific to the CodeObject class exists.

7.6. Adding support for new functions 661

Brian 2 Documentation, Release 2.1.1

If a function is already provided for the target language (e.g. it is part of a library imported by default), using the
same name, all that is needed is to add an empty FunctionImplementation object to mark the function as
implemented. For example, exp is a standard function in C++:

DEFAULT_FUNCTIONS['exp'].implementations[CPPCodeGenerator] = FunctionImplementation()

Some functions are implemented but have a different name in the target language. In this case, the
FunctionImplementation object only has to specify the new name:

DEFAULT_FUNCTIONS['arcsin'].implementations[CPPCodeGenerator] =
→˓FunctionImplementation('asin')

Finally, the function might not exist in the target language at all, in this case the code for the function has to be
provided, the exact form of this code is language-specific. In the case of C++, it’s a dictionary of code blocks:

clip_code = {'support_code': '''
double _clip(const float value, const float a_min, const float a_max)
{

if (value < a_min)
return a_min;

if (value > a_max)
return a_max;

return value;
}
'''}

DEFAULT_FUNCTIONS['clip'].implementations[CPPCodeGenerator] = FunctionImplementation(
→˓'_clip',

→˓code=clip_code)

7.7 Code generation

The generation of a code snippet is done by a CodeGenerator class. The templates are stored in the
CodeObject.templater attribute, which is typically implemented as a subdirectory of templates. The com-
pilation and running of code is done by a CodeObject. See the sections below for each of these.

7.7.1 Code path

The following gives an outline of the key steps that happen for the code generation associated to a NeuronGroup
StateUpdater. The items in grey are Brian core functions and methods and do not need to be implemented to
create a new code generation target or device. The parts in yellow are used when creating a new device. The parts in
green relate to generating code snippets from abstract code blocks. The parts in blue relate to creating new templates
which these snippets are inserted into. The parts in red relate to creating new runtime behaviour (compiling and
running generated code).

662 Chapter 7. Developer’s guide

Brian 2 Documentation, Release 2.1.1

In brief, what happens can be summarised as follows. Network.run() will call BrianObject.
before_run() on each of the objects in the network. Objects such as StateUpdater, which is a subclass
of CodeRunner use this spot to generate and compile their code. The process for doing this is to first create the
abstract code block, done in the StateUpdater.update_abstract_code method. Then, a CodeObject is
created with this code block. In doing so, Brian will call out to the currently active Device to get the CodeObject
and CodeGenerator classes associated to the device, and this hierarchy of calls gives several hooks which can be
changed to implement new targets.

7.7.2 Code generation

To implement a new language, or variant of an existing language, derive a class from CodeGenerator. Good exam-
ples to look at are the NumpyCodeGenerator, CPPCodeGenerator and CythonCodeGenerator classes in
the brian2.codegen.generators package. Each CodeGenerator has a class_name attribute which is a
string used by the user to refer to this code generator (for example, when defining function implementations).

The derived CodeGenerator class should implement the methods marked as NotImplemented in the base
CodeGenerator class. CodeGenerator also has several handy utility methods to make it easier to write these,
see the existing examples to get an idea of how these work.

7.7.3 Syntax translation

One aspect of writing a new language is that sometimes you need to translate from Python syntax into the syntax
of another language. You are free to do this however you like, but we recommend using a NodeRenderer class
which allows you to iterate over the abstract syntax tree of an expression. See examples in brian2.parsing.
rendering.

7.7.4 Templates

In addition to snippet generation, you need to create templates for the new language. See the templates directories
in brian2.codegen.runtime.* for examples of these. They are written in the Jinja2 templating system. The

7.7. Code generation 663

Brian 2 Documentation, Release 2.1.1

location of these templates is set as the CodeObject.templater attribute. Examples such as CPPCodeObject
show how this is done.

7.7.5 Code objects

To allow the final code block to be compiled and run, derive a class from CodeObject. This class should implement
the placeholder methods defined in the base class. The class should also have attributes templater (which should be
a Templater object pointing to the directory where the templates are stored) generator_class (which should
be the CodeGenerator class), and class_name (which should be a string the user can use to refer to this code
generation target.

7.7.6 Default functions

You will typically want to implement the default functions such as the trigonometric, exponential and rand functions.
We usually put these implementations either in the same module as the CodeGenerator class or the CodeObject
class depending on whether they are language-specific or runtime target specific. See those modules for examples of
implementing these functions.

7.7.7 Code guide

• brian2.codegen: everything related to code generation

• brian2.codegen.generators: snippet generation, including the CodeGenerator classes and default
function implementations.

• brian2.codegen.runtime: templates, compilation and running of code, including CodeObject and
default function implementations.

• brian2.core.functions, brian2.core.variables: these define the values that variable names
can have.

• brian2.parsing: tools for parsing expressions, etc.

• brian2.parsing.rendering: AST tools for rendering expressions in Python into different languages.

• brian2.utils: various tools for string manipulation, file management, etc.

7.7.8 Additional information

For some additional (older, but still accurate) notes on code generation:

Older notes on code generation

The following is an outline of how the Brian 2 code generation system works, with indicators as to which packages to
look at and which bits of code to read for a clearer understanding.

We illustrate the global process with an example, the creation and running of a single NeuronGroup object:

• Parse the equations, add refractoriness to them: this isn’t really part of code generation.

• Allocate memory for the state variables.

• Create Thresholder, Resetter and StateUpdater objects.

– Determine all the variable and function names used in the respective abstract code blocks and templates

664 Chapter 7. Developer’s guide

Brian 2 Documentation, Release 2.1.1

– Determine the abstract namespace, i.e. determine a Variable or Function object for each name.

– Create a CodeObject based on the abstract code, template and abstract namespace. This will generate
code in the target language and the namespace in which the code will be executed.

• At runtime, each object calls CodeObject.__call__() to execute the code.

Stages of code generation

Equations to abstract code

In the case of Equations, the set of equations are combined with a numerical integration method to generate an
abstract code block (see below) which represents the integration code for a single time step.

An example of this would be converting the following equations:

eqs = '''
dv/dt = (v0-v)/tau : volt (unless refractory)
v0 : volt
'''
group = NeuronGroup(N, eqs, threshold='v>10*mV',

reset='v=0*mV', refractory=5*ms)

into the following abstract code using the exponential_euler method (which is selected automatically):

not_refractory = 1*((t - lastspike) > 0.005000)
_BA_v = -v0
_v = -_BA_v + (_BA_v + v)*exp(-dt*not_refractory/tau)
v = _v

The code for this stage can be seen in NeuronGroup.__init__(), StateUpdater.__init__,
and StateUpdater.update_abstract_code (in brian2.groups.neurongroup), and the
StateUpdateMethod classes defined in the brian2.stateupdaters package.

For more details, see State update.

Abstract code

‘Abstract code’ is just a multi-line string representing a block of code which should be executed for each item (e.g.
each neuron, each synapse). Each item is independent of the others in abstract code. This allows us to later generate
code either for vectorised languages (like numpy in Python) or using loops (e.g. in C++).

Abstract code is parsed according to Python syntax, with certain language constructs excluded. For example, there
cannot be any conditional or looping statements at the moment, although support for this is in principle possible
and may be added later. Essentially, all that is allowed at the moment is a sequence of arithmetical a = b*c style
statements.

Abstract code is provided directly by the user for threshold and reset statements in NeuronGroup and for pre/post
spiking events in Synapses.

Abstract code to snippet

We convert abstract code into a ‘snippet’, which is a small segment of code which is syntactically correct in the
target language, although it may not be runnable on its own (that’s handled by insertion into a ‘template’ later). This
is handled by the CodeGenerator object in brian2.codegen.generators. In the case of converting into

7.7. Code generation 665

Brian 2 Documentation, Release 2.1.1

python/numpy code this typically doesn’t involve any changes to the code at all because the original code is in Python
syntax. For conversion to C++, we have to do some syntactic transformations (e.g. a**b is converted to pow(a,
b)), and add declarations for certain variables (e.g. converting x=y*z into const double x = y*z;).

An example of a snippet in C++ for the equations above:

const double v0 = _ptr_array_neurongroup_v0[_neuron_idx];
const double lastspike = _ptr_array_neurongroup_lastspike[_neuron_idx];
bool not_refractory = _ptr_array_neurongroup_not_refractory[_neuron_idx];
double v = _ptr_array_neurongroup_v[_neuron_idx];
not_refractory = 1 * (t - lastspike > 0.0050000000000000001);
const double _BA_v = -(v0);
const double _v = -(_BA_v) + (_BA_v + v) * exp(-(dt) * not_refractory / tau);
v = _v;
_ptr_array_neurongroup_not_refractory[_neuron_idx] = not_refractory;
_ptr_array_neurongroup_v[_neuron_idx] = v;

The code path that includes snippet generation will be discussed in more detail below, since it involves the concepts
of namespaces and variables which we haven’t covered yet.

Snippet to code block

The final stage in the generation of a runnable code block is the insertion of a snippet into a template. These use the
Jinja2 template specification language. This is handled in brian2.codegen.templates.

An example of a template for Python thresholding:

USES_VARIABLES { not_refractory, lastspike, t }
{% for line in code_lines %}
{{line}}
{% endfor %}
_return_values, = _cond.nonzero()
Set the neuron to refractory
not_refractory[_return_values] = False
lastspike[_return_values] = t

and the output code from the example equations above:

USES_VARIABLES { not_refractory, lastspike, t }
v = _array_neurongroup_v
_cond = v > 10 * mV
_return_values, = _cond.nonzero()
Set the neuron to refractory
not_refractory[_return_values] = False
lastspike[_return_values] = t

Code block to executing code

A code block represents runnable code. Brian operates in two different regimes, either in runtime or standalone mode.
In runtime mode, memory allocation and overall simulation control is handled by Python and numpy, and code objects
operate on this memory when called directly by Brian. This is the typical way that Brian is used, and it allows for
a rapid development cycle. However, we also support a standalone mode in which an entire project workspace is
generated for a target language or device by Brian, which can then be compiled and run independently of Brian.
Each mode has different templates, and does different things with the outputted code blocks. For runtime mode, in
Python/numpy code is executed by simply calling the exec statement on the code block in a given namespace. For

666 Chapter 7. Developer’s guide

Brian 2 Documentation, Release 2.1.1

C++/weave code, the scipy.weave.inline function is used. In standalone mode, the templates will typically
each be saved into different files.

Key concepts

Namespaces

In general, a namespace is simply a mapping/dict from names to values. In Brian we use the term ‘namespace’ in two
ways: the high level “abstract namespace” maps names to objects based on the Variables or Function class. In
the above example, v maps to an ArrayVariable object, tau to a Constant object, etc. This namespace has
all the information that is needed for checking the consistency of units, to determine which variables are boolean or
scalar, etc. During the CodeObject creation, this abstract namespace is converted into the final namespace in which
the code will be executed. In this namespace, v maps to the numpy array storing the state variable values (without
units) and tau maps to a concrete value (again, without units). See Equations and namespaces for more details.

Variable

Variable objects contain information about the variable they correspond to, including details like the data type,
whether it is a single value or an array, etc.

See brian2.core.variables and, e.g. Group._create_variables, NeuronGroup.
_create_variables().

Templates

Templates are stored in Jinja2 format. They come in one of two forms, either they are a single template if code
generation only needs to output a single block of code, or they define multiple Jinja macros, each of which is a
separate code block. The CodeObject should define what type of template it wants, and the names of the macros
to define. For examples, see the templates in the directories in brian2/codegen/runtime. See brian2.
codegen.templates for more details.

Code guide

This section includes a guide to the various relevant packages and subpackages involved in the code generation process.

codegen Stores the majority of all code generation related code.

codegen.functions Code related to including functions - built-in and user-defined - in generated code.

codegen.generators Each CodeGenerator is defined in a module here.

codegen.runtime Each runtime CodeObject and its templates are defined in a package here.

core

core.variables The Variable types are defined here.

equations Everything related to Equations.

groups All Group related stuff is in here. The Group.resolve methods are responsible for determining the
abstract namespace.

parsing Various tools using Python’s ast module to parse user-specified code. Includes syntax translation to
various languages in parsing.rendering.

7.7. Code generation 667

Brian 2 Documentation, Release 2.1.1

stateupdaters Everything related to generating abstract code blocks from integration methods is here.

7.8 Devices

This document describes how to implement a new Device for Brian. This is a somewhat complicated process, and
you should first be familiar with devices from the user point of view (Computational methods and efficiency) as well
as the code generation system (Code generation).

We wrote Brian’s devices system to allow for two major use cases, although it can potentially be extended beyond this.
The two use cases are:

1. Runtime mode. In this mode, everything is managed by Python, including memory management (using numpy
by default) and running the simulation. Actual computational work can be carried out in several different ways,
including numpy, weave or Cython.

2. Standalone mode. In this mode, running a Brian script leads to generating an entire source code project tree
which can be compiled and run independently of Brian or Python.

Runtime mode is handled by RuntimeDevice and is already implemented, so here I will mainly discuss standalone
devices. A good way to understand these devices is to look at the implementation of CPPStandaloneDevice (the
only one implemented in the core of Brian). In many cases, the simplest way to implement a new standalone device
would be to derive a class from CPPStandaloneDevice and overwrite just a few methods.

7.8.1 Memory management

Memory is managed primarily via the Device.add_array, Device.get_value and Device.set_value
methods. When a new array is created, the add_array method is called, and when trying to access this memory the
other two are called. The RuntimeDevice uses numpy to manage the memory and returns the underlying arrays
in these methods. The CPPStandaloneDevice just stores a dictionary of array names but doesn’t allocate any
memory. This information is later used to generate code that will allocate the memory, etc.

7.8.2 Code objects

As in the case of runtime code generation, computational work is done by a collection of CodeObject s. In
CPPtandaloneDevice, each code object is converted into a pair of .cpp and .h files, and this is probably a
fairly typical way to do it. For this device, it just uses the same code generation routines as for the runtime C++ device
weave.

7.8.3 Building

The method Device.build is used to generate the project. This can be implemented any way you like, although
looking at CPPStandaloneDevice.build is probably a good way to get an idea of how to do it.

7.8.4 Device override methods

Several functions and methods in Brian are decorated with the device_override decorator. This mechanism
allows a standalone device to override the behaviour of any of these functions by implementing a method with the name
provided to device_override. For example, the CPPStandaloneDevice uses this to override Network.
run() as CPPStandaloneDevice.network_run.

668 Chapter 7. Developer’s guide

Brian 2 Documentation, Release 2.1.1

7.8.5 Other methods

There are some other methods to implement, including initialising arrays, creating spike queues for synaptic propaga-
tion. Take a look at the source code for these.

7.9 Multi-threading with OpenMP

The following is an outline of how to make C++ standalone templates compatible with OpenMP, and therefore make
them work in a multi-threaded environment. This should be considered as an extension to Code generation, that has
to be read first. The C++ standalone mode of Brian is compatible with OpenMP, and therefore simulations can be
launched by users with one or with multiple threads. Therefore, when adding new templates, the developers need to
make sure that those templates are properly handling the situation if launched with OpenMP.

7.9.1 Key concepts

All the simulations performed with the C++ standalone mode can be launched with multi-threading, and make use of
multiple cores on the same machine. Basically, all the Brian operations that can easily be performed in parallel, such
as computing the equations for NeuronGroup, Synapses, and so on can and should be split among several threads.
The network construction, so far, is still performed only by one single thread, and all created objects are shared by all
the threads.

7.9.2 Use of #pragma flags

In OpenMP, all the parallelism is handled thanks to extra comments, added in the main C++ code, under the form:

#pragma omp ...

But to avoid any dependencies in the code that is generated by Brian when OpenMP is not activated, we are using
functions that will only add those comments, during code generation, when such a multi-threading mode is turned on.
By default, nothing will be inserted.

Translations of the #pragma commands

All the translations from openmp_pragma() calls in the C++ templates are handled in the file devices/
cpp_standalone/codeobject.py In this function, you can see that all calls with various string inputs will
generate #pragma statements inserted into the C++ templates during code generation. For example:

{{ openmp_pragma('static') }}

will be transformed, during code generation, into:

#pragma omp for schedule(static)

You can find the list of all the translations in the core of the openmp_pragma() function, and if some extra transla-
tions are needed, they should be added here.

Execution of the OpenMP code

In this section, we are explaining the main ideas behind the OpenMP mode of Brian, and how the simulation is
executed in such a parallel context. As can be seen in devices/cpp_standalone/templates/main.cpp,

7.9. Multi-threading with OpenMP 669

Brian 2 Documentation, Release 2.1.1

the appropriate number of threads, defined by the user, is fixed at the beginning of the main function in the C++ code
with:

{{ openmp_pragma('set_num_threads') }}

equivalent to (thanks to the openmp_pragam() function defined above): nothing if OpenMP is turned off (default),
and to:

omp_set_dynamic(0);
omp_set_num_threads(nb_threads);

otherwise. When OpenMP creates a parallel context, this is the number of threads that will be used. As said, network
creation is performed without any calls to OpenMP, on one single thread. Each template that wants to use parallelism
has to add {{ openmp_pragma{('parallel')}} to create a general block that will be executed in parallel or
{{ openmp_pragma{('parallel-static')}} to execute a single loop in parallel.

7.9.3 How to make your template use OpenMP parallelism

To design a parallel template, such as for example devices/cpp_standalone/templates/
common_group.cpp, you can see that as soon as you have loops that can safely be split across nodes, you
just need to add an openmp command in front of those loops:

{{openmp_pragma('parallel-static')}}
for(int _idx=0; _idx<N; _idx++)
{

...
}

By doing so, OpenMP will take care of splitting the indices and each thread will loop only on a subset of indices,
sharing the load. By default, the scheduling use for splitting the indices is static, meaning that each node will get
the same number of indices: this is the faster scheduling in OpenMP, and it makes sense for NeuronGroup or
Synapses because operations are the same for all indices. By having a look at examples of templates such as
devices/cpp_standalone/templates/statemonitor.cpp, you can see that you can merge portions of
code executed by only one node and portions executed in parallel. In this template, for example, only one node is
recording the time and extending the size of the arrays to store the recorded values:

{{_dynamic_t}}.push_back(_clock_t);

// Resize the dynamic arrays
{{_recorded}}.resize(_new_size, _num_indices);

But then, values are written in the arrays by all the nodes:

{{ openmp_pragma('parallel-static') }}
for (int _i = 0; _i < _num_indices; _i++)
{

....
}

In general, operations that manipulate global data structures, e.g. that use push_back for a std::vector, should
only be executed by a single thread.

670 Chapter 7. Developer’s guide

Brian 2 Documentation, Release 2.1.1

7.9.4 Synaptic propagation in parallel

General ideas

With OpenMP, synaptic propagation is also multi-threaded. Therefore, we have to modify the SynapticPathway
objects, handling spike propagation. As can be seen in devices/cpp_standalone/templates/
synapses_classes.cpp, such an object, created during run time, will be able to get the number of threads
decided by the user:

_nb_threads = {{ openmp_pragma('get_num_threads') }};

By doing so, a SynapticPathway, instead of handling only one SpikeQueue, will be divided into
_nb_threads SpikeQueues, each of them handling a subset of the total number of connections. All
the calls to SynapticPathway object are performed from within parallel blocks in the synapses and
synapses_push_spikes template, we have to take this parallel context into account. This is why all the function
of the SynapticPathway object are taking care of the node number:

void push(int *spikes, unsigned int nspikes)
{

queue[{{ openmp_pragma('get_thread_num') }}]->push(spikes, nspikes);
}

Such a method for the SynapticPathway will make sure that when spikes are propagated, all the threads will
propagate them to their connections. By default, again, if OpenMP is turned off, the queue vector has size 1.

Preparation of the SynapticPathway

Here we are explaining the implementation of the prepare() method for SynapticPathway:

{{ openmp_pragma('parallel') }}
{

unsigned int length;
if ({{ openmp_pragma('get_thread_num') }} == _nb_threads - 1)

length = n_synapses - (unsigned int) {{ openmp_pragma('get_thread_num') }}*n_
→˓synapses/_nb_threads;

else
length = (unsigned int) n_synapses/_nb_threads;

unsigned int padding = {{ openmp_pragma('get_thread_num') }}*(n_synapses/_nb_
→˓threads);

queue[{{ openmp_pragma('get_thread_num') }}]->openmp_padding = padding;
queue[{{ openmp_pragma('get_thread_num') }}]->prepare(&real_delays[padding], &

→˓sources[padding], length, _dt);
}

Basically, each threads is getting an equal number of synapses (except the last one, that will get the remaining ones, if
the number is not a multiple of n_threads), and the queues are receiving a padding integer telling them what part
of the synapses belongs to each queue. After that, the parallel context is destroyed, and network creation can continue.
Note that this could have been done without a parallel context, in a sequential manner, but this is just speeding up
everything.

7.9. Multi-threading with OpenMP 671

Brian 2 Documentation, Release 2.1.1

Selection of the spikes

Here we are explaining the implementation of the peek() method for SynapticPathway. This is an example of
concurrent access to data structures that are not well handled in parallel, such as std::vector. When peek() is
called, we need to return a vector of all the neuron spiking at that particular time. Therefore, we need to ask every
queue of the SynapticPathway what are the id of the spiking neurons, and concatenate them. Because those ids
are stored in vectors with various shapes, we need to loop over nodes to perform this concatenate, in a sequential
manner:

{{ openmp_pragma('static-ordered') }}
for(int _thread=0; _thread < {{ openmp_pragma('get_num_threads') }}; _thread++)
{

{{ openmp_pragma('ordered') }}
{

if (_thread == 0)
all_peek.clear();

all_peek.insert(all_peek.end(), queue[_thread]->peek()->begin(), queue[_
→˓thread]->peek()->end());

}
}

The loop, with the keyword ‘static-ordered’, is therefore performed such that node 0 enters it first, then node 1, and so
on. Only one node at a time is executing the block statement. This is needed because vector manipulations can not be
performed in a multi-threaded manner. At the end of the loop, all_peek is now a vector where all sub queues have
written the id of spiking cells, and therefore this is the list of all spiking cells within the SynapticPathway.

7.9.5 Compilation of the code

One extra file needs to be modified, in order for OpenMP implementation to work. This is the makefile devices/
cpp_standalone/templates/makefile. As one can simply see, the CFLAGS are dynamically modified
during code generation thanks to:

{{ openmp_pragma('compilation') }}

If OpenMP is activated, this will add the following dependencies:

-fopenmp

such that if OpenMP is turned off, nothing, in the generated code, does depend on it.

7.10 Solving differential equations with the GNU Scientific Library

Conventionally, Brian generates its own code performing Numerical integration according to the chosen algorithm
(see the section on Code generation). Another option is to let the differential equation solvers defined in the GNU
Scientific Library (GSL) solve the given equations. In addition to offering a few extra integration methods, the GSL
integrator comes with the option of having an adaptable timestep. The latter functionality can have benefits for the
speed with which large simulations can be run. This is because it allows the use of larger timesteps for the overhead
loops in Python, without losing the accuracy of the numerical integration at points where small timesteps are necessary.
In addition, a major benefit of using the ODE solvers from GSL is that an estimation is performed on how wrong the
current solution is, so that simulations can be performed with some confidence on accuracy. (Note however that the
confidence of accuracy is based on estimation!)

672 Chapter 7. Developer’s guide

https://www.gnu.org/software/gsl/manual/html_node/Ordinary-Differential-Equations.html
https://www.gnu.org/software/gsl/manual/html_node/Ordinary-Differential-Equations.html

Brian 2 Documentation, Release 2.1.1

7.10.1 StateUpdateMethod

Translation of equations to abstract code

The first part of Brian’s code generation is the translation of equations to what we call ‘abstract code’. In the case
of Brian’s stateupdaters so far, this abstract code describes the calculations that need to be done to update differential
variables depending on their equations as is explained in the section on State update. In the case of preparing the
equations for GSL integration this is a bit different. Instead of writing down the computations that have to be done to
reach the new value of the variable after a time step, the equations have to be described in a way that GSL understands.
The differential equations have to be defined in a function and the function is given to GSL. This is best explained
with an example. If we have the following equations (taken from the adaptive threshold example):

dv/dt = -v/(10*ms) : volt
dvt/dt = (10*mV - vt)/(15*ms) : volt

We would describe the equations to GSL as follows:

v = y[0]
vt = y[1]
f[0] = -v/(10e-3)
f[1] = (10e-3 - vt)

Each differential variable gets an index. Its value at any time is saved in the y-array and the derivatives are saved
in the f-array. However, doing this translation in the stateupdater would mean that Brian has to deal with variable
descriptions that contain array accessing: something that for example sympy doesn’t do. Because we still want to use
Brian’s existing parsing and checking mechanisms, we needed to find a way to describe the abstract code with only
‘normal’ variable names. Our solution is to replace the y[0], f[0], etc. with a ‘normal’ variable name that is later
replaced just before the final code generation (in the GSLCodeGenerator). It has a tag and all the information
needed to write the final code. As an example, the GSL abstract code for the above equations would be:

v = _gsl_y0
vt = _gsl_y1
_gsl_f0 = -v/(10e-3)
_gsl_f1 = (10e-3 - vt)

In the GSLCodeGenerator these tags get replaced by the actual accessing of the arrays.

Return value of the StateUpdateMethod

So far, for each each code generation language (numpy, weave, cython) there was just one set of rules of how
to translate abstract code to real code, described in its respective CodeObject and CodeGenerator. If the
target language is set to weave, the stateupdater will use the WeaveCodeObject, just like other objects such
as the StateMonitor. However, to achieve the above decribed translations of the abstract code generated by
the StateUpdateMethod, we need a special WeaveCodeObject for the stateupdater alone (which at its
turn can contain the special CodeGenerator), and this CodeObject should be selected based on the chosen
StateUpdateMethod.

In order to achieve CodeObject selection based on the chosen stateupdater, the StateUpdateMethod returns a
class that can be called with an object, and the appropriate CodeObject is added as an attribute to the given object.
The return value of this callable is the abstract code describing the equations in a language that makes sense to the
GSLCodeGenerator.

7.10. Solving differential equations with the GNU Scientific Library 673

Brian 2 Documentation, Release 2.1.1

7.10.2 GSLCodeObject

Each target language has its own GSLCodeObject that is derived from the already existing code object of its lan-
guage. There are only minimal changes to the already existing code object:

• Overwrite stateupate template: a new version of the stateupdate template is given (stateupdate.
cpp for weave/C++ standalone and stateupdate.pyx for cython).

• Have a GSL specific generator_class: GSLWeaveCodeGenerator or GSLCythonCodeGenerator

• Add the attribute original_generator_class: the conventional target-language generator is used to do
the bulk of the translation to get from abstract code to language-specific code.

This defining of GSL-specific code objects also allowed us to catch compilation errors so we can give the user some
information on that it might be GSL-related (overwriting the compile()method in the case of cython and the run()
method for weave). In the case of the C++ CodeObject such overriding wasn’t really possible so compilation errors
in this case might be quite undescriptive.

7.10.3 GSLCodeGenerator

This is where the magic happens. Roughly 1000 lines of code define the translation of abstract code to code that uses
the GNU Scientific Library’s ODE solvers to achieve state updates.

Upon a call to run(), the code objects necessary for the simulation get made. The code for this is described in the
device. Part of making the code objects is generating the code that describes the code objects. This starts with a call
to translate, which in the case of GSL brings us to the GSLCodeGenerator.translate(). This method is
built up as follows:

• Some GSL-specific preparatory work: - Check whether the equations contain variable names that are reserved
for

the GSL code.

– Add the ‘gsl tags’ (see section on StateUpdateMethod) to the variables known to Brian as non-scalars.
This is necessary to ensure that all equations containing ‘gsl tags’ are considered vector equations, and
thus added to Brian’s vector code.

– Add GSL integrator meta variables as official Brian variables, so these are also taken into account upon
translation. The meta variables that are possible are described in the user manual (e.g. GSL’s step taken in
a single overhead step ‘_step_count’).

– Save function names. The original generators delete the function names from the variables dictionary once
they are processed. However, we need to know later in the GSL part of the code generation whether a
certain encountered variable name refers to a function or not.

• Brian’s general preparatory work. This piece of code is directly copied from the base CodeGenerator and is thus
similar to what is done normally.

• A call to original_generator.translate() to get the abstract code translated into code that is target-
language specific.

• A lot of statements to translate the target-language specific code to GSL-target-language specific code, described
in more detail below.

The biggest difference between conventional Brian code and GSL code is that the stateupdate-decribing lines are
contained directly in the main() or in a separate function, respectively. In both cases, the equations describing the
system refer to parameters that are in the Brian namespace (e.g. “dv/dt = -v/tau” needs access to “tau”). How can we
access Brian’s namespace in this separate function that is needed with GSL?

To explain the solution we first need some background information on this ‘separate function’ that is given to the GSL
integrators: _GSL_func. This function always gets three arguments:

674 Chapter 7. Developer’s guide

Brian 2 Documentation, Release 2.1.1

• double t: the current time. This is relevant when the equations are dependent on time.

• const double _GSL_y[]’: an array containing the current values of the differential variables (const be-
cause the cannot be changed by _GSL_func itself).

• double f[]: an array containing the derivatives of the differential variables (i.e. the equations describing the
differential system).

• void * params: a pointer.

The pointer can be a pointer to whatever you want, and can thus point to a data structure containing the system
parameters (such as tau). To achieve a structure containing all the parameters of the system, a considerable amount of
code has to be added/changed to that generated by conventional Brian:

• The data structure, _GSL_dataholder, has to be defined with all variables needed in the vector code. For this
reason, also the datatype of each variable is required.

– This is done in the method GSLCodeGenerator.write_dataholder()

• Instead of referring to the variables by their name only (e.g. dv/dt = -v/tau), the variables have to
be accessed as part of the data structure (e .g. dv/dt = -v/_GSL_dataholder->tau in the case of
weave/cpp). Also, as mentioned earlier, we want to translate the ‘gsl tags’ to what they should be in the final
code (e.g. _gsl_f0 to f[0]).

– This is done in the method GSLCodeGenerator.translate_vector_code(). It
works based on the to_replace dictionary (generated in the methods GSLCodeGenerator.
diff_var_to_replace() and GSLCodeGenerator.to_replace_vector_vars())
that simply contains the old variables as keys and new variables as values, and is given to the word_replace
function.

• The values of the variables in the data structure have to be set to the values of the variables in the Brian names-
pace.

– This is done in the method GSLCodeGenerator.unpack_namespace(), and for the
‘scalar’ variables that require calculation first it is done in the method GSLCodeGenerator.
translate_scalar_code().

In addition, a few more ‘support’ functions are generated for the GSL script:

• int _set_dimension(size_t * dimension): sets the dimension of the system. Required for GSL.

• double* _assign_memory_y(): allocates the right amount of memory for the y array (also according to
the dimension of the system).

• int _fill_y_vector(_dataholder* _GSL_dataholder, double* _GSL_y, int
_idx): pulls out the values for each differential variable out of the ‘Brian’ array into the y-vector. This happens
in the vector loop (e.g. y[0] = _GSL_dataholder->_ptr_array_neurongroup_v[_idx]; for
weave/C++).

• int _empty_y_vector(_dataholder* _GSL_dataholder, double* _GSL_y, int
_idx): the opposite of _fill_y_vector. Pulls final numerical solutions from the y array and gives it
back to Brian’s namespace.

• double* _set_GSL_scale_array(): sets the array bound for each differential vari-
able, for which the values are based on method_options['absolute_error'] and
method_options['absolute_error_per_variable'].

All of this is written in support functions so that the vector code in the main() can stay almost constant for any
simulation.

7.10. Solving differential equations with the GNU Scientific Library 675

Brian 2 Documentation, Release 2.1.1

7.10.4 Stateupdate templates

There is many extra things that need to be done for each simulation when using GSL compared to conventional Brian
stateupdaters. These are summarized in this section.

Things that need to be done for every type of simulation (either before, in or after main()):

• Cython-only: define the structs and functions that we will be using in cython language (for weave these defini-
tions already sit in GSL’s own header files that are included).

• Prepare the gsl_odeiv2_system: give function pointer, set dimension, give pointer to
_GSL_dataholder as params.

• Allocate the driver (name for the struct that contains the info necessary to perform GSL integration)

• Define dt.

Things that need to be done every loop iteration for every type of simulation:

• Define t and t1 (t + dt).

• Transfer the values in the Brian arrays to the y-array that will be given to GSL.

• Set _GSL_dataholder._idx (in case we need to access array variables in _GSL_func).

• Initialize the driver (reset counters, set dt_start).

• Apply driver (either with adaptable- or fixed time step).

• Optionally save certain meta-variables

• Transfer values from GSL’s y-vector to Brian arrays

676 Chapter 7. Developer’s guide

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

677

Brian 2 Documentation, Release 2.1.1

678 Chapter 8. Indices and tables

Bibliography

[R13] M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, 10th printing, 1964, pp. 86. http:
//www.math.sfu.ca/~cbm/aands/

[R14] Wikipedia, “Inverse hyperbolic function”, http://en.wikipedia.org/wiki/Arccosh

[R15] M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, 10th printing, 1964, pp. 86. http:
//www.math.sfu.ca/~cbm/aands/

[R16] Wikipedia, “Inverse hyperbolic function”, http://en.wikipedia.org/wiki/Arcsinh

[R17] M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, 10th printing, 1964, pp. 86. http:
//www.math.sfu.ca/~cbm/aands/

[R18] Wikipedia, “Inverse hyperbolic function”, http://en.wikipedia.org/wiki/Arctanh

[R19] Wikipedia, “Exponential function”, http://en.wikipedia.org/wiki/Exponential_function

[R20] M. Abramovitz and I. A. Stegun, “Handbook of Mathematical Functions with Formulas, Graphs, and Mathe-
matical Tables,” Dover, 1964, p. 69, http://www.math.sfu.ca/~cbm/aands/page_69.htm

[R21] M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, 10th printing, 1964, pp. 67. http:
//www.math.sfu.ca/~cbm/aands/

[R22] Wikipedia, “Logarithm”. http://en.wikipedia.org/wiki/Logarithm

[R23] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972, pg. 83.
http://www.math.sfu.ca/~cbm/aands/

[R24] Wikipedia, “Hyperbolic function”, http://en.wikipedia.org/wiki/Hyperbolic_function

679

http://www.math.sfu.ca/~cbm/aands/
http://www.math.sfu.ca/~cbm/aands/
http://en.wikipedia.org/wiki/Arccosh
http://www.math.sfu.ca/~cbm/aands/
http://www.math.sfu.ca/~cbm/aands/
http://en.wikipedia.org/wiki/Arcsinh
http://www.math.sfu.ca/~cbm/aands/
http://www.math.sfu.ca/~cbm/aands/
http://en.wikipedia.org/wiki/Arctanh
http://en.wikipedia.org/wiki/Exponential_function
http://www.math.sfu.ca/~cbm/aands/page_69.htm
http://www.math.sfu.ca/~cbm/aands/
http://www.math.sfu.ca/~cbm/aands/
http://en.wikipedia.org/wiki/Logarithm
http://www.math.sfu.ca/~cbm/aands/
http://en.wikipedia.org/wiki/Hyperbolic_function

Brian 2 Documentation, Release 2.1.1

680 Bibliography

Python Module Index

_
brian2.__init__, 323

c
brian2.codegen, 327
brian2.codegen._prefs, 327
brian2.codegen.codeobject, 327
brian2.codegen.cpp_prefs, 330
brian2.codegen.generators, 345
brian2.codegen.generators.base, 354
brian2.codegen.generators.cpp_generator,

356
brian2.codegen.generators.cython_generator,

358
brian2.codegen.generators.GSL_generator,

345
brian2.codegen.generators.numpy_generator,

360
brian2.codegen.optimisation, 332
brian2.codegen.permutation_analysis, 337
brian2.codegen.runtime, 362
brian2.codegen.runtime.cython_rt, 364
brian2.codegen.runtime.cython_rt.cython_rt,

364
brian2.codegen.runtime.cython_rt.extension_manager,

365
brian2.codegen.runtime.GSLcython_rt, 362
brian2.codegen.runtime.GSLcython_rt.GSLcython_rt,

362
brian2.codegen.runtime.GSLweave_rt, 363
brian2.codegen.runtime.GSLweave_rt.GSLweave_rt,

363
brian2.codegen.runtime.numpy_rt, 367
brian2.codegen.runtime.numpy_rt.numpy_rt,

367
brian2.codegen.runtime.weave_rt, 369
brian2.codegen.runtime.weave_rt.weave_rt,

369
brian2.codegen.statements, 337

brian2.codegen.targets, 338
brian2.codegen.templates, 339
brian2.codegen.translation, 342
brian2.core, 370
brian2.core.base, 370
brian2.core.clocks, 375
brian2.core.core_preferences, 377
brian2.core.functions, 378
brian2.core.magic, 384
brian2.core.names, 389
brian2.core.namespace, 391
brian2.core.network, 391
brian2.core.operations, 399
brian2.core.preferences, 402
brian2.core.spikesource, 408
brian2.core.tracking, 408
brian2.core.variables, 410

d
brian2.devices, 430
brian2.devices.cpp_standalone, 438
brian2.devices.cpp_standalone.codeobject,

438
brian2.devices.cpp_standalone.device,

440
brian2.devices.cpp_standalone.GSLcodeobject,

438
brian2.devices.device, 430

e
brian2.equations, 445
brian2.equations.codestrings, 446
brian2.equations.equations, 448
brian2.equations.refractory, 457
brian2.equations.unitcheck, 458

g
brian2.groups, 459
brian2.groups.group, 459
brian2.groups.neurongroup, 467

681

Brian 2 Documentation, Release 2.1.1

brian2.groups.subgroup, 474

h
brian2.hears, 323

i
brian2.importexport, 474
brian2.importexport.dictlike, 474
brian2.importexport.importexport, 476
brian2.input, 477
brian2.input.binomial, 477
brian2.input.poissongroup, 478
brian2.input.poissoninput, 480
brian2.input.spikegeneratorgroup, 481
brian2.input.timedarray, 483

m
brian2.memory.dynamicarray, 485
brian2.monitors, 488
brian2.monitors.ratemonitor, 488
brian2.monitors.spikemonitor, 489
brian2.monitors.statemonitor, 497

n
brian2.numpy_, 326

o
brian2.only, 326

p
brian2.parsing.bast, 501
brian2.parsing.dependencies, 504
brian2.parsing.expressions, 505
brian2.parsing.functions, 506
brian2.parsing.rendering, 509
brian2.parsing.statements, 512
brian2.parsing.sympytools, 513

s
brian2.spatialneuron, 515
brian2.spatialneuron.morphology, 515
brian2.spatialneuron.spatialneuron, 536
brian2.stateupdaters, 540
brian2.stateupdaters.base, 543
brian2.stateupdaters.exact, 546
brian2.stateupdaters.explicit, 548
brian2.stateupdaters.exponential_euler,

554
brian2.stateupdaters.GSL, 540
brian2.synapses, 556
brian2.synapses.parse_synaptic_generator_syntax,

556
brian2.synapses.spikequeue, 557
brian2.synapses.synapses, 559

u
brian2.units, 568
brian2.units.allunits, 568
brian2.units.constants, 568
brian2.units.fundamentalunits, 569
brian2.units.stdunits, 588
brian2.units.unitsafefunctions, 588
brian2.utils, 615
brian2.utils.arrays, 615
brian2.utils.caching, 616
brian2.utils.environment, 617
brian2.utils.filetools, 617
brian2.utils.logger, 619
brian2.utils.stringtools, 626
brian2.utils.topsort, 631

682 Python Module Index

Index

Symbols
__call__() (brian2.codegen.codeobject.CodeObject

method), 328
__call__() (brian2.codegen.templates.CodeObjectTemplate

method), 339
__call__() (brian2.core.functions.Function method), 379
__call__() (brian2.core.network.TextReport method), 398
__call__() (brian2.core.preferences.DefaultValidator

method), 406
__call__() (brian2.devices.cpp_standalone.codeobject.CPPStandaloneCodeObject

method), 439
__call__() (brian2.devices.device.Dummy method), 434
__call__() (brian2.groups.group.Indexing method), 464
__call__() (brian2.stateupdaters.GSL.GSLContainer

method), 541
__call__() (brian2.stateupdaters.GSL.GSLStateUpdater

method), 542
__call__() (brian2.stateupdaters.base.StateUpdateMethod

method), 544
__call__() (brian2.stateupdaters.exact.IndependentStateUpdater

method), 547
__call__() (brian2.stateupdaters.exact.LinearStateUpdater

method), 547
__call__() (brian2.stateupdaters.explicit.ExplicitStateUpdater

method), 551
__call__() (brian2.stateupdaters.exponential_euler.ExponentialEulerStateUpdater

method), 554
__call__() (brian2.synapses.synapses.SynapticIndexing

method), 566
__getitem__() (brian2.units.fundamentalunits.UnitRegistry

method), 579
_cache_irrelevant_attributes

(brian2.utils.caching.CacheKey attribute),
616

_clock (brian2.core.base.BrianObject attribute), 372
_connect_called (brian2.synapses.synapses.Synapses at-

tribute), 562
_creation_stack (brian2.core.base.BrianObject attribute),

372

_dispname (brian2.units.fundamentalunits.Unit attribute),
577

_dt (brian2.synapses.spikequeue.SpikeQueue attribute),
558

_initialise_queue_codeobj
(brian2.synapses.synapses.SynapticPathway
attribute), 567

_latexname (brian2.units.fundamentalunits.Unit at-
tribute), 577

_log_messages (brian2.utils.logger.BrianLogger at-
tribute), 621

_name (brian2.units.fundamentalunits.Unit attribute), 577
_network (brian2.core.base.BrianObject attribute), 372
_pathways (brian2.synapses.synapses.Synapses at-

tribute), 562
_previous_dt (brian2.input.spikegeneratorgroup.SpikeGeneratorGroup

attribute), 483
_refractory (brian2.groups.neurongroup.NeuronGroup at-

tribute), 469
_registered_variables (brian2.synapses.synapses.Synapses

attribute), 562
_scope_current_key (brian2.core.base.BrianObject

attribute), 372
_scope_key (brian2.core.base.BrianObject attribute), 372
_source_end (brian2.synapses.spikequeue.SpikeQueue

attribute), 558
_source_start (brian2.synapses.spikequeue.SpikeQueue

attribute), 558
_spikes_changed (brian2.input.spikegeneratorgroup.SpikeGeneratorGroup

attribute), 483
_stored_state (brian2.core.network.Network attribute),

393
_substituted_expressions

(brian2.equations.equations.Equations at-
tribute), 450

_synaptic_updaters (brian2.synapses.synapses.Synapses
attribute), 562

A
abstract_code_dependencies() (in module

683

Brian 2 Documentation, Release 2.1.1

brian2.parsing.dependencies), 504
abstract_code_from_function() (in module

brian2.parsing.functions), 508
AbstractCodeFunction (class in brian2.parsing.functions),

507
activate() (brian2.devices.device.Device method), 431
active (brian2.core.base.BrianObject attribute), 372
active_device (in module brian2.devices.device), 437
add() (brian2.core.magic.MagicNetwork method), 385
add() (brian2.core.network.Network method), 394
add() (brian2.core.tracking.InstanceFollower method),

409
add() (brian2.core.tracking.InstanceTrackerSet method),

409
add() (brian2.spatialneuron.morphology.Children

method), 516
add() (brian2.units.fundamentalunits.UnitRegistry

method), 579
add_arange() (brian2.core.variables.Variables method),

424
add_array() (brian2.core.variables.Variables method),

424
add_array() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice

method), 442
add_array() (brian2.devices.device.Device method), 431
add_array() (brian2.devices.device.RuntimeDevice

method), 435
add_arrays() (brian2.core.variables.Variables method),

425
add_attribute() (brian2.groups.group.VariableOwner

method), 464
add_auxiliary_variable() (brian2.core.variables.Variables

method), 426
add_constant() (brian2.core.variables.Variables method),

426
add_dependency() (brian2.core.base.BrianObject

method), 373
add_dynamic_array() (brian2.core.variables.Variables

method), 426
add_dynamic_implementation()

(brian2.core.functions.FunctionImplementationContainer
method), 381

add_gsl_variables_as_non_scalar()
(brian2.codegen.generators.GSL_generator.GSLCodeGenerator
method), 347

add_implementation() (brian2.core.functions.FunctionImplementationContainer
method), 381

add_meta_variables() (brian2.codegen.generators.GSL_generator.GSLCodeGenerator
method), 347

add_numpy_implementation()
(brian2.core.functions.FunctionImplementationContainer
method), 381

add_object() (brian2.core.variables.Variables method),
427

add_reference() (brian2.core.variables.Variables method),
427

add_references() (brian2.core.variables.Variables
method), 427

add_referred_subexpression()
(brian2.core.variables.Variables method),
428

add_refractoriness() (in module
brian2.equations.refractory), 457

add_subexpression() (brian2.core.variables.Variables
method), 428

add_to_magic_network (brian2.core.base.BrianObject at-
tribute), 372

additional_unit_register (in module
brian2.units.fundamentalunits), 588

advance() (brian2.synapses.spikequeue.SpikeQueue
method), 559

after_run() (brian2.core.base.BrianObject method), 373
after_run() (brian2.core.magic.MagicNetwork method),

385
after_run() (brian2.core.network.Network method), 394
all_values() (brian2.monitors.spikemonitor.EventMonitor

method), 491
all_values() (brian2.monitors.spikemonitor.SpikeMonitor

method), 494
allows_scalar_write (brian2.codegen.templates.CodeObjectTemplate

attribute), 339
analyse_identifiers() (in module

brian2.codegen.translation), 343
apply_stateupdater() (brian2.stateupdaters.base.StateUpdateMethod

static method), 544
arange() (in module brian2.units.unitsafefunctions), 589
arange_arrays (brian2.devices.cpp_standalone.device.CPPStandaloneDevice

attribute), 441
arccos() (in module brian2.units.unitsafefunctions), 590
arccosh() (in module brian2.units.unitsafefunctions), 591
arcsin() (in module brian2.units.unitsafefunctions), 592
arcsinh() (in module brian2.units.unitsafefunctions), 593
arctan() (in module brian2.units.unitsafefunctions), 594
arctanh() (in module brian2.units.unitsafefunctions), 596
area (brian2.spatialneuron.morphology.Cylinder at-

tribute), 518
area (brian2.spatialneuron.morphology.Morphology at-

tribute), 520
area (brian2.spatialneuron.morphology.Section attribute),

528
area (brian2.spatialneuron.morphology.Soma attribute),

531
area (brian2.spatialneuron.morphology.SubMorphology

attribute), 534
ArithmeticSimplifier (class in

brian2.codegen.optimisation), 332
array (brian2.core.variables.Variable attribute), 419
array_cache (brian2.devices.cpp_standalone.device.CPPStandaloneDevice

684 Index

Brian 2 Documentation, Release 2.1.1

attribute), 441
array_read_write() (brian2.codegen.generators.base.CodeGenerator

method), 355
arrays (brian2.devices.cpp_standalone.device.CPPStandaloneDevice

attribute), 441
arrays (brian2.devices.device.RuntimeDevice attribute),

435
arrays_helper() (brian2.codegen.generators.base.CodeGenerator

method), 355
ArrayVariable (class in brian2.core.variables), 410
as_file (brian2.core.preferences.BrianGlobalPreferences

attribute), 403
assign_id() (brian2.core.names.Nameable method), 390
auto_target() (in module brian2.devices.device), 435
autoindent() (in module brian2.codegen.templates), 341
autoindent_postfilter() (in module

brian2.codegen.templates), 342
AuxiliaryVariable (class in brian2.core.variables), 412

B
before_run() (brian2.core.base.BrianObject method), 373
before_run() (brian2.core.network.Network method), 394
before_run() (brian2.groups.group.CodeRunner method),

461
before_run() (brian2.groups.neurongroup.NeuronGroup

method), 469
before_run() (brian2.input.poissongroup.PoissonGroup

method), 479
before_run() (brian2.input.poissoninput.PoissonInput

method), 481
before_run() (brian2.input.spikegeneratorgroup.SpikeGeneratorGroup

method), 483
before_run() (brian2.spatialneuron.spatialneuron.SpatialStateUpdater

method), 539
before_run() (brian2.synapses.synapses.Synapses

method), 563
before_run() (brian2.synapses.synapses.SynapticPathway

method), 567
BinomialFunction (class in brian2.input.binomial), 477
brian2.__init__ (module), 323
brian2.codegen (module), 327
brian2.codegen._prefs (module), 327
brian2.codegen.codeobject (module), 327
brian2.codegen.cpp_prefs (module), 330
brian2.codegen.generators (module), 345
brian2.codegen.generators.base (module), 354
brian2.codegen.generators.cpp_generator (module), 356
brian2.codegen.generators.cython_generator (module),

358
brian2.codegen.generators.GSL_generator (module), 345
brian2.codegen.generators.numpy_generator (module),

360
brian2.codegen.optimisation (module), 332
brian2.codegen.permutation_analysis (module), 337

brian2.codegen.runtime (module), 362
brian2.codegen.runtime.cython_rt (module), 364
brian2.codegen.runtime.cython_rt.cython_rt (module),

364
brian2.codegen.runtime.cython_rt.extension_manager

(module), 365
brian2.codegen.runtime.GSLcython_rt (module), 362
brian2.codegen.runtime.GSLcython_rt.GSLcython_rt

(module), 362
brian2.codegen.runtime.GSLweave_rt (module), 363
brian2.codegen.runtime.GSLweave_rt.GSLweave_rt

(module), 363
brian2.codegen.runtime.numpy_rt (module), 367
brian2.codegen.runtime.numpy_rt.numpy_rt (module),

367
brian2.codegen.runtime.weave_rt (module), 369
brian2.codegen.runtime.weave_rt.weave_rt (module),

369
brian2.codegen.statements (module), 337
brian2.codegen.targets (module), 338
brian2.codegen.templates (module), 339
brian2.codegen.translation (module), 342
brian2.core (module), 370
brian2.core.base (module), 370
brian2.core.clocks (module), 375
brian2.core.core_preferences (module), 377
brian2.core.functions (module), 378
brian2.core.magic (module), 384
brian2.core.names (module), 389
brian2.core.namespace (module), 391
brian2.core.network (module), 391
brian2.core.operations (module), 399
brian2.core.preferences (module), 402
brian2.core.spikesource (module), 408
brian2.core.tracking (module), 408
brian2.core.variables (module), 410
brian2.devices (module), 430
brian2.devices.cpp_standalone (module), 438
brian2.devices.cpp_standalone.codeobject (module), 438
brian2.devices.cpp_standalone.device (module), 440
brian2.devices.cpp_standalone.GSLcodeobject (module),

438
brian2.devices.device (module), 430
brian2.equations (module), 445
brian2.equations.codestrings (module), 446
brian2.equations.equations (module), 448
brian2.equations.refractory (module), 457
brian2.equations.unitcheck (module), 458
brian2.groups (module), 459
brian2.groups.group (module), 459
brian2.groups.neurongroup (module), 467
brian2.groups.subgroup (module), 474
brian2.hears (module), 323
brian2.importexport (module), 474

Index 685

Brian 2 Documentation, Release 2.1.1

brian2.importexport.dictlike (module), 474
brian2.importexport.importexport (module), 476
brian2.input (module), 477
brian2.input.binomial (module), 477
brian2.input.poissongroup (module), 478
brian2.input.poissoninput (module), 480
brian2.input.spikegeneratorgroup (module), 481
brian2.input.timedarray (module), 483
brian2.memory.dynamicarray (module), 485
brian2.monitors (module), 488
brian2.monitors.ratemonitor (module), 488
brian2.monitors.spikemonitor (module), 489
brian2.monitors.statemonitor (module), 497
brian2.numpy_ (module), 326
brian2.only (module), 326
brian2.parsing.bast (module), 501
brian2.parsing.dependencies (module), 504
brian2.parsing.expressions (module), 505
brian2.parsing.functions (module), 506
brian2.parsing.rendering (module), 509
brian2.parsing.statements (module), 512
brian2.parsing.sympytools (module), 513
brian2.spatialneuron (module), 515
brian2.spatialneuron.morphology (module), 515
brian2.spatialneuron.spatialneuron (module), 536
brian2.stateupdaters (module), 540
brian2.stateupdaters.base (module), 543
brian2.stateupdaters.exact (module), 546
brian2.stateupdaters.explicit (module), 548
brian2.stateupdaters.exponential_euler (module), 554
brian2.stateupdaters.GSL (module), 540
brian2.synapses (module), 556
brian2.synapses.parse_synaptic_generator_syntax (mod-

ule), 556
brian2.synapses.spikequeue (module), 557
brian2.synapses.synapses (module), 559
brian2.units (module), 568
brian2.units.allunits (module), 568
brian2.units.constants (module), 568
brian2.units.fundamentalunits (module), 569
brian2.units.stdunits (module), 588
brian2.units.unitsafefunctions (module), 588
brian2.utils (module), 615
brian2.utils.arrays (module), 615
brian2.utils.caching (module), 616
brian2.utils.environment (module), 617
brian2.utils.filetools (module), 617
brian2.utils.logger (module), 619
brian2.utils.stringtools (module), 626
brian2.utils.topsort (module), 631
brian_ast() (in module brian2.parsing.bast), 502
brian_dtype_from_dtype() (in module

brian2.parsing.bast), 502

brian_dtype_from_value() (in module
brian2.parsing.bast), 503

brian_excepthook() (in module brian2.utils.logger), 626
brian_object_exception() (in module brian2.core.base),

374
brian_prefs (in module brian2.core.preferences), 407
BrianASTRenderer (class in brian2.parsing.bast), 501
BrianGlobalPreferences (class in

brian2.core.preferences), 402
BrianGlobalPreferencesView (class in

brian2.core.preferences), 405
BrianLogger (class in brian2.utils.logger), 620
BrianObject (class in brian2.core.base), 371
BrianObjectException (class in brian2.core.base), 374
BrianPreference (class in brian2.core.preferences), 405
BridgeSound (class in brian2.hears), 323
build() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice

method), 442
build() (brian2.devices.device.Device method), 431
build_on_run (brian2.devices.cpp_standalone.device.CPPStandaloneDevice

attribute), 441
build_options (brian2.devices.cpp_standalone.device.CPPStandaloneDevice

attribute), 441

C
c_data_type() (brian2.codegen.generators.GSL_generator.GSLCodeGenerator

method), 347
c_data_type() (brian2.codegen.generators.GSL_generator.GSLCythonCodeGenerator

method), 353
c_data_type() (brian2.codegen.generators.GSL_generator.GSLWeaveCodeGenerator

method), 354
c_data_type() (in module

brian2.codegen.generators.cpp_generator),
358

cached() (in module brian2.utils.caching), 617
CacheKey (class in brian2.utils.caching), 616
calc_repeats() (in module brian2.utils.arrays), 615
cancel_identical_terms() (in module

brian2.codegen.optimisation), 334
catch_logs (class in brian2.utils.logger), 624
ceil_func() (in module

brian2.codegen.generators.numpy_generator),
361

celsius (in module brian2.units.allunits), 568
check_all_validated() (brian2.core.preferences.BrianGlobalPreferences

method), 403
check_dependencies() (brian2.core.magic.MagicNetwork

method), 385
check_dependencies() (brian2.core.network.Network

method), 394
check_dimensions() (in module

brian2.equations.unitcheck), 458
check_dt() (in module brian2.core.clocks), 377

686 Index

Brian 2 Documentation, Release 2.1.1

check_expression_for_multiple_stateful_functions() (in
module brian2.parsing.sympytools), 513

check_flags() (brian2.equations.equations.Equations
method), 451

check_for_order_independence() (in module
brian2.codegen.permutation_analysis), 337

check_identifier() (brian2.equations.equations.Equations
static method), 451

check_identifier_basic() (in module
brian2.equations.equations), 454

check_identifier_constants() (in module
brian2.equations.equations), 454

check_identifier_functions() (in module
brian2.equations.equations), 454

check_identifier_pre_post() (in module
brian2.groups.neurongroup), 473

check_identifier_refractory() (in module
brian2.equations.refractory), 458

check_identifier_reserved() (in module
brian2.equations.equations), 455

check_identifier_units() (in module
brian2.equations.equations), 455

check_identifiers() (brian2.equations.equations.Equations
method), 451

check_openmp_compatible()
(brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 442

check_preference_name() (in module
brian2.core.preferences), 406

check_subexpressions() (in module
brian2.equations.equations), 455

check_units() (brian2.equations.equations.Equations
method), 452

check_units() (in module brian2.units.fundamentalunits),
579

check_units_statements() (in module
brian2.equations.unitcheck), 459

check_variable_write() (brian2.groups.group.VariableOwner
method), 465

check_variable_write() (brian2.synapses.synapses.Synapses
method), 563

children (brian2.spatialneuron.morphology.Morphology
attribute), 520

children (brian2.spatialneuron.morphology.Node at-
tribute), 526

Children (class in brian2.spatialneuron.morphology), 516
class_name (brian2.codegen.codeobject.CodeObject at-

tribute), 328
clean_up_logging() (in module brian2.utils.logger), 626
clip_func() (in module

brian2.codegen.generators.numpy_generator),
361

clock (brian2.core.base.BrianObject attribute), 372
clock (brian2.core.spikesource.SpikeSource attribute),

408
Clock (class in brian2.core.clocks), 375
close() (brian2.utils.logger.std_silent class method), 625
code (brian2.equations.codestrings.CodeString attribute),

446
code_object() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice

method), 442
code_object() (brian2.devices.device.Device method),

431
code_object_class() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice

method), 442
code_object_class() (brian2.devices.device.Device

method), 431
code_objects (brian2.core.base.BrianObject attribute),

373
code_representation() (in module brian2.utils.stringtools),

627
CodeGenerator (class in brian2.codegen.generators.base),

354
CodeObject (class in brian2.codegen.codeobject), 328
CodeObjectTemplate (class in brian2.codegen.templates),

339
CodeRunner (class in brian2.groups.group), 460
CodeString (class in brian2.equations.codestrings), 446
collect() (in module brian2.codegen.optimisation), 334
collect() (in module brian2.core.magic), 386
collect_commutative() (in module

brian2.codegen.optimisation), 335
comp_name (brian2.spatialneuron.morphology.Node at-

tribute), 526
compile() (brian2.codegen.codeobject.CodeObject

method), 328
compile() (brian2.codegen.runtime.cython_rt.cython_rt.CythonCodeObject

method), 365
compile() (brian2.codegen.runtime.GSLcython_rt.GSLcython_rt.GSLCythonCodeObject

method), 363
compile() (brian2.codegen.runtime.numpy_rt.numpy_rt.NumpyCodeObject

method), 368
compile() (brian2.codegen.runtime.weave_rt.weave_rt.WeaveCodeObject

method), 370
compile_source() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice

method), 443
conditional_write (brian2.core.variables.ArrayVariable

attribute), 411
conditional_write() (brian2.codegen.generators.numpy_generator.NumpyCodeGenerator

method), 360
connect() (brian2.synapses.synapses.Synapses method),

563
constant (brian2.core.variables.Variable attribute), 419
Constant (class in brian2.core.variables), 413
constant_or_scalar() (in module

brian2.codegen.codeobject), 329
contained_objects (brian2.core.base.BrianObject at-

tribute), 373

Index 687

Brian 2 Documentation, Release 2.1.1

convert_unit_b1_to_b2() (in module brian2.hears), 325
convert_unit_b2_to_b1() (in module brian2.hears), 325
coordinates (brian2.spatialneuron.morphology.Morphology

attribute), 520
coordinates_ (brian2.spatialneuron.morphology.Morphology

attribute), 521
copy_directory() (in module brian2.utils.filetools), 618
copy_section() (brian2.spatialneuron.morphology.Cylinder

method), 518
copy_section() (brian2.spatialneuron.morphology.Morphology

method), 522
copy_section() (brian2.spatialneuron.morphology.Section

method), 529
copy_section() (brian2.spatialneuron.morphology.Soma

method), 532
copy_source_files() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice

method), 443
cos() (in module brian2.units.unitsafefunctions), 597
cosh() (in module brian2.units.unitsafefunctions), 598
count (brian2.monitors.spikemonitor.EventMonitor at-

tribute), 491
count (brian2.monitors.spikemonitor.SpikeMonitor at-

tribute), 494
cpp_standalone_device (in module

brian2.devices.cpp_standalone.device), 445
CPPCodeGenerator (class in

brian2.codegen.generators.cpp_generator),
356

CPPNodeRenderer (class in brian2.parsing.rendering),
509

CPPStandaloneCodeObject (class in
brian2.devices.cpp_standalone.codeobject),
439

CPPStandaloneDevice (class in
brian2.devices.cpp_standalone.device), 440

CPPWriter (class in brian2.devices.cpp_standalone.device),
444

create() (brian2.units.fundamentalunits.Unit static
method), 577

create_clock_variables() (brian2.core.variables.Variables
method), 428

create_extension() (brian2.codegen.runtime.cython_rt.extension_manager.CythonExtensionManager
method), 366

create_runner_codeobj() (in module
brian2.codegen.codeobject), 329

create_scaled_unit() (brian2.units.fundamentalunits.Unit
static method), 577

CurrentDeviceProxy (class in brian2.devices.device), 430
currenttime (brian2.synapses.spikequeue.SpikeQueue at-

tribute), 559
custom_operation() (brian2.groups.group.Group

method), 462
CustomSympyPrinter (class in

brian2.parsing.sympytools), 513

Cylinder (class in brian2.spatialneuron.morphology), 516
cython_extension_manager (in module

brian2.codegen.runtime.cython_rt.extension_manager),
367

CythonCodeGenerator (class in
brian2.codegen.generators.cython_generator),
358

CythonCodeObject (class in
brian2.codegen.runtime.cython_rt.cython_rt),
365

CythonExtensionManager (class in
brian2.codegen.runtime.cython_rt.extension_manager),
366

CythonNodeRenderer (class in
brian2.codegen.generators.cython_generator),
359

D
debug() (brian2.utils.logger.BrianLogger method), 621
declare_types() (in module brian2.core.functions), 382
default_float_dtype_validator() (in module

brian2.core.core_preferences), 378
defaultclock (in module brian2.core.clocks), 377
DefaultClockProxy (class in brian2.core.clocks), 376
defaults_as_file (brian2.core.preferences.BrianGlobalPreferences

attribute), 403
DefaultValidator (class in brian2.core.preferences), 405
deindent() (in module brian2.utils.stringtools), 628
denormals_to_zero_code()

(brian2.codegen.generators.cpp_generator.CPPCodeGenerator
method), 357

derive() (brian2.codegen.templates.Templater method),
341

DESCRIPTION (brian2.stateupdaters.explicit.ExplicitStateUpdater
attribute), 550

DESCRIPTION() (brian2.stateupdaters.explicit.ExplicitStateUpdater
method), 550

dest_stderr (brian2.utils.logger.std_silent attribute), 625
dest_stdout (brian2.utils.logger.std_silent attribute), 625
determine_keywords() (brian2.codegen.generators.base.CodeGenerator

method), 355
determine_keywords() (brian2.codegen.generators.cpp_generator.CPPCodeGenerator

method), 357
determine_keywords() (brian2.codegen.generators.cython_generator.CythonCodeGenerator

method), 358
determine_keywords() (brian2.codegen.generators.numpy_generator.NumpyCodeGenerator

method), 360
device (brian2.core.variables.ArrayVariable attribute),

411
device (brian2.core.variables.Subexpression attribute),

417
Device (class in brian2.devices.device), 430
device (in module brian2.devices.device), 437
device_override() (in module brian2.core.base), 374

688 Index

Brian 2 Documentation, Release 2.1.1

diagnostic() (brian2.utils.logger.BrianLogger method),
621

diagonal() (in module brian2.units.unitsafefunctions), 599
diagonal_noise() (in module

brian2.stateupdaters.explicit), 552
diameter (brian2.spatialneuron.morphology.Cylinder at-

tribute), 518
diameter (brian2.spatialneuron.morphology.Morphology

attribute), 521
diameter (brian2.spatialneuron.morphology.Node at-

tribute), 526
diameter (brian2.spatialneuron.morphology.Section at-

tribute), 528
diameter (brian2.spatialneuron.morphology.Soma at-

tribute), 531
diameter (brian2.spatialneuron.morphology.SubMorphology

attribute), 534
DictImportExport (class in brian2.importexport.dictlike),

475
diff_eq_expressions (brian2.equations.equations.Equations

attribute), 450
diff_eq_names (brian2.equations.equations.Equations at-

tribute), 450
diff_var_to_replace() (brian2.codegen.generators.GSL_generator.GSLCodeGenerator

method), 347
dim (brian2.core.variables.Variable attribute), 419
dim (brian2.units.fundamentalunits.Dimension attribute),

570
dim (brian2.units.fundamentalunits.Quantity attribute),

572
dim (brian2.units.fundamentalunits.Unit attribute), 577
Dimension (class in brian2.units.fundamentalunits), 569
DIMENSIONLESS (in module

brian2.units.fundamentalunits), 587
DimensionMismatchError (class in

brian2.units.fundamentalunits), 570
dimensions (brian2.core.variables.DynamicArrayVariable

attribute), 415
dimensions (brian2.equations.equations.Equations

attribute), 450
dimensions (brian2.units.fundamentalunits.Quantity at-

tribute), 572
dimensions_and_type_from_string() (in module

brian2.equations.equations), 456
dispname (brian2.units.fundamentalunits.Unit attribute),

577
distance (brian2.spatialneuron.morphology.Morphology

attribute), 521
distance (brian2.spatialneuron.morphology.Section

attribute), 528
distance (brian2.spatialneuron.morphology.Soma at-

tribute), 531
distance (brian2.spatialneuron.morphology.SubMorphology

attribute), 534

do_validation() (brian2.core.preferences.BrianGlobalPreferences
method), 403

dot() (in module brian2.units.unitsafefunctions), 601
dt (brian2.core.clocks.Clock attribute), 376
dt_ (brian2.core.clocks.Clock attribute), 376
dtype (brian2.core.variables.Variable attribute), 419
dtype (brian2.core.variables.VariableView attribute), 421
dtype_repr() (in module brian2.core.core_preferences),

378
dtype_str (brian2.core.variables.Variable attribute), 419
Dummy (class in brian2.devices.device), 433
dynamic (brian2.core.variables.Variable attribute), 419
dynamic_arrays (brian2.devices.cpp_standalone.device.CPPStandaloneDevice

attribute), 441
dynamic_arrays_2d (brian2.devices.cpp_standalone.device.CPPStandaloneDevice

attribute), 441
DynamicArray (class in brian2.memory.dynamicarray),

485
DynamicArray1D (class in

brian2.memory.dynamicarray), 487
DynamicArrayVariable (class in brian2.core.variables),

414

E
edits1() (brian2.utils.stringtools.SpellChecker method),

627
emit() (brian2.utils.logger.LogCapture method), 624
end_diameter (brian2.spatialneuron.morphology.Cylinder

attribute), 518
end_diameter (brian2.spatialneuron.morphology.Section

attribute), 528
end_distance (brian2.spatialneuron.morphology.Morphology

attribute), 521
end_distance (brian2.spatialneuron.morphology.Section

attribute), 528
end_distance (brian2.spatialneuron.morphology.Soma at-

tribute), 531
end_x (brian2.spatialneuron.morphology.Morphology at-

tribute), 521
end_x (brian2.spatialneuron.morphology.SubMorphology

attribute), 534
end_x_ (brian2.spatialneuron.morphology.Morphology

attribute), 521
end_x_ (brian2.spatialneuron.morphology.Section at-

tribute), 528
end_x_ (brian2.spatialneuron.morphology.Soma at-

tribute), 531
end_x_ (brian2.spatialneuron.morphology.SubMorphology

attribute), 534
end_y (brian2.spatialneuron.morphology.Morphology at-

tribute), 521
end_y (brian2.spatialneuron.morphology.SubMorphology

attribute), 534

Index 689

Brian 2 Documentation, Release 2.1.1

end_y_ (brian2.spatialneuron.morphology.Morphology
attribute), 521

end_y_ (brian2.spatialneuron.morphology.Section at-
tribute), 528

end_y_ (brian2.spatialneuron.morphology.Soma at-
tribute), 531

end_y_ (brian2.spatialneuron.morphology.SubMorphology
attribute), 534

end_z (brian2.spatialneuron.morphology.Morphology at-
tribute), 521

end_z (brian2.spatialneuron.morphology.SubMorphology
attribute), 534

end_z_ (brian2.spatialneuron.morphology.Morphology
attribute), 521

end_z_ (brian2.spatialneuron.morphology.Section at-
tribute), 528

end_z_ (brian2.spatialneuron.morphology.Soma at-
tribute), 531

end_z_ (brian2.spatialneuron.morphology.SubMorphology
attribute), 534

ensure_directory() (in module brian2.utils.filetools), 618
ensure_directory_of_file() (in module

brian2.utils.filetools), 618
epsilon_dt (brian2.core.clocks.Clock attribute), 376
eq_expressions (brian2.equations.equations.Equations at-

tribute), 450
eq_names (brian2.equations.equations.Equations at-

tribute), 450
EquationError (class in brian2.equations.equations), 448
Equations (class in brian2.equations.equations), 449
error() (brian2.utils.logger.BrianLogger method), 621
ErrorRaiser (class in brian2.core.preferences), 406
euler (in module brian2.stateupdaters.explicit), 553
eval() (brian2.core.functions.log10 class method), 382
eval_pref() (brian2.core.preferences.BrianGlobalPreferences

method), 403
evaluate_expr() (in module brian2.codegen.optimisation),

335
event (brian2.monitors.spikemonitor.EventMonitor at-

tribute), 491
event_codes (brian2.groups.neurongroup.NeuronGroup

attribute), 469
event_trains() (brian2.monitors.spikemonitor.EventMonitor

method), 492
EventMonitor (class in brian2.monitors.spikemonitor),

489
events (brian2.groups.neurongroup.NeuronGroup at-

tribute), 469
events (brian2.synapses.synapses.Synapses attribute), 563
exact (in module brian2.stateupdaters.exact), 548
exception_occured (brian2.utils.logger.BrianLogger at-

tribute), 621
exp() (in module brian2.units.unitsafefunctions), 602
ExplicitStateUpdater (class in

brian2.stateupdaters.explicit), 549
exponential_euler (in module

brian2.stateupdaters.exponential_euler), 556
ExponentialEulerStateUpdater (class in

brian2.stateupdaters.exponential_euler), 554
export_data() (brian2.importexport.dictlike.DictImportExport

static method), 475
export_data() (brian2.importexport.dictlike.PandasImportExport

static method), 476
export_data() (brian2.importexport.importexport.ImportExport

static method), 477
expr (brian2.core.variables.Subexpression attribute), 417
EXPRESSION (brian2.stateupdaters.explicit.ExplicitStateUpdater

attribute), 550
Expression (class in brian2.equations.codestrings), 446
EXPRESSION() (brian2.stateupdaters.explicit.ExplicitStateUpdater

method), 551
expression_complexity() (in module

brian2.codegen.optimisation), 335
expression_complexity() (in module

brian2.parsing.sympytools), 514
extract_abstract_code_functions() (in module

brian2.parsing.functions), 509
extract_constant_subexpressions() (in module

brian2.equations.equations), 456
extract_method_options() (in module

brian2.stateupdaters.base), 545

F
fail_for_dimension_mismatch() (in module

brian2.units.fundamentalunits), 580
file_handler (brian2.utils.logger.BrianLogger attribute),

621
fill_with_array() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice

method), 443
fill_with_array() (brian2.devices.device.Device method),

432
fill_with_array() (brian2.devices.device.RuntimeDevice

method), 435
filter() (brian2.utils.logger.HierarchyFilter method), 623
filter() (brian2.utils.logger.NameFilter method), 624
FilterbankGroup (class in brian2.hears), 324
find_differential_variables()

(brian2.codegen.generators.GSL_generator.GSLCodeGenerator
method), 347

find_function_names() (brian2.codegen.generators.GSL_generator.GSLCodeGenerator
method), 348

find_name() (in module brian2.core.names), 390
find_synapses() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice

method), 443
find_synapses() (in module brian2.synapses.synapses),

567
find_undefined_variables()

(brian2.codegen.generators.GSL_generator.GSLCodeGenerator

690 Index

Brian 2 Documentation, Release 2.1.1

method), 348
find_used_variables() (brian2.codegen.generators.GSL_generator.GSLCodeGenerator

method), 348
FlatMorphology (class in

brian2.spatialneuron.spatialneuron), 536
floor_func() (in module

brian2.codegen.generators.numpy_generator),
361

flush_denormals (brian2.codegen.generators.cpp_generator.CPPCodeGenerator
attribute), 357

freeze() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 443

from_file() (brian2.spatialneuron.morphology.Morphology
static method), 523

from_points() (brian2.spatialneuron.morphology.Morphology
static method), 523

from_swc_file() (brian2.spatialneuron.morphology.Morphology
static method), 523

function (brian2.core.operations.NetworkOperation at-
tribute), 400

Function (class in brian2.core.functions), 378
FunctionImplementation (class in brian2.core.functions),

380
FunctionImplementationContainer (class in

brian2.core.functions), 381
FunctionRewriter (class in brian2.parsing.functions), 507

G
generate_codeobj_source()

(brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 443

generate_coordinates() (brian2.spatialneuron.morphology.Morphology
method), 524

generate_main_source() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 443

generate_makefile() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 443

generate_network_source()
(brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 443

generate_objects_source()
(brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 443

generate_rand_code() (in module
brian2.devices.cpp_standalone.codeobject),
439

generate_run_source() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 443

generate_synapses_classes_source()
(brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 443

generator_class (brian2.codegen.codeobject.CodeObject
attribute), 328

get() (brian2.core.tracking.InstanceFollower method),
409

get_addressable_value() (brian2.core.variables.ArrayVariable
method), 412

get_addressable_value() (brian2.core.variables.Subexpression
method), 417

get_addressable_value() (brian2.core.variables.Variable
method), 419

get_addressable_value_with_unit()
(brian2.core.variables.ArrayVariable method),
412

get_addressable_value_with_unit()
(brian2.core.variables.Subexpression method),
417

get_addressable_value_with_unit()
(brian2.core.variables.Variable method),
420

get_array_filename() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 443

get_array_name() (brian2.codegen.generators.base.CodeGenerator
static method), 355

get_array_name() (brian2.codegen.generators.cpp_generator.CPPCodeGenerator
static method), 357

get_array_name() (brian2.codegen.generators.GSL_generator.GSLCythonCodeGenerator
static method), 353

get_array_name() (brian2.codegen.generators.GSL_generator.GSLWeaveCodeGenerator
static method), 354

get_array_name() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 443

get_array_name() (brian2.devices.device.Device
method), 432

get_array_name() (brian2.devices.device.RuntimeDevice
method), 435

get_code() (brian2.core.functions.FunctionImplementation
method), 381

get_codeobj_class() (brian2.stateupdaters.GSL.GSLContainer
method), 541

get_compiler_and_args() (in module
brian2.codegen.cpp_prefs), 331

get_conditional_write_vars()
(brian2.codegen.generators.base.CodeGenerator
method), 356

get_conditionally_linear_system() (in module
brian2.stateupdaters.exponential_euler), 555

get_cpp_dtype() (in module
brian2.codegen.generators.cython_generator),
359

get_device() (in module brian2.devices.device), 436
get_dimension() (brian2.units.fundamentalunits.Dimension

method), 570
get_dimension_code() (brian2.codegen.generators.GSL_generator.GSLCodeGenerator

method), 348
get_dimensions() (in module

brian2.units.fundamentalunits), 581

Index 691

Brian 2 Documentation, Release 2.1.1

get_documentation() (brian2.core.preferences.BrianGlobalPreferences
method), 403

get_dtype() (in module brian2.core.variables), 429
get_dtype() (in module brian2.groups.group), 466
get_dtype_str() (in module brian2.core.variables), 429
get_identifiers() (in module brian2.utils.stringtools), 629
get_identifiers_recursively() (in module

brian2.codegen.translation), 343
get_item() (brian2.core.variables.VariableView method),

421
get_len() (brian2.core.variables.ArrayVariable method),

412
get_len() (brian2.core.variables.Variable method), 420
get_len() (brian2.devices.device.Device method), 432
get_linear_system() (in module

brian2.stateupdaters.exact), 547
get_local_namespace() (in module

brian2.core.namespace), 391
get_logger() (in module brian2.utils.logger), 626
get_namespace() (brian2.core.functions.FunctionImplementation

method), 381
get_numpy_dtype() (in module

brian2.codegen.generators.cython_generator),
359

get_objects_in_namespace() (in module
brian2.core.magic), 386

get_or_create_dimension() (in module
brian2.units.fundamentalunits), 581

get_profiling_info() (brian2.core.network.Network
method), 394

get_read_write_funcs() (in module
brian2.parsing.dependencies), 505

get_states() (brian2.core.magic.MagicNetwork method),
385

get_states() (brian2.core.network.Network method), 394
get_states() (brian2.groups.group.VariableOwner

method), 465
get_subexpression_with_index_array()

(brian2.core.variables.VariableView method),
421

get_substituted_expressions()
(brian2.equations.equations.Equations
method), 452

get_template() (brian2.codegen.templates.LazyTemplateLoader
method), 340

get_unit() (in module brian2.units.fundamentalunits), 582
get_unit_for_display() (in module

brian2.units.fundamentalunits), 582
get_value() (brian2.core.variables.ArrayVariable

method), 412
get_value() (brian2.core.variables.AuxiliaryVariable

method), 413
get_value() (brian2.core.variables.Constant method), 413
get_value() (brian2.core.variables.Variable method), 420

get_value() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 443

get_value() (brian2.devices.device.RuntimeDevice
method), 435

get_value_with_unit() (brian2.core.variables.Variable
method), 420

get_with_expression() (brian2.core.variables.VariableView
method), 421

get_with_index_array() (brian2.core.variables.VariableView
method), 422

getslices() (in module brian2.memory.dynamicarray), 487
Group (class in brian2.groups.group), 461
gsl_rk2 (in module brian2.stateupdaters.GSL), 542
gsl_rk4 (in module brian2.stateupdaters.GSL), 542
gsl_rk8pd (in module brian2.stateupdaters.GSL), 543
gsl_rkck (in module brian2.stateupdaters.GSL), 543
gsl_rkf45 (in module brian2.stateupdaters.GSL), 543
GSLCodeGenerator (class in

brian2.codegen.generators.GSL_generator),
345

GSLCompileError (class in
brian2.codegen.runtime.GSLcython_rt.GSLcython_rt),
362

GSLCompileError (class in
brian2.codegen.runtime.GSLweave_rt.GSLweave_rt),
364

GSLContainer (class in brian2.stateupdaters.GSL), 540
GSLCPPStandaloneCodeObject (class in

brian2.devices.cpp_standalone.GSLcodeobject),
438

GSLCythonCodeGenerator (class in
brian2.codegen.generators.GSL_generator),
352

GSLCythonCodeObject (class in
brian2.codegen.runtime.GSLcython_rt.GSLcython_rt),
363

GSLStateUpdater (class in brian2.stateupdaters.GSL),
541

GSLWeaveCodeGenerator (class in
brian2.codegen.generators.GSL_generator),
353

GSLWeaveCodeObject (class in
brian2.codegen.runtime.GSLweave_rt.GSLweave_rt),
364

H
handle_range() (in module

brian2.synapses.parse_synaptic_generator_syntax),
556

handle_sample() (in module
brian2.synapses.parse_synaptic_generator_syntax),
556

has_been_run (brian2.devices.cpp_standalone.device.CPPStandaloneDevice
attribute), 442

692 Index

Brian 2 Documentation, Release 2.1.1

has_repeated_indices() (brian2.codegen.generators.base.CodeGenerator
method), 356

has_same_dimensions() (brian2.units.fundamentalunits.Quantity
method), 573

have_same_dimensions() (in module
brian2.units.fundamentalunits), 583

heun (in module brian2.stateupdaters.explicit), 553
HierarchyFilter (class in brian2.utils.logger), 623

I
id (brian2.core.names.Nameable attribute), 390
identifier_checks (brian2.equations.equations.Equations

attribute), 450
identifiers (brian2.core.variables.Subexpression at-

tribute), 417
identifiers (brian2.equations.equations.Equations at-

tribute), 450
identifiers (brian2.equations.equations.SingleEquation at-

tribute), 453
implementation() (in module brian2.core.functions), 383
implementations (brian2.core.functions.Function at-

tribute), 379
implementations (brian2.input.binomial.BinomialFunction

attribute), 478
import_data() (brian2.importexport.dictlike.DictImportExport

static method), 475
import_data() (brian2.importexport.dictlike.PandasImportExport

static method), 476
import_data() (brian2.importexport.importexport.ImportExport

static method), 477
ImportExport (class in

brian2.importexport.importexport), 476
in_best_unit() (brian2.units.fundamentalunits.Quantity

method), 574
in_best_unit() (in module brian2.units.fundamentalunits),

583
in_directory (class in brian2.utils.filetools), 618
in_unit() (brian2.units.fundamentalunits.Quantity

method), 573
in_unit() (in module brian2.units.fundamentalunits), 584
indent() (in module brian2.utils.stringtools), 629
independent (in module brian2.stateupdaters.exact), 548
IndependentStateUpdater (class in

brian2.stateupdaters.exact), 546
index (brian2.spatialneuron.morphology.Node attribute),

526
Indexing (class in brian2.groups.group), 463
IndexWrapper (class in brian2.groups.group), 463
indices (brian2.core.variables.Variables attribute), 424
info() (brian2.utils.logger.BrianLogger method), 621
init_with_arange() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice

method), 443
init_with_arange() (brian2.devices.device.Device

method), 432

init_with_arange() (brian2.devices.device.RuntimeDevice
method), 435

init_with_zeros() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 443

init_with_zeros() (brian2.devices.device.Device method),
432

init_with_zeros() (brian2.devices.device.RuntimeDevice
method), 435

initialise_queue() (brian2.synapses.synapses.SynapticPathway
method), 567

initialize() (brian2.utils.logger.BrianLogger static
method), 622

initialize_array() (brian2.codegen.generators.GSL_generator.GSLCodeGenerator
method), 349

initialize_array() (brian2.codegen.generators.GSL_generator.GSLCythonCodeGenerator
method), 353

initialize_array() (brian2.codegen.generators.GSL_generator.GSLWeaveCodeGenerator
method), 354

insert_code() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 444

insert_code() (brian2.devices.device.Device method), 433
insert_device_code() (brian2.devices.device.Device

method), 433
install() (brian2.utils.logger.LogCapture method), 624
InstanceFollower (class in brian2.core.tracking), 408
InstanceTrackerSet (class in brian2.core.tracking), 409
int_func() (in module brian2.codegen.generators.numpy_generator),

362
IntegrationError (class in

brian2.codegen.runtime.GSLcython_rt.GSLcython_rt),
363

invalidates_magic_network
(brian2.core.base.BrianObject attribute),
373

invert_dict() (in module
brian2.devices.cpp_standalone.device), 445

is_available() (brian2.codegen.codeobject.CodeObject
class method), 328

is_available() (brian2.codegen.runtime.cython_rt.cython_rt.CythonCodeObject
class method), 365

is_available() (brian2.codegen.runtime.numpy_rt.numpy_rt.NumpyCodeObject
class method), 368

is_available() (brian2.codegen.runtime.weave_rt.weave_rt.WeaveCodeObject
class method), 370

is_boolean (brian2.core.variables.Variable attribute), 419
is_boolean() (in module brian2.parsing.bast), 503
is_boolean_dtype() (in module brian2.parsing.bast), 503
is_boolean_expression() (in module

brian2.parsing.expressions), 505
is_constant_and_cpp_standalone()

(brian2.codegen.generators.GSL_generator.GSLCodeGenerator
method), 349

is_constant_over_dt() (in module
brian2.equations.codestrings), 448

Index 693

Brian 2 Documentation, Release 2.1.1

is_cpp_standalone() (brian2.codegen.generators.GSL_generator.GSLCodeGenerator
method), 349

is_dimensionless (brian2.units.fundamentalunits.Dimension
attribute), 570

is_dimensionless (brian2.units.fundamentalunits.Quantity
attribute), 572

is_dimensionless() (in module
brian2.units.fundamentalunits), 584

is_float() (in module brian2.parsing.bast), 503
is_float_dtype() (in module brian2.parsing.bast), 503
is_integer (brian2.core.variables.Variable attribute), 419
is_integer() (in module brian2.parsing.bast), 503
is_integer_dtype() (in module brian2.parsing.bast), 504
is_locally_constant() (brian2.core.functions.Function

method), 379
is_locally_constant() (brian2.input.timedarray.TimedArray

method), 485
is_scalar_expression() (in module

brian2.codegen.translation), 344
is_scalar_type() (in module

brian2.units.fundamentalunits), 585
is_stateful() (in module brian2.equations.equations), 456
is_stochastic (brian2.equations.equations.Equations at-

tribute), 450
iscompound (brian2.units.fundamentalunits.Unit at-

tribute), 577
it (brian2.monitors.spikemonitor.EventMonitor attribute),

491
it_ (brian2.monitors.spikemonitor.EventMonitor at-

tribute), 491
iterate_all (brian2.codegen.templates.CodeObjectTemplate

attribute), 339

K
known() (brian2.utils.stringtools.SpellChecker method),

627
known_edits2() (brian2.utils.stringtools.SpellChecker

method), 627

L
latexname (brian2.units.fundamentalunits.Unit attribute),

577
LazyArange (class in brian2.codegen.runtime.numpy_rt.numpy_rt),

367
LazyTemplateLoader (class in brian2.codegen.templates),

340
length (brian2.spatialneuron.morphology.Morphology at-

tribute), 521
length (brian2.spatialneuron.morphology.Section at-

tribute), 528
length (brian2.spatialneuron.morphology.Soma attribute),

531
length (brian2.spatialneuron.morphology.SubMorphology

attribute), 534

linear (in module brian2.stateupdaters.exact), 548
LinearStateUpdater (class in brian2.stateupdaters.exact),

547
LineInfo (class in brian2.codegen.translation), 342
linked_var() (in module brian2.core.variables), 429
LinkedVariable (class in brian2.core.variables), 415
linspace() (in module brian2.units.unitsafefunctions), 603
load_preferences() (brian2.core.preferences.BrianGlobalPreferences

method), 403
log() (in module brian2.units.unitsafefunctions), 605
log10 (class in brian2.core.functions), 382
log_level_debug() (brian2.utils.logger.BrianLogger static

method), 622
log_level_diagnostic() (brian2.utils.logger.BrianLogger

static method), 622
log_level_error() (brian2.utils.logger.BrianLogger static

method), 622
log_level_info() (brian2.utils.logger.BrianLogger static

method), 622
log_level_validator() (in module brian2.utils.logger), 626
log_level_warn() (brian2.utils.logger.BrianLogger static

method), 622
LogCapture (class in brian2.utils.logger), 623

M
magic_network (in module brian2.core.magic), 389
MagicError (class in brian2.core.magic), 384
MagicNetwork (class in brian2.core.magic), 384
make_function_code() (brian2.codegen.generators.GSL_generator.GSLCodeGenerator

method), 349
make_statements() (in module

brian2.codegen.translation), 344
method_choice (brian2.groups.neurongroup.NeuronGroup

attribute), 469
methods (brian2.importexport.importexport.ImportExport

attribute), 476
milstein (in module brian2.stateupdaters.explicit), 553
modify_arg() (in module brian2.hears), 325
Morphology (class in brian2.spatialneuron.morphology),

519
MorphologyIndexWrapper (class in

brian2.spatialneuron.morphology), 525
MultiTemplate (class in brian2.codegen.templates), 340

N
N (brian2.input.poissoninput.PoissonInput attribute), 481
n (brian2.spatialneuron.morphology.Morphology at-

tribute), 521
n (brian2.spatialneuron.morphology.SubMorphology at-

tribute), 534
n (brian2.synapses.spikequeue.SpikeQueue attribute),

559
n_sections (brian2.spatialneuron.morphology.SubMorphology

attribute), 534

694 Index

Brian 2 Documentation, Release 2.1.1

name (brian2.core.base.BrianObject attribute), 373
name (brian2.core.names.Nameable attribute), 390
name (brian2.core.variables.Variable attribute), 419
name (brian2.importexport.dictlike.DictImportExport at-

tribute), 475
name (brian2.importexport.dictlike.PandasImportExport

attribute), 476
name (brian2.importexport.importexport.ImportExport

attribute), 476
name (brian2.units.fundamentalunits.Unit attribute), 577
name() (brian2.spatialneuron.morphology.Children

method), 516
Nameable (class in brian2.core.names), 389
NameFilter (class in brian2.utils.logger), 624
names (brian2.equations.equations.Equations attribute),

450
namespace (brian2.groups.neurongroup.NeuronGroup at-

tribute), 469
namespace (brian2.input.poissongroup.PoissonGroup at-

tribute), 479
namespace (brian2.synapses.synapses.Synapses at-

tribute), 563
ndim (brian2.core.variables.DynamicArrayVariable at-

tribute), 415
needs_reference_update (brian2.core.variables.DynamicArrayVariable

attribute), 415
Network (class in brian2.core.network), 391
network_get_profiling_info()

(brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 444

network_operation() (in module brian2.core.operations),
401

network_restore() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 444

network_run() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 444

network_schedule (brian2.devices.device.Device at-
tribute), 431

network_store() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 444

NetworkOperation (class in brian2.core.operations), 400
NeuronGroup (class in brian2.groups.neurongroup), 467
Node (class in brian2.spatialneuron.morphology), 525
NodeRenderer (class in brian2.parsing.rendering), 510
num_events (brian2.monitors.spikemonitor.EventMonitor

attribute), 491
num_spikes (brian2.monitors.spikemonitor.SpikeMonitor

attribute), 494
NumpyCodeGenerator (class in

brian2.codegen.generators.numpy_generator),
360

NumpyCodeObject (class in
brian2.codegen.runtime.numpy_rt.numpy_rt),
368

NumpyNodeRenderer (class in brian2.parsing.rendering),
511

O
objects (brian2.core.network.Network attribute), 393
openmp_pragma() (in module

brian2.devices.cpp_standalone.codeobject),
439

optimise_statements() (in module
brian2.codegen.optimisation), 335

order (brian2.core.base.BrianObject attribute), 373
OrderDependenceError (class in

brian2.codegen.permutation_analysis), 337
ordered (brian2.equations.equations.Equations attribute),

450
OUTPUT (brian2.stateupdaters.explicit.ExplicitStateUpdater

attribute), 550
OUTPUT() (brian2.stateupdaters.explicit.ExplicitStateUpdater

method), 551
owner (brian2.core.variables.Variable attribute), 419
owner (brian2.core.variables.Variables attribute), 424

P
PandasImportExport (class in

brian2.importexport.dictlike), 475
parameter_names (brian2.equations.equations.Equations

attribute), 450
parent (brian2.spatialneuron.morphology.Morphology at-

tribute), 521
parent (brian2.spatialneuron.morphology.Node attribute),

526
parse_expression_dimensions() (in module

brian2.parsing.expressions), 506
parse_preference_name() (in module

brian2.core.preferences), 407
parse_statement() (in module brian2.parsing.statements),

513
parse_string_equations() (in module

brian2.equations.equations), 457
parse_synapse_generator() (in module

brian2.synapses.parse_synaptic_generator_syntax),
557

peek() (brian2.synapses.spikequeue.SpikeQueue
method), 559

PoissonGroup (class in brian2.input.poissongroup), 478
PoissonInput (class in brian2.input.poissoninput), 480
PopulationRateMonitor (class in

brian2.monitors.ratemonitor), 488
PreferenceError (class in brian2.core.preferences), 406
prefs (in module brian2.core.preferences), 407
prepare() (brian2.synapses.spikequeue.SpikeQueue

method), 559
PRINTER (in module brian2.parsing.sympytools), 515

Index 695

Brian 2 Documentation, Release 2.1.1

profiling_info (brian2.core.network.Network attribute),
393

profiling_summary() (in module brian2.core.network),
398

ProfilingSummary (class in brian2.core.network), 397
push() (brian2.synapses.spikequeue.SpikeQueue

method), 559
push_spikes() (brian2.synapses.synapses.SynapticPathway

method), 567

Q
Quantity (class in brian2.units.fundamentalunits), 571
quantity_with_dimensions() (in module

brian2.units.fundamentalunits), 585
queue (brian2.synapses.synapses.SynapticPathway

attribute), 567

R
r_length_1 (brian2.spatialneuron.morphology.Cylinder

attribute), 518
r_length_1 (brian2.spatialneuron.morphology.Morphology

attribute), 521
r_length_1 (brian2.spatialneuron.morphology.Section at-

tribute), 528
r_length_1 (brian2.spatialneuron.morphology.Soma at-

tribute), 531
r_length_1 (brian2.spatialneuron.morphology.SubMorphology

attribute), 534
r_length_2 (brian2.spatialneuron.morphology.Cylinder

attribute), 518
r_length_2 (brian2.spatialneuron.morphology.Morphology

attribute), 521
r_length_2 (brian2.spatialneuron.morphology.Section at-

tribute), 529
r_length_2 (brian2.spatialneuron.morphology.Soma at-

tribute), 531
r_length_2 (brian2.spatialneuron.morphology.SubMorphology

attribute), 534
rand_func() (in module

brian2.codegen.generators.numpy_generator),
362

randn_func() (in module
brian2.codegen.generators.numpy_generator),
362

rate (brian2.input.poissoninput.PoissonInput attribute),
481

ravel() (in module brian2.units.unitsafefunctions), 606
read_arrays() (brian2.codegen.generators.numpy_generator.NumpyCodeGenerator

method), 360
read_only (brian2.core.variables.Variable attribute), 419
read_preference_file() (brian2.core.preferences.BrianGlobalPreferences

method), 403
record (brian2.monitors.spikemonitor.EventMonitor at-

tribute), 491

record (brian2.monitors.statemonitor.StateMonitor
attribute), 499

record_single_timestep()
(brian2.monitors.statemonitor.StateMonitor
method), 499

record_variables (brian2.monitors.spikemonitor.EventMonitor
attribute), 491

record_variables (brian2.monitors.statemonitor.StateMonitor
attribute), 499

reduced_node() (in module brian2.codegen.optimisation),
336

register() (brian2.importexport.importexport.ImportExport
static method), 477

register() (brian2.stateupdaters.base.StateUpdateMethod
static method), 545

register_identifier_check()
(brian2.equations.equations.Equations static
method), 452

register_new_unit() (in module
brian2.units.fundamentalunits), 586

register_preferences() (brian2.core.preferences.BrianGlobalPreferences
method), 404

register_variable() (brian2.synapses.synapses.Synapses
method), 564

reinit() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 444

reinit() (brian2.devices.device.Device method), 433
reinit() (brian2.hears.FilterbankGroup method), 324
reinit() (brian2.monitors.ratemonitor.PopulationRateMonitor

method), 489
reinit() (brian2.monitors.spikemonitor.EventMonitor

method), 492
reinit() (brian2.monitors.statemonitor.StateMonitor

method), 499
reinit_devices() (in module brian2.devices.device), 436
remove() (brian2.core.magic.MagicNetwork method),

385
remove() (brian2.core.network.Network method), 395
remove() (brian2.core.tracking.InstanceTrackerSet

method), 409
remove() (brian2.spatialneuron.morphology.Children

method), 516
render_Assign() (brian2.parsing.rendering.CPPNodeRenderer

method), 510
render_Assign() (brian2.parsing.rendering.NodeRenderer

method), 511
render_AugAssign() (brian2.parsing.rendering.NodeRenderer

method), 511
render_BinOp() (brian2.codegen.generators.cython_generator.CythonNodeRenderer

method), 359
render_BinOp() (brian2.codegen.optimisation.ArithmeticSimplifier

method), 333
render_BinOp() (brian2.parsing.bast.BrianASTRenderer

method), 501

696 Index

Brian 2 Documentation, Release 2.1.1

render_BinOp() (brian2.parsing.rendering.CPPNodeRenderer
method), 510

render_BinOp() (brian2.parsing.rendering.NodeRenderer
method), 511

render_BinOp() (brian2.parsing.rendering.SympyNodeRenderer
method), 512

render_BinOp_parentheses()
(brian2.parsing.rendering.NodeRenderer
method), 511

render_BoolOp() (brian2.parsing.bast.BrianASTRenderer
method), 501

render_BoolOp() (brian2.parsing.rendering.NodeRenderer
method), 511

render_BoolOp() (brian2.parsing.rendering.SympyNodeRenderer
method), 512

render_Call() (brian2.parsing.bast.BrianASTRenderer
method), 502

render_Call() (brian2.parsing.rendering.NodeRenderer
method), 511

render_Call() (brian2.parsing.rendering.SympyNodeRenderer
method), 512

render_code() (brian2.parsing.rendering.NodeRenderer
method), 511

render_Compare() (brian2.parsing.bast.BrianASTRenderer
method), 502

render_Compare() (brian2.parsing.rendering.NodeRenderer
method), 511

render_Compare() (brian2.parsing.rendering.SympyNodeRenderer
method), 512

render_element_parentheses()
(brian2.parsing.rendering.NodeRenderer
method), 511

render_expr() (brian2.codegen.optimisation.Simplifier
method), 334

render_expr() (brian2.parsing.rendering.NodeRenderer
method), 511

render_func() (brian2.parsing.rendering.NodeRenderer
method), 511

render_func() (brian2.parsing.rendering.SympyNodeRenderer
method), 512

render_Name() (brian2.codegen.generators.cython_generator.CythonNodeRenderer
method), 359

render_Name() (brian2.parsing.bast.BrianASTRenderer
method), 502

render_Name() (brian2.parsing.rendering.CPPNodeRenderer
method), 510

render_Name() (brian2.parsing.rendering.NodeRenderer
method), 511

render_Name() (brian2.parsing.rendering.SympyNodeRenderer
method), 512

render_NameConstant() (brian2.codegen.generators.cython_generator.CythonNodeRenderer
method), 359

render_NameConstant() (brian2.parsing.bast.BrianASTRenderer
method), 502

render_NameConstant() (brian2.parsing.rendering.CPPNodeRenderer
method), 510

render_NameConstant() (brian2.parsing.rendering.NodeRenderer
method), 511

render_NameConstant() (brian2.parsing.rendering.SympyNodeRenderer
method), 512

render_node() (brian2.codegen.optimisation.ArithmeticSimplifier
method), 333

render_node() (brian2.codegen.optimisation.Simplifier
method), 334

render_node() (brian2.parsing.bast.BrianASTRenderer
method), 502

render_node() (brian2.parsing.rendering.NodeRenderer
method), 511

render_Num() (brian2.parsing.bast.BrianASTRenderer
method), 502

render_Num() (brian2.parsing.rendering.NodeRenderer
method), 511

render_Num() (brian2.parsing.rendering.SympyNodeRenderer
method), 512

render_UnaryOp() (brian2.parsing.bast.BrianASTRenderer
method), 502

render_UnaryOp() (brian2.parsing.rendering.NodeRenderer
method), 511

render_UnaryOp() (brian2.parsing.rendering.NumpyNodeRenderer
method), 512

render_UnaryOp() (brian2.parsing.rendering.SympyNodeRenderer
method), 512

replace() (in module brian2.utils.stringtools), 630
replace_func() (brian2.stateupdaters.explicit.ExplicitStateUpdater

method), 552
reset_device() (in module brian2.devices.device), 436
reset_to_defaults() (brian2.core.preferences.BrianGlobalPreferences

method), 404
resetter (brian2.groups.neurongroup.NeuronGroup

attribute), 469
Resetter (class in brian2.groups.neurongroup), 472
resize() (brian2.core.variables.DynamicArrayVariable

method), 415
resize() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice

method), 444
resize() (brian2.devices.device.Device method), 433
resize() (brian2.devices.device.RuntimeDevice method),

435
resize() (brian2.memory.dynamicarray.DynamicArray

method), 487
resize() (brian2.memory.dynamicarray.DynamicArray1D

method), 487
resize() (brian2.monitors.ratemonitor.PopulationRateMonitor

method), 489
resize() (brian2.monitors.spikemonitor.EventMonitor

method), 492
resize() (brian2.monitors.statemonitor.StateMonitor

method), 499

Index 697

Brian 2 Documentation, Release 2.1.1

resize_along_first (brian2.core.variables.DynamicArrayVariable
attribute), 415

resize_along_first() (brian2.devices.device.Device
method), 433

resize_along_first() (brian2.devices.device.RuntimeDevice
method), 435

resize_along_first() (brian2.memory.dynamicarray.DynamicArray
method), 487

resolve_all() (brian2.groups.group.Group method), 462
restore() (brian2.core.magic.MagicNetwork method), 386
restore() (brian2.core.network.Network method), 395
restore() (in module brian2.core.magic), 387
restore_initial_state() (in module brian2.only), 326
restrict (brian2.codegen.generators.cpp_generator.CPPCodeGenerator

attribute), 357
rk2 (in module brian2.stateupdaters.explicit), 554
rk4 (in module brian2.stateupdaters.explicit), 554
run() (brian2.codegen.codeobject.CodeObject method),

328
run() (brian2.codegen.runtime.cython_rt.cython_rt.CythonCodeObject

method), 365
run() (brian2.codegen.runtime.GSLweave_rt.GSLweave_rt.GSLWeaveCodeObject

method), 364
run() (brian2.codegen.runtime.numpy_rt.numpy_rt.NumpyCodeObject

method), 368
run() (brian2.codegen.runtime.weave_rt.weave_rt.WeaveCodeObject

method), 370
run() (brian2.core.base.BrianObject method), 373
run() (brian2.core.magic.MagicNetwork method), 386
run() (brian2.core.network.Network method), 395
run() (brian2.core.operations.NetworkOperation method),

400
run() (brian2.devices.cpp_standalone.codeobject.CPPStandaloneCodeObject

method), 439
run() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice

method), 444
run() (in module brian2.core.magic), 387
run_function() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice

method), 444
run_on_event() (brian2.groups.neurongroup.NeuronGroup

method), 469
run_regularly() (brian2.groups.group.Group method),

462
RunFunctionContext (class in

brian2.devices.cpp_standalone.device), 445
runner() (brian2.groups.group.Group method), 463
running_from_ipython() (in module

brian2.utils.environment), 617
runtime_device (in module brian2.devices.device), 438
RuntimeDevice (class in brian2.devices.device), 434

S
scalar (brian2.core.variables.Variable attribute), 419
scale (brian2.units.fundamentalunits.Unit attribute), 577

scale_array_code() (brian2.codegen.generators.GSL_generator.GSLCodeGenerator
method), 350

schedule (brian2.core.network.Network attribute), 393
schedule_propagation_offset() (in module

brian2.core.network), 399
scheduling_summary() (brian2.core.network.Network

method), 396
scheduling_summary() (in module brian2.core.network),

399
SchedulingSummary (class in brian2.core.network), 397
Section (class in brian2.spatialneuron.morphology), 526
seed() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice

method), 444
seed() (brian2.devices.device.Device method), 433
seed() (brian2.devices.device.RuntimeDevice method),

435
seed() (in module brian2.devices.device), 436
set_conditional_write() (brian2.core.variables.ArrayVariable

method), 412
set_device() (in module brian2.devices.device), 437
set_display_name() (brian2.units.fundamentalunits.Unit

method), 578
set_event_schedule() (brian2.groups.neurongroup.NeuronGroup

method), 470
set_interval() (brian2.core.clocks.Clock method), 376
set_item() (brian2.core.variables.VariableView method),

422
set_latex_name() (brian2.units.fundamentalunits.Unit

method), 578
set_name() (brian2.units.fundamentalunits.Unit method),

578
set_spikes() (brian2.input.spikegeneratorgroup.SpikeGeneratorGroup

method), 483
set_states() (brian2.core.magic.MagicNetwork method),

386
set_states() (brian2.core.network.Network method), 396
set_states() (brian2.groups.group.VariableOwner

method), 465
set_value() (brian2.core.variables.ArrayVariable

method), 412
set_value() (brian2.core.variables.Variable method), 420
set_value() (brian2.devices.device.RuntimeDevice

method), 435
set_with_expression() (brian2.core.variables.VariableView

method), 422
set_with_expression_conditional()

(brian2.core.variables.VariableView method),
422

set_with_index_array() (brian2.core.variables.VariableView
method), 423

setup() (in module brian2.units.unitsafefunctions), 608
shape (brian2.core.variables.VariableView attribute), 421
shrink() (brian2.memory.dynamicarray.DynamicArray

method), 487

698 Index

Brian 2 Documentation, Release 2.1.1

Simplifier (class in brian2.codegen.optimisation), 333
simplify_path_env_var() (in module

brian2.codegen.runtime.cython_rt.extension_manager),
366

sin() (in module brian2.units.unitsafefunctions), 608
SingleEquation (class in brian2.equations.equations), 453
sinh() (in module brian2.units.unitsafefunctions), 609
size (brian2.core.variables.ArrayVariable attribute), 412
slice() (brian2.hears.BridgeSound method), 324
slice_to_test() (in module brian2.synapses.synapses), 568
smooth_rate() (brian2.monitors.ratemonitor.PopulationRateMonitor

method), 489
so_ext (brian2.codegen.runtime.cython_rt.extension_manager.CythonExtensionManager

attribute), 366
Soma (class in brian2.spatialneuron.morphology), 529
Sound (in module brian2.hears), 324
source (brian2.monitors.ratemonitor.PopulationRateMonitor

attribute), 489
source (brian2.monitors.spikemonitor.EventMonitor at-

tribute), 491
SpatialNeuron (class in

brian2.spatialneuron.spatialneuron), 536
spatialneuron_attribute() (brian2.spatialneuron.spatialneuron.SpatialNeuron

static method), 538
spatialneuron_segment() (brian2.spatialneuron.spatialneuron.SpatialNeuron

static method), 538
SpatialStateUpdater (class in

brian2.spatialneuron.spatialneuron), 539
SpatialSubgroup (class in

brian2.spatialneuron.spatialneuron), 539
SpellChecker (class in brian2.utils.stringtools), 627
spike_queue() (brian2.devices.device.Device method),

433
spike_queue() (brian2.devices.device.RuntimeDevice

method), 435
spike_trains() (brian2.monitors.spikemonitor.SpikeMonitor

method), 495
SpikeGeneratorGroup (class in

brian2.input.spikegeneratorgroup), 481
SpikeMonitor (class in brian2.monitors.spikemonitor),

493
SpikeQueue (class in brian2.synapses.spikequeue), 557
spikes (brian2.core.spikesource.SpikeSource attribute),

408
spikes (brian2.groups.neurongroup.NeuronGroup at-

tribute), 469
spikes (brian2.groups.subgroup.Subgroup attribute), 474
spikes (brian2.input.poissongroup.PoissonGroup at-

tribute), 479
spikes (brian2.input.spikegeneratorgroup.SpikeGeneratorGroup

attribute), 483
SpikeSource (class in brian2.core.spikesource), 408
split_expression() (in module

brian2.stateupdaters.explicit), 552

split_stochastic() (brian2.equations.codestrings.Expression
method), 447

standard_unit_register (in module
brian2.units.fundamentalunits), 588

start_diameter (brian2.spatialneuron.morphology.Cylinder
attribute), 518

start_diameter (brian2.spatialneuron.morphology.Section
attribute), 529

start_scope() (in module brian2.core.magic), 388
start_x (brian2.spatialneuron.morphology.Morphology

attribute), 521
start_x (brian2.spatialneuron.morphology.SubMorphology

attribute), 534
start_x_ (brian2.spatialneuron.morphology.Morphology

attribute), 522
start_x_ (brian2.spatialneuron.morphology.Section

attribute), 529
start_x_ (brian2.spatialneuron.morphology.Soma at-

tribute), 531
start_x_ (brian2.spatialneuron.morphology.SubMorphology

attribute), 535
start_y (brian2.spatialneuron.morphology.Morphology

attribute), 522
start_y (brian2.spatialneuron.morphology.SubMorphology

attribute), 535
start_y_ (brian2.spatialneuron.morphology.Morphology

attribute), 522
start_y_ (brian2.spatialneuron.morphology.Section

attribute), 529
start_y_ (brian2.spatialneuron.morphology.Soma at-

tribute), 531
start_y_ (brian2.spatialneuron.morphology.SubMorphology

attribute), 535
start_z (brian2.spatialneuron.morphology.Morphology at-

tribute), 522
start_z (brian2.spatialneuron.morphology.SubMorphology

attribute), 535
start_z_ (brian2.spatialneuron.morphology.Morphology

attribute), 522
start_z_ (brian2.spatialneuron.morphology.Section

attribute), 529
start_z_ (brian2.spatialneuron.morphology.Soma at-

tribute), 531
start_z_ (brian2.spatialneuron.morphology.SubMorphology

attribute), 535
state() (brian2.groups.group.VariableOwner method), 466
state() (brian2.groups.neurongroup.NeuronGroup

method), 470
state_updater (brian2.groups.neurongroup.NeuronGroup

attribute), 469
state_updater (brian2.synapses.synapses.Synapses at-

tribute), 563
STATEMENT (brian2.stateupdaters.explicit.ExplicitStateUpdater

attribute), 550

Index 699

Brian 2 Documentation, Release 2.1.1

Statement (class in brian2.codegen.statements), 337
STATEMENT() (brian2.stateupdaters.explicit.ExplicitStateUpdater

method), 551
Statements (class in brian2.equations.codestrings), 447
StateMonitor (class in brian2.monitors.statemonitor), 497
StateMonitorView (class in

brian2.monitors.statemonitor), 501
StateUpdateMethod (class in brian2.stateupdaters.base),

544
StateUpdater (class in brian2.groups.neurongroup), 472
StateUpdater (class in brian2.synapses.synapses), 559
stateupdaters (brian2.stateupdaters.base.StateUpdateMethod

attribute), 544
static_array() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice

method), 444
static_arrays (brian2.devices.cpp_standalone.device.CPPStandaloneDevice

attribute), 442
std_silent (class in brian2.utils.logger), 625
stochastic_type (brian2.equations.equations.Equations at-

tribute), 450
stochastic_variables (brian2.equations.codestrings.Expression

attribute), 447
stochastic_variables (brian2.equations.equations.Equations

attribute), 451
stochastic_variables (brian2.equations.equations.SingleEquation

attribute), 453
stop() (brian2.core.network.Network method), 396
stop() (in module brian2.core.magic), 388
store() (brian2.core.magic.MagicNetwork method), 386
store() (brian2.core.network.Network method), 396
store() (in module brian2.core.magic), 389
str_to_sympy() (in module brian2.parsing.sympytools),

514
strip_empty_leading_and_trailing_lines() (in module

brian2.utils.stringtools), 630
strip_empty_lines() (in module brian2.utils.stringtools),

630
stripped_deindented_lines() (in module

brian2.utils.stringtools), 631
subexpr_names (brian2.equations.equations.Equations at-

tribute), 451
Subexpression (class in brian2.core.variables), 416
subexpression_updater (brian2.groups.neurongroup.NeuronGroup

attribute), 469
subexpression_updater (brian2.synapses.synapses.Synapses

attribute), 563
SubexpressionUpdater (class in

brian2.groups.neurongroup), 473
Subgroup (class in brian2.groups.subgroup), 474
SubMorphology (class in

brian2.spatialneuron.morphology), 532
substitute() (brian2.equations.equations.Equations

method), 452
substitute_abstract_code_functions() (in module

brian2.parsing.functions), 509
suggest() (brian2.utils.stringtools.SpellChecker method),

627
summed_updaters (brian2.synapses.synapses.Synapses

attribute), 563
SummedVariableUpdater (class in

brian2.synapses.synapses), 560
suppress_hierarchy() (brian2.utils.logger.BrianLogger

static method), 622
suppress_name() (brian2.utils.logger.BrianLogger static

method), 622
SymbolicConstant (class in brian2.core.functions), 382
sympy_to_str() (in module brian2.parsing.sympytools),

515
SympyNodeRenderer (class in brian2.parsing.rendering),

512
Synapses (class in brian2.synapses.synapses), 560
SynapticIndexing (class in brian2.synapses.synapses),

565
SynapticPathway (class in brian2.synapses.synapses),

566
SynapticSubgroup (class in brian2.synapses.synapses),

567

T
t (brian2.core.network.Network attribute), 393
t_ (brian2.core.network.Network attribute), 394
tan() (in module brian2.units.unitsafefunctions), 610
tanh() (in module brian2.units.unitsafefunctions), 611
TEMP_VAR (brian2.stateupdaters.explicit.ExplicitStateUpdater

attribute), 550
TEMP_VAR() (brian2.stateupdaters.explicit.ExplicitStateUpdater

method), 551
Templater (class in brian2.codegen.templates), 341
TextReport (class in brian2.core.network), 398
thresholder (brian2.groups.neurongroup.NeuronGroup at-

tribute), 469
Thresholder (class in brian2.groups.neurongroup), 473
TimedArray (class in brian2.input.timedarray), 484
tmp_log (brian2.utils.logger.BrianLogger attribute), 621
tmp_script (brian2.utils.logger.BrianLogger attribute),

621
to_replace_vector_vars()

(brian2.codegen.generators.GSL_generator.GSLCodeGenerator
method), 350

toplevel_categories (brian2.core.preferences.BrianGlobalPreferences
attribute), 403

Topology (class in brian2.spatialneuron.morphology),
535

topology() (brian2.spatialneuron.morphology.Morphology
method), 524

topsort() (in module brian2.utils.topsort), 631
total_compartments (brian2.spatialneuron.morphology.Morphology

attribute), 522

700 Index

Brian 2 Documentation, Release 2.1.1

total_sections (brian2.spatialneuron.morphology.Morphology
attribute), 522

trace() (in module brian2.units.unitsafefunctions), 612
Trackable (class in brian2.core.tracking), 410
translate() (brian2.codegen.generators.base.CodeGenerator

method), 356
translate() (brian2.codegen.generators.GSL_generator.GSLCodeGenerator

method), 350
translate_expression() (brian2.codegen.generators.base.CodeGenerator

method), 356
translate_expression() (brian2.codegen.generators.cpp_generator.CPPCodeGenerator

method), 357
translate_expression() (brian2.codegen.generators.cython_generator.CythonCodeGenerator

method), 358
translate_expression() (brian2.codegen.generators.numpy_generator.NumpyCodeGenerator

method), 360
translate_one_statement_sequence()

(brian2.codegen.generators.base.CodeGenerator
method), 356

translate_one_statement_sequence()
(brian2.codegen.generators.cpp_generator.CPPCodeGenerator
method), 357

translate_one_statement_sequence()
(brian2.codegen.generators.cython_generator.CythonCodeGenerator
method), 358

translate_one_statement_sequence()
(brian2.codegen.generators.numpy_generator.NumpyCodeGenerator
method), 360

translate_scalar_code() (brian2.codegen.generators.GSL_generator.GSLCodeGenerator
method), 350

translate_statement() (brian2.codegen.generators.base.CodeGenerator
method), 356

translate_statement() (brian2.codegen.generators.cpp_generator.CPPCodeGenerator
method), 357

translate_statement() (brian2.codegen.generators.cython_generator.CythonCodeGenerator
method), 358

translate_statement() (brian2.codegen.generators.numpy_generator.NumpyCodeGenerator
method), 361

translate_statement_sequence()
(brian2.codegen.generators.base.CodeGenerator
method), 356

translate_to_declarations()
(brian2.codegen.generators.cpp_generator.CPPCodeGenerator
method), 357

translate_to_read_arrays()
(brian2.codegen.generators.cpp_generator.CPPCodeGenerator
method), 357

translate_to_statements()
(brian2.codegen.generators.cpp_generator.CPPCodeGenerator
method), 357

translate_to_write_arrays()
(brian2.codegen.generators.cpp_generator.CPPCodeGenerator
method), 357

translate_vector_code() (brian2.codegen.generators.GSL_generator.GSLCodeGenerator

method), 351

U
ufunc_at_vectorisation() (brian2.codegen.generators.numpy_generator.NumpyCodeGenerator

method), 361
uninstall() (brian2.utils.logger.LogCapture method), 624
unique (brian2.core.variables.ArrayVariable attribute),

412
unit (brian2.core.variables.Variable attribute), 419
unit (brian2.core.variables.VariableView attribute), 421
unit (brian2.equations.equations.SingleEquation at-

tribute), 454
Unit (class in brian2.units.fundamentalunits), 575
UnitRegistry (class in brian2.units.fundamentalunits),

578
unpack_namespace() (brian2.codegen.generators.GSL_generator.GSLCodeGenerator

method), 351
unpack_namespace_single()

(brian2.codegen.generators.GSL_generator.GSLCodeGenerator
method), 351

unpack_namespace_single()
(brian2.codegen.generators.GSL_generator.GSLCythonCodeGenerator
method), 353

unpack_namespace_single()
(brian2.codegen.generators.GSL_generator.GSLWeaveCodeGenerator
method), 354

unregister_variable() (brian2.synapses.synapses.Synapses
method), 564

UnsupportedEquationsException (class in
brian2.stateupdaters.base), 545

update_abstract_code() (brian2.groups.group.CodeRunner
method), 461

update_abstract_code() (brian2.groups.neurongroup.Resetter
method), 472

update_abstract_code() (brian2.groups.neurongroup.StateUpdater
method), 472

update_abstract_code() (brian2.groups.neurongroup.Thresholder
method), 473

update_abstract_code() (brian2.synapses.synapses.StateUpdater
method), 560

update_abstract_code() (brian2.synapses.synapses.SynapticPathway
method), 567

update_for_cross_compilation() (in module
brian2.codegen.cpp_prefs), 332

update_namespace() (brian2.codegen.codeobject.CodeObject
method), 328

update_namespace() (brian2.codegen.runtime.cython_rt.cython_rt.CythonCodeObject
method), 365

update_namespace() (brian2.codegen.runtime.numpy_rt.numpy_rt.NumpyCodeObject
method), 368

update_namespace() (brian2.codegen.runtime.weave_rt.weave_rt.WeaveCodeObject
method), 370

updaters (brian2.core.base.BrianObject attribute), 373

Index 701

Brian 2 Documentation, Release 2.1.1

user_equations (brian2.groups.neurongroup.NeuronGroup
attribute), 469

user_equations (brian2.spatialneuron.spatialneuron.SpatialNeuron
attribute), 538

user_unit_register (in module
brian2.units.fundamentalunits), 588

V
valid_gsl_dir() (in module

brian2.codegen.generators.GSL_generator),
354

value (brian2.core.variables.Constant attribute), 413
values() (brian2.monitors.spikemonitor.EventMonitor

method), 492
values() (brian2.monitors.spikemonitor.SpikeMonitor

method), 495
var_init_lhs() (brian2.codegen.generators.GSL_generator.GSLCodeGenerator

method), 351
var_init_lhs() (brian2.codegen.generators.GSL_generator.GSLCythonCodeGenerator

method), 353
var_init_lhs() (brian2.codegen.generators.GSL_generator.GSLWeaveCodeGenerator

method), 354
var_replace_diff_var_lhs()

(brian2.codegen.generators.GSL_generator.GSLCythonCodeGenerator
method), 353

var_replace_diff_var_lhs()
(brian2.codegen.generators.GSL_generator.GSLWeaveCodeGenerator
method), 354

Variable (class in brian2.core.variables), 417
VariableOwner (class in brian2.groups.group), 464
variables (brian2.codegen.templates.CodeObjectTemplate

attribute), 339
Variables (class in brian2.core.variables), 423
variables_by_owner() (in module brian2.core.variables),

430
variables_to_array_names() (in module

brian2.codegen.templates), 342
variables_to_namespace()

(brian2.codegen.runtime.cython_rt.cython_rt.CythonCodeObject
method), 365

variables_to_namespace()
(brian2.codegen.runtime.numpy_rt.numpy_rt.NumpyCodeObject
method), 368

variables_to_namespace()
(brian2.codegen.runtime.weave_rt.weave_rt.WeaveCodeObject
method), 370

VariableView (class in brian2.core.variables), 420
variableview_get_subexpression_with_index_array()

(brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 444

variableview_get_with_expression()
(brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 444

variableview_set_with_index_array()

(brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 444

VarRewriter (class in brian2.parsing.functions), 508
VectorisationError (class in

brian2.codegen.generators.numpy_generator),
361

vectorise_code() (brian2.codegen.generators.numpy_generator.NumpyCodeGenerator
method), 361

visit_Call() (brian2.parsing.functions.FunctionRewriter
method), 507

visit_Call() (brian2.parsing.functions.VarRewriter
method), 508

visit_Name() (brian2.parsing.functions.VarRewriter
method), 508

volume (brian2.spatialneuron.morphology.Cylinder at-
tribute), 518

volume (brian2.spatialneuron.morphology.Morphology
attribute), 522

volume (brian2.spatialneuron.morphology.Section
attribute), 529

volume (brian2.spatialneuron.morphology.Soma at-
tribute), 532

volume (brian2.spatialneuron.morphology.SubMorphology
attribute), 535

W
warn() (brian2.utils.logger.BrianLogger method), 622
weakproxy_with_fallback() (in module brian2.core.base),

375
weave_data_type() (in module

brian2.codegen.runtime.weave_rt.weave_rt),
370

WeaveCodeGenerator (class in
brian2.codegen.runtime.weave_rt.weave_rt),
369

WeaveCodeObject (class in
brian2.codegen.runtime.weave_rt.weave_rt),
369

when (brian2.core.base.BrianObject attribute), 373
where() (in module brian2.units.unitsafefunctions), 614
with_dimensions() (brian2.units.fundamentalunits.Quantity

static method), 572
word_substitute() (in module brian2.utils.stringtools),

631
wrap_function_change_dimensions() (in module

brian2.units.fundamentalunits), 586
wrap_function_dimensionless() (in module

brian2.units.fundamentalunits), 586
wrap_function_keep_dimensions() (in module

brian2.units.fundamentalunits), 587
wrap_function_remove_dimensions() (in module

brian2.units.fundamentalunits), 587
wrap_function_to_method() (in module

brian2.units.unitsafefunctions), 615

702 Index

Brian 2 Documentation, Release 2.1.1

wrap_units() (in module brian2.hears), 325
wrap_units_class() (in module brian2.hears), 326
wrap_units_property() (in module brian2.hears), 326
WrappedSound (in module brian2.hears), 324
write() (brian2.devices.cpp_standalone.device.CPPWriter

method), 445
write_arrays() (brian2.codegen.generators.numpy_generator.NumpyCodeGenerator

method), 361
write_dataholder() (brian2.codegen.generators.GSL_generator.GSLCodeGenerator

method), 351
write_dataholder_single()

(brian2.codegen.generators.GSL_generator.GSLCodeGenerator
method), 352

write_static_arrays() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 444

writes_read_only (brian2.codegen.templates.CodeObjectTemplate
attribute), 339

X
x (brian2.spatialneuron.morphology.Morphology at-

tribute), 522
x (brian2.spatialneuron.morphology.Node attribute), 526
x (brian2.spatialneuron.morphology.SubMorphology at-

tribute), 535
x_ (brian2.spatialneuron.morphology.Morphology

attribute), 522
x_ (brian2.spatialneuron.morphology.Section attribute),

529
x_ (brian2.spatialneuron.morphology.Soma attribute),

532
x_ (brian2.spatialneuron.morphology.SubMorphology at-

tribute), 535

Y
y (brian2.spatialneuron.morphology.Morphology at-

tribute), 522
y (brian2.spatialneuron.morphology.Node attribute), 526
y (brian2.spatialneuron.morphology.SubMorphology at-

tribute), 535
y_ (brian2.spatialneuron.morphology.Morphology

attribute), 522
y_ (brian2.spatialneuron.morphology.Section attribute),

529
y_ (brian2.spatialneuron.morphology.Soma attribute),

532
y_ (brian2.spatialneuron.morphology.SubMorphology at-

tribute), 535
yvector_code() (brian2.codegen.generators.GSL_generator.GSLCodeGenerator

method), 352

Z
z (brian2.spatialneuron.morphology.Morphology at-

tribute), 522
z (brian2.spatialneuron.morphology.Node attribute), 526

z (brian2.spatialneuron.morphology.SubMorphology at-
tribute), 535

z_ (brian2.spatialneuron.morphology.Morphology at-
tribute), 522

z_ (brian2.spatialneuron.morphology.Section attribute),
529

z_ (brian2.spatialneuron.morphology.Soma attribute),
532

z_ (brian2.spatialneuron.morphology.SubMorphology at-
tribute), 535

zero_arrays (brian2.devices.cpp_standalone.device.CPPStandaloneDevice
attribute), 442

Index 703

	Introduction
	Installation
	Release notes
	Changes for Brian 1 users
	Known issues
	Support

	Tutorials
	Introduction to Brian part 1: Neurons
	Introduction to Brian part 2: Synapses
	Introduction to Brian part 3: Simulations

	User’s guide
	Importing Brian
	Physical units
	Models and neuron groups
	Numerical integration
	Equations
	Refractoriness
	Synapses
	Input stimuli
	Recording during a simulation
	Running a simulation
	Multicompartment models
	Computational methods and efficiency
	Converting from integrated form to ODEs

	Advanced guide
	Functions
	Preferences
	Logging
	Namespaces
	Custom progress reporting
	Random numbers
	Custom events
	State update
	How Brian works
	Interfacing with external code

	Examples
	Example: COBAHH
	Example: CUBA
	Example: IF_curve_Hodgkin_Huxley
	Example: IF_curve_LIF
	Example: adaptive_threshold
	Example: non_reliability
	Example: phase_locking
	Example: reliability
	advanced
	compartmental
	frompapers
	frompapers/Brette_2012
	frompapers/Stimberg_et_al_2018
	standalone
	synapses

	brian2 package
	hears module
	numpy_ module
	only module
	Subpackages

	Developer’s guide
	Coding guidelines
	Units
	Equations and namespaces
	Variables and indices
	Preferences system
	Adding support for new functions
	Code generation
	Devices
	Multi-threading with OpenMP
	Solving differential equations with the GNU Scientific Library

	Indices and tables
	Bibliography
	Python Module Index

