

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Brian 2 2.0 documentation »

Brian 2 documentation

Brian is a simulator for spiking neural networks. It is written in the Python
programming language and is available on almost all platforms. We believe
that a simulator should not only save the time of processors, but also the
time of scientists. Brian is therefore designed to be easy to learn and use,
highly flexible and easily extensible.

To get an idea of what writing a simulation in Brian looks like, take a look
at a simple example, or run our
interactive demo [http://mybinder.org/repo/brian-team/brian2-binder/notebooks/demo.ipynb].

You can actually edit and run the examples in the browser without having to
install Brian, using the Binder service (note: sometimes this service is down
or running slowly):

[image: http://mybinder.org/badge.svg]
 [http://mybinder.org/repo/brian-team/brian2-binder]Once you have a feel for what is involved in using Brian, we recommend you
start by following the
installation instructions, then going
through the tutorials, and finally
reading the User Guide.

While reading the documentation, you will see the names of certain functions
and classes are highlighted links (e.g. PoissonGroup). Clicking on these
will take you to the “reference documentation”. This section is automatically
generated from the code, and includes complete and very detailed information,
so for new users we recommend sticking to the User’s guide. However,
there is one feature that may be useful for all users. If you click on,
for example, PoissonGroup, and scroll down to the bottom, you’ll get a
list of all the example code that uses PoissonGroup. This is available
for each class or method, and can be helpful in understanding how a
feature works.

Finally, if you’re having problems, please do let us know at our
support page.

Contents:

	Introduction
	Installation

	Release notes

	Changes for Brian 1 users

	Known issues

	Support

	Tutorials
	Introduction to Brian part 1: Neurons

	Introduction to Brian part 2: Synapses

	User’s guide
	Importing Brian

	Physical units

	Models and neuron groups

	Numerical integration

	Equations

	Refractoriness

	Synapses

	Input stimuli

	Recording during a simulation

	Running a simulation

	Multicompartment models

	Computational methods and efficiency

	Advanced guide
	Functions

	Preferences

	Logging

	Namespaces

	Scheduling and custom progress reporting

	Random numbers

	Custom events

	State update

	How Brian works

	Interfacing with external code

	Examples

	Reference documentation

	Developer’s guide

Indices and tables

	Index

	Module Index

	Search Page

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

Introduction

	Installation

	Release notes

	Changes for Brian 1 users

	Known issues

	Support

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Introduction »

Installation

We recommend users to use the Anaconda distribution [https://www.continuum.io/downloads]
by Continuum Analytics. Its use will make the installation of Brian 2 and its
dependencies simpler, since packages are provided in binary form, meaning that
they don’t have to be build from the source code at your machine. Furthermore,
our automatic testing on the continuous integration services travis [https://travis-ci.org/brian-team/brian2] and appveyor [https://ci.appveyor.com/project/brianteam/brian2]
are based on Anaconda, we are therefore confident that it works under this
configuration.

However, Brian 2 can also be installed independent of Anaconda, either with
other Python distributions (Enthought Canopy [https://www.enthought.com/products/canopy/],
Python(x,y) for Windows [https://code.google.com/p/pythonxy/], ...) or simply
based on Python and pip (see Installation from source below).

Installation with Anaconda

Installing Anaconda

Download the Anaconda distribution [https://continuum.io/downloads]
for your Operating System. For Windows users that want to use Python 3.x, we
strongly recommend installing the 32 Bit version even on 64 Bit systems, since
setting the compilation environment (see Requirements for C++ code generation below) is less
complicated in that case. Note that the choice between Python 2.7 and Python 3.x
is not very important at this stage, Anaconda allows you to create a Python 3
environment from Python 2 Anaconda and vice versa.

After the installation, make sure that your environment is configured to use
the Anaconda distribution. You should have access to the conda command in
a terminal and running python (e.g. from your IDE) should show a header like
this, indicating that you are using Anaconda’s Python interpreter:

Python 2.7.10 |Anaconda 2.3.0 (64-bit)| (default, May 28 2015, 17:02:03)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
Anaconda is brought to you by Continuum Analytics.
Please check out: http://continuum.io/thanks and https://binstar.org

Here’s some documentation on how to set up some popular IDEs for Anaconda:
https://docs.continuum.io/anaconda/ide_integration

Installing Brian 2

You can either install Brian 2 in the Anaconda root environment, or create a
new environment for Brian 2 (http://conda.pydata.org/docs/using/envs.html). The
latter has the advantage that you can update (or not update) the dependencies
of Brian 2 independently from the rest of your system.

Since Brian 2 is not part of the main Anaconda distribution, you have to install
it from the brian-team channel [https://conda.anaconda.org/brian-team]. To do
so, use:

conda install -c brian-team brian2

You can also permanently add the channel to your list of channels:

conda config --add channels brian-team

This has only to be done once. After that, you can install and update the brian2
packages as any other Anaconda package:

conda install brian2

Installing other useful packages

There are various packages that are useful but not necessary for working with
Brian. These include: matplotlib [http://matplotlib.org/] (for plotting), nose [https://pypi.python.org/pypi/nose] (for running the test
suite), ipython [http://ipython.org/] and jupyter [http://jupyter.org/]-notebook (for an interactive console). To install
them from anaconda, simply do:

conda install matplotlib nose ipython jupyter-notebook

You should also have a look at the brian2tools [https://brian2tools.readthedocs.io] package, which contains several
useful functions to visualize Brian 2 simulations and recordings. You can
install it with pip or anaconda, in the same way as Brian 2 itself, e.g. with:

conda install -c brian-team brian2tools

Installation from source

If you decide not to use Anaconda, you can install Brian 2 from the Python
package index: https://pypi.python.org/pypi/Brian2

To do so, use the pip utility:

pip install brian2

You might want to add the --user flag, to install Brian 2 for the local user
only, which means that you don’t need administrator privileges for the
installation.

In principle, the above command also install Brian’s dependencies.
Unfortunately, this does not work for numpy, it has to be installed in a
separate step before all other dependencies (pip install numpy), if it is
not already installed.

If you have an older version of pip, first update pip itself:

On Linux/MacOsX:
pip install -U pip

On Windows
python -m pip install -U pip

If you don’t have pip but you have the easy_install utility, you can use
it to install pip:

easy_install pip

If you have neither pip nor easy_install, use the approach described
here to install pip: https://pip.pypa.io/en/latest/installing/

Alternatively, you can download the source package directly and uncompress it.
You can then either run python setup.py install or
python setup.py develop to install it, or simply add
the source directory to your PYTHONPATH (this will only work for Python
2.x).

Requirements for C++ code generation

C++ code generation is highly recommended since it can drastically increase the
speed of simulations (see Computational methods and efficiency for details). To use it,
you need a C++ compiler and either Cython [http://cython.org/] or weave [https://github.com/scipy/weave] (only for Python 2.x).
Cython/weave will be automatically installed if you perform the installation via
Anaconda, as recommended. Otherwise you can install them in the usual way, e.g.
using pip install cython or pip install weave.

Linux and OS X

On Linux and Mac OS X, you will most likely already have a working C++ compiler
installed (try calling g++ --version in a terminal). If not, use your
distribution’s package manager to install a g++ package.

Windows

On Windows, the necessary steps to get Runtime code generation (i.e. Cython/weave) to work
depend on the Python version you are using:

Python 2.7

	Download and install the Microsoft Visual C++ Compiler for Python 2.7 [http://www.microsoft.com/en-us/download/details.aspx?id=44266]

This should be all you need.

Python 3.4

	Download and install the Microsoft .NET Framework 4 [https://www.microsoft.com/en-us/download/details.aspx?id=17851]

	Download and install the Microsoft Windows SDK for Windows 7 and .NET Framework 4 [http://www.microsoft.com/en-in/download/details.aspx?id=8279]

For 64 Bit Windows with Python 3.4, you have to additionally set up your
environment correctly every time you run your Brian script (this is why we
recommend against using this combination on Windows). To do this, run the
following commands (assuming the default installation path) at the CMD prompt,
or put them in a batch file:

setlocal EnableDelayedExpansion
CALL "C:\Program Files\Microsoft SDKs\Windows\v7.1\Bin\SetEnv.cmd" /x64 /release
set DISTUTILS_USE_SDK=1

Python 3.5

	Download and install Visual Studio Community 2015 [https://www.visualstudio.com/]. Do not chose the default
install but instead customize it, the only necessary option is “Programming Languages / Visual C++ / Common Tools for
Visual C++ 2015”

For Standalone code generation, you can either use the compiler installed above or any other version of Visual Studio – in this
case, the Python version does not matter.

Try running the test suite (see Testing Brian below) after the
installation to make sure everything is working as expected.

Development version

To run the latest development code, you can install from brian-team’s “dev”
channel with Anaconda. Note that if you previously added the brian-team
channel to your list of channels, you have to first remove it:

conda config --remove channels brian-team -f

Also uninstall any version of Brian 2 that you might have previously installed:

conda remove brian2

Finally, install the brian2 package from the development channel:

conda install -c brian-team/channel/dev brian2

If this fails with an error message about the py-cpuinfo package (a
dependency that we provide in the main brian-team channel), install it
from the main channel:

conda install -c brian-team py-cpuinfo

Then repeat the command to install Brian 2 from the development channel.

You can also directly clone the git repository at github
(https://github.com/brian-team/brian2) and then run python setup.py install
or python setup.py develop or simply add the source directory to your
PYTHONPATH (this will only work for Python 2.x).

Finally, another option is to use pip to directly install from github:

pip install https://github.com/brian-team/brian2/archive/master.zip

Testing Brian

If you have the nose [https://pypi.python.org/pypi/nose] testing utility installed, you can run Brian’s test
suite:

import brian2
brian2.test()

It should end with “OK”, possibly showing a number of skipped tests but no
warnings or errors. For more control about the tests that are run see the
developer documentation on testing.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Introduction »

Release notes

Brian 2.0 (changes since 1.4)

Major new features

	Much more flexible model definitions. The behaviour of all model elements
can now be defined by arbitrary equations specified in standard
mathematical notation.

	Code generation as standard. Behind the scenes, Brian automatically generates
and compiles C++ code to simulate your model, making it much faster.

	“Standalone mode”. In this mode, Brian generates a complete C++ project tree
that implements your model. This can be then be compiled and run entirely
independently of Brian. This leads to both highly efficient code, as well as
making it much easier to run simulations on non-standard computational
hardware, for example on robotics platforms.

	Multicompartmental modelling.

	Python 2 and 3 support.

New features

	Installation should now be much easier, especially if using the
Anaconda Python distribution. See Installation.

	Many improvements to Synapses which replaces the old Connection
object in Brian 1. This includes:
synapses that are triggered by non-spike events; synapses that target
other synapses; huge speed improvements thanks to using code generation;
new “generator syntax” when creating synapses is much more flexible and
efficient. See Synapses.

	New model definitions allow for much more flexible refractoriness. See
Refractoriness.

	SpikeMonitor and StateMonitor are now much more flexible, and cover a
lot of what used to be covered by things like MultiStateMonitor, etc.
See Recording during a simulation.

	Multiple event types. In addition to the default spike event, you can
create arbitrary events, and have these trigger code blocks (like reset)
or synaptic events. See Custom events.

	New units system allows arrays to have units. This eliminates the need for
a lot of the special casing that was required in Brian 1. See
Physical units.

	Indexing variable by condition, e.g. you might write G.v['x>0'] to
return all values of variable v in NeuronGroup G where the
group’s variable x>0. See State variables.

	Correct numerical integration of stochastic differential equations.
See Numerical integration.

	“Magic” run() system has been greatly simplified and is now much more
transparent. In addition, if there is any ambiguity about what the user
wants to run, an erorr will be raised rather than making a guess. This
makes it much safer. In addition, there is now a store()/restore()
mechanism that simplifies restarting simulations and managing separate
training/testing runs. See Running a simulation.

	Changing an external variable between runs now works as expected, i.e.
something like tau=1*ms; run(100*ms); tau=5*ms; run(100*ms). In
Brian 1 this would have used tau=1*ms for both runs. More generally,
in Brian 2 there is now better control over namespaces. See
Namespaces.

	New “shared” variables with a single value shared between all neurons.
See Shared variables.

	New Group.run_regularly() method for a codegen-compatible way of doing
things that used to be done with network_operation() (which can still
be used). See Regular operations.

	New system for handling externally defined functions. They have to specify
which units they accept in their arguments, and what they return. In
addition, you can easily specify the implementation of user-defined
functions in different languages for code generation. See
Functions.

	State variables can now be defined as integer or boolean values.
See Equations.

	State variables can now be exported directly to Pandas data frame.
See Storing state variables.

	New generalised “flags” system for giving additional information when
defining models. See Flags.

	TimedArray now allows for 2D arrays with arbitrary indexing.
See Timed arrays.

	Better support for using Brian in IPython/Jupyter. See, for example,
start_scope().

	New preferences system. See Preferences.

	Random number generation can now be made reliably reproducible.
See Random numbers.

	New profiling option to see which parts of your simulation are taking
the longest to run. See Profiling.

	New logging system allows for more precise control. See
Logging.

	New ways of importing Brian for advanced Python users. See
Importing Brian.

	Improved control over the order in which objects are updated during
a run. See Scheduling and custom progress reporting.

	Users can now easily define their own numerical integration methods.
See State update.

	Support for parallel processing using the OpenMP version of
standalone mode. Note that all Brian tests pass with this, but it is
still considered to be experimental. See Multi-threading with OpenMP.

Backwards incompatible changes

See Detailed Brian 1 to Brian 2 conversion notes.

Behind the scenes changes

	All user models are now passed through the code generation system.
This allows us to be much more flexible about introducing new target
languages for generated code to make use of non-standard computational
hardware. See Code generation.

	New standalone/device mode allows generation of a complete project tree
that can be compiled and built independently of Brian and Python. This
allows for even more flexible use of Brian on non-standard hardware.
See Devices.

	All objects now have a unique name, used in code generation. This can
also be used to access the object through the Network object.

Contributions

Full list of all Brian 2 contributors, ordered by the time of their first
contribution:

	Dan Goodman (@thesamovar [https://github.com/thesamovar])

	Marcel Stimberg (@mstimberg [https://github.com/mstimberg])

	Romain Brette (@romainbrette [https://github.com/romainbrette])

	Cyrille Rossant (@rossant [https://github.com/rossant])

	Victor Benichoux (@victorbenichoux [https://github.com/victorbenichoux])

	Pierre Yger (@yger [https://github.com/yger])

	Werner Beroux (@wernight [https://github.com/wernight])

	Konrad Wartke (@Kwartke [https://github.com/Kwartke])

	Daniel Bliss (@dabliss [https://github.com/dabliss])

	Jan-Hendrik Schleimer (@ttxtea [https://github.com/ttxtea])

	Moritz Augustin (@moritzaugustin [https://github.com/moritzaugustin])

	Romain Cazé (@rcaze [https://github.com/rcaze])

	Dominik Krzemiński (@dokato [https://github.com/dokato])

	Martino Sorbaro (@martinosorb [https://github.com/martinosorb])

	Benjamin Evans (@bdevans [https://github.com/bdevans])

Brian 2.0 (changes since 2.0rc3)

New features

	A new flag constant over dt can be applied to subexpressions to have them
only evaluated once per timestep (see Models and neuron groups). This flag is
mandatory for stateful subexpressions, e.g. expressions using rand() or
randn(). (#720, #721)

Improvements and bug fixes

	Fix EventMonitor.values() and SpikeMonitor.spike_trains() to always return
sorted spike/event times (#725).

	Respect the active attribute in C++ standalone mode (#718).

	More consistent check of compatible time and dt values (#730).

	Attempting to set a synaptic variable or to start a simulation with synapses
without any preceding connect call now raises an error (#737).

	Improve the performance of coordinate calculation for Morphology objects,
which previously made plotting very slow for complex morphologies (#741).

	Fix a bug in SpatialNeuron where it did not detect non-linear dependencies
on v, introduced via point currents (#743).

Infrastructure and documentation improvements

	An interactive demo, tutorials, and examples can now be run in an interactive
jupyter notebook on the mybinder [http://mybinder.org/] platform, without
any need for a local Brian installation (#736). Thanks to Ben Evans for the
idea and help with the implementation.

	A new extensive guide for converting Brian 1 simulations to Brian 2 user
coming from Brian 1: Changes for Brian 1 users

	A re-organized User’s guide, with clearer indications which
information is important for new Brian users.

Contributions

Code and documentation contributions (ordered by the number of commits):

	Marcel Stimberg (@mstimberg [https://github.com/mstimberg])

	Dan Goodman (@thesamovar [https://github.com/thesamovar])

	Benjamin Evans (@bdevans [https://github.com/bdevans])

Testing, suggestions and bug reports (ordered alphabetically, apologies to
anyone we forgot...):

	Chaofei Hong

	Daniel Bliss

	Jacopo Bono

	Ruben Tikidji-Hamburyan

Brian 2.0rc3

This is another “release candidate” for Brian 2.0 that fixes a range of bugs and introduces
better support for random numbers (see below). We are getting close to the final Brian 2.0
release, the remaining work will focus on bug fixes, and better error messages and
documentation.

As always, please report bugs or suggestions to the github bug tracker
(https://github.com/brian-team/brian2/issues) or to the brian-development mailing
list (brian-development@googlegroups.com).

New features

	Brian now comes with its own seed() function, allowing to seed the random number generator
and thereby to make simulations reproducible. This function works for all code generation
targets and in runtime and standalone mode. See Random numbers for details.

	Brian can now export/import state variables of a group or a full network to/from a
pandas [http://pandas.pydata.org] DataFrame and comes with a mechanism to extend
this to other formats. Thanks to Dominik Krzemiński for this contribution (see #306).

Improvements and bug fixes

	Use a Mersenne-Twister pseudorandom number generator in C++ standalone mode, replacing the
previously used low-quality random number generator from the C standard library (see #222,
#671 and #706).

	Fix a memory leak in code running with the weave code generation target, and a smaller
memory leak related to units stored repetitively in the UnitRegistry.

	Fix a difference of one timestep in the number of simulated timesteps between
runtime and standalone that could arise for very specific values of dt and t (see #695).

	Fix standalone compilation failures with the most recent gcc version which defaults to
C++14 mode (see #701)

	Fix incorrect summation in synapses when using the (summed) flag and writing to
pre-synaptic variables (see #704)

	Make synaptic pathways work when connecting groups that define nested subexpressions,
instead of failing with a cryptic error message (see #707).

Contributions

Code and documentation contributions (ordered by the number of commits):

	Marcel Stimberg (@mstimberg [https://github.com/mstimberg])

	Dominik Krzemiński (@dokato [https://github.com/dokato])

	Dan Goodman (@thesamovar [https://github.com/thesamovar])

	Martino Sorbaro (@martinosorb [https://github.com/martinosorb])

Testing, suggestions and bug reports (ordered alphabetically, apologies to
anyone we forgot...):

	Craig Henriquez

	Daniel Bliss

	David Higgins

	Gordon Erlebacher

	Max Gillett

	Moritz Augustin

	Sami Abdul-Wahid

Brian 2.0rc1

This is a bug fix release that we release only about two weeks after the previous
release because that release introduced a bug that could lead to wrong integration of
stochastic differential equations. Note that standard neuronal noise models were
not affected by this bug, it only concerned differential equations implementing a
“random walk”. The release also fixes a few other issues reported by users, see below
for more information.

Improvements and bug fixes

	Fix a regression from 2.0b4: stochastic differential equations without any non-stochastic
part (e.g. dx/dt = xi/sqrt(ms)`) were not integrated correctly (see #686).

	Repeatedly calling restore() (or Network.restore()) no longer raises an error (see #681).

	Fix an issue that made PoissonInput refuse to run after a change of dt (see #684).

	If the rates argument of PoissonGroup is a string, it will now be evaluated at
every time step instead of once at construction time. This makes time-dependent rate
expressions work as expected (see #660).

Contributions

Code and documentation contributions (ordered by the number of commits):

	Marcel Stimberg (@mstimberg [https://github.com/mstimberg])

Testing, suggestions and bug reports (ordered alphabetically, apologies to
anyone we forgot...):

	Cian O’Donnell

	Daniel Bliss

	Ibrahim Ozturk

	Olivia Gozel

Brian 2.0rc

This is a release candidate for the final Brian 2.0 release, meaning that from
now on we will focus on bug fixes and documentation, without introducing new
major features or changing the syntax for the user. This release candidate itself
does however change a few important syntax elements, see “Backwards-incompatible
changes” below.

As always, please report bugs or suggestions to the github bug tracker
(https://github.com/brian-team/brian2/issues) or to the brian-development mailing
list (brian-development@googlegroups.com).

Major new features

	New “generator syntax” to efficiently generate synapses (e.g. one-to-one connections), see Creating synapses
for more details.

	For synaptic connections with multiple synapses between a pair of neurons, the number of the synapse can now be
stored in a variable, allowing its use in expressions and statements (see Creating synapses).

	Synapses can now target other Synapses objects, useful for some models of synaptic modulation.

	The Morphology object has been completely re-worked and several issues have been fixed. The new Section object
allows to model a section as a series of truncated cones (see Creating a neuron morphology).

	Scripts with a single run() call, no longer need an explicit device.build() call to run with the C++
standalone device. A set_device() in the beginning is enough and will trigger the build call after the run
(see Standalone code generation).

	All state variables within a Network can now be accessed by Network.get_states() and Network.set_states() and the
store()/restore() mechanism can now store the full state of a simulation to disk.

	Stochastic differential equations with multiplicative noise can now be integrated using the Euler-Heun method
(heun). Thanks to Jan-Hendrik Schleimer for this contribution.

	Error messages have been significantly improved: errors for unit mismatches are now much clearer and error messages
triggered during the intialization phase point back to the line of code where the relevant object (e.g. a
NeuronGroup) was created.

	PopulationRateMonitor now provides a smooth_rate method for a filtered version of the
stored rates.

Improvements and bug fixes

	In addition to the new synapse creation syntax, sparse probabilistic connections are now created much faster.

	The time for the initialization phase at the beginning of a run() has been significantly reduced.

	Multicompartmental simulations with a large number of compartments are now simulated more efficiently and are making
better use of several processor cores when OpenMP is activated in C++ standalone mode. Thanks to Moritz Augustin for
this contribution.

	Simulations will use compiler settings that optimize performance by default.

	Objects that have user-specified names are better supported for complex simulation scenarios (names no longer have to
be unique at all times, but only across a network or across a standalone device).

	Various fixes for compatibility with recent versions of numpy and sympy

Important backwards-incompatible changes

	The argument names in Synapses.connect() have changed and the first argument can no longer be an array of indices. To
connect based on indices, use Synapses.connect(i=source_indices, j=target_indices). See Creating synapses
and the documentation of Synapses.connect() for more details.

	The actions triggered by pre-synaptic and post-synaptic spikes are now described by the on_pre and on_post
keyword arguments (instead of pre and post).

	The Morphology object no longer allows to change attributes such as length and diameter after its creation. Complex
morphologies should instead be created using the Section class, allowing for the specification of all details.

	Morphology objects that are defined with coordinates need to provide the start point (relative to the end point of
the parent compartment) as the first coordinate. See Creating a neuron morphology for more details.

	For simulations using the C++ standalone mode, no longer call Device.build (if using a single run() call), or
use set_device() with build_on_run=False (see Standalone code generation).

Infrastructure improvements

	Our test suite is now also run on Mac OS-X (on the Travis CI [https://travis-ci.org/] platform).

Contributions

Code and documentation contributions (ordered by the number of commits):

	Marcel Stimberg (@mstimberg [https://github.com/mstimberg])

	Dan Goodman (@thesamovar [https://github.com/thesamovar])

	Moritz Augustin (@moritzaugustin [https://github.com/moritzaugustin])

	Jan-Hendrik Schleimer (@ttxtea [https://github.com/ttxtea])

	Romain Cazé (@rcaze [https://github.com/rcaze])

	Konrad Wartke (@Kwartke [https://github.com/Kwartke])

	Romain Brette (@romainbrette [https://github.com/romainbrette])

Testing, suggestions and bug reports (ordered alphabetically, apologies to
anyone we forgot...):

	Chaofei Hong

	Kees de Leeuw

	Luke Y Prince

	Myung Seok Shim

	Owen Mackwood

	Github users: @epaxon, @flinz, @mariomulansky, @martinosorb, @neuralyzer, @oleskiw, @prcastro, @sudoankit

Brian 2.0b4

This is the fourth (and probably last) beta release for Brian 2.0. This release
adds a few important new features and fixes a number of bugs so we recommend all
users of Brian 2 to upgrade. If you are a user new to Brian, we also recommend
to directly start with Brian 2 instead of using the stable release of Brian 1.
Note that the new recommended way to install Brian 2 is to use the Anaconda
distribution and to install the Brian 2 conda package (see Installation).

This is however still a Beta release, please report bugs or suggestions to the
github bug tracker (https://github.com/brian-team/brian2/issues) or to the
brian-development mailing list (brian-development@googlegroups.com).

Major new features

	In addition to the standard threshold/reset, groups can now define “custom
events”. These can be recorded with the new EventMonitor (a generalization
of SpikeMonitor) and Synapses can connect to these events instead of
the standard spike event. See Custom events for more
details.

	SpikeMonitor and EventMonitor can now also record state variable values
at the time of spikes (or custom events), thereby offering the functionality
of StateSpikeMonitor from Brian 1. See
Recording variables at spike time for more details.

	The code generation modes that interact with C++ code (weave, Cython, and C++
standalone) can now be more easily configured to work with external libraries
(compiler and linker options, header files, etc.). See the documentation of
the cpp_prefs module for more details.

Improvemements and bug fixes

	Cython simulations no longer interfere with each other when run in parallel
(thanks to Daniel Bliss for reporting and fixing this).

	The C++ standalone now works with scalar delays and the spike queue
implementation deals more efficiently with them in general.

	Dynamic arrays are now resized more efficiently, leading to faster monitors
in runtime mode.

	The spikes generated by a SpikeGeneratorGroup can now be changed between
runs using the
set_spikes method.

	Multi-step state updaters now work correctly for non-autonomous differential
equations

	PoissonInput now correctly works with multiple clocks (thanks to Daniel
Bliss for reporting and fixing this)

	The get_states method now works for
StateMonitor. This method provides a convenient way to access all the data
stored in the monitor, e.g. in order to store it on disk.

	C++ compilation is now easier to get to work under Windows, see
Installation for details.

Important backwards-incompatible changes

	The custom_operation method has been renamed to
run_regularly and can now be called without the
need for storing its return value.

	StateMonitor will now by default record at the beginning of a time step
instead of at the end. See Recording variables continuously for
details.

	Scalar quantities now behave as python scalars with respect to in-place
modifications (augmented assignments). This means that
x = 3*mV; y = x; y += 1*mV will no longer increase the value of the
variable x as well.

Infrastructure improvements

	We now provide conda packages for Brian 2, making it very easy to install
when using the Anaconda distribution (see Installation).

Contributions

Code and documentation contributions (ordered by the number of commits):

	Marcel Stimberg (@mstimberg [https://github.com/mstimberg])

	Dan Goodman (@thesamovar [https://github.com/thesamovar])

	Daniel Bliss (@dabliss [https://github.com/dabliss])

	Romain Brette (@romainbrette [https://github.com/romainbrette])

Testing, suggestions and bug reports (ordered alphabetically, apologies to
everyone we forgot...):

	Daniel Bliss

	Damien Drix

	Rainer Engelken

	Beatriz Herrera Figueredo

	Owen Mackwood

	Augustine Tan

	Ot de Wiljes

Brian 2.0b3

This is the third beta release for Brian 2.0. This release does not add many new
features but it fixes a number of important bugs so we recommend all users of
Brian 2 to upgrade. If you are a user new to Brian, we also recommend to
directly start with Brian 2 instead of using the stable release of Brian 1.

This is however still a Beta release, please report bugs or suggestions to the
github bug tracker (https://github.com/brian-team/brian2/issues) or to the
brian-development mailing list (brian-development@googlegroups.com).

Major new features

	A new PoissonInput class for efficient simulation of Poisson-distributed
input events.

Improvements

	The order of execution for pre and post statements happending in the
same time step was not well defined (it fell back to the default alphabetical
ordering, executing post before pre). It now explicitly specifies the
order attribute so that pre gets executed before post (as in
Brian 1). See the Synapses documentation for details.

	The default schedule that is used can now be set via a preference
(core.network.default_schedule). New automatically generated scheduling
slots relative to the explicitly defined ones can be used, e.g.
before_resets or after_synapses. See Scheduling for details.

	The scipy [http://scipy.org] package is no longer a dependency (note that weave [https://pypi.python.org/pypi/weave] for
compiled C code under Python 2 is now available in a separate package). Note
that multicompartmental models will still benefit from the scipy [http://scipy.org] package
if they are simulated in pure Python (i.e. with the numpy code generation
target) – otherwise Brian 2 will fall back to a numpy-only solution which is
significantly slower.

Important bug fixes

	Fix SpikeGeneratorGroup which did not emit all the spikes under certain
conditions for some code generation targets (#429)

	Fix an incorrect update of pre-synaptic variables in synaptic statements for
the numpy code generation target (#435).

	Fix the possibility of an incorrect memory access when recording a subgroup
with SpikeMonitor (#454).

	Fix the storing of results on disk for C++ standalone on Windows – variables
that had the same name when ignoring case (e.g. i and I) where
overwriting each other (#455).

Infrastructure improvements

	Brian 2 now has a chat room on gitter [http://gitter.im]: https://gitter.im/brian-team/brian2

	The sphinx documentation can now be built from the release archive file

	After a big cleanup, all files in the repository have now simple LF line
endings (see https://help.github.com/articles/dealing-with-line-endings/ on
how to configure your own machine properly if you want to contribute to
Brian).

Contributions

Code and documentation contributions (ordered by the number of commits):

	Marcel Stimberg (@mstimberg [https://github.com/mstimberg])

	Dan Goodman (@thesamovar [https://github.com/thesamovar])

	Konrad Wartke (@kwartke [https://github.com/Kwartke])

Testing, suggestions and bug reports (ordered alphabetically, apologies to
everyone we forgot...):

	Daniel Bliss

	Owen Mackwood

	Ankur Sinha

	Richard Tomsett

Brian 2.0b2

This is the second beta release for Brian 2.0, we recommend all users of Brian 2
to upgrade. If you are a user new to Brian, we also recommend to directly start
with Brian 2 instead of using the stable release of Brian 1.

This is however still a Beta release, please report bugs or suggestions to the
github bug tracker (https://github.com/brian-team/brian2/issues) or to the
brian-development mailing list (brian-development@googlegroups.com).

Major new features

	Multi-compartmental simulations can now be run using the
Standalone code generation mode (this is not yet well-tested, though).

	The implementation of TimedArray now supports two-dimensional arrays, i.e.
different input per neuron (or synapse, etc.), see Timed arrays for
details.

	Previously, not setting a code generation target (using the codegen.target
preference) would mean that the numpy target was used. Now,
the default target is auto, which means that a compiled language
(weave or cython) will be used if possible. See
Computational methods and efficiency for details.

	The implementation of SpikeGeneratorGroup has been improved and it now
supports a period argument to repeatedly generate a spike pattern.

Improvements

	The selection of a numerical algorithm (if none has been specified by the
user) has been simplified. See Numerical integration for details.

	Expressions that are shared among neurons/synapses are now updated only once
instead of for every neuron/synapse which can lead to performance
improvements.

	On Windows, The Microsoft Visual C compiler is now supported in the
cpp_standalone mode, see the respective notes in the Installation and
Computational methods and efficiency documents.

	Simulation runs (using the standard “runtime” device) now collect profiling
information. See Profiling for details.

Infrastructure and documentation improvements

	Tutorials for beginners in the form of
ipython notebooks (currently only covering the basics of neurons and synapses)
are now available.

	The Examples in the documentation now include the images
they generated. Several examples have been adapted from Brian 1.

	The code is now automatically tested on Windows machines, using the
appveyor [http://ci.appveyor.com] service. This complements the Linux
testing on travis [https://travis-ci.org].

	Using a version of a dependency (e.g. sympy) that we don’t support will now
raise an error when you import brian2 – see Dependency checks for
more details.

	Test coverage for the cpp_standalone mode has been significantly
increased.

Important bug fixes

	The preparation time for complicated equations has been significantly reduced.

	The string representation of small physical quantities has been corrected
(#361)

	Linking variables from a group of size 1 now works correctly (#383)

Contributions

Code and documentation contributions (ordered by the number of commits):

	Marcel Stimberg (@mstimberg [https://github.com/mstimberg])

	Dan Goodman (@thesamovar [https://github.com/thesamovar])

	Romain Brette (@romainbrette [https://github.com/romainbrette])

	Pierre Yger (@yger [https://github.com/yger])

Testing, suggestions and bug reports (ordered alphabetically, apologies to
everyone we forgot...):

	Conor Cox

	Gordon Erlebacher

	Konstantin Mergenthaler

Brian 2.0beta

This is the first beta release for Brian 2.0 and the first version of Brian 2.0
we recommend for general use. From now on, we will try to keep changes that
break existing code to a minimum. If you are a user new to Brian, we’d
recommend to start with the Brian 2 beta instead of using the stable release of
Brian 1.

This is however still a Beta release, please report bugs or suggestions to the
github bug tracker (https://github.com/brian-team/brian2/issues) or to the
brian-development mailing list (brian-development@googlegroups.com).

Major new features

	New classes Morphology and SpatialNeuron for the simulation of
Multicompartment models

	A temporary “bridge” for brian.hears that allows to use its Brian 1
version from Brian 2 (Brian Hears)

	Cython is now a new code generation target, therefore the performance benefits
of compiled code are now also available to users running simulations under
Python 3.x (where scipy.weave is not available)

	Networks can now store their current state and return to it at a later time,
e.g. for simulating multiple trials starting from a fixed network state
(Continuing/repeating simulations)

	C++ standalone mode: multiple processors are now supported via OpenMP
(Multi-threading with OpenMP), although this code has not yet been well tested so may be
inaccurate.

	C++ standalone mode: after a run, state variables and monitored values can
be loaded from disk transparently. Most scripts therefore only need two
additional lines to use standalone mode instead of Brian’s default runtime
mode (Standalone code generation).

Syntax changes

	The syntax and semantics of everything around simulation time steps, clocks,
and multiple runs have been cleaned up, making reinit obsolete and also
making it unnecessary for most users to explicitly generate Clock objects –
instead, a dt keyword can be specified for objects such as NeuronGroup
(Running a simulation)

	The scalar flag for parameters/subexpressions has been renamed to
shared

	The “unit” for boolean variables has been renamed from bool to boolean

	C++ standalone: several keywords of
CPPStandaloneDevice.build
have been renamed

	The preferences are now accessible via prefs instead of brian_prefs

	The runner method has been renamed to custom_operation

Improvements

	Variables can now be linked across NeuronGroups (Linked variables)

	More flexible progress reporting system, progress reporting also works in the
C++ standalone mode (Progress reporting)

	State variables can be declared as integer (Equation strings)

Bug fixes

57 github issues have been closed since the alpha release, of which 26 had been
labeled as bugs. We recommend all users of Brian 2 to upgrade.

Contributions

Code and documentation contributions (ordered by the number of commits):

	Marcel Stimberg (@mstimberg [https://github.com/mstimberg])

	Dan Goodman (@thesamovar [https://github.com/thesamovar])

	Romain Brette (@romainbrette [https://github.com/romainbrette])

	Pierre Yger (@yger [https://github.com/yger])

	Werner Beroux (@wernight [https://github.com/wernight])

Testing, suggestions and bug reports (ordered alphabetically, apologies to
everyone we forgot…):

	Guillaume Bellec

	Victor Benichoux

	Laureline Logiaco

	Konstantin Mergenthaler

	Maurizio De Pitta

	Jan-Hendrick Schleimer

	Douglas Sterling

	Katharina Wilmes

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Introduction »

Changes for Brian 1 users

	Physical units

	Unported packages

	Removed classes/functions and their replacements

In most cases, Brian 2 works in a very similar way to Brian 1 but there are
some important differences to be aware of. The major distinction is that
in Brian 2 you need to be more explicit about the definition of your
simulation in order to avoid inadvertent errors. In some cases, you will now
get a warning in other even an error – often the error/warning message
describes a way to resolve the issue.

Specific examples how to convert code from Brian 1 can be found in the document
Detailed Brian 1 to Brian 2 conversion notes.

Physical units

The unit system now extends to arrays, e.g. np.arange(5) * mV will retain
the units of volts and not discard them as Brian 1 did. Brian 2 is therefore
also more strict in checking the units. For example, if the state variable
v uses the unit of volt, the statement G.v = np.rand(len(G)) / 1000.
will now raise an error. For consistency, units are returned everywhere, e.g.
in monitors. If mon records a state variable v, mon.t will return a
time in seconds and mon.v the stored values of v in units of volts.

If you need a pure numpy array without units for further processing, there
are several options: if it is a state variable or a recorded variable in a
monitor, appending an underscore will refer to the variable values without
units, e.g. mon.t_ returns pure floating point values. Alternatively, you
can remove units by diving by the unit (e.g. mon.t / second) or by
explicitly converting it (np.asarray(mon.t)).

Here’s an overview showing a few expressions and their respective values in
Brian 1 and Brian 2:

	Expression
	Brian 1
	Brian 2

	1 * mV
	1.0 * mvolt
	1.0 * mvolt

	np.array(1) * mV
	0.001
	1.0 * mvolt

	np.array([1]) * mV
	array([0.001])
	array([1.]) * mvolt

	np.mean(np.arange(5) * mV)
	0.002
	2.0 * mvolt

	np.arange(2) * mV
	array([0. , 0.001])
	array([0., 1.]) * mvolt

	(np.arange(2) * mV) >= 1 * mV
	array([False, True], dtype=bool)
	array([False, True], dtype=bool)

	(np.arange(2) * mV)[0] >= 1 * mV
	False
	False

	(np.arange(2) * mV)[1] >= 1 * mV
	DimensionMismatchError
	True

Unported packages

The following packages have not (yet) been ported to Brian 1. If your simulation
critically depends on them, you should consider staying with Brian 1 for now.

	brian.tools

	brian.hears (the Brian 1 version can be used via brian2.hears, though,
see Brian Hears)

	brian.library.modelfitting

	brian.library.electrophysilogy

Removed classes/functions and their replacements

In Brian 2, we have tried to keep the number of classes/functions to a minimum, but make
each of them flexible enough to encompass a large number of use cases. A lot of the classes
and functions that existed in Brian 1 have therefore been removed.
The following table lists (most of) the classes that existed in Brian 1 but do no longer
exist in Brian 2. You can consult it when you get a NameError while converting an
existing script from Brian 1. The third column links to a document with further explanation
and the second column gives either:

	the equivalent class in Brian 2 (e.g. StateMonitor can record multiple variables now
and therefore replaces MultiStateMonitor);

	the name of a Brian 2 class in square brackets (e.g. [Synapses] for STDP), this
means that the class can be used as a replacement but needs some additional
code (e.g. explicitly specified STDP equations). The “More details” document should
help you in making the necessary changes;

	“string expression”, if the functionality of a previously existing class can
be expressed using the general string expression framework (e.g.
threshold=VariableThreshold('Vt', 'V') can be replaced by
threshold='V > Vt');

	a link to the relevant github issue if no equivalent class/function does exist so far
in Brian 2;

	a remark such as “obsolete” if the particular class/function is no longer needed.

	Brian 1
	Brian 2
	More details

	AdEx
	[Equations]
	Library models (Brian 1 –> 2 conversion)

	aEIF
	[Equations]
	Library models (Brian 1 –> 2 conversion)

	AERSpikeMonitor
	#298
	Monitors (Brian 1 –> 2 conversion)

	alpha_conductance
	[Equations]
	Library models (Brian 1 –> 2 conversion)

	alpha_current
	[Equations]
	Library models (Brian 1 –> 2 conversion)

	alpha_synapse
	[Equations]
	Library models (Brian 1 –> 2 conversion)

	AutoCorrelogram
	[SpikeMonitor]
	Monitors (Brian 1 –> 2 conversion)

	biexpr_conductance
	[Equations]
	Library models (Brian 1 –> 2 conversion)

	biexpr_current
	[Equations]
	Library models (Brian 1 –> 2 conversion)

	biexpr_synapse
	[Equations]
	Library models (Brian 1 –> 2 conversion)

	Brette_Gerstner
	[Equations]
	Library models (Brian 1 –> 2 conversion)

	CoincidenceCounter
	[SpikeMonitor]
	Monitors (Brian 1 –> 2 conversion)

	CoincidenceMatrixCounter
	[SpikeMonitor]
	Monitors (Brian 1 –> 2 conversion)

	Compartments
	#443
	Multicompartmental models (Brian 1 –> 2 conversion)

	Connection
	Synapses
	Synapses (Brian 1 –> 2 conversion)

	Current
	#443
	Multicompartmental models (Brian 1 –> 2 conversion)

	CustomRefractoriness
	[string expression]
	Neural models (Brian 1 –> 2 conversion)

	DefaultClock
	Clock
	Networks and clocks (Brian 1 –> 2 conversion)

	EmpiricalThreshold
	string expression
	Neural models (Brian 1 –> 2 conversion)

	EventClock
	Clock
	Networks and clocks (Brian 1 –> 2 conversion)

	exp_conductance
	[Equations]
	Library models (Brian 1 –> 2 conversion)

	exp_current
	[Equations]
	Library models (Brian 1 –> 2 conversion)

	exp_IF
	[Equations]
	Library models (Brian 1 –> 2 conversion)

	exp_synapse
	[Equations]
	Library models (Brian 1 –> 2 conversion)

	FileSpikeMonitor
	#298
	Monitors (Brian 1 –> 2 conversion)

	FloatClock
	Clock
	Networks and clocks (Brian 1 –> 2 conversion)

	FunReset
	[string expression]
	Neural models (Brian 1 –> 2 conversion)

	FunThreshold
	[string expression]
	Neural models (Brian 1 –> 2 conversion)

	hist_plot
	no equivalent
	–

	HomogeneousPoissonThreshold
	string expression
	Neural models (Brian 1 –> 2 conversion)

	IdentityConnection
	Synapses
	Synapses (Brian 1 –> 2 conversion)

	IonicCurrent
	#443
	Multicompartmental models (Brian 1 –> 2 conversion)

	ISIHistogramMonitor
	[SpikeMonitor]
	Monitors (Brian 1 –> 2 conversion)

	Izhikevich
	[Equations]
	Library models (Brian 1 –> 2 conversion)

	K_current_HH
	[Equations]
	Library models (Brian 1 –> 2 conversion)

	leak_current
	[Equations]
	Library models (Brian 1 –> 2 conversion)

	leaky_IF
	[Equations]
	Library models (Brian 1 –> 2 conversion)

	MembraneEquation
	#443
	Multicompartmental models (Brian 1 –> 2 conversion)

	MultiStateMonitor
	StateMonitor
	Monitors (Brian 1 –> 2 conversion)

	Na_current_HH
	[Equations]
	Library models (Brian 1 –> 2 conversion)

	NaiveClock
	Clock
	Networks and clocks (Brian 1 –> 2 conversion)

	NoReset
	obsolete
	Neural models (Brian 1 –> 2 conversion)

	NoThreshold
	obsolete
	Neural models (Brian 1 –> 2 conversion)

	OfflinePoissonGroup
	[SpikeGeneratorGroup]
	Inputs (Brian 1 –> 2 conversion)

	OrnsteinUhlenbeck
	[Equations]
	Library models (Brian 1 –> 2 conversion)

	perfect_IF
	[Equations]
	Library models (Brian 1 –> 2 conversion)

	PoissonThreshold
	string expression
	Neural models (Brian 1 –> 2 conversion)

	PopulationSpikeCounter
	SpikeMonitor
	Monitors (Brian 1 –> 2 conversion)

	PulsePacket
	[SpikeGeneratorGroup]
	Inputs (Brian 1 –> 2 conversion)

	quadratic_IF
	[Equations]
	Library models (Brian 1 –> 2 conversion)

	raster_plot
	plot_raster (brian2tools)
	brian2tools documentation [http://brian2tools.readthedocs.io]

	RecentStateMonitor
	no direct equivalent
	Monitors (Brian 1 –> 2 conversion)

	Refractoriness
	string expression
	Neural models (Brian 1 –> 2 conversion)

	RegularClock
	Clock
	Networks and clocks (Brian 1 –> 2 conversion)

	Reset
	string expression
	Neural models (Brian 1 –> 2 conversion)

	SimpleCustomRefractoriness
	[string expression]
	Neural models (Brian 1 –> 2 conversion)

	SimpleFunThreshold
	[string expression]
	Neural models (Brian 1 –> 2 conversion)

	SpikeCounter
	SpikeMonitor
	Monitors (Brian 1 –> 2 conversion)

	StateHistogramMonitor
	[StateMonitor]
	Monitors (Brian 1 –> 2 conversion)

	StateSpikeMonitor
	SpikeMonitor
	Monitors (Brian 1 –> 2 conversion)

	STDP
	[Synapses]
	Synapses (Brian 1 –> 2 conversion)

	STP
	[Synapses]
	Synapses (Brian 1 –> 2 conversion)

	StringReset
	string expression
	Neural models (Brian 1 –> 2 conversion)

	StringThreshold
	string expression
	Neural models (Brian 1 –> 2 conversion)

	Threshold
	string expression
	Neural models (Brian 1 –> 2 conversion)

	VanRossumMetric
	[SpikeMonitor]
	Monitors (Brian 1 –> 2 conversion)

	VariableReset
	string expression
	Neural models (Brian 1 –> 2 conversion)

	VariableThreshold
	string expression
	Neural models (Brian 1 –> 2 conversion)

List of detailed instructions

	Detailed Brian 1 to Brian 2 conversion notes
	Neural models (Brian 1 –> 2 conversion)

	Synapses (Brian 1 –> 2 conversion)

	Inputs (Brian 1 –> 2 conversion)

	Monitors (Brian 1 –> 2 conversion)

	Networks and clocks (Brian 1 –> 2 conversion)

	Multicompartmental models (Brian 1 –> 2 conversion)

	Library models (Brian 1 –> 2 conversion)

	Brian Hears

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Introduction »

 	Changes for Brian 1 users »

Detailed Brian 1 to Brian 2 conversion notes

These documents are only relevant for former users of Brian 1. If you do not
have any Brian 1 code to convert, go directly to the main
User’s guide.

	Neural models (Brian 1 –> 2 conversion)

	Synapses (Brian 1 –> 2 conversion)

	Inputs (Brian 1 –> 2 conversion)

	Monitors (Brian 1 –> 2 conversion)

	Networks and clocks (Brian 1 –> 2 conversion)

	Multicompartmental models (Brian 1 –> 2 conversion)

	Library models (Brian 1 –> 2 conversion)

	Brian Hears

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Introduction »

 	Changes for Brian 1 users »

 	Detailed Brian 1 to Brian 2 conversion notes »

Neural models (Brian 1 –> 2 conversion)

Brian 2 documentation

For the main documentation about defining neural models, see the document
Models and neuron groups.

	Threshold and Reset

	Refractoriness

	Subgroups

	Linked Variables

The syntax for specifying neuron models in a NeuronGroup changed in several
details. In general, a string-based syntax (that was already optional in Brian 1)
consistently replaces the use of classes (e.g. VariableThreshold) or
guessing (e.g. which variable does threshold=50*mV check).

Threshold and Reset

String-based thresholds are now the only possible option and replace all the
methods of defining threshold/reset in Brian 1:

	Brian 1
	Brian 2

	group = NeuronGroup(N, 'dv/dt = -v / tau : volt',
 threshold=-50*mV,
 reset=-70*mV)

	group = NeuronGroup(N, 'dv/dt = -v / tau : volt',
 threshold='v > -50*mV',
 reset='v = -70*mV')

	group = NeuronGroup(N, 'dv/dt = -v / tau : volt',
 threshold=Threshold(-50*mV, state='v'),
 reset=Reset(-70*mV, state='w'))

	group = NeuronGroup(N, 'dv/dt = -v / tau : volt',
 threshold='v > -50*mV',
 reset='v = -70*mV')

	group = NeuronGroup(N, '''dv/dt = -v / tau : volt
 dvt/dt = -vt / tau : volt
 vr : volt''',
 threshold=VariableThreshold(state='v',
 threshold_state='vt'),
 reset=VariableThreshold(state='v',
 resetvaluestate='vr'))

	group = NeuronGroup(N, '''dv/dt = -v / tau : volt
 dvt/dt = -vt / tau : volt
 vr : volt''',
 threshold='v > vt',
 reset='v = vr')

	group = NeuronGroup(N, 'rate : Hz',
 threshold=PoissonThreshold(state='rate'))

	group = NeuronGroup(N, 'rate : Hz',
 threshold='rand()<rate*dt')

There’s no direct equivalent for the “functional threshold/reset” mechanism from
Brian 1. In simple cases, they can be implemented using the general string
expression/statement mechanism (note that in Brian 1, reset=myreset is
equivalent to reset=FunReset(myreset)):

	Brian 1
	Brian 2

	def myreset(P,spikes):
 P.v_[spikes] = -70*mV+rand(len(spikes))*5*mV

group = NeuronGroup(N, 'dv/dt = -v / tau : volt',
 threshold=-50*mV,
 reset=myreset)

	group = NeuronGroup(N, 'dv/dt = -v / tau : volt',
 threshold='v > -50*mV',
 reset='-70*mV + rand()*5*mV')

	def mythreshold(v):
 return (v > -50*mV) & (rand(N) > 0.5)

group = NeuronGroup(N, 'dv/dt = -v / tau : volt',
 threshold=SimpleFunThreshold(mythreshold,
 state='v'),
 reset=-70*mV)

	group = NeuronGroup(N, 'dv/dt = -v / tau : volt',
 threshold='v > -50*mV and rand() > 0.5',
 reset='v = -70*mV')

For more complicated cases, you can use the general mechanism for
User-provided functions that Brian 2 provides. The only caveat is that you’d have
to provide an implementation of the function in the code generation target
language which is by default C++ or Cython. However, in the default
Runtime code generation mode, you can chose different code generation targets for
different parts of your simulation. You can thus switch the code generation
target for the threshold/reset mechanism to numpy while leaving the default
target for the rest of the simulation in place. The details of this process and
the correct definition of the functions (e.g. global_reset needs a “dummy”
return value) are somewhat cumbersome at the moment and we plan to make them
more straightforward in the future. Also note that if you use this kind of
mechanism extensively, you’ll lose all the performance advantage that Brian 2’s
code generation mechanism provides (in addition to not being able to use
Standalone code generation mode at all).

	Brian 1
	Brian 2

	def single_threshold(v):
 # Only let a single neuron spike
 crossed_threshold = np.nonzero(v > -50*mV)[0]
 should_spike = np.zeros(len(P), dtype=np.bool)
 if len(crossed_threshold):
 choose = np.random.randint(len(crossed_threshold))
 should_spike[crossed_threshold[choose]] = True
 return should_spike

def global_reset(P, spikes):
 # Reset everything
 if len(spikes):
 P.v_[:] = -70*mV

neurons = NeuronGroup(N, 'dv/dt = -v / tau : volt',
 threshold=SimpleFunThreshold(single_threshold,
 state='v'),
 reset=global_reset)

	@check_units(v=volt, result=bool)
def single_threshold(v):
 pass # ... (identical to Brian 1)

@check_units(spikes=1, result=1)
def global_reset(spikes):
 # Reset everything
 if len(spikes):
 neurons.v_[:] = -0.070

neurons = NeuronGroup(N, 'dv/dt = -v / tau : volt',
 threshold='single_threshold(v)',
 reset='dummy = global_reset(i)')
Set the code generation target for threshold/reset only:
neuron.thresholder['spike'].codeobj_class = NumpyCodeObject
neuron.resetter['spike'].codeobj_class = NumpyCodeObject

For an example how to translate EmpiricalThreshold, see the section on
“Refractoriness” below.

Refractoriness

For a detailed description of Brian 2’s refractoriness mechanism see
Refractoriness.

In Brian 1, refractoriness was tightly linked with the reset mechanism and
some combinations of refractoriness and reset were not allowed. The standard
refractory mechanism had two effects during the refractoriness: it prevented the
refractory cell from spiking and it clamped a state variable (normally the
membrane potential of the cell). In Brian 2, refractoriness is independent of
reset and the two effects are specified separately: the refractory keyword
specifies the time (or an expression evaluating to a time) during which the
cell does not spike, and the (unless refractory) flag marks one or more
variables to be clamped during the refractory period. To correctly translate
the standard refractory mechanism from Brian 1, you’ll therefore need to
specify both:

	Brian 1
	Brian 2

	group = NeuronGroup(N, 'dv/dt = (I - v)/tau : volt',
 threshold=-50*mV,
 reset=-70*mV,
 refractory=3*ms)

	group = NeuronGroup(N, 'dv/dt = (I - v)/tau : volt (unless refractory)',
 threshold='v > -50*mV',
 reset='v = -70*mV',
 refractory=3*ms)

More complex refractoriness mechanisms based on SimpleCustomRefractoriness
and CustomRefractoriness can be translatated using string expressions or
user-defined functions, see the remarks in the preceding section on “Threshold
and Reset”.

Brian 2 no longer has an equivalent to the EmpiricalThreshold class (which
detects at the first threshold crossing but ignores all following threshold
crossings for a certain time after that). However, the standard refractoriness
mechanism can be used to implement the same behaviour, since it does not
reset/clamp any value if not explicitly asked for it (which would be fatal for
Hodgkin-Huxley type models):

	Brian 1
	Brian 2

	group = NeuronGroup(N,'''
 dv/dt = (I_L - I_Na - I_K + I)/Cm : volt
 ...''',
 threshold=EmpiricalThreshold(threshold=20*mV,
 refractory=1*ms,
 state='v'))

	group = NeuronGroup(N,'''
 dv/dt = (I_L - I_Na - I_K + I)/Cm : volt
 ...''',
 threshold='v > -20*mV',
 refractory=1*ms)

Subgroups

The class NeuronGroup in Brian 2 does no longer provide a subgroup method,
the only way to construct subgroups is therefore the slicing syntax (that works
in the same way as in Brian 1):

	Brian 1
	Brian 2

	group = NeuronGroup(4000, ...)
group_exc = group.subgroup(3200)
group_inh = group.subgroup(800)

	group = NeuronGroup(4000, ...)
group_exc = group[:3200]
group_inh = group[3200:]

Linked Variables

For a description of Brian 2’s mechanism to link variables between groups, see
Linked variables.

Linked variables need to be explicitly annotated with the (linked) flag in
Brian 2:

	Brian 1
	Brian 2

	group1 = NeuronGroup(N,
 'dv/dt = -v / tau : volt')
group2 = NeuronGroup(N,
 '''dv/dt = (-v + w) / tau : volt
 w : volt''')
group2.w = linked_var(group1, 'v')

	group1 = NeuronGroup(N,
 'dv/dt = -v / tau : volt')
group2 = NeuronGroup(N,
 '''dv/dt = (-v + w) / tau : volt
 w : volt (linked)''')
group2.w = linked_var(group1, 'v')

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Introduction »

 	Changes for Brian 1 users »

 	Detailed Brian 1 to Brian 2 conversion notes »

Synapses (Brian 1 –> 2 conversion)

Brian 2 documentation

For the main documentation about defining and creating synapses, see the
document Synapses.

	Converting Brian 1’s Connection class

	Converting Brian 1’s Synapses class

Converting Brian 1’s Connection class

In Brian 2, the Synapses class is the only class to model synaptic
connections, you will therefore have to convert all uses of Brian 1’s
Connection class. The Connection class increases a post-synaptic
variable by a certain amount (the “synaptic weight”) each time a pre-synaptic
spike arrives. This has to be explicitly specified when using the Synapses
class, the equivalent to the basic Connection usage is:

	Brian 1
	Brian 2

	conn = Connection(source, target, 'ge')

	conn = Synapses(source, target, 'w : siemens',
 on_pre='ge += w')

Note that he variable w, which stores the synaptic weight, has to have the
same units as the post-synaptic variable (in this case: ge) that it
increases.

Creating synapses and setting weights

With the Connection class, creating a synapse and setting its weight is a
single process whereas with the Synapses class those two steps are separate.
There is no direct equivalent to the convenience functions connect_full,
connect_random and connect_one_to_one, but you can easily implement
the same functionality with the general mechanism of Synapses.connect():

	Brian 1
	Brian 2

	conn1 = Connection(source, target, 'ge')
conn1[3, 5] = 3*nS

	conn1 = Synapses(source, target, 'w: siemens',
 on_pre='ge += w')
conn1.connect(i=3, j=5)
conn1.w[3, 5] = 3*nS # (or conn1.w = 3*nS)

	conn2 = Connection(source, target, 'ge')
conn2.connect_full(source, target, 5*nS)

	conn2 = ... # see above
conn2.connect()
conn2.w = 5*nS

	conn3 = Connection(source, target, 'ge')
conn3.connect_random(source, target,
 sparseness=0.02,
 weight=2*ns)

	conn3 = ... # see above
conn3.connect(p=0.02)
conn3.w = 2*nS

	conn4 = Connection(source, target, 'ge')
conn4.connect_one_to_one(source, target,
 weight=4*nS)

	conn4 = ... # see above
conn4.connect(j='i')
conn4.w = 4*nS

	conn5 = IdentityConnection(source, target,
 weight=3*nS)

	conn5 = Synapses(source, target,
 'w : siemens (shared)')
conn5.w = 3*nS

Weight matrices

Brian 2’s Synapses class does not support setting the weights of a neuron with
a weight matrix. However, Synapses.connect() creates the synapses in a
predictable order (first all synapses for the first pre-synaptic cell, then all
synapses for the second pre-synaptic cell, etc.), so a reshaped “flat” weight
matrix can be used:

	Brian 1
	Brian 2

	# len(source) == 20, len(target) == 30
conn6 = Connection(source, target, 'ge')
W = rand(20, 30)*nS
conn6.connect(source, target, weight=W)

	# len(source) == 20, len(target) == 30
conn6 = Synapses(source, target, 'w: siemens',
 on_pre='ge += w')
W = rand(20, 30)*nS
conn6.connect()
conn6.w = W.flatten()

However note that if your weight matrix can be described mathematically (e.g.
random as in the example above), then you should not create a weight matrix in
the first place but use Brian 2’s mechanism to set variables based on
mathematical expressions (in the above case: conn5.w = 'rand()'). Especially
for big connection matrices this will have better performance, since it will be
executed in generated code. You should only resort to explicit weight matrices
when there is no alternative (e.g. to load weights from previous simulations).

In Brian 1, you can restrict the functions connect, connect_random, etc.
to subgroups. Again, there is no direct equivalent to this in Brian 2, but the
general string syntax allows you to make connections conditional on logical
statements that refer to pre-/post-synaptic indices and can therefore also used
to restrict the connection to a subgroup of cells. When you set the synaptic
weights, you can however use subgroups to restrict the subset of weights you
want to set.

	Brian 1
	Brian 2

	conn7 = Connection(source, target, 'ge')
conn7.connect_full(source[:5], target[5:10], 5*nS)

	conn7 = Synapses(source, target, 'w: siemens',
 on_pre='ge += w')
conn7.connect('i < 5 and j >=5 and j <10')
Alternative (more efficient):
conn7.connect(j='k in range(5, 10) if i < 5')
conn7.w[source[:5], target[5:10]] = 5*nS

Connections defined by functions

Brian 1 allowed you to pass in a function as the value for the weight
argument in a connect call (and also for the sparseness argument in
connect_random). You should be able to replace such use cases by the the
general, string-expression based method:

	Brian 1
	Brian 2

	conn8 = Connection(source, target, 'ge')
conn8.connect_full(source, target,
 weight=lambda i,j:(1+cos(i-j))*2*nS)

	conn8 = Synapses(source, target, 'w: siemens',
 on_pre='ge += w')
conn8.connect()
conn8.w = '(1 + cos(i - j))*2*nS'

	conn9 = Connection(source, target, 'ge')
conn9.connect_random(source, target,
 sparseness=0.02,
 weight=lambda:rand()*nS)

	conn9 = ... # see above
conn9.connect(p=0.02)
conn9.w = 'rand()*nS'

	conn10 = Connection(source, target, 'ge')
conn10.connect_random(source, target,
 sparseness=lambda i,j:exp(-abs(i-j)*.1),
 weight=2*ns)

	conn10 = ... # see above
conn10.connect(p='exp(-abs(i - j)*.1)')
conn10.w = 2*nS

Delays

The specification of delays changed in several aspects from Brian 1 to Brian 2:
In Brian 1, delays where homogeneous by default, and heterogeneous delays had
to be marked by delay=True, together with the specification of the maximum
delay. In Brian 2, homogeneous delays are the default and you do not have to
state the maximum delay. Brian 1’s syntax of specifying a pair of values to get
randomly distributed delays in that range is no longer supported, instead use
Brian 2’s standard string syntax:

	Brian 1
	Brian 2

	conn11 = Connection(source, target, 'ge', delay=True,
 max_delay=5*ms)
conn11.connect_full(source, target, weight=3*nS,
 delay=(0*ms, 5*ms))

	conn11 = Synapses(source, target, 'w : siemens',
 on_pre='ge += w')
conn11.connect()
conn11.w = 3*nS
conn11.delay = 'rand()*5*ms'

Modulation

In Brian 2, there’s no need for the modulation keyword that Brian 1 offered,
you can describe the modulation as part of the on_pre action:

	Brian 1
	Brian 2

	conn12 = Connection(source, target, 'ge',
 modulation='u')

	conn12 = Synapses(source, target, 'w : siemens',
 on_pre='ge += w * u_pre')

Structure

There’s no equivalen for Brian 1’s structure keyword in Brian 2, synapses
are always stored in a sparse data structure. There is currently no support for
changing synapses at run time (i.e. the “dynamic” structure of Brian 1).

Converting Brian 1’s Synapses class

Brian 2’s Synapses class works for the most part like the class of the same
name in Brian 1. There are however some differences in details, listed below:

Synaptic models

The basic syntax to define a synaptic model is unchanged, but the keywords
pre and post have been renamed to on_pre and on_post,
respectively.

	Brian 1
	Brian 2

	stdp_syn = Synapses(inputs, neurons, model='''
 w:1
 dApre/dt = -Apre/taupre : 1 (event-driven)
 dApost/dt = -Apost/taupost : 1 (event-driven)''',
 pre='''ge + =w
 Apre += delta_Apre
 w = clip(w + Apost, 0, gmax)''',
 post='''Apost += delta_Apost
 w = clip(w + Apre, 0, gmax)''')

	stdp_syn = Synapses(inputs, neurons, model='''
 w:1
 dApre/dt = -Apre/taupre : 1 (event-driven)
 dApost/dt = -Apost/taupost : 1 (event-driven)''',
 on_pre='''ge + =w
 Apre += delta_Apre
 w = clip(w + Apost, 0, gmax)''',
 on_post='''Apost += delta_Apost
 w = clip(w + Apre, 0, gmax)''')

Lumped variables (summed variables)

The syntax to define lumped variables (we use the term “summed variables” in
Brian 2) has been changed: instead of assigning the synaptic variable to the
neuronal variable you’ll have to include the summed variable in the synaptic
equations with the flag (summed):

	Brian 1
	Brian 2

	# a non-linear synapse (e.g. NMDA)
neurons = NeuronGroup(1, model='''
 dv/dt = (gtot - v)/(10*ms) : 1
 gtot : 1''')
syn = Synapses(inputs, neurons,
 model='''
 dg/dt = -a*g+b*x*(1-g) : 1
 dx/dt = -c*x : 1
 w : 1 # synaptic weight''',
 pre='x += w')
neurons.gtot=S.g

	# a non-linear synapse (e.g. NMDA)
neurons = NeuronGroup(1, model='''
 dv/dt = (gtot - v)/(10*ms) : 1
 gtot : 1''')
syn = Synapses(inputs, neurons,
 model='''
 dg/dt = -a*g+b*x*(1-g) : 1
 dx/dt = -c*x : 1
 w : 1 # synaptic weight
 gtot_post = g : 1 (summed)''',
 on_pre='x += w')

Creating synapses

In Brian 1, synapses were created by assigning True or an integer (the
number of synapses) to an indexed Synapses object. In Brian 2, all synapse
creation goes through the Synapses.connect() function. For examples how to
create more complex connection patterns, see the section on translating
Connections objects above.

	Brian 1
	Brian 2

	syn = Synapses(...)
single synapse
syn[3, 5] = True

	syn = Synapses(...)
single synapse
syn.connect(i=3, j=5)

	# all-to-all connections
syn[:, :] = True

	# all-to-all connections
syn.connect()

	# all to neuron number 1
syn[:, 1] = True

	# all to neuron number 1
syn.connect(j='1')

	# multiple synapses
syn[4, 7] = 3

	# multiple synapses
syn.connect(i=4, j=7, n=3)

	# connection probability 2%
syn[:, :] = 0.02

	# connection probability 2%
syn.connect(p=0.02)

Multiple pathways

As Brian 1, Brian 2 supports multiple pre- or post-synaptic pathways, with
separate pre-/post-codes and delays. In Brian 1, you have to specify the
pathways as tuples and can then later access them individually by using their
index. In Brian 2, you specify the pathways as a dictionary, i.e. by giving
them individual names which you can then later use to access them (the default
pathways are called pre and post):

	Brian 1
	Brian 2

	S = Synapses(...,
 pre=('ge + =w',
 '''w = clip(w + Apost, 0, inf)
 Apre += delta_Apre'''),
 post='''Apost += delta_Apost
 w = clip(w + Apre, 0, inf)''')

S[:, :] = True
S.delay[1][:, :] = 3*ms # delayed trace

	S = Synapses(...,
 pre={'pre_transmission':
 'ge += w',
 'pre_plasticity':
 '''w = clip(w + Apost, 0, inf)
 Apre += delta_Apre'''},
 post='''Apost += delta_Apost
 w = clip(w + Apre, 0, inf)''')

S.connect()
S.pre_plasticity.delay[:, :] = 3*ms # delayed trace

Monitoring synaptic variables

Both in Brian 1 and Brian 2, you can record the values of synaptic variables
with a StateMonitor. You no longer have to call an explicit indexing function,
but you can directly provide an appropriately indexed Synapses object. You
can now also use the same technique to index the StateMonitor object to get
the recorded values, see the respective section in the
Synapses documentation for details.

	Brian 1
	Brian 2

	syn = Synapses(...)
record all synapse targetting neuron 3
indices = syn.synapse_index((slice(None), 3))
mon = StateMonitor(S, 'w', record=indices)

	syn = Synapses(...)
record all synapse targetting neuron 3
mon = StateMonitor(S, 'w', record=S[:, 3])

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Introduction »

 	Changes for Brian 1 users »

 	Detailed Brian 1 to Brian 2 conversion notes »

Inputs (Brian 1 –> 2 conversion)

Brian 2 documentation

For the main documentation about adding external stimulation to a network,
see the document Input stimuli.

	Poisson Input

	Spike generation

	Arbitrary time-dependent input (TimedArray)

Poisson Input

Brian 2 provides the same two groups that Brian 1 provided: PoissonGroup and
PoissonInput. The mechanism for inhomogoneous Poisson processes has changed:
instead of providing a Python function of time, you’ll now have to provide a
string expression that is evaluated at every time step. For most use cases, this
should allow a direct translation:

	Brian 1
	Brian 2

	rates = lambda t:(1+cos(2*pi*t*1*Hz))*10*Hz
group = PoissonGroup(100, rates=rates)

	rates = '(1 + cos(2*pi*t*1*Hz)*10*Hz)'
group = PoissonGroup(100, rates=rates)

For more complex rate modulations, the expression can refer to
User-provided functions and/or you can replace the PoissonGroup by a general
NeuronGroup with a threshold condition rand()<rates*dt (which allows you
to store per-neuron attributes).

There is currently no direct replacement for the more advanced features of
PoissonInput (record, freeze, copies, jitter, and
reliability keywords), but various workarounds are possible, e.g. by
directly using a BinomialFunction in the equations. For example, you can get
the functionality of the freeze keyword (identical Poisson events for all
neurons) by storing the input in a shared variable and then distribute the input
to all neurons:

	Brian 1
	Brian 2

	group = NeuronGroup(10,
 'dv/dt = -v/(10*ms) : 1')
input = PoissonInput(group, N=1000, rate=1*Hz,
 weight=0.1, state='v',
 freeze=True)

	group = NeuronGroup(10, '''dv/dt = -v / (10*ms) : 1
 shared_input : 1 (shared)''')
poisson_input = BinomialFunction(n=1000, p=1*Hz*group.dt)
group.run_regularly('''shared_input = poisson_input()*0.1
 v += shared_input''')

Spike generation

SpikeGeneratorGroup provides mostly the same functionality as in Brian 1. In
contrast to Brian 1, there is only one way to specify which neurons spike and
when – you have to provide the index array and the times array as separate
arguments:

	Brian 1
	Brian 2

	gen1 = SpikeGeneratorGroup(2, [(0, 0*ms), (1, 1*ms)])
gen2 = SpikeGeneratorGroup(2, [(array([0, 1]), 0*ms),
 (array([0, 1]), 1*ms)]
gen3 = SpikeGeneratorGroup(2, (array([0, 1]),
 array([0, 1])*ms))
gen4 = SpikeGeneratorGroup(2, array([[0, 0.0],
 [1, 0.001]])

	gen1 = SpikeGeneratorGroup(2, [0, 1], [0, 1]*ms)
gen2 = SpikeGeneratorGroup(2, [0, 1, 0, 1],
 [0, 0, 1, 1]*ms)
gen3 = SpikeGeneratorGroup(2, [0, 1], [0, 1]*ms)

gen4 = SpikeGeneratorGroup(2, [0, 1], [0, 1]*ms)

Note

For large arrays, make sure to provide a Quantity array (e.g.
[0, 1, 2]*ms) and not a list of Quantity values (e.g.
[0*ms, 1*ms, 2*ms]). A list has first to be translated into an array
which can take a considerable amount of time for a list with many elements.

There is no direct equivalent of the Brian 1 option to use a generator that
updates spike times online. The easiest alternative in Brian 2 is to
pre-calculate the spikes and then use a standard SpikeGeneratorGroup. If this
is not possible (e.g. there are two many spikes to fit in memory), then you can
workaround the restriction by using custom code (see User-provided functions and
Arbitrary Python code (network operations)).

Arbitrary time-dependent input (TimedArray)

For a detailed description of the TimedArray mechanism in Brian 2, see
Timed arrays.

In Brian 1, timed arrays where special objects that could be assigned to a
state variable and would then be used to update this state variable at every
time step. In Brian 2, a timed array is implemented using the standard
Functions mechanism which has the advantage that more
complex access patterns can be implemented (e.g. by not using t as an
argument, but something like t - delay). This syntax was possible in Brian 1
as well, but was disadvantageous for performance and had other limits (e.g. no
unit support, no linear integration). In Brian 2, these disadvantages no longer
apply and the function syntax is therefore the only available syntax. You can
convert the old-style Brian 1 syntax to Brian 2 as follows:

Warning

The example below does not correctly translate the changed semantics of
TimedArray related to the time. In Brian 1,
TimedArray([0, 1, 2], dt=10*ms) will return 0 for t<5*ms, 1
for 5*ms<=t<15*ms, and 2 for t>=15*ms. Brian 2 will return 0
for t<10*ms, 1 for 10*ms<=t<20*ms, and 2 for t>=20*ms.

	Brian 1
	Brian 2

	# same input for all neurons
eqs = '''
 dv/dt = (I - v)/tau : volt
 I : volt
 '''
group = NeuronGroup(1, model=eqs,
 reset=0*mV, threshold=15*mV)
group.I = TimedArray(linspace(0*mV, 20*mV, 100),
 dt=10*ms)

	# same input for all neurons
I = TimedArray(linspace(0*mV, 20*mV, 100),
 dt=10*ms)
eqs = '''
 dv/dt = (I(t) - v)/tau : volt
 '''
group = NeuronGroup(1, model=eqs,
 reset='v = 0*mV',
 threshold='v > 15*mV')

	# neuron-specific input
eqs = '''
 dv/dt = (I - v)/tau : volt
 I : volt
 '''
group = NeuronGroup(5, model=eqs,
 reset=0*mV, threshold=15*mV)
values = (linspace(0*mV, 20*mV, 100)[:, None] *
 linspace(0, 1, 5))
group.I = TimedArray(values, dt=10*ms)

	# neuron-specific input
values = (linspace(0*mV, 20*mV, 100)[:, None] *
 linspace(0, 1, 5))
I = TimedArray(values, dt=10*ms)
eqs = '''
 dv/dt = (I(t, i) - v)/tau : volt
 '''
group = NeuronGroup(5, model=eqs,
 reset='v = 0*mV',
 threshold='v > 15*mV')

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Introduction »

 	Changes for Brian 1 users »

 	Detailed Brian 1 to Brian 2 conversion notes »

Monitors (Brian 1 –> 2 conversion)

Brian 2 documentation

For the main documentation about recording network activity, see the
document Recording during a simulation.

	Monitoring spiking activity

	Monitoring variables

Monitoring spiking activity

The main class to record spiking activity is SpikeMonitor which is created in
the same way as in Brian 1. However, the internal storage and retrieval of
spikes is different. In Brian 1, spikes were stored as a list of pairs
(i, t), the index and time of each spike. In Brian 2, spikes are stored as
two arrays i and t, storing the indices and times. You can access these
arrays as attributes of the monitor, there’s also a convenience attribute it
that returns both at the same time. The following table shows how the spike
indices and times can be retrieved in various forms in Brian 1 and Brian 2:

	Brian 1
	Brian 2

	mon = SpikeMonitor(group)
#... do the run
list_of_pairs = mon.spikes
index_list, time_list = zip(*list_of_pairs)
index_array = array(index_list)
time_array = array(time_list)
time_array is unitless in Brian 1

	mon = SpikeMonitor(group)
#... do the run
list_of_pairs = zip(*mon.it)
index_list = list(mon.i)
time_list = list(mon.t)
index_array, time_array = mon.i, mon.t
time_array has units in Brian 2

You can also access the spike times for individual neurons. In Brian 1, you
could directly index the monitor which is no longer allowed in Brian 2.
Instead, ask for a dictionary of spike times and index the returned dictionary:

	Brian 1
	Brian 2

	# dictionary of spike times for each neuron:
spike_dict = mon.spiketimes
all spikes for neuron 3:
spikes_3 = spike_dict[3] # (no units)
spikes_3 = mon[3] # alternative (no units)

	# dictionary of spike times for each neuron:
spike_dict = mon.spike_trains()
all spikes for neuron 3:
spikes_3 = spike_dict[3] # with units

In Brian 2, SpikeMonitor also provides the functionality of the Brian 1
classes SpikeCounter and PopulationSpikeCounter. If you are only
interested in the counts and not in the individual spike events, use
record=False to save the memory of storing them:

	Brian 1
	Brian 2

	counter = SpikeCounter(group)
pop_counter = PopulationSpikeCounter(group)
#... do the run
Number of spikes for neuron 3:
count_3 = counter[3]
Total number of spikes:
total_spikes = pop_counter.nspikes

	counter = SpikeMonitor(group, record=False)

#... do the run
Number of spikes for neuron 3
count_3 = counter.count[3]
Total number of spikes:
total_spikes = counter.num_spikes

Currently Brian 2 provides no functionality to calculate statistics such as
correlations or histograms online, there is no equivalent to the following
classes that existed in Brian 1: AutoCorrelogram, CoincidenceCounter,
CoincidenceMatrixCounter, ISIHistogramMonitor, VanRossumMetric.
You will therefore have to be calculate the corresponding statistiacs manually
after the simulation based on the information stored in the SpikeMonitor. If
you use the default Runtime code generation, you can also create a new Python class that
calculates the statistic online
(see this example from a Brian 2 tutorial [https://github.com/brian-team/brian-material/blob/master/2015-CNS-tutorial/04-advanced-brian2/coincidence_counter.ipynb]).

Monitoring variables

Single variables are recorded with a StateMonitor in the same way as in
Brian 1, but the times and variable values are accessed differently:

	Brian 1
	Brian 2

	mon = StateMonitor(group, 'v',
 record=True)
... do the run
plot the trace of neuron 3:
plot(mon.times/ms, mon[3]/mV)
plot the traces of all neurons:
plot(mon.times/ms, mon.values.T/mV)

	mon = StateMonitor(group, 'v',
 record=True)
... do the run
plot the trace of neuron 3:
plot(mon.t/ms, mon[3].v/mV)
plot the traces of all neurons:
plot(mon.t/ms, mon.v.T/mV)

Further differences:

	StateMonitor now records in the 'start' scheduling slot by default. This
leads to a more intuitive correspondence between the recorded times and the
values: in Brian 1 (where StateMonitor recorded in the 'end' slot) the
recorded value at 0ms was not the initial value of the variable but the value
after integrating it for a single time step. The disadvantage of this new
default is that the very last value at the end of the last time step of a
simulation is not recorded anymore. However, this value can be manually added
to the monitor by calling StateMonitor.record_single_timestep().

	To not record every time step, use the dt argument (as for all other
classes) instead of specifying a number of timesteps.

	Using record=False does no longer provide mean and variance of the
recorded variable.

In contrast to Brian 1, StateMonitor can now record multiple variables and
therefore replaces Brian 1’s MultiStateMonitor:

	Brian 1
	Brian 2

	mon = MultiStateMonitor(group, ['v', 'w'],
 record=True)
... do the run
plot the traces of v and w for neuron 3:
plot(mon['v'].times/ms, mon['v'][3]/mV)
plot(mon['w'].times/ms, mon['w'][3]/mV)

	mon = StateMonitor(group, ['v', 'w'],
 record=True)
... do the run
plot the traces of v and w for neuron 3:
plot(mon.t/ms, mon[3].v/mV)
plot(mon.t/ms, mon[3].w/mV)

To record variable values at the times of spikes, Brian 2 no longer provides a
separate class as Brian 1 did (StateSpikeMonitor). Instead, you can use
SpikeMonitor to record additional variables (in addition to the neuron index
and the spike time):

	Brian 1
	Brian 2

	# We assume that "group" has a varying threshold
mon = StateSpikeMonitor(group, 'v')
... do the run
plot the mean v at spike time for each neuron
mean_values = [mean(mon.values('v', idx))
 for idx in range(len(group))]

plot(mean_values/mV, 'o')

	# We assume that "group" has a varying threshold
mon = SpikeMonitor(group, variables='v')
... do the run
plot the mean v at spike time for each neuron
values = mon.values('v')
mean_values = [mean(values[idx])
 for idx in range(len(group))]
plot(mean_values/mV, 'o')

Note that there is no equivalent to StateHistogramMonitor, you will have to
calculate the histogram from the recorded values or write your own custom
monitor class.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Introduction »

 	Changes for Brian 1 users »

 	Detailed Brian 1 to Brian 2 conversion notes »

Networks and clocks (Brian 1 –> 2 conversion)

Brian 2 documentation

For the main documentation about running simulations, controling the
simulation timestep, etc., see the document Running a simulation.

	Clocks and timesteps

	Networks

Clocks and timesteps

Brian’s system of handling clocks has substantially changed. For details about
the new system in place see Setting the simulation time step. The main differences to Brian 1
are:

	There is no more “clock guessing” – objects either use the defaultclock or
a dt/clock value that was explicitly specified during their
construction.

	In Brian 2, the time step is allowed to change after the creation of an object
and between runs – the relevant value is the value in place at the point of
the run() call.

	It is rarely necessary to create an explicit Clock object, most of the time
you should use the defaultclock or provide a dt argument during the
construction of the object.

	There’s only one Clock class, the (deprecated) FloatClock,
RegularClock, etc. classes that Brian 1 provided no longer exist.

	It is no longer possible to (re-)set the time of a clock explicitly, there is
no direct equivalent of Clock.reinit and reinit_default_clock. To
start a completely new simulation after you have finished a previous one,
either create a new Network or use the start_scope() mechanism. To “rewind”
a simulation to a previous point, use the new store()/restore() mechanism. For
more details, see below and Running a simulation.

Networks

Both Brian 1 and Brian 2 offer two ways to run a simulation: either by
explicitly creating a Network object, or by using a MagicNetwork, i.e. a
simple run() statement.

Explicit network

The mechanism to create explicit Network objects has not changed significantly
from Brian 1 to Brian 2. However, creating a new Network will now also
automatically reset the clock back to 0s, and stricter checks no longer allow
the inclusion of the same object in multiple networks.

	Brian 1
	Brian 2

	group = ...
mon = ...
net = Network(group, mon)
net.run(1*ms)

reinit()
group = ...
mon = ...
net = Network(group, mon)
net.run(1*ms)

	group = ...
mon = ...
net = Network(group, mon)
net.run(1*ms)

new network starts at 0s
group = ...
mon = ...
net = Network(group, mon)
net.run(1*ms)

“Magic” network

For most simple, “flat”, scripts (see e.g. the Examples),
the run() statement in Brian 2 automatically collects all the Brian objects
(NeuronGroup, etc.) into a “magic” network in the same way as Brian 1 did.
The logic behind this collection has changed, though, with important
consequences for more complex simulation scripts: in Brian 1, the magic network
includes all Brian objects that have been created in the same execution frame
as the run() call. Objects that are created in other functions could be added
using magic_return and magic_register. In Brian 2, the magic network
contains all Brian objects that are visible in the same execution frame as the
run() call. The advantage of the new system is that it is clearer what will be
included in the network and there is no danger of including previously created,
but no longer needed, objects in a simulation. E.g. in the following example,
a common mistake in Brian 1 was to not include the clear(), which meant that
each run not only simulated the current objects, but also all objects from
previous loop iterations. Also, without the reinit_default_clock(),
each run would start at the end time of the previous run. In Brian 2, this loop
does not need any explicit clearing up, each run() will only simulate the
object that it “sees” (group1, group2, syn, and mon) and start
each simulation at 0s:

	Brian 1
	Brian 2

	for r in range(100):
 reinit_default_clock()
 clear()
 group1 = NeuronGroup(...)
 group2 = NeuronGroup(...)
 syn = Synapses(group1, group2, ...)
 mon = SpikeMonitor(group2)
 run(1*second)

	for r in range(100):

 group1 = NeuronGroup(...)
 group2 = NeuronGroup(...)
 syn = Synapses(group1, group2, ...)
 mon = SpikeMonitor(group2)
 run(1*second)

There is no replacement for the magic_return and magic_register
functions. If the returned object is stored in a variable at the level of
the run() call, then it is no longer necessary to use magic_return, as the
returned object is “visible” at the level of the run() call:

	Brian 1
	Brian 2

	@magic_return
def f():
 return PoissonGroup(100, rates=100*Hz)

pg = f() # needs magic_return
mon = SpikeMonitor(pg)
run(100*ms)

	def f():
 return PoissonGroup(100, rates=100*Hz)

pg = f() # is "visible" and will be included
mon = SpikeMonitor(pg)
run(100*ms)

The general recommendation is however: if your script is complex (multiple
functions/files/classes) and you are not sure whether some objects will be
included in the magic network, use an explicit Network object.

Note that one consequence of the “is visible” approach is that objects stored
in containers (lists, dictionaries, ...) will not be automatically included in
Brian 2. Use an explicit Network object to get around this restriction:

	Brian 1
	Brian 2

	groups = {'exc': NeuronGroup(...),
 'inh': NeuronGroup(...)}
...

run(5*ms)

	groups = {'exc': NeuronGroup(...),
 'inh': NeuronGroup(...)}
...
net = Network(groups)
net.run(5*ms)

External constants

In Brian 2, external constants are taken from the surrounding namespace at
the point of the run() call and not when the object is defined (for other ways
to define the namespace, see External variables and functions). This allows to easily
change external constants between runs, in contrast to Brian 1 where the whether
this worked or not depended on details of the model (e.g. whether linear
integration was used):

	Brian 1
	Brian 2

	tau = 10*ms
to be sure that changes between runs are taken into
account, define "I" as a neuronal parameter
group = NeuronGroup(10, '''dv/dt = (-v + I) / tau : 1
 I : 1''')
group.v = linspace(0, 1, 10)
group.I = 0.0
mon = StateMonitor(group, 'v', record=True)
run(5*ms)
group.I = 0.5
run(5*ms)
group.I = 0.0
run(5*ms)

	tau = 10*ms

The value for I will be updated at each run
group = NeuronGroup(10, 'dv/dt = (-v + I) / tau : 1')

group.v = linspace(0, 1, 10)
I = 0.0
mon = StateMonitor(group, 'v', record=True)
run(5*ms)
I = 0.5
run(5*ms)
I = 0.0
run(5*ms)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Introduction »

 	Changes for Brian 1 users »

 	Detailed Brian 1 to Brian 2 conversion notes »

Multicompartmental models (Brian 1 –> 2 conversion)

Brian 2 documentation

Support for multicompartmental models is now an integral part of Brian 2
(an early version of it was included as an experimental module in Brian 1).
See the document Multicompartment models.

Brian 1 offered support for simple multi-compartmental models in the
compartments module. This module allowed you to combine the equations for
several compartments into a single Equations object. This is only a suitable
solution for simple morphologies (e.g. “ball-and-stick” models) but has the
advantage over using SpatialNeuron that you can have several of such neurons
in a NeuronGroup.

If you already have a definition of a model using Brian 1’s compartments
module, then you can simply print out the equations and use them directly in
Brian 2. For simple models, writing the equations without that help is rather
straightforward anyway:

	Brian 1
	Brian 2

	V0 = 10*mV
C = 200*pF
Ra = 150*kohm
R = 50*Mohm
soma_eqs = (MembraneEquation(C) +
 IonicCurrent('I=(vm-V0)/R : amp'))
dend_eqs = MembraneEquation(C)
neuron_eqs = Compartments({'soma': soma_eqs,
 'dend': dend_eqs})

neuron = NeuronGroup(N, neuron_eqs)

	V0 = 10*mV
C = 200*pF
Ra = 150*kohm
R = 50*Mohm
neuron_eqs = '''
dvm_soma/dt = (I_soma + I_soma_dend)/C : volt
I_soma = (V0 - vm_soma)/R : amp
I_soma_dend = (vm_dend - vm_soma)/Ra : amp
dvm_dend/dt = -I_soma_dend/C : volt'''

neuron = NeuronGroup(N, neuron_eqs)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Introduction »

 	Changes for Brian 1 users »

 	Detailed Brian 1 to Brian 2 conversion notes »

Library models (Brian 1 –> 2 conversion)

	Neuron models

	Ionic currents

	Synapses

Neuron models

The neuron models in Brian 1’s brian.library.IF package are nothing more
than shorthands for equations. The following table shows how the models from
Brian 1 can be converted to explicit equations (and reset statements in the case
of the adaptive exponential integrate-and-fire model) for use in Brian 2. The
examples include a “current” I (depending on the model not necessarily in
units of Ampère) and could e.g. be used to plot the f-I curve of the neuron.

Perfect integrator

	Brian 1
	Brian 2

	eqs = (perfect_IF(tau=10*ms) +
 Current('I : volt'))
group = NeuronGroup(N, eqs,
 threshold='v > -50*mV',
 reset='v = -70*mV')

	tau = 10*ms
eqs = '''dvm/dt = I/tau : volt
 I : volt'''
group = NeuronGroup(N, eqs,
 threshold='v > -50*mV',
 reset='v = -70*mV')

Leaky integrate-and-fire neuron

	Brian 1
	Brian 2

	eqs = (leaky_IF(tau=10*ms, El=-70*mV) +
 Current('I : volt'))
group = ... # see above

	tau = 10*ms; El = -70*mV
eqs = '''dvm/dt = ((El - vm) + I)/tau : volt
 I : volt'''
group = ... # see above

Exponential integrate-and-fire neuron

	Brian 1
	Brian 2

	eqs = (exp_IF(C=1*nF, gL=30*nS, EL=-70*mV,
 VT=-50*mV, DeltaT=2*mV) +
 Current('I : amp'))
group = ... # see above

	C = 1*nF; gL = 30*nS; EL = -70*mV; VT = -50*mV; DeltaT = 2*mV
eqs = '''dvm/dt = (gL*(EL-vm)+gL*DeltaT*exp((vm-VT)/DeltaT) + I)/C : volt
 I : amp'''
group = ... # see above

Quadratic integrate-and-fire neuron

	Brian 1
	Brian 2

	eqs = (quadratic_IF(C=1*nF, a=5*nS/mV,
 EL=-70*mV, VT=-50*mV) +
 Current('I : amp'))
group = ... # see above

	C = 1*nF; a=5*nS/mV; EL=-70*mV; VT = -50*mV
eqs = '''dvm/dt = (a_q*(vm-EL)*(vm-VT) + I)/C : volt
 I : amp'''
group = ... # see above

Izhikevich neuron

	Brian 1
	Brian 2

	eqs = (Izhikevich(a=0.02/ms, b=0.2/ms) +
 Current('I : volt/second'))
group = ... # see above

	a = 0.02/ms; b = 0.2/ms
eqs = '''dvm/dt = (0.04/ms/mV)*vm**2+(5/ms)*vm+140*mV/ms-w + I : volt
 dw/dt = a_I*(b_I*vm-w) : volt/second
 I : volt/second'''
group = ... # see above

Adaptive exponential integrate-and-fire neuron (“Brette-Gerstner model”)

	Brian 1
	Brian 2

	# AdEx, aEIF, and Brette_Gerstner all refer to the same model
eqs = (aEIF(C=1*nF, gL=30*nS, EL=-70*mV,
 VT=-50*mV, DeltaT=2*mV, tauw=150*ms, a=4*nS) +
 Current('I:amp'))
group = NeuronGroup(N, eqs,
 threshold='v > -20*mV',
 reset=AdaptiveReset(Vr=-70*mV, b=0.08*nA))

	C = 1*nF; gL = 30*nS; EL = -70*mV; VT = -50*mV; DeltaT = 2*mV; tauw = 150*ms; a = 4*nS
eqs = '''dvm/dt = (gL*(EL-vm)+gL*DeltaT*exp((vm-VT)/DeltaT) -w + I)/C : volt
 dw/dt=(a_BG*(vm-EL)-w)/tauw : amp
 I : volt/second'''
group = NeuronGroup(N, eqs,
 threshold='v > -20*mV',
 reset='vm=-70*mV; w += 0.08*nA')

Ionic currents

Brian 1’s functions for ionic currents, provided in
brian.library.ionic_currents correspond to the following equations (note
that the currents follow the convention to use a shifted membrane potential,
i.e. the membrane potential at rest is 0mV):

	Brian 1
	Brian 2

	from brian.library.ionic_currents import *
defaultclock.dt = 0.01*ms
eqs_leak = leak_current(gl=60*nS, El=10.6*mV, current_name='I_leak')

eqs_K = K_current_HH(gmax=7.2*uS, EK=-12*mV, current_name='I_K')

eqs_Na = Na_current_HH(gmax=24*uS, ENa=115*mV, current_name='I_Na')

eqs = (MembraneEquation(C=200*pF) +
 eqs_leak + eqs_K + eqs+Na +
 Current('I_inj : amp'))

	defaultclock.dt = 0.01*ms
gl = 60*nS; El = 10.6*mV
eqs_leak = Equations('I_leak = gl*(El - vm) : amp')
g_K = 7.2*uS; EK = -12*mV
eqs_K = Equations('''I_K = g_K*n**4*(EK-vm) : amp
 dn/dt = alphan*(1-n)-betan*n : 1
 alphan = .01*(10*mV-vm)/(exp(1-.1*vm/mV)-1)/mV/ms : Hz
 betan = .125*exp(-.0125*vm/mV)/ms : Hz''')
g_Na = 24*uS; ENa = 115*mV
eqs_Na = Equations('''I_Na = g_Na*m**3*h*(ENa-vm) : amp
 dm/dt=alpham*(1-m)-betam*m : 1
 dh/dt=alphah*(1-h)-betah*h : 1
 alpham=.1*(25*mV-vm)/(exp(2.5-.1*vm/mV)-1)/mV/ms : Hz
 betam=4*exp(-.0556*vm/mV)/ms : Hz
 alphah=.07*exp(-.05*vm/mV)/ms : Hz
 betah=1./(1+exp(3.-.1*vm/mV))/ms : Hz''')
C = 200*pF
eqs = Equations('''dvm/dt = (I_leak + I_K + I_Na + I_inj)/C : volt
 I_inj : amp''') + eqs_leak + eqs_K + eqs_Na

Synapses

Brian 1’s synaptic models, provided in brian.library.synpases can be
converted to the equivalent Brian 2 equations as follows:

Current-based synapses

	Brian 1
	Brian 2

	syn_eqs = exp_current('s', tau=5*ms, current_name='I_syn')
eqs = (MembraneEquation(C=1*nF) + Current('Im = gl*(El-vm) : amp') +
 syn_eqs)
group = NeuronGroup(N, eqs, threshold='vm>-50*mV', reset='vm=-70*mV')
syn = Synapses(source, group, pre='s += 1*nA')
... connect synapses, etc.

	tau = 5*ms
syn_eqs = Equations('dI_syn/dt = -I_syn/tau : amp')
eqs = (Equations('dvm/dt = (gl*(El - vm) + I_syn)/C : volt') +
 syn_eqs)
group = NeuronGroup(N, eqs, threshold='vm>-50*mV', reset='vm=-70*mV')
syn = Synapses(source, group, pre='I_syn += 1*nA')
... connect synapses, etc.

	syn_eqs = alpha_current('s', tau=2.5*ms, current_name='I_syn')
eqs = ... # remaining code as above

	tau = 2.5*ms
syn_eqs = Equations('''dI_syn/dt = (s - I_syn)/tau : amp
 ds/dt = -s/tau : amp''')
group = NeuronGroup(N, eqs, threshold='vm>-50*mV', reset='vm=-70*mV')
syn = Synapses(source, group, pre='s += 1*nA')
... connect synapses, etc.

	syn_eqs = biexp_current('s', tau1=2.5*ms, tau2=10*ms, current_name='I_syn')
eqs = ... # remaining code as above

	tau1 = 2.5*ms; tau2 = 10*ms; invpeak = (tau2 / tau1) ** (tau1 / (tau2 - tau1))
syn_eqs = Equations('''dI_syn/dt = (invpeak*s - I_syn)/tau1 : amp
 ds/dt = -s/tau2 : amp''')
eqs = ... # remaining code as above

Conductance-based synapses

	Brian 1
	Brian 2

	syn_eqs = exp_conductance('s', tau=5*ms, E=0*mV, conductance_name='g_syn')
eqs = (MembraneEquation(C=1*nF) + Current('Im = gl*(El-vm) : amp') +
 syn_eqs)
group = NeuronGroup(N, eqs, threshold='vm>-50*mV', reset='vm=-70*mV')
syn = Synapses(source, group, pre='s += 10*nS')
... connect synapses, etc.

	tau = 5*ms; E = 0*mV
syn_eqs = Equations('dg_syn/dt = -g_syn/tau : siemens')
eqs = (Equations('dvm/dt = (gl*(El - vm) + g_syn*(E - vm))/C : volt') +
 syn_eqs)
group = NeuronGroup(N, eqs, threshold='vm>-50*mV', reset='vm=-70*mV')
syn = Synapses(source, group, pre='g_syn += 10*nS')
... connect synapses, etc.

	syn_eqs = alpha_conductance('s', tau=2.5*ms, E=0*mV, conductance_name='g_syn')
eqs = ... # remaining code as above

	tau = 2.5*ms; E = 0*mV
syn_eqs = Equations('''dg_syn/dt = (s - g_syn)/tau : siemens
 ds/dt = -s/tau : siemens''')
group = NeuronGroup(N, eqs, threshold='vm>-50*mV', reset='vm=-70*mV')
syn = Synapses(source, group, pre='s += 10*nS')
... connect synapses, etc.

	syn_eqs = biexp_conductance('s', tau1=2.5*ms, tau2=10*ms, E=0*mV,
 conductance_name='g_syn')
eqs = ... # remaining code as above

	tau1 = 2.5*ms; tau2 = 10*ms; E = 0*mV
invpeak = (tau2 / tau1) ** (tau1 / (tau2 - tau1))
syn_eqs = Equations('''dg_syn/dt = (invpeak*s - g_syn)/tau1 : siemens
 ds/dt = -s/tau2 : siemens''')
eqs = ... # remaining code as above

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Introduction »

 	Changes for Brian 1 users »

 	Detailed Brian 1 to Brian 2 conversion notes »

Brian Hears

This module is designed for users of the Brian 1 library “Brian Hears”. It allows you to use Brian Hears with Brian 2
with only a few modifications (although it’s not compatible with the “standalone” mode of Brian 2).
The way it works is by acting as a “bridge” to the version in Brian 1. To
make this work, you must have a copy of Brian 1 installed (preferably the latest version), and import Brian Hears
using:

from brian2.hears import *

Many scripts will run without any changes, but there are a few caveats to be aware of. Mostly, the problems are due
to the fact that the units system in Brian 2 is not 100% compatible with the units system of Brian 1.

FilterbankGroup now follows the rules for NeuronGroup in Brian 2, which means some changes may be
necessary to match the syntax of Brian 2, for example, the following would work in Brian 1 Hears:

Leaky integrate-and-fire model with noise and refractoriness
eqs = '''
dv/dt = (I-v)/(1*ms)+0.2*xi*(2/(1*ms))**.5 : 1
I : 1
'''
anf = FilterbankGroup(ihc, 'I', eqs, reset=0, threshold=1, refractory=5*ms)

However, in Brian 2 Hears you would need to do:

Leaky integrate-and-fire model with noise and refractoriness
eqs = '''
dv/dt = (I-v)/(1*ms)+0.2*xi*(2/(1*ms))**.5 : 1 (unless refractory)
I : 1
'''
anf = FilterbankGroup(ihc, 'I', eqs, reset='v=0', threshold='v>1', refractory=5*ms)

Slicing sounds no longer works. Previously you could do, e.g. sound[:20*ms] but with Brian 2 you would need
to do sound.slice(0*ms, 20*ms).

In addition, some functions may not work correctly with Brian 2 units. In most circumstances, Brian 2 units can be
used interchangeably with Brian 1 units in the bridge, but in some cases it may be necessary to convert units from
one format to another, and to do that you can use the functions convert_unit_b1_to_b2 and convert_unit_b2_to_b1.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Introduction »

Known issues

In addition to the issues noted below, you can refer to our
bug tracker on GitHub [https://github.com/brian-team/brian2/issues?q=is%3Aopen+is%3Aissue+label%3Abug].

List of known issues

	Cannot find msvcr90d.dll

	“Missing compiler_cxx fix for MSVCCompiler”

	Problems with numerical integration

Cannot find msvcr90d.dll

If you see this message coming up, find the file
PythonDir\Lib\site-packages\numpy\distutils\mingw32ccompiler.py
and modify the line msvcr_dbg_success = build_msvcr_library(debug=True) to read
msvcr_dbg_success = False (you can comment out the existing line and add the new line
immediately after).

“Missing compiler_cxx fix for MSVCCompiler”

If you keep seeing this message, do not worry. It’s not possible for us to
hide it, but doesn’t indicate any problems.

Problems with numerical integration

In some cases, the automatic choice of numerical integration method will not be
appropriate, because of a choice of parameters that couldn’t be determined in
advance. In this case, typically you will get nan (not a number) values in the
results, or large oscillations. In this case, Brian will generate a warning to
let you know, but will not raise an error.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Introduction »

Support

If you are stuck with a problem using Brian, please do get in touch at our
email support list [http://groups.google.com/group/briansupport].

You can save time by following this procedure when reporting a problem:

	Do try to solve the problem on your own first. Read the documentation,
including using the search feature, index and reference documentation.

	Search the mailing list archives to see if someone else already had the
same problem.

	Before writing, try to create a minimal example that reproduces the
problem. You’ll get the fastest response if you can send just a handful
of lines of code that show what isn’t working.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

Tutorials

The tutorial consists of a series of Jupyter Notebooks [http://jupyter-notebook-beginner-guide.readthedocs.org/en/latest/what_is_jupyter.html] [1]. You can quickly
view these using the first links below. To use them interactively - allowing you
to edit and run the code - there are two options. The easiest option is to click
on the “Launch Binder” link, which will open up an interactive version in the
browser without having to install Brian locally. This uses the
Binder service provided by the
Freeman lab [https://www.janelia.org/lab/freeman-lab]. Occasionally, this
service will be down or running slowly. The other option is to download the
notebook file and run it locally, which requires you to have Brian installed.

For more information about how to use Jupyter Notebooks, see the
Jupyter Notebook documentation [http://jupyter.readthedocs.org/].

	Introduction to Brian part 1: Neurons

	Introduction to Brian part 2: Synapses

Interactive notebooks and files

	[image: launchbinder1introtobrianneurons] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/tutorials/1-intro-to-brian-neurons.ipynb] Introduction to Brian part 1: Neurons

	[image: launchbinder2introtobriansynapses] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/tutorials/2-intro-to-brian-synapses.ipynb] Introduction to Brian part 2: Synapses

	[1]	Formerly known as “IPython Notebooks”.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Tutorials »

Introduction to Brian part 1: Neurons

Note

This tutorial is a static non-editable version. You can launch an
interactive, editable version without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/tutorials/1-intro-to-brian-neurons.ipynb]

Alternatively, you can download a copy of the notebook file
to use locally: 1-intro-to-brian-neurons.ipynb

See the tutorial overview page for more details.

All Brian scripts start with the following. If you’re trying this
notebook out in IPython, you should start by running this cell.

from brian2 import *

Later we’ll do some plotting in the notebook, so we activate inline
plotting in the IPython notebook by doing this:

%matplotlib inline

Units system

Brian has a system for using quantities with physical dimensions:

20*volt

\[20.0\,\mathrm{V}\]

All of the basic SI units can be used (volt, amp, etc.) along with all
the standard prefixes (m=milli, p=pico, etc.), as well as a few special
abbreviations like mV for millivolt, pF for picofarad, etc.

1000*amp

\[1.0\,\mathrm{k}\,\mathrm{A}\]

1e6*volt

\[1.0\,\mathrm{M}\,\mathrm{V}\]

1000*namp

\[1.0\,\mathrm{\mu}\,\mathrm{A}\]

Also note that combinations of units with work as expected:

10*nA*5*Mohm

\[50.0\,\mathrm{m}\,\mathrm{V}\]

And if you try to do something wrong like adding amps and volts, what
happens?

5*amp+10*volt

DimensionMismatchErrorTraceback (most recent call last)

<ipython-input-8-ad1fc5691a4b> in <module>()
----> 1 5*amp+10*volt

/home/marcel/programming/brian2/brian2/units/fundamentalunits.pyc in __add__(self, other)
 1408 return self._binary_operation(other, operator.add,
 1409 fail_for_mismatch=True,
-> 1410 operator_str='+')
 1411
 1412 def __radd__(self, other):

/home/marcel/programming/brian2/brian2/units/fundamentalunits.pyc in _binary_operation(self, other, operation, dim_operation, fail_for_mismatch, operator_str, inplace)
 1348 _, other_dim = fail_for_dimension_mismatch(self, other, message,
 1349 value1=self,
-> 1350 value2=other)
 1351
 1352 if other_dim is None:

/home/marcel/programming/brian2/brian2/units/fundamentalunits.pyc in fail_for_dimension_mismatch(obj1, obj2, error_message, **error_quantities)
 183 raise DimensionMismatchError(error_message, dim1)
 184 else:
--> 185 raise DimensionMismatchError(error_message, dim1, dim2)
 186 else:
 187 return dim1, dim2

DimensionMismatchError: Cannot calculate 5. A + 10. V, units do not match (units are amp and volt).

If you haven’t see an error message in Python before that can look a bit
overwhelming, but it’s actually quite simple and it’s important to know
how to read these because you’ll probably see them quite often.

You should start at the bottom and work up. The last line gives the
error type DimensionMismatchError along with a more specific message
(in this case, you were trying to add together two quantities with
different SI units, which is impossible).

Working upwards, each of the sections starts with a filename (e.g.
C:\Users\Dan\...) with possibly the name of a function, and then a
few lines surrounding the line where the error occurred (which is
identified with an arrow).

The last of these sections shows the place in the function where the
error actually happened. The section above it shows the function that
called that function, and so on until the first section will be the
script that you actually run. This sequence of sections is called a
traceback, and is helpful in debugging.

If you see a traceback, what you want to do is start at the bottom and
scan up the sections until you find your own file because that’s most
likely where the problem is. (Of course, your code might be correct and
Brian may have a bug in which case, please let us know on the email
support list.)

A simple model

Let’s start by defining a simple neuron model. In Brian, all models are
defined by systems of differential equations. Here’s a simple example of
what that looks like:

tau = 10*ms
eqs = '''
dv/dt = (1-v)/tau : 1
'''

In Python, the notation ''' is used to begin and end a multi-line
string. So the equations are just a string with one line per equation.
The equations are formatted with standard mathematical notation, with
one addition. At the end of a line you write : unit where unit
is the SI unit of that variable.

Now let’s use this definition to create a neuron.

G = NeuronGroup(1, eqs)

In Brian, you only create groups of neurons, using the class
NeuronGroup. The first two arguments when you create one of these
objects are the number of neurons (in this case, 1) and the defining
differential equations.

Let’s see what happens if we didn’t put the variable tau in the
equation:

eqs = '''
dv/dt = 1-v : 1
'''
G = NeuronGroup(1, eqs)
run(100*ms)

BrianObjectExceptionTraceback (most recent call last)

<ipython-input-11-d086eea0b2de> in <module>()
 3 '''
 4 G = NeuronGroup(1, eqs)
----> 5 run(100*ms)

/home/marcel/programming/brian2/brian2/units/fundamentalunits.pyc in new_f(*args, **kwds)
 2386 raise DimensionMismatchError(error_message,
 2387 newkeyset[k])
-> 2388 result = f(*args, **kwds)
 2389 if 'result' in au:
 2390 if not have_same_dimensions(result, au['result']):

/home/marcel/programming/brian2/brian2/core/magic.pyc in run(duration, report, report_period, namespace, profile, level)
 369 '''
 370 return magic_network.run(duration, report=report, report_period=report_period,
--> 371 namespace=namespace, profile=profile, level=2+level)
 372 run.__module__ = __name__
 373

/home/marcel/programming/brian2/brian2/core/magic.pyc in run(self, duration, report, report_period, namespace, profile, level)
 229 self._update_magic_objects(level=level+1)
 230 Network.run(self, duration, report=report, report_period=report_period,
--> 231 namespace=namespace, profile=profile, level=level+1)
 232
 233 def store(self, name='default', filename=None, level=0):

/home/marcel/programming/brian2/brian2/core/base.pyc in device_override_decorated_function(*args, **kwds)
 276 return getattr(curdev, name)(*args, **kwds)
 277 else:
--> 278 return func(*args, **kwds)
 279
 280 device_override_decorated_function.__doc__ = func.__doc__

/home/marcel/programming/brian2/brian2/units/fundamentalunits.pyc in new_f(*args, **kwds)
 2386 raise DimensionMismatchError(error_message,
 2387 newkeyset[k])
-> 2388 result = f(*args, **kwds)
 2389 if 'result' in au:
 2390 if not have_same_dimensions(result, au['result']):

/home/marcel/programming/brian2/brian2/core/network.pyc in run(self, duration, report, report_period, namespace, profile, level)
 786 namespace = get_local_namespace(level=level+3)
 787
--> 788 self.before_run(namespace)
 789
 790 if len(self.objects)==0:

/home/marcel/programming/brian2/brian2/core/base.pyc in device_override_decorated_function(*args, **kwds)
 276 return getattr(curdev, name)(*args, **kwds)
 277 else:
--> 278 return func(*args, **kwds)
 279
 280 device_override_decorated_function.__doc__ = func.__doc__

/home/marcel/programming/brian2/brian2/core/network.pyc in before_run(self, run_namespace)
 686 obj.before_run(run_namespace)
 687 except Exception as ex:
--> 688 raise brian_object_exception("An error occurred when preparing an object.", obj, ex)
 689
 690 # Check that no object has been run as part of another network before

BrianObjectException: Original error and traceback:
Traceback (most recent call last):
 File "/home/marcel/programming/brian2/brian2/core/network.py", line 686, in before_run
 obj.before_run(run_namespace)
 File "/home/marcel/programming/brian2/brian2/groups/neurongroup.py", line 775, in before_run
 self.equations.check_units(self, run_namespace=run_namespace)
 File "/home/marcel/programming/brian2/brian2/equations/equations.py", line 861, in check_units
 *ex.dims)
DimensionMismatchError: Inconsistent units in differential equation defining variable v:
Expression 1-v does not have the expected unit Unit(1) / second (unit is 1).

Error encountered with object named "neurongroup_1".
Object was created here (most recent call only, full details in debug log):
 File "<ipython-input-11-d086eea0b2de>", line 4, in <module>
 G = NeuronGroup(1, eqs)

An error occurred when preparing an object. DimensionMismatchError: Inconsistent units in differential equation defining variable v:
Expression 1-v does not have the expected unit Unit(1) / second (unit is 1).
(See above for original error message and traceback.)

An error is raised, but why? The reason is that the differential
equation is now dimensionally inconsistent. The left hand side dv/dt
has units of 1/second but the right hand side 1-v is
dimensionless. People often find this behaviour of Brian confusing
because this sort of equation is very common in mathematics. However,
for quantities with physical dimensions it is incorrect because the
results would change depending on the unit you measured it in. For time,
if you measured it in seconds the same equation would behave differently
to how it would if you measured time in milliseconds. To avoid this, we
insist that you always specify dimensionally consistent equations.

Now let’s go back to the good equations and actually run the simulation.

start_scope()

tau = 10*ms
eqs = '''
dv/dt = (1-v)/tau : 1
'''

G = NeuronGroup(1, eqs)
run(100*ms)

First off, ignore that start_scope() at the top of the cell. You’ll
see that in each cell in this tutorial where we run a simulation. All it
does is make sure that any Brian objects created before the function is
called aren’t included in the next run of the simulation.

Secondly, you’ll see that there is an “INFO” message about not
specifying the numerical integration method. This is harmless and just
to let you know what method we chose, but we’ll fix it in the next cell
by specifying the method explicitly.

So, what has happened here? Well, the command run(100*ms) runs the
simulation for 100 ms. We can see that this has worked by printing the
value of the variable v before and after the simulation.

start_scope()

G = NeuronGroup(1, eqs, method='linear')
print('Before v = %s' % G.v[0])
run(100*ms)
print('After v = %s' % G.v[0])

Before v = 0.0
After v = 0.99995460007

By default, all variables start with the value 0. Since the differential
equation is dv/dt=(1-v)/tau we would expect after a while that v
would tend towards the value 1, which is just what we see. Specifically,
we’d expect v to have the value 1-exp(-t/tau). Let’s see if
that’s right.

print('Expected value of v = %s' % (1-exp(-100*ms/tau)))

Expected value of v = 0.99995460007

Good news, the simulation gives the value we’d expect!

Now let’s take a look at a graph of how the variable v evolves over
time.

start_scope()

G = NeuronGroup(1, eqs, method='linear')
M = StateMonitor(G, 'v', record=True)

run(30*ms)

plot(M.t/ms, M.v[0])
xlabel('Time (ms)')
ylabel('v');

[image: ../../_images/1-intro-to-brian-neurons_image_30_0.png]
This time we only ran the simulation for 30 ms so that we can see the
behaviour better. It looks like it’s behaving as expected, but let’s
just check that analytically by plotting the expected behaviour on top.

start_scope()

G = NeuronGroup(1, eqs, method='linear')
M = StateMonitor(G, 'v', record=0)

run(30*ms)

plot(M.t/ms, M.v[0], '-b', lw=2, label='Brian')
plot(M.t/ms, 1-exp(-M.t/tau), '--r', lw=2, label='Analytic')
xlabel('Time (ms)')
ylabel('v')
legend(loc='best');

[image: ../../_images/1-intro-to-brian-neurons_image_32_0.png]
As you can see, the blue (Brian) and dashed red (analytic solution)
lines coincide.

In this example, we used the object StateMonitor object. This is
used to record the values of a neuron variable while the simulation
runs. The first two arguments are the group to record from, and the
variable you want to record from. We also specify record=0. This
means that we record all values for neuron 0. We have to specify which
neurons we want to record because in large simulations with many neurons
it usually uses up too much RAM to record the values of all neurons.

Now try modifying the equations and parameters and see what happens in
the cell below.

start_scope()

tau = 10*ms
eqs = '''
dv/dt = (sin(2*pi*100*Hz*t)-v)/tau : 1
'''

Change to Euler method because exact integrator doesn't work here
G = NeuronGroup(1, eqs, method='euler')
M = StateMonitor(G, 'v', record=0)

G.v = 5 # initial value

run(60*ms)

plot(M.t/ms, M.v[0])
xlabel('Time (ms)')
ylabel('v');

[image: ../../_images/1-intro-to-brian-neurons_image_34_0.png]

Adding spikes

So far we haven’t done anything neuronal, just played around with
differential equations. Now let’s start adding spiking behaviour.

start_scope()

tau = 10*ms
eqs = '''
dv/dt = (1-v)/tau : 1
'''

G = NeuronGroup(1, eqs, threshold='v>0.8', reset='v = 0', method='linear')

M = StateMonitor(G, 'v', record=0)
run(50*ms)
plot(M.t/ms, M.v[0])
xlabel('Time (ms)')
ylabel('v');

[image: ../../_images/1-intro-to-brian-neurons_image_36_0.png]
We’ve added two new keywords to the NeuronGroup declaration:
threshold='v>0.8' and reset='v = 0'. What this means is that
when v>1 we fire a spike, and immediately reset v = 0 after the
spike. We can put any expression and series of statements as these
strings.

As you can see, at the beginning the behaviour is the same as before
until v crosses the threshold v>0.8 at which point you see it
reset to 0. You can’t see it in this figure, but internally Brian has
registered this event as a spike. Let’s have a look at that.

start_scope()

G = NeuronGroup(1, eqs, threshold='v>0.8', reset='v = 0', method='linear')

spikemon = SpikeMonitor(G)

run(50*ms)

print('Spike times: %s' % spikemon.t[:])

Spike times: [16. 32.1 48.2] ms

The SpikeMonitor object takes the group whose spikes you want to
record as its argument and stores the spike times in the variable t.
Let’s plot those spikes on top of the other figure to see that it’s
getting it right.

start_scope()

G = NeuronGroup(1, eqs, threshold='v>0.8', reset='v = 0', method='linear')

statemon = StateMonitor(G, 'v', record=0)
spikemon = SpikeMonitor(G)

run(50*ms)

plot(statemon.t/ms, statemon.v[0])
for t in spikemon.t:
 axvline(t/ms, ls='--', c='r', lw=3)
xlabel('Time (ms)')
ylabel('v');

[image: ../../_images/1-intro-to-brian-neurons_image_40_0.png]
Here we’ve used the axvline command from matplotlib to draw a
red, dashed vertical line at the time of each spike recorded by the
SpikeMonitor.

Now try changing the strings for threshold and reset in the cell
above to see what happens.

Refractoriness

A common feature of neuron models is refractoriness. This means that
after the neuron fires a spike it becomes refractory for a certain
duration and cannot fire another spike until this period is over. Here’s
how we do that in Brian.

start_scope()

tau = 10*ms
eqs = '''
dv/dt = (1-v)/tau : 1 (unless refractory)
'''

G = NeuronGroup(1, eqs, threshold='v>0.8', reset='v = 0', refractory=5*ms, method='linear')

statemon = StateMonitor(G, 'v', record=0)
spikemon = SpikeMonitor(G)

run(50*ms)

plot(statemon.t/ms, statemon.v[0])
for t in spikemon.t:
 axvline(t/ms, ls='--', c='r', lw=3)
xlabel('Time (ms)')
ylabel('v');

[image: ../../_images/1-intro-to-brian-neurons_image_43_0.png]
As you can see in this figure, after the first spike, v stays at 0
for around 5 ms before it resumes its normal behaviour. To do this,
we’ve done two things. Firstly, we’ve added the keyword
refractory=5*ms to the NeuronGroup declaration. On its own, this
only means that the neuron cannot spike in this period (see below), but
doesn’t change how v behaves. In order to make v stay constant
during the refractory period, we have to add (unless refractory) to
the end of the definition of v in the differential equations. What
this means is that the differential equation determines the behaviour of
v unless it’s refractory in which case it is switched off.

Here’s what would happen if we didn’t include (unless refractory).
Note that we’ve also decreased the value of tau and increased the
length of the refractory period to make the behaviour clearer.

start_scope()

tau = 5*ms
eqs = '''
dv/dt = (1-v)/tau : 1
'''

G = NeuronGroup(1, eqs, threshold='v>0.8', reset='v = 0', refractory=15*ms, method='linear')

statemon = StateMonitor(G, 'v', record=0)
spikemon = SpikeMonitor(G)

run(50*ms)

plot(statemon.t/ms, statemon.v[0])
for t in spikemon.t:
 axvline(t/ms, ls='--', c='r', lw=3)
axhline(0.8, ls=':', c='g', lw=3)
xlabel('Time (ms)')
ylabel('v')
print("Spike times: %s" % spikemon.t[:])

Spike times: [8. 23.1 38.2] ms

[image: ../../_images/1-intro-to-brian-neurons_image_45_1.png]
So what’s going on here? The behaviour for the first spike is the same:
v rises to 0.8 and then the neuron fires a spike at time 8 ms before
immediately resetting to 0. Since the refractory period is now 15 ms
this means that the neuron won’t be able to spike again until time 8 +
15 = 23 ms. Immediately after the first spike, the value of v now
instantly starts to rise because we didn’t specify
(unless refractory) in the definition of dv/dt. However, once it
reaches the value 0.8 (the dashed green line) at time roughly 8 ms it
doesn’t fire a spike even though the threshold is v>0.8. This is
because the neuron is still refractory until time 23 ms, at which point
it fires a spike.

Note that you can do more complicated and interesting things with
refractoriness. See the full documentation for more details about how it
works.

Multiple neurons

So far we’ve only been working with a single neuron. Let’s do something
interesting with multiple neurons.

start_scope()

N = 100
tau = 10*ms
eqs = '''
dv/dt = (2-v)/tau : 1
'''

G = NeuronGroup(N, eqs, threshold='v>1', reset='v=0', method='linear')
G.v = 'rand()'

spikemon = SpikeMonitor(G)

run(50*ms)

plot(spikemon.t/ms, spikemon.i, '.k')
xlabel('Time (ms)')
ylabel('Neuron index');

[image: ../../_images/1-intro-to-brian-neurons_image_48_0.png]
This shows a few changes. Firstly, we’ve got a new variable N
determining the number of neurons. Secondly, we added the statement
G.v = 'rand()' before the run. What this does is initialise each
neuron with a different uniform random value between 0 and 1. We’ve done
this just so each neuron will do something a bit different. The other
big change is how we plot the data in the end.

As well as the variable spikemon.t with the times of all the spikes,
we’ve also used the variable spikemon.i which gives the
corresponding neuron index for each spike, and plotted a single black
dot with time on the x-axis and neuron index on the y-value. This is the
standard “raster plot” used in neuroscience.

Parameters

To make these multiple neurons do something more interesting, let’s
introduce per-neuron parameters that don’t have a differential equation
attached to them.

start_scope()

N = 100
tau = 10*ms
v0_max = 3.
duration = 1000*ms

eqs = '''
dv/dt = (v0-v)/tau : 1 (unless refractory)
v0 : 1
'''

G = NeuronGroup(N, eqs, threshold='v>1', reset='v=0', refractory=5*ms, method='linear')
M = SpikeMonitor(G)

G.v0 = 'i*v0_max/(N-1)'

run(duration)

figure(figsize=(12,4))
subplot(121)
plot(M.t/ms, M.i, '.k')
xlabel('Time (ms)')
ylabel('Neuron index')
subplot(122)
plot(G.v0, M.count/duration)
xlabel('v0')
ylabel('Firing rate (sp/s)');

[image: ../../_images/1-intro-to-brian-neurons_image_51_0.png]
The line v0 : 1 declares a new per-neuron parameter v0 with
units 1 (i.e. dimensionless).

The line G.v0 = 'i*v0_max/(N-1)' initialises the value of v0 for
each neuron varying from 0 up to v0_max. The symbol i when it
appears in strings like this refers to the neuron index.

So in this example, we’re driving the neuron towards the value v0
exponentially, but we fire spikes when v crosses v>1 it fires a
spike and resets. The effect is that the rate at which it fires spikes
will be related to the value of v0. For v0<1 it will never fire
a spike, and as v0 gets larger it will fire spikes at a higher rate.
The right hand plot shows the firing rate as a function of the value of
v0. This is the I-f curve of this neuron model.

Note that in the plot we’ve used the count variable of the
SpikeMonitor: this is an array of the number of spikes each neuron
in the group fired. Dividing this by the duration of the run gives the
firing rate.

Stochastic neurons

Often when making models of neurons, we include a random element to
model the effect of various forms of neural noise. In Brian, we can do
this by using the symbol xi in differential equations. Strictly
speaking, this symbol is a “stochastic differential” but you can sort of
thinking of it as just a Gaussian random variable with mean 0 and
standard deviation 1. We do have to take into account the way stochastic
differentials scale with time, which is why we multiply it by
tau**-0.5 in the equations below (see a textbook on stochastic
differential equations for more details).

start_scope()

N = 100
tau = 10*ms
v0_max = 3.
duration = 1000*ms
sigma = 0.2

eqs = '''
dv/dt = (v0-v)/tau+sigma*xi*tau**-0.5 : 1 (unless refractory)
v0 : 1
'''

G = NeuronGroup(N, eqs, threshold='v>1', reset='v=0', refractory=5*ms, method='euler')
M = SpikeMonitor(G)

G.v0 = 'i*v0_max/(N-1)'

run(duration)

figure(figsize=(12,4))
subplot(121)
plot(M.t/ms, M.i, '.k')
xlabel('Time (ms)')
ylabel('Neuron index')
subplot(122)
plot(G.v0, M.count/duration)
xlabel('v0')
ylabel('Firing rate (sp/s)');

[image: ../../_images/1-intro-to-brian-neurons_image_54_0.png]
That’s the same figure as in the previous section but with some noise
added. Note how the curve has changed shape: instead of a sharp jump
from firing at rate 0 to firing at a positive rate, it now increases in
a sigmoidal fashion. This is because no matter how small the driving
force the randomness may cause it to fire a spike.

End of tutorial

That’s the end of this part of the tutorial. The cell below has another
example. See if you can work out what it is doing and why. Try adding a
StateMonitor to record the values of the variables for one of the
neurons to help you understand it.

You could also try out the things you’ve learned in this cell.

Once you’re done with that you can move on to the next tutorial on
Synapses.

start_scope()

N = 1000
tau = 10*ms
vr = -70*mV
vt0 = -50*mV
delta_vt0 = 5*mV
tau_t = 100*ms
sigma = 0.5*(vt0-vr)
v_drive = 2*(vt0-vr)
duration = 100*ms

eqs = '''
dv/dt = (v_drive+vr-v)/tau + sigma*xi*tau**-0.5 : volt
dvt/dt = (vt0-vt)/tau_t : volt
'''

reset = '''
v = vr
vt += delta_vt0
'''

G = NeuronGroup(N, eqs, threshold='v>vt', reset=reset, refractory=5*ms, method='euler')
spikemon = SpikeMonitor(G)

G.v = 'rand()*(vt0-vr)+vr'
G.vt = vt0

run(duration)

_ = hist(spikemon.t/ms, 100, histtype='stepfilled', facecolor='k', weights=ones(len(spikemon))/(N*defaultclock.dt))
xlabel('Time (ms)')
ylabel('Instantaneous firing rate (sp/s)');

[image: ../../_images/1-intro-to-brian-neurons_image_57_0.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Tutorials »

Introduction to Brian part 2: Synapses

Note

This tutorial is a static non-editable version. You can launch an
interactive, editable version without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/tutorials/2-intro-to-brian-synapses.ipynb]

Alternatively, you can download a copy of the notebook file
to use locally: 2-intro-to-brian-synapses.ipynb

See the tutorial overview page for more details.

If you haven’t yet read part 1: Neurons, go read that now.

As before we start by importing the Brian package and setting up
matplotlib for IPython:

from brian2 import *
%matplotlib inline

The simplest Synapse

Once you have some neurons, the next step is to connect them up via
synapses. We’ll start out with doing the simplest possible type of
synapse that causes an instantaneous change in a variable after a spike.

start_scope()

eqs = '''
dv/dt = (I-v)/tau : 1
I : 1
tau : second
'''
G = NeuronGroup(2, eqs, threshold='v>1', reset='v = 0', method='linear')
G.I = [2, 0]
G.tau = [10, 100]*ms

Comment these two lines out to see what happens without Synapses
S = Synapses(G, G, on_pre='v_post += 0.2')
S.connect(i=0, j=1)

M = StateMonitor(G, 'v', record=True)

run(100*ms)

plot(M.t/ms, M.v[0], '-b', label='Neuron 0')
plot(M.t/ms, M.v[1], '-g', lw=2, label='Neuron 1')
xlabel('Time (ms)')
ylabel('v')
legend(loc='best');

[image: ../../_images/2-intro-to-brian-synapses_image_5_0.png]
There are a few things going on here. First of all, let’s recap what is
going on with the NeuronGroup. We’ve created two neurons, each of
which has the same differential equation but different values for
parameters I and tau. Neuron 0 has I=2 and tau=10*ms which means
that is driven to repeatedly spike at a fairly high rate. Neuron 1 has
I=0 and tau=100*ms which means that on its own - without the
synapses - it won’t spike at all (the driving current I is 0). You can
prove this to yourself by commenting out the two lines that define the
synapse.

Next we define the synapses: Synapses(source, target, ...) means
that we are defining a synaptic model that goes from source to
target. In this case, the source and target are both the same, the
group G. The syntax on_pre='v_post += 0.2' means that when a
spike occurs in the presynaptic neuron (hence on_pre) it causes an
instantaneous change to happen v_post += 0.2. The _post means
that the value of v referred to is the post-synaptic value, and it
is increased by 0.2. So in total, what this model says is that whenever
two neurons in G are connected by a synapse, when the source neuron
fires a spike the target neuron will have its value of v increased
by 0.2.

However, at this point we have only defined the synapse model, we
haven’t actually created any synapses. The next line
S.connect(i=0, j=1) creates a synapse from neuron 0 to neuron 1.

Adding a weight

In the previous section, we hard coded the weight of the synapse to be
the value 0.2, but often we would to allow this to be different for
different synapses. We do that by introducing synapse equations.

start_scope()

eqs = '''
dv/dt = (I-v)/tau : 1
I : 1
tau : second
'''
G = NeuronGroup(3, eqs, threshold='v>1', reset='v = 0', method='linear')
G.I = [2, 0, 0]
G.tau = [10, 100, 100]*ms

Comment these two lines out to see what happens without Synapses
S = Synapses(G, G, 'w : 1', on_pre='v_post += w')
S.connect(i=0, j=[1, 2])
S.w = 'j*0.2'

M = StateMonitor(G, 'v', record=True)

run(50*ms)

plot(M.t/ms, M.v[0], '-b', label='Neuron 0')
plot(M.t/ms, M.v[1], '-g', lw=2, label='Neuron 1')
plot(M.t/ms, M.v[2], '-r', lw=2, label='Neuron 1')
xlabel('Time (ms)')
ylabel('v')
legend(loc='best');

[image: ../../_images/2-intro-to-brian-synapses_image_8_0.png]
This example behaves very similarly to the previous example, but now
there’s a synaptic weight variable w. The string 'w : 1' is an
equation string, precisely the same as for neurons, that defines a
single dimensionless parameter w. We changed the behaviour on a
spike to on_pre='v_post += w' now, so that each synapse can behave
differently depending on the value of w. To illustrate this, we’ve
made a third neuron which behaves precisely the same as the second
neuron, and connected neuron 0 to both neurons 1 and 2. We’ve also set
the weights via S.w = 'j*0.2'. When i and j occur in the
context of synapses, i refers to the source neuron index, and j
to the target neuron index. So this will give a synaptic connection from
0 to 1 with weight 0.2=0.2*1 and from 0 to 2 with weight
0.4=0.2*2.

Introducing a delay

So far, the synapses have been instantaneous, but we can also make them
act with a certain delay.

start_scope()

eqs = '''
dv/dt = (I-v)/tau : 1
I : 1
tau : second
'''
G = NeuronGroup(3, eqs, threshold='v>1', reset='v = 0', method='linear')
G.I = [2, 0, 0]
G.tau = [10, 100, 100]*ms

S = Synapses(G, G, 'w : 1', on_pre='v_post += w')
S.connect(i=0, j=[1, 2])
S.w = 'j*0.2'
S.delay = 'j*2*ms'

M = StateMonitor(G, 'v', record=True)

run(50*ms)

plot(M.t/ms, M.v[0], '-b', label='Neuron 0')
plot(M.t/ms, M.v[1], '-g', lw=2, label='Neuron 1')
plot(M.t/ms, M.v[2], '-r', lw=2, label='Neuron 1')
xlabel('Time (ms)')
ylabel('v')
legend(loc='best');

[image: ../../_images/2-intro-to-brian-synapses_image_11_0.png]
As you can see, that’s as simple as adding a line S.delay = 'j*2*ms'
so that the synapse from 0 to 1 has a delay of 2 ms, and from 0 to 2 has
a delay of 4 ms.

More complex connectivity

So far, we specified the synaptic connectivity explicitly, but for
larger networks this isn’t usually possible. For that, we usually want
to specify some condition.

start_scope()

N = 10
G = NeuronGroup(N, 'v:1')
S = Synapses(G, G)
S.connect(condition='i!=j', p=0.2)

Here we’ve created a dummy neuron group of N neurons and a dummy
synapses model that doens’t actually do anything just to demonstrate the
connectivity. The line S.connect(condition='i!=j', p=0.2) will
connect all pairs of neurons i and j with probability 0.2 as
long as the condition i!=j holds. So, how can we see that
connectivity? Here’s a little function that will let us visualise it.

def visualise_connectivity(S):
 Ns = len(S.source)
 Nt = len(S.target)
 figure(figsize=(10, 4))
 subplot(121)
 plot(zeros(Ns), arange(Ns), 'ok', ms=10)
 plot(ones(Nt), arange(Nt), 'ok', ms=10)
 for i, j in zip(S.i, S.j):
 plot([0, 1], [i, j], '-k')
 xticks([0, 1], ['Source', 'Target'])
 ylabel('Neuron index')
 xlim(-0.1, 1.1)
 ylim(-1, max(Ns, Nt))
 subplot(122)
 plot(S.i, S.j, 'ok')
 xlim(-1, Ns)
 ylim(-1, Nt)
 xlabel('Source neuron index')
 ylabel('Target neuron index')

visualise_connectivity(S)

[image: ../../_images/2-intro-to-brian-synapses_image_16_0.png]
There are two plots here. On the left hand side, you see a vertical line
of circles indicating source neurons on the left, and a vertical line
indicating target neurons on the right, and a line between two neurons
that have a synapse. On the right hand side is another way of
visualising the same thing. Here each black dot is a synapse, with x
value the source neuron index, and y value the target neuron index.

Let’s see how these figures change as we change the probability of a
connection:

start_scope()

N = 10
G = NeuronGroup(N, 'v:1')

for p in [0.1, 0.5, 1.0]:
 S = Synapses(G, G)
 S.connect(condition='i!=j', p=p)
 visualise_connectivity(S)
 suptitle('p = '+str(p))

[image: ../../_images/2-intro-to-brian-synapses_image_18_0.png]
[image: ../../_images/2-intro-to-brian-synapses_image_18_1.png]
[image: ../../_images/2-intro-to-brian-synapses_image_18_2.png]
And let’s see what another connectivity condition looks like. This one
will only connect neighbouring neurons.

start_scope()

N = 10
G = NeuronGroup(N, 'v:1')

S = Synapses(G, G)
S.connect(condition='abs(i-j)<4 and i!=j')
visualise_connectivity(S)

[image: ../../_images/2-intro-to-brian-synapses_image_20_0.png]
Try using that cell to see how other connectivity conditions look like.

You can also use the generator syntax to create connections like this
more efficiently. In small examples like this, it doesn’t matter, but
for large numbers of neurons it can be much more efficient to specify
directly which neurons should be connected than to specify just a
condition.

start_scope()

N = 10
G = NeuronGroup(N, 'v:1')

S = Synapses(G, G)
S.connect(j='k for k in range(clip(i-3, 0, N_post), clip(i+4, 0, N_post)) if i!=k')
visualise_connectivity(S)

[image: ../../_images/2-intro-to-brian-synapses_image_23_0.png]
If each source neuron is connected to precisely one target neuron, there
is a special syntax that is extremely efficient. For example, 1-to-1
connectivity looks like this:

start_scope()

N = 10
G = NeuronGroup(N, 'v:1')

S = Synapses(G, G)
S.connect(j='i')
visualise_connectivity(S)

[image: ../../_images/2-intro-to-brian-synapses_image_25_0.png]
You can also do things like specifying the value of weights with a
string. Let’s see an example where we assign each neuron a spatial
location and have a distance-dependent connectivity function. We
visualise the weight of a synapse by the size of the marker.

start_scope()

N = 30
neuron_spacing = 50*umetre
width = N/4.0*neuron_spacing

Neuron has one variable x, its position
G = NeuronGroup(N, 'x : metre')
G.x = 'i*neuron_spacing'

All synapses are connected (excluding self-connections)
S = Synapses(G, G, 'w : 1')
S.connect(condition='i!=j')
Weight varies with distance
S.w = 'exp(-(x_pre-x_post)**2/(2*width**2))'

scatter(G.x[S.i]/um, G.x[S.j]/um, S.w*20)
xlabel('Source neuron position (um)')
ylabel('Target neuron position (um)');

[image: ../../_images/2-intro-to-brian-synapses_image_27_0.png]
Now try changing that function and seeing how the plot changes.

More complex synapse models: STDP

Brian’s synapse framework is very general and can do things like
short-term plasticity (STP) or spike-timing dependent plasticity (STDP).
Let’s see how that works for STDP.

STDP is normally defined by an equation something like this:

\[\Delta w = \sum_{t_{pre}} \sum_{t_{post}} W(t_{post}-t_{pre})\]

That is, the change in synaptic weight w is the sum over all presynaptic
spike times \(t_{pre}\) and postsynaptic spike times
\(t_{post}\) of some function \(W\) of the difference in these
spike times. A commonly used function \(W\) is:

\[\begin{split}W(\Delta t) = \begin{cases}
A_{pre} e^{-\Delta t/\tau_{pre}} & \Delta t>0 \\
A_{post}- e^{\Delta t/\tau_{pre}} & \Delta t<0
\end{cases}\end{split}\]

This function looks like this:

tau_pre = tau_post = 20*ms
A_pre = 0.01
A_post = -A_pre*1.05
delta_t = linspace(-50, 50, 100)*ms
W = where(delta_t<0, A_pre*exp(delta_t/tau_pre), A_post*exp(-delta_t/tau_post))
plot(delta_t/ms, W)
xlabel(r'Δt (ms)')
ylabel('W')
ylim(-A_post, A_post)
axhline(0, ls='-', c='k');

[image: ../../_images/2-intro-to-brian-synapses_image_29_0.png]
Simulating it directly using this equation though would be very
inefficient, because we would have to sum over all pairs of spikes. That
would also be physiologically unrealistic because the neuron cannot
remember all its previous spike times. It turns out there is a more
efficient and physiologically more plausible way to get the same effect.

We define two new variables \(a_{pre}\) and \(a_{post}\) which
are “traces” of pre- and post-synaptic activity, governed by the
differential equations:

\[\begin{split}\begin{eqnarray}
\tau_{pre}\frac{\mathrm{d}}{\mathrm{d}t} a_{pre} &=& -a_{pre}\\
\tau_{post}\frac{\mathrm{d}}{\mathrm{d}t} a_{post} &=& -a_{post}\\
\end{eqnarray}\end{split}\]

When a presynaptic spike occurs, the presynaptic trace is updated and
the weight is modified according to the rule:

\[\begin{split}\begin{eqnarray}
a_{pre} &\rightarrow& a_{pre}+A_{pre}\\
w &\rightarrow& w+a_{post}
\end{eqnarray}\end{split}\]

When a postsynaptic spike occurs:

\[\begin{split}\begin{eqnarray}
a_{post} &\rightarrow& a_{post}+A_{post}\\
w &\rightarrow& w+a_{pre}
\end{eqnarray}\end{split}\]

To see that this formulation is equivalent, you just have to check that
the equations sum linearly, and consider two cases: what happens if the
presynaptic spike occurs before the postsynaptic spike, and vice versa.
Try drawing a picture of it.

Now that we have a formulation that relies only on differential
equations and spike events, we can turn that into Brian code.

start_scope()

taupre = taupost = 20*ms
wmax = 0.01
Apre = 0.01
Apost = -Apre*taupre/taupost*1.05

G = NeuronGroup(1, 'v:1', threshold='v>1')

S = Synapses(G, G,
 '''
 w : 1
 dapre/dt = -apre/taupre : 1 (event-driven)
 dapost/dt = -apost/taupost : 1 (event-driven)
 ''',
 on_pre='''
 v_post += w
 apre += Apre
 w = clip(w+apost, 0, wmax)
 ''',
 on_post='''
 apost += Apost
 w = clip(w+apre, 0, wmax)
 ''')

There are a few things to see there. Firstly, when defining the synapses
we’ve given a more complicated multi-line string defining three synaptic
variables (w, apre and apost). We’ve also got a new bit of
syntax there, (event-driven) after the definitions of apre and
apost. What this means is that although these two variables evolve
continuously over time, Brian should only update them at the time of an
event (a spike). This is because we don’t need the values of apre
and apost except at spike times, and it is more efficient to only
update them when needed.

Next we have a on_pre=... argument. The first line is
v_post += w: this is the line that actually applies the synaptic
weight to the target neuron. The second line is apre += Apre which
encodes the rule above. In the third line, we’re also encoding the rule
above but we’ve added one extra feature: we’ve clamped the synaptic
weights between a minimum of 0 and a maximum of wmax so that the
weights can’t get too large or negative. The function
clip(x, low, high) does this.

Finally, we have a on_post=... argument. This gives the statements
to calculate when a post-synaptic neuron fires. Note that we do not
modify v in this case, only the synaptic variables.

Now let’s see how all the variables behave when a presynaptic spike
arrives some time before a postsynaptic spike.

start_scope()

taupre = taupost = 20*ms
wmax = 0.01
Apre = 0.01
Apost = -Apre*taupre/taupost*1.05

G = NeuronGroup(2, 'v:1', threshold='t>(1+i)*10*ms', refractory=100*ms)

S = Synapses(G, G,
 '''
 w : 1
 dapre/dt = -apre/taupre : 1 (clock-driven)
 dapost/dt = -apost/taupost : 1 (clock-driven)
 ''',
 on_pre='''
 v_post += w
 apre += Apre
 w = clip(w+apost, 0, wmax)
 ''',
 on_post='''
 apost += Apost
 w = clip(w+apre, 0, wmax)
 ''', method='linear')
S.connect(i=0, j=1)
M = StateMonitor(S, ['w', 'apre', 'apost'], record=True)

run(30*ms)

figure(figsize=(4, 8))
subplot(211)
plot(M.t/ms, M.apre[0], label='apre')
plot(M.t/ms, M.apost[0], label='apost')
legend(loc='best')
subplot(212)
plot(M.t/ms, M.w[0], label='w')
legend(loc='best')
xlabel('Time (ms)');

[image: ../../_images/2-intro-to-brian-synapses_image_33_0.png]
A couple of things to note here. First of all, we’ve used a trick to
make neuron 0 fire a spike at time 10 ms, and neuron 1 at time 20 ms.
Can you see how that works?

Secondly, we’ve replaced the (event-driven) by (clock-driven) so
you can see how apre and apost evolve over time. Try reverting
this change and see what happens.

Try changing the times of the spikes to see what happens.

Finally, let’s verify that this formulation is equivalent to the
original one.

start_scope()

taupre = taupost = 20*ms
Apre = 0.01
Apost = -Apre*taupre/taupost*1.05
tmax = 50*ms
N = 100

Presynaptic neurons G spike at times from 0 to tmax
Postsynaptic neurons G spike at times from tmax to 0
So difference in spike times will vary from -tmax to +tmax
G = NeuronGroup(N, 'tspike:second', threshold='t>tspike', refractory=100*ms)
H = NeuronGroup(N, 'tspike:second', threshold='t>tspike', refractory=100*ms)
G.tspike = 'i*tmax/(N-1)'
H.tspike = '(N-1-i)*tmax/(N-1)'

S = Synapses(G, H,
 '''
 w : 1
 dapre/dt = -apre/taupre : 1 (event-driven)
 dapost/dt = -apost/taupost : 1 (event-driven)
 ''',
 on_pre='''
 apre += Apre
 w = w+apost
 ''',
 on_post='''
 apost += Apost
 w = w+apre
 ''')
S.connect(j='i')

run(tmax+1*ms)

plot((H.tspike-G.tspike)/ms, S.w)
xlabel(r'Δt (ms)')
ylabel(r'Δw')
ylim(-Apost, Apost)
axhline(0, ls='-', c='k');

[image: ../../_images/2-intro-to-brian-synapses_image_35_0.png]
Can you see how this works?

End of tutorial

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

User’s guide

	Importing Brian
	Precise control over importing

	Dependency checks

	Physical units
	Using units

	Removing units

	Importing units

	In-place operations on quantities

	Models and neuron groups
	Model equations

	Noise

	Threshold and reset

	Refractoriness

	State variables

	Subgroups

	Shared variables

	Storing state variables

	Linked variables

	Time scaling of noise

	Numerical integration
	Method choice

	Technical notes

	Equations
	Equation strings

	External variables and functions

	Flags

	List of special symbols

	Event-driven equations

	Equation objects

	Examples of Equation objects

	Refractoriness
	Defining the refractory period

	Defining model behaviour during refractoriness

	Arbitrary refractoriness

	Synapses
	Defining synaptic models

	Creating synapses

	Accessing synaptic variables

	Delays

	Monitoring synaptic variables

	Creating synapses with the generator syntax

	Summed variables

	Creating multi-synapses

	Multiple pathways

	Numerical integration

	Technical notes

	Input stimuli
	Poisson input

	Spike generation

	Explicit equations

	Timed arrays

	Regular operations

	Poisson inputs

	Arbitrary Python code (network operations)

	Recording during a simulation
	Recording spikes

	Recording variables at spike time

	Recording variables continuously

	Recording population rates

	Getting all data

	Running a simulation
	Magic networks

	Setting the simulation time step

	Progress reporting

	Continuing/repeating simulations

	Multiple magic runs

	Changing the simulation time step

	Profiling

	Scheduling

	Store/restore

	Multicompartment models
	Creating a neuron morphology

	Creating a spatially extended neuron

	Computational methods and efficiency
	Runtime code generation

	Standalone code generation

	Compiler settings

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	User’s guide »

Importing Brian

After installation, Brian is available in the brian2 package. By doing a
wildcard import from this package, i.e.:

from brian2 import *

you will not only get access to the brian2 classes and functions, but also
to everything in the pylab package, which includes the plotting functions
from matplotlib [http://matplotlib.org/] and everything included in numpy/scipy (e.g. functions such
as arange, linspace, etc.).

The following topics are not essential for beginners.

Precise control over importing

If you want to use a wildcard import from Brian, but don’t want to import all
the additional symbols provided by pylab, you can use:

from brian2.only import *

Note that whenever you use something different from the most general
from brian2 import * statement, you should be aware that Brian overwrites
some numpy functions with their unit-aware equivalents
(see Units). If you combine multiple wildcard imports, the
Brian import should therefore be the last import. Similarly, you should not
import and call overwritten numpy functions directly, e.g. by using
import numpy as np followed by np.sin since this will not use the
unit-aware versions. To make this easier, Brian provides a brian2.numpy_
package that provides access to everything in numpy but overwrites certain
functions. If you prefer to use prefixed names, the recommended way of doing
the imports is therefore:

import brian2.numpy_ as np
import brian2.only as br2

Note that it is safe to use e.g. np.sin and numpy.sin after a
from brian2 import *.

Dependency checks

Brian will check the dependency versions during import and raise an error for
an outdated dependency. An outdated dependency does not necessarily mean that
Brian cannot be run with it, it only means that Brian is untested on that
version. If you want to force Brian to run despite the outdated dependency, set
the core.outdated_dependency_error preference to False. Note that this
cannot be done in a script, since you do not have access to the preferences
before importing brian2. See Preferences for instructions
how to set preferences in a file.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	User’s guide »

Physical units

	Using units

	Removing units

	Importing units

	In-place operations on quantities

Brian includes a system for defining physical units. These are defined by
their standard SI unit names: amp,
kilogram, second, metre/meter, mole and the derived units coulomb, farad,
gram/gramme, hertz, joule, pascal, ohm, siemens, volt, watt, together with
prefixed versions (e.g. msiemens = 0.001*siemens) using the prefixes
p, n, u, m, k, M, G, T (two exceptions: kilogram is not imported with any
prefixes, metre and meter are additionaly defined with the “centi” prefix,
i.e. cmetre/cmeter). In addition a couple of useful standard abbreviations like
“cm” (instead of cmetre/cmeter), “nS” (instead of nsiemens),
“ms” (instead of msecond), “Hz” (instead of hertz), etc. are included.

Using units

You can generate a physical quantity by multiplying a scalar or vector value
with its physical unit:

>>> tau = 20*ms
>>> print tau
20. ms
>>> rates = [10, 20, 30] * Hz
>>> print rates
[10. 20. 30.] Hz

Brian will check the consistency of operations on units and raise an error for
dimensionality mismatches:

>>> tau += 1 # ms? second?
Traceback (most recent call last):
...
DimensionMismatchError: Cannot calculate ... += 1, units do not match (units are second and 1).
>>> 3*kgram + 3*amp
Traceback (most recent call last):
...
DimensionMismatchError: Cannot calculate 3. kg + 3. A, units do not match (units are kgramme and amp).

Most Brian functions will also complain about non-specified or incorrect units:

>>> G = NeuronGroup(10, 'dv/dt = -v/tau: volt', dt=0.5)
Traceback (most recent call last):
...
DimensionMismatchError: Function "__init__" expected a quantitity with unit second for argument "dt" but got 0.5 (unit is 1).

Numpy functions have been overwritten to correctly work with units (see the
developer documentation for more details):

>>> print mean(rates)
20. Hz
>>> print rates.repeat(2)
[10. 10. 20. 20. 30. 30.] Hz

Removing units

There are various options to remove the units from a value (e.g. to use it with
analysis functions that do not correctly work with units)

	Divide the value by its unit (most of the time the recommended option
because it is clear about the scale)

	Transform it to a pure numpy array in the base unit by calling asarray()
(no copy) or array (copy)

	Directly get the unitless value of a state variable by appending an underscore
to the name

>>> tau/ms
20.0
>> asarray(rates)
array([10., 20., 30.])
>>> G = NeuronGroup(5, 'dv/dt = -v/tau: volt')
>>> print G.v_[:]
[0., 0., 0., 0., 0.]

The following topics are not essential for beginners.

Importing units

Brian generates standard names for units, combining the unit name (e.g.
“siemens”) with a prefixes (e.g. “m”), and also generates squared and cubed
versions by appending a number. For example, the units “msiemens”, “siemens2”,
“usiemens3” are all predefined. You can import these units from the package
brian2.units.allunits – accordingly, an
from brian2.units.allunits import * will result in everything from
Ylumen3 (cubed yotta lumen) to ymol (yocto mole) being imported.

A better choice is normally to do from brian2.units import * or import
everything from brian2 import *, this imports only the base units amp,
kilogram, second, metre/meter, mole and the derived units coulomb, farad,
gram/gramme, hertz, joule, pascal, ohm, siemens, volt, watt, together with the
prefixes p, n, u, m, k, M, G, T (two exceptions: kilogram is not imported with
any prefixes, metre and meter are additionaly defined with the “centi” prefix,
i.e. cmetre/cmeter).

In addition a couple of useful standard abbreviations like
“cm” (instead of cmetre/cmeter), “nS” (instead of nsiemens),
“ms” (instead of msecond), “Hz” (instead of hertz), etc. are added (they can
be individually imported from brian2.units.stdunits).

In-place operations on quantities

In-place operations on quantity arrays change the underlying array, in the
same way as for standard numpy arrays. This means, that any other variables
referencing the same object will be affected as well:

>>> q = [1, 2] * mV
>>> r = q
>>> q += 1*mV
>>> q
array([2., 3.]) * mvolt
>>> r
array([2., 3.]) * mvolt

In contrast, scalar quantities will never change the underlying value but
instead return a new value (in the same way as standard Python scalars):

>>> x = 1*mV
>>> y = x
>>> x *= 2
>>> x
2. * mvolt
>>> y
1. * mvolt

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	User’s guide »

Models and neuron groups

For Brian 1 users

See the document Neural models (Brian 1 –> 2 conversion) for details how
to convert Brian 1 code.

	Model equations

	Noise

	Threshold and reset

	Refractoriness

	State variables

	Subgroups

	Shared variables

	Storing state variables

	Linked variables

	Time scaling of noise

Model equations

The core of every simulation is a NeuronGroup, a group of neurons that share
the same equations defining their properties. The minimum NeuronGroup
specification contains the number of neurons and the model description in the
form of equations:

G = NeuronGroup(10, 'dv/dt = -v/(10*ms) : volt')

This defines a group of 10 leaky integrators. The model description can be
directly given as a (possibly multi-line) string as above, or as an
Equations object. For more details on the form of equations, see
Equations. Note that model descriptions can make reference to physical
units, but also to scalar variables declared outside of the model description
itself:

tau = 10*ms
G = NeuronGroup(10, 'dv/dt = -v/tau : volt')

If a variable should be taken as a parameter of the neurons, i.e. if it
should be possible to vary its value across neurons, it has to be declared
as part of the model description:

G = NeuronGroup(10, '''dv/dt = -v/tau : volt
 tau : second''')

To make complex model descriptions more readable, named subexpressions can
be used:

G = NeuronGroup(10, '''dv/dt = I_leak / Cm : volt
 I_leak = g_L*(E_L - v) : amp''')

Noise

In addition to ordinary differential equations, Brian allows you to
introduce random noise by specifying a
stochastic differential equation [https://en.wikipedia.org/wiki/Stochastic_differential_equation].
Brian uses the physicists’ notation used in the
Langevin equation [https://en.wikipedia.org/wiki/Langevin_equation],
representing the “noise” as a term \(\xi(t)\), rather than the
mathematicians’ stochastic differential \(\mathrm{d}W_t\). The
following is an example of the
Ornstein-Uhlenbeck process [http://www.scholarpedia.org/article/Stochastic_dynamical_systems#Ornstein-Uhlenbeck_process]
that is often used to model a leaky integrate-and-fire neuron with
a stochastic current:

G = NeuronGroup(10, 'dv/dt = -v/tau + sigma*xi*tau**-0.5 : volt')

You can start by thinking of xi as just a Gaussian random variable
with mean 0 and standard deviation 1. However, it scales in an
unusual way with time and this gives it units of 1/sqrt(second).
You don’t necessarily need to understand why this is, but it is
possible to get a reasonably simple intuition for it by thinking
about numerical integration: see below.

Threshold and reset

To emit spikes, neurons need a threshold. Threshold and reset are given
as strings in the NeuronGroup constructor:

tau = 10*ms
G = NeuronGroup(10, 'dv/dt = -v/tau : volt', threshold='v > -50*mV',
 reset='v = -70*mV')

Whenever the threshold condition is fulfilled, the reset statements will be
executed. Again, both threshold and reset can refer to physical units,
external variables and parameters, in the same way as model descriptions:

v_r = -70*mV # reset potential
G = NeuronGroup(10, '''dv/dt = -v/tau : volt
 v_th : volt # neuron-specific threshold''',
 threshold='v > v_th', reset='v = v_r')

You can also create non-spike events. See Custom events
for more details.

Refractoriness

To make a neuron non-excitable for a certain time period after a spike, the
refractory keyword can be used:

G = NeuronGroup(10, 'dv/dt = -v/tau : volt', threshold='v > -50*mV',
 reset='v = -70*mV', refractory=5*ms)

This will not allow any threshold crossing for a neuron for 5ms after a spike.
The refractory keyword allows for more flexible refractoriness specifications,
see Refractoriness for details.

State variables

Differential equations and parameters in model descriptions are stored as
state variables of the NeuronGroup. They can be accessed and set as an
attribute of the group. To get the values without physical units (e.g. for
analysing data with external tools), use an underscore after the name:

>>> G = NeuronGroup(10, '''dv/dt = -v/tau : volt
... tau : second''')
>>> G.v = -70*mV
>>> G.v
<neurongroup.v: array([-70., -70., -70., -70., -70., -70., -70., -70., -70., -70.]) * mvolt>
>>> G.v_ # values without units
<neurongroup.v_: array([-0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07])>

The value of state variables can also be set using string expressions that can
refer to units and external variables, other state variables, mathematical
functions, and a special variable i, the index of the neuron:

>>> G.tau = '5*ms + (1.0*i/N)*5*ms'
>>> G.tau
<neurongroup.tau: array([5. , 5.5, 6. , 6.5, 7. , 7.5, 8. , 8.5, 9. , 9.5]) * msecond>

You can also set the value only if a condition holds, for example:

>>> G.v['tau>7.25*ms'] = -60*mV
>>> G.v
<neurongroup.v: array([-70., -70., -70., -70., -70., -60., -60., -60., -60., -60.]) * mvolt>

Subgroups

It is often useful to refer to a subset of neurons, this can be achieved using
Python’s slicing syntax:

G = NeuronGroup(10, '''dv/dt = -v/tau : volt
 tau : second''',
 threshold='v > -50*mV',
 reset='v = -70*mV')
Create subgroups
G1 = G[:5]
G2 = G[5:]

This will set the values in the main group, subgroups are just "views"
G1.tau = 10*ms
G2.tau = 20*ms

Here G1 refers to the first 5 neurons in G, and G2 to the second 5
neurons. In general G[i:j] refers to the neurons with indices from i
to j-1, as in general in Python.
Subgroups can be used in most places where regular groups are used, e.g. their
state variables or spiking activity can be recorded using monitors, they can be
connected via Synapses, etc. In such situations, indices (e.g. the indices of
the neurons to record from in a StateMonitor) are relative to the subgroup,
not to the main group

The following topics are not essential for beginners.

Shared variables

Sometimes it can also be useful to introduce shared variables or subexpressions,
i.e. variables that have a common value for all neurons. In contrast to
external variables (such as Cm above), such variables can change during a
run, e.g. by using run_regularly(). This can be
for example used for an external stimulus that changes in the course of a run:

G = NeuronGroup(10, '''shared_input : volt (shared)
 dv/dt = (-v + shared_input)/tau : volt
 tau : second''')

Note that there are several restrictions around the use of shared variables:
they cannot be written to in contexts where statements apply only to a subset
of neurons (e.g. reset statements, see below). If a code block mixes statements
writing to shared and vector variables, then the shared statements have to
come first.

By default, subexpressions are re-evaluated whenever they are used, i.e. using
a subexpression is completely equivalent to substituting it. Sometimes it is
useful to instead only evaluate a subexpression once and then use this value
for the rest of the time step. This can be achieved by using the
(constant over dt) flag. This flag is mandatory for subexpressions that
refer to stateful functions like rand() which notably allows them to be
recorded with a StateMonitor – otherwise the monitor would record a different
instance of the random number than the one that was used in the equations.

For shared variables, setting by string expressions can only refer to shared values:

>>> G.shared_input = '(4.0/N)*mV'
>>> G.shared_input
<neurongroup.shared_input: 0.4 * mvolt>

Storing state variables

Sometimes it can be convenient to access multiple state variables at once, e.g.
to set initial values from a dictionary of values or to store all the values of
a group on disk. This can be done with the
get_states() and
set_states() methods:

>>> group = NeuronGroup(5, '''dv/dt = -v/tau : 1
... tau : second''')
>>> initial_values = {'v': [0, 1, 2, 3, 4],
... 'tau': [10, 20, 10, 20, 10]*ms}
>>> group.set_states(initial_values)
>>> group.v[:]
array([0., 1., 2., 3., 4.])
>>> group.tau[:]
array([10., 20., 10., 20., 10.]) * msecond
>>> states = group.get_states()
>>> states['v']
array([0., 1., 2., 3., 4.])

The data (without physical units) can also be exported/imported to/from
Pandas [http://pandas.pydata.org/] data frames (needs an installation of pandas):

>>> df = group.get_states(units=False, format='pandas')
>>> df
 N dt i t tau v
0 5 0.0001 0 0.0 0.01 0.0
1 5 0.0001 1 0.0 0.02 1.0
2 5 0.0001 2 0.0 0.01 2.0
3 5 0.0001 3 0.0 0.02 3.0
4 5 0.0001 4 0.0 0.01 4.0
>>> df['tau']
0 0.01
1 0.02
2 0.01
3 0.02
4 0.01
Name: tau, dtype: float64
>>> df['tau'] *= 2
>>> group.set_states(df[['tau']], units=False, format='pandas')
>>> group.tau
<neurongroup.tau: array([20., 40., 20., 40., 20.]) * msecond>

Linked variables

A NeuronGroup can define parameters that are not stored in this group, but are
instead a reference to a state variable in another group. For this, a group
defines a parameter as linked and then uses linked_var() to
specify the linking. This can for example be useful to model shared noise
between cells:

inp = NeuronGroup(1, 'dnoise/dt = -noise/tau + tau**-0.5*xi : 1')

neurons = NeuronGroup(100, '''noise : 1 (linked)
 dv/dt = (-v + noise_strength*noise)/tau : volt''')
neurons.noise = linked_var(inp, 'noise')

If the two groups have the same size, the linking will be done in a 1-to-1
fashion. If the source group has the size one (as in the above example) or if
the source parameter is a shared variable, then the linking will be done as
1-to-all. In all other cases, you have to specify the indices to use for the
linking explicitly:

two inputs with different phases
inp = NeuronGroup(2, '''phase : 1
 dx/dt = 1*mV/ms*sin(2*pi*100*Hz*t-phase) : volt''')
inp.phase = [0, pi/2]

neurons = NeuronGroup(100, '''inp : volt (linked)
 dv/dt = (-v + inp) / tau : volt''')
Half of the cells get the first input, other half gets the second
neurons.inp = linked_var(inp, 'x', index=repeat([0, 1], 50))

Time scaling of noise

Suppose we just
had the differential equation

\(dx/dt=\xi\)

To solve this
numerically, we could compute

\(x(t+\mathrm{d}t)=x(t)+\xi_1\)

where \(\xi_1\) is a normally distributed random number
with mean 0 and standard deviation 1.
However, what happens if we change the time step? Suppose we used
a value of \(\mathrm{d}t/2\) instead of \(\mathrm{d}t\).
Now, we compute

\(x(t+\mathrm{d}t)=x(t+\mathrm{d}t/2)+\xi_1=x(t)+\xi_2+\xi_1\)

The mean value of \(x(t+\mathrm{d}t)\) is 0 in both cases,
but the standard deviations are different. The first method
\(x(t+\mathrm{d}t)=x(t)+\xi_1\) gives \(x(t+\mathrm{d}t)\)
a standard deviation of 1, whereas the second method
\(x(t+\mathrm{d}t)=x(t+\mathrm{d}/2)+\xi_1=x(t)+\xi_2+\xi_1\)
gives \(x(t)\) a variance of 1+1=2 and therefore a
standard deviation of \(\sqrt{2}\).

In order to solve this
problem, we use the rule
\(x(t+\mathrm{d}t)=x(t)+\sqrt{\mathrm{d}t}\xi_1\), which makes
the mean and standard deviation of the value at time \(t\)
independent of \(\mathrm{d}t\).
For this to make sense dimensionally, \(\xi\) must have
units of 1/sqrt(second).

For further details, refer to a textbook on stochastic
differential equations.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	User’s guide »

Numerical integration

By default, Brian
chooses an integration method automatically, trying to solve the equations
exactly first (for linear equations) and then resorting to numerical algorithms.
It will also take care of integrating stochastic differential equations
appropriately.

Note that in some cases, the automatic choice of integration method will not be
appropriate, because of a choice of parameters that couldn’t be determined in
advance. In this case, typically you will get nan (not a number) values in the
results, or large oscillations. In this case, Brian will generate a warning to
let you know, but will not raise an error.

Method choice

You will get an INFO message telling you which integration method Brian decided to use,
together with information about how much time it took to apply the integration method
to your equations. If other methods have been tried but were not applicable, you will
also see the time it took to try out those other methods. In some cases, checking
other methods (in particular the 'linear' method which attempts to solve the
equations analytically) can take a considerable amount of time – to avoid wasting
this time, you can always chose the integration method manually (see below). You
can also suppress the message by raising the log level or by explicitly suppressing
'method_choice' log messages – for details, see Logging.

If you prefer to chose an integration algorithm yourself, you can do so using
the method keyword for NeuronGroup, Synapses, or SpatialNeuron.
The complete list of available methods is the following:

	'linear': exact integration for linear equations

	'independent': exact integration for a system of independent equations,
where all the equations can be analytically solved independently

	'exponential_euler': exponential Euler integration for conditionally
linear equations

	'euler': forward Euler integration (for additive stochastic
differential equations using the Euler-Maruyama method)

	'rk2': second order Runge-Kutta method (midpoint method)

	'rk4': classical Runge-Kutta method (RK4)

	'heun': stochastic Heun method for solving Stratonovich stochastic
differential equations with non-diagonal multiplicative noise.

	'milstein': derivative-free Milstein method for solving stochastic
differential equations with diagonal multiplicative noise

The following topics are not essential for beginners.

Technical notes

Each class defines its own list of algorithms it tries to
apply, NeuronGroup and Synapses will use the first suitable method out of
the methods 'linear', 'euler' and 'heun' while SpatialNeuron
objects will use 'linear', 'exponential_euler', 'rk2' or 'heun'.

You can also define your own numerical integrators, see
State update for details.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	User’s guide »

Equations

	Equation strings

	External variables and functions

	Flags

	List of special symbols

	Event-driven equations

	Equation objects

	Examples of Equation objects

Equation strings

Equations are used both in NeuronGroup and Synapses to:

	define state variables

	define continuous-updates on these variables, through differential equations

Equations are defined by multiline strings.

An Equation is a set of single lines in a string:

	dx/dt = f : unit (differential equation)

	x = f : unit (subexpression)

	x : unit (parameter)

Each equation may be spread out over multiple lines to improve formatting.
Comments using # may also be included. Subunits are not allowed, i.e., one must write volt, not mV. This is
to make it clear that the values are internally always saved in the basic units, so no confusion can arise when getting
the values out of a NeuronGroup and discarding the units. Compound units are of course allowed as well (e.g. farad/meter**2).
There are also three special “units” that can be used: 1 denotes a dimensionless floating point variable,
boolean and integer denote dimensionless variables of the respective kind.

Some special variables are defined: t, dt (time) and xi (white noise).
Variable names starting with an underscore and a couple of other names that have special meanings under certain
circumstances (e.g. names ending in _pre or _post) are forbidden.

For stochastic equations with several xi values it is necessary to make clear whether they correspond to the same
or different noise instantiations. To make this distinction, an arbitrary suffix can be used, e.g. using xi_1 several times
refers to the same variable, xi_2 (or xi_inh, xi_alpha, etc.) refers to another. An error will be raised if
you use more than one plain xi. Note that noise is always independent across neurons, you can only work around this
restriction by defining your noise variable as a shared parameter and update it using a user-defined function (e.g. with run_regularly),
or create a group that models the noise and link to its variable (see Linked variables).

External variables and functions

Equations defining neuronal or synaptic equations can contain references to
external parameters or functions. These references are looked up at the time
that the simulation is run. If you don’t specify where to look them up, it
will look in the Python local/global namespace (i.e. the block of code where
you call run()). If you want to override this, you can specify an explicit
“namespace”. This is a Python dictionary with keys being variable names as
they appear in the equations, and values being the desired value of that
variable. This namespace can be specified either in the creation of the group
or when you can the run() function using the namespace keyword argument.

The following three examples show the different ways of providing external
variable values, all having the same effect in this case:

Explicit argument to the NeuronGroup
G = NeuronGroup(1, 'dv/dt = -v / tau : 1', namespace={'tau': 10*ms})
net = Network(G)
net.run(10*ms)

Explicit argument to the run function
G = NeuronGroup(1, 'dv/dt = -v / tau : 1')
net = Network(G)
net.run(10*ms, namespace={'tau': 10*ms})

Implicit namespace from the context
G = NeuronGroup(1, 'dv/dt = -v / tau : 1')
net = Network(G)
tau = 10*ms
net.run(10*ms)

See Namespaces for more details.

The following topics are not essential for beginners.

Flags

A flag is a keyword in parentheses at the end of the line, which
qualifies the equations. There are several keywords:

	event-driven

	this is only used in Synapses, and means that the differential equation should be updated
only at the times of events. This implies that the equation is taken out of the continuous
state update, and instead a event-based state update statement is generated and inserted into
event codes (pre and post).
This can only qualify differential equations of synapses. Currently, only one-dimensional
linear equations can be handled (see below).

	unless refractory

	this means the variable is not updated during the refractory period.
This can only qualify differential equations of neuron groups.

	constant

	this means the parameter will not be changed during a run. This allows
optimizations in state updaters. This can only qualify parameters.

	constant over dt

	this means that the subexpression will be only evaluated once at the beginning
of the time step. This can be useful to e.g. approximate a non-linear term as
constant over a time step in order to use the linear numerical integration
algorithm. It is also mandatory for subexpressions that refer to stateful
functions like rand() to make sure that they are only evaluated once
(otherwise e.g. recording the value with a StateMonitor would re-evaluate it
and therefore not record the same values that are used in other places). This
can only qualify subexpressions.

	shared

	this means that a parameter or subexpression is not neuron-/synapse-specific
but rather a single value for the whole NeuronGroup or Synapses. A shared
subexpression can only refer to other shared variables.

	linked

	this means that a parameter refers to a parameter in another NeuronGroup.
See Linked variables for more details.

Multiple flags may be specified as follows:

dx/dt = f : unit (flag1,flag2)

List of special symbols

The following lists all of the special symbols that Brian uses in
equations and code blocks, and their meanings.

	dt

	Time step width

	i

	Index of a neuron (NeuronGroup) or the pre-synaptic neuron
of a synapse (Synapses)

	j

	Index of a post-synaptic neuron of a synapse

	lastspike

	Last time that the neuron spiked (for refractoriness)

	lastupdate

	Time of the last update of synaptic variables in event-driven
equations.

	N

	Number of neurons (NeuronGroup) or synapses (Synapses). Use
N_pre or N_post for the number of presynaptic or
postsynaptic neurons in the context of Synapses.

	not_refractory

	Boolean variable that is normally true, and false if the neuron
is currently in a refractory state

	t

	Current time

	xi, xi_*

	Stochastic differential in equations

Event-driven equations

Equations defined as event-driven are completely ignored in the state update.
They are only defined as variables that can be externally accessed.
There are additional constraints:

	An event-driven variable cannot be used by any other equation that is not
also event-driven.

	An event-driven equation cannot depend on a differential equation that is not
event-driven (directly, or indirectly through subexpressions). It can depend
on a constant parameter.

Currently, automatic event-driven updates are only possible for one-dimensional
linear equations, but this may be extended in the future.

Equation objects

The model definitions for NeuronGroup and Synapses can be simple strings or
Equations objects. Such objects can be combined using the add operator:

eqs = Equations('dx/dt = (y-x)/tau : volt')
eqs += Equations('dy/dt = -y/tau: volt')

Equations allow for the specification of values in the strings, but does this by simple
string replacement, e.g. you can do:

eqs = Equations('dx/dt = x/tau : volt', tau=10*ms)

but this is exactly equivalent to:

eqs = Equations('dx/dt = x/(10*ms) : volt')

The Equations object does some basic syntax checking and will raise an error if two equations defining
the same variable are combined. It does not however do unit checking, checking for unknown identifiers or
incorrect flags – all this will be done during the instantiation of a NeuronGroup or Synapses object.

Examples of Equation objects

Concatenating equations

>>> membrane_eqs = Equations('dv/dt = -(v + I)/ tau : volt')
>>> eqs1 = membrane_eqs + Equations('''I = sin(2*pi*freq*t) : volt
... freq : Hz''')
>>> eqs2 = membrane_eqs + Equations('''I : volt''')
>>> print(eqs1)
I = sin(2*pi*freq*t) : V
dv/dt = -(v + I)/ tau : V
freq : Hz
>>> print(eqs2)
dv/dt = -(v + I)/ tau : V
I : V

Substituting variable names

>>> general_equation = 'dg/dt = -g / tau : siemens'
>>> eqs_exc = Equations(general_equation, g='g_e', tau='tau_e')
>>> eqs_inh = Equations(general_equation, g='g_i', tau='tau_i')
>>> print(eqs_exc)
dg_e/dt = -g_e / tau_e : S
>>> print(eqs_inh)
dg_i/dt = -g_i / tau_i : S

Inserting values

>>> eqs = Equations('dv/dt = mu/tau + sigma/tau**.5*xi : volt',
... mu=-65*mV, sigma=3*mV, tau=10*ms)
>>> print(eqs)
dv/dt = (-65. * mvolt)/(10. * msecond) + (3. * mvolt)/(10. * msecond)**.5*xi : V

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	User’s guide »

Refractoriness

	Defining the refractory period

	Defining model behaviour during refractoriness

	Arbitrary refractoriness

Brian allows you to model the absolute refractory period of a neuron in a flexible
way. The definition of refractoriness consists of two components: the amount of time
after a spike that a neuron is considered to be refractory, and what changes in the
neuron during the refractoriness.

Defining the refractory period

The refractory period is specified by the refractory keyword in the
NeuronGroup initializer. In the simplest case, this is simply a fixed time,
valid for all neurons:

G = NeuronGroup(N, model='...', threshold='...', reset='...',
 refractory=2*ms)

Alternatively, it can be a string expression that evaluates to a time. This
expression will be evaluated after every spike and allows for a changing
refractory period. For example, the following will set the refractory period
to a random duration between 1ms and 3ms after every spike:

G = NeuronGroup(N, model='...', threshold='...', reset='...',
 refractory='(1 + 2*rand())*ms')

In general, modelling a refractory period that varies across neurons involves
declaring a state variable that stores the refractory period per neuron as a
model parameter. The refractory expression can then refer to this parameter:

G = NeuronGroup(N, model='''...
 refractory : second''', threshold='...',
 reset='...', refractory='refractory')
Set the refractory period for each cell
G.refractory = ...

This state variable can also be a dynamic variable itself. For example, it can
serve as an adaptation mechanism by increasing it after every spike and letting
it relax back to a steady-state value between spikes:

refractory_0 = 2*ms
tau_refractory = 50*ms
G = NeuronGroup(N, model='''...
 drefractory/dt = (refractory_0 - refractory) / tau_refractory : second''',
 threshold='...', refractory='refractory',
 reset='''...
 refractory += 1*ms''')
G.refractory = refractory_0

In some cases, the condition for leaving the refractory period is not easily
expressed as a certain time span. For example, in a Hodgkin-Huxley type model the
threshold is only used for counting spikes and the refractoriness is used to
prevent to count multiple spikes for a single threshold crossing (the threshold
condition would evaluate to True for several time points). When a neuron
should leave the refractory period is not easily expressed as a time span but
more naturally as a condition that the neuron should remain refractory for as
long as it stays above the threshold. This can be achieved by using a string
expression for the refractory keyword that evaluates to a boolean condition:

G = NeuronGroup(N, model='...', threshold='v > -20*mV',
 refractory='v >= -20*mV')

The refractory keyword should be read as “stay refractory as long as the
condition remains true”. In fact, specifying a time span for the refractoriness
will be automatically transformed into a logical expression using the current
time t and the time of the last spike lastspike. Specifying
refractory=2*ms is equivalent to specifying
refractory='(t - lastspike) <= 2*ms'.

Defining model behaviour during refractoriness

The refractoriness definition as described above only has a single
effect by itself: threshold crossings during the refractory period are ignored.
In the following model, the variable v continues to update during the
refractory period but it does not elicit a spike if it crosses the threshold:

G = NeuronGroup(N, 'dv/dt = -v / tau : 1',
 threshold='v > 1', reset='v=0',
 refractory=2*ms)

There is also a second implementation of refractoriness that is
supported by Brian, one or several state variables can be clamped during the
refractory period. To model this kind of behaviour, variables that should
stop being updated during refractoriness can be marked with the
(unless refractory) flag:

G = NeuronGroup(N, '''dv/dt = -(v + w)/ tau_v : 1 (unless refractory)
 dw/dt = -w / tau_w : 1''',
 threshold='v > 1', reset='v=0; w+=0.1', refractory=2*ms)

In the above model, the v variable is clamped at 0 for 2ms after a spike but
the adaptation variable w continues to update during this time. In
addition, a variable of a neuron that is in its refractory period is
read-only: incoming synapses or other code will have no effect on the
value of v until it leaves its refractory period.

The following topics are not essential for beginners.

Arbitrary refractoriness

In fact, arbitrary behaviours can be defined using Brian’s refractoriness
mechanism.

Internally, a NeuronGroup with refractoriness has a boolean variable
not_refractory added to the equations, and this is used to implement
the refractoriness behaviour. Specifically, the threshold condition
is replaced by threshold and not_refractory and differential equations
that are marked as (unless refractory) are multiplied by
int(not_refractory) (so that they have the value 0 when the neuron is
refractory).

This not_refractory variable is also available to the user
to define more sophisticated refractoriness behaviour.
For example, the following code updates the
w variable with a different time constant during refractoriness:

G = NeuronGroup(N, '''dv/dt = -(v + w)/ tau_v : 1 (unless refractory)
 dw/dt = (-w / tau_active)*int(not_refractory) + (-w / tau_ref)*(1 - int(not_refractory)) : 1''',
 threshold='v > 1', reset='v=0; w+=0.1', refractory=2*ms)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	User’s guide »

Synapses

For Brian 1 users

Synapses is now the only class for defining synaptic interactions,
it replaces Connection, STDP, etc. See the document
Synapses (Brian 1 –> 2 conversion) for details how to convert
Brian 1 code.

	Defining synaptic models

	Creating synapses

	Accessing synaptic variables

	Delays

	Monitoring synaptic variables

	Creating synapses with the generator syntax

	Summed variables

	Creating multi-synapses

	Multiple pathways

	Numerical integration

	Technical notes

Defining synaptic models

The most simple synapse (adding a fixed amount to the target membrane potential
on every spike) is described as follows:

w = 1*mV
S = Synapses(P, Q, on_pre='v += w')

This defines a set of synapses between NeuronGroup P and NeuronGroup Q.
If the target group is not specified, it is identical to the source group by default.
The on_pre keyword defines what happens when a presynaptic spike arrives at
a synapse. In this case, the constant w is added to variable v.
Because v is not defined as a synaptic variable, it is assumed by default
that it is a postsynaptic variable, defined in the target NeuronGroup Q.
Note that this does not does create synapses (see Creating Synapses), only the
synaptic models.

To define more complex models, models can be described as string equations,
similar to the models specified in NeuronGroup:

S = Synapses(P, Q, model='w : volt', on_pre='v += w')

The above specifies a parameter w, i.e. a synapse-specific weight.

Synapses can also specify code that should be executed whenever a postsynaptic
spike occurs (keyword on_post) and a fixed (pre-synaptic) delay for all
synapses (keyword delay).

When specifying equations or code for Synapses, there is a possible
ambiguity about what a variable name refers to. For example, if both
the Synapses object and the target NeuronGroup have a variable
w, what would the code w += 1 do? The answer is that it will
modify the synapse’s variable w. In general, it will
first check if there is a synaptic variable of that name, then a
variable of the post-synaptic neurons, and otherwise it will look
for an external constant. To explicitly specify that a variable
should be from a pre- or post-synaptic neuron, append the suffix
_pre or _post, so in the situation above w_post += 1
would increase the post-synaptic neuron’s copy of w by 1,
not the synapse’s variable w.

Model syntax

The model follows exactly the same syntax as for NeuronGroup. There can be parameters
(e.g. synaptic variable w above), but there can also be named
subexpressions and differential equations, describing the dynamics of synaptic
variables. In all cases, synaptic variables are created, one value per synapse.

Event-driven updates

By default, differential equations are integrated in a clock-driven fashion, as for a
NeuronGroup. This is potentially very time consuming, because all synapses are updated at every
timestep and Brian will therefore emit a warning. If you are sure about integrating the equations at
every timestep (e.g. because you want to record the values continuously), then you should specify
the flag (clock-driven). To ask Brian 2 to simulate differential equations in an event-driven fashion
use the flag (event-driven). A typical example is pre- and postsynaptic traces in STDP:

model='''w:1
 dApre/dt=-Apre/taupre : 1 (event-driven)
 dApost/dt=-Apost/taupost : 1 (event-driven)'''

Here, Brian updates the value of Apre for a given synapse only when this synapse receives a spike,
whether it is presynaptic or postsynaptic. More precisely, the variables are updated every time either
the on_pre or on_post code is called for the synapse, so that the values are always up to date when
these codes are executed.

Automatic event-driven updates are only possible for a subset of equations, in particular for
one-dimensional linear equations. These equations must also be independent of the other ones,
that is, a differential equation that is not event-driven cannot
depend on an event-driven equation (since the values are not continuously updated).
In other cases, the user can write event-driven code explicitly in the update codes (see below).

Pre and post codes

The on_pre code is executed at each synapse receiving a presynaptic spike. For example:

on_pre='v+=w'

adds the value of synaptic variable w to postsynaptic variable v.
Any sort of code can be executed. For example, the following code defines
stochastic synapses, with a synaptic weight w and transmission probability p:

S=Synapses(input,neurons,model="""w : 1
 p : 1""",
 on_pre="v+=w*(rand()<p)")

The code means that w is added to v with probability p.
The code may also include multiple lines.

Similarly, the on_post code is executed at each synapse where the postsynaptic neuron
has fired a spike.

Creating synapses

Creating a Synapses instance does not create synapses, it only specifies their dynamics.
The following command creates a synapse between neuron 5 in the source group and
neuron 10 in the target group:

S.connect(i=5, j=10)

Multiple synaptic connections can be created in a single statement:

S.connect()
S.connect(i=[1, 2], j=[3, 4])
S.connect(i=numpy.arange(10), j=1)

The first statement connects all neuron pairs.
The second statement creates synapses between neurons 1 and 3, and between neurons 2 and 4.
The third statement creates synapses between the first ten neurons in the source group and neuron 1
in the target group.

Conditional

One can also create synapses by giving (as a string) the condition for a pair
of neurons i and j to be connected by a synapse, e.g. you could
connect neurons that are not very far apart with:

S.connect(condition='abs(i-j)<=5')

The string expressions can also refer to pre- or postsynaptic variables. This
can be useful for example for spatial connectivity: assuming that the pre- and
postsynaptic groups have parameters x and y, storing their location, the
following statement connects all cells in a 250 um radius:

S.connect(condition='sqrt((x_pre-x_post)**2 + (y_pre-y_post)**2) < 250*umeter')

Probabilistic

Synapse creation can also be probabilistic by providing a p argument,
providing the connection probability for each pair of synapses:

S.connect(p=0.1)

This connects all neuron pairs with a probability of 10%. Probabilities can
also be given as expressions, for example to implement a connection probability
that depends on distance:

S.connect(condition='i != j',
 p='p_max*exp(-(x_pre-x_post)**2+(y_pre-y_post)**2) / (2*(125*umeter)**2)')

If this statement is applied to a Synapses object that connects a group to
itself, it prevents self-connections (i != j) and connects cells with a
probability that is modulated according to a 2-dimensional Gaussian of the
distance between the cells.

One-to-one

You can specify a mapping from i to any function f(i), e.g. the
simplest way to give a 1-to-1 connection would be:

S.connect(j='i')

Accessing synaptic variables

Synaptic variables can be accessed in a similar way as NeuronGroup variables. They can be indexed
with two indexes, corresponding to the indexes of pre and postsynaptic neurons, or with string expressions (referring
to i and j as the pre-/post-synaptic indices, or to other state variables of the synapse or the connected neurons).
Note that setting a synaptic variable always refers to the synapses that currently exist, i.e. you have to set them
after the relevant Synapses.connect() call.

Here are a few examples:

S.w[2, 5] = 1*nS
S.w[1, :] = 2*nS
S.w = 1*nS # all synapses assigned
S.w[2, 3] = (1*nS, 2*nS)
S.w[group1, group2] = "(1+cos(i-j))*2*nS"
S.w[:, :] = 'rand()*nS'
S.w['abs(x_pre-x_post) < 250*umetre'] = 1*nS

Note that it is also possible to index synaptic variables with a single index
(integer, slice, or array), but in this case synaptic indices have to be
provided.

Delays

There is a special synaptic variable that is automatically created: delay. It is the propagation delay
from the presynaptic neuron to the synapse, i.e., the presynaptic delay. This
is just a convenience syntax for accessing the delay stored in the presynaptic
pathway: pre.delay. When there is a postsynaptic code (keyword post),
the delay of the postsynaptic pathway can be accessed as post.delay.

The delay variable(s) can be set and accessed in the same way as other synaptic
variables. The same semantics as for other synaptic variables apply, which means
in particular that the delay is only set for the synapses that have been already
created with Synapses.connect(). If you want to set a global delay for all
synapses of a Synapses object, you can directly specify that delay as part
of the Synapses initializer:

synapses = Synapses(sources, targets, '...', on_pre='...', delay=1*ms)

When you use this syntax, you can still change the delay afterwards by setting
synapses.delay, but you can only set it to another scalar value. If you need
different delays across synapses, do not use this syntax but instead set the
delay variable as any other synaptic variable (see above).

Monitoring synaptic variables

A StateMonitor object can be used to monitor synaptic variables. For example, the following statement
creates a monitor for variable w for the synapses 0 and 1:

M = StateMonitor(S,'w',record=[0,1])

Note that these are synapse indices, not neuron indices. More convenient is
to directly index the Synapses object, Brian will automatically calculate the
indices for you in this case:

M = StateMonitor(S,'w',record=S[0, :]) # all synapses originating from neuron 0
M = StateMonitor(S,'w',record=S['i!=j']) # all synapses excluding autapses
M = StateMonitor(S,'w',record=S['w>0']) # all synapses with non-zero weights (at this time)

You can also record a synaptic variable for all synapses by passing record=True.

The recorded traces can then be accessed in the usual way, again with the
possibility to index the Synapses object:

plot(M.t / ms, M[0].w / nS) # first synapse
plot(M.t / ms, M[0, :].w / nS) # all synapses originating from neuron 0
plot(M.t / ms, M['w>0'].w / nS) # all synapses with non-zero weights (at this time)

Note (for users of Brian’s advanced standalone mode only):
the use of the Synapses object for indexing and record=True only
work in the default runtime modes. In standalone mode (see Standalone code generation),
the synapses have not yet been created at this point, so Brian cannot calculate
the indices.

The following topics are not essential for beginners.

Creating synapses with the generator syntax

The most general way of specifying a connection is using the
generator syntax, e.g. to connect neuron i to all neurons j with
0<=j<=i:

S.connect(j='k for k in range(0, i+1)')

There are several parts to this syntax. The general form is:

j='EXPR for VAR in RANGE if COND'

Here EXPR can be any integer-valued expression. VAR is the name
of the iteration variable (any name you like can be specified
here). The if COND part is optional and lets you give an
additional condition that has to be true for the synapse to be
created. Finally, RANGE can be either:

	a Python range, e.g. range(N) is the integers from
0 to N-1, range(A, B) is the integers from A to B-1,
range(low, high, step) is the integers from low to
high-1 with steps of size step, or

	it can be a random sample sample(N, p=0.1) gives a
random sample of integers from 0 to N-1 with 10% probability
of each integer appearing in the sample. This can have extra
arguments like range, e.g. sample(low, high, step, p=0.1)
will give each integer in range(low, high, step) with
probability 10%.

If you try to create an invalid synapse (i.e. connecting
neurons that are outside the correct range) then you will get
an error, e.g. you might like to try to do this to connect
each neuron to its neighbours:

S.connect(j='i+(-1)**k for k in range(2)')

However this won’t work at for i=0 it gives j=-1 which
is invalid. There is an option to just skip any synapses
that are outside the valid range:

S.connect(j='i+(-1)**k for k in range(2)', skip_if_invalid=True)

Summed variables

In many cases, the postsynaptic neuron has a variable that represents a sum of variables over all
its synapses. This is called a “summed variable”. An example is nonlinear synapses (e.g. NMDA):

neurons = NeuronGroup(1, model="""dv/dt=(gtot-v)/(10*ms) : 1
 gtot : 1""")
S=Synapses(input,neurons,
 model='''dg/dt=-a*g+b*x*(1-g) : 1
 gtot_post = g : 1 (summed)
 dx/dt=-c*x : 1
 w : 1 # synaptic weight
 ''',
 on_pre='x+=w')

Here, each synapse has a conductance g with nonlinear dynamics. The neuron’s total conductance
is gtot. The line stating gtot_post = g : 1 (summed) specifies the link
between the two: gtot in the postsynaptic group is the summer over all
variables g of the corresponding synapses. What happens during the
simulation is that at each time step, presynaptic conductances are summed for each neuron and the
result is copied to the variable gtot. Another example is gap junctions:

neurons = NeuronGroup(N, model='''dv/dt=(v0-v+Igap)/tau : 1
 Igap : 1''')
S=Synapses(neurons,model='''w:1 # gap junction conductance
 Igap_post = w*(v_pre-v_post): 1 (summed)''')

Here, Igap is the total gap junction current received by the postsynaptic neuron.

Creating multi-synapses

It is also possible to create several synapses for a given pair of neurons:

S.connect(i=numpy.arange(10), j=1, n=3)

This is useful for example if one wants to have multiple synapses with different delays. To
distinguish multiple variables connecting the same pair of neurons in synaptic expressions and
statements, you can create a variable storing the synapse index with the multisynaptic_index
keyword:

syn = Synapses(source_group, target_group, model='w : 1', on_pre='v += w',
 multisynaptic_index='synapse_number')
syn.connect(i=numpy.arange(10), j=1, n=3)
syn.delay = '1*ms + synapse_number*2*ms'

This index can then be used to set/get synapse-specific values:

S.delay = '(synapse_number + 1)*ms)' # Set delays between 1 and 10ms
S.w['synapse_number<5'] = 0.5
S.w['synapse_number>=5'] = 1

It also enables three-dimensional indexing, the following statement has the same effect as the last one above:

S.w[:, :, 5:] = 1

Multiple pathways

It is possible to have multiple pathways with different update codes from the same presynaptic neuron group.
This may be interesting in cases when different operations must be applied at different times for the same
presynaptic spike. To do this, specify a dictionary of pathway names and codes:

on_pre={'pre_transmission': 'ge+=w',
 'pre_plasticity': '''w=clip(w+Apost,0,inf)
 Apre+=dApre'''}

This creates two pathways with the given names (in fact, specifying on_pre=code
is just a shorter syntax for on_pre={'pre': code}) through which the delay
variables can be accessed.
The following statement, for example, sets the delay of the synapse between the first neurons
of the source and target groups in the pre_plasticity pathway:

S.pre_plasticity.delay[0,0] = 3*ms

As mentioned above, pre pathways are generally executed before post
pathways. The order of execution of several pre (or post) pathways is
however arbitrary, and simply based on the alphabetical ordering of their names
(i.e. pre_plasticity will be executed before pre_transmission). To
explicitly specify the order, set the order attribute of the pathway, e.g.:

S.pre_transmission.order = -2

will make sure that the pre_transmission code is executed before the
pre_plasticity code in each time step.

Numerical integration

Differential equation flags

For the integration of differential equations, one can use the same keywords as
for NeuronGroup.

Note

Declaring a subexpression as (constant over dt) means that it will
be evaluated each timestep for all synapses, potentially a very costly
operation.

Explicit event-driven updates

As mentioned above, it is possible to write event-driven update code for the synaptic variables.
For this, two special variables are provided: t is the current time when the code is executed,
and lastupdate is the last time when the synapse was updated (either through on_pre or on_post
code). An example is short-term plasticity (in fact this could be done automatically with the use
of the (event-driven) keyword mentioned above):

S=Synapses(input,neuron,
 model='''x : 1
 u : 1
 w : 1''',
 on_pre='''u=U+(u-U)*exp(-(t-lastupdate)/tauf)
 x=1+(x-1)*exp(-(t-lastupdate)/taud)
 i+=w*u*x
 x*=(1-u)
 u+=U*(1-u)''')

By default, the pre pathway is executed before the post pathway (both
are executed in the 'synapses' scheduling slot, but the pre pathway has
the order attribute -1, wheras the post pathway has order 1. See
Scheduling for more details).

Technical notes

How connection arguments are interpreted

If conditions for connecting neurons are combined with both the n (number of
synapses to create) and the p (probability of a synapse) keywords, they are
interpreted in the following way:

For every pair i, j:

if condition(i, j) is fulfilled:

Evaluate p(i, j)

If uniform random number between 0 and 1 < p(i, j):

Create n(i, j) synapses for (i, j)

With the generator syntax j='EXPR for VAR in RANGE if COND', the interpretation is:

For every i:

for every VAR in RANGE:

j = EXPR

if COND:

Create n(i, j) synapses for (i, j)

Note that the arguments in RANGE can only depend on i and the values of
presynaptic variables. Similarly, the expression for j, EXPR can depend
on i, presynaptic variables, and on the iteration variable VAR. The
condition COND can depend on anything (presynaptic and postsynaptic variables).

With the 1-to-1 mapping syntax j='EXPR' the interpretation is:

For every i:

j = EXPR

Create n(i, j) synapses for (i, j)

Efficiency considerations

If you are connecting a single pair of neurons, the direct form connect(i=5, j=10)
is the most efficient. However, if you are connecting a number of neurons, it
will usually be more efficient to construct an array of i and j values
and have a single connect(i=i, j=j) call.

For large connections, you
should use one of the string based syntaxes where possible as this will
generate compiled low-level code that will be typically much faster than
equivalent Python code.

If you are expecting a majority of pairs of neurons to be connected, then using the
condition-based syntax is optimal, e.g. connect(condition='i!=j'). However,
if relatively few neurons are being connected then the 1-to-1 mapping or generator syntax
will be better. For 1-to-1, connect(j='i') will always be faster than
connect(condition='i==j') because the latter has to evaluate all N**2 pairs
(i, j) and check if the condition is true, whereas the former only has to do O(N)
operations.

One tricky problem is how to efficiently generate connectivity with a probability
p(i, j) that depends on both i and j, since this requires N*N computations
even if the expected number of synapses is proportional to N. Some tricks for getting
around this are shown in Example: efficient_gaussian_connectivity.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	User’s guide »

Input stimuli

For Brian 1 users

See the document Inputs (Brian 1 –> 2 conversion) for details how
to convert Brian 1 code.

	Poisson input

	Spike generation

	Explicit equations

	Timed arrays

	Regular operations

	Poisson inputs

	Arbitrary Python code (network operations)

There are various ways of providing “external” input to a network.

Poisson input

For generating spikes according to a Poisson point process, PoissonGroup can
be used, e.g.:

P = PoissonGroup(100, np.arange(100)*Hz + 10*Hz)
G = NeuronGroup(100, 'dv/dt = -v / (10*ms) : 1')
S = Synapses(P, G, on_pre='v+=0.1')
S.connect(j='i')

It takes a rate, an array of rates (one rate per neuron), or a string
expression evaluating to a rate as an argument and can be connected to a
NeuronGroup via the usual Synapses mechanism.

Note that PoissonGroup won’t work for very high rates where there is a
non-negligible probability of two spikes occurring in the same time step,
as only one spike is allowed to occur. See the advanced topics below for
ways to get around this.

Spike generation

You can also generate an explicit list of spikes given via arrays using
SpikeGeneratorGroup. This object behaves just like a NeuronGroup in that
you can connect it to other groups via a Synapses object, but you specify
three bits of information: N the number of neurons in the group;
indices an array of the indices of the neurons that will fire; and
times an array of the same length as indices with the times that the
neurons will fire a spike. The indices and times arrays are matching,
so for example indices=[0,2,1] and times=[1*ms,2*ms,3*ms] means that
neuron 0 fires at time 1 ms, neuron 2 fires at 2 ms and neuron 1 fires at 3 ms.
Example use:

indices = array([0, 2, 1])
times = array([1, 2, 3])*ms
G = SpikeGeneratorGroup(3, indices, times)

The spikes that will be generated by SpikeGeneratorGroup can be changed
between runs with the
set_spikes method. This
can be useful if the input to a system should depend on its previous output or
when running multiple trials with different input:

inp = SpikeGeneratorGroup(N, indices, times)
G = NeuronGroup(N, '...')
feedforward = Synapses(inp, G, '...', on_pre='...')
feedforward.connect(j='i')
recurrent = Synapses(G, G, '...', on_pre='...')
recurrent.connect('i!=j')
spike_mon = SpikeMonitor(G)
...
run(runtime)
Replay the previous output of group G as input into the group
inp.set_spikes(spike_mon.i, spike_mon.t + runtime)
run(runtime)

Explicit equations

If the input can be explicitly expressed as a function of time (e.g. a
sinusoidal input current), then its description can be directly included in
the equations of the respective group:

G = NeuronGroup(100, '''dv/dt = (-v + I)/(10*ms) : 1
 rates : Hz # each neuron's input has a different rate
 size : 1 # and a different amplitude
 I = size*sin(2*pi*rates*t) : 1''')
G.rates = '10*Hz + i*Hz'
G.size = '(100-i)/100. + 0.1'

Timed arrays

If the time dependence of the input cannot be expressed in the equations in the
way shown above, it is possible to create a TimedArray. This acts
as a function of time where the values at given time points are given
explicitly. This can be especially useful to describe non-continuous
stimulation. For example, the following code defines a TimedArray where
stimulus blocks consist of a constant current of random strength for 30ms,
followed by no stimulus for 20ms. Note that in this particular example,
numerical integration can use exact methods, since it can assume that the
TimedArray is a constant function of time during a single integration time
step.

Note

The semantics of TimedArray changed slightly compared
to Brian 1: for TimedArray([x1, x2, ...], dt=my_dt), the value x1 will be
returned for all 0<=t<my_dt, x2 for my_dt<=t<2*my_dt etc., whereas
Brian1 returned x1 for 0<=t<0.5*my_dt,
x2 for 0.5*my_dt<=t<1.5*my_dt, etc.

stimulus = TimedArray(np.hstack([[c, c, c, 0, 0]
 for c in np.random.rand(1000)]),
 dt=10*ms)
G = NeuronGroup(100, 'dv/dt = (-v + stimulus(t))/(10*ms) : 1',
 threshold='v>1', reset='v=0')
G.v = '0.5*rand()' # different initial values for the neurons

TimedArray can take a one-dimensional value array (as above) and therefore
return the same value for all neurons or it can take a two-dimensional array
with time as the first and (neuron/synapse/...-)index as the second dimension.

In the following, this is used to implement shared noise between neurons, all
the “even neurons” get the first noise instantiation, all the “odd neurons” get
the second:

runtime = 1*second
stimulus = TimedArray(np.random.rand(int(runtime/defaultclock.dt), 2),
 dt=defaultclock.dt)
G = NeuronGroup(100, 'dv/dt = (-v + stimulus(t, i % 2))/(10*ms) : 1',
 threshold='v>1', reset='v=0')

Regular operations

An alternative to specifying a stimulus in advance is to run explicitly
specified code at certain points during a simulation. This can be
achieved with run_regularly().
One can think of these statements as
equivalent to reset statements but executed unconditionally (i.e. for all
neurons) and possibly on a different clock than the rest of the group. The
following code changes the stimulus strength of half of the neurons (randomly
chosen) to a new random value every 50ms. Note that the statement uses logical
expressions to have the values only updated for the chosen subset of neurons
(where the newly introduced auxiliary variable change equals 1):

G = NeuronGroup(100, '''dv/dt = (-v + I)/(10*ms) : 1
 I : 1 # one stimulus per neuron''')
G.run_regularly('''change = int(rand() < 0.5)
 I = change*(rand()*2) + (1-change)*I''',
 dt=50*ms)

The following topics are not essential for beginners.

Poisson inputs

If the given value for rates is a constant, then using
PoissonGroup(N, rates) is equivalent to
NeuronGroup(N, 'rates : Hz', threshold='rand()<rates*dt') and setting the
group’s rates attribute. If rates is a string, then it is equivalent
to NeuronGroup(N, 'rates = ... Hz', threshold='rand()<rates*dt') with the
respective expression for the rates (which will be evaluated at every time step
and therefore allows time-dependent rates). Note that, as can be seen in its
equivalent NeuronGroup formulation, a PoissonGroup does not work for high
rates where more than one spike might fall into a single timestep. Use several
units with lower rates in this case (e.g. use PoissonGroup(10, 1000*Hz)
instead of PoissonGroup(1, 10000*Hz)).

For simulations where the PoissonGroup is just used as a source of input to a
neuron (i.e., the individually generated spikes are not important, just their
impact on the target cell), the PoissonInput class provides a more efficient
alternative. Instead of generating spikes, it directly updates a target variable
based on the sum of independent Poisson processes:

G = NeuronGroup(100, 'dv/dt = -v / (10*ms) : 1')
P = PoissonInput(G, 'v', 100, 100*Hz, weight=0.1)

The PoissonInput class is however more restrictive than PoissonGroup, it
only allows for a constant rate across all neurons (but you can create
several PoissonInput objects, targeting different subgroups). It internally
uses BinomialFunction which will draw a random number each time step, either
from a binomial distribution or from a normal distribution as an approximation
to the binomial distribution if \(n p > 5 \wedge n (1 - p) > 5\), where
\(n\) is the number of inputs and \(p = dt \cdot rate\) the spiking
probability for a single input.

Arbitrary Python code (network operations)

If none of the above techniques is general enough to fulfill the requirements
of a simulation, Brian allows you to write a NetworkOperation, an arbitrary
Python function that is executed every time step (possible on a different clock
than the rest of the simulation). This function can do arbitrary operations,
use conditional statements etc. and it will be executed as it is (i.e. as pure
Python code even if weave code generation is active). Note that one cannot use
network operations in combination with the C++ standalone mode. Network
operations are particularly useful when some condition or calculation depends
on operations across neurons, which is currently not possible to express in
abstract code. The following code switches input on for a randomly chosen single
neuron every 50 ms:

G = NeuronGroup(10, '''dv/dt = (-v + active*I)/(10*ms) : 1
 I = sin(2*pi*100*Hz*t) : 1 (shared) #single input
 active : 1 # will be set in the network operation''')
@network_operation(dt=50*ms)
def update_active():
 index = np.random.randint(10) # index for the active neuron
 G.active_ = 0 # the underscore switches off unit checking
 G.active_[index] = 1

Note that the network operation (in the above example: update_active) has
to be included in the Network object if one is constructed explicitly.

Only functions with zero or one arguments can be used as a NetworkOperation.
If the function has one argument then it will be passed the current time t:

@network_operation(dt=1*ms)
def update_input(t):
 if t>50*ms and t<100*ms:
 pass # do something

Note that this is preferable to accessing defaultclock.t from within the
function – if the network operation is not running on the defaultclock
itself, then that value is not guaranteed to be correct.

Instance methods can be used as network operations as well, however in this case
they have to be constructed explicitly, the network_operation() decorator
cannot be used:

class Simulation(object):
 def __init__(self, data):
 self.data = data
 self.group = NeuronGroup(...)
 self.network_op = NetworkOperation(self.update_func, dt=10*ms)
 self.network = Network(self.group, self.network_op)

 def update_func(self):
 pass # do something

 def run(self, runtime):
 self.network.run(runtime)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	User’s guide »

Recording during a simulation

For Brian 1 users

See the document Monitors (Brian 1 –> 2 conversion) for details how
to convert Brian 1 code.

	Recording spikes

	Recording variables at spike time

	Recording variables continuously

	Recording population rates

	Getting all data

Recording variables during a simulation is done with “monitor” objects.
Specifically, spikes are recorded with SpikeMonitor, the time evolution of
variables with StateMonitor and the firing rate of a population of neurons
with PopulationRateMonitor.

Recording spikes

To record spikes from a group G simply create a SpikeMonitor via
SpikeMonitor(G). After the simulation, you can access the attributes
i, t, num_spikes and count of the monitor.
The i and t
attributes give the array of neuron indices and times of the spikes. For
example, if M.i==[0, 2, 1] and M.t==[1*ms, 2*ms, 3*ms] it means that
neuron 0 fired a spike at 1 ms, neuron 2 fired a spike at 2 ms, and neuron 1
fired a spike at 3 ms. Alternatively, you can also call the
spike_trains method to get a
dictionary mapping neuron indices to arrays of spike times, i.e. in the above
example, spike_trains = M.spike_trains(); spike_trains[1] would return
array([3.]) * msecond. The num_spikes attribute gives the total number
of spikes recorded, and count is an array of the length of the recorded
group giving the total number of spikes recorded from each neuron.

Example:

G = NeuronGroup(N, model='...')
M = SpikeMonitor(G)
run(runtime)
plot(M.t/ms, M.i, '.')

If you are only interested in summary statistics but not the individual spikes,
you can set the record argument to False. You will then not have access
to i and t but you can still get the count and the total number of
spikes (num_spikes).

Recording variables at spike time

By default, a SpikeMonitor only records the time of the spike and the index
of the neuron that spiked. Sometimes it can be useful to addtionaly record
other variables, e.g. the membrane potential for models where the threshold is
not at a fixed value. This can be done by providing an extra variables
argument, the recorded variable can then be accessed as an attribute of the
SpikeMonitor, e.g.:

G = NeuronGroup(10, 'v : 1', threshold='rand()<100*Hz*dt')
G.run_regularly('v = rand()')
M = SpikeMonitor(G, variables=['v'])
run(100*ms)
plot(M.t/ms, M.v, '.')

To conveniently access the values of a recorded variable for
a single neuron, the SpikeMonitor.values() method can be used that returns a
dictionary with the values for each neuron.:

G = NeuronGroup(N, '''dv/dt = (1-v)/(10*ms) : 1
 v_th : 1''',
 threshold='v > v_th',
 # randomly change the threshold after a spike:
 reset='''v=0
 v_th = clip(v_th + rand()*0.2 - 0.1, 0.1, 0.9)''')
G.v_th = 0.5
spike_mon = SpikeMonitor(G, variables='v')
run(1*second)
v_values = spike_mon.values('v')
print('Threshold crossing values for neuron 0: {}'.format(v_values[0]))
hist(spike_mon.v, np.arange(0, 1, .1))
show()

Note

Spikes are not the only events that can trigger recordings, see
Custom events.

Recording variables continuously

To record how a variable evolves over time, use a StateMonitor, e.g.
to record the variable v at every time step and plot it for
neuron 0:

G = NeuronGroup(...)
M = StateMonitor(G, 'v', record=True)
run(...)
plot(M.t/ms, M.v[0]/mV)

In general,
you specify the group, variables and indices you want to record from. You
specify the variables with a string or list of strings, and the indices
either as an array of indices or True to record all indices (but beware
because this may take a lot of memory).

After the simulation, you can access these variables as attributes of the
monitor. They are 2D arrays with shape (num_indices, num_times). The
special attribute t is an array of length num_times with the
corresponding times at which the values were recorded.

Note that you can also use StateMonitor to record from Synapses where
the indices are the synapse indices rather than neuron indices.

In this example, we record two variables v and u, and record from indices 0,
10 and 100. Afterwards, we plot the recorded values of v and u from neuron 0:

G = NeuronGroup(...)
M = StateMonitor(G, ('v', 'u'), record=[0, 10, 100])
run(...)
plot(M.t/ms, M.v[0]/mV, label='v')
plot(M.t/ms, M.u[0]/mV, label='u')

There are two subtly different ways to get the values for specific neurons: you
can either index the 2D array stored in the attribute with the variable name
(as in the example above) or you can index the monitor itself. The former will
use an index relative to the recorded neurons (e.g. M.v[1] will return the
values for the second recorded neuron which is the neuron with the index 10
whereas M.v[10] would raise an error because only three neurons have been
recorded), whereas the latter will use an absolute index corresponding to the
recorded group (e.g. M[1].v will raise an error because the neuron with the
index 1 has not been recorded and M[10].v will return the values for the
neuron with the index 10). If all neurons have been recorded (e.g. with
record=True) then both forms give the same result.

Note that for plotting all recorded values at once, you have to transpose the
variable values:

plot(M.t/ms, M.v.T/mV)

Note

In contrast to Brian 1, the values are recorded at the
beginning of a time step and not at the end (you can set the when argument
when creating a StateMonitor, details about scheduling can be
found here: Scheduling and custom progress reporting).

Recording population rates

To record the time-varying firing rate of a population of neurons use
PopulationRateMonitor. After the simulation the monitor will have two
attributes t and rate, the latter giving the firing rate at each
time step corresponding to the time in t. For example:

G = NeuronGroup(...)
M = PopulationRateMonitor(G)
run(...)
plot(M.t/ms, M.rate/Hz)

To get a smoother version of the rate, use PopulationRateMonitor.smooth_rate().

The following topics are not essential for beginners.

Getting all data

Note that all monitors are implement as “groups”, so you can get all the stored
values in a monitor with the Group.get_states() method, which can be useful to
dump all recorded data to disk, for example.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	User’s guide »

Running a simulation

For Brian 1 users

See the document Networks and clocks (Brian 1 –> 2 conversion) for
details how to convert Brian 1 code.

	Magic networks

	Setting the simulation time step

	Progress reporting

	Continuing/repeating simulations

	Multiple magic runs

	Changing the simulation time step

	Profiling

	Scheduling

	Store/restore

To run a simulation, one either constructs a new Network object and calls its
Network.run() method, or uses the “magic” system and a plain run() call,
collecting all the objects in the current namespace.

Note that Brian has several different ways of running the actual computations,
and choosing the right one can make orders of magnitude of difference in
terms of simplicity and efficiency. See Computational methods and efficiency for more details.

Magic networks

In most straightforward simulations, you do not have to explicitly create a
Network object but instead can simply call run() to run a simulation. This is
what is called the “magic” system, because Brian figures out automatically what
you want to do.

When calling run(), Brian runs the collect() function to gather all the objects
in the current context. It will include all the objects that are “visible”, i.e.
that you could refer to with an explicit name:

G = NeuronGroup(10, 'dv/dt = -v / tau : volt')
S = Synapses(G, G, model='w:1', on_pre='v+=w')
S.connect('i!=j')
mon = SpikeMonitor(G)

run(10*ms) # will include G, S, mon

Note that it will not automatically include objects that are “hidden” in
containers, e.g. if you store several monitors in a list. Use an explicit
Network object in this case. It might be convenient to use the collect()
function when creating the Network object in that case:

G = NeuronGroup(10, 'dv/dt = -v / tau : volt')
S = Synapses(G, G, model='w:1', on_pre='v+=w')
S.connect('i!=j')
monitors = [SpikeMonitor(G), StateMonitor(G, 'v', record=True)]

a simple run would not include the monitors
net = Network(collect()) # automatically include G and S
net.add(monitors) # manually add the monitors

Setting the simulation time step

To set the simulation time step for every simulated object, set the dt attribute of the defaultclock which is used
by all objects that do not explicitly specify a clock or dt value during construction:

defaultclock.dt = 0.05*ms

If some objects should use a different clock (e.g. to record values with a StateMonitor not at every time step in a
long running simulation), you can provide a dt argument to the respective object:

s_mon = StateMonitor(group, 'v', record=True, dt=1*ms)

To sum up:

	Set defaultclock.dt to the time step that should be used by most (or all) of your objects.

	Set dt explicitly when creating objects that should use a different time step.

Behind the scenes, a new Clock object will be created for each object that defines its own dt value.

Progress reporting

Especially for long simulations it is useful to get some feedback about the
progress of the simulation. Brian offers a few built-in options and an
extensible system to report the progress of the simulation. In the Network.run()
or run() call, two arguments determine the output: report and
report_period. When report is set to 'text' or 'stdout', the
progress will be printed to the standard output, when it is set to 'stderr',
it will be printed to “standard error”. There will be output at the start and
the end of the run, and during the run in report_period intervals. It is
also possible to do custom progress reporting.

Continuing/repeating simulations

To store the current state of the simulation, call
store() (use the Network.store() method for a Network). You
can store more than one snapshot of a system by providing a name for the
snapshot; if store() is called without a specified name,
'default' is used as the name. To restore the state, use
restore().

The following simple example shows how this system can be used to run several
trials of an experiment:

set up the network
G = NeuronGroup(...)
...
spike_monitor = SpikeMonitor(G)

Snapshot the state
store()

Run the trials
spike_counts = []
for trial in range(3):
 restore() # Restore the initial state
 run(...)
 # store the results
 spike_counts.append(spike_monitor.count)

The following schematic shows how multiple snapshots can be used to run a
network with a separate “train” and “test” phase. After training, the test is
run several times based on the trained network. The whole process of training
and testing is repeated several times as well:

set up the network
G = NeuronGroup(..., '''...
 test_input : amp
 ...''')
S = Synapses(..., '''...
 plastic : boolean (shared)
 ...''')
G.v = ...
S.connect(...)
S.w = ...

First snapshot at t=0
store('initialized')

Run 3 complete trials
for trial in range(3):
 # Simulate training phase
 restore('initialized')
 S.plastic = True
 run(...)

 # Snapshot after learning
 store('after_learning')

 # Run 5 tests after the training
 for test_number in range(5):
 restore('after_learning')
 S.plastic = False # switch plasticity off
 G.test_input = test_inputs[test_number]
 # monitor the activity now
 spike_mon = SpikeMonitor(G)
 run(...)
 # Do something with the result
 # ...

The following topics are not essential for beginners.

Multiple magic runs

When you use more than a single run() statement, the magic system tries to
detect which of the following two situations applies:

	You want to continue a previous simulation

	You want to start a new simulation

For this, it uses the following heuristic: if a simulation consists only of
objects that have not been run, it will start a new simulation starting at
time 0 (corresponding to the creation of a new Network object). If a
simulation only consists of objects that have been simulated in the previous
run() call, it will continue that simulation at the previous time.

If neither of these two situations apply, i.e., the network consists of a mix
of previously run objects and new objects, an error will be raised. If this is
not a mistake but intended (e.g. when a new input source and synapses should be
added to a network at a later stage), use an explicit Network object.

In these checks, “non-invalidating” objects (i.e. objects that have
BrianObject.invalidates_magic_network set to False) are ignored, e.g.
creating new monitors is always possible.

Changing the simulation time step

You can change the simulation time step after objects have been created or even after a simulation has been run:

defaultclock.dt = 0.1*ms
Set the network
...
run(initial_time)
defaultclock.dt = 0.01*ms
run(full_time - initial_time)

To change the time step between runs for objects that do not use the defaultclock, you cannot directly change their
dt attribute (which is read-only) but instead you have to change the dt of the clock attribute. If you want
to change the dt value of several objects at the same time (but not for all of them, i.e. when you cannot use
defaultclock.dt) then you might consider creating a Clock object explicitly and then passing this clock to each
object with the clock keyword argument (instead of dt). This way, you can later change the dt for several
objects at once by assigning a new value to Clock.dt.

Profiling

To get an idea which parts of a simulation take the most time, Brian offers a
basic profiling mechanism. If a simulation is run with the profile=True
keyword argument, it will collect information about the total simulation time
for each CodeObject. This information can then be retrieved from
Network.profiling_info, which contains a list of (name, time) tuples or
a string summary can be obtained by calling profiling_summary(). The
following example shows profiling output after running the CUBA example (where
the neuronal state updates take up the most time):

>>> profiling_summary(show=5) # show the 5 objects that took the longest
Profiling summary
=================
neurongroup_stateupdater 5.54 s 61.32 %
synapses_pre 1.39 s 15.39 %
synapses_1_pre 1.03 s 11.37 %
spikemonitor 0.59 s 6.55 %
neurongroup_thresholder 0.33 s 3.66 %

Scheduling

Every simulated object in Brian has three attributes that can be specified at
object creation time: dt, when, and order. The time step of the
simulation is determined by dt, if it is specified, or otherwise by
defaultclock.dt. Changing this will therefore change the dt of
all objects that don’t specify one.

During a single time step, objects are updated in an order according first
to their when
argument’s position in the schedule. This schedule is determined by
Network.schedule which is a list of strings, determining “execution slots” and
their order. It defaults to: ['start', 'groups', 'thresholds', 'synapses',
'resets', 'end']. In addition to the names provided in the schedule, names
such as before_thresholds or after_synapses can be used that are
understood as slots in the respective positions. The default
for the when attribute is a sensible value for most objects (resets will
happen in the reset slot, etc.) but sometimes it make sense to change it,
e.g. if one would like a StateMonitor, which by default records in the
end slot, to record the membrane potential before a reset is applied
(otherwise no threshold crossings will be observed in the membrane potential
traces).

Finally, if during a time step two objects fall in the same execution
slot, they will be updated in ascending order according to their
order attribute, an integer number defaulting to 0. If two objects have
the same when and order attribute then they will be updated in an
arbitrary but reproducible order (based on the lexicographical order of their
names).

Every new Network starts a simulation at time 0; Network.t is a read-only
attribute, to go back to a previous moment in time (e.g. to do another trial
of a simulation with a new noise instantiation) use the mechanism described
below.

For more details, including finer control over the scheduling of operations
and changing the value of dt between runs see
Scheduling and custom progress reporting.

Store/restore

Note that Network.run(), Network.store() and Network.restore() (or run(),
store(), restore()) are the only way of affecting the time of the clocks. In
contrast to Brian1, it is no longer necessary (nor possible) to directly set
the time of the clocks or call a reinit function.

The state of a network can also be stored on disk with the optional filename
argument of Network.store()/store(). This way, you can run the initial part of
a simulation once, store it to disk, and then continue from this state later.
Note that the store()/restore() mechanism does not re-create the network as
such, you still need to construct all the NeuronGroup, Synapses,
StateMonitor, ... objects, restoring will only restore all the state variable
values (membrane potential, conductances, synaptic connections/weights/delays,
...). This restoration does however restore the internal state of the objects
as well, e.g. spikes that have not been delivered yet because of synaptic
delays will be delivered correctly.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	User’s guide »

Multicompartment models

For Brian 1 users

See the document Multicompartmental models (Brian 1 –> 2 conversion) for
details how to convert Brian 1 code.

It is possible to create neuron models with a spatially extended morphology, using
the SpatialNeuron class. A SpatialNeuron is a single neuron with many compartments.
Essentially, it works as a NeuronGroup where elements are compartments instead of neurons.

A SpatialNeuron is specified by a morphology (see Creating a neuron morphology) and a set of equations for
transmembrane currents (see Creating a spatially extended neuron).

Creating a neuron morphology

Schematic morphologies

Morphologies can be created combining geometrical objects:

soma = Soma(diameter=30*um)
cylinder = Cylinder(diameter=1*um, length=100*um, n=10)

The first statement creates a single iso-potential compartment (i.e. with no axial resistance within the compartment),
with its area calculated as the area of a sphere with the given diameter. The second one specifies a cylinder consisting
of 10 compartments with identical diameter and the given total length.

For more precise control over the geometry, you can specify the length and diameter of each individual compartment,
including the diameter at the start of the section (i.e. for n compartments: n length and n+1 diameter
values) in a Section object:

section = Section(diameter=[6, 5, 4, 3, 2, 1]*um, length=[10, 10, 10, 5, 5]*um, n=5)

The individual compartments are modeled as truncated cones, changing the diameter linearly between the given diameters
over the length of the compartment. Note that the diameter argument specifies the values at the nodes between the
compartments, but accessing the diameter attribute of a Morphology object will return the diameter at the center
of the compartment (see the note below).

The following table summarizes the different options to create schematic morphologies (the black compartment before the
start of the section represents the parent compartment with diameter 15μm, not specified in the code below):

	
	Example

	Soma
	
Soma always has a single compartment
Soma(diameter=30*um)

[image: ../_images/soma.svg]

	Cylinder
	
Each compartment has fixed length and diameter
Cylinder(5, diameter=10*um, length=50*um)

[image: ../_images/cylinder.svg]

	Section
	
Length and diameter individually defined for each compartment (at start
and end)
Section(5, diameter=[15, 5, 10, 5, 10, 5]*um,
 length=[10, 20, 5, 5, 10]*um)

[image: ../_images/section.svg]

Note

For a Section, the diameter argument specifies the diameter between the compartments
(and at the beginning/end of the first/last compartment). the corresponding values can therefore be later retrieved
from the Morphology via the start_diameter and end_diameter attributes. The diameter attribute of a
Morphology does correspond to the diameter at the midpoint of the compartment. For a Cylinder,
start_diameter, diameter, and end_diameter are of course all identical.

The tree structure of a morphology is created by attaching Morphology objects together:

morpho = Soma(diameter=30*um)
morpho.axon = Cylinder(length=100*um, diameter=1*um, n=10)
morpho.dendrite = Cylinder(length=50*um, diameter=2*um, n=5)

These statements create a morphology consisting of a cylindrical axon and a dendrite attached to a spherical soma.
Note that the names axon and dendrite are arbitrary and chosen by the user. For example, the same morphology can
be created as follows:

morpho = Soma(diameter=30*um)
morpho.output_process = Cylinder(length=100*um, diameter=1*um, n=10)
morpho.input_process = Cylinder(length=50*um, diameter=2*um, n=5)

The syntax is recursive, for example two sections can be added at the end of the dendrite as follows:

morpho.dendrite.branch1 = Cylinder(length=50*um, diameter=1*um, n=3)
morpho.dendrite.branch2 = Cylinder(length=50*um, diameter=1*um, n=3)

Equivalently, one can use an indexing syntax:

morpho['dendrite']['branch1'] = Cylinder(length=50*um, diameter=1*um, n=3)
morpho['dendrite']['branch2'] = Cylinder(length=50*um, diameter=1*um, n=3)

The names given to sections are completely up to the user. However, names that consist of a single digit (1 to
9) or the letters L (for left) and R (for right) allow for a special short syntax: they can be joined
together directly, without the needs for dots (or dictionary syntax) and therefore allow to quickly navigate through
the morphology tree (e.g. morpho.LRLLR is equivalent to morpho.L.R.L.L.R). This short syntax can also be used to
create trees:

morpho = Soma(diameter=30*um)
morpho.L = Cylinder(length=10*um, diameter=1*um, n=3)
morpho.L1 = Cylinder(length=5*um, diameter=1*um, n=3)
morpho.L2 = Cylinder(length=5*um, diameter=1*um, n=3)
morpho.L3 = Cylinder(length=5*um, diameter=1*um, n=3)
morpho.R = Cylinder(length=10*um, diameter=1*um, n=3)
morpho.RL = Cylinder(length=5*um, diameter=1*um, n=3)
morpho.RR = Cylinder(length=5*um, diameter=1*um, n=3)

The above instructions create a dendritic tree with two main sections, three sections attached to the first section and
two to the second. This can be verified with the Morphology.topology() method:

>>> morpho.topology()
() [root]
 `---| .L
 `---| .L.1
 `---| .L.2
 `---| .L.3
 `---| .R
 `---| .R.L
 `---| .R.R

Note that an expression such as morpho.L will always refer to the entire subtree. However, accessing the attributes
(e.g. diameter) will only return the values for the given section.

Note

To avoid ambiguities, do not use names for sections that can be interpreted in the abbreviated way detailed above.
For example, do not name a child section L1 (which will be interpreted as the first child of the child L)

The number of compartments in a section can be accessed with morpho.n (or morpho.L.n, etc.), the number of
total sections and compartments in a subtree can be accessed with morpho.total_sections and
morpho.total_compartments respectively.

Adding coordinates

For plotting purposes, it can be useful to add coordinates to a Morphology that was created using the “schematic”
approach described above. This can be done by calling the generate_coordinates method on a morphology,
which will return an identical morphology but with additional 2D or 3D coordinates. By default, this method creates a
morphology according to a deterministic algorithm in 2D:

new_morpho = morpho.generate_coordinates()

[image: ../_images/morphology_deterministic_coords.png]
To get more “realistic” morphologies, this function can also be used to create morphologies in 3D where the orientation
of each section differs from the orientation of the parent section by a random amount:

new_morpho = morpho.generate_coordinates(section_randomness=25)

	[image: ../_images/morphology_random_section_1.png]

	[image: ../_images/morphology_random_section_2.png]

	[image: ../_images/morphology_random_section_3.png]

This algorithm will base the orientation of each section on the orientation of the parent section and then randomly
perturb this orientation. More precisely, the algorithm first chooses a random vector orthogonal to the orientation
of the parent section. Then, the section will be rotated around this orthogonal vector by a random angle, drawn from an
exponential distribution with the \(\beta\) parameter (in degrees) given by section_randomness. This
\(\beta\) parameter specifies both the mean and the standard deviation of the rotation angle. Note that no maximum
rotation angle is enforced, values for section_randomness should therefore be reasonably small (e.g. using a
section_randomness of 45 would already lead to a probability of ~14% that the section will be rotated by more
than 90 degrees, therefore making the section go “backwards”).

In addition, also the orientation of each compartment within a section can be randomly varied:

new_morpho = morpho.generate_coordinates(section_randomness=25,
 compartment_randomness=15)

	[image: ../_images/morphology_random_section_compartment_1.png]

	[image: ../_images/morphology_random_section_compartment_2.png]

	[image: ../_images/morphology_random_section_compartment_3.png]

The algorithm is the same as the one presented above, but applied individually to each compartment within a section
(still based on the orientation on the parent section, not on the orientation of the previous compartment).

Complex morphologies

Morphologies can also be created from information about the compartment coordinates in 3D space. Such morphologies can
be loaded from a .swc file (a standard format for neuronal morphologies; for a large database of morphologies in
this format see http://neuromorpho.org):

morpho = Morphology.from_file('corticalcell.swc')

To manually create a morphology from a list of points in a similar format to SWC files, see Morphology.from_points.

Morphologies that are created in such a way will use standard names for the sections that allow for the short syntax
shown in the previous sections: if a section has one or two child sections, then they will be called L and R,
otherwise they will be numbered starting at 1.

Morphologies with coordinates can also be created section by section, following the same syntax as for “schematic”
morphologies:

soma = Soma(diameter=30*um, x=50*um, y=20*um)
cylinder = Cylinder(10, x=[0, 100]*um, diameter=1*um)
section = Section(5,
 x=[0, 10, 20, 30, 40, 50]*um,
 y=[0, 10, 20, 30, 40, 50]*um,
 z=[0, 10, 10, 10, 10, 10]*um,
 diameter=[6, 5, 4, 3, 2, 1])*um

Note that the x, y, z attributes of Morphology and SpatialNeuron will return the coordinates at the
midpoint of each compartment (as for all other attributes that vary over the length of a compartment, e.g. diameter
or distance), but during construction the coordinates refer to the start and end of the section (Cylinder),
respectively to the coordinates of the nodes between the compartments (Section).

A few additional remarks:

	In the majority of simulations, coordinates are not used in the neuronal equations, therefore the coordinates are
purely for visualization purposes and do not affect the simulation results in any way.

	Coordinate specification cannot be combined with length specification – lengths are automatically calculated from
the coordinates.

	The coordinate specification can also be 1- or 2-dimensional (as in the first two examples above), the unspecified
coordinate will use 0 μm.

	All coordinates are interpreted relative to the parent compartment, i.e. the point (0 μm, 0 μm, 0 μm) refers to the
end point of the previous compartment. Most of the time, the first element of the coordinate specification is
therefore 0 μm, to continue a section where the previous one ended. However, it can be convenient to use a value
different from 0 μm for sections connecting to the Soma to make them (visually) connect to a point on the sphere
surface instead of the center of the sphere.

Creating a spatially extended neuron

A SpatialNeuron is a spatially extended neuron. It is created by specifying the morphology as a
Morphology object, the equations for transmembrane currents, and optionally the specific membrane capacitance
Cm and intracellular resistivity Ri:

gL = 1e-4*siemens/cm**2
EL = -70*mV
eqs = '''
Im=gL * (EL - v) : amp/meter**2
I : amp (point current)
'''
neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=1*uF/cm**2, Ri=100*ohm*cm)
neuron.v = EL + 10*mV

Several state variables are created automatically: the SpatialNeuron inherits all the geometrical variables of the
compartments (length, diameter, area, volume), as well as the distance variable that gives the
distance to the soma. For morphologies that use coordinates, the x, y and z variables are provided as well.
Additionally, a state variable Cm is created. It is initialized with the value given at construction, but it can be
modified on a compartment per compartment basis (which is useful to model myelinated axons). The membrane potential is
stored in state variable v.

Note that for all variable values that vary across a compartment (e.g. distance, x, y, z, v), the
value that is reported is the value at the midpoint of the compartment.

The key state variable, which must be specified at construction, is Im. It is the total transmembrane current,
expressed in units of current per area. This is a mandatory line in the definition of the model. The rest of the
string description may include other state variables (differential equations or subexpressions)
or parameters, exactly as in NeuronGroup. At every timestep, Brian integrates the state variables, calculates the
transmembrane current at every point on the neuronal morphology, and updates v using the transmembrane current and
the diffusion current, which is calculated based on the morphology and the intracellular resistivity.
Note that the transmembrane current is a surfacic current, not the total current in the compartement.
This choice means that the model equations are independent of the number of compartments chosen for the simulation.
The space and time constants can obtained for any point of the neuron with the space_constant respectively
time_constant attributes:

l = neuron.space_constant[0]
tau = neuron.time_constant[0]

The calculation is based on the local total conductance (not just the leak conductance), therefore, it can potentially
vary during a simulation (e.g. decrease during an action potential). The reported value is only correct for compartments
with a cylindrical geometry, though, it does not give reasonable values for compartments with strongly varying
diameter.

To inject a current I at a particular point (e.g. through an electrode or a synapse), this current must be divided by
the area of the compartment when inserted in the transmembrane current equation. This is done automatically when
the flag point current is specified, as in the example above. This flag can apply only to subexpressions or
parameters with amp units. Internally, the expression of the transmembrane current Im is simply augmented with
+I/area. A current can then be injected in the first compartment of the neuron (generally the soma) as follows:

neuron.I[0] = 1*nA

State variables of the SpatialNeuron include all the compartments of that neuron (including subtrees).
Therefore, the statement neuron.v = EL + 10*mV sets the membrane potential of the entire neuron at -60 mV.

Subtrees can be accessed by attribute (in the same way as in Morphology objects):

neuron.axon.gNa = 10*gL

Note that the state variables correspond to the entire subtree, not just the main section.
That is, if the axon had branches, then the above statement would change gNa on the main section
and all the sections in the subtree. To access the main section only, use the attribute main:

neuron.axon.main.gNa = 10*gL

A typical use case is when one wants to change parameter values at the soma only. For example, inserting
an electrode current at the soma is done as follows:

neuron.main.I = 1*nA

A part of a section can be accessed as follows:

initial_segment = neuron.axon[10*um:50*um]

Synaptic inputs

There are two methods to have synapses on SpatialNeuron.
The first one to insert synaptic equations directly in the neuron equations:

eqs='''
Im = gL * (EL - v) : amp/meter**2
Is = gs * (Es - v) : amp (point current)
dgs/dt = -gs/taus : siemens
'''
neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=1*uF/cm**2, Ri=100*ohm*cm)

Note that, as for electrode stimulation, the synaptic current must be defined as a point current.
Then we use a Synapses object to connect a spike source to the neuron:

S = Synapses(stimulation, neuron, on_pre='gs += w')
S.connect(i=0, j=50)
S.connect(i=1, j=100)

This creates two synapses, on compartments 50 and 100. One can specify the compartment number
with its spatial position by indexing the morphology:

S.connect(i=0, j=morpho[25*um])
S.connect(i=1, j=morpho.axon[30*um])

In this method for creating synapses,
there is a single value for the synaptic conductance in any compartment.
This means that it will fail if there are several synapses onto the same compartment and synaptic equations
are nonlinear.
The second method, which works in such cases, is to have synaptic equations in the
Synapses object:

eqs='''
Im = gL * (EL - v) : amp/meter**2
Is = gs * (Es - v) : amp (point current)
gs : siemens
'''
neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=1 * uF / cm ** 2, Ri=100 * ohm * cm)
S = Synapses(stimulation, neuron, model='''dg/dt = -g/taus : siemens
 gs_post = g : siemens (summed)''',
 on_pre='g += w')

Here each synapse (instead of each compartment) has an associated value g, and all values of
g for each compartment (i.e., all synapses targeting that compartment) are collected
into the compartmental variable gs.

Detecting spikes

To detect and record spikes, we must specify a threshold condition, essentially in the same
way as for a NeuronGroup:

neuron = SpatialNeuron(morphology=morpho, model=eqs, threshold='v > 0*mV', refractory='v > -10*mV')

Here spikes are detected when the membrane potential v reaches 0 mV. Because there is generally
no explicit reset in this type of model (although it is possible to specify one), v remains above
0 mV for some time. To avoid detecting spikes during this entire time, we specify a refractory period.
In this case no spike is detected as long as v is greater than -10 mV. Another possibility could be:

neuron = SpatialNeuron(morphology=morpho, model=eqs, threshold='m > 0.5', refractory='m > 0.4')

where m is the state variable for sodium channel activation (assuming this has been defined in the
model). Here a spike is detected when half of the sodium channels are open.

With the syntax above, spikes are detected in all compartments of the neuron. To detect them in a single
compartment, use the threshold_location keyword:

neuron = SpatialNeuron(morphology=morpho, model=eqs, threshold='m > 0.5', threshold_location=30,
 refractory='m > 0.4')

In this case, spikes are only detecting in compartment number 30. Reset then applies locally to
that compartment (if a reset statement is defined).
Again the location of the threshold can be specified with spatial position:

neuron = SpatialNeuron(morphology=morpho, model=eqs, threshold='m > 0.5',
 threshold_location=morpho.axon[30*um],
 refractory='m > 0.4')

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	User’s guide »

Computational methods and efficiency

	Runtime code generation

	Standalone code generation

	Compiler settings

Brian has several different methods for running the computations in a
simulation. The default mode is Runtime code generation, which runs the simulation loop
in Python but compiles and executes the modules doing the actual simulation
work (numerical integration, synaptic propagation, etc.) in a defined target
language. Brian will select the best available target language automatically.
On Windows, to ensure that you get the advantages of compiled code, read
the instructions on installing a suitable compiler in
Windows.
Runtime mode has the advantage that you can combine the computations
performed by Brian with arbitrary Python code specified as NetworkOperation.

The fact that the simulation is run in Python means that there is a (potentially
big) overhead for each simulated time step. An alternative is to run Brian in with
Standalone code generation – this is in general faster (for certain types of simulations
much faster) but cannot be used for all kinds of simulations. To enable this
mode, add the following line after your Brian import, but before your simulation
code:

set_device('cpp_standalone')

For detailed control over the compilation process (both for runtime and standalone
code generation), you can change the Compiler settings that are used.

The following topics are not essential for beginners.

Runtime code generation

Code generation means that Brian takes the Python code and strings
in your model and generates code in one of several possible different
languages and actually executes that. The target language for this code
generation process is set in the codegen.target preference. By default, this
preference is set to 'auto', meaning that it will chose a compiled language
target if possible and fall back to Python otherwise (it will also raise a warning
in this case, set codegen.target to 'numpy' explicitly to avoid this warning).
There are two compiled language targets for Python 2.x, 'weave' (needing a
working installation of a C++ compiler) and 'cython' (needing the Cython [http://cython.org/]
package in addition); for Python 3.x, only 'cython' is available. If you want to
chose a code generation target explicitly (e.g. because you want to get rid of the
warning that only the Python fallback is available), set the preference to 'numpy',
'weave' or 'cython' at the beginning of your script:

from brian2 import *
prefs.codegen.target = 'numpy' # use the Python fallback

See Preferences for different ways of setting preferences.

You might find that running simulations in weave or Cython modes won’t work
or is not as efficient as you were expecting. This is probably because you’re
using Python functions which are not compatible with weave or Cython. For
example, if you wrote something like this it would not be efficient:

from brian2 import *
prefs.codegen.target = 'cython'
def f(x):
 return abs(x)
G = NeuronGroup(10000, 'dv/dt = -x*f(x) : 1')

The reason is that the function f(x) is a Python function and so cannot
be called from C++ directly. To solve this problem, you need to provide an
implementation of the function in the target language. See
Functions.

Standalone code generation

Brian supports generating standalone code for multiple devices. In this mode, running a Brian script generates
source code in a project tree for the target device/language. This code can then be compiled and run on the device,
and modified if needed. At the moment, the only “device” supported is standalone C++ code.
In some cases, the speed gains can be impressive, in particular for smaller networks with complicated spike
propagation rules (such as STDP).

To use the C++ standalone mode, you only have to make very small changes to your script. The exact change depends on
whether your script has only a single run() (or Network.run()) call, or several of them:

Single run call

At the beginning of the script, i.e. after the import statements, add:

set_device('cpp_standalone')

The CPPStandaloneDevice.build function will be automatically called with default arguments right after the run()
call. If you need non-standard arguments then you can specify them as part of the set_device() call:

set_device('cpp_standalone', directory='my_directory', debug=True)

Multiple run calls

At the beginning of the script, i.e. after the import statements, add:

set_device('cpp_standalone', build_on_run=False)

After the last run() call, call device.build() explicitly:

device.build(directory='output', compile=True, run=True, debug=False)

The build function has several arguments to specify the output directory, whether or not to
compile and run the project after creating it and whether or not to compile it with debugging support or not.

Multiple builds

To run multiple full simulations (i.e. multiple device.build calls, not just
multiple run() calls as discussed above), you have to reinitialize the device
again:

device.reinit()
device.activate()

Note that the device “forgets” about all previously set build options provided
to set_device() (most importantly the build_on_run option, but also e.g. the
directory), you’ll have to specify them as part of the Device.activate call.
Also, Device.activate will reset the defaultclock, you’ll therefore have to
set its dt after the activate call if you want to use a non-default
value.

Limitations

Not all features of Brian will work with C++ standalone, in particular Python based network operations and
some array based syntax such as S.w[0, :] = ... will not work. If possible, rewrite these using string
based syntax and they should work. Also note that since the Python code actually runs as normal, code that does
something like this may not behave as you would like:

results = []
for val in vals:
 # set up a network
 run()
 results.append(result)

The current C++ standalone code generation only works for a fixed number of run statements, not with loops.
If you need to do loops or other features not supported automatically, you can do so by inspecting the generated
C++ source code and modifying it, or by inserting code directly into the main loop as follows:

device.insert_code('main', '''
cout << "Testing direct insertion of code." << endl;
''')

Variables

After a simulation has been run (after the run() call if set_device() has been called with build_on_run set to
True or after the Device.build call with run set to True), state variables and
monitored variables can be accessed using standard syntax, with a few exceptions (e.g. string expressions for indexing).

Multi-threading with OpenMP

Warning

OpenMP code has not yet been well tested and so may be inaccurate.

When using the C++ standalone mode, you have the opportunity to turn on multi-threading, if your C++ compiler is compatible with
OpenMP. By default, this option is turned off and only one thread is used. However, by changing the preferences of the codegen.cpp_standalone
object, you can turn it on. To do so, just add the following line in your python script:

prefs.devices.cpp_standalone.openmp_threads = XX

XX should be a positive value representing the number of threads that will be
used during the simulation. Note that the speedup will strongly depend on the
network, so there is no guarantee that the speedup will be linear as a function
of the number of threads. However, this is working fine for networks with not
too small timestep (dt > 0.1ms), and results do not depend on the number of
threads used in the simulation.

Compiler settings

If using C++ code generation (either via weave, cython or standalone), the
compiler settings can make a big difference for the speed of the simulation.
By default, Brian uses a set of compiler settings that switches on various
optimizations and compiles for running on the same architecture where the
code is compiled. This allows the compiler to make use of as many advanced
instructions as possible, but reduces portability of the generated executable
(which is not usually an issue).

If there are any issues with these compiler settings, for example because
you are using an older version of the C++ compiler or because you want to
run the generated code on a different architecture, you can change the
settings by manually specifying the codegen.cpp.extra_compile_args
preference (or by using codegen.cpp.extra_compile_args_gcc or
codegen.cpp.extra_compile_args_msvc if you want to specify the settings
for either compiler only).

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

Advanced guide

This section has additional information on details not covered in the
User’s guide.

	Functions
	Default functions

	User-provided functions

	Preferences
	Accessing and setting preferences

	Preference files

	List of preferences

	Logging
	Showing/hiding log messages

	Preferences

	Namespaces

	Scheduling and custom progress reporting
	Scheduling

	Progress reporting

	Random numbers
	Seeding and reproducibility

	Custom events
	Scheduling

	State update
	Explicit state update

	Choice of state updaters

	Implicit state updates

	How Brian works
	Clock-driven versus event-driven

	Code overview

	Syntax layer

	Computational engine

	Interfacing with external code

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Advanced guide »

Functions

All equations, expressions and statements in Brian can make use of mathematical
functions. However, functions have to be prepared for use with Brian for two
reasons: 1) Brian is strict about checking the consistency of units, therefore
every function has to specify how it deals with units; 2) functions need to
be implemented differently for different code generation targets.

Brian provides a number of default functions that are already prepared for use
with numpy and C++ and also provides a mechanism for preparing new functions
for use (see below).

Default functions

The following functions (stored in the DEFAULT_FUNCTIONS dictionary) are
ready for use:

	Random numbers: rand(), randn() (Note that these functions should be
called without arguments, the code generation process will take care of
generating an array of numbers for numpy).

	Elementary functions: sqrt, exp, log, log10, abs, sign

	Trigonometric functions: sin, cos, tan, sinh, cosh,
tanh, arcsin, arccos, arctan

	General utility functions: clip, floor, ceil

Brian also provides a special purpose function int, which can be used to
convert a an expression or variable into an integer value. This is especially
useful for boolean values (which will be converted into 0 or 1), for example to
have a conditional evaluation as part of an equation or statement which
sometimes allows to circumvent the lack of an if statement. For
example, the following reset statement resets the variable v to either v_r1
or v_r2, depending on the value of w:
'v = v_r1 * int(w <= 0.5) + v_r2 * int(w > 0.5)'

User-provided functions

Python code generation

If a function is only used in contexts that use Python code generation,
preparing a function for use with Brian only means specifying its units. The
simplest way to do this is to use the check_units() decorator:

@check_units(x1=meter, y1=meter, x2=meter, y2=meter, result=meter)
def distance(x1, y1, x2, y2):
 return sqrt((x1 - x2)**2 + (y1 - y2)**2)

Another option is to wrap the function in a Function object:

def distance(x1, y1, x2, y2):
 return sqrt((x1 - x2)**2 + (y1 - y2)**2)
wrap the distance function
distance = Function(distance, arg_units=[meter, meter, meter, meter],
 return_unit=meter)

The use of Brian’s unit system has the benefit of checking the consistency of
units for every operation but at the expense of performance.
Consider the following function, for example:

@check_units(I=amp, result=Hz)
def piecewise_linear(I):
 return clip((I-1*nA) * 50*Hz/nA, 0*Hz, 100*Hz)

When Brian runs a simulation, the state variables are stored and passed around
without units for performance reasons. If the above function is used, however,
Brian adds units to its input argument so that the operations inside the
function do not fail with dimension mismatches. Accordingly, units are removed
from the return value so that the function output can be used with the rest
of the code. For better performance, Brian can alter the namespace of the
function when it is executed as part of the simulation and remove all the
units, then pass values without units to the function. In the above example,
this means making the symbol nA refer to 1e-9 and Hz to 1. To
use this mechanism, add the decorator implementation() with the
discard_units keyword:

@implementation('numpy', discard_units=True)
@check_units(I=amp, result=Hz)
def piecewise_linear(I):
 return clip((I-1*nA) * 50*Hz/nA, 0*Hz, 100*Hz)

Note that the use of the function outside of simulation runs is not affected,
i.e. using piecewise_linear still requires a current in Ampere and returns
a rate in Hertz. The discard_units mechanism does not work in all cases,
e.g. it does not work if the function refers to units as brian2.nA instead
of nA, if it uses imports inside the function (e.g.
from brian2 import nA), etc. The discard_units can also be switched on
for all functions without having to use the implementation() decorator by
setting the codegen.runtime.numpy.discard_units preference.

Other code generation targets

To make a function available for other code generation targets (e.g. C++),
implementations for these targets have to be added. This can be achieved using
the implementation() decorator. The form of the code (e.g. a simple string or
a dictionary of strings) necessary is target-dependent, for C++ both options
are allowed, a simple string will be interpreted as filling the
'support_code' block. Note that both 'cpp' and 'weave' can be used
to provide C++ implementations, the first should be used for generic C++
implementations, and the latter if weave-specific code is necessary. An
implementation for the C++ target could look like this:

@implementation('cpp', '''
 double piecewise_linear(double I) {
 if (I < 1e-9)
 return 0;
 if (I > 3e-9)
 return 100;
 return (I/1e-9 - 1) * 50;
 }
 ''')
@check_units(I=amp, result=Hz)
def piecewise_linear(I):
 return clip((I-1*nA) * 50*Hz/nA, 0*Hz, 100*Hz)

Alternatively, FunctionImplementation objects can be added to the Function
object.

The same sort of approach as for C++ works for Cython using the
'cython' target. The example above would look like this:

@implementation('cython', '''
 cdef double piecewise_linear(double I):
 if I<1e-9:
 return 0.0
 elif I>3e-9:
 return 100.0
 return (I/1e-9-1)*50
 ''')
@check_units(I=amp, result=Hz)
def piecewise_linear(I):
 return clip((I-1*nA) * 50*Hz/nA, 0*Hz, 100*Hz)

Arrays vs. scalar values in user-provided functions

Equations, expressions and abstract code statements are always implicitly
referring to all the neurons in a NeuronGroup, all the synapses in a
Synapses object, etc. Therefore, function calls also apply to more than a
single value. The way in which this is handled differs between code generation
targets that support vectorized expressions (e.g. the numpy target) and
targets that don’t (e.g. the weave target or the cpp_standalone mode).
If the code generation target supports vectorized expressions, it will receive
an array of values. For example, in the piecewise_linear example above, the
argument I will be an array of values and the function returns an array of
values. For code generation without support for vectorized expressions, all
code will be executed in a loop (over neurons, over synapses, ...), the function
will therefore be called several times with a single value each time.

In both cases, the function will only receive the “relevant” values, meaning
that if for example a function is evaluated as part of a reset statement, it
will only receive values for the neurons that just spiked.

Additional namespace

Some functions need additional data to compute a result, e.g. a TimedArray
needs access to the underlying array. For the numpy target, a function can
simply use a reference to an object defined outside the function, there is no
need to explicitly pass values in a namespace. For the other code language
targets, values can be passed in the namespace argument of the
implementation() decorator or the
add_implementation method. The namespace
values are then accessible in the function code under the given name, prefixed
with _namespace. Note that this mechanism should only be used for numpy
arrays or general objects (e.g. function references to call Python functions
from weave or Cython code). Scalar values should be directly included in the
function code, by using a “dynamic implemention” (see
add_dynamic_implementation).

See TimedArray and BinomialFunction for examples that use this mechanism.

Data types

By default, functions are assumed to take any type of argument, and return a floating
point value. If you want to put a restriction on the type of an argument, or specify
that the return type should be something other than float, either declare it as a
Function (and see its documentation on specifying types) or use the declare_types()
decorator, e.g.:

@check_units(a=1, b=1, result=1)
@declare_types(a='integer', result='highest')
def f(a, b):
 return a*b

This is potentially important if you have functions that return integer or boolean
values, because Brian’s code generation optimisation step will make some potentially
incorrect simplifications if it assumes that the return type is floating point.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Advanced guide »

Preferences

Brian has a system of global preferences that affect how certain objects
behave. These can be set either in scripts by using the prefs object
or in a file. Each preference looks like codegen.c.compiler, i.e. dotted
names.

Accessing and setting preferences

Preferences can be accessed and set either keyword-based or attribute-based.
The following are equivalent:

prefs['codegen.c.compiler'] = 'gcc'
prefs.codegen.c.compiler = 'gcc'

Using the attribute-based form can be particulary useful for interactive
work, e.g. in ipython, as it offers autocompletion and documentation.
In ipython, prefs.codegen.c? would display a docstring with all
the preferences available in the codegen.c category.

Preference files

Preferences are stored in a hierarchy of files, with the following order
(each step overrides the values in the previous step but no error is raised
if one is missing):

	The global defaults are stored in the installation directory.

	The user default are stored in ~/.brian/user_preferences (which works on
Windows as well as Linux). The ~ symbol refers to the user directory.

	The file brian_preferences in the current directory.

The preference files are of the following form:

a.b.c = 1
Comment line
[a]
b.d = 2
[a.b]
b.e = 3

This would set preferences a.b.c=1, a.b.d=2 and a.b.e=3.

List of preferences

Brian itself defines the following preferences (including their default
values):

codegen

Code generation preferences

codegen.loop_invariant_optimisations = True

Whether to pull out scalar expressions out of the statements, so that
they are only evaluated once instead of once for every neuron/synapse/...
Can be switched off, e.g. because it complicates the code (and the same
optimisation is already performed by the compiler) or because the
code generation target does not deal well with it. Defaults to True.

codegen.string_expression_target = 'numpy'

Default target for the evaluation of string expressions (e.g. when
indexing state variables). Should normally not be changed from the
default numpy target, because the overhead of compiling code is not
worth the speed gain for simple expressions.

Accepts the same arguments as codegen.target, except for 'auto'

codegen.target = 'auto'

Default target for code generation.

Can be a string, in which case it should be one of:

	'auto' the default, automatically chose the best code generation
target available.

	'weave' uses scipy.weave to generate and compile C++ code,
should work anywhere where gcc is installed and available at the
command line.

	'cython', uses the Cython package to generate C++ code. Needs a
working installation of Cython and a C++ compiler.

	'numpy' works on all platforms and doesn’t need a C compiler but
is often less efficient.

Or it can be a CodeObject class.

codegen.cpp

C++ compilation preferences

codegen.cpp.compiler = ''

Compiler to use (uses default if empty)

Should be gcc or msvc.

codegen.cpp.define_macros = []

List of macros to define; each macro is defined using a 2-tuple,
where ‘value’ is either the string to define it to or None to
define it without a particular value (equivalent of “#define
FOO” in source or -DFOO on Unix C compiler command line).

codegen.cpp.extra_compile_args = None

Extra arguments to pass to compiler (if None, use either
extra_compile_args_gcc or extra_compile_args_msvc).

codegen.cpp.extra_compile_args_gcc = ['-w', '-O3', '-ffast-math', '-fno-finite-math-only', '-march=native']

Extra compile arguments to pass to GCC compiler

codegen.cpp.extra_compile_args_msvc = ['/Ox', '/w', '/arch:SSE2']

Extra compile arguments to pass to MSVC compiler (the default
/arch: flag is determined based on the processor architecture)

codegen.cpp.extra_link_args = []

Any extra platform- and compiler-specific information to use when
linking object files together.

codegen.cpp.headers = []

A list of strings specifying header files to use when compiling the
code. The list might look like [“<vector>”,“‘my_header’”]. Note that
the header strings need to be in a form than can be pasted at the end
of a #include statement in the C++ code.

codegen.cpp.include_dirs = []

Include directories to use. Note that $prefix/include will be
appended to the end automatically, where $prefix is Python’s
site-specific directory prefix as returned by sys.prefix [https://docs.python.org/2/library/sys.html#sys.prefix].

codegen.cpp.libraries = []

List of library names (not filenames or paths) to link against.

codegen.cpp.library_dirs = []

List of directories to search for C/C++ libraries at link time.

codegen.cpp.msvc_architecture = ''

MSVC architecture name (or use system architectue by default).

Could take values such as x86, amd64, etc.

codegen.cpp.msvc_vars_location = ''

Location of the MSVC command line tool (or search for best by default).

codegen.cpp.runtime_library_dirs = []

List of directories to search for C/C++ libraries at run time.

codegen.generators

Codegen generator preferences (see subcategories for individual languages)

codegen.generators.cpp

C++ codegen preferences

codegen.generators.cpp.flush_denormals = False

Adds code to flush denormals to zero.

The code is gcc and architecture specific, so may not compile on all
platforms. The code, for reference is:

#define CSR_FLUSH_TO_ZERO (1 << 15)
unsigned csr = __builtin_ia32_stmxcsr();
csr |= CSR_FLUSH_TO_ZERO;
__builtin_ia32_ldmxcsr(csr);

Found at http://stackoverflow.com/questions/2487653/avoiding-denormal-values-in-c.

codegen.generators.cpp.restrict_keyword = '__restrict'

The keyword used for the given compiler to declare pointers as restricted.

This keyword is different on different compilers, the default works for
gcc and MSVS.

codegen.runtime

Runtime codegen preferences (see subcategories for individual targets)

codegen.runtime.cython

Cython runtime codegen preferences

codegen.runtime.cython.cache_dir = None

Location of the cache directory for Cython files. By default,
will be stored in a brian_extensions subdirectory
where Cython inline stores its temporary files
(the result of get_cython_cache_dir()).

codegen.runtime.cython.multiprocess_safe = True

Whether to use a lock file to prevent simultaneous write access
to cython .pyx and .so files.

codegen.runtime.numpy

Numpy runtime codegen preferences

codegen.runtime.numpy.discard_units = False

Whether to change the namespace of user-specifed functions to remove
units.

core

Core Brian preferences

core.default_float_dtype = float64

Default dtype for all arrays of scalars (state variables, weights, etc.).

Currently, this is not supported (only float64 can be used).

core.default_integer_dtype = int32

Default dtype for all arrays of integer scalars.

core.outdated_dependency_error = True

Whether to raise an error for outdated dependencies (True) or just
a warning (False).

core.network

Network preferences

core.network.default_schedule = ['start', 'groups', 'thresholds', 'synapses', 'resets', 'end']

Default schedule used for networks that
don’t specify a schedule.

devices

Device preferences

devices.cpp_standalone

C++ standalone preferences

devices.cpp_standalone.openmp_spatialneuron_strategy = None

Which strategy to chose for solving the three tridiagonal systems with
OpenMP: 'branches' means to solve the three systems sequentially, but
for all the branches in parallel, 'systems' means to solve the three
systems in parallel, but all the branches within each system
sequentially. The 'branches' approach is usually better for
morphologies with many branches and a large number of threads, while the
'systems' strategy should be better for morphologies with few
branches (e.g. cables) and/or simulations with no more than three
threads. If not specified (the default), the 'systems' strategy will
be used when using no more than three threads or when the morphology
has less than three branches in total.

devices.cpp_standalone.openmp_threads = 0

The number of threads to use if OpenMP is turned on. By default, this value is set to 0 and the C++ code
is generated without any reference to OpenMP. If greater than 0, then the corresponding number of threads
are used to launch the simulation.

logging

Logging system preferences

logging.console_log_level = 'INFO'

What log level to use for the log written to the console.

Has to be one of CRITICAL, ERROR, WARNING, INFO, DEBUG or DIAGNOSTIC.

logging.delete_log_on_exit = True

Whether to delete the log and script file on exit.

If set to True (the default), log files (and the copy of the main
script) will be deleted after the brian process has exited, unless an
uncaught exception occured. If set to False, all log files will be kept.

logging.file_log = True

Whether to log to a file or not.

If set to True (the default), logging information will be written
to a file. The log level can be set via the logging.file_log_level
preference.

logging.file_log_level = 'DIAGNOSTIC'

What log level to use for the log written to the log file.

In case file logging is activated (see logging.file_log), which log
level should be used for logging. Has to be one of CRITICAL, ERROR,
WARNING, INFO, DEBUG or DIAGNOSTIC.

logging.save_script = True

Whether to save a copy of the script that is run.

If set to True (the default), a copy of the currently run script
is saved to a temporary location. It is deleted after a successful
run (unless logging.delete_log_on_exit is False) but is kept after
an uncaught exception occured. This can be helpful for debugging,
in particular when several simulations are running in parallel.

logging.std_redirection = True

Whether or not to redirect stdout/stderr to null at certain places.

This silences a lot of annoying compiler output, but will also hide
error messages making it harder to debug problems. You can always
temporarily switch it off when debugging. If
logging.std_redirection_to_file is set to True as well, then the
output is saved to a file and if an error occurs the name of this file
will be printed.

logging.std_redirection_to_file = True

Whether to redirect stdout/stderr to a file.

If both logging.std_redirection and this preference are set to
True, all standard output/error (most importantly output from
the compiler) will be stored in files and if an error occurs the name
of this file will be printed. If logging.std_redirection is True
and this preference is False, then all standard output/error will
be completely suppressed, i.e. neither be displayed nor stored in a
file.

The value of this preference is ignore if logging.std_redirection is
set to False.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Advanced guide »

Logging

Brian uses a logging system to display warnings and general information messages
to the user, as well as writing them to a file with more detailed information,
useful for debugging. Each log message has one of the following “log levels”:

	ERROR

	Only used when an exception is raised, i.e. an error occurs and the current
operation is interrupted. Example: You use a variable name in an equation
that Brian does not recognize.

	WARNING

	Brian thinks that something is most likely a bug, but it cannot be sure.
Example: You use a Synapses object without any synapses in your
simulation.

	INFO

	Brian wants to make the user aware of some automatic choice that it did for
the user. Example: You did not specify an integration method for a
NeuronGroup and therefore Brian chose an appropriate method for you.

	DEBUG

	Additional information that might be useful when a simulation is not working
as expected. Example: The integration timestep used during the simulation.

	DIAGNOSTIC

	Additional information useful when tracking down bugs in Brian itself.
Example: The generated code for a CodeObject.

By default, all messages are written to the log file and all messages of level
INFO and above are displayed on the console. To change what messages are
displayed, see below.

Note

By default, the log file is deleted after a successful simulation run,
i.e. when the simulation exited without an error. To keep the log around,
set the logging.delete_log_on_exit preference to False.

Showing/hiding log messages

If you want to change what messages are displayed on the console, you can call a
method of the method of BrianLogger:

BrianLogger.log_level_debug() # now also display debug messages

It is also possible to suppress messages for certain sub-hierarchies by using
BrianLogger.suppress_hierarchy:

Suppress code generation messages on the console
BrianLogger.suppress_hierarchy('brian2.codegen')
Suppress preference messages even in the log file
BrianLogger.suppress_hierarchy('brian2.core.preferences',
 filter_log_file=True)

Similarly, messages ending in a certain name can be suppressed with
BrianLogger.suppress_name:

Suppress resolution conflict warnings
BrianLogger.suppress_name('resolution_conflict')

These functions should be used with care, as they suppresses messages
independent of the level, i.e. even warning and error messages.

Preferences

You can also change details of the logging system via Brian’s Preferences
system. With this mechanism, you can switch the logging to a file off completely
(by setting logging.file_log to False) or have it log less messages (by
setting logging.file_log_level to a level higher than DIAGNOSTIC) – this
can be important for long-running simulations where the log might otherwise take
up a lot of disk space. For a list of all preferences related to logging, see the
documentation of the brian2.utils.logger module.

Warning

Most of the logging preferences are only taken into account during
the initialization of the logging system which takes place as soon as brian2
is imported. Therefore, if you use e.g. prefs.logging.file_log = False in
your script, this will not have the intended effect! Instead, set these
preferences in a file (see Preferences).

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Advanced guide »

Namespaces

Equations can contain references to
external parameters or functions. During the initialisation of a NeuronGroup
or a Synapses object, this namespace can be provided as an argument. This
is a group-specific namespace that will only be used for names in the context
of the respective group. Note that units and a set of standard functions are
always provided and should not be given explicitly.
This namespace does not necessarily need to be exhaustive at the time of the
creation of the NeuronGroup/Synapses, entries can be added (or modified)
at a later stage via the namespace attribute (e.g.
G.namespace['tau'] = 10*ms).

At the point of the call to the Network.run() namespace, any group-specific
namespace will be augmented by the “run namespace”. This namespace can be
either given explicitly as an argument to the run method or it will
be taken from the locals and globals surrounding the call. A warning will be
emitted if a name is defined in more than one namespace.

To summarize: an external identifier will be looked up in the context of an
object such as NeuronGroup or Synapses. It will follow the following
resolution hierarchy:

	Default unit and function names.

	Names defined in the explicit group-specific namespace.

	Names in the run namespace which is either explicitly given or the implicit
namespace surrounding the run call.

Note that if you completely specify your namespaces at the Group level, you
should probably pass an empty dictionary as the namespace argument to the
run call – this will completely switch off the “implicit namespace”
mechanism.

The following three examples show the different ways of providing external
variable values, all having the same effect in this case:

Explicit argument to the NeuronGroup
G = NeuronGroup(1, 'dv/dt = -v / tau : 1', namespace={'tau': 10*ms})
net = Network(G)
net.run(10*ms)

Explicit argument to the run function
G = NeuronGroup(1, 'dv/dt = -v / tau : 1')
net = Network(G)
net.run(10*ms, namespace={'tau': 10*ms})

Implicit namespace from the context
G = NeuronGroup(1, 'dv/dt = -v / tau : 1')
net = Network(G)
tau = 10*ms
net.run(10*ms)

External variables are free to change between runs (but not during one run),
the value at the time of the run() call is used in the simulation.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Advanced guide »

Scheduling and custom progress reporting

Scheduling

Every simulated object in Brian has three attributes that can be specified at
object creation time: dt, when, and order. The time step of the
simulation is determined by dt, if it is specified, a new Clock with the
given dt will be created for the object. Alternatively, a clock object
can be specified directly, this can be useful if a clock should be shared
between several objects – under most circumstances, however, a user should not
have to deal with the creation of Clock objects and just define dt. If
neither a dt nor a clock argument is specified, the object will use the
defaultclock. Setting defaultclock.dt will therefore change the dt of
all objects that use the defaultclock.

Note that directly changing the dt attribute of an object is not allowed,
neither it is possible to assign to dt in abstract code statements. To
change dt between runs, change the dt attribute of the respective
Clock object (which is also accessible as the clock attribute of each
BrianObject). The when and the order attributes can be changed by
setting the respective attributes of a BrianObject.

During a single time step, objects are updated according to their when
argument’s position in the schedule. This schedule is determined by
Network.schedule which is a list of strings, determining “execution slots” and
their order. It defaults to: ['start', 'groups', 'thresholds', 'synapses',
'resets', 'end']. In addition to the names provided in the schedule, names
such as before_thresholds or after_synapses can be used that are
understood as slots in the respective positions. The default
for the when attribute is a sensible value for most objects (resets will
happen in the reset slot, etc.) but sometimes it make sense to change it,
e.g. if one would like a StateMonitor, which by default records in the
end slot, to record the membrane potential before a reset is applied
(otherwise no threshold crossings will be observed in the membrane potential
traces). Note that you can also add new slots to the schedule and refer to them
in the when argument of an object.

Finally, if during a time step two objects fall in the same execution
slot, they will be updated in ascending order according to their
order attribute, an integer number defaulting to 0. If two objects have
the same when and order attribute then they will be updated in an
arbitrary but reproducible order (based on the lexicographical order of their
names).

Note that objects that don’t do any computation by themselves but only
act as a container for other objects (e.g. a NeuronGroup which contains a
StateUpdater, a Resetter and a Thresholder), don’t have any value for
when, but pass on the given values for dt and order to their
containing objects.

Every new Network starts a simulation at time 0; Network.t is a read-only
attribute, to go back to a previous moment in time (e.g. to do another trial
of a simulation with a new noise instantiation) use the mechanism described
below.

Note that while it is allowed to change the dt of an object between runs (e.g.
to simulate/monitor an initial phase with a bigger time step than a later
phase), this change has to be compatible with the internal representation of
clocks as an integer value (the number of elapsed time steps). For example, you
can simulate an object for 100ms with a time step of 0.1ms (i.e. for 1000 steps)
and then switch to a dt of 0.5ms, the time will then be internally
represented as 200 steps. You cannot, however, switch to a dt of 0.3ms, because
100ms are not an integer multiple of 0.3ms.

Progress reporting

For custom progress reporting (e.g. graphical output, writing to a file, etc.),
the report keyword accepts a callable (i.e. a function or an object with a
__call__ method) that will be called with four parameters:

	elapsed: the total (real) time since the start of the run

	completed: the fraction of the total simulation that is completed,
i.e. a value between 0 and 1

	start: The start of the simulation (in biological time)

	duration: the total duration (in biological time) of the simulation

The function will be called every report_period during the simulation, but
also at the beginning and end with completed equal to 0.0 and 1.0,
respectively.

For the C++ standalone mode, the same standard options are available. It is
also possible to implement custom progress reporting by directly passing the
code (as a multi-line string) to the report argument. This code will be
filled into a progress report function template, it should therefore only
contain a function body. The simplest use of this might look like:

net.run(duration, report='std::cout << (int)(completed*100.) << "% completed" << std::endl;')

Examples of custom reporting

Progress printed to a file

from brian2.core.network import TextReport
report_file = open('report.txt', 'w')
file_reporter = TextReport(report_file)
net.run(duration, report=file_reporter)
report_file.close()

“Graphical” output on the console

This needs a “normal” Linux console, i.e. it might not work in an integrated
console in an IDE.

Adapted from http://stackoverflow.com/questions/3160699/python-progress-bar

import sys

class ProgressBar(object):
 def __init__(self, toolbar_width):
 self.toolbar_width = toolbar_width
 self.ticks = 0

 def __call__(self, elapsed, complete, start, duration):
 if complete == 0.0:
 # setup toolbar
 sys.stdout.write("[%s]" % (" " * self.toolbar_width))
 sys.stdout.flush()
 sys.stdout.write("\b" * (self.toolbar_width + 1)) # return to start of line, after '['
 else:
 ticks_needed = int(round(complete * 40))
 if self.ticks < ticks_needed:
 sys.stdout.write("-" * (ticks_needed-self.ticks))
 sys.stdout.flush()
 self.ticks = ticks_needed
 if complete == 1.0:
 sys.stdout.write("\n")

net.run(duration, report=progress_bar, report_period=1*second)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Advanced guide »

Random numbers

Brian provides two basic functions to generate random numbers that can be used in model code and equations: rand(),
to generate uniformly generated random numbers between 0 and 1, and randn(), to generate random numbers from a
standard normal distribution (i.e. normally distributed numbers with a mean of 0 and a standard deviation of 1). All
other stochastic elements of a simulation (probabilistic connections, Poisson-distributed input generated by
PoissonGroup or PoissonInput, differential equations using the noise term xi, ...) will internally make use of
these two basic functions.

For Runtime code generation, random numbers are generated by numpy.random.rand [http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.rand.html#numpy.random.rand] and numpy.random.randn [http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.randn.html#numpy.random.randn] respectively, which
uses a Mersenne-Twister [https://en.wikipedia.org/wiki/Mersenne_Twister] pseudorandom number generator. When the
numpy code generation target is used, these functions are called directly, but for weave and cython, Brian
uses a internal buffers for uniformly and normally distributed random numbers and calls the numpy functions whenever
all numbers from this buffer have been used. This avoids the overhead of switching between C code and Python code for
each random number. For Standalone code generation, the random number generation is based on “randomkit”, the same
Mersenne-Twister implementation that is used by numpy. The source code of this implementation will be included in every
generated standalone project.

Seeding and reproducibility

Runtime mode

As explained above, Runtime code generation makes use of numpy’s random number generator. In principle, using numpy.random.seed [http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.seed.html#numpy.random.seed]
therefore permits reproducing a stream of random numbers. However, for weave and cython, Brian’s buffer
complicates the matter a bit: if a simulation sets numpy’s seed, uses 10000 random numbers, and then resets the seed,
the following 10000 random numbers (assuming the current size of the buffer) will come out of the pre-generated buffer
before numpy’s random number generation functions are called again and take into account the seed set by the user.
Instead, users should use the seed() function provided by Brian 2 itself, this will take care of setting numpy’s random
seed and empty Brian’s internal buffers. This function also has the advantage that it will continue to work when the
simulation is switched to standalone code generation (see below). Note that random numbers are not guaranteed to be
reproducible across different code generation targets or different versions of Brian, especially if several sources of
randomness are used in the same CodeObject (e.g. two noise variables in the equations of a NeuronGroup). This is
because Brian does not guarantee the order of certain operations (e.g. should it first generate all random numbers for
the first noise variable for all neurons, followed by the random numbers for the second noise variable for all neurons
or rather first the random numbers for all noice variables of the first neuron, then for the second neuron, etc.) Since
all random numbers are coming from the same stream of random numbers, the order of getting the numbers out of this
stream matter.

Standalone mode

For Standalone code generation, Brian’s seed() function will insert code to set the random number generator seed into the
generated code. The code will be generated at the position where the seed() call was made, allowing detailed control
over the seeding. For example the following code would generate identical initial conditions every time it is run, but
the noise generated by the xi variable would differ:

G = NeuronGroup(10, 'dv/dt = -v/(10*ms) + 0.1*xi/sqrt(ms) : 1')
seed(4321)
G.v = 'rand()'
seed()
run(100*ms)

Note

In standalone mode, seed() will not set numpy’s random number generator. If you use random numbers in the Python
script itself (e.g. to generate a list of synaptic connections that will be passed to the standalone code as a
pre-calculated array), then you have to explicitly call numpy.random.seed [http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.seed.html#numpy.random.seed] yourself to make these random numbers
reproducible.

Note

Seeding should lead to reproducible random numbers even when using OpenMP with multiple threads (for repeated
simulations with the same number of threads), but this has not been rigorously tested. Use at your own risk.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Advanced guide »

Custom events

In most simulations, a NeuronGroup defines a threshold on its membrane
potential that triggers a spike event. This event can be monitored by a
SpikeMonitor, it is used in synaptic interactions, and in integrate-and-fire
models it also leads to the execution of one or more reset statements.

Sometimes, it can be useful to define additional events, e.g. when an ion
concentration in the cell crosses a certain threshold. This can be done with
the events keyword in the NeuronGroup initializer:

group = NeuronGroup(N, '...', threshold='...', reset='...',
 events={'custom_event': 'x > x_th'})

In this example, we define an event with the name custom_event that is
triggered when the x variable crosses the threshold x_th. Such events
can be recorded with an EventMonitor:

event_mon = EventMonitor(group, 'custom_event')

Such an EventMonitor can be used in the same way as a SpikeMonitor – in
fact, creating the SpikeMonitor is basically identical to recording the
spike event with an EventMonitor. An EventMonitor is not limited to
record the event time/neuron index, it can also record other variables of the
model:

event_mon = EventMonitor(group, 'custom_event', variables['var1', 'var2'])

If the event should trigger a series of statements (i.e. the equivalent of
reset statements), this can be added by calling run_on_event:

group.run_on_event('custom_event', 'x=0')

When neurons are connected by Synapses, the pre and post pathways
are triggered by spike events by default. It is possible to change this by
providing an on_event keyword that either specifies which event to use for all
pathways, or a specific event for each pathway (where non-specified pathways use
the default spike event):

synapse_1 = Synapses(group, another_group, '...', on_pre='...', on_event='custom_event')
synapse_2 = Synapses(group, another_group, '...', on_pre='...', on_post='...',
 on_event={'pre': 'custom_event'})

Scheduling

By default, custom events are checked after the spiking threshold (in the
after_thresholds slots) and statements are executed after the reset (in
the after_resets slots). The slot for the execution of custom
event-triggered statements can be changed when it is added with the usual
when and order keyword arguments (see Scheduling and custom progress reporting for details).
To change the time when the condition is checked, use
NeuronGroup.set_event_schedule().

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Advanced guide »

State update

In Brian, a state updater transforms a set of equations into an abstract
state update code (and therefore is automatically target-independent). In
general, any function (or callable object) that takes an Equations object
and returns abstract code (as a string) can be used as a state updater and
passed to the NeuronGroup constructor as a method argument.

The more common use case is to specify no state updater at all or chose one by
name, see Choice of state updaters below.

Explicit state update

Explicit state update schemes can be specified in mathematical notation, using
the ExplicitStateUpdater class. A state updater scheme contains of a series
of statements, defining temporary variables and a final line (starting with
x_new =), giving the updated value for the state variable. The description
can make reference to t (the current time), dt (the size of the time
step), x (value of the state variable), and f(x, t) (the definition of
the state variable x, assuming dx/dt = f(x, t). In addition, state
updaters supporting stochastic equations additionally make use of dW (a
normal distributed random variable with variance dt) and g(x, t), the
factor multiplied with the noise variable, assuming
dx/dt = f(x, t) + g(x, t) * xi.

Using this notation, simple forward Euler integration is specified as:

x_new = x + dt * f(x, t)

A Runge-Kutta 2 (midpoint) method is specified as:

k = dt * f(x,t)
x_new = x + dt * f(x + k/2, t + dt/2)

When creating a new state updater using ExplicitStateUpdater, you can
specify the stochastic keyword argument, determining whether this state
updater does not support any stochastic equations (None, the default),
stochastic equations with additive noise only ('additive'), or
arbitrary stochastic equations ('multiplicative'). The provided state
updaters use the Stratonovich interpretation for stochastic equations (which
is the correct interpretation if the white noise source is seen as the limit
of a coloured noise source with a short time constant). As a result of this,
the simple Euler-Maruyama scheme (x_new = x + dt*f(x, t) + dW*g(x, t)) will
only be used for additive noise.

An example for a general state updater that handles arbitrary multiplicative
noise (under Stratonovich interpretation) is the derivative-free Milstein
method:

x_support = x + dt*f(x, t) + dt**.5 * g(x, t)
g_support = g(x_support, t)
k = 1/(2*dt**.5)*(g_support - g(x, t))*(dW**2)
x_new = x + dt*f(x,t) + g(x, t) * dW + k

Note that a single line in these descriptions is only allowed to mention
g(x, t), respectively f(x, t) only once (and you are not allowed to
write, for example, g(f(x, t), t)). You can work around these restrictions
by using intermediate steps, defining temporary variables, as in the above
examples for milstein and rk2.

Choice of state updaters

As mentioned in the beginning, you can pass arbitrary callables to the
method argument of a NeuronGroup, as long as this callable converts an
Equations object into abstract code. The best way to add a new state updater,
however, is to register it with brian and provide a method to determine whether
it is appropriate for a given set of equations. This way, it can be
automatically chosen when no method is specified and it can be referred to with
a name (i.e. you can pass a string like 'euler' to the method argument
instead of importing euler and passing a reference to the object itself).

If you create a new state updater using the ExplicitStateUpdater class, you
have to specify what kind of stochastic equations it supports. The keyword
argument stochastic takes the values None (no stochastic equation
support, the default), 'additive' (support for stochastic equations with
additive noise), 'multiplicative' (support for arbitrary stochastic
equations).

After creating the state updater, it has to be registered with
StateUpdateMethod:

new_state_updater = ExplicitStateUpdater('...', stochastic='additive')
StateUpdateMethod.register('mymethod', new_state_updater)

The preferred way to do write new general state updaters (i.e. state updaters
that cannot be described using the explicit syntax described above) is to
extend the StateUpdateMethod class (but this is not strictly necessary, all
that is needed is an object that implements a __call__ method that
operates on an Equations object and a dictionary of variables). Optionally,
the state updater can be registered with StateUpdateMethod as shown above.

Implicit state updates

Note

All of the following is just here for future reference, it’s not
implemented yet.

Implicit schemes often use Newton-Raphson or fixed point iterations.
These can also be defined by mathematical statements, but the number of iterations
is dynamic and therefore not easily vectorised. However, this might not be
a big issue in C, GPU or even with Numba.

Backward Euler

Backward Euler is defined as follows:

x(t+dt)=x(t)+dt*f(x(t+dt),t+dt)

This is not a executable statement because the RHS depends on the future.
A simple way is to perform fixed point iterations:

x(t+dt)=x(t)
x(t+dt)=x(t)+dt*dx=f(x(t+dt),t+dt) until increment<tolerance

This includes a loop with a different number of iterations depending on the
neuron.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Advanced guide »

How Brian works

In this section we will briefly cover some of the internals of how Brian
works. This is included here to understand the general process that Brian
goes through in running a simulation, but it will not be sufficient to
understand the source code of Brian itself or to extend it to do new things.
For a more detailed view of this, see the documentation in the
Developer’s guide.

Clock-driven versus event-driven

Brian is a clock-driven simulator. This means that the simulation time is
broken into an equally spaced time grid, 0, dt, 2*dt, 3*dt, At each
time step t, the differential equations specifying the models are first
integrated giving the values at time t+dt. Spikes are generated when a
condition such as v>vt is satisfied, and spikes can only occur on the
time grid.

The advantage of clock driven simulation is that it is very
flexible (arbitrary differential equations can be used) and
computationally efficient. However, the time grid approximation can lead
to an overestimate of the amount of synchrony that is present in a network.
This is usually not a problem, and can be managed by reducing the time
step dt, but it can be an issue for some models.

Note that the
inaccuracy introduced by the spike time approximation is of order
O(dt), so the total accuracy of the simulation is of order O(dt) per
time step. This means that in many cases, there is no need to use a
higher order numerical integration method than forward Euler, as it
will not improve the order of the error beyond O(dt). See
State update for more details of numerical integration methods.

Some simulators use an event-driven method. With this method, spikes can
occur at arbitrary times instead of just on the grid. This method can be
more accurate than a clock-driven simulation, but it is usually
substantially more computationally expensive (especially for larger
networks). In addition, they are usually more restrictive in terms of
the class of differential equations that can be solved.

For a review of some of the simulation strategies that have been
used, see
Brette et al. 2007 [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2638500/].

Code overview

The user-visible part of Brian consists of a number of objects such as
NeuronGroup, Synapses, Network, etc. These are all written in pure
Python and essentially work to translate the user specified model into the
computational engine. The end state of this translation is a collection of
short blocks of code operating on a namespace, which are called
in a sequence by the Network. Examples of these short blocks of code are the
“state updaters” which perform numerical integration, or the synaptic
propagation step. The namespaces consist of a mapping from names to values,
where the possible values can be scalar values, fixed-length or dynamically
sized arrays, and functions.

Syntax layer

The syntax layer consists of everything that is independent of the way the
final simulation is computed (i.e. the language and device it is running on).
This includes things like NeuronGroup, Synapses, Network, Equations,
etc.

The user-visible part of this is documented fully in the User’s guide
and the Advanced guide. In particular, things such as the analysis
of equations and assignment of numerical integrators. The end result of this
process, which is passed to the computational engine, is a specification of
the simulation consisting of the following data:

	A collection of variables which are scalar values, fixed-length arrays,
dynamically sized arrays, and functions. These are handled by Variable
objects detailed in Variables and indices. Examples:
each state variable of a NeuronGroup is assigned an ArrayVariable;
the list of spike indices stored by a SpikeMonitor is assigned a
DynamicArrayVariable; etc.

	A collection of code blocks specified via an “abstract code block” and a
template name. The “abstract code block” is a sequence of statements such
as v = vr which are to be executed. In the case that say, v and
vr are arrays, then the statement is to be executed for each element of
the array. These abstract code blocks are either given directly by the user
(in the case of neuron threshold and reset, and synaptic pre and post codes),
or generated from differential equations combined with a numerical
integrator. The template name is one of a small set (around 20 total) which
give additional context. For example, the code block a = b when
considered as part of a “state update” means execute that for each neuron
index. In the context of a reset statement, it means execute it for each
neuron index of a neuron that has spiked. Internally, these templates need
to be implemented for each target language/device, but there are relatively
few of them.

	The order of execution of these code blocks, as defined by the Network.

Computational engine

The computational engine covers everything from generating to running code in
a particular language or on a particular device. It starts with the
abstract definition of the simulation resulting from the syntax layer
described above.

The computational engine is described by a Device object. This is used for
allocating memory, generating and running code. There are two types of device,
“runtime” and “standalone”. In runtime mode, everything is managed by Python,
even if individual code blocks are in a different language. Memory is managed
using numpy arrays (which can be passed as pointers to use in other
languages). In standalone mode, the output of the process (after calling
Device.build) is a complete source code project that handles everything,
including memory management, and is independent of Python.

For both types of device, one of the key steps that works in the same way is
code generation, the creation of a compilable and runnable block of code from an
abstract code block and a collection of variables. This happens in two stages:
first of all, the abstract code block is converted into a code snippet,
which is a syntactically correct block of code in the target language, but
not one that can run on its own (it doesn’t handle accessing the variables
from memory, etc.). This code snippet typically represents the inner loop code.
This step is handled by a CodeGenerator object. In some
cases it will involve a syntax translation (e.g. the Python syntax x**y in
C++ should be pow(x, y)). The
next step is to insert this code snippet into a template to form a compilable
code block. This code block is then passed to a runtime CodeObject. In the
case of standalone mode, this doesn’t do anything, but for runtime devices
it handles compiling the code and then running the compiled code block in the
given namespace.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Advanced guide »

Interfacing with external code

Some neural simulations benefit from a direct connections to external libraries,
e.g. to support real-time input from a sensor (but note that Brian currently
does not offer facilities to assure real-time processing) or to perform
complex calculations during a simulation run.

If the external library is written in Python (or is a library with Python
bindings), then the connection can be made either using the mechanism for
User-provided functions, or using a network operation.

In case of C/C++ libraries, only the User-provided functions mechanism can be
used. On the other hand, such simulations can use the same user-provided C++
code to run both with the runtime weave target and with the
Standalone code generation mode. In addition to that code, one generally needs to
include additional header files and use compiler/linker options to interface
with the external code. For this, several preferences can be used that will be
taken into account for weave, cython and the cpp_standalone device.
These preferences are mostly equivalent to the respective keyword arguments for
Python’s distutils.core.Extension [https://docs.python.org/2/distutils/apiref.html#distutils.core.Extension] class, see the documentation of the
cpp_prefs module for more details.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

Examples

	COBAHH

	CUBA

	IF_curve_Hodgkin_Huxley

	IF_curve_LIF

	adaptive_threshold

	non_reliability

	phase_locking

	reliability

advanced

	opencv_movie

	stochastic_odes

compartmental

	bipolar_cell

	bipolar_with_inputs

	bipolar_with_inputs2

	cylinder

	hh_with_spikes

	hodgkin_huxley_1952

	infinite_cable

	lfp

	morphotest

	rall

	spike_initiation

frompapers

	Brette_2004

	Brette_Gerstner_2005

	Brette_Guigon_2003

	Brunel_Hakim_1999

	Clopath_et_al_2010_homeostasis

	Clopath_et_al_2010_no_homeostasis

	Diesmann_et_al_1999

	Kremer_et_al_2011_barrel_cortex

	Example: Rossant_et_al_2011bis

	Distributed synchrony example

	Rothman_Manis_2003

	Sturzl_et_al_2000

	Touboul_Brette_2008

	Vogels_et_al_2011

	Wang_Buszaki_1996

frompapers/Brette_2012

	Fig1

	Fig3AB

	Fig3CF

	Fig4

	Fig5A

	params

standalone

	STDP_standalone

	cuba_openmp

synapses

	STDP

	efficient_gaussian_connectivity

	gapjunctions

	jeffress

	licklider

	nonlinear

	spatial_connections

	state_variables

	synapses

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: COBAHH

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/COBAHH.ipynb]

This is an implementation of a benchmark described
in the following review paper:

Simulation of networks of spiking neurons: A review of tools and strategies (2006).
Brette, Rudolph, Carnevale, Hines, Beeman, Bower, Diesmann, Goodman, Harris, Zirpe,
Natschläger, Pecevski, Ermentrout, Djurfeldt, Lansner, Rochel, Vibert, Alvarez, Muller,
Davison, El Boustani and Destexhe.
Journal of Computational Neuroscience

Benchmark 3: random network of HH neurons with exponential synaptic conductances

Clock-driven implementation
(no spike time interpolation)

	Brette - Dec 2007

from brian2 import *

Parameters
area = 20000*umetre**2
Cm = (1*ufarad*cm**-2) * area
gl = (5e-5*siemens*cm**-2) * area

El = -60*mV
EK = -90*mV
ENa = 50*mV
g_na = (100*msiemens*cm**-2) * area
g_kd = (30*msiemens*cm**-2) * area
VT = -63*mV
Time constants
taue = 5*ms
taui = 10*ms
Reversal potentials
Ee = 0*mV
Ei = -80*mV
we = 6*nS # excitatory synaptic weight
wi = 67*nS # inhibitory synaptic weight

The model
eqs = Equations('''
dv/dt = (gl*(El-v)+ge*(Ee-v)+gi*(Ei-v)-
 g_na*(m*m*m)*h*(v-ENa)-
 g_kd*(n*n*n*n)*(v-EK))/Cm : volt
dm/dt = alpha_m*(1-m)-beta_m*m : 1
dn/dt = alpha_n*(1-n)-beta_n*n : 1
dh/dt = alpha_h*(1-h)-beta_h*h : 1
dge/dt = -ge*(1./taue) : siemens
dgi/dt = -gi*(1./taui) : siemens
alpha_m = 0.32*(mV**-1)*(13*mV-v+VT)/
 (exp((13*mV-v+VT)/(4*mV))-1.)/ms : Hz
beta_m = 0.28*(mV**-1)*(v-VT-40*mV)/
 (exp((v-VT-40*mV)/(5*mV))-1)/ms : Hz
alpha_h = 0.128*exp((17*mV-v+VT)/(18*mV))/ms : Hz
beta_h = 4./(1+exp((40*mV-v+VT)/(5*mV)))/ms : Hz
alpha_n = 0.032*(mV**-1)*(15*mV-v+VT)/
 (exp((15*mV-v+VT)/(5*mV))-1.)/ms : Hz
beta_n = .5*exp((10*mV-v+VT)/(40*mV))/ms : Hz
''')

P = NeuronGroup(4000, model=eqs, threshold='v>-20*mV', refractory=3*ms,
 method='exponential_euler')
Pe = P[:3200]
Pi = P[3200:]
Ce = Synapses(Pe, P, on_pre='ge+=we')
Ci = Synapses(Pi, P, on_pre='gi+=wi')
Ce.connect(p=0.02)
Ci.connect(p=0.02)

Initialization
P.v = 'El + (randn() * 5 - 5)*mV'
P.ge = '(randn() * 1.5 + 4) * 10.*nS'
P.gi = '(randn() * 12 + 20) * 10.*nS'

Record a few traces
trace = StateMonitor(P, 'v', record=[1, 10, 100])
run(1 * second, report='text')
plot(trace.t/ms, trace[1].v/mV)
plot(trace.t/ms, trace[10].v/mV)
plot(trace.t/ms, trace[100].v/mV)
xlabel('t (ms)')
ylabel('v (mV)')
show()

[image: ../_images/COBAHH.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: CUBA

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/CUBA.ipynb]

This is a Brian script implementing a benchmark described
in the following review paper:

Simulation of networks of spiking neurons: A review of tools and strategies
(2007). Brette, Rudolph, Carnevale, Hines, Beeman, Bower, Diesmann, Goodman,
Harris, Zirpe, Natschlager, Pecevski, Ermentrout, Djurfeldt, Lansner, Rochel,
Vibert, Alvarez, Muller, Davison, El Boustani and Destexhe.
Journal of Computational Neuroscience 23(3):349-98

Benchmark 2: random network of integrate-and-fire neurons with exponential
synaptic currents.

Clock-driven implementation with exact subthreshold integration
(but spike times are aligned to the grid).

from brian2 import *

taum = 20*ms
taue = 5*ms
taui = 10*ms
Vt = -50*mV
Vr = -60*mV
El = -49*mV

eqs = '''
dv/dt = (ge+gi-(v-El))/taum : volt (unless refractory)
dge/dt = -ge/taue : volt
dgi/dt = -gi/taui : volt
'''

P = NeuronGroup(4000, eqs, threshold='v>Vt', reset='v = Vr', refractory=5*ms,
 method='linear')
P.v = 'Vr + rand() * (Vt - Vr)'
P.ge = 0*mV
P.gi = 0*mV

we = (60*0.27/10)*mV # excitatory synaptic weight (voltage)
wi = (-20*4.5/10)*mV # inhibitory synaptic weight
Ce = Synapses(P, P, on_pre='ge += we')
Ci = Synapses(P, P, on_pre='gi += wi')
Ce.connect('i<3200', p=0.02)
Ci.connect('i>=3200', p=0.02)

s_mon = SpikeMonitor(P)

run(1 * second)

plot(s_mon.t/ms, s_mon.i, '.k')
xlabel('Time (ms)')
ylabel('Neuron index')
show()

[image: ../_images/CUBA.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: IF_curve_Hodgkin_Huxley

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/IF_curve_Hodgkin_Huxley.ipynb]

Input-Frequency curve of a HH model.
Network: 100 unconnected Hodgin-Huxley neurons with an input current I.
The input is set differently for each neuron.

This simulation should use exponential Euler integration.

from brian2 import *

num_neurons = 100
duration = 2*second

Parameters
area = 20000*umetre**2
Cm = 1*ufarad*cm**-2 * area
gl = 5e-5*siemens*cm**-2 * area
El = -65*mV
EK = -90*mV
ENa = 50*mV
g_na = 100*msiemens*cm**-2 * area
g_kd = 30*msiemens*cm**-2 * area
VT = -63*mV

The model
eqs = Equations('''
dv/dt = (gl*(El-v) - g_na*(m*m*m)*h*(v-ENa) - g_kd*(n*n*n*n)*(v-EK) + I)/Cm : volt
dm/dt = 0.32*(mV**-1)*(13.*mV-v+VT)/
 (exp((13.*mV-v+VT)/(4.*mV))-1.)/ms*(1-m)-0.28*(mV**-1)*(v-VT-40.*mV)/
 (exp((v-VT-40.*mV)/(5.*mV))-1.)/ms*m : 1
dn/dt = 0.032*(mV**-1)*(15.*mV-v+VT)/
 (exp((15.*mV-v+VT)/(5.*mV))-1.)/ms*(1.-n)-.5*exp((10.*mV-v+VT)/(40.*mV))/ms*n : 1
dh/dt = 0.128*exp((17.*mV-v+VT)/(18.*mV))/ms*(1.-h)-4./(1+exp((40.*mV-v+VT)/(5.*mV)))/ms*h : 1
I : amp
''')
Threshold and refractoriness are only used for spike counting
group = NeuronGroup(num_neurons, eqs,
 threshold='v > -40*mV',
 refractory='v > -40*mV',
 method='exponential_euler')
group.v = El
group.I = '0.7*nA * i / num_neurons'

monitor = SpikeMonitor(group)

run(duration)

plot(group.I/nA, monitor.count / duration)
xlabel('I (nA)')
ylabel('Firing rate (sp/s)')
show()

[image: ../_images/IF_curve_Hodgkin_Huxley.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: IF_curve_LIF

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/IF_curve_LIF.ipynb]

Input-Frequency curve of a IF model.
Network: 1000 unconnected integrate-and-fire neurons (leaky IF)
with an input parameter v0.
The input is set differently for each neuron.

from brian2 import *

n = 1000
duration = 1*second
tau = 10*ms
eqs = '''
dv/dt = (v0 - v) / tau : volt (unless refractory)
v0 : volt
'''
group = NeuronGroup(n, eqs, threshold='v > 10*mV', reset='v = 0*mV',
 refractory=5*ms, method='linear')
group.v = 0*mV
group.v0 = '20*mV * i / (n-1)'

monitor = SpikeMonitor(group)

run(duration)
plot(group.v0/mV, monitor.count / duration)
xlabel('v0 (mV)')
ylabel('Firing rate (sp/s)')
show()

[image: ../_images/IF_curve_LIF.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: adaptive_threshold

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/adaptive_threshold.ipynb]

A model with adaptive threshold (increases with each spike)

from brian2 import *

eqs = '''
dv/dt = -v/(10*ms) : volt
dvt/dt = (10*mV-vt)/(15*ms) : volt
'''

reset = '''
v = 0*mV
vt += 3*mV
'''

IF = NeuronGroup(1, model=eqs, reset=reset, threshold='v>vt',
 method='linear')
IF.vt = 10*mV
PG = PoissonGroup(1, 500 * Hz)

C = Synapses(PG, IF, on_pre='v += 3*mV')
C.connect()

Mv = StateMonitor(IF, 'v', record=True)
Mvt = StateMonitor(IF, 'vt', record=True)
Record the value of v when the threshold is crossed
M_crossings = SpikeMonitor(IF, variables='v')
run(2*second, report='text')

subplot(1, 2, 1)
plot(Mv.t / ms, Mv[0].v / mV)
plot(Mvt.t / ms, Mvt[0].vt / mV)
ylabel('v (mV)')
xlabel('t (ms)')
zoom in on the first 100ms
xlim(0, 100)
subplot(1, 2, 2)
hist(M_crossings.v / mV, bins=np.arange(10, 20, 0.5))
xlabel('v at threshold crossing (mV)')
show()

[image: ../_images/adaptive_threshold.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: non_reliability

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/non_reliability.ipynb]

Reliability of spike timing.
See e.g. Mainen & Sejnowski (1995) for experimental results in vitro.

Here: a constant current is injected in all trials.

from brian2 import *

N = 25
tau = 20*ms
sigma = .015
eqs_neurons = '''
dx/dt = (1.1 - x) / tau + sigma * (2 / tau)**.5 * xi : 1 (unless refractory)
'''
neurons = NeuronGroup(N, model=eqs_neurons, threshold='x > 1', reset='x = 0',
 refractory=5*ms, method='euler')
spikes = SpikeMonitor(neurons)

run(500*ms)
plot(spikes.t/ms, spikes.i, '.k')
xlabel('Time (ms)')
ylabel('Neuron index')
show()

[image: ../_images/non_reliability.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: phase_locking

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/phase_locking.ipynb]

Phase locking of IF neurons to a periodic input.

from brian2 import *

tau = 20*ms
n = 100
b = 1.2 # constant current mean, the modulation varies
freq = 10*Hz

eqs = '''
dv/dt = (-v + a * sin(2 * pi * freq * t) + b) / tau : 1
a : 1
'''
neurons = NeuronGroup(n, model=eqs, threshold='v > 1', reset='v = 0',
 method='euler')
neurons.v = 'rand()'
neurons.a = '0.05 + 0.7*i/n'
S = SpikeMonitor(neurons)
trace = StateMonitor(neurons, 'v', record=50)

run(1000*ms)
subplot(211)
plot(S.t/ms, S.i, '.k')
xlabel('Time (ms)')
ylabel('Neuron index')
subplot(212)
plot(trace.t/ms, trace.v.T)
xlabel('Time (ms)')
ylabel('v')
show()

[image: ../_images/phase_locking.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: reliability

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/reliability.ipynb]

Reliability of spike timing.
See e.g. Mainen & Sejnowski (1995) for experimental results in vitro.

from brian2 import *

The common noisy input
N = 25
tau_input = 5*ms
input = NeuronGroup(1, 'dx/dt = -x / tau_input + (2 /tau_input)**.5 * xi : 1')

The noisy neurons receiving the same input
tau = 10*ms
sigma = .015
eqs_neurons = '''
dx/dt = (0.9 + .5 * I - x) / tau + sigma * (2 / tau)**.5 * xi : 1
I : 1 (linked)
'''
neurons = NeuronGroup(N, model=eqs_neurons, threshold='x > 1',
 reset='x = 0', refractory=5*ms, method='euler')
neurons.x = 'rand()'
neurons.I = linked_var(input, 'x') # input.x is continuously fed into neurons.I
spikes = SpikeMonitor(neurons)

run(500*ms)
plt.plot(spikes.t/ms, spikes.i, '.k')
xlabel('Time (ms)')
ylabel('Neuron index')
show()

[image: ../_images/reliability.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: opencv_movie

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/advanced/opencv_movie.ipynb]

An example that uses a function from external C library (OpenCV in this case).
Works for all C-based code generation targets (i.e. for weave and cpp_standalone
device) and for numpy (using the Python bindings).

This example needs a working installation of OpenCV2 and its Python bindings.
It has been tested on Ubuntu 14.04 with OpenCV 2.4.8 (libopencv-dev and
python-opencv packages).

import os
import urllib2
import cv2 # Import OpenCV2
import cv2.cv as cv # Import the cv subpackage, needed for some constants

from brian2 import *

defaultclock.dt = 1*ms
prefs.codegen.target = 'weave'
prefs.logging.std_redirection = False
set_device('cpp_standalone')
filename = os.path.abspath('Megamind.avi')

if not os.path.exists(filename):
 print('Downloading the example video file')
 response = urllib2.urlopen('http://docs.opencv.org/2.4/_downloads/Megamind.avi')
 data = response.read()
 with open(filename, 'wb') as f:
 f.write(data)

video = cv2.VideoCapture(filename)
width, height, frame_count = (int(video.get(cv.CV_CAP_PROP_FRAME_WIDTH)),
 int(video.get(cv.CV_CAP_PROP_FRAME_HEIGHT)),
 int(video.get(cv.CV_CAP_PROP_FRAME_COUNT)))
fps = 24
time_between_frames = 1*second/fps

Links the necessary libraries
prefs.codegen.cpp.libraries += ['opencv_core',
 'opencv_highgui']

Includes the header files in all generated files
prefs.codegen.cpp.headers += ['<opencv2/core/core.hpp>',
 '<opencv2/highgui/highgui.hpp>']

Pass in values as macros
Note that in general we could also pass in the filename this way, but to get
the string quoting right is unfortunately quite difficult
prefs.codegen.cpp.define_macros += [('VIDEO_WIDTH', width),
 ('VIDEO_HEIGHT', height)]
@implementation('cpp', '''
double* get_frame(bool new_frame)
{
 // The following initializations will only be executed once
 static cv::VideoCapture source("VIDEO_FILENAME");
 static cv::Mat frame;
 static double* grayscale_frame = (double*)malloc(VIDEO_WIDTH*VIDEO_HEIGHT*sizeof(double));
 if (new_frame)
 {
 source >> frame;
 double mean_value = 0;
 for (int row=0; row<VIDEO_HEIGHT; row++)
 for (int col=0; col<VIDEO_WIDTH; col++)
 {
 const double grayscale_value = (frame.at<cv::Vec3b>(row, col)[0] +
 frame.at<cv::Vec3b>(row, col)[1] +
 frame.at<cv::Vec3b>(row, col)[2])/(3.0*128);
 mean_value += grayscale_value / (VIDEO_WIDTH * VIDEO_HEIGHT);
 grayscale_frame[row*VIDEO_WIDTH + col] = grayscale_value;
 }
 // subtract the mean
 for (int i=0; i<VIDEO_HEIGHT*VIDEO_WIDTH; i++)
 grayscale_frame[i] -= mean_value;
 }
 return grayscale_frame;
}

double video_input(const int x, const int y)
{
 // Get the current frame (or a new frame in case we are asked for the first
 // element
 double *frame = get_frame(x==0 && y==0);
 return frame[y*VIDEO_WIDTH + x];
}
'''.replace('VIDEO_FILENAME', filename))
@check_units(x=1, y=1, result=1)
def video_input(x, y):
 # we assume this will only be called in the custom operation (and not for
 # example in a reset or synaptic statement), so we don't need to do indexing
 # but we can directly return the full result
 _, frame = video.read()
 grayscale = frame.mean(axis=2)
 grayscale /= 128. # scale everything between 0 and 2
 return grayscale.ravel() - grayscale.ravel().mean()

N = width * height
tau, tau_th = 10*ms, time_between_frames
G = NeuronGroup(N, '''dv/dt = (-v + I)/tau : 1
 dv_th/dt = -v_th/tau_th : 1
 row : integer (constant)
 column : integer (constant)
 I : 1 # input current''',
 threshold='v>v_th', reset='v=0; v_th = 3*v_th + 1.0',
 method='linear')
G.v_th = 1
G.row = 'i/width'
G.column = 'i%width'

G.run_regularly('I = video_input(column, row)',
 dt=time_between_frames)
mon = SpikeMonitor(G)
runtime = frame_count*time_between_frames
run(runtime, report='text')
device.build(compile=True, run=True)

Avoid going through the whole Brian2 indexing machinery too much
i, t, row, column = mon.i[:], mon.t[:], G.row[:], G.column[:]

import matplotlib.animation as animation

TODO: Use overlapping windows
stepsize = 100*ms
def next_spikes():
 step = next_spikes.step
 if step*stepsize > runtime:
 next_spikes.step=0
 raise StopIteration()
 spikes = i[(t>=step*stepsize) & (t<(step+1)*stepsize)]
 next_spikes.step += 1
 yield column[spikes], row[spikes]
next_spikes.step = 0

fig, ax = plt.subplots()
dots, = ax.plot([], [], 'k.', markersize=2, alpha=.25)
ax.set_xlim(0, width)
ax.set_ylim(0, height)
ax.invert_yaxis()
def run(data):
 x, y = data
 dots.set_data(x, y)

ani = animation.FuncAnimation(fig, run, next_spikes, blit=False, repeat=True,
 repeat_delay=1000)
plt.show()

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: stochastic_odes

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/advanced/stochastic_odes.ipynb]

Demonstrate the correctness of the “derivative-free Milstein method” for
multiplicative noise.

from brian2 import *
We only get exactly the same random numbers for the exact solution and the
simulation if we use the numpy code generation target
prefs.codegen.target = 'numpy'

setting a random seed makes all variants use exactly the same Wiener process
seed = 12347

X0 = 1
mu = 0.5/second # drift
sigma = 0.1/second #diffusion

runtime = 1*second

def simulate(method, dt):
 '''
 simulate geometrical Brownian with the given method
 '''
 np.random.seed(seed)
 G = NeuronGroup(1, 'dX/dt = (mu - 0.5*second*sigma**2)*X + X*sigma*xi*second**.5: 1',
 dt=dt, method=method)
 G.X = X0
 mon = StateMonitor(G, 'X', record=True)
 net = Network(G, mon)
 net.run(runtime)
 return mon.t_[:], mon.X.flatten()

def exact_solution(t, dt):
 '''
 Return the exact solution for geometrical Brownian motion at the given
 time points
 '''
 # Remove units for simplicity
 my_mu = float(mu)
 my_sigma = float(sigma)
 dt = float(dt)
 t = asarray(t)

 np.random.seed(seed)
 # We are calculating the values at the *start* of a time step, as when using
 # a StateMonitor. Therefore the Brownian motion starts with zero
 brownian = np.hstack([0, cumsum(sqrt(dt) * np.random.randn(len(t)-1))])

 return (X0 * exp((my_mu - 0.5*my_sigma**2)*(t+dt) + my_sigma*brownian))

figure(1, figsize=(16, 7))
figure(2, figsize=(16, 7))

methods = ['milstein', 'heun']
dts = [1*ms, 0.5*ms, 0.2*ms, 0.1*ms, 0.05*ms, 0.025*ms, 0.01*ms, 0.005*ms]

rows = floor(sqrt(len(dts)))
cols = ceil(1.0 * len(dts) / rows)
errors = dict([(method, zeros(len(dts))) for method in methods])
for dt_idx, dt in enumerate(dts):
 print('dt: %s' % dt)
 trajectories = {}
 # Test the numerical methods
 for method in methods:
 t, trajectories[method] = simulate(method, dt)
 # Calculate the exact solution
 exact = exact_solution(t, dt)

 for method in methods:
 # plot the trajectories
 figure(1)
 subplot(rows, cols, dt_idx+1)
 plot(t, trajectories[method], label=method, alpha=0.75)

 # determine the mean absolute error
 errors[method][dt_idx] = mean(abs(trajectories[method] - exact))
 # plot the difference to the real trajectory
 figure(2)
 subplot(rows, cols, dt_idx+1)
 plot(t, trajectories[method] - exact, label=method, alpha=0.75)

 figure(1)
 plot(t, exact, color='gray', lw=2, label='exact', alpha=0.75)
 title('dt = %s' % str(dt))
 xticks([])

figure(1)
legend(frameon=False, loc='best')
tight_layout()

figure(2)
legend(frameon=False, loc='best')
tight_layout()

figure(3)
for method in methods:
 plot(array(dts) / ms, errors[method], 'o', label=method)
legend(frameon=False, loc='best')
xscale('log')
yscale('log')
xlabel('dt (ms)')
ylabel('Mean absolute error')
tight_layout()

show()

[image: ../_images/advanced.stochastic_odes.1.png]
[image: ../_images/advanced.stochastic_odes.2.png]
[image: ../_images/advanced.stochastic_odes.3.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: bipolar_cell

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/compartmental/bipolar_cell.ipynb]

A pseudo MSO neuron, with two dendrites and one axon (fake geometry).

from brian2 import *

Morphology
morpho = Soma(30*um)
morpho.axon = Cylinder(diameter=1*um, length=300*um, n=100)
morpho.L = Cylinder(diameter=1*um, length=100*um, n=50)
morpho.R = Cylinder(diameter=1*um, length=150*um, n=50)

Passive channels
gL = 1e-4*siemens/cm**2
EL = -70*mV
eqs='''
Im = gL * (EL - v) : amp/meter**2
I : amp (point current)
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs,
 Cm=1*uF/cm**2, Ri=100*ohm*cm, method='exponential_euler')
neuron.v = EL
neuron.I = 0*amp

Monitors
mon_soma = StateMonitor(neuron, 'v', record=[0])
mon_L = StateMonitor(neuron.L, 'v', record=True)
mon_R = StateMonitor(neuron, 'v', record=morpho.R[75*um])

run(1*ms)
neuron.I[morpho.L[50*um]] = 0.2*nA # injecting in the left dendrite
run(5*ms)
neuron.I = 0*amp
run(50*ms, report='text')

subplot(211)
plot(mon_L.t/ms, mon_soma[0].v/mV, 'k')
plot(mon_L.t/ms, mon_L[morpho.L[50*um]].v/mV, 'r')
plot(mon_L.t/ms, mon_R[morpho.R[75*um]].v/mV, 'b')
ylabel('v (mV)')
subplot(212)
for x in linspace(0*um, 100*um, 10, endpoint=False):
 plot(mon_L.t/ms, mon_L[morpho.L[x]].v/mV)
xlabel('Time (ms)')
ylabel('v (mV)')
show()

[image: ../_images/compartmental.bipolar_cell.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: bipolar_with_inputs

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/compartmental/bipolar_with_inputs.ipynb]

A pseudo MSO neuron, with two dendrites (fake geometry).
There are synaptic inputs.

from brian2 import *

Morphology
morpho = Soma(30*um)
morpho.L = Cylinder(diameter=1*um, length=100*um, n=50)
morpho.R = Cylinder(diameter=1*um, length=100*um, n=50)

Passive channels
gL = 1e-4*siemens/cm**2
EL = -70*mV
Es = 0*mV
eqs='''
Im = gL*(EL-v) : amp/meter**2
Is = gs*(Es-v) : amp (point current)
gs : siemens
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs,
 Cm=1*uF/cm**2, Ri=100*ohm*cm, method='exponential_euler')
neuron.v = EL

Regular inputs
stimulation = NeuronGroup(2, 'dx/dt = 300*Hz : 1', threshold='x>1', reset='x=0',
 method='euler')
stimulation.x = [0, 0.5] # Asynchronous

Synapses
taus = 1*ms
w = 20*nS
S = Synapses(stimulation, neuron, model='''dg/dt = -g/taus : siemens (clock-driven)
 gs_post = g : siemens (summed)''',
 on_pre='g += w', method='linear')

S.connect(i=0, j=morpho.L[-1])
S.connect(i=1, j=morpho.R[-1])

Monitors
mon_soma = StateMonitor(neuron, 'v', record=[0])
mon_L = StateMonitor(neuron.L, 'v', record=True)
mon_R = StateMonitor(neuron.R, 'v',
 record=morpho.R[-1])

run(50*ms, report='text')

subplot(211)
plot(mon_L.t/ms, mon_soma[0].v/mV, 'k')
plot(mon_L.t/ms, mon_L[morpho.L[-1]].v/mV, 'r')
plot(mon_L.t/ms, mon_R[morpho.R[-1]].v/mV, 'b')
ylabel('v (mV)')
subplot(212)
for x in linspace(0*um, 100*um, 10, endpoint=False):
 plot(mon_L.t/ms, mon_L[morpho.L[x]].v/mV)
xlabel('Time (ms)')
ylabel('v (mV)')
show()

[image: ../_images/compartmental.bipolar_with_inputs.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: bipolar_with_inputs2

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/compartmental/bipolar_with_inputs2.ipynb]

A pseudo MSO neuron, with two dendrites (fake geometry).
There are synaptic inputs.
Second method.

from brian2 import *

Morphology
morpho = Soma(30*um)
morpho.L = Cylinder(diameter=1*um, length=100*um, n=50)
morpho.R = Cylinder(diameter=1*um, length=100*um, n=50)

Passive channels
gL = 1e-4*siemens/cm**2
EL = -70*mV
Es = 0*mV
taus = 1*ms
eqs='''
Im = gL*(EL-v) : amp/meter**2
Is = gs*(Es-v) : amp (point current)
dgs/dt = -gs/taus : siemens
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs,
 Cm=1*uF/cm**2, Ri=100*ohm*cm, method='exponential_euler')
neuron.v = EL

Regular inputs
stimulation = NeuronGroup(2, 'dx/dt = 300*Hz : 1', threshold='x>1', reset='x=0',
 method='euler')
stimulation.x = [0, 0.5] # Asynchronous

Synapses
w = 20*nS
S = Synapses(stimulation, neuron,on_pre='gs += w')
S.connect(i=0, j=morpho.L[99.9*um])
S.connect(i=1, j=morpho.R[99.9*um])

Monitors
mon_soma = StateMonitor(neuron, 'v', record=[0])
mon_L = StateMonitor(neuron.L, 'v', record=True)
mon_R = StateMonitor(neuron, 'v', record=morpho.R[99.9*um])

run(50*ms, report='text')

subplot(211)
plot(mon_L.t/ms, mon_soma[0].v/mV, 'k')
plot(mon_L.t/ms, mon_L[morpho.L[99.9*um]].v/mV, 'r')
plot(mon_L.t/ms, mon_R[morpho.R[99.9*um]].v/mV, 'b')
ylabel('v (mV)')
subplot(212)
for i in [0, 5, 10, 15, 20, 25, 30, 35, 40, 45]:
 plot(mon_L.t/ms, mon_L.v[i, :]/mV)
xlabel('Time (ms)')
ylabel('v (mV)')
show()

[image: ../_images/compartmental.bipolar_with_inputs2.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: cylinder

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/compartmental/cylinder.ipynb]

A short cylinder with constant injection at one end.

from brian2 import *

defaultclock.dt = 0.01*ms

Morphology
diameter = 1*um
length = 300*um
Cm = 1*uF/cm**2
Ri = 150*ohm*cm
N = 200
morpho = Cylinder(diameter=diameter, length=length, n=N)

Passive channels
gL = 1e-4*siemens/cm**2
EL = -70*mV
eqs = '''
Im = gL * (EL - v) : amp/meter**2
I : amp (point current)
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=Cm, Ri=Ri,
 method='exponential_euler')
neuron.v = EL

la = neuron.space_constant[0]
print("Electrotonic length: %s" % la)

neuron.I[0] = 0.02*nA # injecting at the left end
run(100*ms, report='text')

plot(neuron.distance/um, neuron.v/mV, 'kx')
Theory
x = neuron.distance
ra = la * 4 * Ri / (pi * diameter**2)
theory = EL + ra * neuron.I[0] * cosh((length - x) / la) / sinh(length / la)
plot(x/um, theory/mV, 'r')
xlabel('x (um)')
ylabel('v (mV)')
show()

[image: ../_images/compartmental.cylinder.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: hh_with_spikes

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/compartmental/hh_with_spikes.ipynb]

Hodgkin-Huxley equations (1952).
Spikes are recorded along the axon, and then velocity is calculated.

from brian2 import *
from scipy import stats

defaultclock.dt = 0.01*ms

morpho = Cylinder(length=10*cm, diameter=2*238*um, n=1000, type='axon')

El = 10.613*mV
ENa = 115*mV
EK = -12*mV
gl = 0.3*msiemens/cm**2
gNa0 = 120*msiemens/cm**2
gK = 36*msiemens/cm**2

Typical equations
eqs = '''
The same equations for the whole neuron, but possibly different parameter values
distributed transmembrane current
Im = gl * (El-v) + gNa * m**3 * h * (ENa-v) + gK * n**4 * (EK-v) : amp/meter**2
I : amp (point current) # applied current
dm/dt = alpham * (1-m) - betam * m : 1
dn/dt = alphan * (1-n) - betan * n : 1
dh/dt = alphah * (1-h) - betah * h : 1
alpham = (0.1/mV) * (-v+25*mV) / (exp((-v+25*mV) / (10*mV)) - 1)/ms : Hz
betam = 4 * exp(-v/(18*mV))/ms : Hz
alphah = 0.07 * exp(-v/(20*mV))/ms : Hz
betah = 1/(exp((-v+30*mV) / (10*mV)) + 1)/ms : Hz
alphan = (0.01/mV) * (-v+10*mV) / (exp((-v+10*mV) / (10*mV)) - 1)/ms : Hz
betan = 0.125*exp(-v/(80*mV))/ms : Hz
gNa : siemens/meter**2
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs, method="exponential_euler",
 refractory="m > 0.4", threshold="m > 0.5",
 Cm=1*uF/cm**2, Ri=35.4*ohm*cm)
neuron.v = 0*mV
neuron.h = 1
neuron.m = 0
neuron.n = .5
neuron.I = 0*amp
neuron.gNa = gNa0
M = StateMonitor(neuron, 'v', record=True)
spikes = SpikeMonitor(neuron)

run(50*ms, report='text')
neuron.I[0] = 1*uA # current injection at one end
run(3*ms)
neuron.I = 0*amp
run(50*ms, report='text')

Calculation of velocity
slope, intercept, r_value, p_value, std_err = stats.linregress(spikes.t/second,
 neuron.distance[spikes.i]/meter)
print("Velocity = %.2f m/s" % slope)

subplot(211)
for i in range(10):
 plot(M.t/ms, M.v.T[:, i*100]/mV)
ylabel('v')
subplot(212)
plot(spikes.t/ms, spikes.i*neuron.length[0]/cm, '.k')
plot(spikes.t/ms, (intercept+slope*(spikes.t/second))/cm, 'r')
xlabel('Time (ms)')
ylabel('Position (cm)')
show()

[image: ../_images/compartmental.hh_with_spikes.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: hodgkin_huxley_1952

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/compartmental/hodgkin_huxley_1952.ipynb]

Hodgkin-Huxley equations (1952).

from brian2 import *

morpho = Cylinder(length=10*cm, diameter=2*238*um, n=1000, type='axon')

El = 10.613*mV
ENa = 115*mV
EK = -12*mV
gl = 0.3*msiemens/cm**2
gNa0 = 120*msiemens/cm**2
gK = 36*msiemens/cm**2

Typical equations
eqs = '''
The same equations for the whole neuron, but possibly different parameter values
distributed transmembrane current
Im = gl * (El-v) + gNa * m**3 * h * (ENa-v) + gK * n**4 * (EK-v) : amp/meter**2
I : amp (point current) # applied current
dm/dt = alpham * (1-m) - betam * m : 1
dn/dt = alphan * (1-n) - betan * n : 1
dh/dt = alphah * (1-h) - betah * h : 1
alpham = (0.1/mV) * (-v+25*mV) / (exp((-v+25*mV) / (10*mV)) - 1)/ms : Hz
betam = 4 * exp(-v/(18*mV))/ms : Hz
alphah = 0.07 * exp(-v/(20*mV))/ms : Hz
betah = 1/(exp((-v+30*mV) / (10*mV)) + 1)/ms : Hz
alphan = (0.01/mV) * (-v+10*mV) / (exp((-v+10*mV) / (10*mV)) - 1)/ms : Hz
betan = 0.125*exp(-v/(80*mV))/ms : Hz
gNa : siemens/meter**2
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=1*uF/cm**2,
 Ri=35.4*ohm*cm, method="exponential_euler")
neuron.v = 0*mV
neuron.h = 1
neuron.m = 0
neuron.n = .5
neuron.I = 0
neuron.gNa = gNa0
neuron[5*cm:10*cm].gNa = 0*siemens/cm**2
M = StateMonitor(neuron, 'v', record=True)

run(50*ms, report='text')
neuron.I[0] = 1*uA # current injection at one end
run(3*ms)
neuron.I = 0*amp
run(100*ms, report='text')
for i in range(75, 125, 1):
 plot(cumsum(neuron.length)/cm, i+(1./60)*M.v[:, i*5]/mV, 'k')
yticks([])
ylabel('Time [major] v (mV) [minor]')
xlabel('Position (cm)')
axis('tight')
show()

[image: ../_images/compartmental.hodgkin_huxley_1952.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: infinite_cable

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/compartmental/infinite_cable.ipynb]

An (almost) infinite cable with pulse injection in the middle.

from brian2 import *

defaultclock.dt = 0.001*ms

Morphology
diameter = 1*um
Cm = 1*uF/cm**2
Ri = 100*ohm*cm
N = 500
morpho = Cylinder(diameter=diameter, length=3*mm, n=N)

Passive channels
gL = 1e-4*siemens/cm**2
EL = -70*mV
eqs = '''
Im = gL * (EL-v) : amp/meter**2
I : amp (point current)
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=Cm, Ri=Ri,
 method = 'exponential_euler')
neuron.v = EL

taum = Cm /gL # membrane time constant
print("Time constant: %s" % taum)
la = neuron.space_constant[0]
print("Characteristic length: %s" % la)

Monitors
mon = StateMonitor(neuron, 'v', record=range(0, N//2, 20))

neuron.I[len(neuron) // 2] = 1*nA # injecting in the middle
run(0.02*ms)
neuron.I = 0*amp
run(10*ms, report='text')

t = mon.t
plot(t/ms, mon.v.T/mV, 'k')
Theory (incorrect near cable ends)
for i in range(0, len(neuron)//2, 20):
 x = (len(neuron)/2 - i) * morpho.length[0]
 theory = (1/(la*Cm*pi*diameter) * sqrt(taum / (4*pi*(t + defaultclock.dt))) *
 exp(-(t+defaultclock.dt)/taum -
 taum / (4*(t+defaultclock.dt))*(x/la)**2))
 theory = EL + theory * 1*nA * 0.02*ms
 plot(t/ms, theory/mV, 'r')
xlabel('Time (ms)')
ylabel('v (mV')
show()

[image: ../_images/compartmental.infinite_cable.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: lfp

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/compartmental/lfp.ipynb]

Hodgkin-Huxley equations (1952)

We calculate the extracellular field potential at various places.

from brian2 import *
defaultclock.dt = 0.01*ms
morpho = Cylinder(x=[0, 10]*cm, diameter=2*238*um, n=1000, type='axon')

El = 10.613* mV
ENa = 115*mV
EK = -12*mV
gl = 0.3*msiemens/cm**2
gNa0 = 120*msiemens/cm**2
gK = 36*msiemens/cm**2

Typical equations
eqs = '''
The same equations for the whole neuron, but possibly different parameter values
distributed transmembrane current
Im = gl * (El-v) + gNa * m**3 * h * (ENa-v) + gK * n**4 * (EK-v) : amp/meter**2
I : amp (point current) # applied current
dm/dt = alpham * (1-m) - betam * m : 1
dn/dt = alphan * (1-n) - betan * n : 1
dh/dt = alphah * (1-h) - betah * h : 1
alpham = (0.1/mV) * (-v+25*mV) / (exp((-v+25*mV) / (10*mV)) - 1)/ms : Hz
betam = 4 * exp(-v/(18*mV))/ms : Hz
alphah = 0.07 * exp(-v/(20*mV))/ms : Hz
betah = 1/(exp((-v+30*mV) / (10*mV)) + 1)/ms : Hz
alphan = (0.01/mV) * (-v+10*mV) / (exp((-v+10*mV) / (10*mV)) - 1)/ms : Hz
betan = 0.125*exp(-v/(80*mV))/ms : Hz
gNa : siemens/meter**2
previous_v : volt
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=1*uF/cm**2,
 Ri=35.4*ohm*cm, method="exponential_euler")
neuron.v = 0*mV
neuron.h = 1
neuron.m = 0
neuron.n = .5
neuron.I = 0
neuron.gNa = gNa0
neuron[5*cm:10*cm].gNa = 0*siemens/cm**2
M = StateMonitor(neuron, 'v', record=True)

neuron.run_regularly('previous_v = v', when='start')

LFP recorder
Ne = 5 # Number of electrodes
sigma = 0.3*siemens/meter # Resistivity of extracellular field (0.3-0.4 S/m)
lfp = NeuronGroup(Ne,model='''v : volt
 x : meter
 y : meter
 z : meter''')
lfp.x = 7*cm # Off center (to be far from stimulating electrode)
lfp.y = [1*mm, 2*mm, 4*mm, 8*mm, 16*mm]
Synapses are normally executed after state update, so v-previous_v = dv
S = Synapses(neuron,lfp,model='''w : ohm*meter**2 (constant) # Weight in the LFP calculation
 v_post = w*(Cm_pre*(v_pre-previous_v_pre)/dt-Im_pre) : volt (summed)''')
S.summed_updaters['v_post'].when = 'after_groups' # otherwise v and previous_v would be identical
S.connect()
S.w = 'area_pre/(4*pi*sigma)/((x_pre-x_post)**2+(y_pre-y_post)**2+(z_pre-z_post)**2)**.5'

Mlfp = StateMonitor(lfp,'v',record=True)

run(50*ms, report='text')
neuron.I[0] = 1*uA # current injection at one end
run(3*ms)
neuron.I = 0*amp
run(100*ms, report='text')

subplot(211)
for i in range(10):
 plot(M.t/ms,M.v[i*100]/mV)
ylabel('V_m (mV)')
subplot(212)
for i in range(5):
 plot(M.t/ms,Mlfp.v[i]/mV)
ylabel('LFP (mV)')
xlabel('Time (ms)')
show()

[image: ../_images/compartmental.lfp.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: morphotest

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/compartmental/morphotest.ipynb]

from brian2 import *

Morphology
morpho = Soma(30*um)
morpho.L = Cylinder(diameter=1*um, length=100*um, n=5)
morpho.LL = Cylinder(diameter=1*um, length=20*um, n=2)
morpho.R = Cylinder(diameter=1*um, length=100*um, n=5)

Passive channels
gL = 1e-4*siemens/cm**2
EL = -70*mV
eqs = '''
Im = gL * (EL-v) : amp/meter**2
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs,
 Cm=1*uF/cm**2, Ri=100*ohm*cm, method='exponential_euler')
neuron.v = arange(0, 13)*volt

print(neuron.v)
print(neuron.L.v)
print(neuron.LL.v)
print(neuron.L.main.v)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: rall

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/compartmental/rall.ipynb]

A cylinder plus two branches, with diameters according to Rall’s formula

from brian2 import *

defaultclock.dt = 0.01*ms

Passive channels
gL = 1e-4*siemens/cm**2
EL = -70*mV

Morphology
diameter = 1*um
length = 300*um
Cm = 1*uF/cm**2
Ri = 150*ohm*cm
N = 500
rm = 1 / (gL * pi * diameter) # membrane resistance per unit length
ra = (4 * Ri)/(pi * diameter**2) # axial resistance per unit length
la = sqrt(rm / ra) # space length
morpho = Cylinder(diameter=diameter, length=length, n=N)
d1 = 0.5*um
L1 = 200*um
rm = 1 / (gL * pi * d1) # membrane resistance per unit length
ra = (4 * Ri) / (pi * d1**2) # axial resistance per unit length
l1 = sqrt(rm / ra) # space length
morpho.L = Cylinder(diameter=d1, length=L1, n=N)
d2 = (diameter**1.5 - d1**1.5)**(1. / 1.5)
rm = 1/(gL * pi * d2) # membrane resistance per unit length
ra = (4 * Ri) / (pi * d2**2) # axial resistance per unit length
l2 = sqrt(rm / ra) # space length
L2 = (L1 / l1) * l2
morpho.R = Cylinder(diameter=d2, length=L2, n=N)

eqs='''
Im = gL * (EL-v) : amp/meter**2
I : amp (point current)
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=Cm, Ri=Ri,
 method='exponential_euler')
neuron.v = EL

neuron.I[0] = 0.02*nA # injecting at the left end
run(100*ms, report='text')

plot(neuron.main.distance/um, neuron.main.v/mV, 'k')
plot(neuron.L.distance/um, neuron.L.v/mV, 'k')
plot(neuron.R.distance/um, neuron.R.v/mV, 'k')
Theory
x = neuron.main.distance
ra = la * 4 * Ri/(pi * diameter**2)
l = length/la + L1/l1
theory = EL + ra*neuron.I[0]*cosh(l - x/la)/sinh(l)
plot(x/um, theory/mV, 'r')
x = neuron.L.distance
theory = (EL+ra*neuron.I[0]*cosh(l - neuron.main.distance[-1]/la -
 (x - neuron.main.distance[-1])/l1)/sinh(l))
plot(x/um, theory/mV, 'r')
x = neuron.R.distance
theory = (EL+ra*neuron.I[0]*cosh(l - neuron.main.distance[-1]/la -
 (x - neuron.main.distance[-1])/l2)/sinh(l))
plot(x/um, theory/mV, 'r')
xlabel('x (um)')
ylabel('v (mV)')
show()

[image: ../_images/compartmental.rall.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: spike_initiation

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/compartmental/spike_initiation.ipynb]

Ball and stick with Na and K channels

from brian2 import *

defaultclock.dt = 0.025*ms

Morphology
morpho = Soma(30*um)
morpho.axon = Cylinder(diameter=1*um, length=300*um, n=100)

Channels
gL = 1e-4*siemens/cm**2
EL = -70*mV
ENa = 50*mV
ka = 6*mV
ki = 6*mV
va = -30*mV
vi = -50*mV
EK = -90*mV
vk = -20*mV
kk = 8*mV
eqs = '''
Im = gL*(EL-v)+gNa*m*h*(ENa-v)+gK*n*(EK-v) : amp/meter**2
dm/dt = (minf-m)/(0.3*ms) : 1 # simplified Na channel
dh/dt = (hinf-h)/(3*ms) : 1 # inactivation
dn/dt = (ninf-n)/(5*ms) : 1 # K+
minf = 1/(1+exp((va-v)/ka)) : 1
hinf = 1/(1+exp((v-vi)/ki)) : 1
ninf = 1/(1+exp((vk-v)/kk)) : 1
I : amp (point current)
gNa : siemens/meter**2
gK : siemens/meter**2
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs,
 Cm=1*uF/cm**2, Ri=100*ohm*cm, method='exponential_euler')
neuron.v = -65*mV
neuron.I = 0*amp
neuron.axon[30*um:60*um].gNa = 700*gL
neuron.axon[30*um:60*um].gK = 700*gL

Monitors
mon=StateMonitor(neuron, 'v', record=True)

run(1*ms)
neuron.main.I = 0.15*nA
run(50*ms)
neuron.I = 0*amp
run(95*ms, report='text')

plot(mon.t/ms, mon.v[0]/mV, 'r')
plot(mon.t/ms, mon.v[20]/mV, 'g')
plot(mon.t/ms, mon.v[40]/mV, 'b')
plot(mon.t/ms, mon.v[60]/mV, 'k')
plot(mon.t/ms, mon.v[80]/mV, 'y')
xlabel('Time (ms)')
ylabel('v (mV)')
show()

[image: ../_images/compartmental.spike_initiation.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: Brette_2004

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/frompapers/Brette_2004.ipynb]

Phase locking in leaky integrate-and-fire model

Fig. 2A from:
Brette R (2004). Dynamics of one-dimensional spiking neuron models.
J Math Biol 48(1): 38-56.

This shows the phase-locking structure of a LIF driven by a sinusoidal
current. When the current crosses the threshold (a<3), the model
almost always phase locks (in a measure-theoretical sense).

from brian2 import *

defaultclock.dt = 0.01*ms # for a more precise picture
N = 2000
tau = 100*ms
freq = 1/tau

eqs = '''
dv/dt = (-v + a + 2*sin(2*pi*t/tau))/tau : 1
a : 1
'''

neurons = NeuronGroup(N, eqs, threshold='v>1', reset='v=0', method='euler')
neurons.a = linspace(2, 4, N)

run(5*second, report='text') # discard the first spikes (wait for convergence)
S = SpikeMonitor(neurons)
run(5*second, report='text')

i, t = S.it
plot((t % tau)/tau, neurons.a[i], '.')
xlabel('Spike phase')
ylabel('Parameter a')
show()

[image: ../_images/frompapers.Brette_2004.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: Brette_Gerstner_2005

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/frompapers/Brette_Gerstner_2005.ipynb]

Adaptive exponential integrate-and-fire model.
http://www.scholarpedia.org/article/Adaptive_exponential_integrate-and-fire_model

Introduced in Brette R. and Gerstner W. (2005), Adaptive Exponential
Integrate-and-Fire Model as an Effective Description of Neuronal Activity,
J. Neurophysiol. 94: 3637 - 3642.

from brian2 import *

Parameters
C = 281 * pF
gL = 30 * nS
taum = C / gL
EL = -70.6 * mV
VT = -50.4 * mV
DeltaT = 2 * mV
Vcut = VT + 5 * DeltaT

Pick an electrophysiological behaviour
tauw, a, b, Vr = 144*ms, 4*nS, 0.0805*nA, -70.6*mV # Regular spiking (as in the paper)
#tauw,a,b,Vr=20*ms,4*nS,0.5*nA,VT+5*mV # Bursting
#tauw,a,b,Vr=144*ms,2*C/(144*ms),0*nA,-70.6*mV # Fast spiking

eqs = """
dvm/dt = (gL*(EL - vm) + gL*DeltaT*exp((vm - VT)/DeltaT) + I - w)/C : volt
dw/dt = (a*(vm - EL) - w)/tauw : amp
I : amp
"""

neuron = NeuronGroup(1, model=eqs, threshold='vm>Vcut',
 reset="vm=Vr; w+=b", method='euler')
neuron.vm = EL
trace = StateMonitor(neuron, 'vm', record=0)
spikes = SpikeMonitor(neuron)

run(20 * ms)
neuron.I = 1*nA
run(100 * ms)
neuron.I = 0*nA
run(20 * ms)

We draw nicer spikes
vm = trace[0].vm[:]
for t in spikes.t:
 i = int(t / defaultclock.dt)
 vm[i] = 20*mV

plot(trace.t / ms, vm / mV)
xlabel('time (ms)')
ylabel('membrane potential (mV)')
show()

[image: ../_images/frompapers.Brette_Gerstner_2005.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: Brette_Guigon_2003

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/frompapers/Brette_Guigon_2003.ipynb]

Reliability of spike timing

Adapted from Fig. 10D,E of
Brette R and E Guigon (2003). Reliability of Spike Timing Is a General Property
of Spiking Model Neurons. Neural Computation 15, 279-308.

This shows that reliability of spike timing is a generic property of spiking
neurons, even those that are not leaky.
This is a non-physiological model which can be leaky or anti-leaky depending
on the sign of the input I.

All neurons receive the same fluctuating input, scaled by a parameter p that
varies across neurons. This shows:

	reproducibility of spike timing

	robustness with respect to deterministic changes (parameter)

	increased reproducibility in the fluctuation-driven regime (input crosses
the threshold)

from brian2 import *

N = 500
tau = 33*ms
taux = 20*ms
sigma = 0.02

eqs_input = '''
dx/dt = -x/taux + (2/taux)**.5*xi : 1
'''

eqs = '''
dv/dt = (v*I + 1)/tau + sigma*(2/tau)**.5*xi : 1
I = 0.5 + 3*p*B : 1
B = 2./(1 + exp(-2*x)) - 1 : 1 (shared)
p : 1
x : 1 (linked)
'''

input = NeuronGroup(1, eqs_input, method='euler')
neurons = NeuronGroup(N, eqs, threshold='v>1', reset='v=0', method='euler')
neurons.p = '1.0*i/N'
neurons.v = 'rand()'
neurons.x = linked_var(input, 'x')

M = StateMonitor(neurons, 'B', record=0)
S = SpikeMonitor(neurons)

run(1000*ms, report='text')

subplot(211) # The input
plot(M.t/ms, M[0].B)
xticks([])
title('shared input')
subplot(212)
plot(S.t/ms, neurons.p[S.i], '.')
plot([0, 1000], [.5, .5], 'r')
xlabel('time (ms)')
ylabel('p')
title('spiking activity')
show()

[image: ../_images/frompapers.Brette_Guigon_2003.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: Brunel_Hakim_1999

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/frompapers/Brunel_Hakim_1999.ipynb]

Dynamics of a network of sparsely connected inhibitory current-based
integrate-and-fire neurons. Individual neurons fire irregularly at
low rate but the network is in an oscillatory global activity regime
where neurons are weakly synchronized.

	Reference:

	“Fast Global Oscillations in Networks of Integrate-and-Fire
Neurons with Low Firing Rates”
Nicolas Brunel & Vincent Hakim
Neural Computation 11, 1621-1671 (1999)

from brian2 import *

N = 5000
Vr = 10*mV
theta = 20*mV
tau = 20*ms
delta = 2*ms
taurefr = 2*ms
duration = .1*second
C = 1000
sparseness = float(C)/N
J = .1*mV
muext = 25*mV
sigmaext = 1*mV

eqs = """
dV/dt = (-V+muext + sigmaext * sqrt(tau) * xi)/tau : volt
"""

group = NeuronGroup(N, eqs, threshold='V>theta',
 reset='V=Vr', refractory=taurefr, method='euler')
group.V = Vr
conn = Synapses(group, group, on_pre='V += -J', delay=delta)
conn.connect(p=sparseness)
M = SpikeMonitor(group)
LFP = PopulationRateMonitor(group)

run(duration)

subplot(211)
plot(M.t/ms, M.i, '.')
xlim(0, duration/ms)

subplot(212)
plot(LFP.t/ms, LFP.smooth_rate(window='flat', width=0.5*ms)/Hz)
xlim(0, duration/ms)

show()

[image: ../_images/frompapers.Brunel_Hakim_1999.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: Clopath_et_al_2010_homeostasis

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/frompapers/Clopath_et_al_2010_homeostasis.ipynb]

This code contains an adapted version of the voltage-dependent triplet STDP rule from:
Clopath et al., Connectivity reflects coding: a model of voltage-based STDP with homeostasis, Nature Neuroscience, 2010
(http://dx.doi.org/10.1038/nn.2479)

The plasticity rule is adapted for a leaky integrate & fire model in Brian2.

As an illustration of the rule, we simulate the competition between inputs projecting on a downstream neuron

We kindly ask to cite the article when using the model presented below.

This code was written by Jacopo Bono, 12/2015

from brian2 import *

##
PLASTICITY MODEL
##

Plasticity Parameters

V_rest = -70.*mV # resting potential
V_thresh = -55.*mV # spiking threshold
Theta_low = V_rest # depolarization threshold for plasticity
x_reset = 1. # spike trace reset value
taux = 15.*ms # spike trace time constant
A_LTD = 1.5e-4 # depression amplitude
A_LTP = 1.5e-2 # potentiation amplitude
tau_lowpass1 = 40*ms # timeconstant for low-pass filtered voltage
tau_lowpass2 = 30*ms # timeconstant for low-pass filtered voltage
tau_homeo = 1000*ms # homeostatic timeconstant
v_target = 12*mV**2 # target depolarisation

Plasticity Equations

equations executed at every timestep
Syn_model = ('''
 w_ampa:1 # synaptic weight (ampa synapse)
 ''')

equations executed only when a presynaptic spike occurs
Pre_eq = ('''
 g_ampa_post += w_ampa*ampa_max_cond # increment synaptic conductance
 A_LTD_u = A_LTD*(v_homeo**2/v_target) # metaplasticity
 w_minus = A_LTD_u*(v_lowpass1_post/mV - Theta_low/mV)*(v_lowpass1_post/mV - Theta_low/mV > 0) # synaptic depression
 w_ampa = clip(w_ampa-w_minus,0,w_max) # hard bounds
 ''')

equations executed only when a postsynaptic spike occurs
Post_eq = ('''
 v_lowpass1 += 10*mV # mimics the depolarisation effect due to a spike
 v_lowpass2 += 10*mV # mimics the depolarisation effect due to a spike
 v_homeo += 0.1*mV # mimics the depolarisation effect due to a spike
 w_plus = A_LTP*x_trace_pre*(v_lowpass2_post/mV - Theta_low/mV)*(v_lowpass2_post/mV - Theta_low/mV > 0) # synaptic potentiation
 w_ampa = clip(w_ampa+w_plus,0,w_max) # hard bounds
 ''')

##
I&F Parameters and equations
##

Neuron parameters

gleak = 30.*nS # leak conductance
C = 300.*pF # membrane capacitance
tau_AMPA = 2.*ms # AMPA synaptic timeconstant
E_AMPA = 0.*mV # reversal potential AMPA

ampa_max_cond = 5.e-8*siemens # Ampa maximal conductance
w_max = 1. # maximal ampa weight

Neuron Equations

We connect 10 presynaptic neurons to 1 downstream neuron

downstream neuron
eqs_neurons = '''
dv/dt = (gleak*(V_rest-v) + I_ext + I_syn)/C: volt # voltage
dv_lowpass1/dt = (v-v_lowpass1)/tau_lowpass1 : volt # low-pass filter of the voltage
dv_lowpass2/dt = (v-v_lowpass2)/tau_lowpass2 : volt # low-pass filter of the voltage
dv_homeo/dt = (v-V_rest-v_homeo)/tau_homeo : volt # low-pass filter of the voltage
I_ext : amp # external current
I_syn = g_ampa*(E_AMPA-v): amp # synaptic current
dg_ampa/dt = -g_ampa/tau_AMPA : siemens # synaptic conductance
dx_trace/dt = -x_trace/taux :1 # spike trace
'''

input neurons
eqs_inputs = '''
dv/dt = gleak*(V_rest-v)/C: volt # voltage
dx_trace/dt = -x_trace/taux :1 # spike trace
rates : Hz # input rates
selected_index : integer (shared) # active neuron
'''

##
Simulation
##

Parameters

defaultclock.dt = 500.*us # timestep
Nr_neurons = 1 # Number of downstream neurons
Nr_inputs = 5 # Number of input neurons
input_rate = 35*Hz # Rates
init_weight = 0.5 # initial synaptic weight
final_t = 20.*second # end of simulation
input_time = 100.*ms # duration of an input

Create neuron objects

Nrn_downstream = NeuronGroup(Nr_neurons, eqs_neurons, threshold='v>V_thresh',
 reset='v=V_rest;x_trace+=x_reset/(taux/ms)',
 method='euler')
Nrns_input = NeuronGroup(Nr_inputs, eqs_inputs, threshold='rand()<rates*dt',
 reset='v=V_rest;x_trace+=x_reset/(taux/ms)',
 method='linear')

create Synapses

Syn = Synapses(Nrns_input, Nrn_downstream,
 model=Syn_model,
 on_pre=Pre_eq,
 on_post=Post_eq
)

Syn.connect(i=numpy.arange(Nr_inputs), j=0)

Monitors and storage
W_evolution = StateMonitor(Syn, 'w_ampa', record=True)

Run

Initial values
Nrn_downstream.v = V_rest
Nrn_downstream.v_lowpass1 = V_rest
Nrn_downstream.v_lowpass2 = V_rest
Nrn_downstream.v_homeo = 0
Nrn_downstream.I_ext = 0.*amp
Nrn_downstream.x_trace = 0.
Nrns_input.v = V_rest
Nrns_input.x_trace = 0.
Syn.w_ampa = init_weight

Switch on a different input every 100ms
Nrns_input.run_regularly('''
 selected_index = int(floor(rand()*Nr_inputs))
 rates = input_rate * int(selected_index == i) # All rates are zero except for the selected neuron
 ''', dt=input_time)
run(final_t, report='text')

##
Plots
##
stitle = 'Synaptic Competition'

fig = figure(figsize=(8, 5))
for kk in range(Nr_inputs):
 plt.plot(W_evolution.t, W_evolution.w_ampa[kk], '-', linewidth=2)
xlabel('Time [ms]', fontsize=22)
ylabel('Weight [a.u.]', fontsize=22)
plt.subplots_adjust(bottom=0.2, left=0.15, right=0.95, top=0.85)
title(stitle, fontsize=22)
plt.show()

[image: ../_images/frompapers.Clopath_et_al_2010_homeostasis.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: Clopath_et_al_2010_no_homeostasis

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/frompapers/Clopath_et_al_2010_no_homeostasis.ipynb]

This code contains an adapted version of the voltage-dependent triplet STDP rule from:
Clopath et al., Connectivity reflects coding: a model of voltage-based STDP with homeostasis, Nature Neuroscience, 2010
(http://dx.doi.org/10.1038/nn.2479)

The plasticity rule is adapted for a leaky integrate & fire model in Brian2 and does not include the homeostatic metaplasticity

As an illustration of the Rule, we simulate a plot analogous to figure 2b in the above article, showing the frequency dependence of plasticity as measured in:
Sjöström et al., Rate, timing and cooperativity jointly determine cortical synaptic plasticity. Neuron, 2001

We kindly ask to cite both articles when using the model presented below.

This code was written by Jacopo Bono, 12/2015

from brian2 import *
##
PLASTICITY MODEL
##

Plasticity Parameters

V_rest = -70.*mV # resting potential
V_thresh = -50.*mV # spiking threshold
Theta_low = V_rest # depolarization threshold for plasticity
x_reset = 1. # spike trace reset value
taux = 15.*ms # spike trace time constant
A_LTD = 1.5e-4 # depression amplitude
A_LTP = 1.5e-2 # potentiation amplitude
tau_lowpass1 = 40*ms # timeconstant for low-pass filtered voltage
tau_lowpass2 = 30*ms # timeconstant for low-pass filtered voltage

Plasticity Equations

equations executed at every timestep
Syn_model = '''
 w_ampa:1 # synaptic weight (ampa synapse)
 '''

equations executed only when a presynaptic spike occurs
Pre_eq = '''
 g_ampa_post += w_ampa*ampa_max_cond # increment synaptic conductance
 w_minus = A_LTD*(v_lowpass1_post/mV - Theta_low/mV)*(v_lowpass1_post/mV - Theta_low/mV > 0) # synaptic depression
 w_ampa = clip(w_ampa-w_minus,0,w_max) # hard bounds
 '''

equations executed only when a postsynaptic spike occurs
Post_eq = '''
 v_lowpass1 += 10*mV # mimics the depolarisation by a spike
 v_lowpass2 += 10*mV # mimics the depolarisation by a spike
 w_plus = A_LTP*x_trace_pre*(v_lowpass2_post/mV - Theta_low/mV)*(v_lowpass2_post/mV - Theta_low/mV > 0) # synaptic potentiation
 w_ampa = clip(w_ampa+w_plus,0,w_max) # hard bounds
 '''

##
I&F Parameters and equations
##

Neuron parameters

gleak = 30.*nS # leak conductance
C = 300.*pF # membrane capacitance
tau_AMPA = 2.*ms # AMPA synaptic timeconstant
E_AMPA = 0.*mV # reversal potential AMPA

ampa_max_cond = 5.e-10*siemens # Ampa maximal conductance
w_max = 1. # maximal ampa weight

Neuron Equations

eqs_neurons = '''
dv/dt = (gleak*(V_rest-v) + I_ext + I_syn)/C: volt # voltage
dv_lowpass1/dt = (v-v_lowpass1)/tau_lowpass1 : volt # low-pass filter of the voltage
dv_lowpass2/dt = (v-v_lowpass2)/tau_lowpass2 : volt # low-pass filter of the voltage
I_ext : amp # external current
I_syn = g_ampa*(E_AMPA-v): amp # synaptic current
dg_ampa/dt = -g_ampa/tau_AMPA : siemens # synaptic conductance
dx_trace/dt = -x_trace/taux :1 # spike trace
'''

##
Simulation
##

Parameters

defaultclock.dt = 100.*us # timestep
Nr_neurons = 2 # Number of neurons
rate_array = [1., 5., 10., 15., 20., 30., 50.]*Hz # Rates
init_weight = 0.5 # initial synaptic weight
reps = 15 # Number of pairings

Create neuron objects

Nrns = NeuronGroup(Nr_neurons, eqs_neurons, threshold='v>V_thresh',
 reset='v=V_rest;x_trace+=x_reset/(taux/ms)', method='euler')#

create Synapses

Syn = Synapses(Nrns, Nrns,
 model=Syn_model,
 on_pre=Pre_eq,
 on_post=Post_eq
)

Syn.connect('i!=j')

Monitors and storage
weight_result = np.zeros((2,len(rate_array))) # to save the final weights

Run

loop over rates
for jj, rate in enumerate(rate_array):

 # Calculate interval between pairs
 pair_interval = 1./rate - 10*ms
 print('Starting simulations for %s' % rate)

 # Initial values
 Nrns.v = V_rest
 Nrns.v_lowpass1 = V_rest
 Nrns.v_lowpass2 = V_rest
 Nrns.I_ext = 0*amp
 Nrns.x_trace = 0.
 Syn.w_ampa = init_weight

 # loop over pairings
 for ii in range(reps):
 # 1st SPIKE
 Nrns.v[0] = V_thresh + 1*mV
 # 2nd SPIKE
 run(10*ms)
 Nrns.v[1] = V_thresh + 1*mV
 # run
 run(pair_interval)
 print('Pair %d out of %d' % (ii+1, reps))

 #store weight changes
 weight_result[0, jj] = 100.*Syn.w_ampa[0]/init_weight
 weight_result[1, jj] = 100.*Syn.w_ampa[1]/init_weight

##
Plots
##

stitle = 'Pairings'
scolor = 'k'

figure(figsize=(8, 5))
plot(rate_array,weight_result[0, :], '-', linewidth=2, color=scolor)
plot(rate_array,weight_result[1, :], ':', linewidth=2, color=scolor)
xlabel('Pairing frequency [Hz]', fontsize=22)
ylabel('Normalised Weight [%]', fontsize=22)
legend(['Pre-Post', 'Post-Pre'], loc='best')
subplots_adjust(bottom=0.2, left=0.15, right=0.95, top=0.85)
title(stitle)
show()

[image: ../_images/frompapers.Clopath_et_al_2010_no_homeostasis.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: Diesmann_et_al_1999

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/frompapers/Diesmann_et_al_1999.ipynb]

Synfire chains

M. Diesmann et al. (1999). Stable propagation of synchronous spiking in cortical
neural networks. Nature 402, 529-533.

from brian2 import *

duration = 100*ms

Neuron model parameters
Vr = -70*mV
Vt = -55*mV
taum = 10*ms
taupsp = 0.325*ms
weight = 4.86*mV
Neuron model
eqs = Equations('''
dV/dt = (-(V-Vr)+x)*(1./taum) : volt
dx/dt = (-x+y)*(1./taupsp) : volt
dy/dt = -y*(1./taupsp)+25.27*mV/ms+
 (39.24*mV/ms**0.5)*xi : volt
''')

Neuron groups
n_groups = 10
group_size = 100
P = NeuronGroup(N=n_groups*group_size, model=eqs,
 threshold='V>Vt', reset='V=Vr', refractory=1*ms,
 method='euler')

Pinput = SpikeGeneratorGroup(85, np.arange(85),
 np.random.randn(85)*1*ms + 50*ms)
The network structure
S = Synapses(P, P, on_pre='y+=weight')
S.connect(j='k for k in range((int(i/group_size)+1)*group_size, (int(i/group_size)+2)*group_size) '
 'if i<N_pre-group_size')
Sinput = Synapses(Pinput, P[:group_size], on_pre='y+=weight')
Sinput.connect()

Record the spikes
Mgp = SpikeMonitor(P)
Minput = SpikeMonitor(Pinput)
Setup the network, and run it
P.V = 'Vr + rand() * (Vt - Vr)'
run(duration)

plot(Mgp.t/ms, 1.0*Mgp.i/group_size, '.')
plot([0, duration/ms], np.arange(n_groups).repeat(2).reshape(-1, 2).T, 'k-')
ylabel('group number')
yticks(np.arange(n_groups))
xlabel('time (ms)')
show()

[image: ../_images/frompapers.Diesmann_et_al_1999.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: Kremer_et_al_2011_barrel_cortex

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/frompapers/Kremer_et_al_2011_barrel_cortex.ipynb]

Late Emergence of the Whisker Direction Selectivity Map in the Rat Barrel Cortex.
Kremer Y, Leger JF, Goodman DF, Brette R, Bourdieu L (2011).
J Neurosci 31(29):10689-700.

Development of direction maps with pinwheels in the barrel cortex.
Whiskers are deflected with random moving bars.
N.B.: network construction can be long.

from brian2 import *
import time

t1 = time.time()

PARAMETERS
Neuron numbers
M4, M23exc, M23inh = 22, 25, 12 # size of each barrel (in neurons)
N4, N23exc, N23inh = M4**2, M23exc**2, M23inh**2 # neurons per barrel
barrelarraysize = 5 # Choose 3 or 4 if memory error
Nbarrels = barrelarraysize**2
Stimulation
stim_change_time = 5*ms
Fmax = .5/stim_change_time # maximum firing rate in layer 4 (.5 spike / stimulation)
Neuron parameters
taum, taue, taui = 10*ms, 2*ms, 25*ms
El = -70*mV
Vt, vt_inc, tauvt = -55*mV, 2*mV, 50*ms # adaptive threshold
STDP
taup, taud = 5*ms, 25*ms
Ap, Ad= .05, -.04
EPSPs/IPSPs
EPSP, IPSP = 1*mV, -1*mV
EPSC = EPSP * (taue/taum)**(taum/(taue-taum))
IPSC = IPSP * (taui/taum)**(taum/(taui-taum))
Ap, Ad = Ap*EPSC, Ad*EPSC

Layer 4, models the input stimulus
eqs_layer4 = '''
rate = int(is_active)*clip(cos(direction - selectivity), 0, inf)*Fmax: Hz
is_active = abs((barrel_x + 0.5 - bar_x) * cos(direction) + (barrel_y + 0.5 - bar_y) * sin(direction)) < 0.5: boolean
barrel_x : integer # The x index of the barrel
barrel_y : integer # The y index of the barrel
selectivity : 1
Stimulus parameters (same for all neurons)
bar_x = cos(direction)*(t - stim_start_time)/(5*ms) + stim_start_x : 1 (shared)
bar_y = sin(direction)*(t - stim_start_time)/(5*ms) + stim_start_y : 1 (shared)
direction : 1 (shared) # direction of the current stimulus
stim_start_time : second (shared) # start time of the current stimulus
stim_start_x : 1 (shared) # start position of the stimulus
stim_start_y : 1 (shared) # start position of the stimulus
'''
layer4 = NeuronGroup(N4*Nbarrels, eqs_layer4, threshold='rand() < rate*dt',
 method='euler', name='layer4')
layer4.barrel_x = '(i / N4) % barrelarraysize + 0.5'
layer4.barrel_y = 'i / (barrelarraysize*N4) + 0.5'
layer4.selectivity = '(i%N4)/(1.0*N4)*2*pi' # for each barrel, selectivity between 0 and 2*pi

stimradius = (11+1)*.5

Chose a new randomly oriented bar every 60ms
runner_code = '''
direction = rand()*2*pi
stim_start_x = barrelarraysize / 2.0 - cos(direction)*stimradius
stim_start_y = barrelarraysize / 2.0 - sin(direction)*stimradius
stim_start_time = t
'''
layer4.run_regularly(runner_code, dt=60*ms, when='start')

Layer 2/3
Model: IF with adaptive threshold
eqs_layer23 = '''
dv/dt=(ge+gi+El-v)/taum : volt
dge/dt=-ge/taue : volt
dgi/dt=-gi/taui : volt
dvt/dt=(Vt-vt)/tauvt : volt # adaptation
barrel_idx : integer
x : 1 # in "barrel width" units
y : 1 # in "barrel width" units
'''
layer23 = NeuronGroup(Nbarrels*(N23exc+N23inh), eqs_layer23,
 threshold='v>vt', reset='v = El; vt += vt_inc',
 refractory=2*ms, method='euler', name='layer23')
layer23.v = El
layer23.vt = Vt

Subgroups for excitatory and inhibitory neurons in layer 2/3
layer23exc = layer23[:Nbarrels*N23exc]
layer23inh = layer23[Nbarrels*N23exc:]

Layer 2/3 excitatory
The units for x and y are the width/height of a single barrel
layer23exc.x = '(i % (barrelarraysize*M23exc)) * (1.0/M23exc)'
layer23exc.y = '(i / (barrelarraysize*M23exc)) * (1.0/M23exc)'
layer23exc.barrel_idx = 'floor(x) + floor(y)*barrelarraysize'

Layer 2/3 inhibitory
layer23inh.x = 'i % (barrelarraysize*M23inh) * (1.0/M23inh)'
layer23inh.y = 'i / (barrelarraysize*M23inh) * (1.0/M23inh)'
layer23inh.barrel_idx = 'floor(x) + floor(y)*barrelarraysize'

print("Building synapses, please wait...")
Feedforward connections (plastic)
feedforward = Synapses(layer4, layer23exc,
 model='''w:volt
 dA_source/dt = -A_source/taup : volt (event-driven)
 dA_target/dt = -A_target/taud : volt (event-driven)''',
 on_pre='''ge+=w
 A_source += Ap
 w = clip(w+A_target, 0, EPSC)''',
 on_post='''
 A_target += Ad
 w = clip(w+A_source, 0, EPSC)''',
 name='feedforward')
Connect neurons in the same barrel with 50% probability
feedforward.connect('(barrel_x_pre + barrelarraysize*barrel_y_pre) == barrel_idx_post',
 p=0.5)
feedforward.w = EPSC*.5

print('excitatory lateral')
Excitatory lateral connections
recurrent_exc = Synapses(layer23exc, layer23, model='w:volt', on_pre='ge+=w',
 name='recurrent_exc')
recurrent_exc.connect(p='.15*exp(-.5*(((x_pre-x_post)/.4)**2+((y_pre-y_post)/.4)**2))')
recurrent_exc.w['j<Nbarrels*N23exc'] = EPSC*.3 # excitatory->excitatory
recurrent_exc.w['j>=Nbarrels*N23exc'] = EPSC # excitatory->inhibitory

Inhibitory lateral connections
print('inhibitory lateral')
recurrent_inh = Synapses(layer23inh, layer23exc, on_pre='gi+=IPSC',
 name='recurrent_inh')
recurrent_inh.connect(p='exp(-.5*(((x_pre-x_post)/.2)**2+((y_pre-y_post)/.2)**2))')

if get_device().__class__.__name__=='RuntimeDevice':
 print('Total number of connections')
 print('feedforward: %d' % len(feedforward))
 print('recurrent exc: %d' % len(recurrent_exc))
 print('recurrent inh: %d' % len(recurrent_inh))

 t2 = time.time()
 print("Construction time: %.1fs" % (t2 - t1))

run(5*second, report='text')

Calculate the preferred direction of each cell in layer23 by doing a
vector average of the selectivity of the projecting layer4 cells, weighted
by the synaptic weight.
_r = bincount(feedforward.j,
 weights=feedforward.w * cos(feedforward.selectivity_pre)/feedforward.N_incoming,
 minlength=len(layer23exc))
_i = bincount(feedforward.j,
 weights=feedforward.w * sin(feedforward.selectivity_pre)/feedforward.N_incoming,
 minlength=len(layer23exc))
selectivity_exc = (arctan2(_r, _i) % (2*pi))*180./pi

scatter(layer23.x[:Nbarrels*N23exc], layer23.y[:Nbarrels*N23exc],
 c=selectivity_exc[:Nbarrels*N23exc],
 edgecolors='none', marker='s', cmap='hsv')
vlines(np.arange(barrelarraysize), 0, barrelarraysize, 'k')
hlines(np.arange(barrelarraysize), 0, barrelarraysize, 'k')
clim(0, 360)
colorbar()
show()

[image: ../_images/frompapers.Kremer_et_al_2011_barrel_cortex.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: Rossant_et_al_2011bis

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/frompapers/Rossant_et_al_2011bis.ipynb]

Distributed synchrony example

Fig. 14 from:

Rossant C, Leijon S, Magnusson AK, Brette R (2011).
“Sensitivity of noisy neurons to coincident inputs”.
Journal of Neuroscience, 31(47).

5000 independent E/I Poisson inputs are injected into a leaky integrate-and-fire neuron.
Synchronous events, following an independent Poisson process at 40 Hz, are considered,
where 15 E Poisson spikes are randomly shifted to be synchronous at those events.
The output firing rate is then significantly higher, showing that the spike timing of
less than 1% of the excitatory synapses have an important impact on the postsynaptic firing.

from brian2 import *

neuron parameters
theta = -55*mV
El = -65*mV
vmean = -65*mV
taum = 5*ms
taue = 3*ms
taui = 10*ms
eqs = Equations("""
 dv/dt = (ge+gi-(v-El))/taum : volt
 dge/dt = -ge/taue : volt
 dgi/dt = -gi/taui : volt
 """)

input parameters
p = 15
ne = 4000
ni = 1000
lambdac = 40*Hz
lambdae = lambdai = 1*Hz

synapse parameters
we = .5*mV/(taum/taue)**(taum/(taue-taum))
wi = (vmean-El-lambdae*ne*we*taue)/(lambdae*ni*taui)

NeuronGroup definition
group = NeuronGroup(N=2, model=eqs, reset='v = El',
 threshold='v>theta',
 refractory=5*ms, method='linear')
group.v = El
group.ge = group.gi = 0

independent E/I Poisson inputs
p1 = PoissonInput(group[0:1], 'ge', N=ne, rate=lambdae, weight=we)
p2 = PoissonInput(group[0:1], 'gi', N=ni, rate=lambdai, weight=wi)

independent E/I Poisson inputs + synchronous E events
p3 = PoissonInput(group[1:], 'ge', N=ne, rate=lambdae-(p*1.0/ne)*lambdac, weight=we)
p4 = PoissonInput(group[1:], 'gi', N=ni, rate=lambdai, weight=wi)
p5 = PoissonInput(group[1:], 'ge', N=1, rate=lambdac, weight=p*we)

run the simulation
M = SpikeMonitor(group)
SM = StateMonitor(group, 'v', record=True)
BrianLogger.log_level_info()
run(1*second)
plot trace and spikes
for i in [0, 1]:
 spikes = (M.t[M.i == i] - defaultclock.dt)/ms
 val = SM[i].v
 subplot(2,1,i+1)
 plot(SM.t/ms, val)
 plot(tile(spikes, (2,1)),
 vstack((val[array(spikes, dtype=int)],
 zeros(len(spikes)))), 'b')
 title("%s: %d spikes/second" % (["uncorrelated inputs", "correlated inputs"][i],
 M.count[i]))
show()

[image: ../_images/frompapers.Rossant_et_al_2011bis.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: Rothman_Manis_2003

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/frompapers/Rothman_Manis_2003.ipynb]

Cochlear neuron model of Rothman & Manis

Rothman JS, Manis PB (2003) The roles potassium currents play in
regulating the electrical activity of ventral cochlear nucleus neurons.
J Neurophysiol 89:3097-113.

All model types differ only by the maximal conductances.

Adapted from their Neuron implementation by Romain Brette

from brian2 import *

#defaultclock.dt=0.025*ms # for better precision

'''
Simulation parameters: choose current amplitude and neuron type
(from type1c, type1t, type12, type 21, type2, type2o)
'''
neuron_type = 'type1c'
Ipulse = 250*pA

C = 12*pF
Eh = -43*mV
EK = -70*mV # -77*mV in mod file
El = -65*mV
ENa = 50*mV
nf = 0.85 # proportion of n vs p kinetics
zss = 0.5 # steady state inactivation of glt
temp = 22. # temperature in degree celcius
q10 = 3. ** ((temp - 22) / 10.)
hcno current (octopus cell)
frac = 0.0
qt = 4.5 ** ((temp - 33.) / 10.)

Maximal conductances of different cell types in nS
maximal_conductances = dict(
type1c=(1000, 150, 0, 0, 0.5, 0, 2),
type1t=(1000, 80, 0, 65, 0.5, 0, 2),
type12=(1000, 150, 20, 0, 2, 0, 2),
type21=(1000, 150, 35, 0, 3.5, 0, 2),
type2=(1000, 150, 200, 0, 20, 0, 2),
type2o=(1000, 150, 600, 0, 0, 40, 2) # octopus cell
)
gnabar, gkhtbar, gkltbar, gkabar, ghbar, gbarno, gl = [x * nS for x in maximal_conductances[neuron_type]]

Classical Na channel
eqs_na = """
ina = gnabar*m**3*h*(ENa-v) : amp
dm/dt=q10*(minf-m)/mtau : 1
dh/dt=q10*(hinf-h)/htau : 1
minf = 1./(1+exp(-(vu + 38.) / 7.)) : 1
hinf = 1./(1+exp((vu + 65.) / 6.)) : 1
mtau = ((10. / (5*exp((vu+60.) / 18.) + 36.*exp(-(vu+60.) / 25.))) + 0.04)*ms : second
htau = ((100. / (7*exp((vu+60.) / 11.) + 10.*exp(-(vu+60.) / 25.))) + 0.6)*ms : second
"""

KHT channel (delayed-rectifier K+)
eqs_kht = """
ikht = gkhtbar*(nf*n**2 + (1-nf)*p)*(EK-v) : amp
dn/dt=q10*(ninf-n)/ntau : 1
dp/dt=q10*(pinf-p)/ptau : 1
ninf = (1 + exp(-(vu + 15) / 5.))**-0.5 : 1
pinf = 1. / (1 + exp(-(vu + 23) / 6.)) : 1
ntau = ((100. / (11*exp((vu+60) / 24.) + 21*exp(-(vu+60) / 23.))) + 0.7)*ms : second
ptau = ((100. / (4*exp((vu+60) / 32.) + 5*exp(-(vu+60) / 22.))) + 5)*ms : second
"""

Ih channel (subthreshold adaptive, non-inactivating)
eqs_ih = """
ih = ghbar*r*(Eh-v) : amp
dr/dt=q10*(rinf-r)/rtau : 1
rinf = 1. / (1+exp((vu + 76.) / 7.)) : 1
rtau = ((100000. / (237.*exp((vu+60.) / 12.) + 17.*exp(-(vu+60.) / 14.))) + 25.)*ms : second
"""

KLT channel (low threshold K+)
eqs_klt = """
iklt = gkltbar*w**4*z*(EK-v) : amp
dw/dt=q10*(winf-w)/wtau : 1
dz/dt=q10*(zinf-z)/wtau : 1
winf = (1. / (1 + exp(-(vu + 48.) / 6.)))**0.25 : 1
zinf = zss + ((1.-zss) / (1 + exp((vu + 71.) / 10.))) : 1
wtau = ((100. / (6.*exp((vu+60.) / 6.) + 16.*exp(-(vu+60.) / 45.))) + 1.5)*ms : second
ztau = ((1000. / (exp((vu+60.) / 20.) + exp(-(vu+60.) / 8.))) + 50)*ms : second
"""

Ka channel (transient K+)
eqs_ka = """
ika = gkabar*a**4*b*c*(EK-v): amp
da/dt=q10*(ainf-a)/atau : 1
db/dt=q10*(binf-b)/btau : 1
dc/dt=q10*(cinf-c)/ctau : 1
ainf = (1. / (1 + exp(-(vu + 31) / 6.)))**0.25 : 1
binf = 1. / (1 + exp((vu + 66) / 7.))**0.5 : 1
cinf = 1. / (1 + exp((vu + 66) / 7.))**0.5 : 1
atau = ((100. / (7*exp((vu+60) / 14.) + 29*exp(-(vu+60) / 24.))) + 0.1)*ms : second
btau = ((1000. / (14*exp((vu+60) / 27.) + 29*exp(-(vu+60) / 24.))) + 1)*ms : second
ctau = ((90. / (1 + exp((-66-vu) / 17.))) + 10)*ms : second
"""

Leak
eqs_leak = """
ileak = gl*(El-v) : amp
"""

h current for octopus cells
eqs_hcno = """
ihcno = gbarno*(h1*frac + h2*(1-frac))*(Eh-v) : amp
dh1/dt=(hinfno-h1)/tau1 : 1
dh2/dt=(hinfno-h2)/tau2 : 1
hinfno = 1./(1+exp((vu+66.)/7.)) : 1
tau1 = bet1/(qt*0.008*(1+alp1))*ms : second
tau2 = bet2/(qt*0.0029*(1+alp2))*ms : second
alp1 = exp(1e-3*3*(vu+50)*9.648e4/(8.315*(273.16+temp))) : 1
bet1 = exp(1e-3*3*0.3*(vu+50)*9.648e4/(8.315*(273.16+temp))) : 1
alp2 = exp(1e-3*3*(vu+84)*9.648e4/(8.315*(273.16+temp))) : 1
bet2 = exp(1e-3*3*0.6*(vu+84)*9.648e4/(8.315*(273.16+temp))) : 1
"""

eqs = """
dv/dt = (ileak + ina + ikht + iklt + ika + ih + ihcno + I)/C : volt
vu = v/mV : 1 # unitless v
I : amp
"""
eqs += eqs_leak + eqs_ka + eqs_na + eqs_ih + eqs_klt + eqs_kht + eqs_hcno

neuron = NeuronGroup(1, eqs, method='exponential_euler')
neuron.v = El

run(50*ms, report='text') # Go to rest

M = StateMonitor(neuron, 'v', record=0)
neuron.I = Ipulse

run(100*ms, report='text')

plot(M.t / ms, M[0].v / mV)
xlabel('t (ms)')
ylabel('v (mV)')
show()

[image: ../_images/frompapers.Rothman_Manis_2003.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: Sturzl_et_al_2000

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/frompapers/Sturzl_et_al_2000.ipynb]

Adapted from
Theory of Arachnid Prey Localization
W. Sturzl, R. Kempter, and J. L. van Hemmen
PRL 2000

Poisson inputs are replaced by integrate-and-fire neurons

Romain Brette

from brian2 import *

Parameters
degree = 2 * pi / 360.
duration = 500*ms
R = 2.5*cm # radius of scorpion
vr = 50*meter/second # Rayleigh wave speed
phi = 144*degree # angle of prey
A = 250*Hz
deltaI = .7*ms # inhibitory delay
gamma = (22.5 + 45 * arange(8)) * degree # leg angle
delay = R / vr * (1 - cos(phi - gamma)) # wave delay

Wave (vector w)
time = arange(int(duration / defaultclock.dt) + 1) * defaultclock.dt
Dtot = 0.
w = 0.
for f in arange(150, 451)*Hz:
 D = exp(-(f/Hz - 300) ** 2 / (2 * (50 ** 2)))
 rand_angle = 2 * pi * rand()
 w += 100 * D * cos(2 * pi * f * time + rand_angle)
 Dtot += D
w = .01 * w / Dtot

Rates from the wave
rates = TimedArray(w, dt=defaultclock.dt)

Leg mechanical receptors
tau_legs = 1 * ms
sigma = .01
eqs_legs = """
dv/dt = (1 + rates(t - d) - v)/tau_legs + sigma*(2./tau_legs)**.5*xi:1
d : second
"""
legs = NeuronGroup(8, model=eqs_legs, threshold='v > 1', reset='v = 0',
 refractory=1*ms, method='euler')
legs.d = delay
spikes_legs = SpikeMonitor(legs)

Command neurons
tau = 1 * ms
taus = 1.001 * ms
wex = 7
winh = -2
eqs_neuron = '''
dv/dt = (x - v)/tau : 1
dx/dt = (y - x)/taus : 1 # alpha currents
dy/dt = -y/taus : 1
'''
neurons = NeuronGroup(8, model=eqs_neuron, threshold='v>1', reset='v=0',
 method='linear')
synapses_ex = Synapses(legs, neurons, on_pre='y+=wex')
synapses_ex.connect(j='i')
synapses_inh = Synapses(legs, neurons, on_pre='y+=winh', delay=deltaI)
synapses_inh.connect('abs(((j - i) % N_post) - N_post/2) <= 1')
spikes = SpikeMonitor(neurons)

run(duration, report='text')

nspikes = spikes.count
phi_est = imag(log(sum(nspikes * exp(gamma * 1j))))
print("True angle (deg): %.2f" % (phi/degree))
print("Estimated angle (deg): %.2f" % (phi_est/degree))
rmax = amax(nspikes)/duration/Hz
polar(concatenate((gamma, [gamma[0] + 2 * pi])),
 concatenate((nspikes, [nspikes[0]])) / duration / Hz,
 c='k')
axvline(phi, ls='-', c='g')
axvline(phi_est, ls='-', c='b')
show()

[image: ../_images/frompapers.Sturzl_et_al_2000.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: Touboul_Brette_2008

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/frompapers/Touboul_Brette_2008.ipynb]

Chaos in the AdEx model

Fig. 8B from:
Touboul, J. and Brette, R. (2008). Dynamics and bifurcations of the adaptive
exponential integrate-and-fire model. Biological Cybernetics 99(4-5):319-34.

This shows the bifurcation structure when the reset value is varied
(vertical axis shows the values of w at spike times for a given a reset value
Vr).

from brian2 import *

defaultclock.dt = 0.01*ms

C = 281*pF
gL = 30*nS
EL = -70.6*mV
VT = -50.4*mV
DeltaT = 2*mV
tauw = 40*ms
a = 4*nS
b = 0.08*nA
I = .8*nA
Vcut = VT + 5 * DeltaT # practical threshold condition
N = 200

eqs = """
dvm/dt=(gL*(EL-vm)+gL*DeltaT*exp((vm-VT)/DeltaT)+I-w)/C : volt
dw/dt=(a*(vm-EL)-w)/tauw : amp
Vr:volt
"""

neuron = NeuronGroup(N, model=eqs, threshold='vm > Vcut',
 reset="vm = Vr; w += b", method='euler')
neuron.vm = EL
neuron.w = a * (neuron.vm - EL)
neuron.Vr = linspace(-48.3 * mV, -47.7 * mV, N) # bifurcation parameter

init_time = 3*second
run(init_time, report='text') # we discard the first spikes

states = StateMonitor(neuron, "w", record=True, when='start')
spikes = SpikeMonitor(neuron)
run(1 * second, report='text')

Get the values of Vr and w for each spike
Vr = neuron.Vr[spikes.i]
w = states.w[spikes.i, int_((spikes.t-init_time)/defaultclock.dt)]

figure()
plot(Vr / mV, w / nA, '.k')
xlabel('Vr (mV)')
ylabel('w (nA)')
show()

[image: ../_images/frompapers.Touboul_Brette_2008.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: Vogels_et_al_2011

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/frompapers/Vogels_et_al_2011.ipynb]

Inhibitory synaptic plasticity in a recurrent network model

(F. Zenke, 2011) (from the 2012 Brian twister)

Adapted from:
Vogels, T. P., H. Sprekeler, F. Zenke, C. Clopath, and W. Gerstner.
Inhibitory Plasticity Balances Excitation and Inhibition in Sensory Pathways and Memory Networks.
Science (November 10, 2011).

from brian2 import *

###
Defining network model parameters
###

NE = 8000 # Number of excitatory cells
NI = NE/4 # Number of inhibitory cells

tau_ampa = 5.0*ms # Glutamatergic synaptic time constant
tau_gaba = 10.0*ms # GABAergic synaptic time constant
epsilon = 0.02 # Sparseness of synaptic connections

tau_stdp = 20*ms # STDP time constant

simtime = 10*second # Simulation time

###
Neuron model
###

gl = 10.0*nsiemens # Leak conductance
el = -60*mV # Resting potential
er = -80*mV # Inhibitory reversal potential
vt = -50.*mV # Spiking threshold
memc = 200.0*pfarad # Membrane capacitance
bgcurrent = 200*pA # External current

eqs_neurons='''
dv/dt=(-gl*(v-el)-(g_ampa*v+g_gaba*(v-er))+bgcurrent)/memc : volt (unless refractory)
dg_ampa/dt = -g_ampa/tau_ampa : siemens
dg_gaba/dt = -g_gaba/tau_gaba : siemens
'''

###
Initialize neuron group
###

neurons = NeuronGroup(NE+NI, model=eqs_neurons, threshold='v > vt',
 reset='v=el', refractory=5*ms, method='euler')
Pe = neurons[:NE]
Pi = neurons[NE:]

###
Connecting the network
###

con_e = Synapses(Pe, neurons, on_pre='g_ampa += 0.3*nS')
con_e.connect(p=epsilon)
con_ii = Synapses(Pi, Pi, on_pre='g_gaba += 3*nS')
con_ii.connect(p=epsilon)

###
Inhibitory Plasticity
###

eqs_stdp_inhib = '''
w : 1
dA_pre/dt=-A_pre/tau_stdp : 1 (event-driven)
dA_post/dt=-A_post/tau_stdp : 1 (event-driven)
'''
alpha = 3*Hz*tau_stdp*2 # Target rate parameter
gmax = 100 # Maximum inhibitory weight

con_ie = Synapses(Pi, Pe, model=eqs_stdp_inhib,
 on_pre='''A_pre += 1.
 w = clip(w+(A_post-alpha)*eta, 0, gmax)
 g_gaba += w*nS''',
 on_post='''A_post += 1.
 w = clip(w+A_pre*eta, 0, gmax)
 ''')
con_ie.connect(p=epsilon)
con_ie.w = 1e-10

###
Setting up monitors
###

sm = SpikeMonitor(Pe)

###
Run without plasticity
###
eta = 0 # Learning rate
run(1*second)

###
Run with plasticity
###
eta = 1e-2 # Learning rate
run(simtime-1*second, report='text')

###
Make plots
###

i, t = sm.it
subplot(211)
plot(t/ms, i, 'k.', ms=0.25)
title("Before")
xlabel("")
yticks([])
xlim(0.8*1e3, 1*1e3)
subplot(212)
plot(t/ms, i, 'k.', ms=0.25)
xlabel("time (ms)")
yticks([])
title("After")
xlim((simtime-0.2*second)/ms, simtime/ms)
show()

[image: ../_images/frompapers.Vogels_et_al_2011.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: Wang_Buszaki_1996

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/frompapers/Wang_Buszaki_1996.ipynb]

Wang-Buszaki model

J Neurosci. 1996 Oct 15;16(20):6402-13.
Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model.
Wang XJ, Buzsaki G.

Note that implicit integration (exponential Euler) cannot be used, and therefore
simulation is rather slow.

from brian2 import *

defaultclock.dt = 0.01*ms

Cm = 1*uF # /cm**2
Iapp = 2*uA
gL = 0.1*msiemens
EL = -65*mV
ENa = 55*mV
EK = -90*mV
gNa = 35*msiemens
gK = 9*msiemens

eqs = '''
dv/dt = (-gNa*m**3*h*(v-ENa)-gK*n**4*(v-EK)-gL*(v-EL)+Iapp)/Cm : volt
m = alpha_m/(alpha_m+beta_m) : 1
alpha_m = -0.1/mV*(v+35*mV)/(exp(-0.1/mV*(v+35*mV))-1)/ms : Hz
beta_m = 4*exp(-(v+60*mV)/(18*mV))/ms : Hz
dh/dt = 5*(alpha_h*(1-h)-beta_h*h) : 1
alpha_h = 0.07*exp(-(v+58*mV)/(20*mV))/ms : Hz
beta_h = 1./(exp(-0.1/mV*(v+28*mV))+1)/ms : Hz
dn/dt = 5*(alpha_n*(1-n)-beta_n*n) : 1
alpha_n = -0.01/mV*(v+34*mV)/(exp(-0.1/mV*(v+34*mV))-1)/ms : Hz
beta_n = 0.125*exp(-(v+44*mV)/(80*mV))/ms : Hz
'''

neuron = NeuronGroup(1, eqs, method='exponential_euler')
neuron.v = -70*mV
neuron.h = 1
M = StateMonitor(neuron, 'v', record=0)

run(100*ms, report='text')

plot(M.t/ms, M[0].v/mV)
show()

[image: ../_images/frompapers.Wang_Buszaki_1996.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: Fig1

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/frompapers/Brette_2012/Fig1.ipynb]

Brette R (2013). Sharpness of spike initiation in neurons explained by compartmentalization.
PLoS Comp Biol, doi: 10.1371/journal.pcbi.1003338.

Fig 1C-E. Somatic voltage-clamp in a ball-and-stick model with
Na channels at a particular location.

from brian2 import *
from params import *

defaultclock.dt = 0.025*ms

Morphology
morpho = Soma(50*um) # chosen for a target Rm
morpho.axon = Cylinder(diameter=1*um, length=300*um, n=300)

location = 40*um # where Na channels are placed
duration = 500*ms

Channels
eqs='''
Im = gL*(EL - v) + gclamp*(vc - v) + gNa*m*(ENa - v) : amp/meter**2
dm/dt = (minf - m) / taum: 1 # simplified Na channel
minf = 1 / (1 + exp((va - v) / ka)) : 1
gclamp : siemens/meter**2
gNa : siemens/meter**2
vc = EL + 50*mV * t/duration : volt (shared) # Voltage clamp with a ramping voltage command
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=Cm, Ri=Ri)
compartment = morpho.axon[location]
neuron.v = EL
neuron.gclamp[0] = gL*500
neuron.gNa[compartment] = gNa_0/neuron.area[compartment]

Monitors
mon = StateMonitor(neuron, ['v', 'vc', 'm'], record=True)

run(duration, report='text')

subplot(221)
plot(mon[0].vc/mV,
 -((mon[0].vc - mon[0].v)*(neuron.gclamp[0]))*neuron.area[0]/nA, 'k')
xlabel('V (mV)')
ylabel('I (nA)')
xlim(-75, -45)
title('I-V curve')

subplot(222)
plot(mon[0].vc/mV, mon[compartment].m, 'k')
xlabel('V (mV)')
ylabel('m')
title('Activation curve (m(V))')

subplot(223)
Number of simulation time steps for each volt increment in the voltage-clamp
dt_per_volt = len(mon.t)/(50*mV)
for v in [-64*mV, -61*mV, -58*mV, -55*mV]:
 plot(mon.v[:100 ,int(dt_per_volt*(v - EL))]/mV, 'k')
xlabel('Distance from soma (um)')
ylabel('V (mV)')
title('Voltage across axon')

subplot(224)
plot(mon[compartment].v/mV, mon[compartment].v/mV, 'k--') # Diagonal
plot(mon[0].v/mV, mon[compartment].v/mV, 'k')
xlabel('Vs (mV)')
ylabel('Va (mV)')
show()

[image: ../_images/frompapers.Brette_2012.Fig1.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: Fig3AB

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/frompapers/Brette_2012/Fig3AB.ipynb]

Brette R (2013). Sharpness of spike initiation in neurons explained by compartmentalization.
PLoS Comp Biol, doi: 10.1371/journal.pcbi.1003338.

Fig. 3. A, B. Kink with only Nav1.6 channels

from brian2 import *
from params import *

codegen.target='numpy'

defaultclock.dt = 0.025*ms

Morphology
morpho = Soma(50*um) # chosen for a target Rm
morpho.axon = Cylinder(diameter=1*um, length=300*um, n=300)

location = 40*um # where Na channels are placed

Channels
eqs='''
Im = gL*(EL - v) + gNa*m*(ENa - v) : amp/meter**2
dm/dt = (minf - m) / taum : 1 # simplified Na channel
minf = 1 / (1 + exp((va - v) / ka)) : 1
gNa : siemens/meter**2
Iin : amp (point current)
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=Cm, Ri=Ri,
 method="exponential_euler")

compartment = morpho.axon[location]
neuron.v = EL
neuron.gNa[compartment] = gNa_0/neuron.area[compartment]
M = StateMonitor(neuron, ['v', 'm'], record=True)

run(20*ms, report='text')
neuron.Iin[0] = gL * 20*mV * neuron.area[0]
run(80*ms, report='text')

subplot(121)
plot(M.t/ms, M[0].v/mV, 'r')
plot(M.t/ms, M[compartment].v/mV, 'k')
plot(M.t/ms, M[compartment].m*(80+60)-80, 'k--') # open channels
ylim(-80, 60)
xlabel('Time (ms)')
ylabel('V (mV)')
title('Voltage traces')

subplot(122)
dm = diff(M[0].v) / defaultclock.dt
dm40 = diff(M[compartment].v) / defaultclock.dt
plot((M[0].v/mV)[1:], dm/(volt/second), 'r')
plot((M[compartment].v/mV)[1:], dm40/(volt/second), 'k')
xlim(-80, 40)
xlabel('V (mV)')
ylabel('dV/dt (V/s)')
title('Phase plot')

show()

[image: ../_images/frompapers.Brette_2012.Fig3AB.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: Fig3CF

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/frompapers/Brette_2012/Fig3CF.ipynb]

Brette R (2013). Sharpness of spike initiation in neurons explained by compartmentalization.
PLoS Comp Biol, doi: 10.1371/journal.pcbi.1003338.

Fig. 3C-F. Kink with Nav1.6 and Nav1.2

from brian2 import *
from params import *

defaultclock.dt = 0.01*ms

Morphology
morpho = Soma(50*um) # chosen for a target Rm
morpho.axon = Cylinder(diameter=1*um, length=300*um, n=300)

location16 = 40*um # where Nav1.6 channels are placed
location12 = 15*um # where Nav1.2 channels are placed

va2 = va + 15*mV # depolarized Nav1.2

Channels
duration = 100*ms
eqs='''
Im = gL * (EL - v) + gNa*m*(ENa - v) + gNa2*m2*(ENa - v) : amp/meter**2
dm/dt = (minf - m) / taum : 1 # simplified Na channel
minf = 1 / (1 + exp((va - v) / ka)) : 1
dm2/dt = (minf2 - m2) / taum : 1 # simplified Na channel, Nav1.2
minf2 = 1/(1 + exp((va2 - v) / ka)) : 1
gNa : siemens/meter**2
gNa2 : siemens/meter**2 # Nav1.2
Iin : amp (point current)
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=Cm, Ri=Ri,
 method="exponential_euler")
compartment16 = morpho.axon[location16]
compartment12 = morpho.axon[location12]
neuron.v = EL
neuron.gNa[compartment16] = gNa_0/neuron.area[compartment16]
neuron.gNa2[compartment12] = 20*gNa_0/neuron.area[compartment12]
Monitors
M = StateMonitor(neuron, ['v', 'm', 'm2'], record=True)

run(20*ms, report='text')
neuron.Iin[0] = gL * 20*mV * neuron.area[0]
run(80*ms, report='text')

subplot(221)
plot(M.t/ms, M[0].v/mV, 'r')
plot(M.t/ms, M[compartment16].v/mV, 'k')
plot(M.t/ms, M[compartment16].m*(80+60)-80, 'k--') # open channels
ylim(-80, 60)
xlabel('Time (ms)')
ylabel('V (mV)')
title('Voltage traces')

subplot(222)
plot(M[0].v/mV, M[compartment16].m,'k')
plot(M[0].v/mV, 1 / (1 + exp((va - M[0].v) / ka)), 'k--')
plot(M[0].v/mV, M[compartment12].m2, 'r')
plot(M[0].v/mV, 1 / (1 + exp((va2 - M[0].v) / ka)), 'r--')
xlim(-70, 0)
xlabel('V (mV)')
ylabel('m')
title('Activation curves')

subplot(223)
dm = diff(M[0].v) / defaultclock.dt
dm40 = diff(M[compartment16].v) / defaultclock.dt
plot((M[0].v/mV)[1:], dm/(volt/second), 'r')
plot((M[compartment16].v/mV)[1:], dm40/(volt/second), 'k')
xlim(-80, 40)
xlabel('V (mV)')
ylabel('dV/dt (V/s)')
title('Phase plot')

subplot(224)
plot((M[0].v/mV)[1:], dm/(volt/second), 'r')
plot((M[compartment16].v/mV)[1:], dm40/(volt/second), 'k')
plot((M[0].v/mV)[1:], 10 + 0*dm/(volt/second), 'k--')
xlim(-70, -40)
ylim(0, 20)
xlabel('V (mV)')
ylabel('dV/dt (V/s)')
title('Phase plot(zoom)')

show()

[image: ../_images/frompapers.Brette_2012.Fig3CF.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: Fig4

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/frompapers/Brette_2012/Fig4.ipynb]

Brette R (2013). Sharpness of spike initiation in neurons explained by compartmentalization.
PLoS Comp Biol, doi: 10.1371/journal.pcbi.1003338.

Fig. 4E-F. Spatial distribution of Na channels. Tapering axon near soma.

from brian2 import *
from params import *

defaultclock.dt = 0.025*ms

Morphology
morpho = Soma(50*um) # chosen for a target Rm
Tapering (change this for the other figure panels)
diameters = hstack([linspace(4, 1, 11), ones(290)])*um
morpho.axon = Section(diameter=diameters, length=ones(300)*um, n=300)

Na channels
Na_start = (25 + 10)*um
Na_end = (40 + 10)*um
linear_distribution = True # True is F, False is E

duration = 500*ms

Channels
eqs='''
Im = gL*(EL - v) + gclamp*(vc - v) + gNa*m*(ENa - v) : amp/meter**2
dm/dt = (minf - m) / taum: 1 # simplified Na channel
minf = 1 / (1 + exp((va - v) / ka)) : 1
gclamp : siemens/meter**2
gNa : siemens/meter**2
vc = EL + 50*mV * t / duration : volt (shared) # Voltage clamp with a ramping voltage command
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=Cm, Ri=Ri,
 method="exponential_euler")
compartments = morpho.axon[Na_start:Na_end]
neuron.v = EL
neuron.gclamp[0] = gL*500

if linear_distribution:
 profile = linspace(1, 0, len(compartments))
else:
 profile = ones(len(compartments))
profile = profile / sum(profile) # normalization

neuron.gNa[compartments] = gNa_0 * profile / neuron.area[compartments]

Monitors
mon = StateMonitor(neuron, 'v', record=True)

run(duration, report='text')

dt_per_volt = len(mon.t) / (50*mV)
for v in [-64*mV, -61*mV, -58*mV, -55*mV, -52*mV]:
 plot(mon.v[:100, int(dt_per_volt * (v - EL))]/mV, 'k')
xlim(0, 50+10)
ylim(-65, -25)
ylabel('V (mV)')
xlabel('Location (um)')
title('Voltage across axon')
show()

[image: ../_images/frompapers.Brette_2012.Fig4.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: Fig5A

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/frompapers/Brette_2012/Fig5A.ipynb]

Brette R (2013). Sharpness of spike initiation in neurons explained by compartmentalization.
PLoS Comp Biol, doi: 10.1371/journal.pcbi.1003338.

Fig. 5A. Voltage trace for current injection, with an additional reset when a spike is produced.

Trick: to reset the entire neuron, we use a set of synapses from the spike initiation compartment where the
threshold condition applies to all compartments, and the reset operation (v = EL) is applied there every time
a spike is produced.

from brian2 import *
from params import *

defaultclock.dt = 0.025*ms
duration = 500*ms

Morphology
morpho = Soma(50*um) # chosen for a target Rm
morpho.axon = Cylinder(diameter=1*um, length=300*um, n=300)

Input
taux = 5*ms
sigmax = 12*mV
xx0 = 7*mV

compartment = 40

Channels
eqs = '''
Im = gL * (EL - v) + gNa * m * (ENa - v) + gLx * (xx0 + xx) : amp/meter**2
dm/dt = (minf - m) / taum : 1 # simplified Na channel
minf = 1 / (1 + exp((va - v) / ka)) : 1
gNa : siemens/meter**2
gLx : siemens/meter**2
dxx/dt = -xx / taux + sigmax * (2 / taux)**.5 *xi : volt
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=Cm, Ri=Ri,
 threshold='m>0.5', threshold_location=compartment,
 refractory=5*ms)
neuron.v = EL
neuron.gLx[0] = gL
neuron.gNa[compartment] = gNa_0 / neuron.area[compartment]

Reset the entire neuron when there is a spike
reset = Synapses(neuron, neuron, on_pre='v = EL')
reset.connect('i == compartment') # Connects the spike initiation compartment to all compartments

Monitors
S = SpikeMonitor(neuron)
M = StateMonitor(neuron, 'v', record=0)
run(duration, report='text')

Add spikes for display
v = M[0].v
for t in S.t:
 v[int(t / defaultclock.dt)] = 50*mV

plot(M.t/ms, v/mV, 'k')
show()

[image: ../_images/frompapers.Brette_2012.Fig5A.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: params

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/frompapers/Brette_2012/params.ipynb]

Parameters for spike initiation simulations.

from brian2.units import *

Passive parameters
EL = -75*mV
S = 7.85e-9*meter**2 # area (sphere of 50 um diameter)
Cm = 0.75*uF/cm**2
gL = 1. / (30000*ohm*cm**2)
Ri = 150*ohm*cm

Na channels
ENa = 60*mV
ka = 6*mV
va = -40*mV
gNa_0 = gL * 2*S
taum = 0.1*ms

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: STDP_standalone

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/standalone/STDP_standalone.ipynb]

Spike-timing dependent plasticity.
Adapted from Song, Miller and Abbott (2000) and Song and Abbott (2001).

This example is modified from synapses_STDP.py and writes a standalone
C++ project in the directory STDP_standalone.

from brian2 import *

set_device('cpp_standalone', directory='STDP_standalone')

N = 1000
taum = 10*ms
taupre = 20*ms
taupost = taupre
Ee = 0*mV
vt = -54*mV
vr = -60*mV
El = -74*mV
taue = 5*ms
F = 15*Hz
gmax = .01
dApre = .01
dApost = -dApre * taupre / taupost * 1.05
dApost *= gmax
dApre *= gmax

eqs_neurons = '''
dv/dt = (ge * (Ee-vr) + El - v) / taum : volt
dge/dt = -ge / taue : 1
'''

input = PoissonGroup(N, rates=F)
neurons = NeuronGroup(1, eqs_neurons, threshold='v>vt', reset='v = vr',
 method='linear')
S = Synapses(input, neurons,
 '''w : 1
 dApre/dt = -Apre / taupre : 1 (event-driven)
 dApost/dt = -Apost / taupost : 1 (event-driven)''',
 on_pre='''ge += w
 Apre += dApre
 w = clip(w + Apost, 0, gmax)''',
 on_post='''Apost += dApost
 w = clip(w + Apre, 0, gmax)''',
)
S.connect()
S.w = 'rand() * gmax'
mon = StateMonitor(S, 'w', record=[0, 1])
s_mon = SpikeMonitor(input)

run(100*second, report='text')

subplot(311)
plot(S.w / gmax, '.k')
ylabel('Weight / gmax')
xlabel('Synapse index')
subplot(312)
hist(S.w / gmax, 20)
xlabel('Weight / gmax')
subplot(313)
plot(mon.t/second, mon.w.T/gmax)
xlabel('Time (s)')
ylabel('Weight / gmax')
tight_layout()
show()

[image: ../_images/standalone.STDP_standalone.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: cuba_openmp

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/standalone/cuba_openmp.ipynb]

Run the cuba.py example with OpenMP threads.

from brian2 import *

set_device('cpp_standalone', directory='CUBA')
prefs.devices.cpp_standalone.openmp_threads = 4

taum = 20*ms
taue = 5*ms
taui = 10*ms
Vt = -50*mV
Vr = -60*mV
El = -49*mV

eqs = '''
dv/dt = (ge+gi-(v-El))/taum : volt (unless refractory)
dge/dt = -ge/taue : volt (unless refractory)
dgi/dt = -gi/taui : volt (unless refractory)
'''

P = NeuronGroup(4000, eqs, threshold='v>Vt', reset='v = Vr', refractory=5*ms,
 method='linear')
P.v = 'Vr + rand() * (Vt - Vr)'
P.ge = 0*mV
P.gi = 0*mV

we = (60*0.27/10)*mV # excitatory synaptic weight (voltage)
wi = (-20*4.5/10)*mV # inhibitory synaptic weight
Ce = Synapses(P, P, on_pre='ge += we')
Ci = Synapses(P, P, on_pre='gi += wi')
Ce.connect('i<3200', p=0.02)
Ci.connect('i>=3200', p=0.02)

s_mon = SpikeMonitor(P)

run(1 * second)

plot(s_mon.t/ms, s_mon.i, '.k')
xlabel('Time (ms)')
ylabel('Neuron index')
show()

[image: ../_images/standalone.cuba_openmp.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: STDP

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/synapses/STDP.ipynb]

Spike-timing dependent plasticity
Adapted from Song, Miller and Abbott (2000) and Song and Abbott (2001)

from brian2 import *

N = 1000
taum = 10*ms
taupre = 20*ms
taupost = taupre
Ee = 0*mV
vt = -54*mV
vr = -60*mV
El = -74*mV
taue = 5*ms
F = 15*Hz
gmax = .01
dApre = .01
dApost = -dApre * taupre / taupost * 1.05
dApost *= gmax
dApre *= gmax

eqs_neurons = '''
dv/dt = (ge * (Ee-vr) + El - v) / taum : volt
dge/dt = -ge / taue : 1
'''

input = PoissonGroup(N, rates=F)
neurons = NeuronGroup(1, eqs_neurons, threshold='v>vt', reset='v = vr',
 method='linear')
S = Synapses(input, neurons,
 '''w : 1
 dApre/dt = -Apre / taupre : 1 (event-driven)
 dApost/dt = -Apost / taupost : 1 (event-driven)''',
 on_pre='''ge += w
 Apre += dApre
 w = clip(w + Apost, 0, gmax)''',
 on_post='''Apost += dApost
 w = clip(w + Apre, 0, gmax)''',
)
S.connect()
S.w = 'rand() * gmax'
mon = StateMonitor(S, 'w', record=[0, 1])
s_mon = SpikeMonitor(input)

run(100*second, report='text')

subplot(311)
plot(S.w / gmax, '.k')
ylabel('Weight / gmax')
xlabel('Synapse index')
subplot(312)
hist(S.w / gmax, 20)
xlabel('Weight / gmax')
subplot(313)
plot(mon.t/second, mon.w.T/gmax)
xlabel('Time (s)')
ylabel('Weight / gmax')
tight_layout()
show()

[image: ../_images/synapses.STDP.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: efficient_gaussian_connectivity

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/synapses/efficient_gaussian_connectivity.ipynb]

An example of turning an expensive Synapses.connect() operation into
three cheap ones using a mathematical trick.

Consider the connection probability between neurons i and j given by
the Gaussian function \(p=e^{-\alpha(i-j)^2}\) (for some constant
\(\alpha\)). If we want to connect neurons with this probability,
we can very simply do:

S.connect(p='exp(-alpha*(i-j)**2)')

However, this has a problem. Although we know that this will create
\(O(N)\) synapses if N is the number of neurons, because we
have specified p as a function of i and j, we have to evaluate
p(i, j) for every pair (i, j), and therefore it takes
\(O(N^2)\) operations.

Our first option is to take a cutoff, and say that if \(p<q\) for some
small \(q\), then we assume that \(p\approx 0\). We can work out
which j values are compatible with a given value of i by solving
\(e^{-\alpha(i-j)^2}<q\) which gives
\(|i-j|<\sqrt{-\log(q)/\alpha)}=w\). Now we implement the rule
using the generator syntax to only search for values between i-w
and i+w, except that some of these values will be outside the
valid range of values for j so we set skip_if_invalid=True.
The connection code is then:

S.connect(j='k for k in range(i-w, i+w) if rand()<exp(-alpha*(i-j)**2)',
 skip_if_invalid=True)

This is a lot faster (see graph labelled “Limited” for this algorithm).

However, it may be a problem that we have to specify a cutoff and so
we will lose some synapses doing this: it won’t be mathematically exact.
This isn’t a problem for the Gaussian because w grows very slowly with
the cutoff probability q, but for other probability distributions with
more weight in the tails, it could be an issue.

If we want to be exact, we can still do a big improvement. For the
case \(i-w\leq j\leq i+w\) we use the same connection code, but
we also handle the case \(|i-j|>w\). This time, we note that we
want to create a synapse with probability \(p(i-j)\) and we can
rewrite this as \(p(i-j)/p(w)\cdot p(w)\). If \(|i-j|>w\)
then this is a product of two probabilities \(p(i-j)/p(w)\)
and \(p(w)\). So in the region \(|i-j|>w\) a synapse
will be created if two random events both occur, with these
two probabilities. This might seem a little strange until you
notice that one of the two probabilities \(p(w)\) doesn’t
depend on i or j. This lets us use the much more efficient
sample algorithm to generate a set of candidate j values,
and then add the additional test rand()<p(i-j)/p(w). Here’s the
code for that:

w = int(ceil(sqrt(log(q)/-0.1)))
S.connect(j='k for k in range(i-w, i+w) if rand()<exp(-alpha*(i-j)**2)',
 skip_if_invalid=True)
pmax = exp(-0.1*w**2)
S.connect(j='k for k in sample(0, i-w, p=pmax) if rand()<exp(-alpha*(i-j)**2)/pmax',
 skip_if_invalid=True)
S.connect(j='k for k in sample(i+w, N_post, p=pmax) if rand()<exp(-alpha*(i-j)**2)/pmax',
 skip_if_invalid=True)

This “Divided” method is also much faster than the naive method,
and is mathematically correct. Note though that this method is still
\(O(N^2)\) but the constants are much, much smaller and this
will usually be sufficient. It is possible to take the ideas
developed here even further and get even better scaling, but in
most cases it’s unlikely to be worth the effort.

The code below shows these examples written out, along with
some timing code and plots for different values of N.

from brian2 import *
import time

def naive(N):
 G = NeuronGroup(N, 'v:1', threshold='v>1', name='G')
 S = Synapses(G, G, on_pre='v += 1', name='S')
 S.connect(p='exp(-0.1*(i-j)**2)')

def limited(N, q=0.001):
 G = NeuronGroup(N, 'v:1', threshold='v>1', name='G')
 S = Synapses(G, G, on_pre='v += 1', name='S')
 w = int(ceil(sqrt(log(q)/-0.1)))
 S.connect(j='k for k in range(i-w, i+w) if rand()<exp(-0.1*(i-j)**2)', skip_if_invalid=True)

def divided(N, q=0.001):
 G = NeuronGroup(N, 'v:1', threshold='v>1', name='G')
 S = Synapses(G, G, on_pre='v += 1', name='S')
 w = int(ceil(sqrt(log(q)/-0.1)))
 S.connect(j='k for k in range(i-w, i+w) if rand()<exp(-0.1*(i-j)**2)', skip_if_invalid=True)
 pmax = exp(-0.1*w**2)
 S.connect(j='k for k in sample(0, i-w, p=pmax) if rand()<exp(-0.1*(i-j)**2)/pmax', skip_if_invalid=True)
 S.connect(j='k for k in sample(i+w, N_post, p=pmax) if rand()<exp(-0.1*(i-j)**2)/pmax', skip_if_invalid=True)

def repeated_run(f, N, repeats):
 start_time = time.time()
 for _ in range(repeats):
 f(N)
 end_time = time.time()
 return (end_time-start_time)/repeats

N = array([100, 500, 1000, 5000, 10000, 20000])
repeats = array([100, 10, 10, 1, 1, 1])*3
naive(10)
limited(10)
divided(10)
print 'Starting naive'
loglog(N, [repeated_run(naive, n, r) for n, r in zip(N, repeats)],
 label='Naive', lw=2)
print 'Starting limit'
loglog(N, [repeated_run(limited, n, r) for n, r in zip(N, repeats)],
 label='Limited', lw=2)
print 'Starting divided'
loglog(N, [repeated_run(divided, n, r) for n, r in zip(N, repeats)],
 label='Divided', lw=2)
xlabel('N')
ylabel('Time (s)')
legend(loc='best', frameon=False)
show()

[image: ../_images/synapses.efficient_gaussian_connectivity.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: gapjunctions

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/synapses/gapjunctions.ipynb]

Neurons with gap junctions.

from brian2 import *

n = 10
v0 = 1.05
tau = 10*ms

eqs = '''
dv/dt = (v0 - v + Igap) / tau : 1
Igap : 1 # gap junction current
'''

neurons = NeuronGroup(n, eqs, threshold='v > 1', reset='v = 0',
 method='linear')
neurons.v = 'i * 1.0 / (n-1)'
trace = StateMonitor(neurons, 'v', record=[0, 5])

S = Synapses(neurons, neurons, '''
 w : 1 # gap junction conductance
 Igap_post = w * (v_pre - v_post) : 1 (summed)
 ''')
S.connect()
S.w = .02

run(500*ms)

plot(trace.t/ms, trace[0].v)
plot(trace.t/ms, trace[5].v)
xlabel('Time (ms)')
ylabel('v')
show()

[image: ../_images/synapses.gapjunctions.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: jeffress

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/synapses/jeffress.ipynb]

Jeffress model, adapted with spiking neuron models.
A sound source (white noise) is moving around the head.
Delay differences between the two ears are used to determine the azimuth of the
source. Delays are mapped to a neural place code using delay lines (each neuron
receives input from both ears, with different delays).

from brian2 import *

defaultclock.dt = .02*ms

Sound
sound = TimedArray(10 * randn(50000), dt=defaultclock.dt) # white noise

Ears and sound motion around the head (constant angular speed)
sound_speed = 300*metre/second
interaural_distance = 20*cm # big head!
max_delay = interaural_distance / sound_speed
print("Maximum interaural delay: %s" % max_delay)
angular_speed = 2 * pi / second # 1 turn/second
tau_ear = 1*ms
sigma_ear = .1
eqs_ears = '''
dx/dt = (sound(t-delay)-x)/tau_ear+sigma_ear*(2./tau_ear)**.5*xi : 1 (unless refractory)
delay = distance*sin(theta) : second
distance : second # distance to the centre of the head in time units
dtheta/dt = angular_speed : radian
'''
ears = NeuronGroup(2, eqs_ears, threshold='x>1', reset='x = 0',
 refractory=2.5*ms, name='ears', method='euler')
ears.distance = [-.5 * max_delay, .5 * max_delay]
traces = StateMonitor(ears, 'delay', record=True)
Coincidence detectors
num_neurons = 30
tau = 1*ms
sigma = .1
eqs_neurons = '''
dv/dt = -v / tau + sigma * (2 / tau)**.5 * xi : 1
'''
neurons = NeuronGroup(num_neurons, eqs_neurons, threshold='v>1',
 reset='v = 0', name='neurons', method='euler')

synapses = Synapses(ears, neurons, on_pre='v += .5')
synapses.connect()

synapses.delay['i==0'] = '(1.0*j)/(num_neurons-1)*1.1*max_delay'
synapses.delay['i==1'] = '(1.0*(num_neurons-j-1))/(num_neurons-1)*1.1*max_delay'

spikes = SpikeMonitor(neurons)

run(1000*ms)

Plot the results
i, t = spikes.it
subplot(2, 1, 1)
plot(t/ms, i, '.')
xlabel('Time (ms)')
ylabel('Neuron index')
xlim(0, 1000)
subplot(2, 1, 2)
plot(traces.t/ms, traces.delay.T/ms)
xlabel('Time (ms)')
ylabel('Input delay (ms)')
xlim(0, 1000)
show()

[image: ../_images/synapses.jeffress.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: licklider

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/synapses/licklider.ipynb]

Spike-based adaptation of Licklider’s model of pitch processing (autocorrelation with
delay lines) with phase locking.

from brian2 import *

defaultclock.dt = .02 * ms

Ear and sound
max_delay = 20*ms # 50 Hz
tau_ear = 1*ms
sigma_ear = 0.0
eqs_ear = '''
dx/dt = (sound-x)/tau_ear+0.1*(2./tau_ear)**.5*xi : 1 (unless refractory)
sound = 5*sin(2*pi*frequency*t)**3 : 1 # nonlinear distortion
#sound = 5*(sin(4*pi*frequency*t)+.5*sin(6*pi*frequency*t)) : 1 # missing fundamental
frequency = (200+200*t*Hz)*Hz : Hz # increasing pitch
'''
receptors = NeuronGroup(2, eqs_ear, threshold='x>1', reset='x=0',
 refractory=2*ms, method='euler')
Coincidence detectors
min_freq = 50*Hz
max_freq = 1000*Hz
num_neurons = 300
tau = 1*ms
sigma = .1
eqs_neurons = '''
dv/dt = -v/tau+sigma*(2./tau)**.5*xi : 1
'''

neurons = NeuronGroup(num_neurons, eqs_neurons, threshold='v>1', reset='v=0',
 method='euler')

synapses = Synapses(receptors, neurons, on_pre='v += 0.5')
synapses.connect()
synapses.delay = 'i*1.0/exp(log(min_freq/Hz)+(j*1.0/(num_neurons-1))*log(max_freq/min_freq))*second'

spikes = SpikeMonitor(neurons)

run(500*ms)
plot(spikes.t/ms, spikes.i, '.k')
xlabel('Time (ms)')
ylabel('Frequency')
yticks([0, 99, 199, 299],
 array(1. / synapses.delay[1, [0, 99, 199, 299]], dtype=int))
show()

[image: ../_images/synapses.licklider.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: nonlinear

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/synapses/nonlinear.ipynb]

NMDA synapses.

from brian2 import *

a = 1 / (10*ms)
b = 1 / (10*ms)
c = 1 / (10*ms)

input = NeuronGroup(2, 'dv/dt = 1/(10*ms) : 1', threshold='v>1', reset='v = 0',
 method='euler')
neurons = NeuronGroup(1, """dv/dt = (g-v)/(10*ms) : 1
 g : 1""", method='linear')
S = Synapses(input, neurons,'''
 dg_syn/dt = -a*g_syn+b*x*(1-g_syn) : 1 (clock-driven)
 g_post = g_syn : 1 (summed)
 dx/dt=-c*x : 1 (clock-driven)
 w : 1 # synaptic weight
 ''', on_pre='x += w') # NMDA synapses

S.connect()
S.w = [1., 10.]
input.v = [0., 0.5]

M = StateMonitor(S, 'g',
 # If not using standalone mode, this could also simply be
 # record=True
 record=np.arange(len(input)*len(neurons)))
Mn = StateMonitor(neurons, 'g', record=0)

run(1000*ms)

subplot(2, 1, 1)
plot(M.t/ms, M.g.T)
xlabel('Time (ms)')
ylabel('g_syn')
subplot(2, 1, 2)
plot(Mn.t/ms, Mn[0].g)
ylabel('Time (ms)')
ylabel('g')
show()

[image: ../_images/synapses.nonlinear.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: spatial_connections

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/synapses/spatial_connections.ipynb]

A simple example showing how string expressions can be used to implement
spatial (deterministic or stochastic) connection patterns.

from brian2 import *

rows, cols = 20, 20
G = NeuronGroup(rows * cols, '''x : meter
 y : meter''')
initialize the grid positions
grid_dist = 25*umeter
G.x = '(i / rows) * grid_dist - rows/2.0 * grid_dist'
G.y = '(i % rows) * grid_dist - cols/2.0 * grid_dist'

Deterministic connections
distance = 120*umeter
S_deterministic = Synapses(G, G)
S_deterministic.connect('sqrt((x_pre - x_post)**2 + (y_pre - y_post)**2) < distance')

Random connections (no self-connections)
S_stochastic = Synapses(G, G)
S_stochastic.connect('i != j',
 p='1.5 * exp(-((x_pre-x_post)**2 + (y_pre-y_post)**2)/(2*(60*umeter)**2))')

figure(figsize=(12, 6))

Show the connections for some neurons in different colors
for color in ['g', 'b', 'm']:
 subplot(1, 2, 1)
 neuron_idx = np.random.randint(0, rows*cols)
 plot(G.x[neuron_idx] / umeter, G.y[neuron_idx] / umeter, 'o', mec=color,
 mfc='none')
 plot(G.x[S_deterministic.j[neuron_idx, :]] / umeter,
 G.y[S_deterministic.j[neuron_idx, :]] / umeter, color + '.')
 subplot(1, 2, 2)
 plot(G.x[neuron_idx] / umeter, G.y[neuron_idx] / umeter, 'o', mec=color,
 mfc='none')
 plot(G.x[S_stochastic.j[neuron_idx, :]] / umeter,
 G.y[S_stochastic.j[neuron_idx, :]] / umeter, color + '.')

for idx, t in enumerate(['determininstic connections',
 'random connections']):
 subplot(1, 2, idx + 1)
 xlim((-rows/2.0 * grid_dist) / umeter, (rows/2.0 * grid_dist) / umeter)
 ylim((-cols/2.0 * grid_dist) / umeter, (cols/2.0 * grid_dist) / umeter)
 title(t)
 xlabel('x')
 ylabel('y', rotation='horizontal')
 axis('equal')

tight_layout()
show()

[image: ../_images/synapses.spatial_connections.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: state_variables

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/synapses/state_variables.ipynb]

Set state variable values with a string (using code generation).

from brian2 import *

G = NeuronGroup(100, 'v:volt', threshold='v>-50*mV')
G.v = '(sin(2*pi*i/N) - 70 + 0.25*randn()) * mV'
S = Synapses(G, G, 'w : volt', on_pre='v += w')
S.connect()

space_constant = 200.0
S.w['i > j'] = 'exp(-(i - j)**2/space_constant) * mV'

Generate a matrix for display
w_matrix = np.zeros((len(G), len(G)))
w_matrix[S.i[:], S.j[:]] = S.w[:]

subplot(1, 2, 1)
plot(G.v[:] / mV)
xlabel('Neuron index')
ylabel('v')
subplot(1, 2, 2)
imshow(w_matrix)
xlabel('i')
ylabel('j')
title('Synaptic weight')
show()

[image: ../_images/synapses.state_variables.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Examples »

Example: synapses

Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/synapses/synapses.ipynb]

A simple example of using Synapses.

from brian2 import *

G1 = NeuronGroup(10, 'dv/dt = -v / (10*ms) : 1',
 threshold='v > 1', reset='v=0.', method='linear')
G1.v = 1.2
G2 = NeuronGroup(10, 'dv/dt = -v / (10*ms) : 1',
 threshold='v > 1', reset='v=0', method='linear')

syn = Synapses(G1, G2, 'dw/dt = -w / (50*ms): 1 (event-driven)', on_pre='v += w')

syn.connect('i == j', p=0.75)

Set the delays
syn.delay = '1*ms + i*ms + 0.25*ms * randn()'
Set the initial values of the synaptic variable
syn.w = 1

mon = StateMonitor(G2, 'v', record=True)
run(20*ms)
plot(mon.t/ms, mon.v.T)
xlabel('Time (ms)')
ylabel('v')
show()

[image: ../_images/synapses.synapses.1.png]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

brian2 package

Brian 2.0

hears module

This is only a bridge for using Brian 1 hears with Brian 2.

NOTES:

	Slicing sounds with Brian 2 units doesn’t work, you need to either use Brian 1 units or replace calls to
sound[:20*ms] with sound.slice(None, 20*ms), etc.

TODO: handle properties (e.g. sound.duration)

Not working examples:

	time_varying_filter1 (care with units)

Exported members:
convert_unit_b1_to_b2, convert_unit_b2_to_b1

Classes

	BridgeSound
	We add a new method slice because slicing with units can’t work with Brian 2 units.

	FilterbankGroup(filterbank,targetvar,...)
	Methods

	Sound
	alias of BridgeSound

	WrappedSound
	alias of new_class

Functions

	convert_unit_b1_to_b2(val)
	

	convert_unit_b2_to_b1(val)
	

	modify_arg(arg)
	Modify arguments to make them compatible with Brian 1.

	wrap_units(f)
	Wrap a function to convert units into a form that Brian 1 can handle.

	wrap_units_class(_C)
	Wrap a class to convert units into a form that Brian 1 can handle in all methods

	wrap_units_property(p)
	

numpy_ module

A dummy package to allow importing numpy and the unit-aware replacements of
numpy functions without having to know which functions are overwritten.

This can be used for example as import brian2.numpy_ as np

Exported members:
add_newdocs, ModuleDeprecationWarning, __version__, pkgload(), PackageLoader, show_config(), char, rec, memmap, newaxis, ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray], flatiter [http://docs.scipy.org/doc/numpy/reference/generated/numpy.flatiter.html#numpy.flatiter], nditer [http://docs.scipy.org/doc/numpy/reference/generated/numpy.nditer.html#numpy.nditer], nested_iters, ufunc, arange(), array, zeros, count_nonzero, empty, broadcast [http://docs.scipy.org/doc/numpy/reference/generated/numpy.broadcast.html#numpy.broadcast], dtype [http://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype], fromstring, fromfile, frombuffer
... (592 more members)

only module

A dummy package to allow wildcard import from brian2 without also importing
the pylab (numpy + matplotlib) namespace.

Usage: from brian2.only import *

Functions

	restore_initial_state()
	Restores internal Brian variables to the state they are in when Brian is imported

Subpackages

	codegen package
	_prefs module

	codeobject module

	cpp_prefs module

	optimisation module

	permutation_analysis module

	statements module

	targets module

	templates module

	translation module

	Subpackages

	core package
	Built-in preferences

	base module

	clocks module

	core_preferences module

	functions module

	magic module

	names module

	namespace module

	network module

	operations module

	preferences module

	spikesource module

	tracking module

	variables module

	devices package
	device module

	Subpackages

	equations package
	codestrings module

	equations module

	refractory module

	unitcheck module

	groups package
	group module

	neurongroup module

	subgroup module

	importexport package
	dictlike module

	importexport module

	input package
	binomial module

	poissongroup module

	poissoninput module

	spikegeneratorgroup module

	timedarray module

	memory package
	dynamicarray module

	monitors package
	ratemonitor module

	spikemonitor module

	statemonitor module

	parsing package
	bast module

	dependencies module

	expressions module

	functions module

	rendering module

	statements module

	sympytools module

	random package

	spatialneuron package
	morphology module

	spatialneuron module

	stateupdaters package
	base module

	exact module

	explicit module

	exponential_euler module

	synapses package
	parse_synaptic_generator_syntax module

	spikequeue module

	synapses module

	units package
	allunits module

	fundamentalunits module

	stdunits module

	unitsafefunctions module

	utils package
	arrays module

	environment module

	filetools module

	logger module

	stringtools module

	topsort module

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

BridgeSound class

(Shortest import: from brian2.hears import BridgeSound)

	
class brian2.hears.BridgeSound[source]

	Bases: brian2.hears.new_class

We add a new method slice because slicing with units can’t work with Brian 2 units.

Methods

	slice(*args)
	

Details

	
slice(*args)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

FilterbankGroup class

(Shortest import: from brian2.hears import FilterbankGroup)

	
class brian2.hears.FilterbankGroup(filterbank, targetvar, *args, **kwds)[source]

	Bases: brian2.groups.neurongroup.NeuronGroup

Methods

	reinit()
	

Details

	
reinit()[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

Sound class

(Shortest import: from brian2.hears import Sound)

	
brian2.hears.Sound

	alias of BridgeSound

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

WrappedSound class

(Shortest import: from brian2.hears import WrappedSound)

	
brian2.hears.WrappedSound

	alias of new_class

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

convert_unit_b1_to_b2 function

(Shortest import: from brian2.hears import convert_unit_b1_to_b2)

	
brian2.hears.convert_unit_b1_to_b2(val)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

convert_unit_b2_to_b1 function

(Shortest import: from brian2.hears import convert_unit_b2_to_b1)

	
brian2.hears.convert_unit_b2_to_b1(val)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

modify_arg function

(Shortest import: from brian2.hears import modify_arg)

	
brian2.hears.modify_arg(arg)[source]

	Modify arguments to make them compatible with Brian 1.

	Arrays of units are replaced with straight arrays

	Single values are replaced with Brian 1 equivalents

	Slices are handled so we can use e.g. sound[:20*ms]

The second part was necessary because some functions/classes test if an object is an array or not to see if it
is a sequence, but because brian2.Quantity derives from ndarray this was causing problems.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

wrap_units function

(Shortest import: from brian2.hears import wrap_units)

	
brian2.hears.wrap_units(f)[source]

	Wrap a function to convert units into a form that Brian 1 can handle. Also, check the output argument, if it is
a b1h.Sound wrap it.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

wrap_units_class function

(Shortest import: from brian2.hears import wrap_units_class)

	
brian2.hears.wrap_units_class(_C)[source]

	Wrap a class to convert units into a form that Brian 1 can handle in all methods

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

wrap_units_property function

(Shortest import: from brian2.hears import wrap_units_property)

	
brian2.hears.wrap_units_property(p)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

restore_initial_state function

(Shortest import: from brian2 import restore_initial_state)

	
brian2.only.restore_initial_state()[source]

	Restores internal Brian variables to the state they are in when Brian is imported

Resets defaultclock.dt = 0.1*ms,
BrianGlobalPreferences._restore preferences, and set
BrianObject._scope_current_key back to 0.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

codegen package

Package providing the code generation framework.

_prefs module

Module declaring general code generation preferences.

Preferences

Code generation preferences

codegen.loop_invariant_optimisations = True

Whether to pull out scalar expressions out of the statements, so that
they are only evaluated once instead of once for every neuron/synapse/...
Can be switched off, e.g. because it complicates the code (and the same
optimisation is already performed by the compiler) or because the
code generation target does not deal well with it. Defaults to True.

codegen.string_expression_target = 'numpy'

Default target for the evaluation of string expressions (e.g. when
indexing state variables). Should normally not be changed from the
default numpy target, because the overhead of compiling code is not
worth the speed gain for simple expressions.

Accepts the same arguments as codegen.target, except for 'auto'

codegen.target = 'auto'

Default target for code generation.

Can be a string, in which case it should be one of:

	'auto' the default, automatically chose the best code generation
target available.

	'weave' uses scipy.weave to generate and compile C++ code,
should work anywhere where gcc is installed and available at the
command line.

	'cython', uses the Cython package to generate C++ code. Needs a
working installation of Cython and a C++ compiler.

	'numpy' works on all platforms and doesn’t need a C compiler but
is often less efficient.

Or it can be a CodeObject class.

codeobject module

Module providing the base CodeObject and related functions.

Exported members:
CodeObject, CodeObjectUpdater, constant_or_scalar

Classes

	CodeObject(owner,code,variables,...[,name])
	Executable code object.

Functions

	constant_or_scalar(varname,variable)
	Convenience function to generate code to access the value of a variable.

	create_runner_codeobj(group,code,...[,...])
	Create a CodeObject for the execution of code in the context of a Group.

cpp_prefs module

Preferences related to C++ compilation

Preferences

C++ compilation preferences

codegen.cpp.compiler = ''

Compiler to use (uses default if empty)

Should be gcc or msvc.

codegen.cpp.define_macros = []

List of macros to define; each macro is defined using a 2-tuple,
where ‘value’ is either the string to define it to or None to
define it without a particular value (equivalent of “#define
FOO” in source or -DFOO on Unix C compiler command line).

codegen.cpp.extra_compile_args = None

Extra arguments to pass to compiler (if None, use either
extra_compile_args_gcc or extra_compile_args_msvc).

codegen.cpp.extra_compile_args_gcc = ['-w', '-O3', '-ffast-math', '-fno-finite-math-only', '-march=native']

Extra compile arguments to pass to GCC compiler

codegen.cpp.extra_compile_args_msvc = ['/Ox', '/w', '/arch:SSE2']

Extra compile arguments to pass to MSVC compiler (the default
/arch: flag is determined based on the processor architecture)

codegen.cpp.extra_link_args = []

Any extra platform- and compiler-specific information to use when
linking object files together.

codegen.cpp.headers = []

A list of strings specifying header files to use when compiling the
code. The list might look like [“<vector>”,“‘my_header’”]. Note that
the header strings need to be in a form than can be pasted at the end
of a #include statement in the C++ code.

codegen.cpp.include_dirs = []

Include directories to use. Note that $prefix/include will be
appended to the end automatically, where $prefix is Python’s
site-specific directory prefix as returned by sys.prefix [https://docs.python.org/2/library/sys.html#sys.prefix].

codegen.cpp.libraries = []

List of library names (not filenames or paths) to link against.

codegen.cpp.library_dirs = []

List of directories to search for C/C++ libraries at link time.

codegen.cpp.msvc_architecture = ''

MSVC architecture name (or use system architectue by default).

Could take values such as x86, amd64, etc.

codegen.cpp.msvc_vars_location = ''

Location of the MSVC command line tool (or search for best by default).

codegen.cpp.runtime_library_dirs = []

List of directories to search for C/C++ libraries at run time.

Exported members:
get_compiler_and_args

Functions

	get_compiler_and_args()
	Returns the computed compiler and compilation flags

	update_for_cross_compilation(library_dirs,...)
	Update the compiler arguments to allow cross-compilation for 32bit on a 64bit Linux system.

optimisation module

Simplify and optimise sequences of statements by rewriting and pulling out loop invariants.

Exported members:
optimise_statements, ArithmeticSimplifier, Simplifier

Classes

	ArithmeticSimplifier(variables)
	Carries out the following arithmetic simplifications:

	Simplifier(variables,scalar_statements[,...])
	Carry out arithmetic simplifications (see ArithmeticSimplifier) and loop invariants

Functions

	cancel_identical_terms(primary,inverted)
	Cancel terms in a collection, e.g.

	collect(node)
	Attempts to collect commutative operations into one and simplifies them.

	collect_commutative(node,primary,inverted,...)
	

	evaluate_expr(expr,ns)
	Try to evaluate the expression in the given namespace

	expression_complexity(expr,variables)
	

	optimise_statements(scalar_statements,...)
	Optimise a sequence of scalar and vector statements

	reduced_node(terms,op)
	Reduce a sequence of terms with the given operator

permutation_analysis module

Module for analysing synaptic pre and post code for synapse order independence.

Exported members:
OrderDependenceError, check_for_order_independence

Classes

	OrderDependenceError
	

Functions

	check_for_order_independence(statements,...)
	Check that the sequence of statements doesn’t depend on the order in which the indices are iterated through.

statements module

Module providing the Statement class.

Classes

	Statement(var,op,expr,comment,dtype[,...])
	A single line mathematical statement.

targets module

Module that stores all known code generation targets as codegen_targets.

Exported members:
codegen_targets

templates module

Handles loading templates from a directory.

Exported members:
Templater

Classes

	CodeObjectTemplate(template,template_source)
	Single template object returned by Templater and used for final code generation

	LazyTemplateLoader(environment,extension)
	Helper object to load templates only when they are needed.

	MultiTemplate(module)
	Code generated by a CodeObjectTemplate with multiple blocks

	Templater(package_name,extension[,env_globals])
	Class to load and return all the templates a CodeObject defines.

Functions

	autoindent(code)
	

	autoindent_postfilter(code)
	

translation module

This module translates a series of statements into a language-specific
syntactically correct code block that can be inserted into a template.

It infers whether or not a variable can be declared as
constant, etc. It should handle common subexpressions, and so forth.

The input information needed:

	The sequence of statements (a multiline string) in standard mathematical form

	The list of known variables, common subexpressions and functions, and for each
variable whether or not it is a value or an array, and if an array what the
dtype is.

	The dtype to use for newly created variables

	The language to translate to

Exported members:
make_statements(), analyse_identifiers(), get_identifiers_recursively()

Classes

	LineInfo(**kwds)
	A helper class, just used to store attributes.

Functions

	analyse_identifiers(code,variables[,recursive])
	Analyses a code string (sequence of statements) to find all identifiers by type.

	get_identifiers_recursively(expressions,...)
	Gets all the identifiers in a list of expressions, recursing down into subexpressions.

	is_scalar_expression(expr,variables)
	Whether the given expression is scalar.

	make_statements(code,variables,dtype[,...])
	Turn a series of abstract code statements into Statement objects, inferring whether each line is a set/declare operation, whether the variables are constant or not, and handling the cacheing of subexpressions.

Subpackages

	generators package
	base module

	cpp_generator module

	cython_generator module

	numpy_generator module

	runtime package
	Subpackages

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

CodeObject class

(Shortest import: from brian2 import CodeObject)

	
class brian2.codegen.codeobject.CodeObject(owner, code, variables, variable_indices, template_name, template_source, name='codeobject*')[source]

	Bases: brian2.core.names.Nameable

Executable code object.

The code can either be a string or a
brian2.codegen.templates.MultiTemplate.

After initialisation, the code is compiled with the given namespace
using code.compile(namespace).

Calling code(key1=val1, key2=val2) executes the code with the given
variables inserted into the namespace.

Attributes

	class_name
	A short name for this type of CodeObject

	generator_class
	The CodeGenerator class used by this CodeObject

Methods

	__call__(**kwds)
	

	compile()
	

	is_available()
	Whether this target for code generation is available.

	run()
	Runs the code in the namespace.

	update_namespace()
	Update the namespace for this timestep.

Details

	
class_name

	A short name for this type of CodeObject

	
generator_class

	The CodeGenerator class used by this CodeObject

	
__call__(**kwds)[source]

	

	
compile()[source]

	

	
classmethod is_available()[source]

	Whether this target for code generation is available. Should use a
minimal example to check whether code generation works in general.

	
run()[source]

	Runs the code in the namespace.

	Returns:	return_value : dict

A dictionary with the keys corresponding to the output_variables
defined during the call of CodeGenerator.code_object.

	
update_namespace()[source]

	Update the namespace for this timestep. Should only deal with variables
where the reference changes every timestep, i.e. where the current
reference in namespace is not correct.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

constant_or_scalar function

(Shortest import: from brian2.codegen.codeobject import constant_or_scalar)

	
brian2.codegen.codeobject.constant_or_scalar(varname, variable)[source]

	Convenience function to generate code to access the value of a variable.
Will return 'varname' if the variable is a constant, and
array_name[0] if it is a scalar array.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

create_runner_codeobj function

(Shortest import: from brian2.codegen.codeobject import create_runner_codeobj)

	
brian2.codegen.codeobject.create_runner_codeobj(group, code, template_name, run_namespace, user_code=None, variable_indices=None, name=None, check_units=True, needed_variables=None, additional_variables=None, template_kwds=None, override_conditional_write=None, codeobj_class=None)[source]

	Create a CodeObject for the execution of code in the context of a
Group.

	Parameters:	group : Group

The group where the code is to be run

code : str or dict of str

The code to be executed.

template_name : str

The name of the template to use for the code.

run_namespace : dict-like

An additional namespace that is used for variable lookup (either
an explicitly defined namespace or one taken from the local
context).

user_code : str, optional

The code that had been specified by the user before other code was
added automatically. If not specified, will be assumed to be identical
to code.

variable_indices : dict-like, optional

A mapping from Variable objects to index names (strings). If none is
given, uses the corresponding attribute of group.

name : str, optional

A name for this code object, will use group + '_codeobject*' if
none is given.

check_units : bool, optional

Whether to check units in the statement. Defaults to True.

needed_variables: list of str, optional :

A list of variables that are neither present in the abstract code, nor
in the USES_VARIABLES statement in the template. This is only
rarely necessary, an example being a StateMonitor where the
names of the variables are neither known to the template nor included
in the abstract code statements.

additional_variables : dict-like, optional

A mapping of names to Variable objects, used in addition to the
variables saved in group.

template_kwds : dict, optional

A dictionary of additional information that is passed to the template.

override_conditional_write: list of str, optional :

A list of variable names which are used as conditions (e.g. for
refractoriness) which should be ignored.

codeobj_class : class, optional

The CodeObject class to run code with. If not specified, defaults to
the group‘s codeobj_class attribute.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

get_compiler_and_args function

(Shortest import: from brian2.codegen.cpp_prefs import get_compiler_and_args)

	
brian2.codegen.cpp_prefs.get_compiler_and_args()[source]

	Returns the computed compiler and compilation flags

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

update_for_cross_compilation function

(Shortest import: from brian2.codegen.cpp_prefs import update_for_cross_compilation)

	
brian2.codegen.cpp_prefs.update_for_cross_compilation(library_dirs, extra_compile_args, extra_link_args, logger=None)[source]

	Update the compiler arguments to allow cross-compilation for 32bit on a
64bit Linux system. Uses the provided logger to print an INFO message
and modifies the provided lists in-place.

	Parameters:	library_dirs : list

List of library directories (will be modified in-place).

extra_compile_args : list

List of extra compile args (will be modified in-place).

extra_link_args : list

List of extra link args (will be modified in-place).

logger : BrianLogger, optional

The logger to use for the INFO message. Defaults to None (no
message).

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

ArithmeticSimplifier class

(Shortest import: from brian2.codegen.optimisation import ArithmeticSimplifier)

	
class brian2.codegen.optimisation.ArithmeticSimplifier(variables)[source]

	Bases: brian2.parsing.bast.BrianASTRenderer

Carries out the following arithmetic simplifications:

	Constant evaluation (e.g. exp(0)=1) by attempting to evaluate the expression in an “assumptions namespace”

	Binary operators, e.g. 0*x=0, 1*x=x, etc. You have to take care that the dtypes match here, e.g.
if x is an integer, then 1.0*x shouldn’t be replaced with x but left as 1.0*x.

	Parameters:	variables : dict of (str, Variable)

Usual definition of variables.

assumptions : sequence of str

Additional assumptions that can be used in simplification, each assumption is a string statement.
These might be the scalar statements for example.

Methods

	render_BinOp(node)
	

	render_node(node)
	Assumes that the node has already been fully processed by BrianASTRenderer

Details

	
render_BinOp(node)[source]

	

	
render_node(node)[source]

	Assumes that the node has already been fully processed by BrianASTRenderer

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

Simplifier class

(Shortest import: from brian2.codegen.optimisation import Simplifier)

	
class brian2.codegen.optimisation.Simplifier(variables, scalar_statements, extra_lio_prefix='')[source]

	Bases: brian2.parsing.bast.BrianASTRenderer

Carry out arithmetic simplifications (see ArithmeticSimplifier) and loop invariants

	Parameters:	variables : dict of (str, Variable)

Usual definition of variables.

scalar_statements : sequence of Statement

Predefined scalar statements that can be used as part of simplification

Notes

After calling render_expr on a sequence of expressions (coming from vector statements typically),
this object will have some new attributes:

	loop_invariants

 : OrderedDict of (expression, varname)	varname will be of the form _lio_N where N is some integer, and the expressions will be
strings that correspond to scalar-only expressions that can be evaluated outside of the vector
block.

	loop_invariant_dtypes

 : dict of (varname, dtypename)	dtypename will be one of 'boolean', 'integer', 'float'.

Methods

	render_expr(expr)
	

	render_node(node)
	Assumes that the node has already been fully processed by BrianASTRenderer

Details

	
render_expr(expr)[source]

	

	
render_node(node)[source]

	Assumes that the node has already been fully processed by BrianASTRenderer

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

cancel_identical_terms function

(Shortest import: from brian2.codegen.optimisation import cancel_identical_terms)

	
brian2.codegen.optimisation.cancel_identical_terms(primary, inverted)[source]

	Cancel terms in a collection, e.g. a+b-a should be cancelled to b

Simply renders the nodes into expressions and removes whenever there is a common expression
in primary and inverted.

	Parameters:	primary : list of AST nodes

These are the nodes that are positive with respect to the operator, e.g.
in x*y/z it would be [x, y].

inverted : list of AST nodes

These are the nodes that are inverted with respect to the operator, e.g.
in x*y/z it would be [z].

	Returns:	primary : list of AST nodes

Primary nodes after cancellation

inverted : list of AST nodes

Inverted nodes after cancellation

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

collect function

(Shortest import: from brian2.codegen.optimisation import collect)

	
brian2.codegen.optimisation.collect(node)[source]

	Attempts to collect commutative operations into one and simplifies them.

For example, if x and y are scalars, and z is a vector, then (x*z)*y should
be rewritten as (x*y)*z to minimise the number of vector operations. Similarly,
((x*2)*3)*4 should be rewritten as x*24.

Works for either multiplication/division or addition/subtraction nodes.

The final output is a subexpression of the following maximal form:

(((numerical_value*(product of scalars))/(product of scalars))*(product of vectors))/(product of vectors)

Any possible cancellations will have been done.

	Parameters:	node : Brian AST node

The node to be collected/simplified.

	Returns:	node : Brian AST node

Simplified node.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

collect_commutative function

(Shortest import: from brian2.codegen.optimisation import collect_commutative)

	
brian2.codegen.optimisation.collect_commutative(node, primary, inverted, terms_primary, terms_inverted, add_to_inverted=False)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

evaluate_expr function

(Shortest import: from brian2.codegen.optimisation import evaluate_expr)

	
brian2.codegen.optimisation.evaluate_expr(expr, ns)[source]

	Try to evaluate the expression in the given namespace

Returns either (value, True) if successful, or (expr, False) otherwise.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

expression_complexity function

(Shortest import: from brian2.codegen.optimisation import expression_complexity)

	
brian2.codegen.optimisation.expression_complexity(expr, variables)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

optimise_statements function

(Shortest import: from brian2.codegen.optimisation import optimise_statements)

	
brian2.codegen.optimisation.optimise_statements(scalar_statements, vector_statements, variables, blockname='')[source]

	Optimise a sequence of scalar and vector statements

Performs the following optimisations:

	Constant evaluations (e.g. exp(0) to 1). See evaluate_expr.

	Arithmetic simplifications (e.g. 0*x to 0). See ArithmeticSimplifier, collect().

	Pulling out loop invariants (e.g. v*exp(-dt/tau) to a=exp(-dt/tau) outside the loop and v*a inside).
See Simplifier.

	Boolean simplifications (allowing the replacement of expressions with booleans with a sequence of if/thens).
See Simplifier.

	Parameters:	scalar_statements : sequence of Statement

Statements that only involve scalar values and should be evaluated in the scalar block.

vector_statements : sequence of Statement

Statements that involve vector values and should be evaluated in the vector block.

variables : dict of (str, Variable)

Definition of the types of the variables.

blockname : str, optional

Name of the block (used for LIO constant prefixes to avoid name clashes)

	Returns:	new_scalar_statements : sequence of Statement

As above but with loop invariants pulled out from vector statements

new_vector_statements : sequence of Statement

Simplified/optimised versions of statements

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

reduced_node function

(Shortest import: from brian2.codegen.optimisation import reduced_node)

	
brian2.codegen.optimisation.reduced_node(terms, op)[source]

	Reduce a sequence of terms with the given operator

For examples, if terms were [a, b, c] and op was multiplication then the reduction would be (a*b)*c.

	Parameters:	terms : list

AST nodes.

op : AST node

Could be ast.Mult or ast.Add.

Examples

>>> import ast
>>> nodes = [ast.Name(id='x'), ast.Num(n=3), ast.Name(id='y')]
>>> ast.dump(reduced_node(nodes, ast.Mult), annotate_fields=False)
"BinOp(BinOp(Name('x'), Mult(), Num(3)), Mult(), Name('y'))"
>>> nodes = [ast.Num(n=17.0)]
>>> ast.dump(reduced_node(nodes, ast.Add), annotate_fields=False)
'Num(17.0)'

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

OrderDependenceError class

(Shortest import: from brian2.codegen.permutation_analysis import OrderDependenceError)

	
class brian2.codegen.permutation_analysis.OrderDependenceError[source]

	Bases: exceptions.Exception [https://docs.python.org/2/library/exceptions.html#exceptions.Exception]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

check_for_order_independence function

(Shortest import: from brian2.codegen.permutation_analysis import check_for_order_independence)

	
brian2.codegen.permutation_analysis.check_for_order_independence(statements, variables, indices)[source]

	Check that the sequence of statements doesn’t depend on the order in which the indices are iterated through.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

Statement class

(Shortest import: from brian2 import Statement)

	
class brian2.codegen.statements.Statement(var, op, expr, comment, dtype, constant=False, subexpression=False, scalar=False)[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

A single line mathematical statement.

The structure is var op expr.

	Parameters:	var : str

The left hand side of the statement, the value being written to.

op : str

The operation, can be any of the standard Python operators (including
+= etc.) or a special operator := which means you are defining
a new symbol (whereas = means you are setting the value of an
existing symbol).

expr : str, Expression

The right hand side of the statement.

dtype : dtype [http://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype]

The numpy dtype of the value or array var().

constant : bool, optional

Set this flag to True if the value will not change (only applies for
op==':='.

subexpression : bool, optional

Set this flag to True if the variable is a subexpression. In some
languages (e.g. Python) you can use this to save a memory copy, because
you don’t need to do lhs[:] = rhs but a redefinition lhs = rhs.

scalar : bool, optional

Set this flag to True if var() and expr are scalar.

Notes

Will compute the following attribute:

	inplace

	True or False depending if the operation is in-place or not.

Boolean simplification notes:

Will initially set the attribute used_boolean_variables to None.
This is set by optimise_statements when it
is called on a sequence of statements to the list of boolean variables
that are used in this expression. In addition, the attribute
boolean_simplified_expressions is set to a dictionary with keys
consisting of a tuple of pairs (var, value) where var is the
name of the boolean variable (will be in used_boolean_variables)
and var is True or False. The values of the dictionary are
strings representing the simplified version of the expression if each
var=value substitution is made for that key. The keys will range
over all possible values of the set of boolean variables. The complexity
of the original statement is set as the attribute complexity_std,
and the complexity of the simplified versions are in the dictionary
complexities (with the same keys).

This information can be used to generate code that replaces a complex
expression that varies depending on the value of one or more boolean
variables with an if/then sequence where each subexpression is
simplified. It is optional to use this (e.g. the numpy codegen does
not, but the weave and cython ones do).

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

CodeObjectTemplate class

(Shortest import: from brian2.codegen.templates import CodeObjectTemplate)

	
class brian2.codegen.templates.CodeObjectTemplate(template, template_source)[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Single template object returned by Templater and used for final code generation

Should not be instantiated by the user, but only directly by Templater.

Notes

The final code is obtained from this by calling the template (see __call__).

Attributes

	allows_scalar_write
	Does this template allow writing to scalar variables?

	iterate_all
	The indices over which the template iterates completely

	variables
	The set of variables in this template

	writes_read_only
	Read-only variables that are changed by this template

Methods

	__call__(scalar_code,vector_code,**kwds)
	Return a usable code block or blocks from this template.

Details

	
allows_scalar_write

	Does this template allow writing to scalar variables?

	
iterate_all

	The indices over which the template iterates completely

	
variables

	The set of variables in this template

	
writes_read_only

	Read-only variables that are changed by this template

	
__call__(scalar_code, vector_code, **kwds)[source]

	Return a usable code block or blocks from this template.

	Parameters:	scalar_code : dict

Dictionary of scalar code blocks.

vector_code : dict

Dictionary of vector code blocks

**kwds :

Additional parameters to pass to the template

Notes

Returns either a string (if macros were not used in the template), or a MultiTemplate (if macros were used).

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

LazyTemplateLoader class

(Shortest import: from brian2.codegen.templates import LazyTemplateLoader)

	
class brian2.codegen.templates.LazyTemplateLoader(environment, extension)[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Helper object to load templates only when they are needed.

Methods

	get_template(name)
	

Details

	
get_template(name)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

MultiTemplate class

(Shortest import: from brian2.codegen.templates import MultiTemplate)

	
class brian2.codegen.templates.MultiTemplate(module)[source]

	Bases: _abcoll.Mapping

Code generated by a CodeObjectTemplate with multiple blocks

Each block is a string stored as an attribute with the block name. The
object can also be accessed as a dictionary.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

Templater class

(Shortest import: from brian2.codegen.templates import Templater)

	
class brian2.codegen.templates.Templater(package_name, extension, env_globals=None)[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Class to load and return all the templates a CodeObject defines.

	Parameters:	package_name : str, tuple of str

The package where the templates are saved. If this is a tuple then each template will be searched in order
starting from the first package in the tuple until the template is found. This allows for derived templates
to be used. See also derive.

env_globals : dict (optional)

A dictionary of global values accessible by the templates. Can be used for providing utility functions.
In all cases, the filter ‘autoindent’ is available (see existing templates for example usage).

Notes

Templates are accessed using templater.template_base_name (the base name is without the file extension).
This returns a CodeObjectTemplate.

Methods

	derive(package_name[,extension,env_globals])
	Return a new Templater derived from this one, where the new package name and globals overwrite the old.

Details

	
derive(package_name, extension=None, env_globals=None)[source]

	Return a new Templater derived from this one, where the new package name and globals overwrite the old.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

autoindent function

(Shortest import: from brian2.codegen.templates import autoindent)

	
brian2.codegen.templates.autoindent(code)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

autoindent_postfilter function

(Shortest import: from brian2.codegen.templates import autoindent_postfilter)

	
brian2.codegen.templates.autoindent_postfilter(code)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

LineInfo class

(Shortest import: from brian2.codegen.translation import LineInfo)

	
class brian2.codegen.translation.LineInfo(**kwds)[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

A helper class, just used to store attributes.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

analyse_identifiers function

(Shortest import: from brian2 import analyse_identifiers)

	
brian2.codegen.translation.analyse_identifiers(code, variables, recursive=False)[source]

	Analyses a code string (sequence of statements) to find all identifiers by type.

In a given code block, some variable names (identifiers) must be given as inputs to the code
block, and some are created by the code block. For example, the line:

a = b+c

This could mean to create a new variable a from b and c, or it could mean modify the existing
value of a from b or c, depending on whether a was previously known.

	Parameters:	code : str

The code string, a sequence of statements one per line.

variables : dict of Variable, set of names

Specifiers for the model variables or a set of known names

recursive : bool, optional

Whether to recurse down into subexpressions (defaults to False).

	Returns:	newly_defined : set

A set of variables that are created by the code block.

used_known : set

A set of variables that are used and already known, a subset of the
known parameter.

unknown : set

A set of variables which are used by the code block but not defined by
it and not previously known. Should correspond to variables in the
external namespace.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

get_identifiers_recursively function

(Shortest import: from brian2 import get_identifiers_recursively)

	
brian2.codegen.translation.get_identifiers_recursively(expressions, variables, include_numbers=False)[source]

	Gets all the identifiers in a list of expressions, recursing down into
subexpressions.

	Parameters:	expressions : list of str

List of expressions to check.

variables : dict-like

Dictionary of Variable objects

include_numbers : bool, optional

Whether to include number literals in the output. Defaults to False.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

is_scalar_expression function

(Shortest import: from brian2.codegen.translation import is_scalar_expression)

	
brian2.codegen.translation.is_scalar_expression(expr, variables)[source]

	Whether the given expression is scalar.

	Parameters:	expr : str

The expression to check

variables : dict-like

Variable and Function object for all the identifiers used in expr

	Returns:	scalar : bool

Whether expr is a scalar expression

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

make_statements function

(Shortest import: from brian2 import make_statements)

	
brian2.codegen.translation.make_statements(code, variables, dtype, optimise=True, blockname='')[source]

	Turn a series of abstract code statements into Statement objects, inferring
whether each line is a set/declare operation, whether the variables are
constant or not, and handling the cacheing of subexpressions.

	Parameters:	code : str

A (multi-line) string of statements.

variables : dict-like

A dictionary of with Variable and Function objects for every
identifier used in the code [https://docs.python.org/2/library/code.html#module-code].

dtype : dtype [http://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype]

The data type to use for temporary variables

optimise : bool, optional

Whether to optimise expressions, including
pulling out loop invariant expressions and putting them in new
scalar constants. Defaults to False, since this function is also
used just to in contexts where we are not interested by this kind of
optimisation. For the main code generation stage, its value is set by
the codegen.loop_invariant_optimisations preference.

blockname : str, optional

A name for the block (used to name intermediate variables to avoid
name clashes when multiple blocks are used together)

Returns :

——- :

scalar_statements, vector_statements : (list of Statement, list of Statement)

Lists with statements that are to be executed once and statements that
are to be executed once for every neuron/synapse/... (or in a vectorised
way)

Notes

If optimise is True, then the
scalar_statements may include newly introduced scalar constants that
have been identified as loop-invariant and have therefore been pulled out
of the vector statements. The resulting statements will also use augmented
assignments where possible, i.e. a statement such as w = w + 1 will be
replaced by w += 1. Also, statements involving booleans will have
additional information added to them (see Statement for details)
describing how the statement can be reformulated as a sequence of if/then
statements. Calls optimise_statements.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

generators package

base module

Base class for generating code in different programming languages, gives the
methods which should be overridden to implement a new language.

Exported members:
CodeGenerator

Classes

	CodeGenerator(variables,variable_indices,...)
	Base class for all languages.

cpp_generator module

Exported members:
CPPCodeGenerator, c_data_type()

Classes

	CPPCodeGenerator(*args,**kwds)
	C++ language

Functions

	c_data_type(dtype)
	Gives the C language specifier for numpy data types.

cython_generator module

Exported members:
CythonCodeGenerator

Classes

	CythonCodeGenerator(variables,...[,...])
	Cython code generator

	CythonNodeRenderer([use_vectorisation_idx])
	Methods

Functions

	get_cpp_dtype(obj)
	

	get_numpy_dtype(obj)
	

numpy_generator module

Exported members:
NumpyCodeGenerator

Classes

	NumpyCodeGenerator(variables,...[,...])
	Numpy language

	VectorisationError
	

Functions

	ceil_func(value)
	

	clip_func(array,a_min,a_max)
	

	floor_func(value)
	

	int_func(value)
	

	rand_func(vectorisation_idx)
	

	randn_func(vectorisation_idx)
	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

 	generators package »

CodeGenerator class

(Shortest import: from brian2 import CodeGenerator)

	
class brian2.codegen.generators.base.CodeGenerator(variables, variable_indices, owner, iterate_all, codeobj_class, name, template_name, override_conditional_write=None, allows_scalar_write=False)[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Base class for all languages.

See definition of methods below.

TODO: more details here

Methods

	array_read_write(statements)
	Helper function, gives the set of ArrayVariables that are read from and written to in the series of statements.

	arrays_helper(statements)
	Combines the two helper functions array_read_write and get_conditional_write_vars, and updates the read set.

	determine_keywords()
	A dictionary of values that is made available to the templated.

	get_array_name(var[,access_data])
	Get a globally unique name for a ArrayVariable.

	get_conditional_write_vars()
	Helper function, returns a dict of mappings (varname, condition_var_name) indicating that when varname is written to, it should only be when condition_var_name is True.

	has_repeated_indices(statements)
	Whether any of the statements potentially uses repeated indices (e.g.

	translate(code,dtype)
	Translates an abstract code block into the target language.

	translate_expression(expr)
	Translate the given expression string into a string in the target language, returns a string.

	translate_one_statement_sequence(statements)
	

	translate_statement(statement)
	Translate a single line Statement into the target language, returns a string.

	translate_statement_sequence(...)
	Translate a sequence of Statement into the target language, taking care to declare variables, etc.

Details

	
array_read_write(statements)[source]

	Helper function, gives the set of ArrayVariables that are read from and
written to in the series of statements. Returns the pair read, write
of sets of variable names.

	
arrays_helper(statements)[source]

	Combines the two helper functions array_read_write and get_conditional_write_vars, and updates the
read set.

	
determine_keywords()[source]

	A dictionary of values that is made available to the templated. This is
used for example by the CPPCodeGenerator to set up all the supporting
code

	
static get_array_name(var, access_data=True)[source]

	Get a globally unique name for a ArrayVariable.

	Parameters:	var : ArrayVariable

The variable for which a name should be found.

access_data : bool, optional

For DynamicArrayVariable objects, specifying True [https://docs.python.org/2/library/constants.html#True] here means the
name for the underlying data is returned. If specifying False [https://docs.python.org/2/library/constants.html#False],
the name of object itself is returned (e.g. to allow resizing).

Returns :

——- :

name : str

A uniqe name for var().

	
get_conditional_write_vars()[source]

	Helper function, returns a dict of mappings (varname, condition_var_name) indicating that
when varname is written to, it should only be when condition_var_name is True.

	
has_repeated_indices(statements)[source]

	Whether any of the statements potentially uses repeated indices (e.g.
pre- or postsynaptic indices).

	
translate(code, dtype)[source]

	Translates an abstract code block into the target language.

	
translate_expression(expr)[source]

	Translate the given expression string into a string in the target
language, returns a string.

	
translate_one_statement_sequence(statements, scalar=False)[source]

	

	
translate_statement(statement)[source]

	Translate a single line Statement into the target language, returns
a string.

	
translate_statement_sequence(scalar_statements, vector_statements)[source]

	Translate a sequence of Statement into the target language, taking
care to declare variables, etc. if necessary.

Returns a tuple (scalar_code, vector_code, kwds) where
scalar_code is a list of the lines of code executed before the inner
loop, vector_code is a list of the lines of code in the inner
loop, and kwds is a dictionary of values that is made available to
the template.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

 	generators package »

CPPCodeGenerator class

(Shortest import: from brian2 import CPPCodeGenerator)

	
class brian2.codegen.generators.cpp_generator.CPPCodeGenerator(*args, **kwds)[source]

	Bases: brian2.codegen.generators.base.CodeGenerator

C++ language

C++ code templates should provide Jinja2 macros with the following names:

	main

	The main loop.

	support_code

	The support code (function definitions, etc.), compiled in a separate
file.

For user-defined functions, there are two keys to provide:

	support_code

	The function definition which will be added to the support code.

	hashdefine_code

	The #define code added to the main loop.

See TimedArray for an example of these keys.

Attributes

	flush_denormals
	

	restrict
	

Methods

	denormals_to_zero_code()
	

	determine_keywords()
	

	get_array_name(var[,access_data])
	

	translate_expression(expr)
	

	translate_one_statement_sequence(statements)
	

	translate_statement(statement)
	

	translate_to_declarations(statements)
	

	translate_to_read_arrays(statements)
	

	translate_to_statements(statements)
	

	translate_to_write_arrays(statements)
	

Details

	
flush_denormals

	

	
restrict

	

	
denormals_to_zero_code()[source]

	

	
determine_keywords()[source]

	

	
static get_array_name(var, access_data=True)[source]

	

	
translate_expression(expr)[source]

	

	
translate_one_statement_sequence(statements, scalar=False)[source]

	

	
translate_statement(statement)[source]

	

	
translate_to_declarations(statements)[source]

	

	
translate_to_read_arrays(statements)[source]

	

	
translate_to_statements(statements)[source]

	

	
translate_to_write_arrays(statements)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

 	generators package »

c_data_type function

(Shortest import: from brian2 import c_data_type)

	
brian2.codegen.generators.cpp_generator.c_data_type(dtype)[source]

	Gives the C language specifier for numpy data types. For example,
numpy.int32 maps to int32_t in C.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

 	generators package »

CythonCodeGenerator class

(Shortest import: from brian2.codegen.generators.cython_generator import CythonCodeGenerator)

	
class brian2.codegen.generators.cython_generator.CythonCodeGenerator(variables, variable_indices, owner, iterate_all, codeobj_class, name, template_name, override_conditional_write=None, allows_scalar_write=False)[source]

	Bases: brian2.codegen.generators.base.CodeGenerator

Cython code generator

Methods

	determine_keywords()
	

	translate_expression(expr)
	

	translate_one_statement_sequence(statements)
	

	translate_statement(statement)
	

Details

	
determine_keywords()[source]

	

	
translate_expression(expr)[source]

	

	
translate_one_statement_sequence(statements, scalar=False)[source]

	

	
translate_statement(statement)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

 	generators package »

CythonNodeRenderer class

(Shortest import: from brian2.codegen.generators.cython_generator import CythonNodeRenderer)

	
class brian2.codegen.generators.cython_generator.CythonNodeRenderer(use_vectorisation_idx=True)[source]

	Bases: brian2.parsing.rendering.NodeRenderer

Methods

	render_BinOp(node)
	

	render_Name(node)
	

	render_NameConstant(node)
	

Details

	
render_BinOp(node)[source]

	

	
render_Name(node)[source]

	

	
render_NameConstant(node)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

 	generators package »

get_cpp_dtype function

(Shortest import: from brian2.codegen.generators.cython_generator import get_cpp_dtype)

	
brian2.codegen.generators.cython_generator.get_cpp_dtype(obj)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

 	generators package »

get_numpy_dtype function

(Shortest import: from brian2.codegen.generators.cython_generator import get_numpy_dtype)

	
brian2.codegen.generators.cython_generator.get_numpy_dtype(obj)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

 	generators package »

NumpyCodeGenerator class

(Shortest import: from brian2 import NumpyCodeGenerator)

	
class brian2.codegen.generators.numpy_generator.NumpyCodeGenerator(variables, variable_indices, owner, iterate_all, codeobj_class, name, template_name, override_conditional_write=None, allows_scalar_write=False)[source]

	Bases: brian2.codegen.generators.base.CodeGenerator

Numpy language

Essentially Python but vectorised.

Methods

	conditional_write(line,stmt,variables,...)
	

	determine_keywords()
	

	read_arrays(read,write,indices,variables,...)
	

	translate_expression(expr)
	

	translate_one_statement_sequence(statements)
	

	translate_statement(statement)
	

	ufunc_at_vectorisation(statement,variables,...)
	

	vectorise_code(statements,variables,...[,...])
	

	write_arrays(statements,read,write,...)
	

Details

	
conditional_write(line, stmt, variables, conditional_write_vars, created_vars)[source]

	

	
determine_keywords()[source]

	

	
read_arrays(read, write, indices, variables, variable_indices)[source]

	

	
translate_expression(expr)[source]

	

	
translate_one_statement_sequence(statements, scalar=False)[source]

	

	
translate_statement(statement)[source]

	

	
ufunc_at_vectorisation(statement, variables, indices, conditional_write_vars, created_vars, used_variables)[source]

	

	
vectorise_code(statements, variables, variable_indices, index='_idx')[source]

	

	
write_arrays(statements, read, write, variables, variable_indices)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

 	generators package »

VectorisationError class

(Shortest import: from brian2.codegen.generators.numpy_generator import VectorisationError)

	
class brian2.codegen.generators.numpy_generator.VectorisationError[source]

	Bases: exceptions.Exception [https://docs.python.org/2/library/exceptions.html#exceptions.Exception]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

 	generators package »

ceil_func function

(Shortest import: from brian2.codegen.generators.numpy_generator import ceil_func)

	
brian2.codegen.generators.numpy_generator.ceil_func(value)

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

 	generators package »

clip_func function

(Shortest import: from brian2.codegen.generators.numpy_generator import clip_func)

	
brian2.codegen.generators.numpy_generator.clip_func(array, a_min, a_max)

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

 	generators package »

floor_func function

(Shortest import: from brian2.codegen.generators.numpy_generator import floor_func)

	
brian2.codegen.generators.numpy_generator.floor_func(value)

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

 	generators package »

int_func function

(Shortest import: from brian2.codegen.generators.numpy_generator import int_func)

	
brian2.codegen.generators.numpy_generator.int_func(value)

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

 	generators package »

rand_func function

(Shortest import: from brian2.codegen.generators.numpy_generator import rand_func)

	
brian2.codegen.generators.numpy_generator.rand_func(vectorisation_idx)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

 	generators package »

randn_func function

(Shortest import: from brian2.codegen.generators.numpy_generator import randn_func)

	
brian2.codegen.generators.numpy_generator.randn_func(vectorisation_idx)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

runtime package

Runtime targets for code generation.

Subpackages

	cython_rt package
	cython_rt module

	extension_manager module

	numpy_rt package
	Preferences

	numpy_rt module

	synapse_vectorisation module

	weave_rt package
	weave_rt module

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

 	runtime package »

cython_rt package

cython_rt module

Exported members:
CythonCodeObject

Classes

	CythonCodeObject(owner,code,variables,...)
	Execute code using Cython.

extension_manager module

Cython automatic extension builder/manager

Inspired by IPython’s Cython cell magics, see:
https://github.com/ipython/ipython/blob/master/IPython/extensions/cythonmagic.py

Exported members:
cython_extension_manager

Classes

	CythonExtensionManager()
	Attributes

Functions

	simplify_path_env_var(path)
	

Objects

	cython_extension_manager
	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

 	runtime package »

 	cython_rt package »

CythonCodeObject class

(Shortest import: from brian2 import CythonCodeObject)

	
class brian2.codegen.runtime.cython_rt.cython_rt.CythonCodeObject(owner, code, variables, variable_indices, template_name, template_source, name='cython_code_object*')[source]

	Bases: brian2.codegen.runtime.numpy_rt.numpy_rt.NumpyCodeObject

Execute code using Cython.

Methods

	compile()
	

	is_available()
	

	run()
	

	update_namespace()
	

	variables_to_namespace()
	

Details

	
compile()[source]

	

	
classmethod is_available()[source]

	

	
run()[source]

	

	
update_namespace()[source]

	

	
variables_to_namespace()[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

 	runtime package »

 	cython_rt package »

CythonExtensionManager class

(Shortest import: from brian2.codegen.runtime.cython_rt.extension_manager import CythonExtensionManager)

	
class brian2.codegen.runtime.cython_rt.extension_manager.CythonExtensionManager[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Attributes

	so_ext
	The extension suffix for compiled modules.

Methods

	create_extension(code[,force,name,...])
	

Details

	
so_ext

	The extension suffix for compiled modules.

	
create_extension(code, force=False, name=None, include_dirs=None, library_dirs=None, runtime_library_dirs=None, extra_compile_args=None, extra_link_args=None, libraries=None, compiler=None, owner_name='')[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

 	runtime package »

 	cython_rt package »

simplify_path_env_var function

(Shortest import: from brian2.codegen.runtime.cython_rt.extension_manager import simplify_path_env_var)

	
brian2.codegen.runtime.cython_rt.extension_manager.simplify_path_env_var(path)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

 	runtime package »

 	cython_rt package »

cython_extension_manager object

(Shortest import: from brian2.codegen.runtime.cython_rt.extension_manager import cython_extension_manager)

	
brian2.codegen.runtime.cython_rt.extension_manager.cython_extension_manager = <brian2.codegen.runtime.cython_rt.extension_manager.CythonExtensionManager object>

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

 	runtime package »

numpy_rt package

Numpy runtime implementation.

Preferences

Numpy runtime codegen preferences

codegen.runtime.numpy.discard_units = False

Whether to change the namespace of user-specifed functions to remove
units.

numpy_rt module

Module providing NumpyCodeObject.

Exported members:
NumpyCodeObject

Classes

	NumpyCodeObject(owner,code,variables,...)
	Execute code using Numpy

synapse_vectorisation module

Module for efficient vectorisation of synapses code

Exported members:
vectorise_synapses_code, SynapseVectorisationError

Classes

	SynapseVectorisationError
	

Functions

	ufunc_at_vectorisation(statements,...)
	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

 	runtime package »

 	numpy_rt package »

NumpyCodeObject class

(Shortest import: from brian2 import NumpyCodeObject)

	
class brian2.codegen.runtime.numpy_rt.numpy_rt.NumpyCodeObject(owner, code, variables, variable_indices, template_name, template_source, name='numpy_code_object*')[source]

	Bases: brian2.codegen.codeobject.CodeObject

Execute code using Numpy

Default for Brian because it works on all platforms.

Methods

	compile()
	

	is_available()
	

	run()
	

	update_namespace()
	

	variables_to_namespace()
	

Details

	
compile()[source]

	

	
classmethod is_available()[source]

	

	
run()[source]

	

	
update_namespace()[source]

	

	
variables_to_namespace()[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

 	runtime package »

 	numpy_rt package »

SynapseVectorisationError class

(Shortest import: from brian2.codegen.runtime.numpy_rt.synapse_vectorisation import SynapseVectorisationError)

	
class brian2.codegen.runtime.numpy_rt.synapse_vectorisation.SynapseVectorisationError[source]

	Bases: exceptions.Exception [https://docs.python.org/2/library/exceptions.html#exceptions.Exception]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

 	runtime package »

 	numpy_rt package »

ufunc_at_vectorisation function

(Shortest import: from brian2.codegen.runtime.numpy_rt.synapse_vectorisation import ufunc_at_vectorisation)

	
brian2.codegen.runtime.numpy_rt.synapse_vectorisation.ufunc_at_vectorisation(statements, variables, indices, index)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

 	runtime package »

weave_rt package

Runtime C++ code generation via weave.

weave_rt module

Module providing WeaveCodeObject.

Exported members:
WeaveCodeObject, WeaveCodeGenerator

Classes

	WeaveCodeGenerator(*args,**kwds)
	

	WeaveCodeObject(owner,code,variables,...)
	Weave code object

Functions

	weave_data_type(dtype)
	Gives the C language specifier for numpy data types using weave.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

 	runtime package »

 	weave_rt package »

WeaveCodeGenerator class

(Shortest import: from brian2 import WeaveCodeGenerator)

	
class brian2.codegen.runtime.weave_rt.weave_rt.WeaveCodeGenerator(*args, **kwds)[source]

	Bases: brian2.codegen.generators.cpp_generator.CPPCodeGenerator

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

 	runtime package »

 	weave_rt package »

WeaveCodeObject class

(Shortest import: from brian2 import WeaveCodeObject)

	
class brian2.codegen.runtime.weave_rt.weave_rt.WeaveCodeObject(owner, code, variables, variable_indices, template_name, template_source, name='weave_code_object*')[source]

	Bases: brian2.codegen.codeobject.CodeObject

Weave code object

The code should be a MultiTemplate
object with two macros defined, main (for the main loop code) and
support_code for any support code (e.g. function definitions).

Methods

	compile()
	

	is_available()
	

	run()
	

	update_namespace()
	

	variables_to_namespace()
	

Details

	
compile()[source]

	

	
classmethod is_available()[source]

	

	
run()[source]

	

	
update_namespace()[source]

	

	
variables_to_namespace()[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	codegen package »

 	runtime package »

 	weave_rt package »

weave_data_type function

(Shortest import: from brian2.codegen.runtime.weave_rt.weave_rt import weave_data_type)

	
brian2.codegen.runtime.weave_rt.weave_rt.weave_data_type(dtype)[source]

	Gives the C language specifier for numpy data types using weave. For example,
numpy.int32 maps to long in C.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

core package

Essential Brian modules, in particular base classes for all kinds of brian
objects.

Built-in preferences

Core Brian preferences

core.default_float_dtype = float64

Default dtype for all arrays of scalars (state variables, weights, etc.).

Currently, this is not supported (only float64 can be used).

core.default_integer_dtype = int32

Default dtype for all arrays of integer scalars.

core.outdated_dependency_error = True

Whether to raise an error for outdated dependencies (True) or just
a warning (False).

base module

All Brian objects should derive from BrianObject.

Exported members:
BrianObject, weakproxy_with_fallback(), BrianObjectException, brian_object_exception()

Classes

	BrianObject(*args,**kwds)
	All Brian objects derive from this class, defines magic tracking and update.

	BrianObjectException(message,brianobj,...)
	High level exception that adds extra Brian-specific information to exceptions

Functions

	brian_object_exception(message,brianobj,...)
	Returns a BrianObjectException derived from the original exception.

	device_override(name)
	Decorates a function/method to allow it to be overridden by the current Device.

	weakproxy_with_fallback(obj)
	Attempts to create a weakproxy to the object, but falls back to the object if not possible.

clocks module

Clocks for the simulator.

Exported members:
Clock, defaultclock

Classes

	Clock(dt[,name])
	An object that holds the simulation time and the time step.

	DefaultClockProxy
	Method proxy to access the defaultclock of the currently active device

Functions

	check_dt(new_dt,old_dt,target_t)
	Check that the target time can be represented equally well with the new dt.

Objects

	defaultclock
	The standard clock, used for objects that do not specify any clock or dt

core_preferences module

Definitions, documentation, default values and validation functions for core
Brian preferences.

Functions

	default_float_dtype_validator(dtype)
	

	dtype_repr(dtype)
	

functions module

Exported members:
DEFAULT_FUNCTIONS, Function, implementation(), declare_types()

Classes

	Function(pyfunc[,sympy_func,arg_units,...])
	An abstract specification of a function that can be used as part of model equations, etc.

	FunctionImplementation([name,code,...])
	A simple container object for function implementations.

	FunctionImplementationContainer(function)
	Helper object to store implementations and give access in a dictionary-like fashion, using CodeGenerator implementations as a fallback for CodeObject implementations.

	SymbolicConstant(name,sympy_obj,value)
	Class for representing constants (e.g.

	log10
	Methods

Functions

	declare_types(**types)
	Decorator to declare argument and result types for a function

	implementation(target[,code,namespace,...])
	A simple decorator to extend user-written Python functions to work with code generation in other languages.

magic module

Exported members:
MagicNetwork, magic_network, MagicError, run(), stop(), collect(), store(), restore(), start_scope()

Classes

	MagicError
	Error that is raised when something goes wrong in MagicNetwork

	MagicNetwork()
	Network that automatically adds all Brian objects

Functions

	collect([level])
	Return the list of BrianObjects that will be simulated if run() is called.

	get_objects_in_namespace(level)
	Get all the objects in the current namespace that derive from BrianObject.

	restore([name,filename])
	Restore the state of the network and all included objects.

	run(duration[,report,report_period,...])
	Runs a simulation with all “visible” Brian objects for the given duration.

	start_scope()
	Starts a new scope for magic functions

	stop()
	Stops all running simulations.

	store([name,filename])
	Store the state of the network and all included objects.

Objects

	magic_network
	Automatically constructed MagicNetwork of all Brian objects

names module

Exported members:
Nameable

Classes

	Nameable(name)
	Base class to find a unique name for an object

Functions

	find_name(name)
	

namespace module

Implementation of the namespace system, used to resolve the identifiers in
model equations of NeuronGroup and Synapses

Exported members:
get_local_namespace(), DEFAULT_FUNCTIONS, DEFAULT_UNITS, DEFAULT_CONSTANTS

Functions

	get_local_namespace(level)
	Get the surrounding namespace.

network module

Module defining the Network object, the basis of all simulation runs.

Preferences

Network preferences

core.network.default_schedule = ['start', 'groups', 'thresholds', 'synapses', 'resets', 'end']

Default schedule used for networks that
don’t specify a schedule.

Exported members:
Network, profiling_summary()

Classes

	Network(*objs[,name])
	The main simulation controller in Brian

	ProfilingSummary(net[,show])
	Class to nicely display the results of profiling.

	TextReport(stream)
	Helper object to report simulation progress in Network.run().

Functions

	profiling_summary([net,show])
	Returns a ProfilingSummary of the profiling info for a run.

	schedule_propagation_offset([net])
	Returns the minimal time difference for a post-synaptic effect after a spike.

operations module

Exported members:
NetworkOperation, network_operation()

Classes

	NetworkOperation(function[,dt,clock,...])
	Object with function that is called every time step.

Functions

	network_operation([when])
	Decorator to make a function get called every time step of a simulation.

preferences module

Brian global preferences are stored as attributes of a BrianGlobalPreferences
object prefs.

Exported members:
PreferenceError, BrianPreference, prefs, brian_prefs

Classes

	BrianGlobalPreferences()
	Class of the prefs object.

	BrianGlobalPreferencesView(basename,all_prefs)
	A class allowing for accessing preferences in a subcategory.

	BrianPreference(default,docs[,validator,...])
	Used for defining a Brian preference.

	DefaultValidator(value)
	Default preference validator

	ErrorRaiser
	

	PreferenceError
	Exception relating to the Brian preferences system.

Functions

	check_preference_name(name)
	Make sure that a preference name is valid.

	parse_preference_name(name)
	Split a preference name into a base and end name.

Objects

	brian_prefs
	

	prefs
	Preference categories:

spikesource module

Exported members:
SpikeSource

Classes

	SpikeSource
	A source of spikes.

tracking module

Exported members:
Trackable

Classes

	InstanceFollower
	Keep track of all instances of classes derived from Trackable

	InstanceTrackerSet
	A set [https://docs.python.org/2/library/stdtypes.html#set] of weakref.ref [https://docs.python.org/2/library/weakref.html#weakref.ref] to all existing objects of a certain class.

	Trackable
	Classes derived from this will have their instances tracked.

variables module

Classes used to specify the type of a function, variable or common
sub-expression.

Exported members:
Variable, Constant, ArrayVariable, DynamicArrayVariable, Subexpression, AuxiliaryVariable, VariableView, Variables, LinkedVariable, linked_var()

Classes

	ArrayVariable(name,unit,owner,size,device)
	An object providing information about a model variable stored in an array (for example, all state variables).

	AuxiliaryVariable(name,unit[,dtype,scalar])
	Variable description for an auxiliary variable (most likely one that is added automatically to abstract code, e.g.

	Constant(name,unit,value[,owner])
	A scalar constant (e.g.

	DynamicArrayVariable(name,unit,owner,...)
	An object providing information about a model variable stored in a dynamic array (used in Synapses).

	LinkedVariable(group,name,variable[,index])
	A simple helper class to make linking variables explicit.

	Subexpression(name,unit,owner,expr,device)
	An object providing information about a named subexpression in a model.

	Variable(name,unit[,owner,dtype,scalar,...])
	An object providing information about model variables (including implicit variables such as t or xi).

	VariableView(name,variable,group[,unit])
	A view on a variable that allows to treat it as an numpy array while allowing special indexing (e.g.

	Variables(owner[,default_index])
	A container class for storing Variable objects.

Functions

	get_dtype(obj)
	Helper function to return the numpy.dtype [http://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype] of an arbitrary object.

	get_dtype_str(val)
	Returns canonical string representation of the dtype of a value or dtype

	linked_var(group_or_variable[,name,index])
	Represents a link target for setting a linked variable.

	variables_by_owner(variables,owner)
	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

BrianObject class

(Shortest import: from brian2 import BrianObject)

	
class brian2.core.base.BrianObject(*args, **kwds)[source]

	Bases: brian2.core.names.Nameable

All Brian objects derive from this class, defines magic tracking and update.

See the documentation for Network for an explanation of which
objects get updated in which order.

	Parameters:	dt : Quantity, optional

The time step to be used for the simulation. Cannot be combined with
the clock argument.

clock : Clock, optional

The update clock to be used. If neither a clock, nor the dt argument
is specified, the defaultclock will be used.

when : str, optional

In which scheduling slot to simulate the object during a time step.
Defaults to 'start'.

order : int, optional

The priority of this object for operations occurring at the same time
step and in the same scheduling slot. Defaults to 0.

name : str, optional

A unique name for the object - one will be assigned automatically if
not provided (of the form brianobject_1, etc.).

Notes

The set of all BrianObject objects is stored in BrianObject.__instances__().

Attributes

	_clock
	The clock used for simulating this object

	_creation_stack
	A string indicating where this object was created (traceback with any parts of Brian code removed)

	_network
	Used to remember the Network in which this object has been included

	_scope_current_key
	Global key value for ipython cell restrict magic

	_scope_key
	The scope key is used to determine which objects are collected by magic

	active
	Whether or not the object should be run.

	add_to_magic_network
	Whether or not the object should be added to a MagicNetwork.

	clock
	The Clock determining when the object should be updated.

	code_objects
	The list of CodeObject contained within the BrianObject.

	contained_objects
	The list of objects contained within the BrianObject.

	invalidates_magic_network
	Whether or not MagicNetwork is invalidated when a new BrianObject of this type is added

	name
	The unique name for this object.

	order
	The order in which objects with the same clock and when should be updated

	updaters
	The list of Updater that define the runtime behaviour of this object.

	when
	The ID string determining when the object should be updated in Network.run().

Methods

	add_dependency(obj)
	Add an object to the list of dependencies.

	after_run()
	Optional method to do work after a run is finished.

	before_run(run_namespace)
	Optional method to prepare the object before a run.

	run()
	

Details

	
_clock

	The clock used for simulating this object

	
_creation_stack

	A string indicating where this object was created (traceback with any parts of Brian code removed)

	
_network

	Used to remember the Network in which this object has been included
before, to raise an error if it is included in a new Network

	
_scope_current_key

	Global key value for ipython cell restrict magic

	
_scope_key

	The scope key is used to determine which objects are collected by magic

	
active

	Whether or not the object should be run.

Inactive objects will not have their update
method called in Network.run(). Note that setting or
unsetting the active attribute will set or unset
it for all contained_objects.

	
add_to_magic_network

	Whether or not the object should be added to a MagicNetwork. Note that
all objects in BrianObject.contained_objects are automatically added
when the parent object is added, therefore e.g. NeuronGroup should set
add_to_magic_network to True, but it should not be set for all the
dependent objects such as StateUpdater

	
clock

	The Clock determining when the object should be updated.

Note that this cannot be changed after the object is
created.

	
code_objects

	The list of CodeObject contained within the BrianObject.

TODO: more details.

Note that this attribute cannot be set directly, you need to modify
the underlying list, e.g. obj.code_objects.extend([A, B]).

	
contained_objects

	The list of objects contained within the BrianObject.

When a BrianObject is added to a Network, its contained objects will
be added as well. This allows for compound objects which contain
a mini-network structure.

Note that this attribute cannot be set directly, you need to modify
the underlying list, e.g. obj.contained_objects.extend([A, B]).

	
invalidates_magic_network

	Whether or not MagicNetwork is invalidated when a new BrianObject of this type is added

	
name

	The unique name for this object.

Used when generating code. Should be an acceptable
variable name, i.e. starting with a letter
character and followed by alphanumeric characters and
_.

	
order

	The order in which objects with the same clock and when should be updated

	
updaters

	The list of Updater that define the runtime behaviour of this object.

TODO: more details.

Note that this attribute cannot be set directly, you need to modify
the underlying list, e.g. obj.updaters.extend([A, B]).

	
when

	The ID string determining when the object should be updated in Network.run().

	
add_dependency(obj)[source]

	Add an object to the list of dependencies. Takes care of handling
subgroups correctly (i.e., adds its parent object).

	Parameters:	obj : BrianObject

The object that this object depends on.

	
after_run()[source]

	Optional method to do work after a run is finished.

Called by Network.after_run() after the main simulation loop terminated.

	
before_run(run_namespace)[source]

	Optional method to prepare the object before a run.

TODO

	
run()[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

BrianObjectException class

(Shortest import: from brian2 import BrianObjectException)

	
class brian2.core.base.BrianObjectException(message, brianobj, original_exception)[source]

	Bases: exceptions.Exception [https://docs.python.org/2/library/exceptions.html#exceptions.Exception]

High level exception that adds extra Brian-specific information to exceptions

This exception should only be raised at a fairly high level in Brian code to
pass information back to the user. It adds extra information about where a
BrianObject was defined to better enable users to locate the source of
problems.

You should use the brian_object_exception() function to raise this, and
it should only be raised in an except block handling a prior
exception.

	Parameters:	message : str

Additional error information to add to the original exception.

brianobj : BrianObject

The object that caused the error to happen.

original_exception : Exception

The original exception that was raised.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

brian_object_exception function

(Shortest import: from brian2 import brian_object_exception)

	
brian2.core.base.brian_object_exception(message, brianobj, original_exception)[source]

	Returns a BrianObjectException derived from the original exception.

Creates a new class derived from the class of the original exception
and BrianObjectException. This allows exception handling code to
respond both to the original exception class and BrianObjectException.

See BrianObjectException for arguments and notes.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

device_override function

(Shortest import: from brian2.core.base import device_override)

	
brian2.core.base.device_override(name)[source]

	Decorates a function/method to allow it to be overridden by the current Device.

The name is the function name in the Device to use as an override if it exists.

The returned function has an additional attribute original_function
which is a reference to the original, undecorated function.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

weakproxy_with_fallback function

(Shortest import: from brian2 import weakproxy_with_fallback)

	
brian2.core.base.weakproxy_with_fallback(obj)[source]

	Attempts to create a weakproxy to the object, but falls back to the object if not possible.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

Clock class

(Shortest import: from brian2 import Clock)

	
class brian2.core.clocks.Clock(dt, name='clock*')[source]

	Bases: brian2.groups.group.VariableOwner

An object that holds the simulation time and the time step.

	Parameters:	dt : float

The time step of the simulation as a float

name : str, optional

An explicit name, if not specified gives an automatically generated name

Notes

Clocks are run in the same Network.run() iteration if t is the
same. The condition for two
clocks to be considered as having the same time is
abs(t1-t2)<epsilon*abs(t1), a standard test for equality of floating
point values. The value of epsilon is 1e-14.

Attributes

	dt
	The time step of the simulation in seconds.

	dt_
	The time step of the simulation as a float (in seconds)

	epsilon_dt
	The relative difference for times (in terms of dt) so that they are considered identical.

Methods

	set_interval(self,start,end)
	Set the start and end time of the simulation.

Details

	
dt

	The time step of the simulation in seconds.

	
dt_

	The time step of the simulation as a float (in seconds)

	
epsilon_dt

	The relative difference for times (in terms of dt) so that they are
considered identical.

	
set_interval(self, start, end)

	Set the start and end time of the simulation.

Sets the start and end value of the clock precisely if
possible (using epsilon) or rounding up if not. This assures that
multiple calls to Network.run() will not re-run the same time step.

Tutorials and examples using this

	Example CUBA

	Example COBAHH

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

DefaultClockProxy class

(Shortest import: from brian2.core.clocks import DefaultClockProxy)

	
class brian2.core.clocks.DefaultClockProxy[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Method proxy to access the defaultclock of the currently active device

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

check_dt function

(Shortest import: from brian2.core.clocks import check_dt)

	
brian2.core.clocks.check_dt(new_dt, old_dt, target_t)[source]

	Check that the target time can be represented equally well with the new
dt.

	Parameters:	new_dt : float

The new dt value

old_dt : float

The old dt value

target_t : float

The target time

Raises

	ValueError

	If using the new dt value would lead to a difference in the target time of more than Clock.epsilon_dt times new_dt (by default, 0.01% of the new dt).

Examples

>>> from brian2 import *
>>> check_dt(float(17*ms), float(0.1*ms), float(0*ms)) # For t=0s, every dt is fine
>>> check_dt(float(0.05*ms), float(0.1*ms), float(10*ms)) # t=10*ms can be represented with the new dt
>>> check_dt(float(0.2*ms), float(0.1*ms), float(10.1*ms)) # t=10.1ms cannot be represented with dt=0.2ms
Traceback (most recent call last):
...
ValueError: Cannot set dt from 100. us to 200. us, the time 10.1 ms is not a multiple of 200. us

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

defaultclock object

(Shortest import: from brian2 import defaultclock)

	
brian2.core.clocks.defaultclock = <brian2.core.clocks.DefaultClockProxy object>

	The standard clock, used for objects that do not specify any clock or dt

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

default_float_dtype_validator function

(Shortest import: from brian2 import default_float_dtype_validator)

	
brian2.core.core_preferences.default_float_dtype_validator(dtype)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

dtype_repr function

(Shortest import: from brian2 import dtype_repr)

	
brian2.core.core_preferences.dtype_repr(dtype)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

Function class

(Shortest import: from brian2 import Function)

	
class brian2.core.functions.Function(pyfunc, sympy_func=None, arg_units=None, return_unit=None, arg_types=None, return_type=None, stateless=True)[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

An abstract specification of a function that can be used as part of
model equations, etc.

	Parameters:	pyfunc : function

A Python function that is represented by this Function object.

sympy_func : sympy.Function, optional

A corresponding sympy function (if any). Allows functions to be
interpreted by sympy and potentially make simplifications. For example,
sqrt(x**2) could be replaced by abs(x).

arg_units : list of Unit, optional

If pyfunc does not provide unit information (which typically means
that it was not annotated with a check_units() decorator), the
units of the arguments have to specified explicitly using this
parameter.

return_unit : Unit or callable, optional

Same as for arg_units: if pyfunc does not provide unit information,
this information has to be provided explictly here. return_unit can
either be a specific Unit, if the function always returns the same
unit, or a function of the input units, e.g. a “square” function would
return the square of its input units, i.e. return_unit could be
specified as lambda u: u**2.

arg_types : list of str, optional

Similar to arg_units, but gives the type of the argument rather than
its unit. In the current version of Brian arguments are specified
by one of the following strings: ‘boolean’, ‘integer’, ‘float’, ‘any’.
If arg_types is not specified, ‘any’ will be assumed. In
future versions, a more refined specification may be possible. Note that
any argument with a type other than float should have no units. If

return_type : str, optional

Similar to return_unit and arg_types. In addition to ‘boolean’,
‘integer’ and ‘float’ you can also use ‘highest’ which will return the
highest type of its arguments. You can also give a function, as for
return_unit. If the return type is not specified, it is assumed to
be ‘float’.

stateless : bool, optional

Whether this function does not have an internal state, i.e. if it
always returns the same output when called with the same arguments.
This is true for mathematical functions but not true for rand(), for
example. Defaults to True.

Notes

If a function should be usable for code generation targets other than
Python/numpy, implementations for these target languages have to be added
using the implementation decorator or using the
add_implementations function.

Attributes

	implementations
	Stores implementations for this function in a

Methods

	__call__(*args)
	

	is_locally_constant(dt)
	Return whether this function (if interpreted as a function of time) should be considered constant over a timestep.

Details

	
implementations

	Stores implementations for this function in a
FunctionImplementationContainer

	
__call__(*args)[source]

	

	
is_locally_constant(dt)[source]

	Return whether this function (if interpreted as a function of time)
should be considered constant over a timestep. This is most importantly
used by TimedArray so that linear integration can be used. In its
standard implementation, always returns False.

	Parameters:	dt : float

The length of a timestep (without units).

	Returns:	constant : bool

Whether the results of this function can be considered constant
over one timestep of length dt.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

FunctionImplementation class

(Shortest import: from brian2.core.functions import FunctionImplementation)

	
class brian2.core.functions.FunctionImplementation(name=None, code=None, namespace=None, dependencies=None, dynamic=False)[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

A simple container object for function implementations.

	Parameters:	name : str, optional

The name of the function in the target language. Should only be
specified if the function has to be renamed for the target language.

code : language-dependent, optional

A language dependent argument specifying the implementation in the
target language, e.g. a code string or a dictionary of code strings.

namespace : dict-like, optional

A dictionary of mappings from names to values that should be added
to the namespace of a CodeObject using the function.

dependencies : dict-like, optional

A mapping of names to Function objects, for additional functions
needed by this function.

dynamic : bool, optional

Whether this code [https://docs.python.org/2/library/code.html#module-code]/namespace is dynamic, i.e. generated for each
new context it is used in. If set to True, code [https://docs.python.org/2/library/code.html#module-code] and namespace
have to be callable with a Group as an argument and are expected
to return the final code [https://docs.python.org/2/library/code.html#module-code] and namespace. Defaults to False.

Methods

	get_code(owner)
	

	get_namespace(owner)
	

Details

	
get_code(owner)[source]

	

	
get_namespace(owner)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

FunctionImplementationContainer class

(Shortest import: from brian2.core.functions import FunctionImplementationContainer)

	
class brian2.core.functions.FunctionImplementationContainer(function)[source]

	Bases: _abcoll.Mapping

Helper object to store implementations and give access in a dictionary-like
fashion, using CodeGenerator implementations as a fallback for CodeObject
implementations.

Methods

	add_dynamic_implementation(target,code[,...])
	Adds an “dynamic implementation” for this function.

	add_implementation(target,code[,...])
	

	add_numpy_implementation(wrapped_func[,...])
	Add a numpy implementation to a Function.

Details

	
add_dynamic_implementation(target, code, namespace=None, dependencies=None, name=None)[source]

	Adds an “dynamic implementation” for this function. code [https://docs.python.org/2/library/code.html#module-code] and namespace
arguments are expected to be callables that will be called in
Network.before_run() with the owner of the CodeObject as an argument.
This allows to generate code that depends on details of the context it
is run in, e.g. the dt of a clock.

	
add_implementation(target, code, namespace=None, dependencies=None, name=None)[source]

	

	
add_numpy_implementation(wrapped_func, dependencies=None, discard_units=None)[source]

	Add a numpy implementation to a Function.

	Parameters:	function : Function

The function description for which an implementation should be added.

wrapped_func : callable

The original function (that will be used for the numpy implementation)

dependencies : list of Function, optional

A list of functions this function needs.

discard_units : bool, optional

See implementation().

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

SymbolicConstant class

(Shortest import: from brian2.core.functions import SymbolicConstant)

	
class brian2.core.functions.SymbolicConstant(name, sympy_obj, value)[source]

	Bases: brian2.core.variables.Constant

Class for representing constants (e.g. pi) that are understood by sympy.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

log10 class

(Shortest import: from brian2.core.functions import log10)

	
class brian2.core.functions.log10[source]

	Bases: sympy.core.function.Function [http://docs.sympy.org/dev/modules/core.html#sympy.core.function.Function]

Methods

	eval(args)
	

Details

	
classmethod eval(args)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

declare_types function

(Shortest import: from brian2 import declare_types)

	
brian2.core.functions.declare_types(**types)[source]

	Decorator to declare argument and result types for a function

Usage is similar to check_units() except that types must be one of {VALID_ARG_TYPES}
and the result type must be one of {VALID_RETURN_TYPES}. Unspecified argument
types are assumed to be 'all' (i.e. anything is permitted), and an unspecified
result type is assumed to be 'float'. Note that the 'highest' option for
result type will give the highest type of its argument, e.g. if the arguments
were boolean and integer then the result would be integer, if the arguments were
integer and float it would be float.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

implementation function

(Shortest import: from brian2 import implementation)

	
brian2.core.functions.implementation(target, code=None, namespace=None, dependencies=None, discard_units=None)[source]

	A simple decorator to extend user-written Python functions to work with code
generation in other languages.

	Parameters:	target : str

Name of the code generation target (e.g. 'weave') for which to add
an implementation.

code : str or dict-like, optional

What kind of code the target language expects is language-specific,
e.g. C++ code allows for a dictionary of code blocks instead of a
single string.

namespaces : dict-like, optional

A namespace dictionary (i.e. a mapping of names to values) that
should be added to a CodeObject namespace when using this function.

dependencies : dict-like, optional

A mapping of names to Function objects, for additional functions
needed by this function.

discard_units: bool, optional :

Numpy functions can internally make use of the unit system. However,
during a simulation run, state variables are passed around as unitless
values for efficiency. If discard_units is set to False, input
arguments will have units added to them so that the function can still
use units internally (the units will be stripped away from the return
value as well). Alternatively, if discard_units is set to True,
the function will receive unitless values as its input. The namespace
of the function will be altered to make references to units (e.g.
ms) refer to the corresponding floating point values so that no
unit mismatch errors are raised. Note that this system cannot work in
all cases, e.g. it does not work with functions that internally imports
values (e.g. does from brian2 import ms) or access values with
units indirectly (e.g. uses brian2.ms instead of ms). If no
value is given, defaults to the preference setting
codegen.runtime.numpy.discard_units.

Notes

While it is in principle possible to provide a numpy implementation
as an argument for this decorator, this is normally not necessary – the
numpy implementation should be provided in the decorated function.

If this decorator is used with other directors such as check_units() or
declare_types(), it should be the uppermost decorator (that is, the
last one to be applied).

Examples

Sample usage:

@implementation('cpp',"""
 #include<math.h>
 inline double usersin(double x)
 {
 return sin(x);
 }
 """)
def usersin(x):
 return sin(x)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

MagicError class

(Shortest import: from brian2 import MagicError)

	
class brian2.core.magic.MagicError[source]

	Bases: exceptions.Exception [https://docs.python.org/2/library/exceptions.html#exceptions.Exception]

Error that is raised when something goes wrong in MagicNetwork

See notes to MagicNetwork for more details.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

MagicNetwork class

(Shortest import: from brian2 import MagicNetwork)

	
class brian2.core.magic.MagicNetwork[source]

	Bases: brian2.core.network.Network

Network that automatically adds all Brian objects

In order to avoid bugs, this class will occasionally raise
MagicError when the intent of the user is not clear. See the notes
below for more details on this point. If you persistently see this
error, then Brian is not able to safely guess what you intend to do, and
you should use a Network object and call Network.run() explicitly.

Note that this class cannot be instantiated by the user, there can be only
one instance magic_network of MagicNetwork.

See also

Network, collect(), run(), stop(), store(), restore()

Notes

All Brian objects that are visible at the point of the run() call will be
included in the network. This class is designed to work in the following
two major use cases:

	You create a collection of Brian objects, and call run() to run the
simulation. Subsequently, you may call run() again to run it again for
a further duration. In this case, the Network.t time will start at 0
and for the second call to run() will continue from the end of the
previous run.

	You have a loop in which at each iteration, you create some Brian
objects and run a simulation using them. In this case, time is reset to
0 for each call to run().

In any other case, you will have to explicitly create a Network object
yourself and call Network.run() on this object. Brian has a built in
system to guess which of the cases above applies and behave correctly.
When it is not possible to safely guess which case you are in, it raises
MagicError. The rules for this guessing system are explained below.

If a simulation consists only of objects that have not been run, it will
assume that you want to start a new simulation. If a simulation only
consists of objects that have been simulated in the previous run() call,
it will continue that simulation at the previous time.

If neither of these two situations apply, i.e., the network consists of a
mix of previously run objects and new objects, an error will be raised.

In these checks, “non-invalidating” objects (i.e. objects that have
BrianObject.invalidates_magic_network set to False) are ignored, e.g.
creating new monitors is always possible.

Methods

	add(*objs)
	You cannot add objects directly to MagicNetwork

	after_run()
	

	check_dependencies()
	

	get_states([units,format,subexpressions,...])
	See Network.get_states().

	remove(*objs)
	You cannot remove objects directly from MagicNetwork

	restore([name,filename,level])
	See Network.store().

	run(duration[,report,report_period,...])
	

	set_states(values[,units,format,level])
	See Network.set_states().

	store([name,filename,level])
	See Network.store().

Details

	
add(*objs)[source]

	You cannot add objects directly to MagicNetwork

	
after_run()[source]

	

	
check_dependencies()[source]

	

	
get_states(units=True, format='dict', subexpressions=False, level=0)[source]

	See Network.get_states().

	
remove(*objs)[source]

	You cannot remove objects directly from MagicNetwork

	
restore(name='default', filename=None, level=0)[source]

	See Network.store().

	
run(duration, report=None, report_period=10. * second, namespace=None, profile=True, level=0)[source]

	

	
set_states(values, units=True, format='dict', level=0)[source]

	See Network.set_states().

	
store(name='default', filename=None, level=0)[source]

	See Network.store().

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

collect function

(Shortest import: from brian2 import collect)

	
brian2.core.magic.collect(level=0)[source]

	Return the list of BrianObjects that will be simulated if run() is
called.

	Parameters:	level : int, optional

How much further up to go in the stack to find the objects. Needs
only to be specified if collect() is called as part of a function
and should be increased by 1 for every level of nesting. Defaults to 0.

	Returns:	objects : set of BrianObject

The objects that will be simulated.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

get_objects_in_namespace function

(Shortest import: from brian2.core.magic import get_objects_in_namespace)

	
brian2.core.magic.get_objects_in_namespace(level)[source]

	Get all the objects in the current namespace that derive from BrianObject.
Used to determine the objects for the MagicNetwork.

	Parameters:	level : int, optional

How far to go back to get the locals/globals. Each function/method
call should add 1 to this argument, functions/method with a
decorator have to add 2.

	Returns:	objects : set

A set with weak references to the BrianObjects in the namespace.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

restore function

(Shortest import: from brian2 import restore)

	
brian2.core.magic.restore(name='default', filename=None)[source]

	Restore the state of the network and all included objects.

	Parameters:	name : str, optional

The name of the snapshot to restore, if not specified uses
'default'.

filename : str, optional

The name of the file from where the state should be restored. If
not specified, it is expected that the state exist in memory
(i.e. Network.store() was previously called without the filename
argument).

See also

Network.restore()

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

run function

(Shortest import: from brian2 import run)

	
brian2.core.magic.run(duration, report=None, report_period=10*second, namespace=None, level=0)[source]

	Runs a simulation with all “visible” Brian objects for the given duration.
Calls collect() to gather all the objects, the simulation can
be stopped by calling the global stop() function.

In order to avoid bugs, this function will occasionally raise
MagicError when the intent of the user is not clear. See the notes to
MagicNetwork for more details on this point. If you persistently see this
error, then Brian is not able to safely guess what you intend to do, and
you should use a Network object and call Network.run() explicitly.

	Parameters:	duration : Quantity

The amount of simulation time to run for. If the network consists of
new objects since the last time run() was called, the start time will
be reset to 0. If run() is called twice or more without changing the
set of objects, the second and subsequent runs will start from the
end time of the previous run. To explicitly reset the time to 0,
do magic_network.t = 0*second.

report : {None, ‘stdout’, ‘stderr’, ‘graphical’, function}, optional

How to report the progress of the simulation. If None, do not
report progress. If stdout or stderr is specified, print the
progress to stdout or stderr. If graphical, Tkinter is used to
show a graphical progress bar. Alternatively, you can specify
a callback function(elapsed, complete) which will be passed
the amount of time elapsed (in seconds) and the fraction complete
from 0 to 1.

report_period : Quantity

How frequently (in real time) to report progress.

profile : bool, optional

Whether to record profiling information (see Network.profiling_info).
Defaults to False.

namespace : dict-like, optional

A namespace in which objects which do not define their own
namespace will be run. If not namespace is given, the locals and
globals around the run function will be used.

level : int, optional

How deep to go down the stack frame to look for the locals/global
(see namespace argument). Only necessary under particular
circumstances, e.g. when calling the run function as part of a
function call or lambda expression. This is used in tests, e.g.:
assert_raises(MagicError, lambda: run(1*ms, level=3)).

Raises

	MagicError

	Error raised when it was not possible for Brian to safely guess the intended use. See MagicNetwork for more details.

See also

Network.run(), MagicNetwork, collect(), start_scope(), stop()

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

start_scope function

(Shortest import: from brian2 import start_scope)

	
brian2.core.magic.start_scope()[source]

	Starts a new scope for magic functions

All objects created before this call will no longer be automatically
included by the magic functions such as run().

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

stop function

(Shortest import: from brian2 import stop)

	
brian2.core.magic.stop()[source]

	Stops all running simulations.

See also

Network.stop(), run(), reinit

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

store function

(Shortest import: from brian2 import store)

	
brian2.core.magic.store(name='default', filename=None)[source]

	Store the state of the network and all included objects.

	Parameters:	name : str, optional

A name for the snapshot, if not specified uses 'default'.

filename : str, optional

A filename where the state should be stored. If not specified, the
state will be stored in memory.

See also

Network.store()

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

magic_network object

(Shortest import: from brian2 import magic_network)

	
brian2.core.magic.magic_network = MagicNetwork()

	Automatically constructed MagicNetwork of all Brian objects

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

Nameable class

(Shortest import: from brian2 import Nameable)

	
class brian2.core.names.Nameable(name)[source]

	Bases: brian2.core.tracking.Trackable

Base class to find a unique name for an object

If you specify a name explicitly, and it has already been taken, a
ValueError is raised. You can also specify a name with a wildcard asterisk
in the end, i.e. in the form 'name*'. It will then try name first
but if this is already specified, it will try name_1, name__2`, etc.
This is the default mechanism used by most core objects in Brian, e.g.
NeuronGroup uses a default name of 'neurongroup*'.

	Parameters:	name : str

An name for the object, possibly ending in * to specify that
variants of this name should be tried if the name (without the asterisk)
is already taken. If (and only if) the name for this object has already
been set, it is also possible to call the initialiser with None for
the name argument. This situation can arise when a class derives from
multiple classes that derive themselves from Nameable (e.g. Group
and CodeRunner) and their initialisers are called explicitely.

Raises

	ValueError

	If the name is already taken.

Attributes

	id
	A unique id for this object.

	name
	The unique name for this object.

Methods

	assign_id()
	Assign a new id to this object.

Details

	
id

	A unique id for this object.

In contrast to names, which may be reused, the id stays
unique. This is used in the dependency checking to not
have to deal with the chore of comparing weak
references, weak proxies and strong references.

	
name

	The unique name for this object.

Used when generating code. Should be an acceptable
variable name, i.e. starting with a letter
character and followed by alphanumeric characters and
_.

	
assign_id()[source]

	Assign a new id to this object. Under most circumstances, this method
should only be called once at the creation of the object to generate a
unique id. In the case of the MagicNetwork, however, the id should
change when a new, independent set of objects is simulated.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

find_name function

(Shortest import: from brian2.core.names import find_name)

	
brian2.core.names.find_name(name)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

get_local_namespace function

(Shortest import: from brian2 import get_local_namespace)

	
brian2.core.namespace.get_local_namespace(level)[source]

	Get the surrounding namespace.

	Parameters:	level : int, optional

How far to go back to get the locals/globals. Each function/method
call should add 1 to this argument, functions/method with a
decorator have to add 2.

	Returns:	namespace : dict

The locals and globals at the given depth of the stack frame.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

Network class

(Shortest import: from brian2 import Network)

	
class brian2.core.network.Network(*objs, name='network*')[source]

	Bases: brian2.core.names.Nameable

The main simulation controller in Brian

Network handles the running of a simulation. It contains a set of Brian
objects that are added with add. The run method
actually runs the simulation. The main run loop, determining which
objects get called in what order is described in detail in the notes below.
The objects in the Network are accesible via their names, e.g.
net['neurongroup'] would return the NeuronGroup with this name.

	Parameters:	objs : (BrianObject, container), optional

A list of objects to be added to the Network immediately, see
add.

name : str, optional

An explicit name, if not specified gives an automatically generated name

See also

MagicNetwork, run(), stop()

Notes

The main run loop performs the following steps:

	Prepare the objects if necessary, see prepare.

	Determine the end time of the simulation as t`+``duration`.

	Determine which set of clocks to update. This will be the clock with the
smallest value of t. If there are several with the same value,
then all objects with these clocks will be updated simultaneously.
Set t to the clock time.

	If the t value of these clocks is past the end time of the
simulation, stop running. If the Network.stop() method or the
stop() function have been called, stop running. Set t to the
end time of the simulation.

	For each object whose clock is set to one of the clocks from the
previous steps, call the update method. This method will
not be called if the active flag is set to False.
The order in which the objects are called is described below.

	Increase Clock.t by Clock.dt for each of the clocks and return to
step 2.

The order in which the objects are updated in step 4 is determined by
the Network.schedule and the objects when and
order attributes. The schedule is a list of
string names. Each when attribute should be one of these
strings, and the objects will be updated in the order determined by the
schedule. The default schedule is
['start', 'groups', 'thresholds', 'synapses', 'resets', 'end']. In
addition to the names provided in the schedule, automatic names starting
with before_ and after_ can be used. That means that all objects
with when=='before_start' will be updated first, then
those with when=='start', when=='after_start',
when=='before_groups', when=='groups' and so forth. If several
objects have the same when attribute, then the order is
determined by the order attribute (lower first).

Attributes

	_stored_state
	Stored state of objects (store/restore)

	objects
	The list of objects in the Network, should not normally be modified directly.

	profiling_info
	The time spent in executing the various CodeObjects.

	schedule
	List of when slots in the order they will be updated, can be modified.

	t
	Current simulation time in seconds (Quantity)

	t_
	Current time as a float

Methods

	add(*objs)
	Add objects to the Network

	after_run()
	

	before_run(namespace)
	Prepares the Network for a run.

	check_dependencies()
	

	get_profiling_info(*args,**kwds)
	The only reason this is not directly implemented in profiling_info is to allow devices (e.g.

	get_states([units,format,subexpressions,...])
	Return a copy of the current state variable values of objects in the network..

	remove(*objs)
	Remove an object or sequence of objects from a Network.

	restore([name,filename])
	Retore the state of the network and all included objects.

	run(duration[,report,report_period,...])
	Runs the simulation for the given duration.

	set_states(values[,units,format,level])
	Set the state variables of objects in the network.

	stop()
	Stops the network from running, this is reset the next time Network.run() is called.

	store([name,filename])
	Store the state of the network and all included objects.

Details

	
_stored_state

	Stored state of objects (store/restore)

	
objects

	The list of objects in the Network, should not normally be modified
directly.
Note that in a MagicNetwork, this attribute only contains the
objects during a run: it is filled in before_run and emptied in
after_run

	
profiling_info

	The time spent in executing the various CodeObjects.

A list of (name, time) tuples, containing the name of the
CodeObject and the total execution time for simulations of this object
(as a Quantity with unit second). The list is sorted descending
with execution time.

Profiling has to be activated using the profile keyword in run() or
Network.run().

	
schedule

	List of when slots in the order they will be updated, can be modified.

See notes on scheduling in Network. Note that additional when
slots can be added, but the schedule should contain at least all of the
names in the default schedule:
['start', 'groups', 'thresholds', 'synapses', 'resets', 'end'].

The schedule can also be set to None, resetting it to the default
schedule set by the core.network.default_schedule preference.

	
t

	Current simulation time in seconds (Quantity)

	
t_

	Current time as a float

	
add(*objs)[source]

	Add objects to the Network

	Parameters:	objs : (BrianObject, container)

The BrianObject or container of Brian objects to be added. Specify
multiple objects, or lists (or other containers) of objects.
Containers will be added recursively. If the container is a dict [https://docs.python.org/2/library/stdtypes.html#dict]
then it will add the values from the dictionary but not the keys.
If you want to add the keys, do add(objs.keys()).

	
after_run()

	

	
before_run(namespace)

	Prepares the Network for a run.

Objects in the Network are sorted into the correct running order, and
their BrianObject.before_run() methods are called.

	Parameters:	namespace : dict-like, optional

A namespace in which objects which do not define their own
namespace will be run.

	
check_dependencies()[source]

	

	
get_profiling_info(*args, **kwds)

	The only reason this is not directly implemented in profiling_info
is to allow devices (e.g. CPPStandaloneDevice) to overwrite this.

	
get_states(units=True, format='dict', subexpressions=False, read_only_variables=True, level=0)[source]

	Return a copy of the current state variable values of objects in the
network.. The returned arrays are copies of the actual arrays that
store the state variable values, therefore changing the values in the
returned dictionary will not affect the state variables.

	Parameters:	vars : list of str, optional

The names of the variables to extract. If not specified, extract
all state variables (except for internal variables, i.e. names that
start with '_'). If the subexpressions argument is True,
the current values of all subexpressions are returned as well.

units : bool, optional

Whether to include the physical units in the return value. Defaults
to True.

format : str, optional

The output format. Defaults to 'dict'.

subexpressions: bool, optional :

Whether to return subexpressions when no list of variable names
is given. Defaults to False. This argument is ignored if an
explicit list of variable names is given in vars.

read_only_variables : bool, optional

Whether to return read-only variables (e.g. the number of neurons,
the time, etc.). Setting it to False will assure that the
returned state can later be used with set_states. Defaults to
True.

level : int, optional

How much higher to go up the stack to resolve external variables.
Only relevant if extracting subexpressions that refer to external
variables.

	Returns:	values : dict

A dictionary mapping object names to the state variables of that
object, in the specified format.

See also

VariableOwner.get_states()

	
remove(*objs)[source]

	Remove an object or sequence of objects from a Network.

	Parameters:	objs : (BrianObject, container)

The BrianObject or container of Brian objects to be removed. Specify
multiple objects, or lists (or other containers) of objects.
Containers will be removed recursively.

	
restore(name='default', filename=None)

	Retore the state of the network and all included objects.

	Parameters:	name : str, optional

The name of the snapshot to restore, if not specified uses
'default'.

filename : str, optional

The name of the file from where the state should be restored. If
not specified, it is expected that the state exist in memory
(i.e. Network.store() was previously called without the filename
argument).

	
run(duration, report=None, report_period=60*second, namespace=None, level=0)

	Runs the simulation for the given duration.

	Parameters:	duration : Quantity

The amount of simulation time to run for.

report : {None, ‘text’, ‘stdout’, ‘stderr’, function}, optional

How to report the progress of the simulation. If None, do not
report progress. If 'text' or 'stdout' is specified, print
the progress to stdout. If 'stderr' is specified, print the
progress to stderr. Alternatively, you can specify a callback
callable(elapsed, complete, duration) which will be passed
the amount of time elapsed as a Quantity, the
fraction complete from 0.0 to 1.0 and the total duration of the
simulation (in biological time).
The function will always be called at the beginning and the end
(i.e. for fractions 0.0 and 1.0), regardless of the report_period.

report_period : Quantity

How frequently (in real time) to report progress.

namespace : dict-like, optional

A namespace that will be used in addition to the group-specific
namespaces (if defined). If not specified, the locals
and globals around the run function will be used.

profile : bool, optional

Whether to record profiling information (see
Network.profiling_info). Defaults to True.

level : int, optional

How deep to go up the stack frame to look for the locals/global
(see namespace argument). Only used by run functions that call
this run function, e.g. MagicNetwork.run() to adjust for the
additional nesting.

Notes

The simulation can be stopped by calling Network.stop() or the
global stop() function.

	
set_states(values, units=True, format='dict', level=0)[source]

	Set the state variables of objects in the network.

	Parameters:	values : dict

A dictionary mapping object names to objects of format, setting
the states of this object.

units : bool, optional

Whether the values include physical units. Defaults to True.

format : str, optional

The format of values. Defaults to 'dict'

level : int, optional

How much higher to go up the stack to _resolve external variables.
Only relevant when using string expressions to set values.

See also

Group.set_states()

	
stop()

	Stops the network from running, this is reset the next time Network.run() is called.

	
store(name='default', filename=None)

	Store the state of the network and all included objects.

	Parameters:	name : str, optional

A name for the snapshot, if not specified uses 'default'.

filename : str, optional

A filename where the state should be stored. If not specified, the
state will be stored in memory.

Notes

The state stored to disk can be restored with the Network.restore()
function. Note that it will only restore the internal state of all
the objects (including undelivered spikes) – the objects have to
exist already and they need to have the same name as when they were
stored. Equations, thresholds, etc. are not stored – this is
therefore not a general mechanism for object serialization. Also, the
format of the file is not guaranteed to work across platforms or
versions. If you are interested in storing the state of a network for
documentation or analysis purposes use Network.get_states() instead.

Tutorials and examples using this

	Example IF_curve_Hodgkin_Huxley

	Example IF_curve_LIF

	Example advanced/stochastic_odes

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

ProfilingSummary class

(Shortest import: from brian2.core.network import ProfilingSummary)

	
class brian2.core.network.ProfilingSummary(net, show=None)[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Class to nicely display the results of profiling. Objects of this class are
returned by profiling_summary().

	Parameters:	net : Network

The Network object to profile.

show : int, optional

The number of results to show (the longest results will be shown). If
not specified, all results will be shown.

See also

Network.profiling_info

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

TextReport class

(Shortest import: from brian2.core.network import TextReport)

	
class brian2.core.network.TextReport(stream)[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Helper object to report simulation progress in Network.run().

	Parameters:	stream : file

The stream to write to, commonly sys.stdout [https://docs.python.org/2/library/sys.html#sys.stdout] or sys.stderr [https://docs.python.org/2/library/sys.html#sys.stderr].

Methods

	__call__(elapsed,completed,start,duration)
	

Details

	
__call__(elapsed, completed, start, duration)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

profiling_summary function

(Shortest import: from brian2 import profiling_summary)

	
brian2.core.network.profiling_summary(net=None, show=None)[source]

	Returns a ProfilingSummary of the profiling info for a run. This object
can be transformed to a string explicitly but on an interactive console
simply calling profiling_summary() is enough since it will
automatically convert the ProfilingSummary object.

	Parameters:	net : {Network, None} optional

The Network object to profile, or magic_network if not specified.

show : int

The number of results to show (the longest results will be shown). If
not specified, all results will be shown.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

schedule_propagation_offset function

(Shortest import: from brian2.core.network import schedule_propagation_offset)

	
brian2.core.network.schedule_propagation_offset(net=None)[source]

	Returns the minimal time difference for a post-synaptic effect after a
spike. With the default schedule, this time difference is 0, since the
thresholds slot precedes the synapses slot. For the GeNN device,
however, a post-synaptic effect will occur in the following time step, this
function therefore returns one dt.

	Parameters:	net : Network

The network to check (uses the magic network if not specified).

	Returns:	offset : Quantity

The minimum spike propagation delay: 0*ms for the standard schedule
but dt for schedules where synapses precedes thresholds.

Notes

This function always returns 0*ms or defaultclock.dt – no attempt
is made to deal with other clocks.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

NetworkOperation class

(Shortest import: from brian2 import NetworkOperation)

	
class brian2.core.operations.NetworkOperation(function, dt=None, clock=None, when='start', order=0)[source]

	Bases: brian2.core.base.BrianObject

Object with function that is called every time step.

	Parameters:	function : function

The function to call every time step, should take either no arguments
in which case it is called as function() or one argument, in which
case it is called with the current Clock time (Quantity).

dt : Quantity, optional

The time step to be used for the simulation. Cannot be combined with
the clock argument.

clock : Clock, optional

The update clock to be used. If neither a clock, nor the dt argument
is specified, the defaultclock will be used.

when : str, optional

In which scheduling slot to execute the operation during a time step.
Defaults to 'start'.

order : int, optional

The priority of this operation for operations occurring at the same time
step and in the same scheduling slot. Defaults to 0.

See also

network_operation(), Network, BrianObject

Attributes

	function
	The function to be called each time step

Methods

	run()
	

Details

	
function

	The function to be called each time step

	
run()[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

network_operation function

(Shortest import: from brian2 import network_operation)

	
brian2.core.operations.network_operation(when=None)[source]

	Decorator to make a function get called every time step of a simulation.

The function being decorated should either have no arguments, or a single
argument which will be called with the current time t.

	Parameters:	dt : Quantity, optional

The time step to be used for the simulation. Cannot be combined with
the clock argument.

clock : Clock, optional

The update clock to be used. If neither a clock, nor the dt argument
is specified, the defaultclock will be used.

when : str, optional

In which scheduling slot to execute the operation during a time step.
Defaults to 'start'.

order : int, optional

The priority of this operation for operations occurring at the same time
step and in the same scheduling slot. Defaults to 0.

See also

NetworkOperation, Network, BrianObject

Notes

Converts the function into a NetworkOperation.

If using the form:

@network_operations(when='end')
def f():
 ...

Then the arguments to network_operation must be keyword arguments.

Examples

Print something each time step:
>>> from brian2 import *
>>> @network_operation
... def f():
... print(‘something’)
...
>>> net = Network(f)

Print the time each time step:

>>> @network_operation
... def f(t):
... print('The time is', t)
...
>>> net = Network(f)

Specify a dt, etc.:

>>> @network_operation(dt=0.5*ms, when='end')
... def f():
... print('This will happen at the end of each timestep.')
...
>>> net = Network(f)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

BrianGlobalPreferences class

(Shortest import: from brian2.core.preferences import BrianGlobalPreferences)

	
class brian2.core.preferences.BrianGlobalPreferences[source]

	Bases: _abcoll.MutableMapping

Class of the prefs object.

Used for getting/setting/validating/registering preference values.
All preferences must be registered via register_preferences. To get or
set a preference, you can either use a dictionary-based or an
attribute-based interface:

prefs['core.default_float_dtype'] = float32
prefs.core.default_float_dtype = float32

Preferences can be read from files, see load_preferences and
read_preference_file. Note that load_preferences is called
automatically when Brian has finished importing.

Attributes

	as_file
	Get a Brian preference doc file format string for the current preferences

	defaults_as_file
	Get a Brian preference doc file format string for the default preferences

	toplevel_categories
	The toplevel preference categories

Methods

	check_all_validated()
	Checks that all preferences that have been set have been validated.

	do_validation()
	Validates preferences that have not yet been validated.

	eval_pref(value)
	Evaluate a string preference in the units namespace

	get_documentation([basename,link_targets])
	Generates a string documenting all preferences with the given basename.

	load_preferences()
	Load all the preference files, but do not validate them.

	read_preference_file(file)
	Reads a Brian preferences file

	register_preferences(prefbasename,...)
	Registers a set of preference names, docs and validation functions.

	reset_to_defaults()
	Resets the parameters to their default values.

Details

	
as_file

	Get a Brian preference doc file format string for the current preferences

	
defaults_as_file

	Get a Brian preference doc file format string for the default preferences

	
toplevel_categories

	The toplevel preference categories

	
check_all_validated()[source]

	Checks that all preferences that have been set have been validated.

Logs a warning if not. Should be called by Network.run() or other
key Brian functions.

	
do_validation()[source]

	Validates preferences that have not yet been validated.

	
eval_pref(value)[source]

	Evaluate a string preference in the units namespace

	
get_documentation(basename=None, link_targets=True)[source]

	Generates a string documenting all preferences with the given
basename. If no basename is given, all preferences are documented.

	
load_preferences()[source]

	Load all the preference files, but do not validate them.

Preference files are read in the following order:

	brian2/default_preferences from the Brian installation directory.

	~/.brian/user_preferences from the user’s home directory

	./brian_preferences from the current directory

Files that are missing are ignored. Preferences read at each step
override preferences from previous steps.

See also

read_preference_file

	
read_preference_file(file)[source]

	Reads a Brian preferences file

The file format for Brian preferences is a plain text file of the form:

a.b.c = 1
Comment line
[a]
b.d = 2
[a.b]
e = 3

Blank and comment lines are ignored, all others should be of one of the
following two forms:

key = value
[section]

eval [https://docs.python.org/2/library/functions.html#eval] is called on the values, so strings should be written as, e.g.
'3' rather than 3. The eval is called with all unit names
available.
Within a section, the section name is prepended to the key. So in the above
example, it would give the following unvalidated dictionary:

{'a.b.c': 1,
 'a.b.d': 2,
 'a.b.e': 3,
 }

	Parameters:	file : file, str

The file object or filename of the preference file.

	
register_preferences(prefbasename, prefbasedoc, **prefs)[source]

	Registers a set of preference names, docs and validation functions.

	Parameters:	prefbasename : str

The base name of the preference.

prefbasedoc : str

Documentation for this base name

**prefs : dict of (name, BrianPreference) pairs

The preference names to be defined. The full preference name will be
prefbasename.name, and the BrianPreference value is used to define
the default value, docs, and validation function.

Raises

	PreferenceError

	If the base name is already registered.

See also

BrianPreference

	
reset_to_defaults()[source]

	Resets the parameters to their default values.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

BrianGlobalPreferencesView class

(Shortest import: from brian2.core.preferences import BrianGlobalPreferencesView)

	
class brian2.core.preferences.BrianGlobalPreferencesView(basename, all_prefs)[source]

	Bases: _abcoll.MutableMapping

A class allowing for accessing preferences in a subcategory. It forwards
requests to BrianGlobalPreferences and provides documentation and
autocompletion support for all preferences in the given category. This
object is used to allow accessing preferences via attributes of the
prefs object.

	Parameters:	basename : str

The name of the preference category. Has to correspond to a key in
BrianGlobalPreferences.pref_register.

all_prefs : BrianGlobalPreferences

A reference to the main object storing the preferences.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

BrianPreference class

(Shortest import: from brian2 import BrianPreference)

	
class brian2.core.preferences.BrianPreference(default, docs, validator=None, representor=<built-in function repr>)[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Used for defining a Brian preference.

	Parameters:	default : object

The default value.

docs : str

Documentation for the preference value.

validator : func

A function that True or False depending on whether the preference value
is valid or not. If not specified, uses the DefaultValidator for the
default value provided (check if the class is the same, and for
Quantity objects, whether the units are consistent).

representor : func

A function that returns a string representation of a valid preference
value that can be passed to eval [https://docs.python.org/2/library/functions.html#eval]. By default, uses repr [https://docs.python.org/2/library/functions.html#repr] which
works in almost all cases.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

DefaultValidator class

(Shortest import: from brian2.core.preferences import DefaultValidator)

	
class brian2.core.preferences.DefaultValidator(value)[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Default preference validator

Used by BrianPreference as the default validator if none is given.
First checks if the provided value is of the same class as the default
value, and then if the default is a Quantity, checks that the units
match.

Methods

	__call__(value)
	

Details

	
__call__(value)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

ErrorRaiser class

(Shortest import: from brian2.core.preferences import ErrorRaiser)

	
class brian2.core.preferences.ErrorRaiser[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

PreferenceError class

(Shortest import: from brian2 import PreferenceError)

	
class brian2.core.preferences.PreferenceError[source]

	Bases: exceptions.Exception [https://docs.python.org/2/library/exceptions.html#exceptions.Exception]

Exception relating to the Brian preferences system.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

check_preference_name function

(Shortest import: from brian2.core.preferences import check_preference_name)

	
brian2.core.preferences.check_preference_name(name)[source]

	Make sure that a preference name is valid. This currently checks that the
name does not contain illegal characters and does not clash with method
names such as “keys” or “items”.

	Parameters:	name : str

The name to check.

Raises

	PreferenceError

	In case the name is invalid.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

parse_preference_name function

(Shortest import: from brian2.core.preferences import parse_preference_name)

	
brian2.core.preferences.parse_preference_name(name)[source]

	Split a preference name into a base and end name.

	Parameters:	name : str

The full name of the preference.

	Returns:	basename : str

The first part of the name up to the final ..

endname : str

The last part of the name from the final . onwards.

Examples

>>> parse_preference_name('core.weave_compiler')
('core', 'weave_compiler')
>>> parse_preference_name('codegen.cpp.compiler')
('codegen.cpp', 'compiler')

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

brian_prefs object

(Shortest import: from brian2 import brian_prefs)

	
brian2.core.preferences.brian_prefs = <brian2.core.preferences.ErrorRaiser object>

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

prefs object

(Shortest import: from brian2 import prefs)

	
brian2.core.preferences.prefs = <BrianGlobalPreferences with top-level categories: "core", "logging", "devices", "codegen">

	Preference categories:

	** core **

	Core Brian preferences

	** logging **

	Logging system preferences

	** devices **

	Device preferences

	** codegen **

	Code generation preferences

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

SpikeSource class

(Shortest import: from brian2 import SpikeSource)

	
class brian2.core.spikesource.SpikeSource[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

A source of spikes.

An object that can be used as a source of spikes for objects such as
SpikeMonitor, Synapses, etc.

The defining properties of SpikeSource are that it should have:

	A length that can be extracted with len(obj), where the maximum spike
index possible is len(obj)-1.

	An attribute spikes, an array of ints each from 0 to
len(obj)-1 with no repeats (but possibly not in sorted order). This
should be updated each time step.

	A clock attribute, this will be used as the default clock for objects
with this as a source.

	
spikes

	An array of ints, each from 0 to len(obj)-1 with no repeats (but
possibly not in sorted order). Updated each time step.

	
clock

	The clock on which the spikes will be updated.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

InstanceFollower class

(Shortest import: from brian2.core.tracking import InstanceFollower)

	
class brian2.core.tracking.InstanceFollower[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Keep track of all instances of classes derived from Trackable

The variable __instancesets__ is a dictionary with keys which are class
objects, and values which are InstanceTrackerSet, so
__instanceset__[cls] is a set tracking all of the instances of class
cls (or a subclass).

Methods

	add(value)
	

	get(cls)
	

Details

	
add(value)[source]

	

	
get(cls)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

InstanceTrackerSet class

(Shortest import: from brian2.core.tracking import InstanceTrackerSet)

	
class brian2.core.tracking.InstanceTrackerSet[source]

	Bases: set [https://docs.python.org/2/library/stdtypes.html#set]

A set [https://docs.python.org/2/library/stdtypes.html#set] of weakref.ref [https://docs.python.org/2/library/weakref.html#weakref.ref] to all existing objects of a certain class.

Should not normally be directly used.

Methods

	add(value)
	Adds a weakref.ref [https://docs.python.org/2/library/weakref.html#weakref.ref] to the value

	remove(value)
	Removes the value (which should be a weakref) if it is in the set

Details

	
add(value)[source]

	Adds a weakref.ref [https://docs.python.org/2/library/weakref.html#weakref.ref] to the value

	
remove(value)[source]

	Removes the value (which should be a weakref) if it is in the set

Sometimes the value will have been removed from the set by clear,
so we ignore KeyError in this case.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

Trackable class

(Shortest import: from brian2 import Trackable)

	
class brian2.core.tracking.Trackable[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Classes derived from this will have their instances tracked.

The classmethod [https://docs.python.org/2/library/functions.html#classmethod] __instances__() will return an InstanceTrackerSet
of the instances of that class, and its subclasses.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

ArrayVariable class

(Shortest import: from brian2.core.variables import ArrayVariable)

	
class brian2.core.variables.ArrayVariable(name, unit, owner, size, device, dtype=None, constant=False, scalar=False, read_only=False, dynamic=False, unique=False)[source]

	Bases: brian2.core.variables.Variable

An object providing information about a model variable stored in an array
(for example, all state variables). Most of the time Variables.add_array
should be used instead of instantiating this class directly.

	Parameters:	name : ‘str’

The name of the variable. Note that this refers to the original
name in the owning group. The same variable may be known under other
names in other groups (e.g. the variable v of a NeuronGroup is
known as v_post in a Synapse connecting to the group).

unit : Unit

The unit of the variable

owner : Nameable

The object that “owns” this variable, e.g. the NeuronGroup or
Synapses object that declares the variable in its model equations.

size : int

The size of the array

device : Device

The device responsible for the memory access.

dtype : dtype [http://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype], optional

The dtype used for storing the variable. If none is given, defaults
to core.default_float_dtype.

constant : bool, optional

Whether the variable’s value is constant during a run.
Defaults to False.

scalar : bool, optional

Whether this array is a 1-element array that should be treated like a
scalar (e.g. for a single delay value across synapses). Defaults to
False.

read_only : bool, optional

Whether this is a read-only variable, i.e. a variable that is set
internally and cannot be changed by the user. Defaults
to False.

unique : bool, optional

Whether the values in this array are all unique. This information is
only important for variables used as indices and does not have to
reflect the actual contents of the array but only the possibility of
non-uniqueness (e.g. synaptic indices are always unique but the
corresponding pre- and post-synaptic indices are not). Defaults to
False.

Attributes

	conditional_write
	Another variable, on which the write is conditioned (e.g.

	device
	The Device responsible for memory access.

	size
	The size of this variable.

	unique
	Wether all values in this arrays are necessarily unique (only relevant for index variables).

Methods

	get_addressable_value(name,group)
	

	get_addressable_value_with_unit(name,group)
	

	get_len()
	

	get_value()
	

	set_conditional_write(var)
	

	set_value(value)
	

Details

	
conditional_write

	Another variable, on which the write is conditioned (e.g. a variable
denoting the absence of refractoriness)

	
device

	The Device responsible for memory access.

	
size

	The size of this variable.

	
unique

	Wether all values in this arrays are necessarily unique (only
relevant for index variables).

	
get_addressable_value(name, group)[source]

	

	
get_addressable_value_with_unit(name, group)[source]

	

	
get_len()[source]

	

	
get_value()[source]

	

	
set_conditional_write(var)[source]

	

	
set_value(value)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

AuxiliaryVariable class

(Shortest import: from brian2.core.variables import AuxiliaryVariable)

	
class brian2.core.variables.AuxiliaryVariable(name, unit, dtype=None, scalar=False)[source]

	Bases: brian2.core.variables.Variable

Variable description for an auxiliary variable (most likely one that is
added automatically to abstract code, e.g. _cond for a threshold
condition), specifying its type and unit for code generation. Most of the
time Variables.add_auxiliary_variable should be used instead of
instantiating this class directly.

	Parameters:	name : str

The name of the variable

unit : Unit

The unit of the variable.

dtype : dtype [http://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype], optional

The dtype used for storing the variable. If none is given, defaults
to core.default_float_dtype.

scalar : bool, optional

Whether the variable is a scalar value (True) or vector-valued, e.g.
defined for every neuron (False). Defaults to False.

Methods

	get_value()
	

Details

	
get_value()[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

Constant class

(Shortest import: from brian2.core.variables import Constant)

	
class brian2.core.variables.Constant(name, unit, value, owner=None)[source]

	Bases: brian2.core.variables.Variable

A scalar constant (e.g. the number of neurons N). Information such as
the dtype or whether this variable is a boolean are directly derived from
the value. Most of the time Variables.add_constant should be used
instead of instantiating this class directly.

	Parameters:	name : str

The name of the variable

unit : Unit

The unit of the variable. Note that the variable itself (as referenced
by value) should never have units attached.

value: reference to the variable value :

The value of the constant.

owner : Nameable, optional

The object that “owns” this variable, for constants that belong to a
specific group, e.g. the N constant for a NeuronGroup. External
constants will have None (the default value).

Attributes

	value
	The constant’s value

Methods

	get_value()
	

Details

	
value

	The constant’s value

	
get_value()[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

DynamicArrayVariable class

(Shortest import: from brian2.core.variables import DynamicArrayVariable)

	
class brian2.core.variables.DynamicArrayVariable(name, unit, owner, size, device, dtype=None, constant=False, needs_reference_update=False, resize_along_first=False, scalar=False, read_only=False, unique=False)[source]

	Bases: brian2.core.variables.ArrayVariable

An object providing information about a model variable stored in a dynamic
array (used in Synapses). Most of the time Variables.add_dynamic_array
should be used instead of instantiating this class directly.

	Parameters:	name : ‘str’

The name of the variable. Note that this refers to the original
name in the owning group. The same variable may be known under other
names in other groups (e.g. the variable v of a NeuronGroup is
known as v_post in a Synapse connecting to the group).

unit : Unit

The unit of the variable

owner : Nameable

The object that “owns” this variable, e.g. the NeuronGroup or
Synapses object that declares the variable in its model equations.

size : int or tuple of int

The (initial) size of the variable.

device : Device

The device responsible for the memory access.

dtype : dtype [http://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype], optional

The dtype used for storing the variable. If none is given, defaults
to core.default_float_dtype.

constant : bool, optional

Whether the variable’s value is constant during a run.
Defaults to False.

needs_reference_update : bool, optional

Whether the code objects need a new reference to the underlying data at
every time step. This should be set if the size of the array can be
changed by other code objects. Defaults to False.

scalar : bool, optional

Whether this array is a 1-element array that should be treated like a
scalar (e.g. for a single delay value across synapses). Defaults to
False.

read_only : bool, optional

Whether this is a read-only variable, i.e. a variable that is set
internally and cannot be changed by the user. Defaults
to False.

unique : bool, optional

Whether the values in this array are all unique. This information is
only important for variables used as indices and does not have to
reflect the actual contents of the array but only the possibility of
non-uniqueness (e.g. synaptic indices are always unique but the
corresponding pre- and post-synaptic indices are not). Defaults to
False.

Attributes

	dimensions
	The number of dimensions

	needs_reference_update
	Whether this variable needs an update of the reference to the

	resize_along_first
	Whether this array will be only resized along the first dimension

Methods

	resize(new_size)
	Resize the dynamic array.

Details

	
dimensions

	The number of dimensions

	
needs_reference_update

	Whether this variable needs an update of the reference to the
underlying data whenever it is passed to a code object

	
resize_along_first

	Whether this array will be only resized along the first dimension

	
resize(new_size)[source]

	Resize the dynamic array. Calls self.device.resize to do the
actual resizing.

	Parameters:	new_size : int or tuple of int

The new size.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

LinkedVariable class

(Shortest import: from brian2.core.variables import LinkedVariable)

	
class brian2.core.variables.LinkedVariable(group, name, variable, index=None)[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

A simple helper class to make linking variables explicit. Users should use
linked_var() instead.

	Parameters:	group : Group

The group through which the variable is accessed (not necessarily the
same as variable.owner.

name : str

	The name of variable in group (not necessarily the same as

	variable.name).

variable : Variable

The variable that should be linked.

index : str or ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray], optional

An indexing array (or the name of a state variable), providing a mapping
from the entries in the link source to the link target.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

Subexpression class

(Shortest import: from brian2.core.variables import Subexpression)

	
class brian2.core.variables.Subexpression(name, unit, owner, expr, device, dtype=None, scalar=False)[source]

	Bases: brian2.core.variables.Variable

An object providing information about a named subexpression in a model.
Most of the time Variables.add_subexpression should be used instead of
instantiating this class directly.

	Parameters:	name : str

The name of the subexpression.

unit : Unit

The unit of the subexpression.

owner : Group

The group to which the expression refers.

expr : str

The subexpression itself.

device : Device

The device responsible for the memory access.

dtype : dtype [http://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype], optional

The dtype used for the expression. Defaults to
core.default_float_dtype.

scalar: bool, optional :

Whether this is an expression only referring to scalar variables.
Defaults to False

Attributes

	device
	The Device responsible for memory access

	expr
	The expression defining the subexpression

	identifiers
	The identifiers used in the expression

Methods

	get_addressable_value(name,group)
	

	get_addressable_value_with_unit(name,group)
	

Details

	
device

	The Device responsible for memory access

	
expr

	The expression defining the subexpression

	
identifiers

	The identifiers used in the expression

	
get_addressable_value(name, group)[source]

	

	
get_addressable_value_with_unit(name, group)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

Variable class

(Shortest import: from brian2.core.variables import Variable)

	
class brian2.core.variables.Variable(name, unit, owner=None, dtype=None, scalar=False, constant=False, read_only=False, dynamic=False, array=False)[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

An object providing information about model variables (including implicit
variables such as t or xi). This class should never be
instantiated outside of testing code, use one of its subclasses instead.

	Parameters:	name : ‘str’

The name of the variable. Note that this refers to the original
name in the owning group. The same variable may be known under other
names in other groups (e.g. the variable v of a NeuronGroup is
known as v_post in a Synapse connecting to the group).

unit : Unit

The unit of the variable.

owner : Nameable, optional

The object that “owns” this variable, e.g. the NeuronGroup or
Synapses object that declares the variable in its model equations.
Defaults to None (the value used for Variable objects without an
owner, e.g. external Constants).

dtype : dtype [http://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype], optional

The dtype used for storing the variable. Defaults to the preference
core.default_scalar.dtype.

scalar : bool, optional

Whether the variable is a scalar value (True) or vector-valued, e.g.
defined for every neuron (False). Defaults to False.

constant: bool, optional :

Whether the value of this variable can change during a run. Defaults
to False.

read_only : bool, optional

Whether this is a read-only variable, i.e. a variable that is set
internally and cannot be changed by the user (this is used for example
for the variable N, the number of neurons in a group). Defaults
to False.

array : bool, optional

Whether this variable is an array. Allows for simpler check than testing
isinstance(var, ArrayVariable). Defaults to False.

Attributes

	array
	Whether the variable is an array

	constant
	Whether the variable is constant during a run

	dim
	The dimensions of this variable.

	dtype
	The dtype used for storing the variable.

	dtype_str
	String representation of the numpy dtype

	dynamic
	Whether the variable is dynamically sized (only for non-scalars)

	is_boolean
	

	name
	The variable’s name.

	owner
	The Group to which this variable belongs.

	read_only
	Whether the variable is read-only

	scalar
	Whether the variable is a scalar

	unit
	The variable’s unit.

Methods

	get_addressable_value(name,group)
	Get the value (without units) of this variable in a form that can be indexed in the context of a group.

	get_addressable_value_with_unit(name,group)
	Get the value (with units) of this variable in a form that can be indexed in the context of a group.

	get_len()
	Get the length of the value associated with the variable or 0 for a scalar variable.

	get_value()
	Return the value associated with the variable (without units).

	get_value_with_unit()
	Return the value associated with the variable (with units).

	set_value(value)
	Set the value associated with the variable.

Details

	
array

	Whether the variable is an array

	
constant

	Whether the variable is constant during a run

	
dim

	The dimensions of this variable.

	
dtype

	The dtype used for storing the variable.

	
dtype_str

	String representation of the numpy dtype

	
dynamic

	Whether the variable is dynamically sized (only for non-scalars)

	
is_boolean

	

	
name

	The variable’s name.

	
owner

	The Group to which this variable belongs.

	
read_only

	Whether the variable is read-only

	
scalar

	Whether the variable is a scalar

	
unit

	The variable’s unit.

	
get_addressable_value(name, group)[source]

	Get the value (without units) of this variable in a form that can be
indexed in the context of a group. For example, if a
postsynaptic variable x is accessed in a synapse S as
S.x_post, the synaptic indexing scheme can be used.

	Parameters:	name : str

The name of the variable

group : Group

The group providing the context for the indexing. Note that this
group is not necessarily the same as Variable.owner: a variable
owned by a NeuronGroup can be indexed in a different way if
accessed via a Synapses object.

	Returns:	variable : object

The variable in an indexable form (without units).

	
get_addressable_value_with_unit(name, group)[source]

	Get the value (with units) of this variable in a form that can be
indexed in the context of a group. For example, if a postsynaptic
variable x is accessed in a synapse S as S.x_post, the
synaptic indexing scheme can be used.

	Parameters:	name : str

The name of the variable

group : Group

The group providing the context for the indexing. Note that this
group is not necessarily the same as Variable.owner: a variable
owned by a NeuronGroup can be indexed in a different way if
accessed via a Synapses object.

	Returns:	variable : object

The variable in an indexable form (with units).

	
get_len()[source]

	Get the length of the value associated with the variable or 0 for
a scalar variable.

	
get_value()[source]

	Return the value associated with the variable (without units). This
is the way variables are accessed in generated code.

	
get_value_with_unit()[source]

	Return the value associated with the variable (with units).

	
set_value(value)[source]

	Set the value associated with the variable.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

VariableView class

(Shortest import: from brian2.core.variables import VariableView)

	
class brian2.core.variables.VariableView(name, variable, group, unit=None)[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

A view on a variable that allows to treat it as an numpy array while
allowing special indexing (e.g. with strings) in the context of a Group.

	Parameters:	name : str

The name of the variable (not necessarily the same as variable.name).

variable : Variable

The variable description.

group : Group

The group through which the variable is accessed (not necessarily the
same as variable.owner).

unit : Unit, optional

	The unit to be used for the variable, should be None [https://docs.python.org/2/library/constants.html#None] when a variable

	is accessed without units (e.g. when accessing G.var_).

Attributes

	dim
	The dimensions of this variable.

	dtype
	

	shape
	

Methods

	get_item(item[,level,namespace])
	Get the value of this variable.

	get_subexpression_with_index_array(*args,**kwds)
	

	get_with_expression(*args,**kwds)
	Gets a variable using a string expression.

	get_with_index_array(*args,**kwds)
	

	set_item(item,value[,level,namespace])
	Set this variable.

	set_with_expression(*args,**kwds)
	Sets a variable using a string expression.

	set_with_expression_conditional(*args,**kwds)
	Sets a variable using a string expression and string condition.

	set_with_index_array(*args,**kwds)
	

Details

	
dim

	The dimensions of this variable.

	
dtype

	

	
shape

	

	
get_item(item, level=0, namespace=None)[source]

	Get the value of this variable. Called by __getitem__.

	Parameters:	item : slice, ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or string

The index for the setting operation

level : int, optional

How much farther to go up in the stack to find the implicit
namespace (if used, see run_namespace).

namespace : dict-like, optional

An additional namespace that is used for variable lookup (if not
defined, the implicit namespace of local variables is used).

	
get_subexpression_with_index_array(*args, **kwds)

	

	
get_with_expression(*args, **kwds)

	Gets a variable using a string expression. Is called by
VariableView.get_item for statements such as
print G.v['g_syn > 0'].

	Parameters:	code : str

An expression that states a condition for elements that should be
selected. Can contain references to indices, such as i or j
and to state variables. For example: 'i>3 and v>0*mV'.

run_namespace : dict-like

An additional namespace that is used for variable lookup (either
an explicitly defined namespace or one taken from the local
context).

	
get_with_index_array(*args, **kwds)

	

	
set_item(item, value, level=0, namespace=None)[source]

	Set this variable. This function is called by __setitem__ but there
is also a situation where it should be called directly: if the context
for string-based expressions is higher up in the stack, this function
allows to set the level argument accordingly.

	Parameters:	item : slice, ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or string

The index for the setting operation

value : Quantity, ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or number

The value for the setting operation

level : int, optional

How much farther to go up in the stack to find the implicit
namespace (if used, see run_namespace).

namespace : dict-like, optional

An additional namespace that is used for variable lookup (if not
defined, the implicit namespace of local variables is used).

	
set_with_expression(*args, **kwds)

	Sets a variable using a string expression. Is called by
VariableView.set_item for statements such as
S.var[:, :] = 'exp(-abs(i-j)/space_constant)*nS'

	Parameters:	item : ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

The indices for the variable (in the context of this group).

code : str

The code that should be executed to set the variable values.
Can contain references to indices, such as i or j

run_namespace : dict-like, optional

An additional namespace that is used for variable lookup (if not
defined, the implicit namespace of local variables is used).

check_units : bool, optional

Whether to check the units of the expression.

run_namespace : dict-like, optional

An additional namespace that is used for variable lookup (if not
defined, the implicit namespace of local variables is used).

	
set_with_expression_conditional(*args, **kwds)

	Sets a variable using a string expression and string condition. Is
called by VariableView.set_item for statements such as
S.var['i!=j'] = 'exp(-abs(i-j)/space_constant)*nS'

	Parameters:	cond : str

The string condition for which the variables should be set.

code : str

The code that should be executed to set the variable values.

run_namespace : dict-like, optional

An additional namespace that is used for variable lookup (if not
defined, the implicit namespace of local variables is used).

check_units : bool, optional

Whether to check the units of the expression.

	
set_with_index_array(*args, **kwds)

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

Variables class

(Shortest import: from brian2.core.variables import Variables)

	
class brian2.core.variables.Variables(owner, default_index='_idx')[source]

	Bases: _abcoll.Mapping

A container class for storing Variable objects. Instances of this class
are used as the Group.variables attribute and can be accessed as
(read-only) dictionaries.

	Parameters:	owner : Nameable

The object (typically a Group) “owning” the variables.

default_index : str, optional

The index to use for the variables (only relevant for ArrayVariable
and DynamicArrayVariable). Defaults to '_idx'.

Attributes

	indices
	A dictionary given the index name for every array name

	owner
	A reference to the Group owning these variables

Methods

	add_arange(name,size[,start,dtype,...])
	Add an array, initialized with a range of integers.

	add_array(name,unit,size[,values,dtype,...])
	Add an array (initialized with zeros).

	add_arrays(names,unit,size[,values,...])
	Adds several arrays (initialized with zeros) with the same attributes (size, units, etc.).

	add_auxiliary_variable(name,unit[,dtype,...])
	Add an auxiliary variable (most likely one that is added automatically to abstract code, e.g.

	add_constant(name,unit,value)
	Add a scalar constant (e.g.

	add_dynamic_array(name,unit,size[,...])
	Add a dynamic array.

	add_object(name,obj)
	Add an arbitrary Python object.

	add_reference(name,group[,varname,index])
	Add a reference to a variable defined somewhere else (possibly under a different name).

	add_references(group,varnames[,index])
	Add all Variable objects from a name to Variable mapping with the same name as in the original mapping.

	add_referred_subexpression(name,group,...)
	

	add_subexpression(name,unit,expr[,dtype,...])
	Add a named subexpression.

	create_clock_variables(clock[,prefix])
	Convenience function to add the t and dt attributes of a clock.

Details

	
indices

	A dictionary given the index name for every array name

	
owner

	A reference to the Group owning these variables

	
add_arange(name, size, start=0, dtype=<type 'numpy.int32'>, constant=True, read_only=True, unique=True, index=None)[source]

	Add an array, initialized with a range of integers.

	Parameters:	name : str

The name of the variable.

size : int

The size of the array.

start : int

The start value of the range.

dtype : dtype [http://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype], optional

The dtype used for storing the variable. If none is given, defaults
to np.int32.

constant : bool, optional

Whether the variable’s value is constant during a run.
Defaults to True.

read_only : bool, optional

Whether this is a read-only variable, i.e. a variable that is set
internally and cannot be changed by the user. Defaults
to True.

index : str, optional

The index to use for this variable. Defaults to
Variables.default_index.

unique : bool, optional

See ArrayVariable. Defaults to True here.

	
add_array(name, unit, size, values=None, dtype=None, constant=False, read_only=False, scalar=False, unique=False, index=None)[source]

	Add an array (initialized with zeros).

	Parameters:	name : str

The name of the variable.

unit : Unit

The unit of the variable

size : int

The size of the array.

values : ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray], optional

The values to initalize the array with. If not specified, the array
is initialized to zero.

dtype : dtype [http://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype], optional

The dtype used for storing the variable. If none is given, defaults
to core.default_float_dtype.

constant : bool, optional

Whether the variable’s value is constant during a run.
Defaults to False.

scalar : bool, optional

Whether this is a scalar variable. Defaults to False, if set to
True, also implies that size() equals 1.

read_only : bool, optional

Whether this is a read-only variable, i.e. a variable that is set
internally and cannot be changed by the user. Defaults
to False.

index : str, optional

The index to use for this variable. Defaults to
Variables.default_index.

unique : bool, optional

See ArrayVariable. Defaults to False.

	
add_arrays(names, unit, size, values=None, dtype=None, constant=False, read_only=False, scalar=False, unique=False, index=None)[source]

	Adds several arrays (initialized with zeros) with the same attributes
(size, units, etc.).

	Parameters:	names : list of str

The names of the variable.

unit : Unit

The unit of the variables

size : int

The sizes of the arrays.

dtype : dtype [http://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype], optional

The dtype used for storing the variables. If none is given, defaults
to core.default_float_dtype.

constant : bool, optional

Whether the variables’ values are constant during a run.
Defaults to False.

scalar : bool, optional

Whether these are scalar variables. Defaults to False, if set to
True, also implies that size() equals 1.

read_only : bool, optional

Whether these are read-only variables, i.e. variables that are set
internally and cannot be changed by the user. Defaults
to False.

index : str, optional

The index to use for these variables. Defaults to
Variables.default_index.

unique : bool, optional

See ArrayVariable. Defaults to False.

	
add_auxiliary_variable(name, unit, dtype=None, scalar=False)[source]

	Add an auxiliary variable (most likely one that is added automatically
to abstract code, e.g. _cond for a threshold condition),
specifying its type and unit for code generation.

	Parameters:	name : str

The name of the variable

unit : Unit

The unit of the variable.

dtype : dtype [http://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype], optional

The dtype used for storing the variable. If none is given, defaults
to core.default_float_dtype.

scalar : bool, optional

Whether the variable is a scalar value (True) or vector-valued,
e.g. defined for every neuron (False). Defaults to False.

	
add_constant(name, unit, value)[source]

	Add a scalar constant (e.g. the number of neurons N).

	Parameters:	name : str

The name of the variable

unit : Unit

The unit of the variable. Note that the variable itself (as referenced
by value) should never have units attached.

value: reference to the variable value :

The value of the constant.

	
add_dynamic_array(name, unit, size, values=None, dtype=None, constant=False, needs_reference_update=False, resize_along_first=False, read_only=False, unique=False, scalar=False, index=None)[source]

	Add a dynamic array.

	Parameters:	name : str

The name of the variable.

unit : Unit

The unit of the variable

size : int or tuple of int

The (initital) size of the array.

values : ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray], optional

The values to initalize the array with. If not specified, the array
is initialized to zero.

dtype : dtype [http://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype], optional

The dtype used for storing the variable. If none is given, defaults
to core.default_float_dtype.

constant : bool, optional

Whether the variable’s value is constant during a run.
Defaults to False.

needs_reference_update : bool, optional

Whether the code objects need a new reference to the underlying data at
every time step. This should be set if the size of the array can be
changed by other code objects. Defaults to False.

scalar : bool, optional

Whether this is a scalar variable. Defaults to False, if set to
True, also implies that size() equals 1.

read_only : bool, optional

Whether this is a read-only variable, i.e. a variable that is set
internally and cannot be changed by the user. Defaults
to False.

index : str, optional

The index to use for this variable. Defaults to
Variables.default_index.

unique : bool, optional

See DynamicArrayVariable. Defaults to False.

	
add_object(name, obj)[source]

	Add an arbitrary Python object. This is only meant for internal use
and therefore only names starting with an underscore are allowed.

	Parameters:	name : str

The name used for this object (has to start with an underscore).

obj : object

An arbitrary Python object that needs to be accessed directly from
a CodeObject.

	
add_reference(name, group, varname=None, index=None)[source]

	Add a reference to a variable defined somewhere else (possibly under
a different name). This is for example used in Subgroup and
Synapses to refer to variables in the respective NeuronGroup.

	Parameters:	name : str

The name of the variable (in this group, possibly a different name
from var.name).

group : Group

The group from which var() is referenced

varname : str, optional

The variable to refer to. If not given, defaults to name.

index : str, optional

The index that should be used for this variable (defaults to
Variables.default_index).

	
add_references(group, varnames, index=None)[source]

	Add all Variable objects from a name to Variable mapping with the
same name as in the original mapping.

	Parameters:	group : Group

The group from which the variables are referenced

varnames : iterable of str

The variables that should be referred to in the current group

index : str, optional

The index to use for all the variables (defaults to
Variables.default_index)

	
add_referred_subexpression(name, group, subexpr, index)[source]

	

	
add_subexpression(name, unit, expr, dtype=None, scalar=False, index=None)[source]

	Add a named subexpression.

	Parameters:	name : str

The name of the subexpression.

unit : Unit

The unit of the subexpression.

expr : str

The subexpression itself.

dtype : dtype [http://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype], optional

The dtype used for the expression. Defaults to
core.default_float_dtype.

scalar : bool, optional

Whether this is an expression only referring to scalar variables.
Defaults to False

index : str, optional

The index to use for this variable. Defaults to
Variables.default_index.

	
create_clock_variables(clock, prefix='')[source]

	Convenience function to add the t and dt attributes of a
clock.

	Parameters:	clock : Clock

The clock that should be used for t and dt.

prefix : str, optional

A prefix for the variable names. Used for example in monitors to
not confuse the dynamic array of recorded times with the current
time in the recorded group.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

get_dtype function

(Shortest import: from brian2.core.variables import get_dtype)

	
brian2.core.variables.get_dtype(obj)[source]

	Helper function to return the numpy.dtype [http://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype] of an arbitrary object.

	Parameters:	obj : object

Any object (but typically some kind of number or array).

	Returns:	dtype : numpy.dtype [http://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype]

The type of the given object.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

get_dtype_str function

(Shortest import: from brian2.core.variables import get_dtype_str)

	
brian2.core.variables.get_dtype_str(val)[source]

	Returns canonical string representation of the dtype of a value or dtype

	Returns:	dtype_str : str

The numpy dtype name

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

linked_var function

(Shortest import: from brian2 import linked_var)

	
brian2.core.variables.linked_var(group_or_variable, name=None, index=None)[source]

	Represents a link target for setting a linked variable.

	Parameters:	group_or_variable : NeuronGroup or VariableView

Either a reference to the target NeuronGroup (e.g. G) or a direct
reference to a VariableView object (e.g. G.v). In case only the
group is specified, name has to be specified as well.

name : str, optional

The name of the target variable, necessary if group_or_variable is a
NeuronGroup.

index : str or ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray], optional

An indexing array (or the name of a state variable), providing a mapping
from the entries in the link source to the link target.

Examples

>>> from brian2 import *
>>> G1 = NeuronGroup(10, 'dv/dt = -v / (10*ms) : volt')
>>> G2 = NeuronGroup(10, 'v : volt (linked)')
>>> G2.v = linked_var(G1, 'v')
>>> G2.v = linked_var(G1.v) # equivalent

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	core package »

variables_by_owner function

(Shortest import: from brian2.core.variables import variables_by_owner)

	
brian2.core.variables.variables_by_owner(variables, owner)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

devices package

Package providing the “devices” infrastructure.

device module

Module containing the Device base class as well as the RuntimeDevice
implementation and some helper functions to access/set devices.

Exported members:
Device, RuntimeDevice, get_device(), set_device(), all_devices, reinit_devices, reset_device, device, seed()

Classes

	CurrentDeviceProxy
	Method proxy for access to the currently active device

	Device()
	Base Device object.

	Dummy
	Dummy object

	RuntimeDevice()
	The default device used in Brian, state variables are stored as numpy arrays in memory.

Functions

	auto_target()
	Automatically chose a code generation target (invoked when the codegen.target preference is set to 'auto'.

	get_default_codeobject_class([pref])
	Returns the default CodeObject class from the preferences.

	get_device()
	Gets the actve Device object

	reinit_devices()
	Reinitialize all devices, call Device.activate again on the current device and reset the preferences.

	reset_device([device])
	Reset to a previously used device.

	seed([seed])
	Set the seed for the random number generator.

	set_device(device[,build_on_run])
	Set the device used for simulations.

Objects

	active_device
	The currently active device (set with set_device())

	device
	Proxy object to access methods of the current device

	runtime_device
	The default device used in Brian, state variables are stored as numpy arrays in memory.

Subpackages

	cpp_standalone package
	codeobject module

	device module

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	devices package »

CurrentDeviceProxy class

(Shortest import: from brian2.devices.device import CurrentDeviceProxy)

	
class brian2.devices.device.CurrentDeviceProxy[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Method proxy for access to the currently active device

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	devices package »

Device class

(Shortest import: from brian2.devices import Device)

	
class brian2.devices.device.Device[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Base Device object.

Attributes

	network_schedule
	The network schedule that this device supports.

Methods

	activate([build_on_run])
	Called when this device is set as the current device.

	add_array(var)
	Add an array to this device.

	build(**kwds)
	For standalone projects, called when the project is ready to be built.

	code_object(owner,name,abstract_code,...)
	

	code_object_class([codeobj_class])
	

	fill_with_array(var,arr)
	Fill an array with the values given in another array.

	get_array_name(var[,access_data])
	Return a globally unique name for var().

	get_len(array)
	Return the length of the array.

	init_with_arange(var,start,dtype)
	Initialize an array with an integer range.

	init_with_zeros(var,dtype)
	Initialize an array with zeros.

	insert_code(slot,code)
	Insert code directly into a given slot in the device.

	insert_device_code(slot,code)
	

	reinit()
	Reinitialize the device.

	resize(var,new_size)
	Resize a DynamicArrayVariable.

	resize_along_first(var,new_size)
	

	seed([seed])
	Set the seed for the random number generator.

	spike_queue(source_start,source_end)
	Create and return a new SpikeQueue for this Device.

Details

	
network_schedule

	The network schedule that this device supports. If the device only
supports a specific, fixed schedule, it has to set this attribute to
the respective schedule (see Network.schedule for details). If it
supports arbitrary schedules, it should be set to None (the
default).

	
activate(build_on_run=True, **kwargs)[source]

	Called when this device is set as the current device.

	
add_array(var)[source]

	Add an array to this device.

	Parameters:	var : ArrayVariable

The array to add.

	
build(**kwds)[source]

	For standalone projects, called when the project is ready to be built. Does nothing for runtime mode.

	
code_object(owner, name, abstract_code, variables, template_name, variable_indices, codeobj_class=None, template_kwds=None, override_conditional_write=None)[source]

	

	
code_object_class(codeobj_class=None)[source]

	

	
fill_with_array(var, arr)[source]

	Fill an array with the values given in another array.

	Parameters:	var : ArrayVariable

The array to fill.

arr : ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

The array values that should be copied to var().

	
get_array_name(var, access_data=True)[source]

	Return a globally unique name for var().

	Parameters:	access_data : bool, optional

For DynamicArrayVariable objects, specifying True [https://docs.python.org/2/library/constants.html#True] here means the
name for the underlying data is returned. If specifying False [https://docs.python.org/2/library/constants.html#False],
the name of object itself is returned (e.g. to allow resizing).

	Returns:	name : str

The name for var().

	
get_len(array)[source]

	Return the length of the array.

	Parameters:	array : ArrayVariable

The array for which the length is requested.

	Returns:	l : int

The length of the array.

	
init_with_arange(var, start, dtype)[source]

	Initialize an array with an integer range.

	Parameters:	var : ArrayVariable

The array to fill with the integer range.

start : int

The start value for the integer range

dtype : dtype [http://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype]

The data type to use for the array.

	
init_with_zeros(var, dtype)[source]

	Initialize an array with zeros.

	Parameters:	var : ArrayVariable

The array to initialize with zeros.

dtype : dtype [http://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype]

The data type to use for the array.

	
insert_code(slot, code)[source]

	Insert code directly into a given slot in the device. By default does nothing.

	
insert_device_code(slot, code)[source]

	

	
reinit()[source]

	Reinitialize the device. For standalone devices, clears all the internal
state of the device.

	
resize(var, new_size)[source]

	Resize a DynamicArrayVariable.

	Parameters:	var : DynamicArrayVariable

The variable that should be resized.

new_size : int

The new size of the variable

	
resize_along_first(var, new_size)[source]

	

	
seed(seed=None)[source]

	Set the seed for the random number generator.

	Parameters:	seed : int, optional

The seed value for the random number generator, or None (the
default) to set a random seed.

	
spike_queue(source_start, source_end)[source]

	Create and return a new SpikeQueue for this Device.

	Parameters:	source_start : int

The start index of the source group (necessary for subgroups)

source_end : int

The end index of the source group (necessary for subgroups)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	devices package »

Dummy class

(Shortest import: from brian2.devices.device import Dummy)

	
class brian2.devices.device.Dummy[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Dummy object

Methods

	__call__(*args,**kwds)
	

Details

	
__call__(*args, **kwds)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	devices package »

RuntimeDevice class

(Shortest import: from brian2.devices import RuntimeDevice)

	
class brian2.devices.device.RuntimeDevice[source]

	Bases: brian2.devices.device.Device

The default device used in Brian, state variables are stored as numpy
arrays in memory.

Attributes

	arrays
	Mapping from Variable objects to numpy arrays (or DynamicArray objects).

Methods

	add_array(var)
	

	fill_with_array(var,arr)
	

	get_array_name(var[,access_data])
	

	get_value(var[,access_data])
	

	init_with_arange(var,start,dtype)
	

	init_with_zeros(var,dtype)
	

	resize(var,new_size)
	

	resize_along_first(var,new_size)
	

	seed([seed])
	Set the seed for the random number generator.

	set_value(var,value)
	

	spike_queue(source_start,source_end)
	

Details

	
arrays

	Mapping from Variable objects to numpy arrays (or DynamicArray
objects). Arrays in this dictionary will disappear as soon as the
last reference to the Variable object used as a key is gone

	
add_array(var)[source]

	

	
fill_with_array(var, arr)[source]

	

	
get_array_name(var, access_data=True)[source]

	

	
get_value(var, access_data=True)[source]

	

	
init_with_arange(var, start, dtype)[source]

	

	
init_with_zeros(var, dtype)[source]

	

	
resize(var, new_size)[source]

	

	
resize_along_first(var, new_size)[source]

	

	
seed(seed=None)[source]

	Set the seed for the random number generator.

	Parameters:	seed : int, optional

The seed value for the random number generator, or None (the
default) to set a random seed.

	
set_value(var, value)[source]

	

	
spike_queue(source_start, source_end)[source]

	

Tutorials and examples using this

	Example frompapers/Kremer_et_al_2011_barrel_cortex

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	devices package »

auto_target function

(Shortest import: from brian2.devices.device import auto_target)

	
brian2.devices.device.auto_target()[source]

	Automatically chose a code generation target (invoked when the
codegen.target preference is set to 'auto'. Caches its result so it
only does the check once. Prefers weave > cython > numpy.

	Returns:	target : class derived from CodeObject

The target to use

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	devices package »

get_default_codeobject_class function

(Shortest import: from brian2.devices.device import get_default_codeobject_class)

	
brian2.devices.device.get_default_codeobject_class(pref='codegen.target')[source]

	Returns the default CodeObject class from the preferences.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	devices package »

get_device function

(Shortest import: from brian2 import get_device)

	
brian2.devices.device.get_device()[source]

	Gets the actve Device object

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	devices package »

reinit_devices function

(Shortest import: from brian2.devices import reinit_devices)

	
brian2.devices.device.reinit_devices()[source]

	Reinitialize all devices, call Device.activate again on the current
device and reset the preferences. Used as a “teardown” function in testing,
if users want to reset their device (e.g. for multiple standalone runs in a
single script), calling device.reinit() followed by
device.activate() should normally be sufficient.

Notes

This also resets the defaultclock, i.e. a non-standard dt has to be
set again.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	devices package »

reset_device function

(Shortest import: from brian2.devices import reset_device)

	
brian2.devices.device.reset_device(device=None)[source]

	Reset to a previously used device. Restores also the previously specified
build options (see set_device()) for the device. Mostly useful for internal
Brian code and testing on various devices.

	Parameters:	device : Device or str, optional

The device to go back to. If none is specified, go back to the device
chosen with set_device() before the current one.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	devices package »

seed function

(Shortest import: from brian2 import seed)

	
brian2.devices.device.seed(seed=None)[source]

	Set the seed for the random number generator.

	Parameters:	seed : int, optional

The seed value for the random number generator, or None (the
default) to set a random seed.

Notes

This function delegates the call to Device.seed of the current device.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	devices package »

set_device function

(Shortest import: from brian2 import set_device)

	
brian2.devices.device.set_device(device, build_on_run=True, **kwargs)[source]

	Set the device used for simulations.

	Parameters:	device : Device or str

The Device object or the name of the device.

build_on_run : bool, optional

Whether a call to run() (or Network.run()) should directly trigger a
Device.build. This is only relevant for standalone devices and means
that a run call directly triggers the start of a simulation. If the
simulation consists of multiple run calls, set build_on_run to
False and call Device.build explicitly. Defaults to True.

kwargs : dict, optional

Only relevant when build_on_run is True: additional arguments
that will be given to the Device.build call.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	devices package »

active_device object

(Shortest import: from brian2.devices.device import active_device)

	
brian2.devices.device.active_device = <brian2.devices.device.RuntimeDevice object>

	The currently active device (set with set_device())

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	devices package »

device object

(Shortest import: from brian2 import device)

	
brian2.devices.device.device = <brian2.devices.device.CurrentDeviceProxy object>

	Proxy object to access methods of the current device

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	devices package »

runtime_device object

(Shortest import: from brian2.devices.device import runtime_device)

	
brian2.devices.device.runtime_device = <brian2.devices.device.RuntimeDevice object>

	The default device used in Brian, state variables are stored as numpy
arrays in memory.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	devices package »

cpp_standalone package

Package implementing the C++ “standalone” Device and CodeObject.

codeobject module

Module implementing the C++ “standalone” CodeObject

Exported members:
CPPStandaloneCodeObject

Classes

	CPPStandaloneCodeObject(owner,code,...[,name])
	C++ standalone code object

Functions

	generate_rand_code(rand_func,owner)
	

	openmp_pragma(pragma_type)
	

device module

Module implementing the C++ “standalone” device.

Classes

	CPPStandaloneDevice()
	The Device used for C++ standalone simulations.

	CPPWriter(project_dir)
	Methods

	RunFunctionContext(name,include_in_parent)
	

Functions

	invert_dict(x)
	

Objects

	cpp_standalone_device
	The Device used for C++ standalone simulations.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	devices package »

 	cpp_standalone package »

CPPStandaloneCodeObject class

(Shortest import: from brian2.devices.cpp_standalone import CPPStandaloneCodeObject)

	
class brian2.devices.cpp_standalone.codeobject.CPPStandaloneCodeObject(owner, code, variables, variable_indices, template_name, template_source, name='codeobject*')[source]

	Bases: brian2.codegen.codeobject.CodeObject

C++ standalone code object

The code should be a MultiTemplate
object with two macros defined, main (for the main loop code) and
support_code for any support code (e.g. function definitions).

Methods

	__call__(**kwds)
	

	run()
	

Details

	
__call__(**kwds)[source]

	

	
run()[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	devices package »

 	cpp_standalone package »

generate_rand_code function

(Shortest import: from brian2.devices.cpp_standalone.codeobject import generate_rand_code)

	
brian2.devices.cpp_standalone.codeobject.generate_rand_code(rand_func, owner)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	devices package »

 	cpp_standalone package »

openmp_pragma function

(Shortest import: from brian2.devices.cpp_standalone.codeobject import openmp_pragma)

	
brian2.devices.cpp_standalone.codeobject.openmp_pragma(pragma_type)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	devices package »

 	cpp_standalone package »

CPPStandaloneDevice class

(Shortest import: from brian2.devices.cpp_standalone.device import CPPStandaloneDevice)

	
class brian2.devices.cpp_standalone.device.CPPStandaloneDevice[source]

	Bases: brian2.devices.device.Device

The Device used for C++ standalone simulations.

Attributes

	arange_arrays
	Dictionary of all arrays to be filled with numbers (mapping

	array_cache
	Dictionary mapping ArrayVariable objects to their value or to None if the value (potentially) depends on executed code.

	arrays
	Dictionary mapping ArrayVariable objects to their globally

	build_on_run
	Whether a run should trigger a build

	build_options
	build options

	dynamic_arrays
	List of all dynamic arrays

	dynamic_arrays_2d
	Dictionary mapping DynamicArrayVariable objects with 2 dimensions

	has_been_run
	Whether the simulation has been run

	static_arrays
	Dict of all static saved arrays

	zero_arrays
	List of all arrays to be filled with zeros

Methods

	add_array(var)
	

	build([directory,compile,run,debug,...])
	Build the project

	check_openmp_compatible(nb_threads)
	

	code_object(owner,name,abstract_code,...)
	

	code_object_class([codeobj_class])
	

	compile_source(directory,compiler,debug,clean)
	

	copy_source_files(writer,directory)
	

	fill_with_array(var,arr)
	

	find_synapses()
	

	freeze(code,ns)
	

	generate_codeobj_source(writer)
	

	generate_main_source(writer)
	

	generate_makefile(writer,compiler,...)
	

	generate_network_source(writer,compiler)
	

	generate_objects_source(writer,...)
	

	generate_run_source(writer)
	

	generate_synapses_classes_source(writer)
	

	get_array_filename(var[,basedir])
	Return a file name for a variable.

	get_array_name(var[,access_data])
	Return a globally unique name for var().

	get_value(var[,access_data])
	

	init_with_arange(var,start,dtype)
	

	init_with_zeros(var,dtype)
	

	insert_code(slot,code)
	Insert code directly into main.cpp

	network_get_profiling_info(net)
	

	network_restore(net[,name])
	

	network_run(net,duration[,report,...])
	

	network_store(net[,name])
	

	reinit()
	

	resize(var,new_size)
	

	run(directory,with_output,run_args)
	

	run_function(name[,include_in_parent])
	Context manager to divert code into a function

	seed([seed])
	Set the seed for the random number generator.

	static_array(name,arr)
	

	variableview_get_subexpression_with_index_array(...)
	

	variableview_get_with_expression(...[,...])
	

	variableview_set_with_index_array(...)
	

	write_static_arrays(directory)
	

Details

	
arange_arrays

	Dictionary of all arrays to be filled with numbers (mapping
ArrayVariable objects to start value)

	
array_cache

	Dictionary mapping ArrayVariable objects to their value or to
None if the value (potentially) depends on executed code. This
mechanism allows to access state variables in standalone mode if
their value is known at run time

	
arrays

	Dictionary mapping ArrayVariable objects to their globally
unique name

	
build_on_run

	Whether a run should trigger a build

	
build_options

	build options

	
dynamic_arrays

	List of all dynamic arrays
Dictionary mapping DynamicArrayVariable objects with 1 dimension to
their globally unique name

	
dynamic_arrays_2d

	Dictionary mapping DynamicArrayVariable objects with 2 dimensions
to their globally unique name

	
has_been_run

	Whether the simulation has been run

	
static_arrays

	Dict of all static saved arrays

	
zero_arrays

	List of all arrays to be filled with zeros

	
add_array(var)[source]

	

	
build(directory='output', compile=True, run=True, debug=False, clean=True, with_output=True, additional_source_files=None, run_args=None, direct_call=True, **kwds)[source]

	Build the project

TODO: more details

	Parameters:	directory : str, optional

The output directory to write the project to, any existing files
will be overwritten. If the given directory name is None, then
a temporary directory will be used (used in the test suite to avoid
problems when running several tests in parallel). Defaults to
'output'.

compile : bool, optional

Whether or not to attempt to compile the project. Defaults to
True.

run : bool, optional

Whether or not to attempt to run the built project if it
successfully builds. Defaults to True.

debug : bool, optional

Whether to compile in debug mode. Defaults to False.

with_output : bool, optional

Whether or not to show the stdout of the built program when run.
Output will be shown in case of compilation or runtime error.
Defaults to True.

clean : bool, optional

Whether or not to clean the project before building. Defaults to
True.

additional_source_files : list of str, optional

A list of additional .cpp files to include in the build.

direct_call : bool, optional

Whether this function was called directly. Is used internally to
distinguish an automatic build due to the build_on_run option
from a manual device.build call.

	
check_openmp_compatible(nb_threads)[source]

	

	
code_object(owner, name, abstract_code, variables, template_name, variable_indices, codeobj_class=None, template_kwds=None, override_conditional_write=None)[source]

	

	
code_object_class(codeobj_class=None)[source]

	

	
compile_source(directory, compiler, debug, clean)[source]

	

	
copy_source_files(writer, directory)[source]

	

	
fill_with_array(var, arr)[source]

	

	
find_synapses()[source]

	

	
freeze(code, ns)[source]

	

	
generate_codeobj_source(writer)[source]

	

	
generate_main_source(writer)[source]

	

	
generate_makefile(writer, compiler, compiler_flags, linker_flags, nb_threads)[source]

	

	
generate_network_source(writer, compiler)[source]

	

	
generate_objects_source(writer, arange_arrays, synapses, static_array_specs, networks)[source]

	

	
generate_run_source(writer)[source]

	

	
generate_synapses_classes_source(writer)[source]

	

	
get_array_filename(var, basedir='results')[source]

	Return a file name for a variable.

	Parameters:	var : ArrayVariable

The variable to get a filename for.

basedir : str

The base directory for the filename, defaults to 'results'.

Returns :

——- :

filename : str

A filename of the form
'results/'+varname+'_'+str(hash(varname)), where varname is the
name returned by get_array_name.

Notes

The reason that the filename is not simply 'results/' + varname is
that this could lead to file names that are not unique in file systems
that are not case sensitive (e.g. on Windows).

	
get_array_name(var, access_data=True)[source]

	Return a globally unique name for var().

	Parameters:	access_data : bool, optional

For DynamicArrayVariable objects, specifying True [https://docs.python.org/2/library/constants.html#True] here means the
name for the underlying data is returned. If specifying False [https://docs.python.org/2/library/constants.html#False],
the name of object itself is returned (e.g. to allow resizing).

	
get_value(var, access_data=True)[source]

	

	
init_with_arange(var, start, dtype)[source]

	

	
init_with_zeros(var, dtype)[source]

	

	
insert_code(slot, code)[source]

	Insert code directly into main.cpp

	
network_get_profiling_info(net)[source]

	

	
network_restore(net, name='default')[source]

	

	
network_run(net, duration, report=None, report_period=10. * second, namespace=None, profile=True, level=0, **kwds)[source]

	

	
network_store(net, name='default')[source]

	

	
reinit()[source]

	

	
resize(var, new_size)[source]

	

	
run(directory, with_output, run_args)[source]

	

	
run_function(name, include_in_parent=True)[source]

	Context manager to divert code into a function

Code that happens within the scope of this context manager will go into the named function.

	Parameters:	name : str

The name of the function to divert code into.

include_in_parent : bool

Whether or not to include a call to the newly defined function in the parent context.

	
seed(seed=None)[source]

	Set the seed for the random number generator.

	Parameters:	seed : int, optional

The seed value for the random number generator, or None (the
default) to set a random seed.

	
static_array(name, arr)[source]

	

	
variableview_get_subexpression_with_index_array(variableview, item, run_namespace=None)[source]

	

	
variableview_get_with_expression(variableview, code, run_namespace=None)[source]

	

	
variableview_set_with_index_array(variableview, item, value, check_units)[source]

	

	
write_static_arrays(directory)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	devices package »

 	cpp_standalone package »

CPPWriter class

(Shortest import: from brian2.devices.cpp_standalone.device import CPPWriter)

	
class brian2.devices.cpp_standalone.device.CPPWriter(project_dir)[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Methods

	write(filename,contents)
	

Details

	
write(filename, contents)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	devices package »

 	cpp_standalone package »

RunFunctionContext class

(Shortest import: from brian2.devices.cpp_standalone.device import RunFunctionContext)

	
class brian2.devices.cpp_standalone.device.RunFunctionContext(name, include_in_parent)[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	devices package »

 	cpp_standalone package »

invert_dict function

(Shortest import: from brian2.devices.cpp_standalone.device import invert_dict)

	
brian2.devices.cpp_standalone.device.invert_dict(x)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	devices package »

 	cpp_standalone package »

cpp_standalone_device object

(Shortest import: from brian2.devices.cpp_standalone import cpp_standalone_device)

	
brian2.devices.cpp_standalone.device.cpp_standalone_device = <brian2.devices.cpp_standalone.device.CPPStandaloneDevice object>

	The Device used for C++ standalone simulations.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

equations package

Module handling equations and “code strings”, expressions or statements, used
for example for the reset and threshold definition of a neuron.

Exported members:
Equations, Expression, Statements

codestrings module

Module defining CodeString, a class for a string of code together with
information about its namespace. Only serves as a parent class, its subclasses
Expression and Statements are the ones that are actually used.

Exported members:
Expression, Statements

Classes

	CodeString(code)
	A class for representing “code strings”, i.e.

	Expression([code,sympy_expression])
	Class for representing an expression.

	Statements(code)
	Class for representing statements.

Functions

	is_constant_over_dt(expression,variables,...)
	Check whether an expression can be considered as constant over a time step.

equations module

Differential equations for Brian models.

Exported members:
Equations

Classes

	EquationError
	Exception type related to errors in an equation definition.

	Equations(eqns,**kwds)
	Container that stores equations from which models can be created.

	SingleEquation(type,varname,unit[,...])
	Class for internal use, encapsulates a single equation or parameter.

Functions

	check_identifier_basic(identifier)
	Check an identifier (usually resulting from an equation string provided by the user) for conformity with the rules.

	check_identifier_constants(identifier)
	Make sure that identifier names do not clash with function names.

	check_identifier_functions(identifier)
	Make sure that identifier names do not clash with function names.

	check_identifier_reserved(identifier)
	Check that an identifier is not using a reserved special variable name.

	check_identifier_units(identifier)
	Make sure that identifier names do not clash with unit names.

	check_subexpressions(group,equations,...)
	Checks the subexpressions in the equations and raises an error if a subexpression refers to stateful functions without being marked as “constant over dt”.

	extract_constant_subexpressions(eqs)
	

	is_stateful(expression,variables)
	Whether the given expression refers to stateful functions (and is therefore not guaranteed to give the same result if called repetively).

	parse_string_equations(eqns)
	Parse a string defining equations.

	unit_and_type_from_string(unit_string)
	Returns the unit that results from evaluating a string like “siemens / metre ** 2”, allowing for the special string “1” to signify dimensionless units, the string “boolean” for a boolean and “integer” for an integer variable.

refractory module

Module implementing Brian’s refractory mechanism.

Exported members:
add_refractoriness

Functions

	add_refractoriness(eqs)
	Extends a given set of equations with the refractory mechanism.

	check_identifier_refractory(identifier)
	Check that the identifier is not using a name reserved for the refractory mechanism.

unitcheck module

Utility functions for handling the units in Equations.

Exported members:
unit_from_expression, check_unit, check_units_statements

Functions

	check_unit(expression,unit,variables)
	Compares the unit for an expression to an expected unit in a given namespace.

	check_units_statements(code,variables)
	Check the units for a series of statements.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	equations package »

CodeString class

(Shortest import: from brian2.equations.codestrings import CodeString)

	
class brian2.equations.codestrings.CodeString(code)[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

A class for representing “code strings”, i.e. a single Python expression
or a sequence of Python statements.

	Parameters:	code : str

The code string, may be an expression or a statement(s) (possibly
multi-line).

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	equations package »

Expression class

(Shortest import: from brian2 import Expression)

	
class brian2.equations.codestrings.Expression(code=None, sympy_expression=None)[source]

	Bases: brian2.equations.codestrings.CodeString

Class for representing an expression.

	Parameters:	code : str, optional

The expression. Note that the expression has to be written in a form
that is parseable by sympy. Alternatively, a sympy expression can be
provided (in the sympy_expression argument).

sympy_expression : sympy expression, optional

A sympy expression. Alternatively, a plain string expression can be
provided (in the code argument).

Attributes

	stochastic_variables
	Stochastic variables in this expression

Methods

	split_stochastic()
	Split the expression into a stochastic and non-stochastic part.

Details

	
stochastic_variables

	Stochastic variables in this expression

	
split_stochastic()[source]

	Split the expression into a stochastic and non-stochastic part.

Splits the expression into a tuple of one Expression objects f (the
non-stochastic part) and a dictionary mapping stochastic variables
to Expression objects. For example, an expression of the form
f + g * xi_1 + h * xi_2 would be returned as:
(f, {'xi_1': g, 'xi_2': h})
Note that the Expression objects for the stochastic parts do not
include the stochastic variable itself.

	Returns:	(f, d) : (Expression, dict)

A tuple of an Expression object and a dictionary, the first
expression being the non-stochastic part of the equation and
the dictionary mapping stochastic variables (xi or starting
with xi_) to Expression objects. If no stochastic variable
is present in the code string, a tuple (self, None) will be
returned with the unchanged Expression object.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	equations package »

Statements class

(Shortest import: from brian2 import Statements)

	
class brian2.equations.codestrings.Statements(code)[source]

	Bases: brian2.equations.codestrings.CodeString

Class for representing statements.

	Parameters:	code : str

The statement or statements. Several statements can be given as a
multi-line string or separated by semicolons.

Notes

Currently, the implementation of this class does not add anything to
CodeString, but it should be used instead
of that class for clarity and to allow for future functionality that is
only relevant to statements and not to expressions.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	equations package »

is_constant_over_dt function

(Shortest import: from brian2.equations.codestrings import is_constant_over_dt)

	
brian2.equations.codestrings.is_constant_over_dt(expression, variables, dt_value)[source]

	Check whether an expression can be considered as constant over a time step.
This is not the case when the expression either:

	contains the variable t (except as the argument of a function that
can be considered as constant over a time step, e.g. a TimedArray with
a dt equal to or greater than the dt used to evaluate this expression)

	refers to a stateful function such as rand().

	Parameters:	expression : sympy.Expr

The (sympy) expression to analyze

variables : dict

The variables dictionary.

dt_value : float or None

The length of a timestep (without units), can be None if the
time step is not yet known.

	Returns:	is_constant : bool

Whether the expression can be considered to be constant over a time
step.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	equations package »

EquationError class

(Shortest import: from brian2.equations.equations import EquationError)

	
class brian2.equations.equations.EquationError[source]

	Bases: exceptions.Exception [https://docs.python.org/2/library/exceptions.html#exceptions.Exception]

Exception type related to errors in an equation definition.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	equations package »

Equations class

(Shortest import: from brian2 import Equations)

	
class brian2.equations.equations.Equations(eqns, **kwds)[source]

	Bases: _abcoll.Mapping

Container that stores equations from which models can be created.

String equations can be of any of the following forms:

	dx/dt = f : unit (flags) (differential equation)

	x = f : unit (flags) (equation)

	x : unit (flags) (parameter)

String equations can span several lines and contain Python-style comments
starting with #

	Parameters:	eqs : str [https://docs.python.org/2/library/functions.html#str] or list of SingleEquation objects

A multiline string of equations (see above) – for internal purposes
also a list of SingleEquation objects can be given. This is done for
example when adding new equations to implement the refractory
mechanism. Note that in this case the variable names are not checked
to allow for “internal names”, starting with an underscore.

kwds: keyword arguments :

Keyword arguments can be used to replace variables in the equation
string. Arguments have to be of the form varname=replacement, where
varname has to correspond to a variable name in the given equation.
The replacement can be either a string (replacing a name with a new
name, e.g. tau='tau_e') or a value (replacing the variable name
with the value, e.g. tau=tau_e or tau=10*ms).

Attributes

	diff_eq_expressions
	A list of (variable name, expression) tuples of all differential equations.

	diff_eq_names
	All differential equation names.

	eq_expressions
	A list of (variable name, expression) tuples of all equations.

	eq_names
	All equation names (including subexpressions).

	identifier_checks
	A set of functions that are used to check identifiers (class attribute).

	identifiers
	Set of all identifiers used in the equations, excluding the variables defined in the equations

	is_stochastic
	Whether the equations are stochastic.

	names
	All variable names defined in the equations.

	ordered
	A list of all equations, sorted according to the order in which they should be updated

	parameter_names
	All parameter names.

	stochastic_type
	Returns the type of stochastic differential equations (additivive or multiplicative).

	stochastic_variables
	

	subexpr_names
	All subexpression names.

	units
	Dictionary of all internal variables and their corresponding units.

Methods

	check_flags(allowed_flags[,incompatible_flags])
	Check the list of flags.

	check_identifier(identifier)
	Perform all the registered checks.

	check_identifiers()
	Check all identifiers for conformity with the rules.

	check_units(group,run_namespace)
	Check all the units for consistency.

	get_substituted_expressions([variables,...])
	Return a list of (varname, expr) tuples, containing all differential equations (and optionally subexpressions) with all the subexpression variables substituted with the respective expressions.

	register_identifier_check(func)
	Register a function for checking identifiers.

Details

	
diff_eq_expressions

	A list of (variable name, expression) tuples of all differential equations.

	
diff_eq_names

	All differential equation names.

	
eq_expressions

	A list of (variable name, expression) tuples of all equations.

	
eq_names

	All equation names (including subexpressions).

	
identifier_checks

	A set of functions that are used to check identifiers (class attribute).
Functions can be registered with the static method
Equations.register_identifier_check and will be automatically
used when checking identifiers

	
identifiers

	Set of all identifiers used in the equations, excluding the variables defined in the equations

	
is_stochastic

	Whether the equations are stochastic.

	
names

	All variable names defined in the equations.

	
ordered

	A list of all equations, sorted according to the order in which they should be updated

	
parameter_names

	All parameter names.

	
stochastic_type

	Returns the type of stochastic differential equations (additivive or
multiplicative). The system is only classified as additive if all
equations have only additive noise (or no noise).

	Returns:	type : str

Either None (no noise variables), 'additive' (factors for
all noise variables are independent of other state variables or
time), 'multiplicative' (at least one of the noise factors
depends on other state variables and/or time).

	
stochastic_variables

	

	
subexpr_names

	All subexpression names.

	
units

	Dictionary of all internal variables and their corresponding units.

	
check_flags(allowed_flags, incompatible_flags=None)[source]

	Check the list of flags.

	Parameters:	allowed_flags : dict

A dictionary mapping equation types (PARAMETER,
DIFFERENTIAL_EQUATION, SUBEXPRESSION) to a list of strings (the
allowed flags for that equation type)

incompatible_flags : list of tuple

A list of flag combinations that are not allowed for the same
equation.

Notes :

—– :

Not specifying allowed flags for an equation type is the same as :

specifying an empty list for it. :

Raises

	ValueError

	If any flags are used that are not allowed.

	
static check_identifier(identifier)[source]

	Perform all the registered checks. Checks can be registered via
Equations.register_identifier_check.

	Parameters:	identifier : str

The identifier that should be checked

Raises

	ValueError

	If any of the registered checks fails.

	
check_identifiers()[source]

	Check all identifiers for conformity with the rules.

Raises

	ValueError

	If an identifier does not conform to the rules.

See also

	Equations.check_identifier

	The function that is called for each identifier.

	
check_units(group, run_namespace)[source]

	Check all the units for consistency.

	Parameters:	group : Group

The group providing the context

run_namespace : dict-like, optional

An additional namespace that is used for variable lookup (if not
defined, the implicit namespace of local variables is used).

level : int, optional

How much further to go up in the stack to find the calling frame

Raises

	DimensionMismatchError

	In case of any inconsistencies.

	
get_substituted_expressions(variables=None, include_subexpressions=False)[source]

	Return a list of (varname, expr) tuples, containing all
differential equations (and optionally subexpressions) with all the
subexpression variables substituted with the respective expressions.

	Parameters:	variables : dict, optional

A mapping of variable names to Variable/Function objects.

include_subexpressions : bool

Whether also to return substituted subexpressions. Defaults to
False.

	Returns:	expr_tuples : list of (str, CodeString)

A list of (varname, expr) tuples, where expr is a
CodeString object with all subexpression variables substituted
with the respective expression.

	
static register_identifier_check(func)[source]

	Register a function for checking identifiers.

	Parameters:	func : callable

The function has to receive a single argument, the name of the
identifier to check, and raise a ValueError if the identifier
violates any rule.

Tutorials and examples using this

	Example IF_curve_Hodgkin_Huxley

	Example COBAHH

	Example frompapers/Diesmann_et_al_1999

	Example frompapers/Clopath_et_al_2010_no_homeostasis

	Example frompapers/Clopath_et_al_2010_homeostasis

	Example frompapers/Rossant_et_al_2011bis

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	equations package »

SingleEquation class

(Shortest import: from brian2.equations.equations import SingleEquation)

	
class brian2.equations.equations.SingleEquation(type, varname, unit, var_type='float', expr=None, flags=None)[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Class for internal use, encapsulates a single equation or parameter.

Note

This class should never be used directly, it is only useful as part of
the Equations class.

	Parameters:	type : {PARAMETER, DIFFERENTIAL_EQUATION, SUBEXPRESSION}

The type of the equation.

varname : str

The variable that is defined by this equation.

unit : Unit

The unit of the variable

var_type : {FLOAT, INTEGER, BOOLEAN}

The type of the variable (floating point value or boolean).

expr : Expression, optional

The expression defining the variable (or None for parameters).

flags: list of str, optional :

A list of flags that give additional information about this equation.
What flags are possible depends on the type of the equation and the
context.

Attributes

	identifiers
	All identifiers in the RHS of this equation.

	stochastic_variables
	Stochastic variables in the RHS of this equation

Details

	
identifiers

	All identifiers in the RHS of this equation.

	
stochastic_variables

	Stochastic variables in the RHS of this equation

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	equations package »

check_identifier_basic function

(Shortest import: from brian2.equations.equations import check_identifier_basic)

	
brian2.equations.equations.check_identifier_basic(identifier)[source]

	Check an identifier (usually resulting from an equation string provided by
the user) for conformity with the rules. The rules are:

	Only ASCII characters

	Starts with a character, then mix of alphanumerical characters and
underscore

	Is not a reserved keyword of Python

	Parameters:	identifier : str

The identifier that should be checked

Raises

	ValueError

	If the identifier does not conform to the above rules.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	equations package »

check_identifier_constants function

(Shortest import: from brian2.equations.equations import check_identifier_constants)

	
brian2.equations.equations.check_identifier_constants(identifier)[source]

	Make sure that identifier names do not clash with function names.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	equations package »

check_identifier_functions function

(Shortest import: from brian2.equations.equations import check_identifier_functions)

	
brian2.equations.equations.check_identifier_functions(identifier)[source]

	Make sure that identifier names do not clash with function names.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	equations package »

check_identifier_reserved function

(Shortest import: from brian2.equations.equations import check_identifier_reserved)

	
brian2.equations.equations.check_identifier_reserved(identifier)[source]

	Check that an identifier is not using a reserved special variable name. The
special variables are: ‘t’, ‘dt’, and ‘xi’, as well as everything starting
with xi_.

	Parameters:	identifier: str :

The identifier that should be checked

Raises

	ValueError

	If the identifier is a special variable name.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	equations package »

check_identifier_units function

(Shortest import: from brian2.equations.equations import check_identifier_units)

	
brian2.equations.equations.check_identifier_units(identifier)[source]

	Make sure that identifier names do not clash with unit names.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	equations package »

check_subexpressions function

(Shortest import: from brian2.equations.equations import check_subexpressions)

	
brian2.equations.equations.check_subexpressions(group, equations, run_namespace)[source]

	Checks the subexpressions in the equations and raises an error if a
subexpression refers to stateful functions without being marked as
“constant over dt”.

	Parameters:	group : Group

The group providing the context.

equations : Equations

The equations to check.

run_namespace : dict

The run namespace for resolving variables.

Raises

	SyntaxError

	For subexpressions not marked as “constant over dt” that refer to stateful functions.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	equations package »

extract_constant_subexpressions function

(Shortest import: from brian2.equations.equations import extract_constant_subexpressions)

	
brian2.equations.equations.extract_constant_subexpressions(eqs)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	equations package »

is_stateful function

(Shortest import: from brian2.equations.equations import is_stateful)

	
brian2.equations.equations.is_stateful(expression, variables)[source]

	Whether the given expression refers to stateful functions (and is therefore
not guaranteed to give the same result if called repetively).

	Parameters:	expression : sympy.Expression

The sympy expression to check.

variables : dict

The dictionary mapping variable names to Variable or Function
objects.

	Returns:	stateful : bool

True, if the given expression refers to a stateful function like
rand() and False otherwise.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	equations package »

parse_string_equations function

(Shortest import: from brian2.equations.equations import parse_string_equations)

	
brian2.equations.equations.parse_string_equations(eqns)[source]

	Parse a string defining equations.

	Parameters:	eqns : str

The (possibly multi-line) string defining the equations. See the
documentation of the Equations class for details.

	Returns:	equations : dict

A dictionary mapping variable names to
Equations objects

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	equations package »

unit_and_type_from_string function

(Shortest import: from brian2.equations.equations import unit_and_type_from_string)

	
brian2.equations.equations.unit_and_type_from_string(unit_string)[source]

	Returns the unit that results from evaluating a string like
“siemens / metre ** 2”, allowing for the special string “1” to signify
dimensionless units, the string “boolean” for a boolean and “integer” for
an integer variable.

	Parameters:	unit_string : str

The string that should evaluate to a unit

	Returns:	u, type : (Unit, {FLOAT, INTEGER or BOOL})

The resulting unit and the type of the variable.

Raises

	ValueError

	If the string cannot be evaluated to a unit.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	equations package »

add_refractoriness function

(Shortest import: from brian2.equations.refractory import add_refractoriness)

	
brian2.equations.refractory.add_refractoriness(eqs)[source]

	Extends a given set of equations with the refractory mechanism. New
parameters are added and differential equations with the “unless refractory”
flag are changed so that their right-hand side is 0 when the neuron is
refractory (by multiplication with the not_refractory variable).

	Parameters:	eqs : Equations

The equations without refractory mechanism.

	Returns:	new_eqs : Equations

New equations, with added parameters and changed differential
equations having the “unless refractory” flag.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	equations package »

check_identifier_refractory function

(Shortest import: from brian2.equations.refractory import check_identifier_refractory)

	
brian2.equations.refractory.check_identifier_refractory(identifier)[source]

	Check that the identifier is not using a name reserved for the refractory
mechanism. The reserved names are not_refractory, refractory,
refractory_until.

	Parameters:	identifier : str

The identifier to check.

Raises

	ValueError

	If the identifier is a variable name used for the refractory mechanism.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	equations package »

check_unit function

(Shortest import: from brian2.equations.unitcheck import check_unit)

	
brian2.equations.unitcheck.check_unit(expression, unit, variables)[source]

	Compares the unit for an expression to an expected unit in a given
namespace.

	Parameters:	expression : str

The expression to evaluate.

unit : Unit

The expected unit for the expression.

variables : dict

Dictionary of all variables (including external constants) used in
the expression.

Raises

	KeyError

	In case on of the identifiers cannot be resolved.

	DimensionMismatchError

	If an unit mismatch occurs during the evaluation.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	equations package »

check_units_statements function

(Shortest import: from brian2.equations.unitcheck import check_units_statements)

	
brian2.equations.unitcheck.check_units_statements(code, variables)[source]

	Check the units for a series of statements. Setting a model variable has to
use the correct unit. For newly introduced temporary variables, the unit
is determined and used to check the following statements to ensure
consistency.

	Parameters:	code : str

The statements as a (multi-line) string

variables : dict of Variable objects

The information about all variables used in code [https://docs.python.org/2/library/code.html#module-code] (including
Constant objects for external variables)

Raises

	KeyError

	In case on of the identifiers cannot be resolved.

	DimensionMismatchError

	If an unit mismatch occurs during the evaluation.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

groups package

Package providing groups such as NeuronGroup or PoissonGroup.

group module

This module defines the VariableOwner class, a mix-in class for everything
that saves state variables, e.g. Clock or NeuronGroup, the class Group
for objects that in addition to storing state variables also execute code, i.e.
objects such as NeuronGroup or StateMonitor but not Clock, and finally
CodeRunner, a class to run code in the context of a Group.

Exported members:
Group, VariableOwner, CodeRunner

Classes

	CodeRunner(group,template[,code,...])
	A “code runner” that runs a CodeObject every timestep and keeps a reference to the Group.

	Group(*args,**kwds)
	Methods

	IndexWrapper(group)
	Convenience class to allow access to the indices via indexing syntax.

	Indexing(group[,default_index])
	Object responsible for calculating flat index arrays from arbitrary group- specific indices.

	VariableOwner(name)
	Mix-in class for accessing arrays by attribute.

Functions

	get_dtype(equation[,dtype])
	Helper function to interpret the dtype [http://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype] keyword argument in NeuronGroup etc.

neurongroup module

This model defines the NeuronGroup, the core of most simulations.

Exported members:
NeuronGroup

Classes

	NeuronGroup(N,model[,method,threshold,...])
	A group of neurons.

	Resetter(group[,when,order,event])
	The CodeRunner that applies the reset statement(s) to the state variables of neurons that have spiked in this timestep.

	StateUpdater(group,method)
	The CodeRunner that updates the state variables of a NeuronGroup at every timestep.

	SubexpressionUpdater(group,subexpressions)
	The CodeRunner that updates the state variables storing the values of subexpressions that have been marked as “constant over dt”.

	Thresholder(group[,when,event])
	The CodeRunner that applies the threshold condition to the state variables of a NeuronGroup at every timestep and sets its spikes and refractory_until attributes.

subgroup module

Exported members:
Subgroup

Classes

	Subgroup(source,start,stop[,name])
	Subgroup of any Group

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	groups package »

CodeRunner class

(Shortest import: from brian2 import CodeRunner)

	
class brian2.groups.group.CodeRunner(group, template, code='', user_code=None, dt=None, clock=None, when='start', order=0, name='coderunner*', check_units=True, template_kwds=None, needed_variables=None, override_conditional_write=None, codeobj_class=None, generate_empty_code=True)[source]

	Bases: brian2.core.base.BrianObject

A “code runner” that runs a CodeObject every timestep and keeps a
reference to the Group. Used in NeuronGroup for Thresholder,
Resetter and StateUpdater.

On creation, we try to run the before_run method with an empty additional
namespace (see Network.before_run()). If the namespace is already complete
this might catch unit mismatches.

	Parameters:	group : Group

The group to which this object belongs.

template : Template

The template that should be used for code generation

code : str, optional

The abstract code that should be executed every time step. The
update_abstract_code method might generate this code dynamically
before every run instead.

dt : Quantity, optional

The time step to be used for the simulation. Cannot be combined with
the clock argument.

user_code : str, optional

The abstract code as specified by the user, i.e. without any additions
of internal code that the user not necessarily knows about. This will
be used for warnings and error messages.

clock : Clock, optional

The update clock to be used. If neither a clock, nor the dt argument
is specified, the defaultclock will be used.

when : str, optional

In which scheduling slot to execute the operation during a time step.
Defaults to 'start'.

order : int, optional

The priority of this operation for operations occurring at the same time
step and in the same scheduling slot. Defaults to 0.

name : str, optional

The name for this object.

check_units : bool, optional

Whether the units should be checked for consistency before a run. Is
activated (True) by default but should be switched off for state
updaters (units are already checked for the equations and the generated
abstract code might have already replaced variables with their unit-less
values)

template_kwds : dict, optional

A dictionary of additional information that is passed to the template.

needed_variables: list of str, optional :

A list of variables that are neither present in the abstract code, nor
in the USES_VARIABLES statement in the template. This is only
rarely necessary, an example being a StateMonitor where the
names of the variables are neither known to the template nor included
in the abstract code statements.

override_conditional_write: list of str, optional :

A list of variable names which are used as conditions (e.g. for
refractoriness) which should be ignored.

codeobj_class : class, optional

The CodeObject class to run code with. If not specified, defaults to
the group‘s codeobj_class attribute.

generate_empty_code : bool, optional

Whether to generate a CodeObject if there is no abstract code to
execute. Defaults to True but should be switched off e.g. for a
StateUpdater when there is nothing to do.

Methods

	before_run(run_namespace)
	

	update_abstract_code(run_namespace)
	Update the abstract code for the code object.

Details

	
before_run(run_namespace)[source]

	

	
update_abstract_code(run_namespace)[source]

	Update the abstract code for the code object. Will be called in
before_run and should update the CodeRunner.abstract_code
attribute.

Does nothing by default.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	groups package »

Group class

(Shortest import: from brian2 import Group)

	
class brian2.groups.group.Group(*args, **kwds)[source]

	Bases: brian2.groups.group.VariableOwner, brian2.core.base.BrianObject

Methods

	custom_operation(*args,**kwds)
	

	resolve_all(identifiers,run_namespace[,...])
	Resolve a list of identifiers.

	run_regularly(code[,dt,clock,when,...])
	Run abstract code in the group’s namespace.

	runner(*args,**kwds)
	

Details

	
custom_operation(*args, **kwds)[source]

	

	
resolve_all(identifiers, run_namespace, user_identifiers=None, additional_variables=None)[source]

	Resolve a list of identifiers. Calls Group._resolve() for each
identifier.

	Parameters:	identifiers : iterable of str

The names to look up.

run_namespace : dict-like, optional

An additional namespace that is used for variable lookup (if not
defined, the implicit namespace of local variables is used).

user_identifiers : iterable of str, optional

The names in identifiers that were provided by the user (i.e.
are part of user-specified equations, abstract code, etc.). Will
be used to determine when to issue namespace conflict warnings. If
not specified, will be assumed to be identical to identifiers.

additional_variables : dict-like, optional

An additional mapping of names to Variable objects that will be
checked before Group.variables.

	Returns:	variables : dict of Variable or Function

A mapping from name to Variable/Function object for each of the
names given in identifiers

Raises

	KeyError

	If one of the names in identifier cannot be resolved

	
run_regularly(code, dt=None, clock=None, when='start', order=0, name=None, codeobj_class=None)[source]

	Run abstract code in the group’s namespace. The created CodeRunner
object will be automatically added to the group, it therefore does not
need to be added to the network manually. However, a reference to the
object will be returned, which can be used to later remove it from the
group or to set it to inactive.

	Parameters:	code : str

The abstract code to run.

dt : Quantity, optional

The time step to use for this custom operation. Cannot be combined
with the clock argument.

clock : Clock, optional

The update clock to use for this operation. If neither a clock nor
the dt argument is specified, defaults to the clock of the group.

when : str, optional

When to run within a time step, defaults to the 'start' slot.

name : str, optional

A unique name, if non is given the name of the group appended with
‘run_regularly’, ‘run_regularly_1’, etc. will be used. If a
name is given explicitly, it will be used as given (i.e. the group
name will not be prepended automatically).

codeobj_class : class, optional

The CodeObject class to run code with. If not specified, defaults
to the group‘s codeobj_class attribute.

	Returns:	obj : CodeRunner

A reference to the object that will be run.

	
runner(*args, **kwds)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	groups package »

IndexWrapper class

(Shortest import: from brian2.groups.group import IndexWrapper)

	
class brian2.groups.group.IndexWrapper(group)[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Convenience class to allow access to the indices via indexing syntax. This
allows for example to get all indices for synapses originating from neuron
10 by writing synapses.indices[10, :] instead of
synapses._indices.((10, slice(None)).

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	groups package »

Indexing class

(Shortest import: from brian2.groups.group import Indexing)

	
class brian2.groups.group.Indexing(group, default_index='_idx')[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Object responsible for calculating flat index arrays from arbitrary group-
specific indices. Stores strong references to the necessary variables so
that basic indexing (i.e. slicing, integer arrays/values, ...) works even
when the respective VariableOwner no longer exists. Note that this object
does not handle string indexing.

Methods

	__call__([item,index_var])
	Return flat indices to index into state variables from arbitrary group specific indices.

Details

	
__call__(item=slice(None, None, None), index_var=None)[source]

	Return flat indices to index into state variables from arbitrary
group specific indices. In the default implementation, raises an error
for multidimensional indices and transforms slices into arrays.

	Parameters:	item : slice, array, int

The indices to translate.

	Returns:	indices : numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

The flat indices corresponding to the indices given in item.

See also

SynapticIndexing

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	groups package »

VariableOwner class

(Shortest import: from brian2 import VariableOwner)

	
class brian2.groups.group.VariableOwner(name)[source]

	Bases: brian2.core.names.Nameable

Mix-in class for accessing arrays by attribute.

TODO: Overwrite the __dir__ method to return the state variables
(should make autocompletion work)

Methods

	add_attribute(name)
	Add a new attribute to this group.

	check_variable_write(variable)
	Function that can be overwritten to raise an error if writing to a variable should not be allowed.

	get_states([vars,units,format,...])
	Return a copy of the current state variable values.

	set_states(values[,units,format,level])
	Set the state variables.

	state(name[,use_units,level])
	Return the state variable in a way that properly supports indexing in

Details

	
add_attribute(name)[source]

	Add a new attribute to this group. Using this method instead of simply
assigning to the new attribute name is necessary because Brian will
raise an error in that case, to avoid bugs passing unnoticed
(misspelled state variable name, un-declared state variable, ...).

	Parameters:	name : str

The name of the new attribute

Raises

	AttributeError

	If the name already exists as an attribute or a state variable.

	
check_variable_write(variable)[source]

	Function that can be overwritten to raise an error if writing to a
variable should not be allowed. Note that this does not deal with
incorrect writes that are general to all kind of variables (incorrect
units, writing to a read-only variable, etc.). This function is only
used for type-specific rules, e.g. for raising an error in Synapses
when writing to a synaptic variable before any connect
call.

By default this function does nothing.

	Parameters:	variable : Variable

The variable that the user attempts to set.

	
get_states(vars=None, units=True, format='dict', subexpressions=False, read_only_variables=True, level=0)[source]

	Return a copy of the current state variable values. The returned arrays
are copies of the actual arrays that store the state variable values,
therefore changing the values in the returned dictionary will not affect
the state variables.

	Parameters:	vars : list of str, optional

The names of the variables to extract. If not specified, extract
all state variables (except for internal variables, i.e. names that
start with '_'). If the subexpressions argument is True,
the current values of all subexpressions are returned as well.

units : bool, optional

Whether to include the physical units in the return value. Defaults
to True.

format : str, optional

The output format. Defaults to 'dict'.

subexpressions: bool, optional :

Whether to return subexpressions when no list of variable names
is given. Defaults to False. This argument is ignored if an
explicit list of variable names is given in vars.

read_only_variables : bool, optional

Whether to return read-only variables (e.g. the number of neurons,
the time, etc.). Setting it to False will assure that the
returned state can later be used with set_states. Defaults to
True.

level : int, optional

How much higher to go up the stack to resolve external variables.
Only relevant if extracting subexpressions that refer to external
variables.

	Returns:	values : dict or specified format

The variables specified in vars, in the specified format.

	
set_states(values, units=True, format='dict', level=0)[source]

	Set the state variables.

	Parameters:	values : depends on format

The values according to format.

units : bool, optional

Whether the values include physical units. Defaults to True.

format : str, optional

The format of values. Defaults to 'dict'

level : int, optional

How much higher to go up the stack to resolve external variables.
Only relevant when using string expressions to set values.

	
state(name, use_units=True, level=0)[source]

	Return the state variable in a way that properly supports indexing in
the context of this group

	Parameters:	name : str

The name of the state variable

use_units : bool, optional

Whether to use the state variable’s unit.

level : int, optional

How much farther to go down in the stack to find the namespace.

Returns :

——- :

var : VariableView or scalar value

The state variable’s value that can be indexed (for non-scalar
values).

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	groups package »

get_dtype function

(Shortest import: from brian2.groups.group import get_dtype)

	
brian2.groups.group.get_dtype(equation, dtype=None)[source]

	Helper function to interpret the dtype [http://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype] keyword argument in NeuronGroup
etc.

	Parameters:	equation : SingleEquation

The equation for which a dtype should be returned

dtype : dtype [http://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype] or dict, optional

Either the dtype [http://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype] to be used as a default dtype for all float variables
(instead of the core.default_float_dtype preference) or a
dictionary stating the dtype [http://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype] for some variables; all other variables
will use the preference default

	Returns:	d : dtype [http://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype]

The dtype for the variable defined in equation

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	groups package »

NeuronGroup class

(Shortest import: from brian2 import NeuronGroup)

	
class brian2.groups.neurongroup.NeuronGroup(N, model, method=('linear', 'euler', 'heun'), threshold=None, reset=None, refractory=False, events=None, namespace=None, dtype=None, dt=None, clock=None, order=0, name='neurongroup*', codeobj_class=None)[source]

	Bases: brian2.groups.group.Group, brian2.core.spikesource.SpikeSource

A group of neurons.

	Parameters:	N : int

Number of neurons in the group.

model : (str, Equations)

The differential equations defining the group

method : (str, function), optional

The numerical integration method. Either a string with the name of a
registered method (e.g. “euler”) or a function that receives an
Equations object and returns the corresponding abstract code. If no
method is specified, a suitable method will be chosen automatically.

threshold : str, optional

The condition which produces spikes. Should be a single line boolean
expression.

reset : str, optional

The (possibly multi-line) string with the code to execute on reset.

refractory : {str, Quantity}, optional

Either the length of the refractory period (e.g. 2*ms), a string
expression that evaluates to the length of the refractory period
after each spike (e.g. '(1 + rand())*ms'), or a string expression
evaluating to a boolean value, given the condition under which the
neuron stays refractory after a spike (e.g. 'v > -20*mV')

events : dict, optional

User-defined events in addition to the “spike” event defined by the
threshold. Has to be a mapping of strings (the event name) to
strings (the condition) that will be checked.

namespace: dict, optional :

A dictionary mapping variable/function names to the respective objects.
If no namespace is given, the “implicit” namespace, consisting of
the local and global namespace surrounding the creation of the class,
is used.

dtype : (dtype [http://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype], dict [https://docs.python.org/2/library/stdtypes.html#dict]), optional

The numpy.dtype [http://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype] that will be used to store the values, or a
dictionary specifying the type for variable names. If a value is not
provided for a variable (or no value is provided at all), the preference
setting core.default_float_dtype is used.

codeobj_class : class, optional

The CodeObject class to run code with.

dt : Quantity, optional

The time step to be used for the simulation. Cannot be combined with
the clock argument.

clock : Clock, optional

The update clock to be used. If neither a clock, nor the dt argument
is specified, the defaultclock will be used.

order : int, optional

The priority of of this group for operations occurring at the same time
step and in the same scheduling slot. Defaults to 0.

name : str, optional

A unique name for the group, otherwise use neurongroup_0, etc.

Notes

NeuronGroup contains a StateUpdater, Thresholder and Resetter, and
these are run at the ‘groups’, ‘thresholds’ and ‘resets’ slots (i.e. the
values of their when attribute take these values). The order
attribute will be passed down to the contained objects but can be set
individually by setting the order attribute of the state_updater,
thresholder and resetter attributes, respectively.

Attributes

	_refractory
	The refractory condition or timespan

	event_codes
	Code that is triggered on events (e.g.

	events
	Events supported by this group

	method_choice
	The state update method selected by the user

	namespace
	The group-specific namespace

	resetter
	Reset neurons which have spiked (or perform arbitrary actions for

	spikes
	The spikes returned by the most recent thresholding operation.

	state_updater
	Performs numerical integration step

	subexpression_updater
	Update the “constant over a time step” subexpressions

	thresholder
	Checks the spike threshold (or abitrary user-defined events)

	user_equations
	The original equations as specified by the user (i.e.

Methods

	before_run([run_namespace])
	

	run_on_event(event,code[,when,order])
	Run code triggered by a custom-defined event (see NeuronGroup documentation for the specification of events).The created Resetter object will be automatically added to the group, it therefore does not need to be added to the network manually.

	set_event_schedule(event[,when,order])
	Change the scheduling slot for checking the condition of an event.

	state(name[,use_units,level])
	

Details

	
_refractory

	The refractory condition or timespan

	
event_codes

	Code that is triggered on events (e.g. reset)

	
events

	Events supported by this group

	
method_choice

	The state update method selected by the user

	
namespace

	The group-specific namespace

	
resetter

	Reset neurons which have spiked (or perform arbitrary actions for
user-defined events)

	
spikes

	The spikes returned by the most recent thresholding operation.

	
state_updater

	Performs numerical integration step

	
subexpression_updater

	Update the “constant over a time step” subexpressions

	
thresholder

	Checks the spike threshold (or abitrary user-defined events)

	
user_equations

	The original equations as specified by the user (i.e. without
the multiplied int(not_refractory) term for equations marked as
(unless refractory))

	
before_run(run_namespace=None)[source]

	

	
run_on_event(event, code, when='after_resets', order=None)[source]

	Run code triggered by a custom-defined event (see NeuronGroup
documentation for the specification of events).The created Resetter
object will be automatically added to the group, it therefore does not
need to be added to the network manually. However, a reference to the
object will be returned, which can be used to later remove it from the
group or to set it to inactive.

	Parameters:	event : str

The name of the event that should trigger the code

code : str

The code that should be executed

when : str, optional

The scheduling slot that should be used to execute the code.
Defaults to 'after_resets'.

order : int, optional

The order for operations in the same scheduling slot. Defaults to
the order of the NeuronGroup.

	Returns:	obj : Resetter

A reference to the object that will be run.

	
set_event_schedule(event, when='after_thresholds', order=None)[source]

	Change the scheduling slot for checking the condition of an event.

	Parameters:	event : str

The name of the event for which the scheduling should be changed

when : str, optional

The scheduling slot that should be used to check the condition.
Defaults to 'after_thresholds'.

order : int, optional

The order for operations in the same scheduling slot. Defaults to
the order of the NeuronGroup.

	
state(name, use_units=True, level=0)[source]

	

Tutorials and examples using this

	Tutorial 1-intro-to-brian-neurons

	Tutorial 2-intro-to-brian-synapses

	Example reliability

	Example CUBA

	Example IF_curve_Hodgkin_Huxley

	Example non_reliability

	Example adaptive_threshold

	Example phase_locking

	Example IF_curve_LIF

	Example COBAHH

	Example standalone/cuba_openmp

	Example standalone/STDP_standalone

	Example synapses/gapjunctions

	Example synapses/nonlinear

	Example synapses/synapses

	Example synapses/STDP

	Example synapses/jeffress

	Example synapses/state_variables

	Example synapses/spatial_connections

	Example synapses/licklider

	Example synapses/efficient_gaussian_connectivity

	Example frompapers/Diesmann_et_al_1999

	Example frompapers/Rothman_Manis_2003

	Example frompapers/Clopath_et_al_2010_no_homeostasis

	Example frompapers/Wang_Buszaki_1996

	Example frompapers/Brunel_Hakim_1999

	Example frompapers/Clopath_et_al_2010_homeostasis

	Example frompapers/Brette_Gerstner_2005

	Example frompapers/Vogels_et_al_2011

	Example frompapers/Rossant_et_al_2011bis

	Example frompapers/Sturzl_et_al_2000

	Example frompapers/Touboul_Brette_2008

	Example frompapers/Brette_2004

	Example frompapers/Brette_Guigon_2003

	Example frompapers/Kremer_et_al_2011_barrel_cortex

	Example advanced/opencv_movie

	Example advanced/stochastic_odes

	Example compartmental/bipolar_with_inputs

	Example compartmental/bipolar_with_inputs2

	Example compartmental/lfp

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	groups package »

Resetter class

(Shortest import: from brian2.groups.neurongroup import Resetter)

	
class brian2.groups.neurongroup.Resetter(group, when='resets', order=None, event='spike')[source]

	Bases: brian2.groups.group.CodeRunner

The CodeRunner that applies the reset statement(s) to the state
variables of neurons that have spiked in this timestep.

Methods

	update_abstract_code(run_namespace)
	

Details

	
update_abstract_code(run_namespace)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	groups package »

StateUpdater class

(Shortest import: from brian2.groups.neurongroup import StateUpdater)

	
class brian2.groups.neurongroup.StateUpdater(group, method)[source]

	Bases: brian2.groups.group.CodeRunner

The CodeRunner that updates the state variables of a NeuronGroup
at every timestep.

Methods

	update_abstract_code(run_namespace)
	

Details

	
update_abstract_code(run_namespace)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	groups package »

SubexpressionUpdater class

(Shortest import: from brian2.groups.neurongroup import SubexpressionUpdater)

	
class brian2.groups.neurongroup.SubexpressionUpdater(group, subexpressions, when='before_start')[source]

	Bases: brian2.groups.group.CodeRunner

The CodeRunner that updates the state variables storing the values of
subexpressions that have been marked as “constant over dt”.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	groups package »

Thresholder class

(Shortest import: from brian2.groups.neurongroup import Thresholder)

	
class brian2.groups.neurongroup.Thresholder(group, when='thresholds', event='spike')[source]

	Bases: brian2.groups.group.CodeRunner

The CodeRunner that applies the threshold condition to the state
variables of a NeuronGroup at every timestep and sets its spikes
and refractory_until attributes.

Methods

	update_abstract_code(run_namespace)
	

Details

	
update_abstract_code(run_namespace)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	groups package »

Subgroup class

(Shortest import: from brian2 import Subgroup)

	
class brian2.groups.subgroup.Subgroup(source, start, stop, name=None)[source]

	Bases: brian2.groups.group.Group, brian2.core.spikesource.SpikeSource

Subgroup of any Group

	Parameters:	source : SpikeSource

The source object to subgroup.

start, stop : int

Select only spikes with indices from start to stop-1.

name : str, optional

A unique name for the group, or use source.name+'_subgroup_0', etc.

Attributes

	spikes
	

Details

	
spikes

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

importexport package

Package providing import/export support.

Exported members:
ImportExport

dictlike module

Module providing DictImportExport and PandasImportExport (requiring a
working installation of pandas).

Classes

	DictImportExport
	An importer/exporter for variables in format of dict of numpy arrays.

	PandasImportExport
	An importer/exporter for variables in pandas DataFrame format.

importexport module

Module defining the ImportExport class that enables getting state variable
data in and out of groups in various formats (see Group.get_states() and
Group.set_states()).

Classes

	ImportExport
	Class for registering new import/export methods (via static methods).

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	importexport package »

DictImportExport class

(Shortest import: from brian2.importexport import DictImportExport)

	
class brian2.importexport.dictlike.DictImportExport[source]

	Bases: brian2.importexport.importexport.ImportExport

An importer/exporter for variables in format of dict of numpy arrays.

Attributes

	name
	

Methods

	export_data(group,variables[,units,level])
	

	import_data(group,data[,units,level])
	

Details

	
name

	

	
static export_data(group, variables, units=True, level=0)[source]

	

	
static import_data(group, data, units=True, level=0)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	importexport package »

PandasImportExport class

(Shortest import: from brian2.importexport import PandasImportExport)

	
class brian2.importexport.dictlike.PandasImportExport[source]

	Bases: brian2.importexport.importexport.ImportExport

An importer/exporter for variables in pandas DataFrame format.

Attributes

	name
	

Methods

	export_data(group,variables[,units,level])
	

	import_data(group,data[,units,level])
	

Details

	
name

	

	
static export_data(group, variables, units=True, level=0)[source]

	

	
static import_data(group, data, units=True, level=0)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	importexport package »

ImportExport class

(Shortest import: from brian2 import ImportExport)

	
class brian2.importexport.importexport.ImportExport[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Class for registering new import/export methods (via static methods). Also
the base class that should be extended for such methods
(ImportExport.export_data, ImportExport.import_data, and
ImportExport.name have to be overwritten).

See also

VariableOwner.get_states(), VariableOwner.set_states()

Attributes

	methods
	A dictionary mapping import/export methods names to ImportExport objects

	name
	Abstract property giving a method name.

Methods

	export_data(group,variables)
	Asbtract static export data method with two obligatory parameters.

	import_data(group,data)
	Import and set state variables.

	register(importerexporter)
	Register a import/export method.

Details

	
methods

	A dictionary mapping import/export methods names to ImportExport objects

	
name

	Abstract property giving a method name.

	
static export_data(group, variables)[source]

	Asbtract static export data method with two obligatory parameters.
It should return a copy of the current state variable values. The
returned arrays are copies of the actual arrays that store the state
variable values, therefore changing the values in the returned
dictionary will not affect the state variables.

	Parameters:	group : Group

Group object.

variables : list of str

The names of the variables to extract.

	
static import_data(group, data)[source]

	Import and set state variables.

	Parameters:	group : Group

Group object.

data : dict_like

Data to import with variable names.

	
static register(importerexporter)[source]

	Register a import/export method. Registered methods can be referred to
via their name.

	Parameters:	importerexporter : ImportExport

The importerexporter object, e.g. an DictImportExport.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

input package

Classes for providing external input to a network.

binomial module

Implementation of BinomialFunction

Exported members:
BinomialFunction

Classes

	BinomialFunction(n,p[,approximate,name])
	A function that generates samples from a binomial distribution.

poissongroup module

Implementation of PoissonGroup.

Exported members:
PoissonGroup

Classes

	PoissonGroup(*args,**kwds)
	Poisson spike source

poissoninput module

Implementation of PoissonInput.

Exported members:
PoissonInput

Classes

	PoissonInput(target,target_var,N,rate,weight)
	Adds independent Poisson input to a target variable of a Group.

spikegeneratorgroup module

Module defining SpikeGeneratorGroup.

Exported members:
SpikeGeneratorGroup

Classes

	SpikeGeneratorGroup(N,indices,times[,dt,...])
	A group emitting spikes at given times.

timedarray module

Implementation of TimedArray.

Exported members:
TimedArray

Classes

	TimedArray(values,dt[,name])
	A function of time built from an array of values.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	input package »

BinomialFunction class

(Shortest import: from brian2 import BinomialFunction)

	
class brian2.input.binomial.BinomialFunction(n, p, approximate=True, name='_binomial*')[source]

	Bases: brian2.core.functions.Function, brian2.core.names.Nameable

A function that generates samples from a binomial distribution.

	Parameters:	n : int

Number of samples

p : float

Probablility

approximate : bool, optional

Whether to approximate the binomial with a normal distribution if
\(n p > 5 \wedge n (1 - p) > 5\). Defaults to True.

Attributes

	implementations
	Container for implementing functions for different targets

Details

	
implementations

	Container for implementing functions for different targets
This container can be extended by other codegeneration targets/devices
The key has to be the name of the target, the value a function
that takes three parameters (n, p, use_normal) and returns a tuple of
(code, dependencies)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	input package »

PoissonGroup class

(Shortest import: from brian2 import PoissonGroup)

	
class brian2.input.poissongroup.PoissonGroup(*args, **kwds)[source]

	Bases: brian2.groups.group.Group, brian2.core.spikesource.SpikeSource

Poisson spike source

	Parameters:	N : int

Number of neurons

rates : Quantity, str

Single rate, array of rates of length N, or a string expression
evaluating to a rate. This string expression will be evaluated at every
time step, it can therefore be time-dependent (e.g. refer to a
TimedArray).

dt : Quantity, optional

The time step to be used for the simulation. Cannot be combined with
the clock argument.

clock : Clock, optional

The update clock to be used. If neither a clock, nor the dt argument
is specified, the defaultclock will be used.

when : str, optional

When to run within a time step, defaults to the 'thresholds' slot.

order : int, optional

The priority of of this group for operations occurring at the same time
step and in the same scheduling slot. Defaults to 0.

name : str, optional

Unique name, or use poissongroup, poissongroup_1, etc.

Attributes

	spikes
	The spikes returned by the most recent thresholding operation.

Details

	
spikes

	The spikes returned by the most recent thresholding operation.

Tutorials and examples using this

	Example adaptive_threshold

	Example standalone/STDP_standalone

	Example synapses/STDP

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	input package »

PoissonInput class

(Shortest import: from brian2 import PoissonInput)

	
class brian2.input.poissoninput.PoissonInput(target, target_var, N, rate, weight, when='synapses', order=0)[source]

	Bases: brian2.groups.group.CodeRunner

Adds independent Poisson input to a target variable of a Group. For large
numbers of inputs, this is much more efficient than creating a
PoissonGroup. The synaptic events are generated randomly during the
simulation and are not preloaded and stored in memory. All the inputs must
target the same variable, have the same frequency and same synaptic weight.
All neurons in the target Group receive independent realizations of
Poisson spike trains.

	Parameters:	target : Group

The group that is targeted by this input.

target_var : str

The variable of target that is targeted by this input.

N : int

The number of inputs

rate : Quantity

The rate of each of the inputs

weight : str or Quantity

Either a string expression (that can be interpreted in the context of
target) or a Quantity that will be added for every event to
the target_var of target. The unit has to match the unit of
target_var

when : str, optional

When to update the target variable during a time step. Defaults to
the synapses scheduling slot.

order : int, optional

The priority of of the update compared to other operations occurring at
the same time step and in the same scheduling slot. Defaults to 0.

Attributes

	N
	The number of inputs

	rate
	The rate of each input

Methods

	before_run(run_namespace)
	

Details

	
N

	The number of inputs

	
rate

	The rate of each input

	
before_run(run_namespace)[source]

	

Tutorials and examples using this

	Example frompapers/Rossant_et_al_2011bis

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	input package »

SpikeGeneratorGroup class

(Shortest import: from brian2 import SpikeGeneratorGroup)

	
class brian2.input.spikegeneratorgroup.SpikeGeneratorGroup(N, indices, times, dt=None, clock=None, period=1e100*second, when='thresholds', order=0, sorted=False, name='spikegeneratorgroup*', codeobj_class=None)[source]

	Bases: brian2.groups.group.Group, brian2.groups.group.CodeRunner, brian2.core.spikesource.SpikeSource

A group emitting spikes at given times.

	Parameters:	N : int

The number of “neurons” in this group

indices : array of integers

The indices of the spiking cells

times : Quantity

The spike times for the cells given in indices. Has to have the
same length as indices.

period : Quantity, optional

If this is specified, it will repeat spikes with this period.

dt : Quantity, optional

The time step to be used for the simulation. Cannot be combined with
the clock argument.

clock : Clock, optional

The update clock to be used. If neither a clock, nor the dt argument
is specified, the defaultclock will be used.

when : str, optional

When to run within a time step, defaults to the 'thresholds' slot.

order : int, optional

The priority of of this group for operations occurring at the same time
step and in the same scheduling slot. Defaults to 0.

sorted : bool, optional

Whether the given indices and times are already sorted. Set to True
if your events are already sorted (first by spike time, then by index),
this can save significant time at construction if your arrays contain
large numbers of spikes. Defaults to False.

Notes

	In a time step, SpikeGeneratorGroup emits all spikes that happened
at \(t-dt < t_{spike} \leq t\). This might lead to unexpected
or missing spikes if you change the time step dt between runs.

	SpikeGeneratorGroup does not currently raise any warning if a neuron
spikes more that once during a time step, but other code (e.g. for
synaptic propagation) might assume that neurons only spike once per
time step and will therefore not work properly.

	If sorted [https://docs.python.org/2/library/functions.html#sorted] is set to True, the given arrays will not be copied
(only affects runtime mode)..

Attributes

	_previous_dt
	Remember the dt we used the last time when we checked the spike bins

	_spikes_changed
	“Dirty flag” that will be set when spikes are changed after the

	spikes
	The spikes returned by the most recent thresholding operation.

Methods

	before_run(run_namespace)
	

	set_spikes(indices,times[,period,sorted])
	Change the spikes that this group will generate.

Details

	
_previous_dt

	Remember the dt we used the last time when we checked the spike bins
to not repeat the work for multiple runs with the same dt

	
_spikes_changed

	“Dirty flag” that will be set when spikes are changed after the
before_run check

	
spikes

	The spikes returned by the most recent thresholding operation.

	
before_run(run_namespace)[source]

	

	
set_spikes(indices, times, period=1e100*second, sorted=False)

	Change the spikes that this group will generate.

This can be used to set the input for a second run of a model based on
the output of a first run (if the input for the second run is already
known before the first run, then all the information should simply be
included in the initial SpikeGeneratorGroup initializer call,
instead).

	Parameters:	indices : array of integers

The indices of the spiking cells

times : Quantity

The spike times for the cells given in indices. Has to have the
same length as indices.

period : Quantity, optional

If this is specified, it will repeat spikes with this period.

sorted : bool, optional

Whether the given indices and times are already sorted. Set to
True if your events are already sorted (first by spike time,
then by index), this can save significant time at construction if
your arrays contain large numbers of spikes. Defaults to False.

Tutorials and examples using this

	Example frompapers/Diesmann_et_al_1999

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	input package »

TimedArray class

(Shortest import: from brian2 import TimedArray)

	
class brian2.input.timedarray.TimedArray(values, dt, name=None)[source]

	Bases: brian2.core.functions.Function, brian2.core.names.Nameable

A function of time built from an array of values. The returned object can
be used as a function, including in model equations etc. The resulting
function has to be called as funcion_name(t) if the provided value array
is one-dimensional and as function_name(t, i) if it is two-dimensional.

	Parameters:	values : ndarray or Quantity

An array of values providing the values at various points in time. This
array can either be one- or two-dimensional. If it is two-dimensional
it’s first dimension should be the time.

dt : Quantity

The time distance between values in the values array.

name : str, optional

A unique name for this object, see Nameable for details. Defaults
to '_timedarray*'.

Notes

For time values corresponding to elements outside of the range of values
provided, the first respectively last element is returned.

Examples

>>> from brian2 import *
>>> ta = TimedArray([1, 2, 3, 4] * mV, dt=0.1*ms)
>>> print(ta(0.3*ms))
4. mV
>>> G = NeuronGroup(1, 'v = ta(t) : volt')
>>> mon = StateMonitor(G, 'v', record=True)
>>> net = Network(G, mon)
>>> net.run(1*ms)
...
>>> print(mon[0].v)
[1. 2. 3. 4. 4. 4. 4. 4. 4. 4.] mV
>>> ta2d = TimedArray([[1, 2], [3, 4], [5, 6]]*mV, dt=0.1*ms)
>>> G = NeuronGroup(4, 'v = ta2d(t, i%2) : volt')
>>> mon = StateMonitor(G, 'v', record=True)
>>> net = Network(G, mon)
>>> net.run(0.2*ms)
...
>>> print mon.v[:]
[[1. 3.]
 [2. 4.]
 [1. 3.]
 [2. 4.]] mV

Methods

	is_locally_constant(dt)
	

Details

	
is_locally_constant(dt)[source]

	

Tutorials and examples using this

	Example synapses/jeffress

	Example frompapers/Sturzl_et_al_2000

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

memory package

dynamicarray module

TODO: rewrite this (verbatim from Brian 1.x), more efficiency

Exported members:
DynamicArray, DynamicArray1D

Classes

	DynamicArray(shape[,dtype,factor,...])
	An N-dimensional dynamic array class

	DynamicArray1D(shape[,dtype,factor,...])
	Version of DynamicArray with specialised resize method designed to be more efficient.

Functions

	getslices(shape)
	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	memory package »

DynamicArray class

(Shortest import: from brian2.memory.dynamicarray import DynamicArray)

	
class brian2.memory.dynamicarray.DynamicArray(shape, dtype=<type 'float'>, factor=2, use_numpy_resize=False, refcheck=True)[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

An N-dimensional dynamic array class

The array can be resized in any dimension, and the class will handle
allocating a new block of data and copying when necessary.

Warning

The data will NOT be contiguous for >1D arrays. To ensure this, you will
either need to use 1D arrays, or to copy the data, or use the shrink
method with the current size (although note that in both cases you
negate the memory and efficiency benefits of the dynamic array).

Initialisation arguments:

	shape, dtype

	The shape and dtype of the array to initialise, as in Numpy. For 1D
arrays, shape can be a single int, for ND arrays it should be a tuple.

	factor

	The resizing factor (see notes below). Larger values tend to lead to
more wasted memory, but more computationally efficient code.

	use_numpy_resize, refcheck

	Normally, when you resize the array it creates a new array and copies
the data. Sometimes, it is possible to resize an array without a copy,
and if this option is set it will attempt to do this. However, this can
cause memory problems if you are not careful so the option is off by
default. You need to ensure that you do not create slices of the array
so that no references to the memory exist other than the main array
object. If you are sure you know what you’re doing, you can switch this
reference check off. Note that resizing in this way is only done if you
resize in the first dimension.

The array is initialised with zeros. The data is stored in the attribute
data which is a Numpy array.

Some numpy methods are implemented and can work directly on the array object,
including len(arr), arr[...] and arr[...]=.... In other cases,
use the data attribute.

Notes

The dynamic array returns a data attribute which is a view on the larger
_data attribute. When a resize operation is performed, and a specific
dimension is enlarged beyond the size in the _data attribute, the size
is increased to the larger of cursize*factor and newsize. This
ensures that the amortized cost of increasing the size of the array is O(1).

Examples

>>> x = DynamicArray((2, 3), dtype=int)
>>> x[:] = 1
>>> x.resize((3, 3))
>>> x[:] += 1
>>> x.resize((3, 4))
>>> x[:] += 1
>>> x.resize((4, 4))
>>> x[:] += 1
>>> x.data[:] = x.data**2
>>> x.data
array([[16, 16, 16, 4],
 [16, 16, 16, 4],
 [9, 9, 9, 4],
 [1, 1, 1, 1]])

Methods

	resize(newshape)
	Resizes the data to the new shape, which can be a different size to the current data, but should have the same rank, i.e.

	resize_along_first(newshape)
	

	shrink(newshape)
	Reduces the data to the given shape, which should be smaller than the current shape.

Details

	
resize(newshape)[source]

	Resizes the data to the new shape, which can be a different size to the
current data, but should have the same rank, i.e. same number of
dimensions.

	
resize_along_first(newshape)[source]

	

	
shrink(newshape)[source]

	Reduces the data to the given shape, which should be smaller than the
current shape. resize() can also be used with smaller values, but
it will not shrink the allocated memory, whereas shrink will
reallocate the memory. This method should only be used infrequently, as
if it is used frequently it will negate the computational efficiency
benefits of the DynamicArray.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	memory package »

DynamicArray1D class

(Shortest import: from brian2.memory.dynamicarray import DynamicArray1D)

	
class brian2.memory.dynamicarray.DynamicArray1D(shape, dtype=<type 'float'>, factor=2, use_numpy_resize=False, refcheck=True)[source]

	Bases: brian2.memory.dynamicarray.DynamicArray

Version of DynamicArray with specialised resize method designed
to be more efficient.

Methods

	resize(newshape)
	

Details

	
resize(newshape)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	memory package »

getslices function

(Shortest import: from brian2.memory.dynamicarray import getslices)

	
brian2.memory.dynamicarray.getslices(shape)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

monitors package

ratemonitor module

Exported members:
PopulationRateMonitor

Classes

	PopulationRateMonitor(source[,name,...])
	Record instantaneous firing rates, averaged across neurons from a NeuronGroup or other spike source.

spikemonitor module

Exported members:
EventMonitor, SpikeMonitor

Classes

	EventMonitor(source,event[,variables,...])
	Record events from a NeuronGroup or another event source.

	SpikeMonitor(source[,variables,record,...])
	Record spikes from a NeuronGroup or other spike source.

statemonitor module

Exported members:
StateMonitor

Classes

	StateMonitor(source,variables,record[,...])
	Record values of state variables during a run

	StateMonitorView(monitor,item)
	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	monitors package »

PopulationRateMonitor class

(Shortest import: from brian2 import PopulationRateMonitor)

	
class brian2.monitors.ratemonitor.PopulationRateMonitor(source, name='ratemonitor*', codeobj_class=None)[source]

	Bases: brian2.groups.group.Group, brian2.groups.group.CodeRunner

Record instantaneous firing rates, averaged across neurons from a
NeuronGroup or other spike source.

	Parameters:	source : (NeuronGroup, SpikeSource)

The source of spikes to record.

name : str, optional

A unique name for the object, otherwise will use
source.name+'_ratemonitor_0', etc.

codeobj_class : class, optional

The CodeObject class to run code with.

Notes

Currently, this monitor can only monitor the instantaneous firing rates at
each time step of the source clock. Any binning/smoothing of the firing
rates has to be done manually afterwards.

Attributes

	source
	The group we are recording from

Methods

	reinit()
	Clears all recorded rates

	resize(new_size)
	

	smooth_rate(self[,window,width])
	Return a smooth version of the population rate.

Details

	
source

	The group we are recording from

	
reinit()[source]

	Clears all recorded rates

	
resize(new_size)[source]

	

	
smooth_rate(self, window='gaussian', width=None)

	Return a smooth version of the population rate.

	Parameters:	window : str, ndarray

The window to use for smoothing. Can be a string to chose a
predefined window('flat' for a rectangular, and 'gaussian'
for a Gaussian-shaped window). In this case the width of the window
is determined by the width argument. Note that for the Gaussian
window, the width parameter specifies the standard deviation of
the Gaussian, the width of the actual window is 4*width + dt
(rounded to the nearest dt). For the flat window, the width is
rounded to the nearest odd multiple of dt to avoid shifting the rate
in time.
Alternatively, an arbitrary window can be given as a numpy array
(with an odd number of elements). In this case, the width in units
of time depends on the dt of the simulation, and no width
argument can be specified. The given window will be automatically
normalized to a sum of 1.

width : Quantity, optional

The width of the window in seconds (for a predefined window).

	Returns:	rate : Quantity

The population rate in Hz, smoothed with the given window. Note that
the rates are smoothed and not re-binned, i.e. the length of the
returned array is the same as the length of the rate attribute
and can be plotted against the PopulationRateMonitor ‘s t
attribute.

Tutorials and examples using this

	Example frompapers/Brunel_Hakim_1999

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	monitors package »

EventMonitor class

(Shortest import: from brian2 import EventMonitor)

	
class brian2.monitors.spikemonitor.EventMonitor(source, event, variables=None, record=True, when=None, order=None, name='eventmonitor*', codeobj_class=None)[source]

	Bases: brian2.groups.group.Group, brian2.groups.group.CodeRunner

Record events from a NeuronGroup or another event source.

The recorded events can be accessed in various ways:
the attributes i and t store all the indices
and event times, respectively. Alternatively, you can get a dictionary
mapping neuron indices to event trains, by calling the event_trains
method.

	Parameters:	source : NeuronGroup, SpikeSource

The source of events to record.

event : str

The name of the event to record

variables : str or sequence of str, optional

Which variables to record at the time of the event (in addition to the
index of the neuron). Can be the name of a variable or a list of names.

record : bool, optional

Whether or not to record each event in i and t (the count will
always be recorded). Defaults to True.

when : str, optional

When to record the events, by default records events in the same slot
where the event is emitted.

order : int, optional

The priority of of this group for operations occurring at the same time
step and in the same scheduling slot. Defaults to the order where the
event is emitted + 1, i.e. it will be recorded directly afterwards.

name : str, optional

A unique name for the object, otherwise will use
source.name+'_eventmonitor_0', etc.

codeobj_class : class, optional

The CodeObject class to run code with.

See also

SpikeMonitor

Attributes

	event
	The event that we are listening to

	it
	Returns the pair (i, t).

	it_
	Returns the pair (i, t_).

	num_events
	Returns the total number of recorded events.

	record
	Whether to record times and indices of events

	record_variables
	The additional variables that will be recorded

	source
	The source we are recording from

Methods

	all_values()
	Return a dictionary mapping recorded variable names (including t) to a dictionary mapping neuron indices to arrays of variable values at the time of the events (sorted by time).

	event_trains()
	Return a dictionary mapping event indices to arrays of event times.

	reinit()
	Clears all recorded spikes

	resize(new_size)
	

	values(var)
	Return a dictionary mapping neuron indices to arrays of variable values at the time of the events (sorted by time).

Details

	
event

	The event that we are listening to

	
it

	Returns the pair (i, t).

	
it_

	Returns the pair (i, t_).

	
num_events

	Returns the total number of recorded events.

	
record

	Whether to record times and indices of events

	
record_variables

	The additional variables that will be recorded

	
source

	The source we are recording from

	
all_values()[source]

	Return a dictionary mapping recorded variable names (including t)
to a dictionary mapping neuron indices to arrays of variable values at
the time of the events (sorted by time). This is equivalent to (but more
efficient than) calling values for each variable and storing the
result in a dictionary.

	Returns:	all_values : dict

Dictionary mapping variable names to dictionaries which themselves
are mapping neuron indicies to arrays of variable values at the
time of the events.

Examples

>>> from brian2 import *
>>> G = NeuronGroup(2, """dv/dt = 100*Hz : 1
... v_th : 1""", threshold='v>v_th', reset='v=0')
>>> G.v_th = [0.5, 1]
>>> mon = EventMonitor(G, event='spike', variables='v')
>>> run(20*ms)
>>> all_values = mon.all_values()
>>> all_values['t'][0]
array([4.9, 9.9, 14.9, 19.9]) * msecond
>>> all_values['v'][0]
array([0.5, 0.5, 0.5, 0.5])

	
event_trains()[source]

	Return a dictionary mapping event indices to arrays of event times.
Equivalent to calling values('t').

	Returns:	event_trains : dict

Dictionary that stores an array with the event times for each
neuron index.

See also

SpikeMonitor.spike_trains()

	
reinit()[source]

	Clears all recorded spikes

	
resize(new_size)[source]

	

	
values(var)[source]

	Return a dictionary mapping neuron indices to arrays of variable values
at the time of the events (sorted by time).

	Parameters:	var : str

The name of the variable.

	Returns:	values : dict

Dictionary mapping each neuron index to an array of variable
values at the time of the events

Examples

>>> from brian2 import *
>>> G = NeuronGroup(2, """dv/dt = 100*Hz : 1
... v_th : 1""", threshold='v>v_th', reset='v=0')
>>> G.v_th = [0.5, 1]
>>> mon = EventMonitor(G, event='spike', variables='v')
>>> run(20*ms)
>>> v_values = mon.values('v')
>>> v_values[0]
array([0.5, 0.5, 0.5, 0.5])
>>> v_values[1]
array([1., 1.])

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	monitors package »

SpikeMonitor class

(Shortest import: from brian2 import SpikeMonitor)

	
class brian2.monitors.spikemonitor.SpikeMonitor(source, variables=None, record=True, when=None, order=None, name='spikemonitor*', codeobj_class=None)[source]

	Bases: brian2.monitors.spikemonitor.EventMonitor

Record spikes from a NeuronGroup or other spike source.

The recorded spikes can be accessed in various ways (see Examples below):
the attributes i and t store all the indices
and spike times, respectively. Alternatively, you can get a dictionary
mapping neuron indices to spike trains, by calling the spike_trains
method. If you record additional variables with the variables argument,
these variables can be accessed by their name (see Examples).

	Parameters:	source : (NeuronGroup, SpikeSource)

The source of spikes to record.

variables : str or sequence of str, optional

Which variables to record at the time of the spike (in addition to the
index of the neuron). Can be the name of a variable or a list of names.

record : bool, optional

Whether or not to record each spike in i and t (the count will
always be recorded). Defaults to True.

when : str, optional

When to record the events, by default records events in the same slot
where the event is emitted.

order : int, optional

The priority of of this group for operations occurring at the same time
step and in the same scheduling slot. Defaults to the order where the
event is emitted + 1, i.e. it will be recorded directly afterwards.

name : str, optional

A unique name for the object, otherwise will use
source.name+'_spikemonitor_0', etc.

codeobj_class : class, optional

The CodeObject class to run code with.

Examples

>>> from brian2 import *
>>> spikes = SpikeGeneratorGroup(3, [0, 1, 2], [0, 1, 2]*ms)
>>> spike_mon = SpikeMonitor(spikes)
>>> net = Network(spikes, spike_mon)
>>> net.run(3*ms)
>>> print(spike_mon.i[:])
[0 1 2]
>>> print(spike_mon.t[:])
[0. 1. 2.] ms
>>> print(spike_mon.t_[:])
[0. 0.001 0.002]
>>> G = NeuronGroup(1, """dv/dt = (1 - v)/(10*ms) : 1
... dv_th/dt = (0.5 - v_th)/(20*ms) : 1""",
... threshold='v>v_th',
... reset='v = 0; v_th += 0.1')
>>> crossings = SpikeMonitor(G, variables='v', name='crossings')
>>> net = Network(G, crossings)
>>> net.run(10*ms)
>>> crossings.t
<crossings.t: array([0. , 1.4, 4.6, 9.7]) * msecond>
>>> crossings.v
<crossings.v: array([0.00995017, 0.13064176, 0.27385096, 0.39950442])>

Attributes

	num_spikes
	Returns the total number of recorded spikes.

Methods

	all_values()
	Return a dictionary mapping recorded variable names (including t) to a dictionary mapping neuron indices to arrays of variable values at the time of the spikes (sorted by time).

	spike_trains()
	Return a dictionary mapping spike indices to arrays of spike times.

	values(var)
	Return a dictionary mapping neuron indices to arrays of variable values at the time of the spikes (sorted by time).

Details

	
num_spikes

	Returns the total number of recorded spikes.

	
all_values()[source]

	Return a dictionary mapping recorded variable names (including t)
to a dictionary mapping neuron indices to arrays of variable values at
the time of the spikes (sorted by time). This is equivalent to (but more
efficient than) calling values for each variable and storing the
result in a dictionary.

	Returns:	all_values : dict

Dictionary mapping variable names to dictionaries which themselves
are mapping neuron indicies to arrays of variable values at the
time of the spikes.

Examples

>>> from brian2 import *
>>> G = NeuronGroup(2, """dv/dt = 100*Hz : 1
... v_th : 1""", threshold='v>v_th', reset='v=0')
>>> G.v_th = [0.5, 1]
>>> mon = SpikeMonitor(G, variables='v')
>>> run(20*ms)
>>> all_values = mon.all_values()
>>> all_values['t'][0]
array([4.9, 9.9, 14.9, 19.9]) * msecond
>>> all_values['v'][0]
array([0.5, 0.5, 0.5, 0.5])

	
spike_trains()[source]

	Return a dictionary mapping spike indices to arrays of spike times.

	Returns:	spike_trains : dict

Dictionary that stores an array with the spike times for each
neuron index.

Examples

>>> from brian2 import *
>>> spikes = SpikeGeneratorGroup(3, [0, 1, 2], [0, 1, 2]*ms)
>>> spike_mon = SpikeMonitor(spikes)
>>> run(3*ms)
>>> spike_trains = spike_mon.spike_trains()
>>> spike_trains[1]
array([1.]) * msecond

	
values(var)[source]

	Return a dictionary mapping neuron indices to arrays of variable values
at the time of the spikes (sorted by time).

	Parameters:	var : str

The name of the variable.

	Returns:	values : dict

Dictionary mapping each neuron index to an array of variable
values at the time of the spikes.

Examples

>>> from brian2 import *
>>> G = NeuronGroup(2, """dv/dt = 100*Hz : 1
... v_th : 1""", threshold='v>v_th', reset='v=0')
>>> G.v_th = [0.5, 1]
>>> mon = SpikeMonitor(G, variables='v')
>>> run(20*ms)
>>> v_values = mon.values('v')
>>> v_values[0]
array([0.5, 0.5, 0.5, 0.5])
>>> v_values[1]
array([1., 1.])

Tutorials and examples using this

	Tutorial 1-intro-to-brian-neurons

	Example reliability

	Example CUBA

	Example IF_curve_Hodgkin_Huxley

	Example non_reliability

	Example adaptive_threshold

	Example phase_locking

	Example IF_curve_LIF

	Example standalone/cuba_openmp

	Example standalone/STDP_standalone

	Example synapses/STDP

	Example synapses/jeffress

	Example synapses/licklider

	Example frompapers/Diesmann_et_al_1999

	Example frompapers/Brunel_Hakim_1999

	Example frompapers/Brette_Gerstner_2005

	Example frompapers/Vogels_et_al_2011

	Example frompapers/Rossant_et_al_2011bis

	Example frompapers/Sturzl_et_al_2000

	Example frompapers/Touboul_Brette_2008

	Example frompapers/Brette_2004

	Example frompapers/Brette_Guigon_2003

	Example frompapers/Brette_2012/Fig5A

	Example advanced/opencv_movie

	Example compartmental/hh_with_spikes

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	monitors package »

StateMonitor class

(Shortest import: from brian2 import StateMonitor)

	
class brian2.monitors.statemonitor.StateMonitor(source, variables, record, dt=None, clock=None, when='start', order=0, name='statemonitor*', codeobj_class=None)[source]

	Bases: brian2.groups.group.Group, brian2.groups.group.CodeRunner

Record values of state variables during a run

To extract recorded values after a run, use the t attribute for the
array of times at which values were recorded, and variable name attribute
for the values. The values will have shape (len(indices), len(t)),
where indices are the array indices which were recorded. When indexing
the StateMonitor directly, the returned object can be used to get the
recorded values for the specified indices, i.e. the indexing semantic
refers to the indices in source, not to the relative indices of the
recorded values. For example, when recording only neurons with even numbers,
mon[[0, 2]].v will return the values for neurons 0 and 2, whereas
mon.v[[0, 2]] will return the values for the first and third recorded
neurons, i.e. for neurons 0 and 4.

	Parameters:	source : Group

Which object to record values from.

variables : str, sequence of str, True

Which variables to record, or True to record all variables
(note that this may use a great deal of memory).

record : bool, sequence of ints

Which indices to record, nothing is recorded for False,
everything is recorded for True (warning: may use a great deal of
memory), or a specified subset of indices.

dt : Quantity, optional

The time step to be used for the monitor. Cannot be combined with
the clock argument.

clock : Clock, optional

The update clock to be used. If neither a clock, nor the dt argument
is specified, the clock of the source() will be used.

when : str, optional

At which point during a time step the values should be recorded.
Defaults to 'start'.

order : int, optional

The priority of of this group for operations occurring at the same time
step and in the same scheduling slot. Defaults to 0.

name : str, optional

A unique name for the object, otherwise will use
source.name+'statemonitor_0', etc.

codeobj_class : CodeObject, optional

The CodeObject class to create.

Notes

Since this monitor by default records in the 'start' time slot,
recordings of the membrane potential in integrate-and-fire models may look
unexpected: the recorded membrane potential trace will never be above
threshold in an integrate-and-fire model, because the reset statement will
have been applied already. Set the when keyword to a different value if
this is not what you want.

Note that record=True only works in runtime mode for synaptic variables.
This is because the actual array of indices has to be calculated and this is
not possible in standalone mode, where the synapses have not been created
yet at this stage. Consider using an explicit array of indices instead,
i.e. something like record=np.arange(n_synapses).

Examples

Record all variables, first 5 indices:

eqs = """
dV/dt = (2-V)/(10*ms) : 1
"""
threshold = 'V>1'
reset = 'V = 0'
G = NeuronGroup(100, eqs, threshold=threshold, reset=reset)
G.V = rand(len(G))
M = StateMonitor(G, True, record=range(5))
run(100*ms)
plot(M.t, M.V.T)
show()

Attributes

	record
	The array of recorded indices

	record_variables
	The variables to record

Methods

	record_single_timestep()
	Records a single time step.

	reinit()
	

	resize(new_size)
	

Details

	
record

	The array of recorded indices

	
record_variables

	The variables to record

	
record_single_timestep()[source]

	Records a single time step. Useful for recording the values at the end
of the simulation – otherwise a StateMonitor will not record the
last simulated values since its when attribute defaults to
'start', i.e. the last recording is at the beginning of the last
time step.

Notes

This function will only work if the StateMonitor has been already run,
but a run with a length of 0*ms does suffice.

Examples

>>> from brian2 import *
>>> G = NeuronGroup(1, 'dv/dt = -v/(5*ms) : 1')
>>> G.v = 1
>>> mon = StateMonitor(G, 'v', record=True)
>>> run(0.5*ms)
>>> mon.v
array([[1. , 0.98019867, 0.96078944, 0.94176453, 0.92311635]])
>>> mon.t[:]
array([0., 100., 200., 300., 400.]) * usecond
>>> G.v[:] # last value had not been recorded
array([0.90483742])
>>> mon.record_single_timestep()
>>> mon.t[:]
array([0., 100., 200., 300., 400., 500.]) * usecond
>>> mon.v[:]
array([[1. , 0.98019867, 0.96078944, 0.94176453, 0.92311635,
 0.90483742]])

	
reinit()[source]

	

	
resize(new_size)[source]

	

Tutorials and examples using this

	Tutorial 1-intro-to-brian-neurons

	Tutorial 2-intro-to-brian-synapses

	Example adaptive_threshold

	Example phase_locking

	Example COBAHH

	Example standalone/STDP_standalone

	Example synapses/gapjunctions

	Example synapses/nonlinear

	Example synapses/synapses

	Example synapses/STDP

	Example synapses/jeffress

	Example frompapers/Rothman_Manis_2003

	Example frompapers/Wang_Buszaki_1996

	Example frompapers/Clopath_et_al_2010_homeostasis

	Example frompapers/Brette_Gerstner_2005

	Example frompapers/Rossant_et_al_2011bis

	Example frompapers/Touboul_Brette_2008

	Example frompapers/Brette_Guigon_2003

	Example frompapers/Brette_2012/Fig1

	Example frompapers/Brette_2012/Fig5A

	Example frompapers/Brette_2012/Fig4

	Example frompapers/Brette_2012/Fig3CF

	Example frompapers/Brette_2012/Fig3AB

	Example advanced/stochastic_odes

	Example compartmental/hodgkin_huxley_1952

	Example compartmental/spike_initiation

	Example compartmental/bipolar_with_inputs

	Example compartmental/infinite_cable

	Example compartmental/bipolar_cell

	Example compartmental/bipolar_with_inputs2

	Example compartmental/lfp

	Example compartmental/hh_with_spikes

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	monitors package »

StateMonitorView class

(Shortest import: from brian2.monitors.statemonitor import StateMonitorView)

	
class brian2.monitors.statemonitor.StateMonitorView(monitor, item)[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

parsing package

bast module

Brian AST representation

This is a standard Python AST representation with additional information added.

Exported members:
brian_ast, BrianASTRenderer, dtype_hierarchy

Classes

	BrianASTRenderer(variables[,copy_variables])
	This class is modelled after NodeRenderer - see there for details.

Functions

	brian_ast(expr,variables)
	Returns an AST tree representation with additional information

	brian_dtype_from_dtype(dtype)
	Returns ‘boolean’, ‘integer’ or ‘float’

	brian_dtype_from_value(value)
	Returns ‘boolean’, ‘integer’ or ‘float’

	is_boolean(value)
	

	is_boolean_dtype(obj)
	

	is_float(value)
	

	is_float_dtype(obj)
	

	is_integer(value)
	

	is_integer_dtype(obj)
	

dependencies module

Exported members:
abstract_code_dependencies

Functions

	abstract_code_dependencies(code[,...])
	Analyses identifiers used in abstract code blocks

	get_read_write_funcs(parsed_code)
	

expressions module

AST parsing based analysis of expressions

Exported members:
is_boolean_expression, parse_expression_unit

Functions

	is_boolean_expression(expr,variables)
	Determines if an expression is of boolean type or not

	parse_expression_unit(expr,variables)
	Returns the unit value of an expression, and checks its validity

functions module

Exported members:
AbstractCodeFunction, abstract_code_from_function, extract_abstract_code_functions, substitute_abstract_code_functions

Classes

	AbstractCodeFunction(name,args,code,...)
	The information defining an abstract code function

	FunctionRewriter(func[,numcalls])
	Inlines a function call using temporary variables

	VarRewriter(pre)
	Rewrites all variable names in names by prepending pre

Functions

	abstract_code_from_function(func)
	Converts the body of the function to abstract code

	extract_abstract_code_functions(code)
	Returns a set of abstract code functions from function definitions.

	substitute_abstract_code_functions(code,funcs)
	Performs inline substitution of all the functions in the code

rendering module

Exported members:
NodeRenderer, NumpyNodeRenderer, CPPNodeRenderer, SympyNodeRenderer

Classes

	CPPNodeRenderer([use_vectorisation_idx])
	Methods

	NodeRenderer([use_vectorisation_idx])
	Methods

	NumpyNodeRenderer([use_vectorisation_idx])
	Methods

	SympyNodeRenderer([use_vectorisation_idx])
	Methods

statements module

Functions

	parse_statement(code)
	Parses a single line of code into “var op expr”.

sympytools module

Utility functions for parsing expressions and statements.

Classes

	CustomSympyPrinter([settings])
	Printer that overrides the printing of some basic sympy objects.

Functions

	check_expression_for_multiple_stateful_functions(...)
	

	expression_complexity(expr[,complexity])
	Returns the complexity of an expression (either string or sympy)

	replace_constants(sympy_expr[,variables])
	Replace constant values in a sympy expression with their numerical value.

	str_to_sympy(expr[,variables])
	Parses a string into a sympy expression.

	sympy_to_str(sympy_expr)
	Converts a sympy expression into a string.

Objects

	PRINTER
	Printer that overrides the printing of some basic sympy objects.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	parsing package »

BrianASTRenderer class

(Shortest import: from brian2.parsing.bast import BrianASTRenderer)

	
class brian2.parsing.bast.BrianASTRenderer(variables, copy_variables=True)[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

This class is modelled after NodeRenderer - see there for details.

Methods

	render_BinOp(node)
	

	render_BoolOp(node)
	

	render_Call(node)
	

	render_Compare(node)
	

	render_Name(node)
	

	render_NameConstant(node)
	

	render_Num(node)
	

	render_UnaryOp(node)
	

	render_node(node)
	

Details

	
render_BinOp(node)[source]

	

	
render_BoolOp(node)[source]

	

	
render_Call(node)[source]

	

	
render_Compare(node)[source]

	

	
render_Name(node)[source]

	

	
render_NameConstant(node)[source]

	

	
render_Num(node)[source]

	

	
render_UnaryOp(node)[source]

	

	
render_node(node)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	parsing package »

brian_ast function

(Shortest import: from brian2.parsing.bast import brian_ast)

	
brian2.parsing.bast.brian_ast(expr, variables)[source]

	Returns an AST tree representation with additional information

Each node will be a standard Python ast node with the
following additional attributes:

	dtype

	One of 'boolean', 'integer' or 'float', referring to the data type
of the value of this node.

	scalar

	Either True or False if the node uses any vector-valued variables.

	complexity

	An integer representation of the computational complexity of the node. This
is a very rough representation used for things like 2*(x+y) is less
complex than 2*x+2*y and exp(x) is more complex than 2*x but
shouldn’t be relied on for fine distinctions between expressions.

	Parameters:	expr : str

The expression to convert into an AST representation

variables : dict

The dictionary of Variable objects used in the expression.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	parsing package »

brian_dtype_from_dtype function

(Shortest import: from brian2.parsing.bast import brian_dtype_from_dtype)

	
brian2.parsing.bast.brian_dtype_from_dtype(dtype)[source]

	Returns ‘boolean’, ‘integer’ or ‘float’

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	parsing package »

brian_dtype_from_value function

(Shortest import: from brian2.parsing.bast import brian_dtype_from_value)

	
brian2.parsing.bast.brian_dtype_from_value(value)[source]

	Returns ‘boolean’, ‘integer’ or ‘float’

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	parsing package »

is_boolean function

(Shortest import: from brian2.parsing.bast import is_boolean)

	
brian2.parsing.bast.is_boolean(value)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	parsing package »

is_boolean_dtype function

(Shortest import: from brian2.parsing.bast import is_boolean_dtype)

	
brian2.parsing.bast.is_boolean_dtype(obj)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	parsing package »

is_float function

(Shortest import: from brian2.parsing.bast import is_float)

	
brian2.parsing.bast.is_float(value)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	parsing package »

is_float_dtype function

(Shortest import: from brian2.parsing.bast import is_float_dtype)

	
brian2.parsing.bast.is_float_dtype(obj)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	parsing package »

is_integer function

(Shortest import: from brian2.parsing.bast import is_integer)

	
brian2.parsing.bast.is_integer(value)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	parsing package »

is_integer_dtype function

(Shortest import: from brian2.parsing.bast import is_integer_dtype)

	
brian2.parsing.bast.is_integer_dtype(obj)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	parsing package »

abstract_code_dependencies function

(Shortest import: from brian2.parsing.dependencies import abstract_code_dependencies)

	
brian2.parsing.dependencies.abstract_code_dependencies(code, known_vars=None, known_funcs=None)[source]

	Analyses identifiers used in abstract code blocks

	Parameters:	code : str

The abstract code block.

known_vars : set

The set of known variable names.

known_funcs : set

The set of known function names.

	Returns:	results : namedtuple with the following fields

	all

	The set of all identifiers that appear in this code block,
including functions.

	read

	The set of values that are read, excluding functions.

	write

	The set of all values that are written to.

	funcs

	The set of all function names.

	known_all

	The set of all identifiers that appear in this code block and
are known.

	known_read

	The set of known values that are read, excluding functions.

	known_write

	The set of known values that are written to.

	known_funcs

	The set of known functions that are used.

	unknown_read

	The set of all unknown variables whose values are read. Equal
to read-known_vars.

	unknown_write

	The set of all unknown variables written to. Equal to
write-known_vars.

	unknown_funcs

	The set of all unknown function names, equal to
funcs-known_funcs.

	undefined_read

	The set of all unknown variables whose values are read before they
are written to. If this set is nonempty it usually indicates an
error, since a variable that is read should either have been
defined in the code block (in which case it will appear in
newly_defined) or already be known.

	newly_defined

	The set of all variable names which are newly defined in this
abstract code block.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	parsing package »

get_read_write_funcs function

(Shortest import: from brian2.parsing.dependencies import get_read_write_funcs)

	
brian2.parsing.dependencies.get_read_write_funcs(parsed_code)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	parsing package »

is_boolean_expression function

(Shortest import: from brian2.parsing.expressions import is_boolean_expression)

	
brian2.parsing.expressions.is_boolean_expression(expr, variables)[source]

	Determines if an expression is of boolean type or not

	Parameters:	expr : str

The expression to test

variables : dict-like of Variable

The variables used in the expression.

	Returns:	isbool : bool

Whether or not the expression is boolean.

Raises

	SyntaxError

	If the expression ought to be boolean but is not, for example x<y and z where z is not a boolean variable.

Notes

We test the following cases recursively on the abstract syntax tree:

	The node is a boolean operation. If all the subnodes are boolean
expressions we return True, otherwise we raise the SyntaxError.

	The node is a function call, we return True or False depending
on whether the function description has the _returns_bool attribute
set.

	The node is a variable name, we return True or False depending
on whether is_boolean attribute is set or if the name is True or
False.

	The node is a comparison, we return True.

	The node is a unary operation, we return True if the operation is
not, otherwise False.

	Otherwise we return False.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	parsing package »

parse_expression_unit function

(Shortest import: from brian2.parsing.expressions import parse_expression_unit)

	
brian2.parsing.expressions.parse_expression_unit(expr, variables)[source]

	Returns the unit value of an expression, and checks its validity

	Parameters:	expr : str

The expression to check.

variables : dict

Dictionary of all variables used in the expr (including Constant
objects for external variables)

	Returns:	unit : Quantity

The output unit of the expression

Raises

	SyntaxError

	If the expression cannot be parsed, or if it uses a**b for b anything other than a constant number.

	DimensionMismatchError

	If any part of the expression is dimensionally inconsistent.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	parsing package »

AbstractCodeFunction class

(Shortest import: from brian2.parsing.functions import AbstractCodeFunction)

	
class brian2.parsing.functions.AbstractCodeFunction(name, args, code, return_expr)[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

The information defining an abstract code function

Has attributes corresponding to initialisation parameters

	Parameters:	name : str

The function name.

args : list of str

The arguments to the function.

code : str

The abstract code string consisting of the body of the function less
the return statement.

return_expr : str or None

The expression returned, or None if there is nothing returned.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	parsing package »

FunctionRewriter class

(Shortest import: from brian2.parsing.functions import FunctionRewriter)

	
class brian2.parsing.functions.FunctionRewriter(func, numcalls=0)[source]

	Bases: ast.NodeTransformer [https://docs.python.org/2/library/ast.html#ast.NodeTransformer]

Inlines a function call using temporary variables

numcalls is the number of times the function rewriter has been called so
far, this is used to make sure that when recursively inlining there is no
name aliasing. The substitute_abstract_code_functions ensures that this is
kept up to date between recursive runs.

The pre attribute is the set of lines to be inserted above the currently
being processed line, i.e. the inline code.

The visit method returns the current line processed so that the function
call is replaced with the output of the inlining.

Methods

	visit_Call(node)
	

Details

	
visit_Call(node)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	parsing package »

VarRewriter class

(Shortest import: from brian2.parsing.functions import VarRewriter)

	
class brian2.parsing.functions.VarRewriter(pre)[source]

	Bases: ast.NodeTransformer [https://docs.python.org/2/library/ast.html#ast.NodeTransformer]

Rewrites all variable names in names by prepending pre

Methods

	visit_Call(node)
	

	visit_Name(node)
	

Details

	
visit_Call(node)[source]

	

	
visit_Name(node)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	parsing package »

abstract_code_from_function function

(Shortest import: from brian2.parsing.functions import abstract_code_from_function)

	
brian2.parsing.functions.abstract_code_from_function(func)[source]

	Converts the body of the function to abstract code

	Parameters:	func : function, str or ast.FunctionDef

The function object to convert. Note that the arguments to the
function are ignored.

	Returns:	func : AbstractCodeFunction

The corresponding abstract code function

Raises

	SyntaxError

	If unsupported features are used such as if statements or indexing.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	parsing package »

extract_abstract_code_functions function

(Shortest import: from brian2.parsing.functions import extract_abstract_code_functions)

	
brian2.parsing.functions.extract_abstract_code_functions(code)[source]

	Returns a set of abstract code functions from function definitions.

Returns all functions defined at the top level and ignores any other
code in the string.

	Parameters:	code : str

The code string defining some functions.

	Returns:	funcs : dict

A mapping (name, func) for func an AbstractCodeFunction.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	parsing package »

substitute_abstract_code_functions function

(Shortest import: from brian2.parsing.functions import substitute_abstract_code_functions)

	
brian2.parsing.functions.substitute_abstract_code_functions(code, funcs)[source]

	Performs inline substitution of all the functions in the code

	Parameters:	code : str

The abstract code to make inline substitutions into.

funcs : list, dict or set of AbstractCodeFunction

The function substitutions to use, note in the case of a dict, the
keys are ignored and the function name is used.

	Returns:	code : str

The code with inline substitutions performed.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	parsing package »

CPPNodeRenderer class

(Shortest import: from brian2.parsing.rendering import CPPNodeRenderer)

	
class brian2.parsing.rendering.CPPNodeRenderer(use_vectorisation_idx=True)[source]

	Bases: brian2.parsing.rendering.NodeRenderer

Methods

	render_Assign(node)
	

	render_BinOp(node)
	

	render_Name(node)
	

	render_NameConstant(node)
	

Details

	
render_Assign(node)[source]

	

	
render_BinOp(node)[source]

	

	
render_Name(node)[source]

	

	
render_NameConstant(node)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	parsing package »

NodeRenderer class

(Shortest import: from brian2.parsing.rendering import NodeRenderer)

	
class brian2.parsing.rendering.NodeRenderer(use_vectorisation_idx=True)[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Methods

	render_Assign(node)
	

	render_AugAssign(node)
	

	render_BinOp(node)
	

	render_BinOp_parentheses(left,right,op)
	

	render_BoolOp(node)
	

	render_Call(node)
	

	render_Compare(node)
	

	render_Name(node)
	

	render_NameConstant(node)
	

	render_Num(node)
	

	render_UnaryOp(node)
	

	render_code(code)
	

	render_element_parentheses(node)
	Render an element with parentheses around it or leave them away for numbers, names and function calls.

	render_expr(expr[,strip])
	

	render_func(node)
	

	render_node(node)
	

Details

	
render_Assign(node)[source]

	

	
render_AugAssign(node)[source]

	

	
render_BinOp(node)[source]

	

	
render_BinOp_parentheses(left, right, op)[source]

	

	
render_BoolOp(node)[source]

	

	
render_Call(node)[source]

	

	
render_Compare(node)[source]

	

	
render_Name(node)[source]

	

	
render_NameConstant(node)[source]

	

	
render_Num(node)[source]

	

	
render_UnaryOp(node)[source]

	

	
render_code(code)[source]

	

	
render_element_parentheses(node)[source]

	Render an element with parentheses around it or leave them away for
numbers, names and function calls.

	
render_expr(expr, strip=True)[source]

	

	
render_func(node)[source]

	

	
render_node(node)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	parsing package »

NumpyNodeRenderer class

(Shortest import: from brian2.parsing.rendering import NumpyNodeRenderer)

	
class brian2.parsing.rendering.NumpyNodeRenderer(use_vectorisation_idx=True)[source]

	Bases: brian2.parsing.rendering.NodeRenderer

Methods

	render_UnaryOp(node)
	

Details

	
render_UnaryOp(node)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	parsing package »

SympyNodeRenderer class

(Shortest import: from brian2.parsing.rendering import SympyNodeRenderer)

	
class brian2.parsing.rendering.SympyNodeRenderer(use_vectorisation_idx=True)[source]

	Bases: brian2.parsing.rendering.NodeRenderer

Methods

	render_Compare(node)
	

	render_Name(node)
	

	render_Num(node)
	

	render_func(node)
	

Details

	
render_Compare(node)[source]

	

	
render_Name(node)[source]

	

	
render_Num(node)[source]

	

	
render_func(node)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	parsing package »

parse_statement function

(Shortest import: from brian2.parsing.statements import parse_statement)

	
brian2.parsing.statements.parse_statement(code)[source]

	Parses a single line of code into “var op expr”.

	Parameters:	code : str

A string containing a single statement of the form
var op expr # comment, where the # comment part is optional.

	Returns:	var, op, expr, comment : str, str, str, str

The four parts of the statement.

Examples

>>> parse_statement('v = -65*mV # reset the membrane potential')
('v', '=', '-65*mV', 'reset the membrane potential')
>>> parse_statement('v += dt*(-v/tau)')
('v', '+=', 'dt*(-v/tau)', '')

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	parsing package »

CustomSympyPrinter class

(Shortest import: from brian2.parsing.sympytools import CustomSympyPrinter)

	
class brian2.parsing.sympytools.CustomSympyPrinter(settings=None)[source]

	Bases: sympy.printing.str.StrPrinter [http://docs.sympy.org/dev/modules/printing.html#sympy.printing.str.StrPrinter]

Printer that overrides the printing of some basic sympy objects. E.g.
print “a and b” instead of “And(a, b)”.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	parsing package »

check_expression_for_multiple_stateful_functions function

(Shortest import: from brian2.parsing.sympytools import check_expression_for_multiple_stateful_functions)

	
brian2.parsing.sympytools.check_expression_for_multiple_stateful_functions(expr, variables)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	parsing package »

expression_complexity function

(Shortest import: from brian2.parsing.sympytools import expression_complexity)

	
brian2.parsing.sympytools.expression_complexity(expr, complexity=None)[source]

	Returns the complexity of an expression (either string or sympy)

The complexity is defined as 1 for each arithmetic operation except divide which is 2,
and all other operations are 20. This can be overridden using the complexity
argument.

Note: calling this on a statement rather than an expression is likely to lead to errors.

	Parameters:	expr: `sympy.Expr` or str :

The expression.

complexity: None or dict (optional) :

A dictionary mapping expression names to their complexity, to overwrite default behaviour.

	Returns:	complexity: int :

The complexity of the expression.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	parsing package »

replace_constants function

(Shortest import: from brian2.parsing.sympytools import replace_constants)

	
brian2.parsing.sympytools.replace_constants(sympy_expr, variables=None)[source]

	Replace constant values in a sympy expression with their numerical value.

	Parameters:	sympy_expr : sympy.Expr

The expression

variables : dict-like, optional

Dictionary of Variable objects

	Returns:	new_expr : sympy.Expr

Expressions with all constants replaced

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	parsing package »

str_to_sympy function

(Shortest import: from brian2.parsing.sympytools import str_to_sympy)

	
brian2.parsing.sympytools.str_to_sympy(expr, variables=None)[source]

	Parses a string into a sympy expression. There are two reasons for not
using sympify directly: 1) sympify does a from sympy import *,
adding all functions to its namespace. This leads to issues when trying to
use sympy function names as variable names. For example, both beta and
factor – quite reasonable names for variables – are sympy functions,
using them as variables would lead to a parsing error. 2) We want to use
a common syntax across expressions and statements, e.g. we want to allow
to use and (instead of &) and function names like ceil (instead of
ceiling).

	Parameters:	expr : str

The string expression to parse.

variables : dict, optional

Dictionary mapping variable/function names in the expr to their
respective Variable/Function objects.

	Returns:	s_expr :

A sympy expression

Raises

	SyntaxError

	In case of any problems during parsing.

Notes

Parsing is done in two steps: First, the expression is parsed and rendered
as a new string by SympyNodeRenderer, translating function names (e.g.
ceil to ceiling) and operator names (e.g. and to &), all unknown
names are wrapped in Symbol(...) or Function(...). The resulting string
is then evaluated in the from sympy import * namespace.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	parsing package »

sympy_to_str function

(Shortest import: from brian2.parsing.sympytools import sympy_to_str)

	
brian2.parsing.sympytools.sympy_to_str(sympy_expr)[source]

	Converts a sympy expression into a string. This could be as easy as
str(sympy_exp) but it is possible that the sympy expression contains
functions like Abs (for example, if an expression such as
sqrt(x**2) appeared somewhere). We do want to re-translate Abs into
abs in this case.

	Parameters:	sympy_expr : sympy.core.expr.Expr

The expression that should be converted to a string.

Returns :

str_expr : str

A string representing the sympy expression.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	parsing package »

PRINTER object

(Shortest import: from brian2.parsing.sympytools import PRINTER)

	
brian2.parsing.sympytools.PRINTER = <brian2.parsing.sympytools.CustomSympyPrinter object>

	Printer that overrides the printing of some basic sympy objects. E.g.
print “a and b” instead of “And(a, b)”.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

random package

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

spatialneuron package

morphology module

Neuronal morphology module.
This module defines classes to load and build neuronal morphologies.

Exported members:
Morphology, Section, Cylinder, Soma

Classes

	Children(owner)
	Helper class to represent the children (sub trees) of a section.

	Cylinder(*args,**kwds)
	A cylindrical section.

	Morphology(*args,**kwds)
	Neuronal morphology (tree structure).

	MorphologyIndexWrapper(morphology)
	A simpler version of IndexWrapper, not allowing for string indexing (Morphology is not a Group).

	Node
	Attributes

	Section(*args,**kwds)
	A section (unbranched structure), described as a sequence of truncated cones with potentially varying diameters and lengths per compartment.

	Soma(*args,**kwds)
	A spherical, iso-potential soma.

	SubMorphology(morphology,i,j)
	A view on a subset of a section in a morphology.

	Topology(morphology)
	A representation of the topology of a Morphology.

spatialneuron module

Compartmental models.
This module defines the SpatialNeuron class, which defines multicompartmental models.

Exported members:
SpatialNeuron

Classes

	FlatMorphology(morphology)
	Container object to store the flattened representation of a morphology.

	SpatialNeuron([morphology,model,...])
	A single neuron with a morphology and possibly many compartments.

	SpatialStateUpdater(group,method,clock[,...])
	The CodeRunner that updates the state variables of a SpatialNeuron at every timestep.

	SpatialSubgroup(source,start,stop,morphology)
	A subgroup of a SpatialNeuron.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	spatialneuron package »

Children class

(Shortest import: from brian2.spatialneuron.morphology import Children)

	
class brian2.spatialneuron.morphology.Children(owner)[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Helper class to represent the children (sub trees) of a section. Can be
used like a dictionary (mapping names to Morphology objects), but iterates
over the values (sub trees) instead of over the keys (names).

Methods

	add(name,subtree[,automatic_name])
	Add a new child to the morphology.

	name(child)
	Return the given name (i.e.

	remove(name)
	Remove a subtree from this morphology.

Details

	
add(name, subtree, automatic_name=False)[source]

	Add a new child to the morphology.

	Parameters:	name : str

The name (e.g. "axon", "soma") to use for this sub tree.

subtree : Morphology

The subtree to link as a child.

automatic_name : bool, optional

Whether to chose a new name automatically, if a subtree of the same
name already exists (uses e.g. "dend2" instead "dend").
Defaults to False and will raise an error instead.

	
name(child)[source]

	Return the given name (i.e. not the automatic name such as 1) for a
child subtree.

	Parameters:	child : Morphology

	Returns:	name : str

The given name for the child.

	
remove(name)[source]

	Remove a subtree from this morphology.

	Parameters:	name : str

The name of the sub tree to remove.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	spatialneuron package »

Cylinder class

(Shortest import: from brian2 import Cylinder)

	
class brian2.spatialneuron.morphology.Cylinder(*args, **kwds)[source]

	Bases: brian2.spatialneuron.morphology.Section

A cylindrical section. For sections with more complex geometry (varying
length and/or diameter of each compartment), use the Section class.

	Parameters:	diameter : Quantity

The diameter of the cylinder.

n : int, optional

The number of compartments in this section. Defaults to 1.

length : Quantity, optional

The length of the cylinder. Cannot be combined with the specification
of coordinates.

x : Quantity, optional

A sequence of two values, the start and the end point of the cylinder.
The coordinates are interpreted as relative to the end point of the
parent compartment (if any), so in most cases the start point should
be 0*um. The common exception is a cylinder connecting to a Soma,
here the start point can be used to make the cylinder start at the
surface of the sphere instead of at its center.
You can specify all of x, y, or z to specify
a morphology in 3D, or only one or two out of them to specify a
morphology in 1D or 2D.

y : Quantity, optional

See x

z : Quantity, optional

See x

type : str, optional

The type (e.g. "axon") of this Cylinder.

Attributes

	area
	The membrane surface area of each compartment in this section.

	diameter
	The diameter at the middle of each compartment in this section.

	end_diameter
	The diameter at the end of each compartment in this section.

	r_length_1
	The geometry-dependent term to calculate the conductance between the start and the midpoint of each compartment.

	r_length_2
	The geometry-dependent term to calculate the conductance between the midpoint and the end of each compartment.

	start_diameter
	The diameter at the start of each compartment in this section.

	volume
	The volume of each compartment in this section.

Methods

	copy_section()
	

Details

	
area

	The membrane surface area of each compartment in this section. The
surface area of each compartment is calculated as
\(\pi d l\),
where \(l\) is the length of the compartment, and \(d\) is its
diameter. Note that this surface area does not contain the area of
the two disks at the two sides of the cylinder.

	
diameter

	The diameter at the middle of each compartment in this section.

	
end_diameter

	The diameter at the end of each compartment in this section.

	
r_length_1

	The geometry-dependent term to calculate the conductance between the
start and the midpoint of each compartment. Dividing this value by the
Intracellular resistivity gives the conductance.

	
r_length_2

	The geometry-dependent term to calculate the conductance between the
midpoint and the end of each compartment. Dividing this value by the
Intracellular resistivity gives the conductance.

	
start_diameter

	The diameter at the start of each compartment in this section.

	
volume

	The volume of each compartment in this section. The volume of each
compartment is calculated as
\(\pi \frac{d}{2}^2 l\) ,
where \(l\) is the length of the compartment, and \(d\) is its
diameter.

	
copy_section()[source]

	

Tutorials and examples using this

	Example frompapers/Brette_2012/Fig1

	Example frompapers/Brette_2012/Fig5A

	Example frompapers/Brette_2012/Fig3CF

	Example frompapers/Brette_2012/Fig3AB

	Example compartmental/hodgkin_huxley_1952

	Example compartmental/spike_initiation

	Example compartmental/bipolar_with_inputs

	Example compartmental/rall

	Example compartmental/cylinder

	Example compartmental/infinite_cable

	Example compartmental/bipolar_cell

	Example compartmental/morphotest

	Example compartmental/bipolar_with_inputs2

	Example compartmental/lfp

	Example compartmental/hh_with_spikes

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	spatialneuron package »

Morphology class

(Shortest import: from brian2 import Morphology)

	
class brian2.spatialneuron.morphology.Morphology(*args, **kwds)[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Neuronal morphology (tree structure).

The data structure is a tree where each node is an un-branched section
consisting of a number of connected compartments, each one defined by its
geometrical properties (length, area, diameter, position).

Notes

You cannot create objects of this class, create a Soma, a Section, or
a Cylinder instead.

Attributes

	area
	The membrane surface area of each compartment in this section.

	children
	The children (as a Children object) of this section.

	coordinates
	Array with all coordinates at the start- and end-points of each compartment in this section.

	coordinates_
	Array with all coordinates (as unitless floating point numbers) at the start- and end-points of each compartment in this section.

	diameter
	The diameter at the middle of each compartment in this section.

	distance
	The total distance between the midpoint of each compartment and the root of the morphology.

	end_distance
	The distance to the root of the morphology at the end of this section.

	end_x
	The x coordinate at the end of each compartment.

	end_x_
	The x coordinate (as a unitless floating point number) at the end of each compartment.

	end_y
	The y coordinate at the end of each compartment.

	end_y_
	The y coordinate (as a unitless floating point number) at the end of each compartment.

	end_z
	The z coordinate at the end of each compartment.

	end_z_
	The z coordinate (as a unitless floating point number) at the end of each compartment.

	length
	The length of each compartment in this section.

	n
	The number of compartments in this section.

	parent
	The parent section of this section.

	r_length_1
	The geometry-dependent term to calculate the conductance between the start and the midpoint of each compartment.

	r_length_2
	The geometry-dependent term to calculate the conductance between the midpoint and the end of each compartment.

	start_x
	The x coordinate at the beginning of each compartment.

	start_x_
	The x coordinate (as a unitless floating point number) at the beginning of each compartment.

	start_y
	The y coordinate at the beginning of each compartment.

	start_y_
	The y coordinate (as a unitless floating point number) at the beginning of each compartment.

	start_z
	The z coordinate at the beginning of each compartment.

	start_z_
	The z coordinate (as a unitless floating point number) at the beginning of each compartment.

	total_compartments
	The total number of compartments in this subtree (i.e.

	total_sections
	The total number of sections in this subtree.

	volume
	The volume of each compartment in this section.

	x
	The x coordinate at the midpoint of each compartment.

	x_
	The x coordinate (as a unitless floating point number) at the midpoint of each compartment.

	y
	The y coordinate at the midpoint of each compartment.

	y_
	The y coordinate (as a unitless floating point number) at the midpoint of each compartment.

	z
	The y coordinate at the midpoint of each compartment.

	z_
	The z coordinate (as a unitless floating point number) at the midpoint of each compartment.

Methods

	copy_section()
	Create a copy of the current section (attributes of this section only,

	from_file(filename[,spherical_soma])
	Convencience method to load a morphology from a given file.

	from_points(points[,spherical_soma])
	Create a morphology from a sequence of points (similar to the SWC format, see Morphology.from_swc_file).

	from_swc_file(filename[,spherical_soma])
	Load a morphology from a SWC file.

	generate_coordinates([section_randomness,...])
	Create a new Morphology, with coordinates filled in place where the previous morphology did not have any.

	topology()
	Return a representation of the topology

Details

	
area

	The membrane surface area of each compartment in this section.

	
children

	The children (as a Children object) of this section.

	
coordinates

	Array with all coordinates at the start- and end-points of each
compartment in this section. The array has size \((n+1) \times 3\),
where \(n\) is the number of compartments in this section. Each
row is one point (start point of first compartment, end point of first
compartment, end point of second compartment, ...), with the columns
being the x, y, and z coordinates. Returns None for morphologies
without coordinates.

	
coordinates_

	Array with all coordinates (as unitless floating point numbers) at the
start- and end-points of each compartment in this section. The array has
size \((n+1) \times 3\), where \(n\) is the number of
compartments in this section. Each row is one point (start point of
first compartment, end point of first compartment, end point of second
compartment, ...), with the columns being the x, y, and z coordinates.
Returns None for morphologies without coordinates.

	
diameter

	The diameter at the middle of each compartment in this section.

	
distance

	The total distance between the midpoint of each compartment and the root
of the morphology.

	
end_distance

	The distance to the root of the morphology at the end of this section.

	
end_x

	The x coordinate at the end of each compartment. Returns None
for morphologies without coordinates.

	
end_x_

	The x coordinate (as a unitless floating point number) at the end of
each compartment. Returns None for morphologies without coordinates.

	
end_y

	The y coordinate at the end of each compartment. Returns None
for morphologies without coordinates.

	
end_y_

	The y coordinate (as a unitless floating point number) at the end of
each compartment. Returns None for morphologies without coordinates.

	
end_z

	The z coordinate at the end of each compartment. Returns None
for morphologies without coordinates.

	
end_z_

	The z coordinate (as a unitless floating point number) at the end of
each compartment. Returns None for morphologies without coordinates.

	
length

	The length of each compartment in this section.

	
n

	The number of compartments in this section.

	
parent

	The parent section of this section.

	
r_length_1

	The geometry-dependent term to calculate the conductance between the
start and the midpoint of each compartment. Dividing this value by the
Intracellular resistivity gives the conductance.

	
r_length_2

	The geometry-dependent term to calculate the conductance between the
midpoint and the end of each compartment. Dividing this value by the
Intracellular resistivity gives the conductance.

	
start_x

	The x coordinate at the beginning of each compartment. Returns None
for morphologies without coordinates.

	
start_x_

	The x coordinate (as a unitless floating point number) at the beginning
of each compartment. Returns None for morphologies without
coordinates.

	
start_y

	The y coordinate at the beginning of each compartment. Returns None
for morphologies without coordinates.

	
start_y_

	The y coordinate (as a unitless floating point number) at the beginning
of each compartment. Returns None for morphologies without
coordinates.

	
start_z

	The z coordinate at the beginning of each compartment. Returns None
for morphologies without coordinates.

	
start_z_

	The z coordinate (as a unitless floating point number) at the beginning
of each compartment. Returns None for morphologies without
coordinates.

	
total_compartments

	The total number of compartments in this subtree (i.e. the number of
compartments in this section plus all the compartments in the sections
deeper in the tree).

	
total_sections

	The total number of sections in this subtree.

	
volume

	The volume of each compartment in this section.

	
x

	The x coordinate at the midpoint of each compartment. Returns None
for morphologies without coordinates.

	
x_

	The x coordinate (as a unitless floating point number) at the midpoint
of each compartment. Returns None for morphologies without
coordinates.

	
y

	The y coordinate at the midpoint of each compartment. Returns None
for morphologies without coordinates.

	
y_

	The y coordinate (as a unitless floating point number) at the midpoint
of each compartment. Returns None for morphologies without
coordinates.

	
z

	The y coordinate at the midpoint of each compartment. Returns None
for morphologies without coordinates.

	
z_

	The z coordinate (as a unitless floating point number) at the midpoint
of each compartment. Returns None for morphologies without
coordinates.

	
copy_section()[source]

	Create a copy of the current section (attributes of this section only,
not re-creating the parent/children relation)

	Returns:	copy : Morphology

A copy of this section (without the links to the parent/children)

	
static from_file(filename, spherical_soma=True)[source]

	Convencience method to load a morphology from a given file. At the
moment, only SWC files are supported, calling this function is
therefore equivalent to calling Morphology.from_swc_file directly.

	Parameters:	filename : str

The name of a file storing a morphology.

spherical_soma : bool, optional

Whether to model the soma as a sphere.

Returns :

——- :

morphology : Morphology

The morphology stored in the given file.

	
static from_points(points, spherical_soma=True)[source]

	Create a morphology from a sequence of points (similar to the SWC
format, see Morphology.from_swc_file). Each point has to be
a 7-tuple: (index, name, x, y, z, diameter, parent)

Note that the values should not use units, but are instead all taken
to be in micrometers.

	Parameters:	points : sequence of 7-tuples

The points of the morphology.

spherical_soma : bool, optional

Whether to model a soma as a sphere.

Returns :

——- :

morphology : Morphology

Notes

This format closely follows the SWC format (see
Morphology.from_swc_file) with two differences: the type should
be a string (e.g. 'soma') instead of an integer and the 6-th element
should be the diameter and not the radius.

	
static from_swc_file(filename, spherical_soma=True)[source]

	Load a morphology from a SWC file. A large database of morphologies
in this format can be found at http://neuromorpho.org

The format consists of an optional header of lines starting with #
(ignored), followed by a sequence of points, each described in a line
following the format:

index type x y z radius parent

index is an integer label (starting at 1) that identifies the
current point and increases by one each line. type is an integer
representing the type of the neural segment. The only type that changes
the interpretation by Brian is the type 1 which signals a soma.
Types 2 (axon), 3 (dendrite), and 4 (apical dendrite) are
used to give corresponding names to the respective sections. All other
types are ignored. x, y, and z are the cartesian coordinates
at each point and r is its radius. parent refers to the index
of the parent point or is -1 for the root point.

	Parameters:	filename : str

The name of the SWC file.

spherical_soma : bool, optional

Whether to model the soma as a sphere.

	Returns:	morpho : Morphology

The morphology stored in the given file.

	
generate_coordinates(section_randomness=0.0, compartment_randomness=0.0, overwrite_existing=False)[source]

	Create a new Morphology, with coordinates filled in place where the
previous morphology did not have any. This is mostly useful for
plotting a morphology, it does not affect its electrical properties.

	Parameters:	section_randomness : float, optional

The randomness when deciding the direction vector for each new
section. The given number is the

 MorphologyIndexWrapper class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	spatialneuron package »

MorphologyIndexWrapper class

(Shortest import: from brian2.spatialneuron.morphology import MorphologyIndexWrapper)

	
class brian2.spatialneuron.morphology.MorphologyIndexWrapper(morphology)[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

A simpler version of IndexWrapper, not allowing for
string indexing (Morphology is not a Group). It allows to use
morphology.indices[...] instead of morphology[...]._indices().

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Node class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	spatialneuron package »

Node class

(Shortest import: from brian2.spatialneuron.morphology import Node)

	
class brian2.spatialneuron.morphology.Node

	Bases: tuple

Attributes

	children
	Alias for field number 7

	comp_name
	Alias for field number 1

	diameter
	Alias for field number 5

	index
	Alias for field number 0

	parent
	Alias for field number 6

	x
	Alias for field number 2

	y
	Alias for field number 3

	z
	Alias for field number 4

Details

	
children

	Alias for field number 7

	
comp_name

	Alias for field number 1

	
diameter

	Alias for field number 5

	
index

	Alias for field number 0

	
parent

	Alias for field number 6

	
x

	Alias for field number 2

	
y

	Alias for field number 3

	
z

	Alias for field number 4

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Section class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	spatialneuron package »

Section class

(Shortest import: from brian2 import Section)

	
class brian2.spatialneuron.morphology.Section(*args, **kwds)[source]

	Bases: brian2.spatialneuron.morphology.Morphology

A section (unbranched structure), described as a sequence of truncated
cones with potentially varying diameters and lengths per compartment.

	Parameters:	diameter : Quantity

Either a single value (the constant diameter along the whole section),
or a value of length n+1. When n+1 values are given, they
will be interpreted as the diameters at the start of the first
compartment and the diameters at the end of each compartment (which is
equivalent to: the diameter at the start of each compartment and the
diameter at the end of the last compartment.

n : int, optional

The number of compartments in this section. Defaults to 1.

length : Quantity, optional

Either a single value (the total length of the section), or a value of
length n, the length of each individual compartment. Cannot be
combined with the specification of coordinates.

x : Quantity, optional

n+1 values, specifying the x coordinates of the start point of the
first compartment and the end-points of all compartments (which is
equivalent to: the start point of all compartments and the end point of
the last compartment). The coordinates are interpreted as relative to
the end point of the parent compartment (if any), so in most cases the
start point should be 0*um. The common exception is a cylinder
connecting to a Soma, here the start point can be used to make the
cylinder start at the surface of the sphere instead of at its center.
You can specify all of x, y, or z to specify
a morphology in 3D, or only one or two out of them to specify a
morphology in 1D or 2D.

y : Quantity, optional

See x

z : Quantity, optional

See x

type : str, optional

The type (e.g. "axon") of this Section.

Attributes

	area
	The membrane surface area of each compartment in this section.

	diameter
	The diameter at the middle of each compartment in this section.

	distance
	The total distance between the midpoint of each compartment and the root of the morphology.

	end_diameter
	The diameter at the end of each compartment in this section.

	end_distance
	The distance to the root of the morphology at the end of this section.

	end_x_
	The x coordinate (as a unitless floating point number) at the end of each compartment.

	end_y_
	The y coordinate (as a unitless floating point number) at the end of each compartment.

	end_z_
	The z coordinate (as a unitless floating point number) at the end of each compartment.

	length
	The length of each compartment in this section.

	r_length_1
	The geometry-dependent term to calculate the conductance between the start and the midpoint of each compartment.

	r_length_2
	The geometry-dependent term to calculate the conductance between the midpoint and the end of each compartment.

	start_diameter
	The diameter at the start of each compartment in this section.

	start_x_
	The x coordinate (as a unitless floating point number) at the beginning of each compartment.

	start_y_
	The y coordinate (as a unitless floating point number) at the beginning of each compartment.

	start_z_
	The z coordinate (as a unitless floating point number) at the beginning of each compartment.

	volume
	The volume of each compartment in this section.

	x_
	The x coordinate (as a unitless floating point number) at the midpoint of each compartment.

	y_
	The y coordinate (as a unitless floating point number) at the midpoint of each compartment.

	z_
	The z coordinate (as a unitless floating point number) at the midpoint of each compartment.

Methods

	copy_section()
	

Details

	
area

	The membrane surface area of each compartment in this section. The
surface area of each compartment is calculated as
\(\frac{\pi}{2}(d_1 + d_2)\sqrt{\frac{(d_1 - d_2)^2}{4} + l^2)}\),
where \(l\) is the length of the compartment, and \(d_1\) and
\(d_2\) are the diameter at the start and end of the compartment,
respectively. Note that this surface area does not contain the area of
the two disks at the two sides of the truncated cone.

	
diameter

	The diameter at the middle of each compartment in this section.

	
distance

	The total distance between the midpoint of each compartment and the root
of the morphology.

	
end_diameter

	The diameter at the end of each compartment in this section.

	
end_distance

	The distance to the root of the morphology at the end of this section.

	
end_x_

	The x coordinate (as a unitless floating point number) at the end of
each compartment. Returns None for morphologies without coordinates.

	
end_y_

	The y coordinate (as a unitless floating point number) at the end of
each compartment. Returns None for morphologies without coordinates.

	
end_z_

	The z coordinate (as a unitless floating point number) at the end of
each compartment. Returns None for morphologies without coordinates.

	
length

	The length of each compartment in this section.

	
r_length_1

	The geometry-dependent term to calculate the conductance between the
start and the midpoint of each compartment. Dividing this value by the
Intracellular resistivity gives the conductance.

	
r_length_2

	The geometry-dependent term to calculate the conductance between the
midpoint and the end of each compartment. Dividing this value by the
Intracellular resistivity gives the conductance.

	
start_diameter

	The diameter at the start of each compartment in this section.

	
start_x_

	The x coordinate (as a unitless floating point number) at the beginning
of each compartment. Returns None for morphologies without
coordinates.

	
start_y_

	The y coordinate (as a unitless floating point number) at the beginning
of each compartment. Returns None for morphologies without
coordinates.

	
start_z_

	The z coordinate (as a unitless floating point number) at the beginning
of each compartment. Returns None for morphologies without
coordinates.

	
volume

	The volume of each compartment in this section. The volume of each
compartment is calculated as
\(\frac{\pi}{12} l (d_1^2 + d_1 d_2 + d_2^2)\),
where \(l\) is the length of the compartment, and \(d_1\) and
\(d_2\) are the diameter at the start and end of the compartment,
respectively.

	
x_

	The x coordinate (as a unitless floating point number) at the midpoint
of each compartment. Returns None for morphologies without
coordinates.

	
y_

	The y coordinate (as a unitless floating point number) at the midpoint
of each compartment. Returns None for morphologies without
coordinates.

	
z_

	The z coordinate (as a unitless floating point number) at the midpoint
of each compartment. Returns None for morphologies without
coordinates.

	
copy_section()[source]

	

Tutorials and examples using this

	Example frompapers/Brette_2012/Fig4

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Soma class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	spatialneuron package »

Soma class

(Shortest import: from brian2 import Soma)

	
class brian2.spatialneuron.morphology.Soma(*args, **kwds)[source]

	Bases: brian2.spatialneuron.morphology.Morphology

A spherical, iso-potential soma.

	Parameters:	diameter : Quantity

Diameter of the sphere.

x : Quantity, optional

The x coordinate of the position of the soma.

y : Quantity, optional

The y coordinate of the position of the soma.

z : Quantity, optional

The z coordinate of the position of the soma.

type : str, optional

The type of this section, defaults to 'soma'.

Attributes

	area
	The membrane surface area of this section (as an array of length 1).

	diameter
	The diameter of this section (as an array of length 1).

	distance
	The total distance between the midpoint of this section and the root of the morphology.

	end_distance
	The distance to the root of the morphology at the end of this section.

	end_x_
	The x-coordinate of the current section (as an array of length 1).

	end_y_
	The y-coordinate of the current section (as an array of length 1).

	end_z_
	The z-coordinate of the current section (as an array of length 1).

	length
	The “length” (equal to diameter) of this section (as an array of length 1).

	r_length_1
	The geometry-dependent term to calculate the conductance between the start and the midpoint of each compartment.

	r_length_2
	The geometry-dependent term to calculate the conductance between the midpoint and the end of each compartment.

	start_x_
	The x-coordinate of the current section (as an array of length 1).

	start_y_
	The y-coordinate of the current section (as an array of length 1).

	start_z_
	The z-coordinate of the current section (as an array of length 1).

	volume
	The volume of this section (as an array of length 1).

	x_
	The x-coordinate of the current section (as an array of length 1).

	y_
	The y-coordinate of the current section (as an array of length 1).

	z_
	The z-coordinate of the current section (as an array of length 1).

Methods

	copy_section()
	

Details

	
area

	The membrane surface area of this section (as an array of length 1).

	
diameter

	The diameter of this section (as an array of length 1).

	
distance

	The total distance between the midpoint of this section and the root
of the morphology. The Soma is most likely the root of the
morphology, and therefore the distance is 0.

	
end_distance

	The distance to the root of the morphology at the end of this section.
Note that since a Soma is modeled as a point (see docs of x, etc.),
it does not add anything to the total distance, e.g. a section
connecting to a Soma has a distance of 0 um at its start.

	
end_x_

	The x-coordinate of the current section (as an array of length 1). Note
that a Soma is modelled as a “point” with finite surface/volume,
equivalent to that of a sphere with the given diameter. It’s start-,
midpoint-, and end-coordinates are therefore identical.

	
end_y_

	The y-coordinate of the current section (as an array of length 1). Note
that a Soma is modelled as a “point” with finite surface/volume,
equivalent to that of a sphere with the given diameter. It’s start-,
midpoint-, and end-coordinates are therefore identical.

	
end_z_

	The z-coordinate of the current section (as an array of length 1). Note
that a Soma is modelled as a “point” with finite surface/volume,
equivalent to that of a sphere with the given diameter. It’s start-,
midpoint-, and end-coordinates are therefore identical.

	
length

	The “length” (equal to diameter) of this section (as an array of
length 1).

	
r_length_1

	The geometry-dependent term to calculate the conductance between the
start and the midpoint of each compartment. Returns a fixed (high)
value for a Soma, corresponding to a section with very low
intracellular resistance.

	
r_length_2

	The geometry-dependent term to calculate the conductance between the
midpoint and the end of each compartment. Returns a fixed (high)
value for a Soma, corresponding to a section with very low
intracellular resistance.

	
start_x_

	The x-coordinate of the current section (as an array of length 1). Note
that a Soma is modelled as a “point” with finite surface/volume,
equivalent to that of a sphere with the given diameter. It’s start-,
midpoint-, and end-coordinates are therefore identical.

	
start_y_

	The y-coordinate of the current section (as an array of length 1). Note
that a Soma is modelled as a “point” with finite surface/volume,
equivalent to that of a sphere with the given diameter. It’s start-,
midpoint-, and end-coordinates are therefore identical.

	
start_z_

	The z-coordinate of the current section (as an array of length 1). Note
that a Soma is modelled as a “point” with finite surface/volume,
equivalent to that of a sphere with the given diameter. It’s start-,
midpoint-, and end-coordinates are therefore identical.

	
volume

	The volume of this section (as an array of length 1).

	
x_

	The x-coordinate of the current section (as an array of length 1). Note
that a Soma is modelled as a “point” with finite surface/volume,
equivalent to that of a sphere with the given diameter. It’s start-,
midpoint-, and end-coordinates are therefore identical.

	
y_

	The y-coordinate of the current section (as an array of length 1). Note
that a Soma is modelled as a “point” with finite surface/volume,
equivalent to that of a sphere with the given diameter. It’s start-,
midpoint-, and end-coordinates are therefore identical.

	
z_

	The z-coordinate of the current section (as an array of length 1). Note
that a Soma is modelled as a “point” with finite surface/volume,
equivalent to that of a sphere with the given diameter. It’s start-,
midpoint-, and end-coordinates are therefore identical.

	
copy_section()[source]

	

Tutorials and examples using this

	Example frompapers/Brette_2012/Fig1

	Example frompapers/Brette_2012/Fig5A

	Example frompapers/Brette_2012/Fig4

	Example frompapers/Brette_2012/Fig3CF

	Example frompapers/Brette_2012/Fig3AB

	Example compartmental/spike_initiation

	Example compartmental/bipolar_with_inputs

	Example compartmental/bipolar_cell

	Example compartmental/morphotest

	Example compartmental/bipolar_with_inputs2

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 SubMorphology class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	spatialneuron package »

SubMorphology class

(Shortest import: from brian2.spatialneuron.morphology import SubMorphology)

	
class brian2.spatialneuron.morphology.SubMorphology(morphology, i, j)[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

A view on a subset of a section in a morphology.

Attributes

	area
	The membrane surface area of each compartment in this sub-section.

	diameter
	The diameter at the middle of each compartment in this sub-section.

	distance
	The total distance between the midpoint of each compartment in this sub-section and the root of the morphology.

	end_x
	The x coordinate at the end of each compartment in this sub-section.

	end_x_
	The x coordinate (as a unitless floating point number) at the end of each compartment in this sub-section.

	end_y
	The y coordinate at the end of each compartment in this sub-section.

	end_y_
	The y coordinate (as a unitless floating point number) at the end of each compartment in this sub-section.

	end_z
	The z coordinate at the end of each compartment in this sub-section.

	end_z_
	The z coordinate (as a unitless floating point number) at the end of each compartment in this sub-section.

	length
	The length of each compartment in this sub-section.

	n
	The number of compartments in this sub-section.

	n_sections
	The number of sections in this sub-section (always 1).

	r_length_1
	The geometry-dependent term to calculate the conductance between the start and the midpoint of each compartment in this sub-section.

	r_length_2
	The geometry-dependent term to calculate the conductance between the midpoint and the end of each compartment in this sub-section.

	start_x
	The x coordinate at the beginning of each compartment in this sub-section.

	start_x_
	The x coordinate (as a unitless floating point number) at the beginning of each compartment in this sub-section.

	start_y
	The y coordinate at the beginning of each compartment in this sub-section.

	start_y_
	The y coordinate (as a unitless floating point number) at the beginning of each compartment in this sub-section.

	start_z
	The x coordinate at the beginning of each compartment in this sub-section.

	start_z_
	The z coordinate (as a unitless floating point number) at the beginning of each compartment in this sub-section.

	volume
	The volume of each compartment in this sub-section.

	x
	The x coordinate at the midpoint of each compartment in this sub-section.

	x_
	The x coordinate (as a unitless floating point number) at the midpoint of each compartment in this sub-section.

	y
	The y coordinate at the midpoint of each compartment in this sub-section.

	y_
	The y coordinate (as a unitless floating point number) at the midpoint of each compartment in this sub-section.

	z
	The z coordinate at the midpoint of each compartment in this sub-section.

	z_
	The z coordinate (as a unitless floating point number) at the midpoint of each compartment in this sub-section.

Details

	
area

	The membrane surface area of each compartment in this sub-section.

	
diameter

	The diameter at the middle of each compartment in this sub-section.

	
distance

	The total distance between the midpoint of each compartment in this
sub-section and the root of the morphology.

	
end_x

	The x coordinate at the end of each compartment in this sub-section.
Returns None for morphologies without coordinates.

	
end_x_

	The x coordinate (as a unitless floating point number) at the end of
each compartment in this sub-section. Returns None for morphologies
without coordinates.

	
end_y

	The y coordinate at the end of each compartment in this sub-section.
Returns None for morphologies without coordinates.

	
end_y_

	The y coordinate (as a unitless floating point number) at the end of
each compartment in this sub-section. Returns None for morphologies
without coordinates.

	
end_z

	The z coordinate at the end of each compartment in this sub-section.
Returns None for morphologies without coordinates.

	
end_z_

	The z coordinate (as a unitless floating point number) at the end of
each compartment in this sub-section. Returns None for morphologies
without coordinates.

	
length

	The length of each compartment in this sub-section.

	
n

	The number of compartments in this sub-section.

	
n_sections

	The number of sections in this sub-section (always 1).

	
r_length_1

	The geometry-dependent term to calculate the conductance between the
start and the midpoint of each compartment in this sub-section.
Dividing this value by the Intracellular resistivity gives the
conductance.

	
r_length_2

	The geometry-dependent term to calculate the conductance between the
midpoint and the end of each compartment in this sub-section. Dividing
this value by the Intracellular resistivity gives the conductance.

	
start_x

	The x coordinate at the beginning of each compartment in this
sub-section. Returns None for morphologies without coordinates.

	
start_x_

	The x coordinate (as a unitless floating point number) at the beginning
of each compartment in this sub-section. Returns None for
morphologies without coordinates.

	
start_y

	The y coordinate at the beginning of each compartment in this
sub-section. Returns None for morphologies without coordinates.

	
start_y_

	The y coordinate (as a unitless floating point number) at the beginning
of each compartment in this sub-section. Returns None for
morphologies without coordinates.

	
start_z

	The x coordinate at the beginning of each compartment in this
sub-section. Returns None for morphologies without coordinates.

	
start_z_

	The z coordinate (as a unitless floating point number) at the beginning
of each compartment in this sub-section. Returns None for
morphologies without coordinates.

	
volume

	The volume of each compartment in this sub-section.

	
x

	The x coordinate at the midpoint of each compartment in this
sub-section. Returns None for morphologies without coordinates.

	
x_

	The x coordinate (as a unitless floating point number) at the midpoint
of each compartment in this sub-section. Returns None for
morphologies without coordinates.

	
y

	The y coordinate at the midpoint of each compartment in this
sub-section. Returns None for morphologies without coordinates.

	
y_

	The y coordinate (as a unitless floating point number) at the midpoint
of each compartment in this sub-section. Returns None for
morphologies without coordinates.

	
z

	The z coordinate at the midpoint of each compartment in this
sub-section. Returns None for morphologies without coordinates.

	
z_

	The z coordinate (as a unitless floating point number) at the midpoint
of each compartment in this sub-section. Returns None for
morphologies without coordinates.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Topology class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	spatialneuron package »

Topology class

(Shortest import: from brian2.spatialneuron.morphology import Topology)

	
class brian2.spatialneuron.morphology.Topology(morphology)[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

A representation of the topology of a Morphology. Has a useful string
representation, inspired by NEURON’s topology function.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 FlatMorphology class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	spatialneuron package »

FlatMorphology class

(Shortest import: from brian2.spatialneuron.spatialneuron import FlatMorphology)

	
class brian2.spatialneuron.spatialneuron.FlatMorphology(morphology)[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Container object to store the flattened representation of a morphology.
Note that all values are stored as numpy arrays without unit information
(i.e. in base units).

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 SpatialNeuron class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	spatialneuron package »

SpatialNeuron class

(Shortest import: from brian2 import SpatialNeuron)

	
class brian2.spatialneuron.spatialneuron.SpatialNeuron(morphology=None, model=None, threshold=None, refractory=False, reset=None, events=None, threshold_location=None, dt=None, clock=None, order=0, Cm=0.009 * metre ** -4 * kilogram ** -1 * second ** 4 * amp ** 2, Ri=1.5 * metre ** 3 * kilogram * second ** -3 * amp ** -2, name='spatialneuron*', dtype=None, namespace=None, method=('linear', 'exponential_euler', 'rk2', 'heun'))[source]

	Bases: brian2.groups.neurongroup.NeuronGroup

A single neuron with a morphology and possibly many compartments.

	Parameters:	morphology : Morphology

The morphology of the neuron.

model : (str, Equations)

The equations defining the group.

method : (str, function), optional

The numerical integration method. Either a string with the name of a
registered method (e.g. “euler”) or a function that receives an
Equations object and returns the corresponding abstract code. If no
method is specified, a suitable method will be chosen automatically.

threshold : str, optional

The condition which produces spikes. Should be a single line boolean
expression.

threshold_location : (int, Morphology), optional

Compartment where the threshold condition applies, specified as an
integer (compartment index) or a Morphology object corresponding to
the compartment (e.g. morpho.axon[10*um]).
If unspecified, the threshold condition applies at all compartments.

Cm : Quantity, optional

Specific capacitance in uF/cm**2 (default 0.9). It can be accessed and
modified later as a state variable. In particular, its value can differ
in different compartments.

Ri : Quantity, optional

Intracellular resistivity in ohm.cm (default 150). It can be accessed
as a shared state variable, but modified only before the first run.
It is uniform across the neuron.

reset : str, optional

The (possibly multi-line) string with the code to execute on reset.

events : dict, optional

User-defined events in addition to the “spike” event defined by the
threshold. Has to be a mapping of strings (the event name) to
strings (the condition) that will be checked.

refractory : {str, Quantity}, optional

Either the length of the refractory period (e.g. 2*ms), a string
expression that evaluates to the length of the refractory period
after each spike (e.g. '(1 + rand())*ms'), or a string expression
evaluating to a boolean value, given the condition under which the
neuron stays refractory after a spike (e.g. 'v > -20*mV')

namespace : dict, optional

A dictionary mapping variable/function names to the respective objects.
If no namespace is given, the “implicit” namespace, consisting of
the local and global namespace surrounding the creation of the class,
is used.

dtype : (dtype [http://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype], dict [https://docs.python.org/2/library/stdtypes.html#dict]), optional

The numpy.dtype [http://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype] that will be used to store the values, or a
dictionary specifying the type for variable names. If a value is not
provided for a variable (or no value is provided at all), the preference
setting core.default_float_dtype is used.

dt : Quantity, optional

The time step to be used for the simulation. Cannot be combined with
the clock argument.

clock : Clock, optional

The update clock to be used. If neither a clock, nor the dt argument
is specified, the defaultclock will be used.

order : int, optional

The priority of of this group for operations occurring at the same time
step and in the same scheduling slot. Defaults to 0.

name : str, optional

A unique name for the group, otherwise use spatialneuron_0, etc.

Attributes

	user_equations
	The original equations as specified by the user (i.e.

Methods

	spatialneuron_attribute(neuron,name)
	Selects a subtree from SpatialNeuron neuron and returns a SpatialSubgroup.

	spatialneuron_segment(neuron,item)
	Selects a segment from SpatialNeuron neuron, where item is a slice of either compartment indexes or distances.

Details

	
user_equations

	The original equations as specified by the user (i.e. before
inserting point-currents into the membrane equation, before adding
all the internally used variables and constants, etc.).

	
static spatialneuron_attribute(neuron, name)[source]

	Selects a subtree from SpatialNeuron neuron and returns a SpatialSubgroup.
If it does not exist, returns the Group attribute.

	
static spatialneuron_segment(neuron, item)[source]

	Selects a segment from SpatialNeuron neuron, where item is a slice of
either compartment indexes or distances.
Note a: segment is not a SpatialNeuron, only a Group.

Tutorials and examples using this

	Example frompapers/Brette_2012/Fig1

	Example frompapers/Brette_2012/Fig5A

	Example frompapers/Brette_2012/Fig4

	Example frompapers/Brette_2012/Fig3CF

	Example frompapers/Brette_2012/Fig3AB

	Example compartmental/hodgkin_huxley_1952

	Example compartmental/spike_initiation

	Example compartmental/bipolar_with_inputs

	Example compartmental/rall

	Example compartmental/cylinder

	Example compartmental/infinite_cable

	Example compartmental/bipolar_cell

	Example compartmental/morphotest

	Example compartmental/bipolar_with_inputs2

	Example compartmental/lfp

	Example compartmental/hh_with_spikes

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 SpatialStateUpdater class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	spatialneuron package »

SpatialStateUpdater class

(Shortest import: from brian2.spatialneuron.spatialneuron import SpatialStateUpdater)

	
class brian2.spatialneuron.spatialneuron.SpatialStateUpdater(group, method, clock, order=0)[source]

	Bases: brian2.groups.group.CodeRunner, brian2.groups.group.Group

The CodeRunner that updates the state variables of a SpatialNeuron
at every timestep.

Methods

	before_run(run_namespace)
	

Details

	
before_run(run_namespace)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 SpatialSubgroup class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	spatialneuron package »

SpatialSubgroup class

(Shortest import: from brian2.spatialneuron.spatialneuron import SpatialSubgroup)

	
class brian2.spatialneuron.spatialneuron.SpatialSubgroup(source, start, stop, morphology, name=None)[source]

	Bases: brian2.groups.subgroup.Subgroup

A subgroup of a SpatialNeuron.

	Parameters:	source : int

First compartment.

stop : int

Ending compartment, not included (as in slices).

morphology : Morphology

Morphology corresponding to the subgroup (not the full
morphology).

name : str, optional

Name of the subgroup.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 stateupdaters package

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

stateupdaters package

Module for transforming model equations into “abstract code” that can be then be
further translated into executable code by the codegen module.

base module

This module defines the StateUpdateMethod class that acts as a base class for
all stateupdaters and allows to register stateupdaters so that it is able to
return a suitable stateupdater object for a given set of equations. This is used
for example in NeuronGroup when no state updater is given explicitly.

Exported members:
StateUpdateMethod

Classes

	StateUpdateMethod
	Attributes

	UnsupportedEquationsException
	

exact module

Exact integration for linear equations.

Exported members:
linear, independent

Classes

	IndependentStateUpdater
	A state update for equations that do not depend on other state variables, i.e.

	LinearStateUpdater
	A state updater for linear equations.

Functions

	get_linear_system(eqs,variables)
	Convert equations into a linear system using sympy.

Objects

	independent
	A state update for equations that do not depend on other state variables, i.e.

	linear
	A state updater for linear equations.

explicit module

Numerical integration functions.

Exported members:
milstein, heun, euler, rk2, rk4, ExplicitStateUpdater

Classes

	ExplicitStateUpdater(description[,...])
	An object that can be used for defining state updaters via a simple description (see below).

Functions

	diagonal_noise(equations,variables)
	Checks whether we deal with diagonal noise, i.e.

	split_expression(expr)
	Split an expression into a part containing the function f and another one containing the function g.

Objects

	euler
	Forward Euler state updater

	heun
	Stochastic Heun method (for multiplicative Stratonovic SDEs with non-diagonal

	milstein
	Derivative-free Milstein method

	rk2
	Second order Runge-Kutta method (midpoint method)

	rk4
	Classical Runge-Kutta method (RK4)

exponential_euler module

Exported members:
exponential_euler

Classes

	ExponentialEulerStateUpdater
	A state updater for conditionally linear equations, i.e.

Functions

	get_conditionally_linear_system(eqs[,variables])
	Convert equations into a linear system using sympy.

Objects

	exponential_euler
	A state updater for conditionally linear equations, i.e.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 StateUpdateMethod class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	stateupdaters package »

StateUpdateMethod class

(Shortest import: from brian2 import StateUpdateMethod)

	
class brian2.stateupdaters.base.StateUpdateMethod[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Attributes

	stateupdaters
	A dictionary mapping state updater names to StateUpdateMethod objects

Methods

	__call__(equations[,variables])
	Generate abstract code from equations.

	apply_stateupdater(equations,variables,method)
	Applies a given state updater to equations.

	register(name,stateupdater)
	Register a state updater.

Details

	
stateupdaters

	A dictionary mapping state updater names to StateUpdateMethod objects

	
__call__(equations, variables=None)[source]

	Generate abstract code from equations. The method also gets the
the variables because some state updaters have to check whether
variable names reflect other state variables (which can change from
timestep to timestep) or are external values (which stay constant during
a run) For convenience, this arguments are optional – this allows to
directly see what code a state updater generates for a set of equations
by simply writing euler(eqs), for example.

	Parameters:	equations : Equations

The model equations.

variables : dict, optional

The Variable objects for the model variables.

	Returns:	code : str

The abstract code performing a state update step.

	
static apply_stateupdater(equations, variables, method, group_name=None)[source]

	Applies a given state updater to equations. If a method is given, the
state updater with the given name is used or if is a callable, then it
is used directly. If a method is a list of names, all the
methods will be tried until one that doesn’t raise an
UnsupportedEquationsException is found.

	Parameters:	equations : Equations

The model equations.

variables : dict [https://docs.python.org/2/library/stdtypes.html#dict]

The dictionary of Variable objects, describing the internal
model variables.

method : {callable, str, list of str}

A callable usable as a state updater, the name of a registered
state updater or a list of names of state updaters.

	Returns:	abstract_code : str

The code integrating the given equations.

	
static register(name, stateupdater)[source]

	Register a state updater. Registered state updaters can be referred to
via their name.

	Parameters:	name : str

A short name for the state updater (e.g. 'euler')

stateupdater : StateUpdaterMethod

The state updater object, e.g. an ExplicitStateUpdater.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 UnsupportedEquationsException class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	stateupdaters package »

UnsupportedEquationsException class

(Shortest import: from brian2.stateupdaters.base import UnsupportedEquationsException)

	
class brian2.stateupdaters.base.UnsupportedEquationsException[source]

	Bases: exceptions.Exception [https://docs.python.org/2/library/exceptions.html#exceptions.Exception]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 IndependentStateUpdater class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	stateupdaters package »

IndependentStateUpdater class

(Shortest import: from brian2.stateupdaters.exact import IndependentStateUpdater)

	
class brian2.stateupdaters.exact.IndependentStateUpdater[source]

	Bases: brian2.stateupdaters.base.StateUpdateMethod

A state update for equations that do not depend on other state variables,
i.e. 1-dimensional differential equations. The individual equations are
solved by sympy.

Methods

	__call__(equations[,variables])
	

Details

	
__call__(equations, variables=None)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 LinearStateUpdater class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	stateupdaters package »

LinearStateUpdater class

(Shortest import: from brian2.stateupdaters.exact import LinearStateUpdater)

	
class brian2.stateupdaters.exact.LinearStateUpdater[source]

	Bases: brian2.stateupdaters.base.StateUpdateMethod

A state updater for linear equations. Derives a state updater step from the
analytical solution given by sympy. Uses the matrix exponential (which is
only implemented for diagonalizable matrices in sympy).

Methods

	__call__(equations[,variables,simplify])
	

Details

	
__call__(equations, variables=None, simplify=True)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 get_linear_system function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	stateupdaters package »

get_linear_system function

(Shortest import: from brian2.stateupdaters.exact import get_linear_system)

	
brian2.stateupdaters.exact.get_linear_system(eqs, variables)[source]

	Convert equations into a linear system using sympy.

	Parameters:	eqs : Equations

The model equations.

	Returns:	(diff_eq_names, coefficients, constants) : (list of str, sympy.Matrix, sympy.Matrix)

A tuple containing the variable names (diff_eq_names) corresponding
to the rows of the matrix coefficients and the vector constants,
representing the system of equations in the form M * X + B

Raises

	ValueError

	If the equations cannot be converted into an M * X + B form.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 independent object

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	stateupdaters package »

independent object

(Shortest import: from brian2 import independent)

	
brian2.stateupdaters.exact.independent = <brian2.stateupdaters.exact.IndependentStateUpdater object>

	A state update for equations that do not depend on other state variables,
i.e. 1-dimensional differential equations. The individual equations are
solved by sympy.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 linear object

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	stateupdaters package »

linear object

(Shortest import: from brian2 import linear)

	
brian2.stateupdaters.exact.linear = LinearStateUpdater()

	A state updater for linear equations. Derives a state updater step from the
analytical solution given by sympy. Uses the matrix exponential (which is
only implemented for diagonalizable matrices in sympy).

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 ExplicitStateUpdater class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	stateupdaters package »

ExplicitStateUpdater class

(Shortest import: from brian2 import ExplicitStateUpdater)

	
class brian2.stateupdaters.explicit.ExplicitStateUpdater(description, stochastic=None, custom_check=None)[source]

	Bases: brian2.stateupdaters.base.StateUpdateMethod

An object that can be used for defining state updaters via a simple
description (see below). Resulting instances can be passed to the
method argument of the NeuronGroup constructor. As other state
updater functions the ExplicitStateUpdater objects are callable,
returning abstract code when called with an Equations object.

A description of an explicit state updater consists of a (multi-line)
string, containing assignments to variables and a final “x_new = ...”,
stating the integration result for a single timestep. The assignments
can be used to define an arbitrary number of intermediate results and
can refer to f(x, t) (the function being integrated, as a function of
x, the previous value of the state variable and t, the time) and
dt, the size of the timestep.

For example, to define a Runge-Kutta 4 integrator (already provided as
rk4), use:

k1 = dt*f(x,t)
k2 = dt*f(x+k1/2,t+dt/2)
k3 = dt*f(x+k2/2,t+dt/2)
k4 = dt*f(x+k3,t+dt)
x_new = x+(k1+2*k2+2*k3+k4)/6

Note that for stochastic equations, the function f only corresponds to
the non-stochastic part of the equation. The additional function g
corresponds to the stochastic part that has to be multiplied with the
stochastic variable xi (a standard normal random variable – if the
algorithm needs a random variable with a different variance/mean you have
to multiply/add it accordingly). Equations with more than one
stochastic variable do not have to be treated differently, the part
referring to g is repeated for all stochastic variables automatically.

Stochastic integrators can also make reference to dW (a normal
distributed random number with variance dt) and g(x, t), the
stochastic part of an equation. A stochastic state updater could therefore
use a description like:

x_new = x + dt*f(x,t) + g(x, t) * dW

For simplicity, the same syntax is used for state updaters that only support
additive noise, even though g(x, t) does not depend on x or t
in that case.

There a some restrictions on the complexity of the expressions (but most
can be worked around by using intermediate results as in the above Runge-
Kutta example): Every statement can only contain the functions f and
g once; The expressions have to be linear in the functions, e.g. you
can use dt*f(x, t) but not f(x, t)**2.

	Parameters:	description : str

A state updater description (see above).

stochastic : {None, ‘additive’, ‘multiplicative’}

What kind of stochastic equations this state updater supports: None
means no support of stochastic equations, 'additive' means only
equations with additive noise and 'multiplicative' means
supporting arbitrary stochastic equations.

Raises

	ValueError

	If the parsing of the description failed.

See also

euler, rk2, rk4, milstein

Notes

Since clocks are updated after the state update, the time t used
in the state update step is still at its previous value. Enumerating the
states and discrete times, x_new = x + dt*f(x, t) is therefore
understood as \(x_{i+1} = x_i + dt f(x_i, t_i)\), yielding the correct
forward Euler integration. If the integrator has to refer to the time at
the end of the timestep, simply use t + dt instead of t.

Attributes

	DESCRIPTION
	A complete state updater description

	EXPRESSION
	A single expression

	OUTPUT
	The last line of a state updater description

	STATEMENT
	An assignment statement

	TEMP_VAR
	Legal names for temporary variables

Methods

	DESCRIPTION
	A complete state updater description

	EXPRESSION
	A single expression

	OUTPUT
	The last line of a state updater description

	STATEMENT
	An assignment statement

	TEMP_VAR
	Legal names for temporary variables

	__call__(eqs[,variables])
	Apply a state updater description to model equations.

	replace_func(x,t,expr,temp_vars,eq_symbols)
	Used to replace a single occurance of f(x, t) or g(x, t): expr is the non-stochastic (in the case of f) or stochastic part (g) of the expression defining the right-hand-side of the differential equation describing var().

Details

	
DESCRIPTION = {[Group:({~{"x_new"} W:(abcd...,abcd...) Suppress:("=") Re:('.*')})]... Group:({Suppress:("x_new") Suppress:("=") Re:('.*')})}

	A complete state updater description

	
EXPRESSION = Re:('.*')

	A single expression

	
OUTPUT = Group:({Suppress:("x_new") Suppress:("=") Re:('.*')})

	The last line of a state updater description

	
STATEMENT = Group:({~{"x_new"} W:(abcd...,abcd...) Suppress:("=") Re:('.*')})

	An assignment statement

	
TEMP_VAR = {~{"x_new"} W:(abcd...,abcd...)}

	Legal names for temporary variables

	
DESCRIPTION()

	Requires all given C{ParseExpression}s to be found in the given order.
Expressions may be separated by whitespace.
May be constructed using the C{‘+’} operator.

	
EXPRESSION()

	Token for matching strings that match a given regular expression.
Defined with string specifying the regular expression in a form recognized by the inbuilt Python re module.

	
OUTPUT()

	Converter to return the matched tokens as a list - useful for returning tokens of C{L{ZeroOrMore}} and C{L{OneOrMore}} expressions.

	
STATEMENT()

	Converter to return the matched tokens as a list - useful for returning tokens of C{L{ZeroOrMore}} and C{L{OneOrMore}} expressions.

	
TEMP_VAR()

	Requires all given C{ParseExpression}s to be found in the given order.
Expressions may be separated by whitespace.
May be constructed using the C{‘+’} operator.

	
__call__(eqs, variables=None)[source]

	Apply a state updater description to model equations.

	Parameters:	eqs : Equations

The equations describing the model

variables: dict-like, optional :

The Variable objects for the model. Ignored by the explicit
state updater.

Examples

>>> from brian2 import *
>>> eqs = Equations('dv/dt = -v / tau : volt')
>>> print(euler(eqs))
_v = -dt*v/tau + v
v = _v
>>> print(rk4(eqs))
__k_1_v = -dt*v/tau
__k_2_v = -dt*(0.5*__k_1_v + v)/tau
__k_3_v = -dt*(0.5*__k_2_v + v)/tau
__k_4_v = -dt*(__k_3_v + v)/tau
_v = 0.166666666666667*__k_1_v + 0.333333333333333*__k_2_v + 0.333333333333333*__k_3_v + 0.166666666666667*__k_4_v + v
v = _v

	
replace_func(x, t, expr, temp_vars, eq_symbols, stochastic_variable=None)[source]

	Used to replace a single occurance of f(x, t) or g(x, t):
expr is the non-stochastic (in the case of f) or stochastic
part (g) of the expression defining the right-hand-side of the
differential equation describing var(). It replaces the variable
var() with the value given as x and t by the value given for
t. Intermediate variables will be replaced with the appropriate
replacements as well.

For example, in the rk2 integrator, the second step involves the
calculation of f(k/2 + x, dt/2 + t). If var() is v and
expr is -v / tau, this will result in -(_k_v/2 + v)/tau.

Note that this deals with only one state variable var(), given as
an argument to the surrounding _generate_RHS function.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 diagonal_noise function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	stateupdaters package »

diagonal_noise function

(Shortest import: from brian2.stateupdaters.explicit import diagonal_noise)

	
brian2.stateupdaters.explicit.diagonal_noise(equations, variables)[source]

	Checks whether we deal with diagonal noise, i.e. one independent noise
variable per variable.

Raises

	UnsupportedEquationsException

	If the noise is not diagonal.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 split_expression function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	stateupdaters package »

split_expression function

(Shortest import: from brian2.stateupdaters.explicit import split_expression)

	
brian2.stateupdaters.explicit.split_expression(expr)[source]

	Split an expression into a part containing the function f and another
one containing the function g. Returns a tuple of the two expressions
(as sympy expressions).

	Parameters:	expr : str

An expression containing references to functions f and g.

	Returns:	(non_stochastic, stochastic) : tuple of sympy expressions

A pair of expressions representing the non-stochastic (containing
function-independent terms and terms involving f) and the
stochastic part of the expression (terms involving g and/or dW).

Examples

>>> split_expression('dt * __f(__x, __t)')
(dt*__f(__x, __t), None)
>>> split_expression('dt * __f(__x, __t) + __dW * __g(__x, __t)')
(dt*__f(__x, __t), __dW*__g(__x, __t))
>>> split_expression('1/(2*dt**.5)*(__g_support - __g(__x, __t))*(__dW**2)')
(0, __dW**2*__g_support*dt**(-0.5)/2 - __dW**2*dt**(-0.5)*__g(__x, __t)/2)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 euler object

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	stateupdaters package »

euler object

(Shortest import: from brian2 import euler)

	
brian2.stateupdaters.explicit.euler = ExplicitStateUpdater('''x_new = __dW*__g(__x, __t) + __x + dt*__f(__x, __t)''', stochastic='additive')

	Forward Euler state updater

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 heun object

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	stateupdaters package »

heun object

(Shortest import: from brian2 import heun)

	
brian2.stateupdaters.explicit.heun = ExplicitStateUpdater('''__x_support = __dW*__g(__x, __t) + __x __g_support = __g(__x_support, __t + dt) x_new = 0.5*__dW*(__g_support + __g(__x, __t)) + __x + dt*__f(__x, __t)''', stochastic='multiplicative')

	Stochastic Heun method (for multiplicative Stratonovic SDEs with non-diagonal
diffusion matrix)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 milstein object

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	stateupdaters package »

milstein object

(Shortest import: from brian2 import milstein)

	
brian2.stateupdaters.explicit.milstein = ExplicitStateUpdater('''__x_support = __x + dt**0.5*__g(__x, __t) + dt*__f(__x, __t) __g_support = __g(__x_support, __t) __k = 0.5*__dW**2.0*dt**(-0.5)*(__g_support - __g(__x, __t)) x_new = __dW*__g(__x, __t) + __k + __x + dt*__f(__x, __t)''', stochastic='multiplicative')

	Derivative-free Milstein method

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 rk2 object

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	stateupdaters package »

rk2 object

(Shortest import: from brian2 import rk2)

	
brian2.stateupdaters.explicit.rk2 = ExplicitStateUpdater('''__k = dt*__f(__x, __t) x_new = __x + dt*__f(0.5*__k + __x, __t + 0.5*dt)''', stochastic=None)

	Second order Runge-Kutta method (midpoint method)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 rk4 object

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	stateupdaters package »

rk4 object

(Shortest import: from brian2 import rk4)

	
brian2.stateupdaters.explicit.rk4 = ExplicitStateUpdater('''__k_1 = dt*__f(__x, __t) __k_2 = dt*__f(0.5*__k_1 + __x, __t + 0.5*dt) __k_3 = dt*__f(0.5*__k_2 + __x, __t + 0.5*dt) __k_4 = dt*__f(__k_3 + __x, __t + dt) x_new = 0.166666666666667*__k_1 + 0.333333333333333*__k_2 + 0.333333333333333*__k_3 + 0.166666666666667*__k_4 + __x''', stochastic=None)

	Classical Runge-Kutta method (RK4)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 ExponentialEulerStateUpdater class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	stateupdaters package »

ExponentialEulerStateUpdater class

(Shortest import: from brian2.stateupdaters.exponential_euler import ExponentialEulerStateUpdater)

	
class brian2.stateupdaters.exponential_euler.ExponentialEulerStateUpdater[source]

	Bases: brian2.stateupdaters.base.StateUpdateMethod

A state updater for conditionally linear equations, i.e. equations where
each variable only depends linearly on itself (but possibly non-linearly
on other variables). Typical Hodgkin-Huxley equations fall into this
category, it is therefore the default integration method used in the
GENESIS simulator, for example.

Methods

	__call__(equations[,variables])
	Generate abstract code from equations.

Details

	
__call__(equations, variables=None)[source]

	Generate abstract code from equations. The method also gets the
the variables because some state updaters have to check whether
variable names reflect other state variables (which can change from
timestep to timestep) or are external values (which stay constant during
a run) For convenience, this arguments are optional – this allows to
directly see what code a state updater generates for a set of equations
by simply writing euler(eqs), for example.

	Parameters:	equations : Equations

The model equations.

variables : dict, optional

The Variable objects for the model variables.

	Returns:	code : str

The abstract code performing a state update step.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 get_conditionally_linear_system function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	stateupdaters package »

get_conditionally_linear_system function

(Shortest import: from brian2.stateupdaters.exponential_euler import get_conditionally_linear_system)

	
brian2.stateupdaters.exponential_euler.get_conditionally_linear_system(eqs, variables=None)[source]

	Convert equations into a linear system using sympy.

	Parameters:	eqs : Equations

The model equations.

	Returns:	coefficients : dict of (sympy expression, sympy expression) tuples

For every variable x, a tuple (M, B) containing the coefficients M and
B (as sympy expressions) for M * x + B

Raises

	ValueError

	If one of the equations cannot be converted into a M * x + B form.

Examples

>>> from brian2 import Equations
>>> eqs = Equations("""
... dv/dt = (-v + w**2) / tau : 1
... dw/dt = -w / tau : 1
... """)
>>> system = get_conditionally_linear_system(eqs)
>>> print(system['v'])
(-1/tau, w**2.0/tau)
>>> print(system['w'])
(-1/tau, 0)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 exponential_euler object

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	stateupdaters package »

exponential_euler object

(Shortest import: from brian2 import exponential_euler)

	
brian2.stateupdaters.exponential_euler.exponential_euler = <brian2.stateupdaters.exponential_euler.ExponentialEulerStateUpdater object>

	A state updater for conditionally linear equations, i.e. equations where
each variable only depends linearly on itself (but possibly non-linearly
on other variables). Typical Hodgkin-Huxley equations fall into this
category, it is therefore the default integration method used in the
GENESIS simulator, for example.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 synapses package

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

synapses package

Package providing synapse support.

parse_synaptic_generator_syntax module

Exported members:
parse_synapse_generator

Functions

	handle_range(*args,**kwds)
	Checks the arguments/keywords for the range iterator

	handle_sample(*args,**kwds)
	Checks the arguments/keywords for the sample iterator

	parse_synapse_generator(expr)
	Returns a parsed form of a synapse generator expression.

spikequeue module

The spike queue class stores future synaptic events
produced by a given presynaptic neuron group (or postsynaptic for backward
propagation in STDP).

Exported members:
SpikeQueue

Classes

	SpikeQueue(source_start,source_end)
	Data structure saving the spikes and taking care of delays.

synapses module

Module providing the Synapses class and related helper classes/functions.

Exported members:
Synapses

Classes

	StateUpdater(group,method,clock,order)
	The CodeRunner that updates the state variables of a Synapses at every timestep.

	SummedVariableUpdater(expression,...)
	The CodeRunner that updates a value in the target group with the sum over values in the Synapses object.

	Synapses(source[,target,model,on_pre,...])
	Class representing synaptic connections.

	SynapticIndexing(synapses)
	Methods

	SynapticPathway(synapses,code,prepost[,...])
	The CodeRunner that applies the pre/post statement(s) to the state variables of synapses where the pre-/postsynaptic group spiked in this time step.

	SynapticSubgroup(synapses,indices)
	A simple subgroup of Synapses that can be used for indexing.

Functions

	find_synapses(index,synaptic_neuron)
	

	slice_to_test(x)
	Returns a testing function corresponding to whether an index is in slice x.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 handle_range function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	synapses package »

handle_range function

(Shortest import: from brian2.synapses.parse_synaptic_generator_syntax import handle_range)

	
brian2.synapses.parse_synaptic_generator_syntax.handle_range(*args, **kwds)[source]

	Checks the arguments/keywords for the range iterator

Should have 1-3 positional arguments.

Returns a dict with keys low, high, step. Default values are
low=0, step=1.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 handle_sample function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	synapses package »

handle_sample function

(Shortest import: from brian2.synapses.parse_synaptic_generator_syntax import handle_sample)

	
brian2.synapses.parse_synaptic_generator_syntax.handle_sample(*args, **kwds)[source]

	Checks the arguments/keywords for the sample iterator

Should have 1-3 positional arguments and 1 keyword argument (either p or
size).

Returns a dict with keys low, high, step, sample_size, p, size. Default
values are low=0, step=1`. Sample size will be either ``'random' or
'fixed'. In the first case, p will have a value and size will be
None (and vice versa for the second case).

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 parse_synapse_generator function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	synapses package »

parse_synapse_generator function

(Shortest import: from brian2.synapses.parse_synaptic_generator_syntax import parse_synapse_generator)

	
brian2.synapses.parse_synaptic_generator_syntax.parse_synapse_generator(expr)[source]

	Returns a parsed form of a synapse generator expression.

The general form is:

element for iteration_variable in iterator_func(...)

or

element for iteration_variable in iterator_func(...) if if_expression

Returns a dictionary with keys:

	original_expression

	The original expression as a string.

	element

	As above, a string expression.

	iteration_variable

	A variable name, as above.

	iterator_func

	String. Either range or sample.

	if_expression

	String expression or None.

	iterator_kwds

	Dictionary of key/value pairs representing the keywords. See
handle_range and handle_sample.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 SpikeQueue class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	synapses package »

SpikeQueue class

(Shortest import: from brian2.synapses.spikequeue import SpikeQueue)

	
class brian2.synapses.spikequeue.SpikeQueue(source_start, source_end)[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Data structure saving the spikes and taking care of delays.

	Parameters:	source_start : int

The start of the source indices (for subgroups)

source_end : int

The end of the source indices (for subgroups)

Notes :

—– :

Data structure :

A spike queue is implemented as a 2D array `X` that is circular in the time :

direction (rows) and dynamic in the events direction (columns). The :

row index corresponding to the current timestep is `currentime`. :

Each element contains the target synapse index. :

Offsets :

Offsets are used to solve the problem of inserting multiple synaptic events :

with the same delay. This is difficult to vectorise. If there are n synaptic :

events with the same delay, these events are given an offset between 0 and :

n-1, corresponding to their relative position in the data structure. :

Attributes

	_dt
	The dt used for storing the spikes (will be set in prepare)

	_source_end
	The end of the source indices (for subgroups)

	_source_start
	The start of the source indices (for subgroups)

	currenttime
	The current time (in time steps)

	n
	number of events in each time step

Methods

	advance()
	Advances by one timestep

	peek()
	Returns the all the synaptic events corresponding to the current time, as an array of synapse indexes.

	prepare(delays,dt,synapse_sources)
	Prepare the data structures

	push(sources)
	Push spikes to the queue.

Details

	
_dt

	The dt used for storing the spikes (will be set in prepare)

	
_source_end

	The end of the source indices (for subgroups)

	
_source_start

	The start of the source indices (for subgroups)

	
currenttime

	The current time (in time steps)

	
n

	number of events in each time step

	
advance()[source]

	Advances by one timestep

	
peek()[source]

	Returns the all the synaptic events corresponding to the current time,
as an array of synapse indexes.

	
prepare(delays, dt, synapse_sources)[source]

	Prepare the data structures

This is called every time the network is run. The size of the
of the data structure (number of rows) is adjusted to fit the maximum
delay in delays, if necessary. A flag is set if delays are
homogeneous, in which case insertion will use a faster method
implemented in insert_homogeneous.

	
push(sources)[source]

	Push spikes to the queue.

	Parameters:	sources : ndarray of int

The indices of the neurons that spiked.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 StateUpdater class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	synapses package »

StateUpdater class

(Shortest import: from brian2.synapses.synapses import StateUpdater)

	
class brian2.synapses.synapses.StateUpdater(group, method, clock, order)[source]

	Bases: brian2.groups.group.CodeRunner

The CodeRunner that updates the state variables of a Synapses
at every timestep.

Methods

	update_abstract_code([run_namespace,level])
	

Details

	
update_abstract_code(run_namespace=None, level=0)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 SummedVariableUpdater class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	synapses package »

SummedVariableUpdater class

(Shortest import: from brian2.synapses.synapses import SummedVariableUpdater)

	
class brian2.synapses.synapses.SummedVariableUpdater(expression, target_varname, synapses, target, target_size_name, index_var)[source]

	Bases: brian2.groups.group.CodeRunner

The CodeRunner that updates a value in the target group with the
sum over values in the Synapses object.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Synapses class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	synapses package »

Synapses class

(Shortest import: from brian2 import Synapses)

	
class brian2.synapses.synapses.Synapses(source, target=None, model=None, on_pre=None, pre=None, on_post=None, post=None, connect=None, delay=None, on_event='spike', multisynaptic_index=None, namespace=None, dtype=None, codeobj_class=None, dt=None, clock=None, order=0, method=('linear', 'euler', 'heun'), name='synapses*')[source]

	Bases: brian2.groups.group.Group

Class representing synaptic connections.

Creating a new Synapses object does by default not create any synapses,
you have to call the Synapses.connect() method for that.

	Parameters:	source : SpikeSource

The source of spikes, e.g. a NeuronGroup.

target : Group, optional

The target of the spikes, typically a NeuronGroup. If none is given,
the same as source()

model : str [https://docs.python.org/2/library/functions.html#str], Equations, optional

The model equations for the synapses.

on_pre : str, dict, optional

The code that will be executed after every pre-synaptic spike. Can be
either a single (possibly multi-line) string, or a dictionary mapping
pathway names to code strings. In the first case, the pathway will be
called pre and made available as an attribute of the same name.
In the latter case, the given names will be used as the
pathway/attribute names. Each pathway has its own code and its own
delays.

pre : str, dict, optional

Deprecated. Use on_pre instead.

on_post : str, dict, optional

The code that will be executed after every post-synaptic spike. Same
conventions as for on_pre`, the default name for the pathway is
post.

post : str, dict, optional

Deprecated. Use on_post instead.

delay : Quantity, dict, optional

The delay for the “pre” pathway (same for all synapses) or a dictionary
mapping pathway names to delays. If a delay is specified in this way
for a pathway, it is stored as a single scalar value. It can still
be changed afterwards, but only to a single scalar value. If you want
to have delays that vary across synapses, do not use the keyword
argument, but instead set the delays via the attribute of the pathway,
e.g. S.pre.delay = ... (or S.delay = ... as an abbreviation),
S.post.delay = ..., etc.

on_event : str or dict, optional

Define the events which trigger the pre and post pathways. By default,
both pathways are triggered by the 'spike' event, i.e. the event
that is triggered by the threshold condition in the connected
groups.

multisynaptic_index : str, optional

The name of a variable (which will be automatically created) that stores
the “synapse number”. This number enumerates all synapses between the
same source and target so that they can be distinguished. For models
where each source-target pair has only a single connection, this number
only wastes memory (it would always default to 0), it is therefore not
stored by default. Defaults to None (no variable).

namespace : dict, optional

A dictionary mapping identifier names to objects. If not given, the
namespace will be filled in at the time of the call of Network.run(),
with either the values from the network argument of the
Network.run() method or from the local context, if no such argument is
given.

dtype : dtype [http://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype], dict, optional

The numpy.dtype [http://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype] that will be used to store the values, or a
dictionary specifying the type for variable names. If a value is not
provided for a variable (or no value is provided at all), the preference
setting core.default_float_dtype is used.

codeobj_class : class, optional

The CodeObject class to use to run code.

dt : Quantity, optional

The time step to be used for the update of the state variables.
Cannot be combined with the clock argument.

clock : Clock, optional

The update clock to be used. If neither a clock, nor the dt argument
is specified, the defaultclock will be used.

order : int, optional

The priority of of this group for operations occurring at the same time
step and in the same scheduling slot. Defaults to 0.

method : str, StateUpdateMethod, optional

The numerical integration method to use. If none is given, an
appropriate one is automatically determined.

name : str, optional

The name for this object. If none is given, a unique name of the form
synapses, synapses_1, etc. will be automatically chosen.

Attributes

	_connect_called
	remember whether connect was called to raise an error if an

	_pathways
	List of all SynapticPathway objects

	_registered_variables
	Set of Variable objects that should be resized when the

	_synaptic_updaters
	List of names of all updaters, e.g.

	events
	“Events” for all the pathways

	namespace
	The group-specific namespace

	state_updater
	Performs numerical integration step

	subexpression_updater
	Update the “constant over a time step” subexpressions

	summed_updaters
	“Summed variable” mechanism – sum over all synapses of a

Methods

	before_run(run_namespace)
	

	check_variable_write(variable)
	Checks that Synapses.connect() has been called before setting a synaptic variable.

	connect(*args,**kwds)
	Add synapses.

	register_variable(variable)
	Register a DynamicArray to be automatically resized when the size of the indices change.

	unregister_variable(variable)
	Unregister a DynamicArray from the automatic resizing mechanism.

Details

	
_connect_called

	remember whether connect was called to raise an error if an
assignment to a synaptic variable is attempted without a preceding
connect.

	
_pathways

	List of all SynapticPathway objects

	
_registered_variables

	Set of Variable objects that should be resized when the
number of synapses changes

	
_synaptic_updaters

	List of names of all updaters, e.g. [‘pre’, ‘post’]

	
events

	“Events” for all the pathways

	
namespace

	The group-specific namespace

	
state_updater

	Performs numerical integration step

	
subexpression_updater

	Update the “constant over a time step” subexpressions

	
summed_updaters

	“Summed variable” mechanism – sum over all synapses of a
pre-/postsynaptic target

	
before_run(run_namespace)[source]

	

	
check_variable_write(variable)[source]

	Checks that Synapses.connect() has been called before setting a
synaptic variable.

	Parameters:	variable : Variable

The variable that the user attempts to set.

Raises

	TypeError

	If Synapses.connect() has not been called yet.

	
connect(*args, **kwds)

	Add synapses.

See Synapses for details.

	Parameters:	condition : str, bool, optional

A boolean or string expression that evaluates to a boolean.
The expression can depend on indices i and j and on
pre- and post-synaptic variables. Can be combined with
arguments n, and p but not i or j.

i : int, ndarray of int, optional

The presynaptic neuron indices (in the form of an index or an array
of indices). Must be combined with j argument.

j : int, ndarray of int, str, optional

The postsynaptic neuron indices. It can be an index or array of
indices if combined with the i argument, or it can be a string
generator expression.

p : float, str, optional

The probability to create n synapses wherever the condition
evaluates to true. Cannot be used with generator syntax for j.

n : int, str, optional

The number of synapses to create per pre/post connection pair.
Defaults to 1.

skip_if_invalid : bool, optional

If set to True, rather than raising an error if you try to
create an invalid/out of range pair (i, j) it will just
quietly skip those synapses.

namespace : dict-like, optional

A namespace that will be used in addition to the group-specific
namespaces (if defined). If not specified, the locals
and globals around the run function will be used.

level : int, optional

How deep to go up the stack frame to look for the locals/global
(see namespace argument).

Examples

>>> from brian2 import *
>>> import numpy as np
>>> G = NeuronGroup(10, 'dv/dt = -v / tau : 1', threshold='v>1', reset='v=0')
>>> S = Synapses(G, G, 'w:1', on_pre='v+=w')
>>> S.connect(condition='i != j') # all-to-all but no self-connections
>>> S.connect(i=0, j=0) # connect neuron 0 to itself
>>> S.connect(i=np.array([1, 2]), j=np.array([2, 1])) # connect 1->2 and 2->1
>>> S.connect() # connect all-to-all
>>> S.connect(condition='i != j', p=0.1) # Connect neurons with 10% probability, exclude self-connections
>>> S.connect(j='i', n=2) # Connect all neurons to themselves with 2 synapses
>>> S.connect(j='k for k in range(i+1)') # Connect neuron i to all j with 0<=j<=i
>>> S.connect(j='i+(-1)**k for k in range(2) if i>0 and i<N_pre-1') # connect neuron i to its neighbours if it has both neighbours
>>> S.connect(j='k for k in sample(N_post, p=i*1.0/(N_pre-1))') # neuron i connects to j with probability i/(N-1)

	
register_variable(variable)[source]

	Register a DynamicArray to be automatically resized when the size of
the indices change. Called automatically when a SynapticArrayVariable
specifier is created.

	
unregister_variable(variable)[source]

	Unregister a DynamicArray from the automatic resizing mechanism.

Tutorials and examples using this

	Tutorial 1-intro-to-brian-neurons

	Tutorial 2-intro-to-brian-synapses

	Example CUBA

	Example adaptive_threshold

	Example COBAHH

	Example standalone/cuba_openmp

	Example standalone/STDP_standalone

	Example synapses/gapjunctions

	Example synapses/nonlinear

	Example synapses/synapses

	Example synapses/STDP

	Example synapses/jeffress

	Example synapses/state_variables

	Example synapses/spatial_connections

	Example synapses/licklider

	Example synapses/efficient_gaussian_connectivity

	Example frompapers/Diesmann_et_al_1999

	Example frompapers/Clopath_et_al_2010_no_homeostasis

	Example frompapers/Brunel_Hakim_1999

	Example frompapers/Clopath_et_al_2010_homeostasis

	Example frompapers/Vogels_et_al_2011

	Example frompapers/Sturzl_et_al_2000

	Example frompapers/Kremer_et_al_2011_barrel_cortex

	Example frompapers/Brette_2012/Fig5A

	Example compartmental/bipolar_with_inputs

	Example compartmental/bipolar_with_inputs2

	Example compartmental/lfp

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 SynapticIndexing class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	synapses package »

SynapticIndexing class

(Shortest import: from brian2.synapses.synapses import SynapticIndexing)

	
class brian2.synapses.synapses.SynapticIndexing(synapses)[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Methods

	__call__([index,index_var])
	Returns synaptic indices for index, which can be a tuple of indices (including arrays and slices), a single index or a string.

Details

	
__call__(index=None, index_var='_idx')[source]

	Returns synaptic indices for index, which can be a tuple of indices
(including arrays and slices), a single index or a string.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 SynapticPathway class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	synapses package »

SynapticPathway class

(Shortest import: from brian2.synapses.synapses import SynapticPathway)

	
class brian2.synapses.synapses.SynapticPathway(synapses, code, prepost, objname=None, delay=None, event='spike')[source]

	Bases: brian2.groups.group.CodeRunner, brian2.groups.group.Group

The CodeRunner that applies the pre/post statement(s) to the state
variables of synapses where the pre-/postsynaptic group spiked in this
time step.

	Parameters:	synapses : Synapses

Reference to the main Synapses object

prepost : {‘pre’, ‘post’}

Whether this object should react to pre- or postsynaptic spikes

objname : str, optional

The name to use for the object, will be appendend to the name of
synapses to create a name in the sense of Nameable. If None
is provided (the default), prepost will be used.

delay : Quantity, optional

A scalar delay (same delay for all synapses) for this pathway. If
not given, delays are expected to vary between synapses.

Attributes

	_initialise_queue_codeobj
	The CodeObject initalising the SpikeQueue at the begin of a run

	queue
	The SpikeQueue

Methods

	before_run(*args,**kwds)
	

	initialise_queue()
	

	push_spikes()
	

	update_abstract_code(*args,**kwds)
	

Details

	
_initialise_queue_codeobj

	The CodeObject initalising the SpikeQueue at the begin of a run

	
queue

	The SpikeQueue

	
before_run(*args, **kwds)

	

	
initialise_queue()[source]

	

	
push_spikes()[source]

	

	
update_abstract_code(*args, **kwds)

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 SynapticSubgroup class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	synapses package »

SynapticSubgroup class

(Shortest import: from brian2.synapses.synapses import SynapticSubgroup)

	
class brian2.synapses.synapses.SynapticSubgroup(synapses, indices)[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

A simple subgroup of Synapses that can be used for indexing.

	Parameters:	indices : ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of int

The synaptic indices represented by this subgroup.

synaptic_pre : DynamicArrayVariable

References to all pre-synaptic indices. Only used to throw an error
when new synapses where added after creating this object.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 find_synapses function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	synapses package »

find_synapses function

(Shortest import: from brian2.synapses.synapses import find_synapses)

	
brian2.synapses.synapses.find_synapses(index, synaptic_neuron)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 slice_to_test function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	synapses package »

slice_to_test function

(Shortest import: from brian2.synapses.synapses import slice_to_test)

	
brian2.synapses.synapses.slice_to_test(x)[source]

	Returns a testing function corresponding to whether an index is in slice x.
x can also be an int.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 units package

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

units package

The unit system.

Exported members:
pamp, namp, uamp, mamp, amp, kamp, Mamp, Gamp, Tamp, kilogram, pmetre, nmetre, umetre, mmetre, metre, kmetre, Mmetre, Gmetre, Tmetre, pmeter, nmeter, umeter, mmeter, meter, kmeter
... (185 more members)

allunits module

THIS FILE IS AUTOMATICALLY GENERATED BY A STATIC CODE GENERATION TOOL
DO NOT EDIT BY HAND

Instead edit the template:

dev/tools/static_codegen/units_template.py

Exported members:
metre, meter, gram, second, amp, kelvin, mole, candle, gramme, kilogram, radian, steradian, hertz, newton, pascal, joule, watt, coulomb, volt, farad, ohm, siemens, weber, tesla, henry
... (1991 more members)

fundamentalunits module

Defines physical units and quantities

	Quantity
	Unit
	Symbol

	Length
	metre
	m

	Mass
	kilogram
	kg

	Time
	second
	s

	Electric current
	ampere
	A

	Temperature
	kelvin
	K

	Quantity of substance
	mole
	mol

	Luminosity
	candle
	cd

Exported members:
DimensionMismatchError, get_or_create_dimension(), get_dimensions(), is_dimensionless(), have_same_dimensions(), in_unit(), in_best_unit(), Quantity, Unit, register_new_unit(), check_units(), is_scalar_type(), get_unit(), get_unit_fast(), unit_checking

Classes

	Dimension(dims)
	Stores the indices of the 7 basic SI unit dimension (length, mass, etc.).

	DimensionMismatchError(description,*dims)
	Exception class for attempted operations with inconsistent dimensions.

	Quantity
	A number with an associated physical dimension.

	Unit(value[,dim,scale])
	A physical unit.

	UnitRegistry()
	Stores known units for printing in best units.

Functions

	all_registered_units(*regs)
	Generator returning all registered units.

	check_units(**au)
	Decorator to check units of arguments passed to a function

	fail_for_dimension_mismatch(obj1[,obj2,...])
	Compare the dimensions of two objects.

	get_dimensions(obj)
	Return the dimensions of any object that has them.

	get_or_create_dimension(*args,**kwds)
	Create a new Dimension object or get a reference to an existing one.

	get_unit(x,*regs)
	Find the most appropriate consistent unit from the unit registries.

	get_unit_fast(x)
	Return a Quantity with value 1 and the same dimensions.

	get_unit_for_display(x)
	Return a string representation of the most appropriate unit or '1' for

	have_same_dimensions(obj1,obj2)
	Test if two values have the same dimensions.

	in_best_unit(x[,precision])
	Represent the value in the “best” unit.

	in_unit(x,u[,precision])
	Display a value in a certain unit with a given precision.

	is_dimensionless(obj)
	Test if a value is dimensionless or not.

	is_scalar_type(obj)
	Tells you if the object is a 1d number type.

	quantity_with_dimensions(floatval,dims)
	Create a new Quantity with the given dimensions.

	register_new_unit(u)
	Register a new unit for automatic displaying of quantities

	unregister_unit(u)
	Remove a previously registered unit for automatic displaying of

	wrap_function_change_dimensions(func,...)
	Returns a new function that wraps the given function func so that it changes the dimensions of its input.

	wrap_function_dimensionless(func)
	Returns a new function that wraps the given function func so that it raises a DimensionMismatchError if the function is called on a quantity with dimensions (excluding dimensionless quantitities).

	wrap_function_keep_dimensions(func)
	Returns a new function that wraps the given function func so that it keeps the dimensions of its input.

	wrap_function_remove_dimensions(func)
	Returns a new function that wraps the given function func so that it removes any dimensions from its input.

Objects

	DIMENSIONLESS
	The singleton object for dimensionless Dimensions.

	additional_unit_register
	UnitRegistry containing additional units (newton*metre, farad / metre, ...)

	standard_unit_register
	UnitRegistry containing all the standard units (metre, kilogram, um2...)

	user_unit_register
	UnitRegistry containing all units defined by the user

stdunits module

Optional short unit names

This module defines the following short unit names:

mV, mA, uA (micro_amp), nA, pA, mF, uF, nF, mS, uS, ms,
Hz, kHz, MHz, cm, cm2, cm3, mm, mm2, mm3, um, um2, um3

Exported members:
mV, mA, uA, nA, pA, pF, uF, nF, nS, uS, ms, us, Hz, kHz, MHz, cm, cm2, cm3, mm, mm2, mm3, um, um2, um3

unitsafefunctions module

Unit-aware replacements for numpy functions.

Exported members:
log(), log10(), exp(), sin(), cos(), tan(), arcsin(), arccos(), arctan(), sinh(), cosh(), tanh(), arcsinh(), arccosh(), arctanh(), diagonal(), ravel(), trace(), dot(), where(), ones_like(), zeros_like(), arange(), linspace()

Functions

	arange([start,]stop[,step,][,dtype])
	Return evenly spaced values within a given interval.

	arccos(x[,out])
	Trigonometric inverse cosine, element-wise.

	arccosh(x[,out])
	Inverse hyperbolic cosine, element-wise.

	arcsin(x[,out])
	Inverse sine, element-wise.

	arcsinh(x[,out])
	Inverse hyperbolic sine element-wise.

	arctan(x[,out])
	Trigonometric inverse tangent, element-wise.

	arctanh(x[,out])
	Inverse hyperbolic tangent element-wise.

	cos(x[,out])
	Cosine element-wise.

	cosh(x[,out])
	Hyperbolic cosine, element-wise.

	diagonal(x,*args,**kwds)
	Return specified diagonals.

	dot(a,b[,out])
	Dot product of two arrays.

	exp(x[,out])
	Calculate the exponential of all elements in the input array.

	linspace(start,stop[,num,endpoint,...])
	Return evenly spaced numbers over a specified interval.

	log(x[,out])
	Natural logarithm, element-wise.

	ravel(x,*args,**kwds)
	Return a flattened array.

	setup()
	Setup function for doctests (used by nosetest).

	sin(x[,out])
	Trigonometric sine, element-wise.

	sinh(x[,out])
	Hyperbolic sine, element-wise.

	tan(x[,out])
	Compute tangent element-wise.

	tanh(x[,out])
	Compute hyperbolic tangent element-wise.

	trace(x,*args,**kwds)
	Return the sum along diagonals of the array.

	where(condition,[x,y])
	Return elements, either from x or y, depending on condition.

	wrap_function_to_method(func)
	Wraps a function so that it calls the corresponding method on the Quantities object (if called with a Quantities object as the first argument).

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Dimension class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

Dimension class

(Shortest import: from brian2.units.fundamentalunits import Dimension)

	
class brian2.units.fundamentalunits.Dimension(dims)[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Stores the indices of the 7 basic SI unit dimension (length, mass, etc.).

Provides a subset of arithmetic operations appropriate to dimensions:
multiplication, division and powers, and equality testing.

	Parameters:	dims : sequence of float [https://docs.python.org/2/library/functions.html#float]

The dimension indices of the 7 basic SI unit dimensions.

Notes

Users shouldn’t use this class directly, it is used internally in Quantity
and Unit. Even internally, never use Dimension(...) to create a new
instance, use get_or_create_dimension() instead. This function makes
sure that only one Dimension instance exists for every combination of
indices, allowing for a very fast dimensionality check with is.

Attributes

	dim
	Returns the Dimension object itself.

	is_dimensionless
	Whether this Dimension is dimensionless.

Methods

	get_dimension(d)
	Return a specific dimension.

Details

	
dim

	Returns the Dimension object itself. This can be useful, because it
allows to check for the dimension of an object by checking its dim
attribute – this will return a Dimension object for Quantity,
Unit and Dimension.

	
is_dimensionless

	Whether this Dimension is dimensionless.

Notes

Normally, instead one should check dimension for being identical to
DIMENSIONLESS.

	
get_dimension(d)[source]

	Return a specific dimension.

	Parameters:	d : str [https://docs.python.org/2/library/functions.html#str]

A string identifying the SI basic unit dimension. Can be either a
description like “length” or a basic unit like “m” or “metre”.

	Returns:	dim : float [https://docs.python.org/2/library/functions.html#float]

The dimensionality of the dimension d.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 DimensionMismatchError class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

DimensionMismatchError class

(Shortest import: from brian2 import DimensionMismatchError)

	
class brian2.units.fundamentalunits.DimensionMismatchError(description, *dims)[source]

	Bases: exceptions.Exception [https://docs.python.org/2/library/exceptions.html#exceptions.Exception]

Exception class for attempted operations with inconsistent dimensions.

For example, 3*mvolt + 2*amp raises this exception. The purpose of this
class is to help catch errors based on incorrect units. The exception will
print a representation of the dimensions of the two inconsistent objects
that were operated on.

	Parameters:	description : str

A description of the type of operation being performed, e.g. Addition,
Multiplication, etc.

dims : Dimension

The dimensions of the objects involved in the operation, any number of
them is possible

Tutorials and examples using this

	Tutorial 1-intro-to-brian-neurons

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Quantity class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

Quantity class

(Shortest import: from brian2 import Quantity)

	
class brian2.units.fundamentalunits.Quantity[source]

	Bases: numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray], object [https://docs.python.org/2/library/functions.html#object]

A number with an associated physical dimension. In most cases, it is not
necessary to create a Quantity object by hand, instead use multiplication
and division of numbers with the constant unit names second,
kilogram, etc.

See also

Unit

Notes

The Quantity class defines arithmetic operations which check for
consistency of dimensions and raise the DimensionMismatchError exception
if they are inconsistent. It also defines default and other representations
for a number for printing purposes.

See the documentation on the Unit class for more details
about the available unit names like mvolt, etc.

Casting rules

The rules that define the casting operations for
Quantity object are:

	Quantity op Quantity = Quantity
Performs dimension checking if appropriate

	(Scalar or Array) op Quantity = Quantity
Assumes that the scalar or array is dimensionless

There is one exception to the above rule, the number 0 is interpreted
as having “any dimension”.

Examples

>>> from brian2 import *
>>> I = 3 * amp # I is a Quantity object
>>> R = 2 * ohm # same for R
>>> I * R
6. * volt
>>> (I * R).in_unit(mvolt)
'6000. mV'
>>> (I * R) / mvolt
6000.0
>>> X = I + R
Traceback (most recent call last):
 ...
DimensionMismatchError: Addition, dimensions were (A) (m^2 kg s^-3 A^-2)
>>> Is = np.array([1, 2, 3]) * amp
>>> Is * R
array([2., 4., 6.]) * volt
>>> np.asarray(Is * R) # gets rid of units
array([2., 4., 6.])

Attributes

	dimensions
	The dimensions of this quantity.

	is_dimensionless
	Whether this is a dimensionless quantity.

	dim
	The dimensions of this quantity.

Methods

	with_dimensions(value,*args,**keywords)
	Create a Quantity object with dimensions.

	has_same_dimensions(other)
	Return whether this object has the same dimensions as another.

	in_unit(u[,precision,python_code])
	Represent the quantity in a given unit.

	in_best_unit([precision,python_code])
	Represent the quantity in the “best” unit.

Details

	
dimensions

	The dimensions of this quantity.

	
is_dimensionless

	Whether this is a dimensionless quantity.

	
dim

	The dimensions of this quantity.

	
static with_dimensions(value, *args, **keywords)[source]

	Create a Quantity object with dimensions.

	Parameters:	value : {array_like, number}

The value of the dimension

args : {Dimension, sequence of float}

Either a single argument (a Dimension) or a sequence of 7 values.

kwds :

Keywords defining the dimensions, see Dimension for details.

	Returns:	q : Quantity

A Quantity object with the given dimensions

Examples

All of these define an equivalent Quantity object:

>>> from brian2 import *
>>> Quantity.with_dimensions(2, get_or_create_dimension(length=1))
2. * metre
>>> Quantity.with_dimensions(2, length=1)
2. * metre
>>> 2 * metre
2. * metre

	
has_same_dimensions(other)[source]

	Return whether this object has the same dimensions as another.

	Parameters:	other : {Quantity, array-like, number}

The object to compare the dimensions against.

	Returns:	same : bool [https://docs.python.org/2/library/functions.html#bool]

True if other has the same dimensions.

	
in_unit(u, precision=None, python_code=False)[source]

	Represent the quantity in a given unit. If python_code is True,
this will return valid python code, i.e. a string like 5.0 * um ** 2
instead of 5.0 um^2

	Parameters:	u : {Quantity, Unit}

The unit in which to show the quantity.

precision : int [https://docs.python.org/2/library/functions.html#int], optional

The number of digits of precision (in the given unit, see Examples).
If no value is given, numpy’s get_printoptions() value is used.

python_code : bool [https://docs.python.org/2/library/functions.html#bool], optional

Whether to return valid python code (True) or a human readable
string (False, the default).

	Returns:	s : str [https://docs.python.org/2/library/functions.html#str]

String representation of the object in unit u.

See also

in_unit()

Examples

>>> from brian2.units import *
>>> from brian2.units.stdunits import *
>>> x = 25.123456 * mV
>>> x.in_unit(volt)
'0.02512346 V'
>>> x.in_unit(volt, 3)
'0.025 V'
>>> x.in_unit(mV, 3)
'25.123 mV'

	
in_best_unit(precision=None, python_code=False, *regs)[source]

	Represent the quantity in the “best” unit.

	Parameters:	python_code : bool [https://docs.python.org/2/library/functions.html#bool], optional

If set to False (the default), will return a string like
5.0 um^2 which is not a valid Python expression. If set to
True, it will return 5.0 * um ** 2 instead.

precision : int [https://docs.python.org/2/library/functions.html#int], optional

The number of digits of precision (in the best unit, see
Examples). If no value is given, numpy’s
get_printoptions() value is used.

regs : UnitRegistry objects

The registries where to search for units. If none are given, the
standard, user-defined and additional registries are searched in
that order.

	Returns:	representation : str [https://docs.python.org/2/library/functions.html#str]

A string representation of this Quantity.

See also

in_best_unit()

Examples

>>> from brian2.units import *

>>> x = 0.00123456 * volt

>>> x.in_best_unit()
'1.23456 mV'

>>> x.in_best_unit(3)
'1.235 mV'

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Unit class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

Unit class

(Shortest import: from brian2 import Unit)

	
class brian2.units.fundamentalunits.Unit(value, dim=None, scale=None)[source]

	Bases: brian2.units.fundamentalunits.Quantity

A physical unit.

Normally, you do not need to worry about the implementation of
units. They are derived from the Quantity object with
some additional information (name and string representation).

Basically, a unit is just a number with given dimensions, e.g.
mvolt = 0.001 with the dimensions of voltage. The units module
defines a large number of standard units, and you can also define
your own (see below).

The unit class also keeps track of various things that were used
to define it so as to generate a nice string representation of it.
See below.

When creating scaled units, you can use the following prefixes:

	Factor
	Name
	Prefix

	10^24
	yotta
	Y

	10^21
	zetta
	Z

	10^18
	exa
	E

	10^15
	peta
	P

	10^12
	tera
	T

	10^9
	giga
	G

	10^6
	mega
	M

	10^3
	kilo
	k

	10^2
	hecto
	h

	10^1
	deka
	da

	1
	
	

	10^-1
	deci
	d

	10^-2
	centi
	c

	10^-3
	milli
	m

	10^-6
	micro
	u (mu in SI)

	10^-9
	nano
	n

	10^-12
	pico
	p

	10^-15
	femto
	f

	10^-18
	atto
	a

	10^-21
	zepto
	z

	10^-24
	yocto
	y

Defining your own

It can be useful to define your own units for printing
purposes. So for example, to define the newton metre, you
write
>>> from brian2.units.allunits import metre, newton
>>> Nm = newton * metre

You can then do

>>> (1*Nm).in_unit(Nm)
'1. N m'

which returns "1 N m" because the Unit class generates a new
display name of "N m" from the display names "N" and "m" for
newtons and metres automatically.

To register this unit for use in the automatic printing
of the Quantity.in_best_unit() method, see the documentation
for the UnitRegistry class.

Construction

The best way to construct a new unit is to use standard units
already defined and arithmetic operations, e.g. newton*metre.
See the documentation for the static methods Unit.create
and Unit.create_scaled_units for more details.

If you don’t like the automatically generated display name for
the unit, use the Unit.set_display_name() method.

Representation

A new unit defined by multiplication, division or taking powers
generates a name for the unit automatically, so that for
example the name for pfarad/mmetre**2 is "pF/mm^2", etc. If you
don’t like the automatically generated name, use the
Unit.set_display_name() method.

Attributes

	_dispname
	The display name of this unit.

	_latexname
	A LaTeX expression for the name of this unit.

	_name
	The full name of this unit.

	dim
	The Dimensions of this unit

	dispname
	The display name of the unit

	iscompound
	Whether this unit is a combination of other units.

	latexname
	The LaTeX name of the unit

	name
	The name of the unit

	scale
	The scale for this unit (a 7-tuple)

	scalefactor
	The scalefactor for this unit, e.g.

Methods

	create(dim[,name,dispname,latexname,...])
	Create a new named unit.

	create_scaled_unit(baseunit,scalefactor)
	Create a scaled unit from a base unit.

	get_display_name()
	

	get_latex_name()
	

	get_name()
	

	set_display_name(name)
	Sets the display name for the unit

	set_latex_name(name)
	

	set_name(name)
	Sets the name for the unit

Details

	
_dispname

	The display name of this unit.

	
_latexname

	A LaTeX expression for the name of this unit.

	
_name

	The full name of this unit.

	
dim

	The Dimensions of this unit

	
dispname

	The display name of the unit

	
iscompound

	Whether this unit is a combination of other units.

	
latexname

	The LaTeX name of the unit

	
name

	The name of the unit

	
scale

	The scale for this unit (a 7-tuple)

	
scalefactor

	The scalefactor for this unit, e.g. ‘m’ for milli

	
static create(dim, name='', dispname='', latexname=None, scalefactor='', **keywords)[source]

	Create a new named unit.

	Parameters:	dim : Dimension

The dimensions of the unit.

name : str [https://docs.python.org/2/library/functions.html#str], optional

The full name of the unit, e.g. 'volt'

dispname : str [https://docs.python.org/2/library/functions.html#str], optional

The display name, e.g. 'V'

latexname : str, optional

The name as a LaTeX expression (math mode is assumed, do not add
$ signs or similar), e.g. '\omega'. If no latexname is
specified, dispname will be used.

scalefactor : str, optional

The scaling factor, e.g. 'm' for mvolt

keywords :

The scaling for each SI dimension, e.g. length="m",
mass="-1", etc.

	Returns:	u : Unit

The new unit.

	
static create_scaled_unit(baseunit, scalefactor)[source]

	Create a scaled unit from a base unit.

	Parameters:	baseunit : Unit

The unit of which to create a scaled version, e.g. volt,
amp.

scalefactor : str [https://docs.python.org/2/library/functions.html#str]

The scaling factor, e.g. "m" for mvolt, mamp

	Returns:	u : Unit

The new unit.

	
get_display_name()[source]

	

	
get_latex_name()[source]

	

	
get_name()[source]

	

	
set_display_name(name)[source]

	Sets the display name for the unit

	
set_latex_name(name)[source]

	

	
set_name(name)[source]

	Sets the name for the unit

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 UnitRegistry class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

UnitRegistry class

(Shortest import: from brian2.units.fundamentalunits import UnitRegistry)

	
class brian2.units.fundamentalunits.UnitRegistry[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Stores known units for printing in best units.

All a user needs to do is to use the register_new_unit()
function.

Default registries:

The units module defines three registries, the standard units,
user units, and additional units. Finding best units is done
by first checking standard, then user, then additional. New
user units are added by using the register_new_unit() function.

Standard units includes all the basic non-compound unit names
built in to the module, including volt, amp, etc. Additional
units defines some compound units like newton metre (Nm) etc.

Methods

	add(u)
	Add a unit to the registry

	__getitem__(x)
	Returns the best unit for quantity x

Details

	
add(u)[source]

	Add a unit to the registry

	
__getitem__(x)[source]

	Returns the best unit for quantity x

The algorithm is to consider the value:

m=abs(x/u)

for all matching units u. We select the unit where this ratio is the
closest to 10 (if it is an array with several values, we select the
unit where the deviations from that are the smallest. More precisely,
the unit that minimizes the sum of (log10(m)-1)**2 over all entries).

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 all_registered_units function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

all_registered_units function

(Shortest import: from brian2.units.fundamentalunits import all_registered_units)

	
brian2.units.fundamentalunits.all_registered_units(*regs)[source]

	Generator returning all registered units.

	Parameters:	regs : any number of UnitRegistry objects.

If given, units from the given registries are returned. If none are
given, units are returned from the standard units, the user-registered
units and the “additional units” (e.g. newton * metre) in that
order.

	Returns:	u : Unit

A single unit from the registry.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 check_units function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

check_units function

(Shortest import: from brian2 import check_units)

	
brian2.units.fundamentalunits.check_units(**au)[source]

	Decorator to check units of arguments passed to a function

Raises

	DimensionMismatchError

	In case the input arguments or the return value do not have the expected dimensions.

	TypeError

	If an input argument or return value was expected to be a boolean but is not.

Notes

This decorator will destroy the signature of the original function, and
replace it with the signature (*args, **kwds). Other decorators will
do the same thing, and this decorator critically needs to know the signature
of the function it is acting on, so it is important that it is the first
decorator to act on a function. It cannot be used in combination with
another decorator that also needs to know the signature of the function.

Note that the bool type is “strict”, i.e. it expects a proper
boolean value and does not accept 0 or 1. This is not the case the other
way round, declaring an argument or return value as “1” does allow for a
True or False value.

Examples

>>> from brian2.units import *
>>> @check_units(I=amp, R=ohm, wibble=metre, result=volt)
... def getvoltage(I, R, **k):
... return I*R

You don’t have to check the units of every variable in the function, and
you can define what the units should be for variables that aren’t
explicitly named in the definition of the function. For example, the code
above checks that the variable wibble should be a length, so writing

>>> getvoltage(1*amp, 1*ohm, wibble=1)
Traceback (most recent call last):
...
DimensionMismatchError: Function "getvoltage" variable "wibble" has wrong dimensions, dimensions were (1) (m)

fails, but

>>> getvoltage(1*amp, 1*ohm, wibble=1*metre)
1. * volt

passes. String arguments or None are not checked

>>> getvoltage(1*amp, 1*ohm, wibble='hello')
1. * volt

By using the special name result, you can check the return value of the
function.

You can also use 1 or bool as a special value to check for a
unitless number or a boolean value, respectively:
>>> @check_units(value=1, absolute=bool, result=bool)
... def is_high(value, absolute=False):
... if absolute:
... return abs(value) >= 5
... else:
... return value >= 5

This will then again raise an error if the argument if not of the expected
type:
>>> is_high(7)
True
>>> is_high(-7, True)
True
>>> is_high(3, 4) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
TypeError: Function “is_high” expected a boolean value for argument “absolute” but got 4.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 fail_for_dimension_mismatch function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

fail_for_dimension_mismatch function

(Shortest import: from brian2.units.fundamentalunits import fail_for_dimension_mismatch)

	
brian2.units.fundamentalunits.fail_for_dimension_mismatch(obj1, obj2=None, error_message=None, **error_quantities)[source]

	Compare the dimensions of two objects.

	Parameters:	obj1, obj2 : {array-like, Quantity}

The object to compare. If obj2 is None, assume it to be
dimensionless

error_message : str, optional

An error message that is used in the DimensionMismatchError

error_quantities : dict mapping str to Quantity, optional

Quantities in this dictionary will be converted using the _short_str
helper method and inserted into the error_message (which should
have placeholders with the corresponding names). The reason for doing
this in a somewhat complicated way instead of directly including all the
details in error_messsage is that converting large quantity arrays
to strings can be rather costly and we don’t want to do it if no error
occured.

	Returns:	dim1, dim2 : Dimension, Dimension

The dimensions of the two arguments (so that later code does not need
to get the dimensions again).

Raises

	DimensionMismatchError

	If the dimensions of obj1 and obj2 do not match (or, if obj2 is None, in case obj1 is not dimensionsless).

Notes

Implements special checking for 0, treating it as having “any
dimensions”.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 get_dimensions function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

get_dimensions function

(Shortest import: from brian2 import get_dimensions)

	
brian2.units.fundamentalunits.get_dimensions(obj)[source]

	Return the dimensions of any object that has them.

Slightly more general than Quantity.dimensions because it will
return DIMENSIONLESS if the object is of number type but not a Quantity
(e.g. a float [https://docs.python.org/2/library/functions.html#float] or int [https://docs.python.org/2/library/functions.html#int]).

	Parameters:	obj : object [https://docs.python.org/2/library/functions.html#object]

The object to check.

	Returns:	dim: `Dimension` :

The dimensions of the obj.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 get_or_create_dimension function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

get_or_create_dimension function

(Shortest import: from brian2 import get_or_create_dimension)

	
brian2.units.fundamentalunits.get_or_create_dimension(*args, **kwds)[source]

	Create a new Dimension object or get a reference to an existing one.
This function takes care of only creating new objects if they were not
created before and otherwise returning a reference to an existing object.
This allows to compare dimensions very efficiently using is.

	Parameters:	args : sequence of float [https://docs.python.org/2/library/functions.html#float]

A sequence with the indices of the 7 elements of an SI dimension.

kwds : keyword arguments

a sequence of keyword=value pairs where the keywords are the names of
the SI dimensions, or the standard unit.

Notes

The 7 units are (in order):

Length, Mass, Time, Electric Current, Temperature,
Quantity of Substance, Luminosity

and can be referred to either by these names or their SI unit names,
e.g. length, metre, and m all refer to the same thing here.

Examples

The following are all definitions of the dimensions of force

>>> from brian2 import *
>>> get_or_create_dimension(length=1, mass=1, time=-2)
metre * kilogram * second ** -2
>>> get_or_create_dimension(m=1, kg=1, s=-2)
metre * kilogram * second ** -2
>>> get_or_create_dimension([1, 1, -2, 0, 0, 0, 0])
metre * kilogram * second ** -2

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 get_unit function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

get_unit function

(Shortest import: from brian2 import get_unit)

	
brian2.units.fundamentalunits.get_unit(x, *regs)[source]

	Find the most appropriate consistent unit from the unit registries.

	Parameters:	x : {Quantity, Dimension, array-like, number}

The value to find a unit for.

	Returns:	q : Unit

The equivalent Unit for the quantity x.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 get_unit_fast function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

get_unit_fast function

(Shortest import: from brian2 import get_unit_fast)

	
brian2.units.fundamentalunits.get_unit_fast(x)[source]

	Return a Quantity with value 1 and the same dimensions.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 get_unit_for_display function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

get_unit_for_display function

(Shortest import: from brian2.units.fundamentalunits import get_unit_for_display)

	
brian2.units.fundamentalunits.get_unit_for_display(x)[source]

	Return a string representation of the most appropriate unit or '1' for
a dimensionless quantity

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 have_same_dimensions function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

have_same_dimensions function

(Shortest import: from brian2 import have_same_dimensions)

	
brian2.units.fundamentalunits.have_same_dimensions(obj1, obj2)[source]

	Test if two values have the same dimensions.

	Parameters:	obj1, obj2 : {Quantity, array-like, number}

The values of which to compare the dimensions.

	Returns:	same : bool [https://docs.python.org/2/library/functions.html#bool]

True if obj1 and obj2 have the same dimensions.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 in_best_unit function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

in_best_unit function

(Shortest import: from brian2 import in_best_unit)

	
brian2.units.fundamentalunits.in_best_unit(x, precision=None)[source]

	Represent the value in the “best” unit.

	Parameters:	x : {Quantity, array-like, number}

The value to display

precision : int [https://docs.python.org/2/library/functions.html#int], optional

The number of digits of precision (in the best unit, see Examples).
If no value is given, numpy’s get_printoptions() value is used.

	Returns:	representation : str [https://docs.python.org/2/library/functions.html#str]

A string representation of this Quantity.

See also

Quantity.in_best_unit()

Examples

>>> from brian2.units import *

>>> in_best_unit(0.00123456 * volt)
'1.23456 mV'
>>> in_best_unit(0.00123456 * volt, 2)
'1.23 mV'
>>> in_best_unit(0.123456)
'0.123456'
>>> in_best_unit(0.123456, 2)
'0.12'

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 in_unit function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

in_unit function

(Shortest import: from brian2 import in_unit)

	
brian2.units.fundamentalunits.in_unit(x, u, precision=None)[source]

	Display a value in a certain unit with a given precision.

	Parameters:	x : {Quantity, array-like, number}

The value to display

u : {Quantity, Unit}

The unit to display the value x in.

precision : int [https://docs.python.org/2/library/functions.html#int], optional

The number of digits of precision (in the given unit, see Examples).
If no value is given, numpy’s get_printoptions() value is used.

	Returns:	s : str [https://docs.python.org/2/library/functions.html#str]

A string representation of x in units of u.

See also

Quantity.in_unit()

Examples

>>> from brian2 import *
>>> in_unit(3 * volt, mvolt)
'3000. mV'
>>> in_unit(123123 * msecond, second, 2)
'123.12 s'
>>> in_unit(10 * uA/cm**2, nA/um**2)
'1.00000000e-04 nA/um^2'
>>> in_unit(10 * mV, ohm * amp)
'0.01 ohm A'
>>> in_unit(10 * nS, ohm)
...
Traceback (most recent call last):
 ...
DimensionMismatchError: Non-matching unit for method "in_unit",
dimensions were (m^-2 kg^-1 s^3 A^2) (m^2 kg s^-3 A^-2)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 is_dimensionless function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

is_dimensionless function

(Shortest import: from brian2 import is_dimensionless)

	
brian2.units.fundamentalunits.is_dimensionless(obj)[source]

	Test if a value is dimensionless or not.

	Parameters:	obj : object [https://docs.python.org/2/library/functions.html#object]

The object to check.

	Returns:	dimensionless : bool [https://docs.python.org/2/library/functions.html#bool]

True if obj is dimensionless.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 is_scalar_type function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

is_scalar_type function

(Shortest import: from brian2 import is_scalar_type)

	
brian2.units.fundamentalunits.is_scalar_type(obj)[source]

	Tells you if the object is a 1d number type.

	Parameters:	obj : object [https://docs.python.org/2/library/functions.html#object]

The object to check.

	Returns:	scalar : bool [https://docs.python.org/2/library/functions.html#bool]

True if obj is a scalar that can be interpreted as a
dimensionless Quantity.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 quantity_with_dimensions function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

quantity_with_dimensions function

(Shortest import: from brian2.units.fundamentalunits import quantity_with_dimensions)

	
brian2.units.fundamentalunits.quantity_with_dimensions(floatval, dims)[source]

	Create a new Quantity with the given dimensions. Calls
get_or_create_dimensions with the dimension tuple of the dims
argument to make sure that unpickling (which calls this function) does not
accidentally create new Dimension objects which should instead refer to
existing ones.

	Parameters:	floatval : float [https://docs.python.org/2/library/functions.html#float]

The floating point value of the quantity.

dims : Dimension

The dimensions of the quantity.

	Returns:	q : Quantity

A quantity with the given dimensions.

See also

get_or_create_dimensions

Examples

>>> from brian2 import *
>>> quantity_with_dimensions(0.001, volt.dim)
1. * mvolt

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 register_new_unit function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

register_new_unit function

(Shortest import: from brian2 import register_new_unit)

	
brian2.units.fundamentalunits.register_new_unit(u)[source]

	Register a new unit for automatic displaying of quantities

	Parameters:	u : Unit

The unit that should be registered.

Examples

>>> from brian2 import *
>>> 2.0*farad/metre**2
2. * metre ** -4 * kilogram ** -1 * second ** 4 * amp ** 2
>>> register_new_unit(pfarad / mmetre**2)
>>> 2.0*farad/metre**2
2000000. * pfarad / mmetre ** 2
>>> unregister_unit(pfarad / mmetre**2)
>>> 2.0*farad/metre**2
2. * metre ** -4 * kilogram ** -1 * second ** 4 * amp ** 2

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 unregister_unit function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

unregister_unit function

(Shortest import: from brian2.units.fundamentalunits import unregister_unit)

	
brian2.units.fundamentalunits.unregister_unit(u)[source]

	Remove a previously registered unit for automatic displaying of
quantities

	Parameters:	u : Unit

The unit that should be unregistered.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 wrap_function_change_dimensions function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

wrap_function_change_dimensions function

(Shortest import: from brian2.units.fundamentalunits import wrap_function_change_dimensions)

	
brian2.units.fundamentalunits.wrap_function_change_dimensions(func, change_dim_func)[source]

	Returns a new function that wraps the given function func so that it
changes the dimensions of its input. Quantities are transformed to
unitless numpy arrays before calling func, the output is a quantity
with the original dimensions passed through the function
change_dim_func. A typical use would be a sqrt function that uses
lambda d: d ** 0.5 as change_dim_func.

These transformations apply only to the very first argument, all
other arguments are ignored/untouched.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 wrap_function_dimensionless function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

wrap_function_dimensionless function

(Shortest import: from brian2.units.fundamentalunits import wrap_function_dimensionless)

	
brian2.units.fundamentalunits.wrap_function_dimensionless(func)[source]

	Returns a new function that wraps the given function func so that it
raises a DimensionMismatchError if the function is called on a quantity
with dimensions (excluding dimensionless quantitities). Quantities are
transformed to unitless numpy arrays before calling func.

These checks/transformations apply only to the very first argument, all
other arguments are ignored/untouched.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 wrap_function_keep_dimensions function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

wrap_function_keep_dimensions function

(Shortest import: from brian2.units.fundamentalunits import wrap_function_keep_dimensions)

	
brian2.units.fundamentalunits.wrap_function_keep_dimensions(func)[source]

	Returns a new function that wraps the given function func so that it
keeps the dimensions of its input. Quantities are transformed to
unitless numpy arrays before calling func, the output is a quantity
with the original dimensions re-attached.

These transformations apply only to the very first argument, all
other arguments are ignored/untouched, allowing to work functions like
sum to work as expected with additional axis etc. arguments.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 wrap_function_remove_dimensions function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

wrap_function_remove_dimensions function

(Shortest import: from brian2.units.fundamentalunits import wrap_function_remove_dimensions)

	
brian2.units.fundamentalunits.wrap_function_remove_dimensions(func)[source]

	Returns a new function that wraps the given function func so that it
removes any dimensions from its input. Useful for functions that are
returning integers (indices) or booleans, irrespective of the datatype
contained in the array.

These transformations apply only to the very first argument, all
other arguments are ignored/untouched.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 DIMENSIONLESS object

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

DIMENSIONLESS object

(Shortest import: from brian2.units.fundamentalunits import DIMENSIONLESS)

	
brian2.units.fundamentalunits.DIMENSIONLESS = Dimension()

	The singleton object for dimensionless Dimensions.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 additional_unit_register object

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

additional_unit_register object

(Shortest import: from brian2.units.fundamentalunits import additional_unit_register)

	
brian2.units.fundamentalunits.additional_unit_register = <brian2.units.fundamentalunits.UnitRegistry object>

	UnitRegistry containing additional units (newton*metre, farad / metre, ...)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 standard_unit_register object

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

standard_unit_register object

(Shortest import: from brian2.units.fundamentalunits import standard_unit_register)

	
brian2.units.fundamentalunits.standard_unit_register = <brian2.units.fundamentalunits.UnitRegistry object>

	UnitRegistry containing all the standard units (metre, kilogram, um2...)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 user_unit_register object

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

user_unit_register object

(Shortest import: from brian2.units.fundamentalunits import user_unit_register)

	
brian2.units.fundamentalunits.user_unit_register = <brian2.units.fundamentalunits.UnitRegistry object>

	UnitRegistry containing all units defined by the user

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 arange function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

arange function

(Shortest import: from brian2 import arange)

	
brian2.units.unitsafefunctions.arange([start,]stop, [step,]dtype=None)[source]

	Return evenly spaced values within a given interval.

Values are generated within the half-open interval [start, stop)
(in other words, the interval including start but excluding stop()).
For integer arguments the function is equivalent to the Python built-in
range [http://docs.python.org/lib/built-in-funcs.html] function,
but returns an ndarray rather than a list.

When using a non-integer step, such as 0.1, the results will often not
be consistent. It is better to use linspace for these cases.

	Parameters:	start : number, optional

Start of interval. The interval includes this value. The default
start value is 0.

stop : number

End of interval. The interval does not include this value, except
in some cases where step() is not an integer and floating point
round-off affects the length of out.

step : number, optional

Spacing between values. For any output out, this is the distance
between two adjacent values, out[i+1] - out[i]. The default
step size is 1. If step() is specified, start must also be given.

dtype : dtype

The type of the output array. If dtype [http://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype] is not given, infer the data
type from the other input arguments.

	Returns:	arange : ndarray

Array of evenly spaced values.

For floating point arguments, the length of the result is
ceil((stop - start)/step). Because of floating point overflow,
this rule may result in the last element of out being greater
than stop().

See also

	linspace()

	Evenly spaced numbers with careful handling of endpoints.

	ogrid

	Arrays of evenly spaced numbers in N-dimensions.

	mgrid

	Grid-shaped arrays of evenly spaced numbers in N-dimensions.

Examples

>>> np.arange(3)
array([0, 1, 2])
>>> np.arange(3.0)
array([0., 1., 2.])
>>> np.arange(3,7)
array([3, 4, 5, 6])
>>> np.arange(3,7,2)
array([3, 5])

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 arccos function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

arccos function

(Shortest import: from brian2 import arccos)

	
brian2.units.unitsafefunctions.arccos(x[, out])

	Trigonometric inverse cosine, element-wise.

The inverse of cos() so that, if y = cos(x), then x = arccos(y).

	Parameters:	x : array_like

x-coordinate on the unit circle.
For real arguments, the domain is [-1, 1].

out : ndarray, optional

Array of the same shape as a, to store results in. See
doc.ufuncs (Section “Output arguments”) for more details.

	Returns:	angle : ndarray

The angle of the ray intersecting the unit circle at the given
x-coordinate in radians [0, pi]. If x is a scalar then a
scalar is returned, otherwise an array of the same shape as x
is returned.

See also

cos(), arctan(), arcsin(), emath.arccos

Notes

arccos() is a multivalued function: for each x there are infinitely
many numbers z such that cos(z) = x. The convention is to return
the angle z whose real part lies in [0, pi].

For real-valued input data types, arccos() always returns real output.
For each value that cannot be expressed as a real number or infinity,
it yields nan and sets the invalid floating point error flag.

For complex-valued input, arccos() is a complex analytic function that
has branch cuts [-inf, -1] and [1, inf] and is continuous from
above on the former and from below on the latter.

The inverse cos() is also known as acos or cos^-1.

References

M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”,
10th printing, 1964, pp. 79. http://www.math.sfu.ca/~cbm/aands/

Examples

We expect the arccos of 1 to be 0, and of -1 to be pi:

>>> np.arccos([1, -1])
array([0. , 3.14159265])

Plot arccos:

>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-1, 1, num=100)
>>> plt.plot(x, np.arccos(x))
>>> plt.axis('tight')
>>> plt.show()

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 arccosh function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

arccosh function

(Shortest import: from brian2 import arccosh)

	
brian2.units.unitsafefunctions.arccosh(x[, out])

	Inverse hyperbolic cosine, element-wise.

	Parameters:	x : array_like

Input array.

out : ndarray, optional

Array of the same shape as x, to store results in.
See doc.ufuncs (Section “Output arguments”) for details.

	Returns:	arccosh : ndarray

Array of the same shape as x.

See also

cosh(), arcsinh(), sinh(), arctanh(), tanh()

Notes

arccosh() is a multivalued function: for each x there are infinitely
many numbers z such that cosh(z) = x. The convention is to return the
z whose imaginary part lies in [-pi, pi] and the real part in
[0, inf].

For real-valued input data types, arccosh() always returns real output.
For each value that cannot be expressed as a real number or infinity, it
yields nan and sets the invalid floating point error flag.

For complex-valued input, arccosh() is a complex analytical function that
has a branch cut [-inf, 1] and is continuous from above on it.

References

	[R13]	M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”,
10th printing, 1964, pp. 86. http://www.math.sfu.ca/~cbm/aands/

	[R14]	Wikipedia, “Inverse hyperbolic function”,
http://en.wikipedia.org/wiki/Arccosh

Examples

>>> np.arccosh([np.e, 10.0])
array([1.65745445, 2.99322285])
>>> np.arccosh(1)
0.0

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 arcsin function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

arcsin function

(Shortest import: from brian2 import arcsin)

	
brian2.units.unitsafefunctions.arcsin(x[, out])

	Inverse sine, element-wise.

	Parameters:	x : array_like

y-coordinate on the unit circle.

out : ndarray, optional

Array of the same shape as x, in which to store the results.
See doc.ufuncs (Section “Output arguments”) for more details.

	Returns:	angle : ndarray

The inverse sine of each element in x, in radians and in the
closed interval [-pi/2, pi/2]. If x is a scalar, a scalar
is returned, otherwise an array.

See also

sin(), cos(), arccos(), tan(), arctan(), arctan2, emath.arcsin

Notes

arcsin() is a multivalued function: for each x there are infinitely
many numbers z such that \(sin(z) = x\). The convention is to
return the angle z whose real part lies in [-pi/2, pi/2].

For real-valued input data types, arcsin always returns real output.
For each value that cannot be expressed as a real number or infinity,
it yields nan and sets the invalid floating point error flag.

For complex-valued input, arcsin() is a complex analytic function that
has, by convention, the branch cuts [-inf, -1] and [1, inf] and is
continuous from above on the former and from below on the latter.

The inverse sine is also known as asin or sin^{-1}.

References

Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions,
10th printing, New York: Dover, 1964, pp. 79ff.
http://www.math.sfu.ca/~cbm/aands/

Examples

>>> np.arcsin(1) # pi/2
1.5707963267948966
>>> np.arcsin(-1) # -pi/2
-1.5707963267948966
>>> np.arcsin(0)
0.0

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 arcsinh function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

arcsinh function

(Shortest import: from brian2 import arcsinh)

	
brian2.units.unitsafefunctions.arcsinh(x[, out])

	Inverse hyperbolic sine element-wise.

	Parameters:	x : array_like

Input array.

out : ndarray, optional

Array into which the output is placed. Its type is preserved and it
must be of the right shape to hold the output. See doc.ufuncs.

	Returns:	out : ndarray

Array of of the same shape as x.

Notes

arcsinh() is a multivalued function: for each x there are infinitely
many numbers z such that sinh(z) = x. The convention is to return the
z whose imaginary part lies in [-pi/2, pi/2].

For real-valued input data types, arcsinh() always returns real output.
For each value that cannot be expressed as a real number or infinity, it
returns nan and sets the invalid floating point error flag.

For complex-valued input, arccos() is a complex analytical function that
has branch cuts [1j, infj] and [-1j, -infj] and is continuous from
the right on the former and from the left on the latter.

The inverse hyperbolic sine is also known as asinh or sinh^-1.

References

	[R15]	M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”,
10th printing, 1964, pp. 86. http://www.math.sfu.ca/~cbm/aands/

	[R16]	Wikipedia, “Inverse hyperbolic function”,
http://en.wikipedia.org/wiki/Arcsinh

Examples

>>> np.arcsinh(np.array([np.e, 10.0]))
array([1.72538256, 2.99822295])

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 arctan function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

arctan function

(Shortest import: from brian2 import arctan)

	
brian2.units.unitsafefunctions.arctan(x[, out])

	Trigonometric inverse tangent, element-wise.

The inverse of tan, so that if y = tan(x) then x = arctan(y).

	Parameters:	x : array_like

Input values. arctan() is applied to each element of x.

	Returns:	out : ndarray

Out has the same shape as x. Its real part is in
[-pi/2, pi/2] (arctan(+/-inf) returns +/-pi/2).
It is a scalar if x is a scalar.

See also

	arctan2

	The “four quadrant” arctan of the angle formed by (x, y) and the positive x-axis.

	angle()

	Argument of complex values.

Notes

arctan() is a multi-valued function: for each x there are infinitely
many numbers z such that tan(z) = x. The convention is to return
the angle z whose real part lies in [-pi/2, pi/2].

For real-valued input data types, arctan() always returns real output.
For each value that cannot be expressed as a real number or infinity,
it yields nan and sets the invalid floating point error flag.

For complex-valued input, arctan() is a complex analytic function that
has [1j, infj] and [-1j, -infj] as branch cuts, and is continuous
from the left on the former and from the right on the latter.

The inverse tangent is also known as atan or tan^{-1}.

References

Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions,
10th printing, New York: Dover, 1964, pp. 79.
http://www.math.sfu.ca/~cbm/aands/

Examples

We expect the arctan of 0 to be 0, and of 1 to be pi/4:

>>> np.arctan([0, 1])
array([0. , 0.78539816])

>>> np.pi/4
0.78539816339744828

Plot arctan:

>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-10, 10)
>>> plt.plot(x, np.arctan(x))
>>> plt.axis('tight')
>>> plt.show()

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 arctanh function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

arctanh function

(Shortest import: from brian2 import arctanh)

	
brian2.units.unitsafefunctions.arctanh(x[, out])

	Inverse hyperbolic tangent element-wise.

	Parameters:	x : array_like

Input array.

	Returns:	out : ndarray

Array of the same shape as x.

See also

emath.arctanh

Notes

arctanh() is a multivalued function: for each x there are infinitely
many numbers z such that tanh(z) = x. The convention is to return
the z whose imaginary part lies in [-pi/2, pi/2].

For real-valued input data types, arctanh() always returns real output.
For each value that cannot be expressed as a real number or infinity,
it yields nan and sets the invalid floating point error flag.

For complex-valued input, arctanh() is a complex analytical function
that has branch cuts [-1, -inf] and [1, inf] and is continuous from
above on the former and from below on the latter.

The inverse hyperbolic tangent is also known as atanh or tanh^-1.

References

	[R17]	M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”,
10th printing, 1964, pp. 86. http://www.math.sfu.ca/~cbm/aands/

	[R18]	Wikipedia, “Inverse hyperbolic function”,
http://en.wikipedia.org/wiki/Arctanh

Examples

>>> np.arctanh([0, -0.5])
array([0. , -0.54930614])

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 cos function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

cos function

(Shortest import: from brian2 import cos)

	
brian2.units.unitsafefunctions.cos(x[, out])

	Cosine element-wise.

	Parameters:	x : array_like

Input array in radians.

out : ndarray, optional

Output array of same shape as x.

	Returns:	y : ndarray

The corresponding cosine values.

Raises

	ValueError: invalid return array shape

	if out is provided and out.shape != x.shape (See Examples)

Notes

If out is provided, the function writes the result into it,
and returns a reference to out. (See Examples)

References

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions.
New York, NY: Dover, 1972.

Examples

>>> np.cos(np.array([0, np.pi/2, np.pi]))
array([1.00000000e+00, 6.12303177e-17, -1.00000000e+00])
>>>
>>> # Example of providing the optional output parameter
>>> out2 = np.cos([0.1], out1)
>>> out2 is out1
True
>>>
>>> # Example of ValueError due to provision of shape mis-matched `out`
>>> np.cos(np.zeros((3,3)),np.zeros((2,2)))
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: invalid return array shape

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 cosh function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

cosh function

(Shortest import: from brian2 import cosh)

	
brian2.units.unitsafefunctions.cosh(x[, out])

	Hyperbolic cosine, element-wise.

Equivalent to 1/2 * (np.exp(x) + np.exp(-x)) and np.cos(1j*x).

	Parameters:	x : array_like

Input array.

	Returns:	out : ndarray

Output array of same shape as x.

Examples

>>> np.cosh(0)
1.0

The hyperbolic cosine describes the shape of a hanging cable:

>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-4, 4, 1000)
>>> plt.plot(x, np.cosh(x))
>>> plt.show()

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 diagonal function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

diagonal function

(Shortest import: from brian2 import diagonal)

	
brian2.units.unitsafefunctions.diagonal(x, *args, **kwds)

	Return specified diagonals.

If a is 2-D, returns the diagonal of a with the given offset,
i.e., the collection of elements of the form a[i, i+offset]. If
a has more than two dimensions, then the axes specified by axis1
and axis2 are used to determine the 2-D sub-array whose diagonal is
returned. The shape of the resulting array can be determined by
removing axis1 and axis2 and appending an index to the right equal
to the size of the resulting diagonals.

In versions of NumPy prior to 1.7, this function always returned a new,
independent array containing a copy of the values in the diagonal.

In NumPy 1.7, it continues to return a copy of the diagonal, but depending
on this fact is deprecated. Writing to the resulting array continues to
work as it used to, but a FutureWarning will be issued.

In NumPy 1.9, it will switch to returning a read-only view on the original
array. Attempting to write to the resulting array will produce an error.

In NumPy 1.10, it will still return a view, but this view will no longer be
marked read-only. Writing to the returned array will alter your original
array as well.

If you don’t write to the array returned by this function, then you can
just ignore all of the above.

If you depend on the current behavior, then we suggest copying the
returned array explicitly, i.e., use np.diagonal(a).copy() instead of
just np.diagonal(a). This will work with both past and future versions
of NumPy.

	Parameters:	a : array_like

Array from which the diagonals are taken.

offset : int, optional

Offset of the diagonal from the main diagonal. Can be positive or
negative. Defaults to main diagonal (0).

axis1 : int, optional

Axis to be used as the first axis of the 2-D sub-arrays from which
the diagonals should be taken. Defaults to first axis (0).

axis2 : int, optional

Axis to be used as the second axis of the 2-D sub-arrays from
which the diagonals should be taken. Defaults to second axis (1).

	Returns:	array_of_diagonals : ndarray

If a is 2-D, a 1-D array containing the diagonal is returned.
If the dimension of a is larger, then an array of diagonals is
returned, “packed” from left-most dimension to right-most (e.g.,
if a is 3-D, then the diagonals are “packed” along rows).

Raises

	ValueError

	If the dimension of a is less than 2.

See also

	diag()

	MATLAB work-a-like for 1-D and 2-D arrays.

	diagflat()

	Create diagonal arrays.

	trace()

	Sum along diagonals.

Examples

>>> a = np.arange(4).reshape(2,2)
>>> a
array([[0, 1],
 [2, 3]])
>>> a.diagonal()
array([0, 3])
>>> a.diagonal(1)
array([1])

A 3-D example:

>>> a = np.arange(8).reshape(2,2,2); a
array([[[0, 1],
 [2, 3]],
 [[4, 5],
 [6, 7]]])
>>> a.diagonal(0, # Main diagonals of two arrays created by skipping
... 0, # across the outer(left)-most axis last and
... 1) # the "middle" (row) axis first.
array([[0, 6],
 [1, 7]])

The sub-arrays whose main diagonals we just obtained; note that each
corresponds to fixing the right-most (column) axis, and that the
diagonals are “packed” in rows.

>>> a[:,:,0] # main diagonal is [0 6]
array([[0, 2],
 [4, 6]])
>>> a[:,:,1] # main diagonal is [1 7]
array([[1, 3],
 [5, 7]])

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 dot function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

dot function

(Shortest import: from brian2 import dot)

	
brian2.units.unitsafefunctions.dot(a, b, out=None)

	Dot product of two arrays.

For 2-D arrays it is equivalent to matrix multiplication, and for 1-D
arrays to inner product of vectors (without complex conjugation). For
N dimensions it is a sum product over the last axis of a and
the second-to-last of b:

dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m])

	Parameters:	a : array_like

First argument.

b : array_like

Second argument.

out : ndarray, optional

Output argument. This must have the exact kind that would be returned
if it was not used. In particular, it must have the right type, must be
C-contiguous, and its dtype must be the dtype that would be returned
for dot(a,b). This is a performance feature. Therefore, if these
conditions are not met, an exception is raised, instead of attempting
to be flexible.

	Returns:	output : ndarray

Returns the dot product of a and b. If a and b are both
scalars or both 1-D arrays then a scalar is returned; otherwise
an array is returned.
If out is given, then it is returned.

Raises

	ValueError

	If the last dimension of a is not the same size as the second-to-last dimension of b.

See also

	vdot

	Complex-conjugating dot product.

	tensordot()

	Sum products over arbitrary axes.

	einsum

	Einstein summation convention.

Examples

>>> np.dot(3, 4)
12

Neither argument is complex-conjugated:

>>> np.dot([2j, 3j], [2j, 3j])
(-13+0j)

For 2-D arrays it’s the matrix product:

>>> a = [[1, 0], [0, 1]]
>>> b = [[4, 1], [2, 2]]
>>> np.dot(a, b)
array([[4, 1],
 [2, 2]])

>>> a = np.arange(3*4*5*6).reshape((3,4,5,6))
>>> b = np.arange(3*4*5*6)[::-1].reshape((5,4,6,3))
>>> np.dot(a, b)[2,3,2,1,2,2]
499128
>>> sum(a[2,3,2,:] * b[1,2,:,2])
499128

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 exp function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

exp function

(Shortest import: from brian2 import exp)

	
brian2.units.unitsafefunctions.exp(x[, out])

	Calculate the exponential of all elements in the input array.

	Parameters:	x : array_like

Input values.

	Returns:	out : ndarray

Output array, element-wise exponential of x.

See also

	expm1

	Calculate exp(x) - 1 for all elements in the array.

	exp2

	Calculate 2**x for all elements in the array.

Notes

The irrational number e is also known as Euler’s number. It is
approximately 2.718281, and is the base of the natural logarithm,
ln (this means that, if \(x = \ln y = \log_e y\),
then \(e^x = y\). For real input, exp(x) is always positive.

For complex arguments, x = a + ib, we can write
\(e^x = e^a e^{ib}\). The first term, \(e^a\), is already
known (it is the real argument, described above). The second term,
\(e^{ib}\), is \(\cos b + i \sin b\), a function with
magnitude 1 and a periodic phase.

References

	[R19]	Wikipedia, “Exponential function”,
http://en.wikipedia.org/wiki/Exponential_function

	[R20]	M. Abramovitz and I. A. Stegun, “Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables,” Dover, 1964, p. 69,
http://www.math.sfu.ca/~cbm/aands/page_69.htm

Examples

Plot the magnitude and phase of exp(x) in the complex plane:

>>> import matplotlib.pyplot as plt

>>> x = np.linspace(-2*np.pi, 2*np.pi, 100)
>>> xx = x + 1j * x[:, np.newaxis] # a + ib over complex plane
>>> out = np.exp(xx)

>>> plt.subplot(121)
>>> plt.imshow(np.abs(out),
... extent=[-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi])
>>> plt.title('Magnitude of exp(x)')

>>> plt.subplot(122)
>>> plt.imshow(np.angle(out),
... extent=[-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi])
>>> plt.title('Phase (angle) of exp(x)')
>>> plt.show()

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 linspace function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

linspace function

(Shortest import: from brian2 import linspace)

	
brian2.units.unitsafefunctions.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)[source]

	Return evenly spaced numbers over a specified interval.

Returns num evenly spaced samples, calculated over the
interval [start, stop()].

The endpoint of the interval can optionally be excluded.

	Parameters:	start : scalar

The starting value of the sequence.

stop : scalar

The end value of the sequence, unless endpoint is set to False.
In that case, the sequence consists of all but the last of num + 1
evenly spaced samples, so that stop() is excluded. Note that the step
size changes when endpoint is False.

num : int, optional

Number of samples to generate. Default is 50.

endpoint : bool, optional

If True, stop() is the last sample. Otherwise, it is not included.
Default is True.

retstep : bool, optional

If True, return (samples, step()), where step() is the spacing
between samples.

	Returns:	samples : ndarray

There are num equally spaced samples in the closed interval
[start, stop] or the half-open interval [start, stop)
(depending on whether endpoint is True or False).

step : float (only if retstep is True)

Size of spacing between samples.

See also

	arange()

	Similar to linspace(), but uses a step size (instead of the number of samples).

	logspace()

	Samples uniformly distributed in log space.

Examples

>>> np.linspace(2.0, 3.0, num=5)
 array([2. , 2.25, 2.5 , 2.75, 3.])
>>> np.linspace(2.0, 3.0, num=5, endpoint=False)
 array([2. , 2.2, 2.4, 2.6, 2.8])
>>> np.linspace(2.0, 3.0, num=5, retstep=True)
 (array([2. , 2.25, 2.5 , 2.75, 3.]), 0.25)

Graphical illustration:

>>> import matplotlib.pyplot as plt
>>> N = 8
>>> y = np.zeros(N)
>>> x1 = np.linspace(0, 10, N, endpoint=True)
>>> x2 = np.linspace(0, 10, N, endpoint=False)
>>> plt.plot(x1, y, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.plot(x2, y + 0.5, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.ylim([-0.5, 1])
(-0.5, 1)
>>> plt.show()

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 log function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

log function

(Shortest import: from brian2 import log)

	
brian2.units.unitsafefunctions.log(x[, out])

	Natural logarithm, element-wise.

The natural logarithm log() is the inverse of the exponential function,
so that log(exp(x)) = x. The natural logarithm is logarithm in base
e.

	Parameters:	x : array_like

Input value.

	Returns:	y : ndarray

The natural logarithm of x, element-wise.

See also

log10(), log2, log1p, emath.log

Notes

Logarithm is a multivalued function: for each x there is an infinite
number of z such that exp(z) = x. The convention is to return the
z whose imaginary part lies in [-pi, pi].

For real-valued input data types, log() always returns real output. For
each value that cannot be expressed as a real number or infinity, it
yields nan and sets the invalid floating point error flag.

For complex-valued input, log() is a complex analytical function that
has a branch cut [-inf, 0] and is continuous from above on it. log()
handles the floating-point negative zero as an infinitesimal negative
number, conforming to the C99 standard.

References

	[R21]	M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”,
10th printing, 1964, pp. 67. http://www.math.sfu.ca/~cbm/aands/

	[R22]	Wikipedia, “Logarithm”. http://en.wikipedia.org/wiki/Logarithm

Examples

>>> np.log([1, np.e, np.e**2, 0])
array([0., 1., 2., -Inf])

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 ravel function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

ravel function

(Shortest import: from brian2 import ravel)

	
brian2.units.unitsafefunctions.ravel(x, *args, **kwds)

	Return a flattened array.

A 1-D array, containing the elements of the input, is returned. A copy is
made only if needed.

	Parameters:	a : array_like

Input array. The elements in a are read in the order specified by
order, and packed as a 1-D array.

order : {‘C’,’F’, ‘A’, ‘K’}, optional

The elements of a are read using this index order. ‘C’ means to
index the elements in C-like order, with the last axis index changing
fastest, back to the first axis index changing slowest. ‘F’ means to
index the elements in Fortran-like index order, with the first index
changing fastest, and the last index changing slowest. Note that the ‘C’
and ‘F’ options take no account of the memory layout of the underlying
array, and only refer to the order of axis indexing. ‘A’ means to read
the elements in Fortran-like index order if a is Fortran contiguous
in memory, C-like order otherwise. ‘K’ means to read the elements in
the order they occur in memory, except for reversing the data when
strides are negative. By default, ‘C’ index order is used.

	Returns:	1d_array : ndarray

Output of the same dtype as a, and of shape (a.size,).

See also

	ndarray.flat [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.flat.html#numpy.ndarray.flat]

	1-D iterator over an array.

	ndarray.flatten [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.flatten.html#numpy.ndarray.flatten]

	1-D array copy of the elements of an array in row-major order.

Notes

In C-like (row-major) order, in two dimensions, the row index varies the
slowest, and the column index the quickest. This can be generalized to
multiple dimensions, where row-major order implies that the index along the
first axis varies slowest, and the index along the last quickest. The
opposite holds for Fortran-like, or column-major, index ordering.

Examples

It is equivalent to reshape(-1, order=order).

>>> x = np.array([[1, 2, 3], [4, 5, 6]])
>>> print np.ravel(x)
[1 2 3 4 5 6]

>>> print x.reshape(-1)
[1 2 3 4 5 6]

>>> print np.ravel(x, order='F')
[1 4 2 5 3 6]

When order is ‘A’, it will preserve the array’s ‘C’ or ‘F’ ordering:

>>> print np.ravel(x.T)
[1 4 2 5 3 6]
>>> print np.ravel(x.T, order='A')
[1 2 3 4 5 6]

When order is ‘K’, it will preserve orderings that are neither ‘C’
nor ‘F’, but won’t reverse axes:

>>> a = np.arange(3)[::-1]; a
array([2, 1, 0])
>>> a.ravel(order='C')
array([2, 1, 0])
>>> a.ravel(order='K')
array([2, 1, 0])

>>> a = np.arange(12).reshape(2,3,2).swapaxes(1,2); a
array([[[0, 2, 4],
 [1, 3, 5]],
 [[6, 8, 10],
 [7, 9, 11]]])
>>> a.ravel(order='C')
array([0, 2, 4, 1, 3, 5, 6, 8, 10, 7, 9, 11])
>>> a.ravel(order='K')
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 setup function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

setup function

(Shortest import: from brian2.units.unitsafefunctions import setup)

	
brian2.units.unitsafefunctions.setup()[source]

	Setup function for doctests (used by nosetest).
We do not want to test this module’s docstrings as they
are inherited from numpy.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 sin function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

sin function

(Shortest import: from brian2 import sin)

	
brian2.units.unitsafefunctions.sin(x[, out])

	Trigonometric sine, element-wise.

	Parameters:	x : array_like

Angle, in radians (\(2 \pi\) rad equals 360 degrees).

	Returns:	y : array_like

The sine of each element of x.

See also

arcsin(), sinh(), cos()

Notes

The sine is one of the fundamental functions of trigonometry (the
mathematical study of triangles). Consider a circle of radius 1
centered on the origin. A ray comes in from the \(+x\) axis, makes
an angle at the origin (measured counter-clockwise from that axis), and
departs from the origin. The \(y\) coordinate of the outgoing
ray’s intersection with the unit circle is the sine of that angle. It
ranges from -1 for \(x=3\pi / 2\) to +1 for \(\pi / 2.\) The
function has zeroes where the angle is a multiple of \(\pi\).
Sines of angles between \(\pi\) and \(2\pi\) are negative.
The numerous properties of the sine and related functions are included
in any standard trigonometry text.

Examples

Print sine of one angle:

>>> np.sin(np.pi/2.)
1.0

Print sines of an array of angles given in degrees:

>>> np.sin(np.array((0., 30., 45., 60., 90.)) * np.pi / 180.)
array([0. , 0.5 , 0.70710678, 0.8660254 , 1.])

Plot the sine function:

>>> import matplotlib.pylab as plt
>>> x = np.linspace(-np.pi, np.pi, 201)
>>> plt.plot(x, np.sin(x))
>>> plt.xlabel('Angle [rad]')
>>> plt.ylabel('sin(x)')
>>> plt.axis('tight')
>>> plt.show()

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 sinh function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

sinh function

(Shortest import: from brian2 import sinh)

	
brian2.units.unitsafefunctions.sinh(x[, out])

	Hyperbolic sine, element-wise.

Equivalent to 1/2 * (np.exp(x) - np.exp(-x)) or
-1j * np.sin(1j*x).

	Parameters:	x : array_like

Input array.

out : ndarray, optional

Output array of same shape as x.

	Returns:	y : ndarray

The corresponding hyperbolic sine values.

Raises

	ValueError: invalid return array shape

	if out is provided and out.shape != x.shape (See Examples)

Notes

If out is provided, the function writes the result into it,
and returns a reference to out. (See Examples)

References

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions.
New York, NY: Dover, 1972, pg. 83.

Examples

>>> np.sinh(0)
0.0
>>> np.sinh(np.pi*1j/2)
1j
>>> np.sinh(np.pi*1j) # (exact value is 0)
1.2246063538223773e-016j
>>> # Discrepancy due to vagaries of floating point arithmetic.

>>> # Example of providing the optional output parameter
>>> out2 = np.sinh([0.1], out1)
>>> out2 is out1
True

>>> # Example of ValueError due to provision of shape mis-matched `out`
>>> np.sinh(np.zeros((3,3)),np.zeros((2,2)))
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: invalid return array shape

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 tan function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

tan function

(Shortest import: from brian2 import tan)

	
brian2.units.unitsafefunctions.tan(x[, out])

	Compute tangent element-wise.

Equivalent to np.sin(x)/np.cos(x) element-wise.

	Parameters:	x : array_like

Input array.

out : ndarray, optional

Output array of same shape as x.

	Returns:	y : ndarray

The corresponding tangent values.

Raises

	ValueError: invalid return array shape

	if out is provided and out.shape != x.shape (See Examples)

Notes

If out is provided, the function writes the result into it,
and returns a reference to out. (See Examples)

References

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions.
New York, NY: Dover, 1972.

Examples

>>> from math import pi
>>> np.tan(np.array([-pi,pi/2,pi]))
array([1.22460635e-16, 1.63317787e+16, -1.22460635e-16])
>>>
>>> # Example of providing the optional output parameter illustrating
>>> # that what is returned is a reference to said parameter
>>> out2 = np.cos([0.1], out1)
>>> out2 is out1
True
>>>
>>> # Example of ValueError due to provision of shape mis-matched `out`
>>> np.cos(np.zeros((3,3)),np.zeros((2,2)))
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: invalid return array shape

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 tanh function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

tanh function

(Shortest import: from brian2 import tanh)

	
brian2.units.unitsafefunctions.tanh(x[, out])

	Compute hyperbolic tangent element-wise.

Equivalent to np.sinh(x)/np.cosh(x) or -1j * np.tan(1j*x).

	Parameters:	x : array_like

Input array.

out : ndarray, optional

Output array of same shape as x.

	Returns:	y : ndarray

The corresponding hyperbolic tangent values.

Raises

	ValueError: invalid return array shape

	if out is provided and out.shape != x.shape (See Examples)

Notes

If out is provided, the function writes the result into it,
and returns a reference to out. (See Examples)

References

	[R23]	M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions.
New York, NY: Dover, 1972, pg. 83.
http://www.math.sfu.ca/~cbm/aands/

	[R24]	Wikipedia, “Hyperbolic function”,
http://en.wikipedia.org/wiki/Hyperbolic_function

Examples

>>> np.tanh((0, np.pi*1j, np.pi*1j/2))
array([0. +0.00000000e+00j, 0. -1.22460635e-16j, 0. +1.63317787e+16j])

>>> # Example of providing the optional output parameter illustrating
>>> # that what is returned is a reference to said parameter
>>> out2 = np.tanh([0.1], out1)
>>> out2 is out1
True

>>> # Example of ValueError due to provision of shape mis-matched `out`
>>> np.tanh(np.zeros((3,3)),np.zeros((2,2)))
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: invalid return array shape

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 trace function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

trace function

(Shortest import: from brian2 import trace)

	
brian2.units.unitsafefunctions.trace(x, *args, **kwds)

	Return the sum along diagonals of the array.

If a is 2-D, the sum along its diagonal with the given offset
is returned, i.e., the sum of elements a[i,i+offset] for all i.

If a has more than two dimensions, then the axes specified by axis1 and
axis2 are used to determine the 2-D sub-arrays whose traces are returned.
The shape of the resulting array is the same as that of a with axis1
and axis2 removed.

	Parameters:	a : array_like

Input array, from which the diagonals are taken.

offset : int, optional

Offset of the diagonal from the main diagonal. Can be both positive
and negative. Defaults to 0.

axis1, axis2 : int, optional

Axes to be used as the first and second axis of the 2-D sub-arrays
from which the diagonals should be taken. Defaults are the first two
axes of a.

dtype : dtype, optional

Determines the data-type of the returned array and of the accumulator
where the elements are summed. If dtype has the value None and a is
of integer type of precision less than the default integer
precision, then the default integer precision is used. Otherwise,
the precision is the same as that of a.

out : ndarray, optional

Array into which the output is placed. Its type is preserved and
it must be of the right shape to hold the output.

	Returns:	sum_along_diagonals : ndarray

If a is 2-D, the sum along the diagonal is returned. If a has
larger dimensions, then an array of sums along diagonals is returned.

See also

diag(), diagonal(), diagflat()

Examples

>>> np.trace(np.eye(3))
3.0
>>> a = np.arange(8).reshape((2,2,2))
>>> np.trace(a)
array([6, 8])

>>> a = np.arange(24).reshape((2,2,2,3))
>>> np.trace(a).shape
(2, 3)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 where function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

where function

(Shortest import: from brian2 import where)

	
brian2.units.unitsafefunctions.where(condition[, x, y])[source]

	Return elements, either from x or y, depending on condition.

If only condition is given, return condition.nonzero().

	Parameters:	condition : array_like, bool

When True, yield x, otherwise yield y.

x, y : array_like, optional

Values from which to choose. x and y need to have the same
shape as condition.

	Returns:	out : ndarray or tuple of ndarrays

If both x and y are specified, the output array contains
elements of x where condition is True, and elements from
y elsewhere.

If only condition is given, return the tuple
condition.nonzero(), the indices where condition is True.

See also

nonzero(), choose()

Notes

If x and y are given and input arrays are 1-D, where() is
equivalent to:

[xv if c else yv for (c,xv,yv) in zip(condition,x,y)]

Examples

>>> np.where([[True, False], [True, True]],
... [[1, 2], [3, 4]],
... [[9, 8], [7, 6]])
array([[1, 8],
 [3, 4]])

>>> np.where([[0, 1], [1, 0]])
(array([0, 1]), array([1, 0]))

>>> x = np.arange(9.).reshape(3, 3)
>>> np.where(x > 5)
(array([2, 2, 2]), array([0, 1, 2]))
>>> x[np.where(x > 3.0)] # Note: result is 1D.
array([4., 5., 6., 7., 8.])
>>> np.where(x < 5, x, -1) # Note: broadcasting.
array([[0., 1., 2.],
 [3., 4., -1.],
 [-1., -1., -1.]])

Find the indices of elements of x that are in goodvalues.

>>> goodvalues = [3, 4, 7]
>>> ix = np.in1d(x.ravel(), goodvalues).reshape(x.shape)
>>> ix
array([[False, False, False],
 [True, True, False],
 [False, True, False]], dtype=bool)
>>> np.where(ix)
(array([1, 1, 2]), array([0, 1, 1]))

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 wrap_function_to_method function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	units package »

wrap_function_to_method function

(Shortest import: from brian2.units.unitsafefunctions import wrap_function_to_method)

	
brian2.units.unitsafefunctions.wrap_function_to_method(func)[source]

	Wraps a function so that it calls the corresponding method on the
Quantities object (if called with a Quantities object as the first
argument). All other arguments are left untouched.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 utils package

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

utils package

Utility functions for Brian.

arrays module

Helper module containing functions that operate on numpy arrays.

Functions

	calc_repeats(delay)
	Calculates offsets corresponding to an array, where repeated values are subsequently numbered, i.e.

environment module

Utility functions to get information about the environment Brian is running in.

Functions

	running_from_ipython()
	Check whether we are currently running under ipython.

filetools module

File system tools

Exported members:
ensure_directory, ensure_directory_of_file, in_directory, copy_directory

Classes

	in_directory(new_dir)
	Safely temporarily work in a subdirectory

Functions

	copy_directory(source,target)
	Copies directory source to target.

	ensure_directory(d)
	Ensures that a given directory exists (creates it if necessary)

	ensure_directory_of_file(f)
	Ensures that a directory exists for filename to go in (creates if necessary), and returns the directory path.

logger module

Brian’s logging module.

Preferences

Logging system preferences

logging.console_log_level = 'INFO'

What log level to use for the log written to the console.

Has to be one of CRITICAL, ERROR, WARNING, INFO, DEBUG or DIAGNOSTIC.

logging.delete_log_on_exit = True

Whether to delete the log and script file on exit.

If set to True (the default), log files (and the copy of the main
script) will be deleted after the brian process has exited, unless an
uncaught exception occured. If set to False, all log files will be kept.

logging.file_log = True

Whether to log to a file or not.

If set to True (the default), logging information will be written
to a file. The log level can be set via the logging.file_log_level
preference.

logging.file_log_level = 'DIAGNOSTIC'

What log level to use for the log written to the log file.

In case file logging is activated (see logging.file_log), which log
level should be used for logging. Has to be one of CRITICAL, ERROR,
WARNING, INFO, DEBUG or DIAGNOSTIC.

logging.save_script = True

Whether to save a copy of the script that is run.

If set to True (the default), a copy of the currently run script
is saved to a temporary location. It is deleted after a successful
run (unless logging.delete_log_on_exit is False) but is kept after
an uncaught exception occured. This can be helpful for debugging,
in particular when several simulations are running in parallel.

logging.std_redirection = True

Whether or not to redirect stdout/stderr to null at certain places.

This silences a lot of annoying compiler output, but will also hide
error messages making it harder to debug problems. You can always
temporarily switch it off when debugging. If
logging.std_redirection_to_file is set to True as well, then the
output is saved to a file and if an error occurs the name of this file
will be printed.

logging.std_redirection_to_file = True

Whether to redirect stdout/stderr to a file.

If both logging.std_redirection and this preference are set to
True, all standard output/error (most importantly output from
the compiler) will be stored in files and if an error occurs the name
of this file will be printed. If logging.std_redirection is True
and this preference is False, then all standard output/error will
be completely suppressed, i.e. neither be displayed nor stored in a
file.

The value of this preference is ignore if logging.std_redirection is
set to False.

Exported members:
get_logger(), BrianLogger, std_silent

Classes

	BrianLogger(name)
	Convenience object for logging.

	HierarchyFilter(name)
	A class for suppressing all log messages in a subtree of the name hierarchy.

	LogCapture(log_list[,log_level])
	A class for capturing log warnings.

	NameFilter(name)
	A class for suppressing log messages ending with a certain name.

	catch_logs([log_level])
	A context manager for catching log messages.

	std_silent([alwaysprint])
	Context manager that temporarily silences stdout and stderr but keeps the output saved in a temporary file and writes it if an exception is raised.

Functions

	brian_excepthook(exc_type,exc_obj,exc_tb)
	Display a message mentioning the debug log in case of an uncaught exception.

	clean_up_logging()
	Shutdown the logging system and delete the debug log file if no error occured.

	get_logger([module_name])
	Get an object that can be used for logging.

	log_level_validator(log_level)
	

stringtools module

A collection of tools for string formatting tasks.

Exported members:
indent, deindent, word_substitute, replace, get_identifiers, strip_empty_lines, stripped_deindented_lines, strip_empty_leading_and_trailing_lines, code_representation, SpellChecker

Classes

	SpellChecker(words[,alphabet])
	A simple spell checker that will be used to suggest the correct name if the user made a typo (e.g.

Functions

	code_representation(code)
	Returns a string representation for several different formats of code

	deindent(text[,numtabs,spacespertab,...])
	Returns a copy of the string with the common indentation removed.

	get_identifiers(expr[,include_numbers])
	Return all the identifiers in a given string expr, that is everything that matches a programming language variable like expression, which is here implemented as the regexp \b[A-Za-z_][A-Za-z0-9_]*\b.

	indent(text[,numtabs,spacespertab,tab])
	Indents a given multiline string.

	replace(s,substitutions)
	Applies a dictionary of substitutions.

	strip_empty_leading_and_trailing_lines(s)
	Removes all empty leading and trailing lines in the multi-line string s.

	strip_empty_lines(s)
	Removes all empty lines from the multi-line string s.

	stripped_deindented_lines(code)
	Returns a list of the lines in a multi-line string, deindented.

	word_substitute(expr,substitutions)
	Applies a dict of word substitutions.

topsort module

Exported members:
topsort

Functions

	topsort(graph)
	Topologically sort a graph

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 calc_repeats function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	utils package »

calc_repeats function

(Shortest import: from brian2.utils.arrays import calc_repeats)

	
brian2.utils.arrays.calc_repeats(delay)[source]

	Calculates offsets corresponding to an array, where repeated values are
subsequently numbered, i.e. if there n identical values, the returned array
will have values from 0 to n-1 at their positions.
The code is complex because tricks are needed for vectorisation.

This function is used in the Python SpikeQueue to calculate the offset
array for the insertion of spikes with their respective delays into the
queue and in the numpy code for synapse creation to calculate how many
synapses for each source-target pair exist.

Examples

>>> import numpy as np
>>> print(calc_repeats(np.array([7, 5, 7, 3, 7, 5])))
[0 0 1 0 2 1]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 running_from_ipython function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	utils package »

running_from_ipython function

(Shortest import: from brian2.utils.environment import running_from_ipython)

	
brian2.utils.environment.running_from_ipython()[source]

	Check whether we are currently running under ipython.

	Returns:	ipython : bool

Whether running under ipython or not.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 in_directory class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	utils package »

in_directory class

(Shortest import: from brian2.utils.filetools import in_directory)

	
class brian2.utils.filetools.in_directory(new_dir)[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Safely temporarily work in a subdirectory

Usage:

with in_directory(directory):
 ... do stuff here

Guarantees that the code in the with block will be executed in directory,
and that after the block is completed we return to the original directory.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 copy_directory function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	utils package »

copy_directory function

(Shortest import: from brian2.utils.filetools import copy_directory)

	
brian2.utils.filetools.copy_directory(source, target)[source]

	Copies directory source to target.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 ensure_directory function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	utils package »

ensure_directory function

(Shortest import: from brian2.utils.filetools import ensure_directory)

	
brian2.utils.filetools.ensure_directory(d)[source]

	Ensures that a given directory exists (creates it if necessary)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 ensure_directory_of_file function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	utils package »

ensure_directory_of_file function

(Shortest import: from brian2.utils.filetools import ensure_directory_of_file)

	
brian2.utils.filetools.ensure_directory_of_file(f)[source]

	Ensures that a directory exists for filename to go in (creates if
necessary), and returns the directory path.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 BrianLogger class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	utils package »

BrianLogger class

(Shortest import: from brian2 import BrianLogger)

	
class brian2.utils.logger.BrianLogger(name)[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Convenience object for logging. Call get_logger() to get an instance of
this class.

	Parameters:	name : str

The name used for logging, normally the name of the module.

Attributes

	_log_messages
	Class attribute for remembering log messages that should only be

	exception_occured
	Class attribute to remember whether any exception occured

	file_handler
	The logging.FileHandler [https://docs.python.org/2/library/logging.handlers.html#logging.FileHandler] responsible for logging to the temporary log

	tmp_log
	The name of the temporary log file (by default deleted after the run if

	tmp_script
	The name of the temporary copy of the main script file (by default

Methods

	debug(msg[,name_suffix,once])
	Log a debug message.

	diagnostic(msg[,name_suffix,once])
	Log a diagnostic message.

	error(msg[,name_suffix,once])
	Log an error message.

	info(msg[,name_suffix,once])
	Log an info message.

	initialize()
	Initialize Brian’s logging system.

	log_level_debug()
	Set the log level to “debug”.

	log_level_diagnostic()
	Set the log level to “diagnostic”.

	log_level_error()
	Set the log level to “error”.

	log_level_info()
	Set the log level to “info”.

	log_level_warn()
	Set the log level to “warn”.

	suppress_hierarchy(name[,filter_log_file])
	Suppress all log messages in a given hiearchy.

	suppress_name(name[,filter_log_file])
	Suppress all log messages with a given name.

	warn(msg[,name_suffix,once])
	Log a warn message.

Details

	
_log_messages

	Class attribute for remembering log messages that should only be
displayed once

	
exception_occured

	Class attribute to remember whether any exception occured

	
file_handler

	The logging.FileHandler [https://docs.python.org/2/library/logging.handlers.html#logging.FileHandler] responsible for logging to the temporary log
file

	
tmp_log

	The name of the temporary log file (by default deleted after the run if
no exception occurred), if any

	
tmp_script

	The name of the temporary copy of the main script file (by default
deleted after the run if no exception occurred), if any

	
debug(msg, name_suffix=None, once=False)[source]

	Log a debug message.

	Parameters:	msg : str

The message to log.

name_suffix : str, optional

A suffix to add to the name, e.g. a class or function name.

once : bool, optional

Whether this message should be logged only once and not repeated
if sent another time.

	
diagnostic(msg, name_suffix=None, once=False)[source]

	Log a diagnostic message.

	Parameters:	msg : str

The message to log.

name_suffix : str, optional

A suffix to add to the name, e.g. a class or function name.

once : bool, optional

Whether this message should be logged only once and not repeated
if sent another time.

	
error(msg, name_suffix=None, once=False)[source]

	Log an error message.

	Parameters:	msg : str

The message to log.

name_suffix : str, optional

A suffix to add to the name, e.g. a class or function name.

once : bool, optional

Whether this message should be logged only once and not repeated
if sent another time.

	
info(msg, name_suffix=None, once=False)[source]

	Log an info message.

	Parameters:	msg : str

The message to log.

name_suffix : str, optional

A suffix to add to the name, e.g. a class or function name.

once : bool, optional

Whether this message should be logged only once and not repeated
if sent another time.

	
static initialize()[source]

	Initialize Brian’s logging system. This function will be called
automatically when Brian is imported.

	
static log_level_debug()[source]

	Set the log level to “debug”.

	
static log_level_diagnostic()[source]

	Set the log level to “diagnostic”.

	
static log_level_error()[source]

	Set the log level to “error”.

	
static log_level_info()[source]

	Set the log level to “info”.

	
static log_level_warn()[source]

	Set the log level to “warn”.

	
static suppress_hierarchy(name, filter_log_file=False)[source]

	Suppress all log messages in a given hiearchy.

	Parameters:	name : str

Suppress all log messages in the given name hierarchy. For
example, specifying 'brian2' suppresses all messages logged
by Brian, specifying 'brian2.codegen' suppresses all messages
generated by the code generation modules.

filter_log_file : bool, optional

Whether to suppress the messages also in the log file. Defaults to
False meaning that suppressed messages are not displayed on
the console but are still saved to the log file.

	
static suppress_name(name, filter_log_file=False)[source]

	Suppress all log messages with a given name.

	Parameters:	name : str

Suppress all log messages ending in the given name. For
example, specifying 'resolution_conflict' would suppress
messages with names such as
brian2.equations.codestrings.CodeString.resolution_conflict or
brian2.equations.equations.Equations.resolution_conflict.

filter_log_file : bool, optional

Whether to suppress the messages also in the log file. Defaults to
False meaning that suppressed messages are not displayed on
the console but are still saved to the log file.

	
warn(msg, name_suffix=None, once=False)[source]

	Log a warn message.

	Parameters:	msg : str

The message to log.

name_suffix : str, optional

A suffix to add to the name, e.g. a class or function name.

once : bool, optional

Whether this message should be logged only once and not repeated
if sent another time.

Tutorials and examples using this

	Example frompapers/Rossant_et_al_2011bis

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 HierarchyFilter class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	utils package »

HierarchyFilter class

(Shortest import: from brian2.utils.logger import HierarchyFilter)

	
class brian2.utils.logger.HierarchyFilter(name)[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

A class for suppressing all log messages in a subtree of the name hierarchy.
Does exactly the opposite as the logging.Filter [https://docs.python.org/2/library/logging.html#logging.Filter] class, which allows
messages in a certain name hierarchy to pass.

	Parameters:	name : str

The name hiearchy to suppress. See BrianLogger.suppress_hierarchy for
details.

Methods

	filter(record)
	Filter out all messages in a subtree of the name hierarchy.

Details

	
filter(record)[source]

	Filter out all messages in a subtree of the name hierarchy.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 LogCapture class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	utils package »

LogCapture class

(Shortest import: from brian2.utils.logger import LogCapture)

	
class brian2.utils.logger.LogCapture(log_list, log_level=30)[source]

	Bases: logging.Handler

A class for capturing log warnings. This class is used by
catch_logs to allow testing in a similar
way as with warnings.catch_warnings [https://docs.python.org/2/library/warnings.html#warnings.catch_warnings].

Methods

	emit(record)
	

	install()
	Install this handler to catch all warnings.

	uninstall()
	Uninstall this handler and re-connect the previously installed handlers.

Details

	
emit(record)[source]

	

	
install()[source]

	Install this handler to catch all warnings. Temporarily disconnect all
other handlers.

	
uninstall()[source]

	Uninstall this handler and re-connect the previously installed
handlers.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 NameFilter class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	utils package »

NameFilter class

(Shortest import: from brian2.utils.logger import NameFilter)

	
class brian2.utils.logger.NameFilter(name)[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

A class for suppressing log messages ending with a certain name.

	Parameters:	name : str

The name to suppress. See BrianLogger.suppress_name for details.

Methods

	filter(record)
	Filter out all messages ending with a certain name.

Details

	
filter(record)[source]

	Filter out all messages ending with a certain name.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 catch_logs class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	utils package »

catch_logs class

(Shortest import: from brian2.utils.logger import catch_logs)

	
class brian2.utils.logger.catch_logs(log_level=30)[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

A context manager for catching log messages. Use this for testing the
messages that are logged. Defaults to catching warning/error messages and
this is probably the only real use case for testing. Note that while this
context manager is active, all log messages are suppressed. Using this
context manager returns a list of (log level, name, message) tuples.

	Parameters:	log_level : int or str, optional

The log level above which messages are caught.

Examples

>>> logger = get_logger('brian2.logtest')
>>> logger.warn('An uncaught warning')
WARNING brian2.logtest: An uncaught warning
>>> with catch_logs() as l:
... logger.warn('a caught warning')
... print('l contains: %s' % l)
...
l contains: [('WARNING', 'brian2.logtest', 'a caught warning')]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 std_silent class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	utils package »

std_silent class

(Shortest import: from brian2 import std_silent)

	
class brian2.utils.logger.std_silent(alwaysprint=False)[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Context manager that temporarily silences stdout and stderr but keeps the
output saved in a temporary file and writes it if an exception is raised.

Attributes

	dest_stderr
	

	dest_stdout
	

Methods

	close()
	

Details

	
dest_stderr = None

	

	
dest_stdout = None

	

	
classmethod close()[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 brian_excepthook function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	utils package »

brian_excepthook function

(Shortest import: from brian2.utils.logger import brian_excepthook)

	
brian2.utils.logger.brian_excepthook(exc_type, exc_obj, exc_tb)[source]

	Display a message mentioning the debug log in case of an uncaught
exception.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 clean_up_logging function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	utils package »

clean_up_logging function

(Shortest import: from brian2.utils.logger import clean_up_logging)

	
brian2.utils.logger.clean_up_logging()[source]

	Shutdown the logging system and delete the debug log file if no error
occured.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 get_logger function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	utils package »

get_logger function

(Shortest import: from brian2 import get_logger)

	
brian2.utils.logger.get_logger(module_name='brian2')[source]

	Get an object that can be used for logging.

	Parameters:	module_name : str

The name used for logging, should normally be the module name as
returned by __name__.

	Returns:	logger : BrianLogger

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 log_level_validator function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	utils package »

log_level_validator function

(Shortest import: from brian2.utils.logger import log_level_validator)

	
brian2.utils.logger.log_level_validator(log_level)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 SpellChecker class

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	utils package »

SpellChecker class

(Shortest import: from brian2.utils.stringtools import SpellChecker)

	
class brian2.utils.stringtools.SpellChecker(words, alphabet='abcdefghijklmnopqrstuvwxyz0123456789_')[source]

	Bases: object [https://docs.python.org/2/library/functions.html#object]

A simple spell checker that will be used to suggest the correct name if the
user made a typo (e.g. for state variable names).

	Parameters:	words : iterable of str

The known words

alphabet : iterable of str, optional

The allowed characters. Defaults to the characters allowed for
identifiers, i.e. ascii characters, digits and the underscore.

Methods

	edits1(word)
	

	known(words)
	

	known_edits2(word)
	

	suggest(word)
	

Details

	
edits1(word)[source]

	

	
known(words)[source]

	

	
known_edits2(word)[source]

	

	
suggest(word)[source]

	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 code_representation function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	utils package »

code_representation function

(Shortest import: from brian2.utils.stringtools import code_representation)

	
brian2.utils.stringtools.code_representation(code)[source]

	Returns a string representation for several different formats of code

Formats covered include:
- A single string
- A list of statements/strings
- A dict of strings
- A dict of lists of statements/strings

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 deindent function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	utils package »

deindent function

(Shortest import: from brian2.utils.stringtools import deindent)

	
brian2.utils.stringtools.deindent(text, numtabs=None, spacespertab=4, docstring=False)[source]

	Returns a copy of the string with the common indentation removed.

Note that all tab characters are replaced with spacespertab spaces.

If the docstring flag is set, the first line is treated differently and
is assumed to be already correctly tabulated.

If the numtabs option is given, the amount of indentation to remove is
given explicitly and not the common indentation.

Examples

Normal strings, e.g. function definitions:

>>> multiline = """ def f(x):
... return x**2"""
>>> print(multiline)
 def f(x):
 return x**2
>>> print(deindent(multiline))
def f(x):
 return x**2
>>> print(deindent(multiline, docstring=True))
 def f(x):
return x**2
>>> print(deindent(multiline, numtabs=1, spacespertab=2))
 def f(x):
 return x**2

Docstrings:

>>> docstring = """First docstring line.
... This line determines the indentation."""
>>> print(docstring)
First docstring line.
 This line determines the indentation.
>>> print(deindent(docstring, docstring=True))
First docstring line.
This line determines the indentation.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 get_identifiers function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	utils package »

get_identifiers function

(Shortest import: from brian2.utils.stringtools import get_identifiers)

	
brian2.utils.stringtools.get_identifiers(expr, include_numbers=False)[source]

	Return all the identifiers in a given string expr, that is everything
that matches a programming language variable like expression, which is
here implemented as the regexp \b[A-Za-z_][A-Za-z0-9_]*\b.

	Parameters:	expr : str

The string to analyze

include_numbers : bool, optional

Whether to include number literals in the output. Defaults to False.

	Returns:	identifiers : set

A set of all the identifiers (and, optionally, numbers) in expr.

Examples

>>> expr = '3-a*_b+c5+8+f(A - .3e-10, tau_2)*17'
>>> ids = get_identifiers(expr)
>>> print(sorted(list(ids)))
['A', '_b', 'a', 'c5', 'f', 'tau_2']
>>> ids = get_identifiers(expr, include_numbers=True)
>>> print(sorted(list(ids)))
['.3e-10', '17', '3', '8', 'A', '_b', 'a', 'c5', 'f', 'tau_2']

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 indent function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	utils package »

indent function

(Shortest import: from brian2.utils.stringtools import indent)

	
brian2.utils.stringtools.indent(text, numtabs=1, spacespertab=4, tab=None)[source]

	Indents a given multiline string.

By default, indentation is done using spaces rather than tab characters.
To use tab characters, specify the tab character explictly, e.g.:

indent(text, tab=' ')

Note that in this case spacespertab is ignored.

Examples

>>> multiline = """def f(x):
... return x*x"""
>>> print(multiline)
def f(x):
 return x*x
>>> print(indent(multiline))
 def f(x):
 return x*x
>>> print(indent(multiline, numtabs=2))
 def f(x):
 return x*x
>>> print(indent(multiline, spacespertab=2))
 def f(x):
 return x*x
>>> print(indent(multiline, tab='####'))
####def f(x):
return x*x

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 replace function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	utils package »

replace function

(Shortest import: from brian2.utils.stringtools import replace)

	
brian2.utils.stringtools.replace(s, substitutions)[source]

	Applies a dictionary of substitutions. Simpler than word_substitute, it
does not attempt to only replace words

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 strip_empty_leading_and_trailing_lines function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	utils package »

strip_empty_leading_and_trailing_lines function

(Shortest import: from brian2.utils.stringtools import strip_empty_leading_and_trailing_lines)

	
brian2.utils.stringtools.strip_empty_leading_and_trailing_lines(s)[source]

	Removes all empty leading and trailing lines in the multi-line string s.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 strip_empty_lines function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	utils package »

strip_empty_lines function

(Shortest import: from brian2.utils.stringtools import strip_empty_lines)

	
brian2.utils.stringtools.strip_empty_lines(s)[source]

	Removes all empty lines from the multi-line string s.

Examples

>>> multiline = """A string with
...
... an empty line."""
>>> print(strip_empty_lines(multiline))
A string with
an empty line.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 stripped_deindented_lines function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	utils package »

stripped_deindented_lines function

(Shortest import: from brian2.utils.stringtools import stripped_deindented_lines)

	
brian2.utils.stringtools.stripped_deindented_lines(code)[source]

	Returns a list of the lines in a multi-line string, deindented.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 word_substitute function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	utils package »

word_substitute function

(Shortest import: from brian2.utils.stringtools import word_substitute)

	
brian2.utils.stringtools.word_substitute(expr, substitutions)[source]

	Applies a dict of word substitutions.

The dict substitutions consists of pairs (word, rep) where each
word word appearing in expr is replaced by rep. Here a ‘word’
means anything matching the regexp \bword\b.

Examples

>>> expr = 'a*_b+c5+8+f(A)'
>>> print(word_substitute(expr, {'a':'banana', 'f':'func'}))
banana*_b+c5+8+func(A)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 topsort function

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	brian2 package »

 	utils package »

topsort function

(Shortest import: from brian2.utils.topsort import topsort)

	
brian2.utils.topsort.topsort(graph)[source]

	Topologically sort a graph

The graph should be of the form {node: [list of nodes], ...}.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Developer’s guide

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

Developer’s guide

This section is intended as a guide to how Brian functions internally for
people developing Brian itself, or extensions to Brian. It may also be of some
interest to others wishing to better understand how Brian works internally.

	Coding guidelines
	Development workflow

	Coding conventions

	Representing Brian objects

	Defensive programming

	Documentation

	Logging

	Testing

	Units
	Casting rules

	Functions and units

	Equations and namespaces
	Equation parsing

	Variables

	Namespaces

	Variables and indices
	Introduction

	Creating variables

	References

	Indices

	Getting and setting state variables

	Additional variables and indices

	Preferences system
	Accessing and setting preferences

	Preference files

	Registration

	Validation functions

	Validation

	File format

	Built-in preferences

	Adding support for new functions

	Code generation
	Code path

	Code generation

	Syntax translation

	Templates

	Code objects

	Default functions

	Code guide

	Additional information

	Devices
	Memory management

	Code objects

	Building

	Device override methods

	Other methods

	Multi-threading with OpenMP
	Key concepts

	Use of #pragma flags

	How to make your template use OpenMP parallelism

	Synaptic propagation in parallel

	Compilation of the code

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Coding guidelines

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Developer’s guide »

Coding guidelines

The basic principles of developing Brian are:

	For the user, the emphasis is on making the package flexible, readable and
easy to use. See the paper “The Brian simulator” in Frontiers in Neuroscience
for more details.

	For the developer, the emphasis is on keeping the package maintainable by
a small number of people. To this end, we use stable, well maintained,
existing open source packages whenever possible, rather than writing our
own code.

	Development workflow
	The repository structure

	Implementing a feature/fixing a bug

	Useful links

	Coding conventions
	General recommendations

	Python 2 vs. Python 3

	Representing Brian objects
	__repr__ and __str__

	LaTeX representations with sympy

	Representations for ipython

	Defensive programming

	Documentation
	Docstrings

	Logging
	Log level recommendations

	Testing log messages

	Testing
	Running the test suite

	Writing tests

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Development workflow

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Developer’s guide »

 	Coding guidelines »

Development workflow

Brian development is done in a git [https://git-scm.com/] repository on github [https://github.com/]. Continuous
integration testing is provided by travis CI [https://travis-ci.org/], code coverage is measured with
coveralls.io [https://coveralls.io/].

The repository structure

Brian’s repository structure is very simple, as we are normally not supporting
older versions with bugfixes or other complicated things. The master branch of
the repository is the basis for releases, a release is nothing more than adding
a tag to the branch, creating the tarball, etc. The master branch should
always be in a deployable state, i.e. one should be able to use it as the base
for everyday work without worrying about random breakages due to updates. To
ensure this, no commit ever goes into the master branch without passing the
test suite before (see below). The only exception to this rule is if a commit
not touches any code files, e.g. additions to the README file or to the
documentation (but even in this case, care should be taken that the
documentation is still built correctly).

For every feature that a developer works on, a new branch should be opened
(normally based on the master branch), with a descriptive name (e.g.
add-numba-support). For developers that are members of “brian-team”, the
branch should ideally be created in the main repository. This way, one can
easily get an overview over what the “core team” is currently working on.
Developers who are not members of the team should fork the repository and work
in their own repository (if working on multiple issues/features, also using
branches).

Implementing a feature/fixing a bug

Every new feature or bug fix should be done in a dedicated branch and have
an issue in the issue database. For bugs, it is important to not only fix the
bug but also to introduce a new test case (see Testing) that makes sure
that the bug will not ever be reintroduced by other changes. It is often a good
idea to first define the test cases (that should fail) and then work on the fix
so that the tests pass. As soon as the feature/fix is complete or as soon as
specific feedback on the code is needed, open a “pull request” to merge the
changes from your branch into master. In this pull request, others can comment
on the code and make suggestions for improvements. New commits to the respective
branch automatically appear in the pull request which makes it a great tool for
iterative code review. Even more useful, travis will automatically run the test
suite on the result of the merge. As a reviewer, always wait for the result of
this test (it can take up to 30 minutes or so until it appears) before doing
the merge and never merge when a test fails. As soon as the reviewer (someone
from the core team and not the author of the feature/fix) decides that the
branch is ready to merge, he/she can merge the pull request and optionally
delete the corresponding branch (but it will be hidden by default, anyway).

Useful links

	The Brian repository: https://github.com/brian-team/brian2

	Travis testing for Brian: https://travis-ci.org/brian-team/brian2

	Code Coverage for Brian: https://coveralls.io/github/brian-team/brian2

	The Pro Git book: https://git-scm.com/book/en/v2

	github’s documentation on pull requests: https://help.github.com/articles/using-pull-requests

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Coding conventions

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Developer’s guide »

 	Coding guidelines »

Coding conventions

General recommendations

Syntax is chosen as much as possible from the user point of view,
to reflect the concepts as directly as possible. Ideally, a Brian script
should be readable by someone who doesn’t know Python or Brian, although this
isn’t always possible. Function, class and keyword argument names should be
explicit rather than abbreviated and consistent across Brian. See Romain’s paper
On the design of script languages for neural simulators [http://briansimulator.org/WordPress/wp-content/uploads/2012/05/On-the-design-of-script-languages-for-neural-simulation.pdf]
for a discussion.

We use the PEP-8 coding conventions [https://www.python.org/dev/peps/pep-0008/]
for our code. This in particular includes the following conventions:

	Use 4 spaces instead of tabs per indentation level

	Use spaces after commas and around the following binary operators:
assignment (=), augmented assignment (+=, -= etc.),
comparisons (==, <, >, !=, <>, <=, >=, in, not in, is, is not),
Booleans (and, or, not).

	Do not use spaces around the equals sign in keyword arguments or when
specifying default values. Neither put spaces immediately inside parentheses,
brackets or braces, immediately before the open parenthesis that starts the
argument list of a function call, or immediately before the open parenthesis
that starts an indexing or slicing.

	Avoid using a backslash for continuing lines whenever possible, instead use
Python’s implicit line joining inside parentheses, brackets and braces.

	The core code should only contain ASCII characters, no encoding has to be declared

	imports should be on different lines (e.g. do not use import sys, os) and
should be grouped in the following order, using blank lines between each group:

	standard library imports

	third-party library imports (e.g. numpy, scipy, sympy, ...)

	brian imports

	Use absolute imports for everything outside of “your” package, e.g. if you
are working in brian2.equations, import functions from the stringtools
modules via from brian2.utils.stringtools import Use the full path
when importing, e.g. do from brian2.units.fundamentalunits import seconds
instead of from brian2 import seconds.

	Use “new-style” relative imports for everything in “your” package, e.g. in
brian2.codegen.functions.py import the Function class as
from .specifiers import Function.

	Do not use wildcard imports (from brian2 import *), instead import only the
identifiers you need, e.g. from brian2 import NeuronGroup, Synapses. For
packages like numpy that are used a lot, use import numpy as np. But
note that the user should still be able to do something like
from brian2 import * (and this style can also be freely used in examples
and tests, for example). Modules always have to use the __all__ mechanism
to specify what is being made available with a wildcard import. As an
exception from this rule, the main brian2/__init__.py may use wildcard
imports.

Python 2 vs. Python 3

Brian is written in Python 2 but runs on Python 3 using the
2to3 [https://docs.python.org/2/library/2to3.html] conversion tool (which is
automatically applied if Brian is installed using the standard
python setup.py install mechanism). To make this possible without too much
effort, Brian no longer supports Python 2.5 and can therefore make use of a
couple of forward-compatible (but backward-incompatible) idioms introduced in
Python 2.6. The Porting to Python 3 [http://python3porting.com/]
book is available online and has a lot of information on these topics. Here are
some things to keep in mind when developing Brian:

	If you are working with integers and using division, consider using //
for flooring division (default behaviour for / in python 2) and switch the
behaviour of / to floating point division by using
from __future__ import division .

	If importing modules from the standard library (which have changed quite a
bit from Python 2 to Python 3), only use simple import statements like
import itertools instead of from itertools import izip – 2to3 is
otherwise unable to make the correct conversion.

	If you are using the print statement (which should only occur in tests,
in particular doctests – always use the Logging framework if you want
to present messages to the user otherwise), try “cheating” and use the
functional style in Python 2, i.e. write print('some text') instead of
print 'some text'. More complicated print statements should be avoided,
e.g instead of print >>sys.stderr, 'Error message use
sys.stderr.write('Error message\n') (or, again, use logging).

	Exception stacktraces look a bit different in Python 2 and 3: For non-standard
exceptions, Python 2 only prints the Exception class name (e.g.
DimensionMismatchError) whereas Python 3 prints the name including the
module name (e.g. brian2.units.fundamentalunits.DimensionMismatchError).
This will make doctests fail that match the exception message. In this case,
write the doctest in the style of Python 2 but add the doctest directive
#doctest: +IGNORE_EXCEPTION_DETAIL to the statement leading to the
exception. This unfortunately has the side effect of also ignoring the
text of the exception, but it will still fail for an incorrect exception type.

	If you write code reading and writing strings to files, make sure you make
the distinction between bytes and unicode (see “separate binary data and strings” [http://python3porting.com/preparing.html#separate-binary-data-and-strings])
In general, strings within Brian are unicode strings and only converted to
bytes when reading from or writing to a file (or something like a network
stream, for example).

	If you are sorting lists or dictionaries, have a look at
“when sorting, use key instead of cmp” [http://python3porting.com/preparing.html#when-sorting-use-key-instead-of-cmp]

	Make sure to define a __hash__ function for objects that define an
__eq__ function (and to define it consistently). Python 3 is more strict
about this, an object with __eq__ but without __hash__ is unhashable.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Representing Brian objects

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Developer’s guide »

 	Coding guidelines »

Representing Brian objects

__repr__ and __str__

Every class should specify or inherit useful __repr__ and __str__ methods. The __repr__
method should give the “official” representation of the object; if possible, this should be a valid
Python expression, ideally allowing for eval(repr(x)) == x. The __str__ method on the other
hand, gives an “informal” representation of the object. This can be anything that is helpful but
does not have to be Python code. For example:

>>> import numpy as np
>>> ar = np.array([1, 2, 3]) * mV
>>> print(ar) # uses __str__
[1. 2. 3.] mV
>>> ar # uses __repr__
array([1., 2., 3.]) * mvolt

If the representation returned by __repr__ is not Python code, it should be enclosed in
<...>, e.g. a Synapses representation might be <Synapses object with 64 synapses>.

If you don’t want to make the distinction between __repr__ and __str__, simply define only
a __repr__ function, it will be used instead of __str__ automatically (no need to write
__str__ = __repr__). Finally, if you include the class name in the representation (which you
should in most cases), use self.__class__.__name__ instead of spelling out the name explicitly
– this way it will automatically work correctly for subclasses. It will also prevent you from
forgetting to update the class name in the representation if you decide to rename the class.

LaTeX representations with sympy

Brian objects dealing with mathematical expressions and equations often internally use sympy.
Sympy’s latex [http://docs.sympy.org/dev/modules/printing.html#sympy.printing.latex.latex] function does a nice job of converting expressions into
LaTeX code, using fractions, root symbols, etc. as well as converting greek variable names into
corresponding symbols and handling sub- and superscripts. For the conversion of variable names
to work, they should use an underscore for subscripts and two underscores for superscripts:

>>> from sympy import latex, Symbol
>>> tau_1__e = Symbol('tau_1__e')
>>> print latex(tau_1__e)
\tau^{e}_{1}

Sympy’s printer supports formatting arbitrary objects, all they have to do is to implement a
_latex method (no trailing underscore). For most Brian objects, this is unnecessary as they will
never be formatted with sympy’s LaTeX printer. For some core objects, in particular the units,
is is useful, however, as it can be reused in LaTeX representations for ipython (see below).
Note that the _latex method should not return $ or \begin{equation} (sympy’s method
includes a mode argument that wraps the output automatically).

Representations for ipython

“Old” ipython console

In particular for representations involing arrays or lists, it can be useful to break up the
representation into chunks, or indent parts of the representation. This is supported by the
ipython console’s “pretty printer”. To make this work for a class, add a
_repr_pretty_(self, p, cycle) (note the single underscores) method. You can find more
information in the ipython documentation [http://ipython.org/ipython-doc/dev/api/generated/IPython.lib.pretty.html#extending] .

“New” ipython console (qtconsole and notebook)

The new ipython consoles, the qtconsole and the ipython notebook support a much richer set of
representations for objects. As Brian deals a lot with mathematical objects, in particular the
LaTeX and to a lesser extent the HTML formatting capabilities of the ipython notebook are
interesting. To support LaTeX representation, implement a _repr_latex_ method returning the
LaTeX code (including $, \begin{equation} or similar). If the object already has a
_latex method (see LaTeX representations with sympy above), this can be as simple as:

def _repr_latex_(self):
 return sympy.latex(self, mode='inline') # wraps the expression in $.. $

The LaTeX rendering only supports a single mathematical block. For complex objects, e.g.
NeuronGroup it might be useful to have a richer representation. This can be achieved by returning
HTML code from _repr_html_ – this HTML code is processed by MathJax so it can include literal
LaTeX code that will be transformed before it is rendered as HTML. An object containing two
equations could therefore be represented with a method like this:

def _repr_html_(self):
 return '''
 <h3> Equation 1 </h3>
 {eq_1}
 <h3> Equation 2 </h3>
 {eq_2}'''.format(eq_1=sympy.latex(self.eq_1, mode='equation'),
 eq_2=sympy.latex(self.eq_2, mode='equation'))

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Defensive programming

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Developer’s guide »

 	Coding guidelines »

Defensive programming

One idea for Brian 2 is to make it so that it’s more likely that errors are
raised rather than silently causing weird bugs. Some ideas in this line:

Synapses.source should be stored internally as a weakref Synapses._source, and
Synapses.source should be a computed attribute that dereferences this weakref.
Like this, if the source object isn’t kept by the user, Synapses won’t store a
reference to it, and so won’t stop it from being deallocated.

We should write an automated test that takes a piece of correct code like:

NeuronGroup(N, eqs, reset='V>Vt')

and tries replacing all arguments by nonsense arguments, it should always
raise an error in this case (forcing us to write code to validate the inputs).
For example, you could create a new NonsenseObject class, and do this:

nonsense = NonsenseObject()
NeuronGroup(nonsense, eqs, reset='V>Vt')
NeuronGroup(N, nonsense, reset='V>Vt')
NeuronGroup(N, eqs, nonsense)

In general, the idea should be to make it hard for something incorrect to run
without raising an error, preferably at the point where the user makes the error
and not in some obscure way several lines later.

The preferred way to validate inputs is one that handles types in a Pythonic
way. For example, instead of doing something like:

if not isinstance(arg, (float, int)):
 raise TypeError(...)

Do something like:

arg = float(arg)

(or use try/except to raise a more specific error). In contrast to the
isinstance check it does not make any assumptions about the type except for
its ability to be converted to a float.

This approach is particular useful for numpy arrays:

arr = np.asarray(arg)

(or np.asanyarray if you want to allow for array subclasses like arrays
with units or masked arrays). This approach has also the nice advantage that it
allows all “array-like” arguments, e.g. a list of numbers.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Documentation

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Developer’s guide »

 	Coding guidelines »

Documentation

It is very important to maintain documentation. We use the
Sphinx documentation generator [http://www.sphinx-doc.org/en/stable/]
tools. The documentation is all hand written. Sphinx source files are stored in the
docs_sphinx folder (currently: dev/brian2/docs_sphinx). The HTML files
can be generated via the script dev/tools/docs/build_html_brian2.py and end
up in the docs folder (currently: dev/brian2/docs).

Most of the documentation is stored directly in the Sphinx
source text files, but reference documentation for important Brian classes and
functions are kept in the documentation strings of those classes themselves.
This is automatically pulled from these classes for the reference manual
section of the documentation. The idea is to keep the definitive reference
documentation near the code that it documents, serving as both a comment for
the code itself, and to keep the documentation up to date with the code.

The reference documentation includes all classes, functions and other objects
that are defined in the modules and only documents them in the module where
they were defined. This makes it possible to document a class like
Quantity only in brian2.units.fundamentalunits
and not additionally in brian2.units and brian2. This mechanism relies on
the __module__ attribute, in some cases, in particular when wrapping a
function with a decorator (e.g. check_units),
this attribute has to be set manually:

foo.__module__ = __name__

Without this manual setting, the function might not be documented at all or in
the wrong module.

In addition to the reference, all the examples in the examples folder are
automatically included in the documentation.

Note that you can directly link to github issues using #issuenumber, e.g.
writing #33 links to a github issue about running benchmarks for Brian 2:
#33. This feature should rarely be used in the main documentation, reserve its
use for release notes and important known bugs.

Docstrings

Every module, class, method or function has to start with a docstring, unless
it is a private or special method (i.e. starting with _ or __) and it
is obvious what it does. For example, there is normally no need to document
__str__ with “Return a string representation.”.

For the docstring format, we use the our own sphinx extension (in
brian2.utils.sphinxext) based on
numpydoc [https://pypi.python.org/pypi/numpydoc/], allowing to write
docstrings that are well readable both in sourcecode as well as in the
rendered HTML. We generally follow the format used by numpy [https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt]

When the docstring uses variable, class or function names, these should be
enclosed in single backticks. Class and function/method names will be
automatically linked to the corresponding documentation. For classes imported
in the main brian2 package, you do not have to add the package name, e.g.
writing `NeuronGroup` is enough. For other classes, you have to give the
full path, e.g. `brian2.units.fundamentalunits.UnitRegistry`. If it is
clear from the context where the class is (e.g. within the documentation of
UnitRegistry), consider using the ~
abbreviation: `~brian2.units.fundamentalunits.UnitRegistry` displays only
the class name: UnitRegistry. Note that you do
not have to enclose the exception name in a “Raises” or “Warns” section, or
the class/method/function name in a “See Also” section in backticks, they will
be automatically linked (putting backticks there will lead to incorrect display
or an error message),

Inline source fragments should be enclosed in double backticks.

Class docstrings follow the same conventions as method docstrings and should
document the __init__ method, the __init__ method itself does not need
a docstring.

Documenting functions and methods

The docstring for a function/method should start with a one-line description of
what the function does, without referring to the function name or the names of
variables. Use a “command style” for this summary, e.g. “Return the result.”
instead of “Returns the result.” If the signature of the function cannot be
automatically extracted because of an decorator (e.g. check_units()), place a
signature in the very first row of the docstring, before the one-line
description.

For methods, do not document the self parameter, nor give information about
the method being static or a class method (this information will be
automatically added to the documentation).

Documenting classes

Class docstrings should use the same “Parameters” and “Returns” sections as
method and function docstrings for documenting the __init__ constructor. If
a class docstring does not have any “Attributes” or “Methods” section, these
sections will be automatically generated with all documented (i.e. having a
docstring), public (i.e. not starting with _) attributes respectively methods
of the class. Alternatively, you can provide these sections manually. This is
useful for example in the Quantity class, which would otherwise include the
documentation of many ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] methods, or when you want to include
documentation for functions like __getitem__ which would otherwise not be
documented. When specifying these sections, you only have to state the names of
documented methods/attributes but you can also provide direct documentation.
For example:

Attributes

foo
bar
baz
 This is a description.

This can be used for example for class or instance attributes which do not
have “classical” docstrings. However, you can also use a special syntax: When
defining class attributes in the class body or instance attributes in
__init__ you can use the following variants (here shown for instance
attributes):

def __init__(a, b, c):
 #: The docstring for the instance attribute a.
 #: Can also span multiple lines
 self.a = a

 self.b = b #: The docstring for self.b (only one line).

 self.c = c
 'The docstring for self.c, directly *after* its definition'

Long example of a function docstring

This is a very long docstring, showing all the possible sections. Most of the
time no See Also, Notes or References section is needed:

def foo(var1, var2, long_var_name='hi') :
"""
A one-line summary that does not use variable names or the function name.

Several sentences providing an extended description. Refer to
variables using back-ticks, e.g. `var1`.

Parameters

var1 : array_like
 Array_like means all those objects -- lists, nested lists, etc. --
 that can be converted to an array. We can also refer to
 variables like `var1`.
var2 : int
 The type above can either refer to an actual Python type
 (e.g. ``int``), or describe the type of the variable in more
 detail, e.g. ``(N,) ndarray`` or ``array_like``.
Long_variable_name : {'hi', 'ho'}, optional
 Choices in brackets, default first when optional.

Returns

describe : type
 Explanation
output : type
 Explanation
tuple : type
 Explanation
items : type
 even more explaining

Raises

BadException
 Because you shouldn't have done that.

See Also

otherfunc : relationship (optional)
newfunc : Relationship (optional), which could be fairly long, in which
 case the line wraps here.
thirdfunc, fourthfunc, fifthfunc

Notes

Notes about the implementation algorithm (if needed).

This can have multiple paragraphs.

You may include some math:

.. math:: X(e^{j\omega }) = x(n)e^{ - j\omega n}

And even use a greek symbol like :math:`omega` inline.

References

Cite the relevant literature, e.g. [1]_. You may also cite these
references in the notes section above.

.. [1] O. McNoleg, "The integration of GIS, remote sensing,
 expert systems and adaptive co-kriging for environmental habitat
 modelling of the Highland Haggis using object-oriented, fuzzy-logic
 and neural-network techniques," Computers & Geosciences, vol. 22,
 pp. 585-588, 1996.

Examples

These are written in doctest format, and should illustrate how to
use the function.

>>> a=[1,2,3]
>>> print [x + 3 for x in a]
[4, 5, 6]
>>> print "a\n\nb"
a
b

"""

pass

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Logging

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Developer’s guide »

 	Coding guidelines »

Logging

For a description of logging from the users point of view, see Logging.

Logging in Brian is based on the logging [https://docs.python.org/2/library/logging.html#module-logging] module in Python’s standard
library.

Every brian module that needs logging should start with the following line,
using the get_logger() function to get an instance of BrianLogger:

logger = get_logger(__name__)

In the code, logging can then be done via:

logger.diagnostic('A diagnostic message')
logger.debug('A debug message')
logger.info('An info message')
logger.warn('A warning message')
logger.error('An error message')

If a module logs similar messages in different places or if it might be useful
to be able to suppress a subset of messages in a module, add an additional
specifier to the logging command, specifying the class or function name, or
a method name including the class name (do not include the module name, it will
be automatically added as a prefix):

logger.debug('A debug message', 'CodeString')
logger.debug('A debug message', 'NeuronGroup.update')
logger.debug('A debug message', 'reinit')

If you want to log a message only once, e.g. in a function that is called
repeatedly, set the optional once keyword to True:

logger.debug('Will only be shown once', once=True)
logger.debug('Will only be shown once', once=True)

The output of debugging looks like this in the log file:

2012-10-02 14:41:41,484 DEBUG brian2.equations.equations.CodeString: A debug message

and like this on the console (if the log level is set to “debug”):

DEBUG A debug message [brian2.equations.equations.CodeString]

Log level recommendations

	diagnostic

	Low-level messages that are not of any interest to the normal user but
useful for debugging Brian itself. A typical example is the source
code generated by the code generation module.

	debug

	Messages that are possibly helpful for debugging the user’s code. For example,
this shows which objects were included in the network, which clocks the
network uses and when simulations start and stop.

	info

	Messages which are not strictly necessary, but are potentially helpful for
the user. In particular, this will show messages about the chosen state
updater and other information that might help the user to achieve better
performance and/or accuracy in the simulations (e.g. using (event-driven)
in synaptic equations, avoiding incompatible dt values between
TimedArray and the NeuronGroup using it, ...)

	warn

	Messages that alert the user to a potential mistake in the code, e.g. two
possible solutions for an identifier in an equation. It can also be used to
make the user aware that he/she is using an experimental feature, an
unsupported compiler or similar. In this case, normally the once=True
option should be used to raise this warning only once. As a rule of thumb,
“common” scripts like the examples provided in the examples folder should
normally not lead to any warnings.

	error

	This log level is not used currently in Brian, an exception should be
raised instead. It might be useful in “meta-code”, running scripts and
catching any errors that occur.

The default log level shown to the user is info. As a general rule, all
messages that the user sees in the default configuration (i.e., info and
warn level) should be avoidable by simple changes in the user code, e.g.
the renaming of variables, explicitly specifying a state updater instead of
relying on the automatic system, adding (clock-driven)/(event-driven)
to synaptic equations, etc.

Testing log messages

It is possible to test whether code emits an expected log message using the
catch_logs context manager. This is normally not
necessary for debug and info messages, but should be part of the unit tests
for warning messages (catch_logs by default only catches
warning and error messages):

with catch_logs() as logs:
 # code that is expected to trigger a warning
 # ...
 assert len(logs) == 1
 # logs contains tuples of (log level, name, message)
 assert logs[0][0] == 'WARNING' and logs[0][1].endswith('warning_type')

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Testing

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Developer’s guide »

 	Coding guidelines »

Testing

Brian uses the nose package [https://nose.readthedocs.io/en/latest/]
for its testing framework. To check the code coverage of the test suite, we use
coverage.py [http://coverage.readthedocs.io/en/latest/].

Running the test suite

The nosetests tool automatically finds tests in the code. When brian2 is in your
Python path or when you are in the main brian2 directory, you can start the test
suite with:

$ nosetests brian2 --with-doctest

This should show no errors or failures but possibly a number of skipped tests.
The recommended way however is to import brian2 and call the test function,
which gives you convenient control over which tests are run:

>>> import brian2
>>> brian2.test()

By default, this runs the test suite for all available (runtime) code generation
targets. If you only want to test a specific target, provide it as an argument:

>>> brian2.test('numpy')

If you want to test several targets, use a list of targets:

>>> brian2.test(['weave', 'cython'])

In addition to the tests specific to a code generation target, the test suite
will also run a set of independent tests (e.g. parsing of equations, unit
system, utility functions, etc.). To exclude these tests, set the
test_codegen_independent argument to False. Not all available tests are
run by default, tests that take a long time are excluded. To include these, set
long_tests to True.

To run the C++ standalone tests, you have to set the test_standalone
argument to the name of a standalone device. If you provide an empty argument
for the runtime code generation targets, you will only run the standalone
tests:

>>> brian2.test([], test_standalone='cpp_standalone')

Checking the code coverage

To check the code coverage under Linux (with coverage and nosetests in your
path) and generate a report, use the following commands (this assumes the
source code of Brian with the file .coveragerc in the directory
/path/to/brian):

$ coverage run --rcfile=/path/to/brian/.coveragerc $(which nosetests) --with-doctest brian2
$ coverage report

Using coverage html you can also generate a HTML report which will end up
in the directory htmlcov.

Writing tests

Generally speaking, we aim for a 100% code coverage by the test suite. Less
coverage means that some code paths are never executed so there’s no way of
knowing whether a code change broke something in that path.

Unit tests

The most basic tests are unit tests, tests that test one kind of functionality or
feature. To write a new unit test, add a function called test_... to one of
the test_... files in the brian2.tests package. Test files should
roughly correspond to packages, test functions should roughly correspond to
tests for one function/method/feature. In the test functions, use assertions
that will raise an AssertionError when they are violated, e.g.:

G = NeuronGroup(42, model='dv/dt = -v / (10*ms) : 1')
assert len(G) == 42

When comparing arrays, use the array_equal() function from
numpy.testing.utils which takes care of comparing types, shapes and content
and gives a nicer error message in case the assertion fails. Never make tests
depend on external factors like random numbers – tests should always give the
same result when run on the same codebase. You should not only test the
expected outcome for the correct use of functions and classes but also that
errors are raised when expected. For that you can use the assert_raises
function (also in numpy.testing.utils) which takes an Exception type and
a callable as arguments:

assert_raises(DimensionMismatchError, lambda: 3*volt + 5*second)

Note that you cannot simply write 3*volt + 5*second in the above example,
this would raise an exception before calling assert_raises. Using a callable
like the simple lambda expression above makes it possible for assert_raises
to catch the error and compare it against the expected type. You can also check
whether expected warnings are raised, see the documentation of the logging
mechanism for details

For simple functions, doctests (see below) are a great alternative to writing
classical unit tests.

By default, all tests are executed for all selected code generation targets
(see Running the test suite above). This is not useful for all tests, some
basic tests that for example test equation syntax or the use of physical units
do not depend on code generation and need therefore not to be repeated. To
execute such tests only once, they can be annotated with a
codegen-independent attribute, using the attr
decorator:

from nose.plugins.attrib import attr
from brian2 import NeuronGroup

@attr('codegen-independent')
def test_simple():
 # Test that the length of a NeuronGroup is correct
 group = NeuronGroup(5, '')
 assert len(group) == 5

Tests that are not “codegen-independent” are by default only executed for the
runtimes device, i.e. not for the cpp_standalone device, for example.
However, many of those tests follow a common pattern that is compatible with
standalone devices as well: they set up a network, run it, and check the state
of the network afterwards. Such tests can be marked as
standalone-compatible, using the attr decorator in
the same way as for codegen-independent tests. Since standalone devices
usually have an internal state where they store information about arrays,
array assignments, etc., they need to be reinitialized after such a test. For
that use the with_setup decorator and provide the
restore_device function as the teardown
argument:

from nose import with_setup
from nose.plugins.attrib import attr
from numpy.testing.utils import assert_equal
from brian2 import *
from brian2.devices.device import restore_device

@attr('standalone-compatible')
@with_setup(teardown=restore_initial_state)
def test_simple_run():
 # Check that parameter values of a neuron don't change after a run
 group = NeuronGroup(5, 'v : volt')
 group.v = 'i*mV'
 run(1*ms)
 assert_equal(group.v[:], np.arange(5)*mV)

As a rule of thumb:

	If a test does not have a run call, mark it as
codegen-independent

	If a test has only a single run and only reads state variable
values after the run, mark it as standalone-compatible and register the
restore_device teardown function

Tests can also be written specifically for a standalone device (they then have
to include the set_device and
build calls explicitly). In this case tests
have to be annotated with the name of the device (e.g. 'cpp_standalone')
and with 'standalone-only' to exclude this test from the runtime tests.
Also, the device should be restored in the end:

from nose import with_setup
from nose.plugins.attrib import attr
from brian2 import *
from brian2.devices.device import restore_device

@attr('cpp_standalone', 'standalone-only')
@with_setup(teardown=restore_initial_state)
def test_cpp_standalone():
 set_device('cpp_standalone')
 # set up simulation
 # run simulation
 device.build(...)
 # check simulation results

Doctests

Doctests are executable documentation. In the Examples block of a class or
function documentation, simply write code copied from an interactive Python
session (to do this from ipython, use %doctestmode), e.g.:

>>> expr = 'a*_b+c5+8+f(A)'
>>> print word_substitute(expr, {'a':'banana', 'f':'func'})
banana*_b+c5+8+func(A)

During testing, the actual output will be compared to the expected output and
an error will be raised if they don’t match. Note that this comparison is
strict, e.g. trailing whitespace is not ignored. There are various ways of
working around some problems that arise because of this expected exactness (e.g.
the stacktrace of a raised exception will never be identical because it contains
file names), see the doctest documentation [https://docs.python.org/2/library/doctest.html] for details.

Doctests can (and should) not only be used in docstrings, but also in the
hand-written documentation, making sure that the examples actually work. To
turn a code example into a doc test, use the .. doctest:: directive, see
Equations for examples written as doctests. For all doctests,
everything that is available after from brian2 import * can be used
directly. For everything else, add import statements to the doctest code or –
if you do not want the import statements to appear in the document – add them
in a .. testsetup:: block. See the documentation for
Sphinx’s doctest extension [http://www.sphinx-doc.org/en/stable/ext/doctest.html] for more details.

Doctests are a great way of testing things as they not only make sure that the
code does what it is supposed to do but also that the documentation is up to
date!

Test attributes

As explained above, the test suite can be run with different subsets of the
available tests. For this, tests have to be annotated with the attr
decorator available from nose.plugins.attrib. Currently, the following
attributes are understood:

	standalone: A C++ standalone test (not run by default when calling brian2.test())

	codegen-independent: A test that does not use any code generation (run by default)

	long: A test that takes a long time to run (not run by default)

Attributes can be simply given as a string argument to the attr decorator:

 from nose.plugins.attrib import attr

 @attr('standalone')
 test_for_standalone():
 pass # ...

Correctness tests

[These do not exist yet for brian2]. Unit tests test a specific function or
feature in isolation. In addition, we want to have tests where a complex piece
of code (e.g. a complete simulation) is tested. Even if it is sometimes
impossible to really check whether the result is correct (e.g. in the case of
the spiking activity of a complex network), a useful check is also whether the
result is consistent. For example, the spiking activity should be the same
when using code generation for Python or C++. Or, a network could be pickled
before running and then the result of the run could be compared to a second run
that starts from the unpickled network.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Units

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Developer’s guide »

Units

Casting rules

In Brian 1, a distinction is made between scalars and numpy arrays (including
scalar arrays): Scalars could be multiplied with a unit, resulting in a Quantity
object whereas the multiplication of an array with a unit resulted in a
(unitless) array. Accordingly, scalars where considered as dimensionless
quantities for the purpose of unit checking (e.g.. 1 + 1 * mV raised an error)
whereas arrays where not (e.g. array(1) + 1 * mV resulted in 1.001 without any
errors). Brian 2 no longer makes this distinction and treats both scalars and
arrays as dimensionless for unit checking and make all operations involving
quantities return a quantity.:

>>> 1 + 1*second
Traceback (most recent call last):
...
DimensionMismatchError: Cannot calculate 1. s + 1, units do not match (units are second and 1).

>>> np.array([1]) + 1*second
Traceback (most recent call last):
...
DimensionMismatchError: Cannot calculate 1. s + [1], units do not match (units are second and 1).

>>> 1*second + 1*second
2. * second
>>> np.array([1])*second + 1*second
array([2.]) * second

As one exception from this rule, a scalar or array 0 is considered as having
“any unit”, i.e. 0 + 1 * second will result in 1 * second without a
dimension mismatch error and 0 == 0 * mV will evaluate to True. This
seems reasonable from a mathematical viewpoint and makes some sources of error
disappear. For example, the Python builtin sum (not numpy’s version) adds
the value of the optional argument start, which defaults to 0, to its
main argument. Without this exception, sum([1 * mV, 2 * mV]) would therefore
raise an error.

The above rules also apply to all comparisons (e.g. == or <) with one
further exception: inf and -inf also have “any unit”, therefore an
expression like v <= inf will never raise an exception (and always return
True).

Functions and units

ndarray methods

All methods that make sense on quantities should work, i.e. they check for the
correct units of their arguments and return quantities with units were
appropriate. Most of the methods are overwritten using thin function wrappers:

	wrap_function_keep_dimension:

	Strips away the units before giving the array to the method of ndarray,
then reattaches the unit to the result (examples: sum, mean, max)

	wrap_function_change_dimension:

	Changes the dimensions in a simple way that is independent of function
arguments, the shape of the array, etc. (examples: sqrt, var, power)

	wrap_function_dimensionless:

	Raises an error if the method is called on a quantity with dimensions (i.e.
it works on dimensionless quantities).

List of methods

all, any, argmax, argmax, argsort, clip, compress, conj, conjugate, copy,
cumsum, diagonal, dot, dump, dumps, fill, flatten, getfield, item, itemset, max,
mean, min, newbyteorder, nonzero, prod, ptp, put, ravel, repeat, reshape, round,
searchsorted, setasflat, setfield, setflags, sort, squeeze, std, sum, take,
tolist, trace, transpose, var, view

Notes

	Methods directly working on the internal data buffer (setfield,
getfield, newbyteorder) ignore the dimensions of the quantity.

	The type of a quantity cannot be int, therefore astype does not quite
work when trying to convert the array into integers.

	choose is only defined for integer arrays and therefore does not work

	tostring and tofile only return/save the pure array data without the
unit (but you can use dump or dumps to pickle a quantity array)

	resize does not work: ValueError: cannot resize this array: it does not
own its data

	cumprod would result in different dimensions for different elements and is
therefore forbidden

	item returns a pure Python float by definition

	itemset does not check for units

Numpy ufuncs

All of the standard numpy ufuncs [http://docs.scipy.org/doc/numpy/reference/ufuncs.html] (functions that operate element-wise on numpy
arrays) are supported, meaning that they check for correct units and return
appropriate arrays. These functions are often called implicitly, for example
when using operators like < or **.

	Math operations:

	add, subtract, multiply, divide, logaddexp, logaddexp2,
true_divide, floor_divide, negative, power, remainder, mod, fmod, absolute,
rint, sign, conj, conjugate, exp, exp2, log, log2, log10, expm1, log1p,
sqrt, square, reciprocal, ones_like

	Trigonometric functions:

	sin, cos, tan, arcsin, arccos, arctan, arctan2,
hypot, sinh, cosh, tanh, arcsinh, arccosh, arctanh, deg2rad, rad2deg

	Bitwise functions:

	bitwise_and, bitwise_or, bitwise_xor, invert, left_shift, right_shift

	Comparison functions:

	greater, greater_equal, less, less_equal, not_equal,
equal, logical_and, logical_or, logical_xor, logical_not, maximum, minimum

	Floating functions:

	isreal, iscomplex, isfinite, isinf, isnan, floor, ceil, trunc, fmod

Not taken care of yet: signbit, copysign, nextafter, modf, ldexp, frexp

Notes

	Everything involving log or exp, as well as trigonometric functions
only works on dimensionless array (for arctan2 and hypot this is
questionable, though)

	Unit arrays can only be raised to a scalar power, not to an array of
exponents as this would lead to differing dimensions across entries. For
simplicity, this is enforced even for dimensionless quantities.

	Bitwise functions never works on quantities (numpy will by itself throw a
TypeError because they are floats not integers).

	All comparisons only work for matching dimensions (with the exception of
always allowing comparisons to 0) and return a pure boolean array.

	All logical functions treat quantities as boolean values in the same
way as floats are treated as boolean: Any non-zero value is True.

Numpy functions

Many numpy functions are functional versions of ndarray methods (e.g. mean,
sum, clip). They therefore work automatically when called on quantities,
as numpy propagates the call to the respective method.

There are some functions in numpy that do not propagate their call to the
corresponding method (because they use np.asarray instead of np.asanyarray,
which might actually be a bug in numpy): trace, diagonal, ravel,
dot. For these, wrapped functions in unitsafefunctions.py are provided.

Wrapped numpy functions in unitsafefunctions.py

These functions are thin wrappers around the numpy functions to correctly check
for units and return quantities when appropriate:

log, exp, sin, cos, tan, arcsin, arccos, arctan, sinh, cosh, tanh, arcsinh,
arccosh, arctanh, diagonal, ravel, trace, dot

numpy functions that work unchanged

This includes all functional counterparts of the methods mentioned above (with
the exceptions mentioned above). Some other functions also work correctly, as
they are only using functions/methods that work with quantities:

	linspace, diff, digitize [1]

	trim_zeros, fliplr, flipud, roll, rot90, shuffle

	corrcoeff [1]

	[1]	(1, 2) But does not care about the units of its input.

numpy functions that return a pure numpy array instead of quantities

	arange

	cov

	random.permutation

	histogram, histogram2d

	cross, inner, outer

	where

numpy functions that do something wrong

	insert, delete (return a quantity array but without units)

	correlate (returns a quantity with wrong units)

	histogramdd (raises a DimensionMismatchError)

User-defined functions and units

For performance and simplicity reasons, code within the Brian core does not use
Quantity objects but unitless numpy arrays instead. See Adding support for new functions for
details on how to make use user-defined functions with Brian’s unit system.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Equations and namespaces

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Developer’s guide »

Equations and namespaces

Equation parsing

Parsing is done via pyparsing [http://pyparsing.wikispaces.com/], for now find the grammar at the top of the
brian2.equations.equations file.

Variables

Each Brian object that saves state variables (e.g. NeuronGroup, Synapses,
StateMonitor) has a variables attribute, a dictionary mapping variable
names to Variable objects (in fact a Variables object, not a simple
dictionary). Variable objects contain information about
the variable (name, dtype, units) as well as access to the variable’s value via
a get_value method. Some will also allow setting the values via a
corresponding set_value method. These objects can therefore act as proxies
to the variables’ “contents”.

Variable objects provide the “abstract namespace” corresponding to a chunk
of “abstract code”, they are all that is needed to check for syntactic
correctness, unit consistency, etc.

Namespaces

The namespace attribute of a group can contain information about the external
(variable or function) names used in the equations. It specifies a
group-specific namespace used for resolving names in that group. At run time,
this namespace is combined with a “run namespace”. This namespace is either
explicitly provided to the Network.run() method, or the implicit namespace
consisting of the locals and globals around the point where the run function is
called is used. This namespace is then passed down to all the objects via
Network.before_fun which calls all the individual BrianObject.before_run()
methods with this namespace.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Variables and indices

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Developer’s guide »

Variables and indices

Introduction

To be able to generate the proper code out of abstract code statements, the code
generation process has to have access to information about the variables (their
type, size, etc.) as well as to the indices that should be used for indexing
arrays (e.g. a state variable of a NeuronGroup will be indexed differently in
the NeuronGroup state updater and in synaptic propagation code). Most of this
information is stored in the variables attribute of a VariableOwner (this
includes NeuronGroup, Synapses, PoissonGroup and everything else that has
state variables). The variables attribute can be accessed as a (read-only)
dictionary, mapping variable names to Variable objects storing the
information about the respective variable. However, it is not a simple
dictionary but an instance of the Variables class. Let’s have a look at its
content for a simple example:

 >>> tau = 10*ms
 >>> G = NeuronGroup(10, 'dv/dt = -v / tau : volt')
 >>> for name, var in G.variables.items():
 ... print('%r : %s' % (name, var))
 ...
'_spikespace' : <ArrayVariable(unit=Unit(1), dtype=<type 'numpy.int32'>, scalar=False, constant=False, read_only=False)>
 'i' : <ArrayVariable(unit=Unit(1), dtype=<type 'numpy.int32'>, scalar=False, constant=True, read_only=True)>
 'N' : <Constant(unit=Unit(1), dtype=<type 'numpy.int64'>, scalar=True, constant=True, read_only=True)>
 't' : <ArrayVariable(unit=second, dtype=<type 'numpy.float64'>, scalar=True, constant=False, read_only=True)>
 'v' : <ArrayVariable(unit=volt, dtype=<type 'numpy.float64'>, scalar=False, constant=False, read_only=False)>
 'dt' : <ArrayVariable(unit=second, dtype=<type 'float'>, scalar=True, constant=True, read_only=True)>

The state variable v we specified for the NeuronGroup is represented as an
ArrayVariable, all the other variables were added automatically. By
convention, internal names for variables that should not be directly accessed by
the user start with an underscore, in the above example the only variable
of this kind is '_spikespace', the internal datastructure used to store the
spikes that occured in the current time step. There’s another array i, the
neuronal indices (simply an array of integers from 0 to 9), that is used for
string expressions involving neuronal indices. The constant N represents
the total number of neurons. At the first sight it might be surprising that
t, the current time of the clock and dt, its timestep, are
ArrayVariable objects as well. This is because those values can change during
a run (for t) or between runs (for dt), and storing them as arrays with
a single value (note the scalar=True) is the easiest way to share this value
– all code accessing it only needs a reference to the array and can access its
only element.

The information stored in the Variable objects is used to do various checks
on the level of the abstract code, i.e. before any programming language code is
generated. Here are some examples of errors that are caught this way:

>>> G.v = 3*ms # G.variables['v'].unit is volt
Traceback (most recent call last):
...
DimensionMismatchError: v should be set with a value with units volt, but got 3. ms (unit is second).
>>> G.N = 5 # G.variables['N'] is read-only
Traceback (most recent call last):
...
TypeError: Variable N is read-only
>>> G2 = NeuronGroup(10, 'dv/dt = -v / tau : volt', threshold='v') #G2.variables['v'].is_bool is False
Traceback (most recent call last):
...
TypeError: Threshold condition "v" is not a boolean expression

Creating variables

Each variable that should be accessible as a state variable and/or should be
available for use in abstract code has to be created as a Variable. For this,
first a Variables container with a reference to the group has to be created,
individual variables can then be added using the various add_... methods:

self.variables = Variables(self)
self.variables.add_array('an_array', unit=volt, size=100)
self.variables.add_constant('N', unit=Unit(1), value=self._N, dtype=np.int32)
self.variables.create_clock_variables(self.clock)

As an additional argument, array variables can be specified with a specific
index (see Indices below).

References

For each variable, only one Variable object exists even if it is used in
different contexts. Let’s consider the following example:

G = NeuronGroup(5, 'dv/dt = -v / tau : volt')
subG = G[2:]
S = Synapses(G, G, on_pre='v+=1*mV')
S.connect()

All allow an access to the state variable v (note the different shapes, these
arise from the different indices used, see below):

>>> G.v
<neurongroup.v: array([0., 0., 0., 0., 0.]) * volt>
>>> subG.v
<neurongroup_subgroup.v: array([0., 0., 0.]) * volt>
>>> S.v
<synapses.v: array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) * volt>

In all of these cases, the Variables object stores references to the same
ArrayVariable object:

>>> id(G.variables['v'])
108610960
>>> id(subG.variables['v'])
108610960
>>> id(S.variables['v'])
108610960

Such a reference can be added using Variables.add_reference, note that the
name used for the reference is not necessarily the same as in the original
group, e.g. in the above example S.variables also stores references to v
under the names v_pre and v_post.

Indices

In subgroups and especially in synapses, the transformation of abstract code
into executable code is not straightforward because it can involve variables
from different contexts. Here is a simple example:

G = NeuronGroup(5, 'dv/dt = -v / tau : volt')
S = Synapses(G, G, 'w : volt', on_pre='v+=w')

The seemingly trivial operation v+=w involves the variable v of the
NeuronGroup and the variable w of the Synapses object which have to be
indexed in the appropriate way. Since this statement is executed in the context
of S, the variable indices stored there are relevant:

>>> S.variables.indices['w']
'_idx'
>>> S.variables.indices['v']
'_postsynaptic_idx'

The index _idx has a special meaning and always refers to the “natural”
index for a group (e.g. all neurons for a NeuronGroup, all synapses for a
Synapses object, etc.). All other indices have to refer to existing arrays:

>>> S.variables['_postsynaptic_idx']
<DynamicArrayVariable(unit=Unit(1), dtype=<type 'numpy.int32'>, scalar=False, constant=False, is_bool=False, read_only=False)>

In this case, _postsynaptic_idx refers to a dynamic array that stores the
postsynaptic targets for each synapse (since it is an array itself, it also has
an index. It is defined for each synapse so its index is _idx – in fact
there is currently no support for an additional level of indirection in Brian:
a variable representing an index has to have _idx as its own index). Using
this index information, the following C++ code (slightly simplified) is
generated:

for(int _spiking_synapse_idx=0;
 _spiking_synapse_idx<_num_spiking_synapses;
 _spiking_synapse_idx++)
{
 const int _idx = _spiking_synapses[_spiking_synapse_idx];
 const int _postsynaptic_idx = _ptr_array_synapses__synaptic_post[_idx];
 const double w = _ptr_array_synapses_w[_idx];
 double v = _ptr_array_neurongroup_v[_postsynaptic_idx];
 v += w;
 _ptr_array_neurongroup_v[_postsynaptic_idx] = v;
}

In this case, the “natural” index _idx iterates over all the synapses that
received a spike (this is defined in the template) and _postsynaptic_idx
refers to the postsynaptic targets for these synapses. The variables w and
v are then pulled out of their respective arrays with these indices so that
the statement v += w; does the right thing.

Getting and setting state variables

When a state variable is accessed (e.g. using G.v), the group does not
return a reference to the underlying array itself but instead to a
VariableView object. This is because a state variable can be accessed in
different contexts and indexing it with a number/array (e.g. obj.v[0]) or
a string (e.g. obj.v['i>3']) can refer to different values in the underlying
array depending on whether the object is the NeuronGroup, a Subgroup or
a Synapses object.

The __setitem__ and __getitem__ methods in VariableView delegate to
VariableView.set_item and VariableView.get_item respectively (which can also
be called directly under special circumstances). They analyze the arguments (is
the index a number, a slice or a string? Is the target value an array or a string
expression?) and delegate the actual retrieval/setting of the values to a
specific method:

	Getting with a numerical (or slice) index (e.g. G.v[0]): VariableView.get_with_index_array

	Getting with a string index (e.g. G.v['i>3']): VariableView.get_with_expression

	Setting with a numerical (or slice) index and a numerical target value (e.g.
G.v[5:] = -70*mV): VariableView.set_with_index_array

	Setting with a numerical (or slice) index and a string expression value (e.g.
G.v[5:] = (-70+i)*mV): VariableView.set_with_expression

	Setting with a string index and a string expression value (e.g.
G.v['i>5'] = (-70+i)*mV): VariableView.set_with_expression_conditional

These methods are annotated with the device_override decorator and can
therefore be implemented in a different way in certain devices. The standalone
device, for example, overrides the all the getting functions and the setting
with index arrays. Note that for standalone devices, the “setter” methods do
not actually set the values but only note them down for later code generation.

Additional variables and indices

The variables stored in the variables attribute of a VariableOwner can
be used everywhere (e.g. in the state updater, in the threshold, the reset,
etc.). Objects that depend on these variables, e.g. the Thresholder of a
NeuronGroup add additional variables, in particular AuxiliaryVariables that
are automatically added to the abstract code: a threshold condition v > 1
is converted into the statement _cond = v > 1; to specify the meaning of
the variable _cond for the code generation stage (in particular, C++ code
generation needs to know the data type) an AuxiliaryVariable object is created.

In some rare cases, a specific variable_indices dictionary is provided
that overrides the indices for variables stored in the variables attribute.
This is necessary for synapse creation because the meaning of the variables
changes in this context: an expression v>0 does not refer to the v
variable of all the connected postsynaptic variables, as it does under other
circumstances in the context of a Synapses object, but to the v variable
of all possible targets.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Preferences system

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Developer’s guide »

Preferences system

Each preference looks like codegen.c.compiler, i.e. dotted names. Each
preference has to be registered and validated. The idea is that registering
all preferences ensures that misspellings of a preference value by a user
causes an error, e.g. if they wrote codgen.c.compiler it would raise an
error. Validation means that the value is checked for validity, so
codegen.c.compiler = 'gcc' would be allowed, but
codegen.c.compiler = 'hcc' would cause an error.

An additional requirement is that the preferences system allows for extension
modules to define their own preferences, including extending the existing
core brian preferences. For example, an extension might want to define
extension.* but it might also want to define a new language for
codegen, e.g. codegen.lisp.*. However, extensions cannot add preferences
to an existing category.

Accessing and setting preferences

Preferences can be accessed and set either keyword-based or attribute-based.
To set/get the value for the preference example mentioned before, the following
are equivalent:

prefs['codegen.c.compiler'] = 'gcc'
prefs.codegen.c.compiler = 'gcc'

if prefs['codegen.c.compiler'] == 'gcc':
 ...
if prefs.codegen.c.compiler == 'gcc':
 ...

Using the attribute-based form can be particulary useful for interactive
work, e.g. in ipython, as it offers autocompletion and documentation.
In ipython, prefs.codegen.c? would display a docstring with all
the preferences available in the codegen.c category.

Preference files

Preferences are stored in a hierarchy of files, with the following order
(each step overrides the values in the previous step but no error is raised
if one is missing):

	The global defaults are stored in the installation directory.

	The user default are stored in ~/.brian/preferences (which works on
Windows as well as Linux).

	The file brian_preferences in the current directory.

Registration

Registration of preferences is performed by a call to
BrianGlobalPreferences.register_preferences, e.g.:

register_preferences(
 'codegen.c',
 'Code generation preferences for the C language',
 'compiler'= BrianPreference(
 validator=is_compiler,
 docs='...',
 default='gcc'),
 ...
)

The first argument 'codegen.c' is the base name, and every preference of
the form codegen.c.* has to be registered by this function (preferences in subcategories
such as codegen.c.somethingelse.* have to be specified separately). In other
words, by calling register_preferences,
a module takes ownership of all the preferences with one particular base name. The second argument
is a descriptive text explaining what this category is about. The preferences themselves are
provided as keyword arguments, each set to a BrianPreference object.

Validation functions

A validation function takes a value for the preference and returns True (if the value is a valid
value) or False. If no validation function is specified, a default validator is used that
compares the value against the default value: Both should belong to the same class (e.g. int or
str) and, in the case of a Quantity have the same unit.

Validation

Setting the value of a preference with a registered base name instantly triggers
validation. Trying to set an unregistered preference using keyword or attribute access raises an
error. The only exception from this rule is when the preferences are read from configuration files
(see below). Since this happens before the user has the chance to import extensions that potentially
define new preferences, this uses a special function (_set_preference). In this case,for base
names that are not yet registered, validation occurs when
the base name is registered. If, at the time that Network.run() is called, there
are unregistered preferences set, a PreferenceError is raised.

File format

The preference files are of the following form:

a.b.c = 1
Comment line
[a]
b.d = 2
[a.b]
b.e = 3

This would set preferences a.b.c=1, a.b.d=2 and a.b.e=3.

Built-in preferences

Brian itself defines the following preferences:

codegen

Code generation preferences

codegen.loop_invariant_optimisations = True

Whether to pull out scalar expressions out of the statements, so that
they are only evaluated once instead of once for every neuron/synapse/...
Can be switched off, e.g. because it complicates the code (and the same
optimisation is already performed by the compiler) or because the
code generation target does not deal well with it. Defaults to True.

codegen.string_expression_target = 'numpy'

Default target for the evaluation of string expressions (e.g. when
indexing state variables). Should normally not be changed from the
default numpy target, because the overhead of compiling code is not
worth the speed gain for simple expressions.

Accepts the same arguments as codegen.target, except for 'auto'

codegen.target = 'auto'

Default target for code generation.

Can be a string, in which case it should be one of:

	'auto' the default, automatically chose the best code generation
target available.

	'weave' uses scipy.weave to generate and compile C++ code,
should work anywhere where gcc is installed and available at the
command line.

	'cython', uses the Cython package to generate C++ code. Needs a
working installation of Cython and a C++ compiler.

	'numpy' works on all platforms and doesn’t need a C compiler but
is often less efficient.

Or it can be a CodeObject class.

codegen.cpp

C++ compilation preferences

codegen.cpp.compiler = ''

Compiler to use (uses default if empty)

Should be gcc or msvc.

codegen.cpp.define_macros = []

List of macros to define; each macro is defined using a 2-tuple,
where ‘value’ is either the string to define it to or None to
define it without a particular value (equivalent of “#define
FOO” in source or -DFOO on Unix C compiler command line).

codegen.cpp.extra_compile_args = None

Extra arguments to pass to compiler (if None, use either
extra_compile_args_gcc or extra_compile_args_msvc).

codegen.cpp.extra_compile_args_gcc = ['-w', '-O3', '-ffast-math', '-fno-finite-math-only', '-march=native']

Extra compile arguments to pass to GCC compiler

codegen.cpp.extra_compile_args_msvc = ['/Ox', '/w', '/arch:SSE2']

Extra compile arguments to pass to MSVC compiler (the default
/arch: flag is determined based on the processor architecture)

codegen.cpp.extra_link_args = []

Any extra platform- and compiler-specific information to use when
linking object files together.

codegen.cpp.headers = []

A list of strings specifying header files to use when compiling the
code. The list might look like [“<vector>”,“‘my_header’”]. Note that
the header strings need to be in a form than can be pasted at the end
of a #include statement in the C++ code.

codegen.cpp.include_dirs = []

Include directories to use. Note that $prefix/include will be
appended to the end automatically, where $prefix is Python’s
site-specific directory prefix as returned by sys.prefix [https://docs.python.org/2/library/sys.html#sys.prefix].

codegen.cpp.libraries = []

List of library names (not filenames or paths) to link against.

codegen.cpp.library_dirs = []

List of directories to search for C/C++ libraries at link time.

codegen.cpp.msvc_architecture = ''

MSVC architecture name (or use system architectue by default).

Could take values such as x86, amd64, etc.

codegen.cpp.msvc_vars_location = ''

Location of the MSVC command line tool (or search for best by default).

codegen.cpp.runtime_library_dirs = []

List of directories to search for C/C++ libraries at run time.

codegen.generators

Codegen generator preferences (see subcategories for individual languages)

codegen.generators.cpp

C++ codegen preferences

codegen.generators.cpp.flush_denormals = False

Adds code to flush denormals to zero.

The code is gcc and architecture specific, so may not compile on all
platforms. The code, for reference is:

#define CSR_FLUSH_TO_ZERO (1 << 15)
unsigned csr = __builtin_ia32_stmxcsr();
csr |= CSR_FLUSH_TO_ZERO;
__builtin_ia32_ldmxcsr(csr);

Found at http://stackoverflow.com/questions/2487653/avoiding-denormal-values-in-c.

codegen.generators.cpp.restrict_keyword = '__restrict'

The keyword used for the given compiler to declare pointers as restricted.

This keyword is different on different compilers, the default works for
gcc and MSVS.

codegen.runtime

Runtime codegen preferences (see subcategories for individual targets)

codegen.runtime.cython

Cython runtime codegen preferences

codegen.runtime.cython.cache_dir = None

Location of the cache directory for Cython files. By default,
will be stored in a brian_extensions subdirectory
where Cython inline stores its temporary files
(the result of get_cython_cache_dir()).

codegen.runtime.cython.multiprocess_safe = True

Whether to use a lock file to prevent simultaneous write access
to cython .pyx and .so files.

codegen.runtime.numpy

Numpy runtime codegen preferences

codegen.runtime.numpy.discard_units = False

Whether to change the namespace of user-specifed functions to remove
units.

core

Core Brian preferences

core.default_float_dtype = float64

Default dtype for all arrays of scalars (state variables, weights, etc.).

Currently, this is not supported (only float64 can be used).

core.default_integer_dtype = int32

Default dtype for all arrays of integer scalars.

core.outdated_dependency_error = True

Whether to raise an error for outdated dependencies (True) or just
a warning (False).

core.network

Network preferences

core.network.default_schedule = ['start', 'groups', 'thresholds', 'synapses', 'resets', 'end']

Default schedule used for networks that
don’t specify a schedule.

devices

Device preferences

devices.cpp_standalone

C++ standalone preferences

devices.cpp_standalone.openmp_spatialneuron_strategy = None

Which strategy to chose for solving the three tridiagonal systems with
OpenMP: 'branches' means to solve the three systems sequentially, but
for all the branches in parallel, 'systems' means to solve the three
systems in parallel, but all the branches within each system
sequentially. The 'branches' approach is usually better for
morphologies with many branches and a large number of threads, while the
'systems' strategy should be better for morphologies with few
branches (e.g. cables) and/or simulations with no more than three
threads. If not specified (the default), the 'systems' strategy will
be used when using no more than three threads or when the morphology
has less than three branches in total.

devices.cpp_standalone.openmp_threads = 0

The number of threads to use if OpenMP is turned on. By default, this value is set to 0 and the C++ code
is generated without any reference to OpenMP. If greater than 0, then the corresponding number of threads
are used to launch the simulation.

logging

Logging system preferences

logging.console_log_level = 'INFO'

What log level to use for the log written to the console.

Has to be one of CRITICAL, ERROR, WARNING, INFO, DEBUG or DIAGNOSTIC.

logging.delete_log_on_exit = True

Whether to delete the log and script file on exit.

If set to True (the default), log files (and the copy of the main
script) will be deleted after the brian process has exited, unless an
uncaught exception occured. If set to False, all log files will be kept.

logging.file_log = True

Whether to log to a file or not.

If set to True (the default), logging information will be written
to a file. The log level can be set via the logging.file_log_level
preference.

logging.file_log_level = 'DIAGNOSTIC'

What log level to use for the log written to the log file.

In case file logging is activated (see logging.file_log), which log
level should be used for logging. Has to be one of CRITICAL, ERROR,
WARNING, INFO, DEBUG or DIAGNOSTIC.

logging.save_script = True

Whether to save a copy of the script that is run.

If set to True (the default), a copy of the currently run script
is saved to a temporary location. It is deleted after a successful
run (unless logging.delete_log_on_exit is False) but is kept after
an uncaught exception occured. This can be helpful for debugging,
in particular when several simulations are running in parallel.

logging.std_redirection = True

Whether or not to redirect stdout/stderr to null at certain places.

This silences a lot of annoying compiler output, but will also hide
error messages making it harder to debug problems. You can always
temporarily switch it off when debugging. If
logging.std_redirection_to_file is set to True as well, then the
output is saved to a file and if an error occurs the name of this file
will be printed.

logging.std_redirection_to_file = True

Whether to redirect stdout/stderr to a file.

If both logging.std_redirection and this preference are set to
True, all standard output/error (most importantly output from
the compiler) will be stored in files and if an error occurs the name
of this file will be printed. If logging.std_redirection is True
and this preference is False, then all standard output/error will
be completely suppressed, i.e. neither be displayed nor stored in a
file.

The value of this preference is ignore if logging.std_redirection is
set to False.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Adding support for new functions

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Developer’s guide »

Adding support for new functions

For a description of Brian’s function system from the user point of view, see
Functions.

The default functions available in Brian are stored in the DEFAULT_FUNCTIONS
dictionary. New Function objects can be added to this dictionary to make them
available to all Brian code, independent of its namespace.

To add a new implementation for a code generation target, a
FunctionImplementation can be added to the Function.implementations
dictionary. The key for this dictionary has to be either a CodeGenerator class
object, or a CodeObject class object. The CodeGenerator of a CodeObject
(e.g. CPPCodeGenerator for WeaveCodeObject) is used as a fallback if no
implementation specific to the CodeObject class exists.

If a function is already provided for the target language (e.g. it is part of
a library imported by default), using the same name, all that is needed is to
add an empty FunctionImplementation object to mark the function as
implemented. For example, exp is a standard function in C++:

DEFAULT_FUNCTIONS['exp'].implementations[CPPCodeGenerator] = FunctionImplementation()

Some functions are implemented but have a different name in the target language.
In this case, the FunctionImplementation object only has to specify the new
name:

DEFAULT_FUNCTIONS['arcsin'].implementations[CPPCodeGenerator] = FunctionImplementation('asin')

Finally, the function might not exist in the target language at all, in this
case the code for the function has to be provided, the exact form of this
code is language-specific. In the case of C++, it’s a dictionary of code blocks:

clip_code = {'support_code': '''
 double _clip(const float value, const float a_min, const float a_max)
 {
 if (value < a_min)
 return a_min;
 if (value > a_max)
 return a_max;
 return value;
 }
 '''}
DEFAULT_FUNCTIONS['clip'].implementations[CPPCodeGenerator] = FunctionImplementation('_clip',
 code=clip_code)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Code generation

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Developer’s guide »

Code generation

The generation of a code snippet is done by a CodeGenerator class.
The templates are stored in the CodeObject.templater attribute, which is
typically implemented as a subdirectory of templates. The compilation and
running of code is done by a CodeObject. See the sections below for each
of these.

Code path

The following gives an outline of the key steps that happen for the code
generation associated to a NeuronGroup StateUpdater. The items in grey
are Brian core functions and methods and do not need to be implemented to
create a new code generation target or device. The parts in yellow are
used when creating a new device. The parts in green relate to generating
code snippets from abstract code blocks. The parts in blue relate to creating
new templates which these snippets are inserted into. The parts in red
relate to creating new runtime behaviour (compiling and running generated
code).

[image: ../_images/codegen_code_paths.png]
In brief, what happens can be summarised as follows. Network.run() will call
BrianObject.before_run() on each of the objects in the network. Objects such
as StateUpdater, which is a subclass of CodeRunner use this spot to
generate and compile their code. The process for doing this is to first
create the abstract code block, done in the StateUpdater.update_abstract_code
method. Then, a CodeObject is created with this code block. In doing so,
Brian will call out to the currently active Device to get the CodeObject
and CodeGenerator classes associated to the device, and this hierarchy of
calls gives several hooks which can be changed to implement new targets.

Code generation

To implement a new language, or variant of an existing language, derive a class
from CodeGenerator. Good examples to look at are the NumpyCodeGenerator,
CPPCodeGenerator and CythonCodeGenerator classes in the
brian2.codegen.generators package. Each CodeGenerator has a class_name
attribute which is a string used by the user to refer to this code generator
(for example, when defining function implementations).

The derived CodeGenerator class should implement the methods marked as
NotImplemented in the base CodeGenerator class. CodeGenerator also has
several handy utility methods to make it easier to write these, see the
existing examples to get an idea of how these work.

Syntax translation

One aspect of writing a new language is that sometimes you need to translate
from Python syntax into the syntax of another language. You are free to
do this however you like, but we recommend using a NodeRenderer class
which allows you to iterate over the abstract syntax tree of an expression.
See examples in brian2.parsing.rendering.

Templates

In addition to snippet generation, you need to create templates for the
new language. See the templates directories in brian2.codegen.runtime.*
for examples of these. They are written in the Jinja2 templating system. The
location of these templates is set as the CodeObject.templater attribute.
Examples such as CPPCodeObject show how this is done.

Code objects

To allow the final code block to be compiled and run, derive a class from
CodeObject. This class should implement the placeholder methods defined in
the base class. The class should also have attributes templater (which
should be a Templater object pointing to the directory where the templates
are stored)
generator_class (which should be the CodeGenerator class), and
class_name (which should be a string the user can use to refer to this
code generation target.

Default functions

You will typically want to implement the default functions such as the
trigonometric, exponential and rand functions. We usually put these
implementations either in the same module as the CodeGenerator class or
the CodeObject class depending on whether they are language-specific or
runtime target specific. See those modules for examples of implementing
these functions.

Code guide

	brian2.codegen: everything related to code generation

	brian2.codegen.generators: snippet generation,
including the CodeGenerator classes and default function implementations.

	brian2.codegen.runtime: templates, compilation and running of code,
including CodeObject and default function implementations.

	brian2.core.functions, brian2.core.variables: these define the values
that variable names can have.

	brian2.parsing: tools for parsing expressions, etc.

	brian2.parsing.rendering: AST tools for rendering expressions in Python
into different languages.

	brian2.utils: various tools for string manipulation, file management, etc.

Additional information

For some additional (older, but still accurate) notes on code generation:

	Older notes on code generation
	Stages of code generation

	Key concepts

	Code guide

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Older notes on code generation

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Developer’s guide »

 	Code generation »

Older notes on code generation

The following is an outline of how the Brian 2 code generation system works,
with indicators as to which packages to look at and which bits of code to read
for a clearer understanding.

We illustrate the global process with an example, the creation and running of
a single NeuronGroup object:

	Parse the equations, add refractoriness to them: this isn’t really part of
code generation.

	Allocate memory for the state variables.

	Create Thresholder, Resetter and StateUpdater objects.
	Determine all the variable and function names used in the respective
abstract code blocks and templates

	Determine the abstract namespace, i.e. determine a Variable or Function
object for each name.

	Create a CodeObject based on the abstract code, template and abstract
namespace. This will generate code in the target language and the namespace
in which the code will be executed.

	At runtime, each object calls CodeObject.__call__() to execute the code.

Stages of code generation

Equations to abstract code

In the case of Equations, the set of equations are combined with a
numerical integration method to generate an abstract code block (see below)
which represents the integration code for a single time step.

An example of this would be converting the following equations:

eqs = '''
dv/dt = (v0-v)/tau : volt (unless refractory)
v0 : volt
'''
group = NeuronGroup(N, eqs, threshold='v>10*mV',
 reset='v=0*mV', refractory=5*ms)

into the following abstract code using the exponential_euler method (which
is selected automatically):

not_refractory = 1*((t - lastspike) > 0.005000)
_BA_v = -v0
_v = -_BA_v + (_BA_v + v)*exp(-dt*not_refractory/tau)
v = _v

The code for this stage can be seen in NeuronGroup.__init__(),
StateUpdater.__init__, and StateUpdater.update_abstract_code
(in brian2.groups.neurongroup), and the StateUpdateMethod classes
defined in the brian2.stateupdaters package.

For more details, see State update.

Abstract code

‘Abstract code’ is just a multi-line string representing a block of code which
should be executed for each item (e.g. each neuron, each synapse). Each item
is independent of the others in abstract code. This allows us to later
generate code either for vectorised languages (like numpy in Python) or
using loops (e.g. in C++).

Abstract code is parsed according to Python syntax, with certain language
constructs excluded. For example, there cannot be any conditional or looping
statements at the moment, although support for this is in principle possible
and may be added later. Essentially, all that is allowed at the moment is a
sequence of arithmetical a = b*c style statements.

Abstract code is provided directly by the user for threshold and reset
statements in NeuronGroup and for pre/post spiking events in Synapses.

Abstract code to snippet

We convert abstract code into a ‘snippet’, which is a small segment of
code which is syntactically correct in the target language, although it may
not be runnable on its own (that’s handled by insertion into a ‘template’
later). This is handled by the CodeGenerator object in brian2.codegen.generators.
In the case of converting into python/numpy code this typically doesn’t involve
any changes to the code at all because the original code is in Python
syntax. For conversion to C++, we have to do some syntactic transformations
(e.g. a**b is converted to pow(a, b)), and add declarations for
certain variables (e.g. converting x=y*z into const double x = y*z;).

An example of a snippet in C++ for the equations above:

const double v0 = _ptr_array_neurongroup_v0[_neuron_idx];
const double lastspike = _ptr_array_neurongroup_lastspike[_neuron_idx];
bool not_refractory = _ptr_array_neurongroup_not_refractory[_neuron_idx];
double v = _ptr_array_neurongroup_v[_neuron_idx];
not_refractory = 1 * (t - lastspike > 0.0050000000000000001);
const double _BA_v = -(v0);
const double _v = -(_BA_v) + (_BA_v + v) * exp(-(dt) * not_refractory / tau);
v = _v;
_ptr_array_neurongroup_not_refractory[_neuron_idx] = not_refractory;
_ptr_array_neurongroup_v[_neuron_idx] = v;

The code path that includes snippet generation will be discussed in more detail
below, since it involves the concepts of namespaces and variables which we
haven’t covered yet.

Snippet to code block

The final stage in the generation of a runnable code block is the insertion
of a snippet into a template. These use the Jinja2 template specification
language. This is handled in brian2.codegen.templates.

An example of a template for Python thresholding:

USES_VARIABLES { not_refractory, lastspike, t }
{% for line in code_lines %}
{{line}}
{% endfor %}
_return_values, = _cond.nonzero()
Set the neuron to refractory
not_refractory[_return_values] = False
lastspike[_return_values] = t

and the output code from the example equations above:

USES_VARIABLES { not_refractory, lastspike, t }
v = _array_neurongroup_v
_cond = v > 10 * mV
_return_values, = _cond.nonzero()
Set the neuron to refractory
not_refractory[_return_values] = False
lastspike[_return_values] = t

Code block to executing code

A code block represents runnable code. Brian operates in two different regimes,
either in runtime or standalone mode. In runtime mode, memory allocation and
overall simulation control is handled by Python and numpy, and code objects
operate on this memory when called directly by Brian. This is the typical
way that Brian is used, and it allows for a rapid development cycle. However,
we also support a standalone mode in which an entire project workspace is
generated for a target language or device by Brian, which can then be
compiled and run independently of Brian. Each mode has different templates,
and does different things with the outputted code blocks. For runtime mode,
in Python/numpy code is executed by simply calling the exec statement
on the code block in a given namespace. For C++/weave code, the
scipy.weave.inline function is used. In standalone mode, the templates
will typically each be saved into different files.

Key concepts

Namespaces

In general, a namespace is simply a mapping/dict from names to values. In Brian
we use the term ‘namespace’ in two ways: the high level “abstract namespace”
maps names to objects based on the Variables or Function class. In the above
example, v maps to an ArrayVariable object, tau to a Constant
object, etc. This namespace has all the information that is needed for checking
the consistency of units, to determine which variables are boolean or scalar,
etc. During the CodeObject creation, this abstract namespace is converted into
the final namespace in which the code will be executed. In this namespace, v
maps to the numpy array storing the state variable values (without units) and
tau maps to a concrete value (again, without units).
See Equations and namespaces for more details.

Variable

Variable objects contain information about the variable
they correspond to, including details like the data type, whether it is a single value
or an array, etc.

See brian2.core.variables and, e.g. Group._create_variables,
NeuronGroup._create_variables().

Templates

Templates are stored in Jinja2 format. They come in one of two forms, either they are a single
template if code generation only needs to output a single block of code, or they define multiple
Jinja macros, each of which is a separate code block. The CodeObject should define what type of
template it wants, and the names of the macros to define. For examples, see the templates in the
directories in brian2/codegen/runtime. See brian2.codegen.templates for more details.

Code guide

This section includes a guide to the various relevant packages and subpackages
involved in the code generation process.

	codegen

	Stores the majority of all code generation related code.

	codegen.functions

	Code related to including functions - built-in and user-defined - in generated code.

	codegen.generators

	Each CodeGenerator is defined in a module here.

	codegen.runtime

	Each runtime CodeObject and its templates are defined in a package here.

	core

	
	core.variables

	The Variable types are defined here.

	equations

	Everything related to Equations.

	groups

	All Group related stuff is in here. The Group.resolve methods are
responsible for determining the abstract namespace.

	parsing

	Various tools using Python’s ast module to parse user-specified code. Includes syntax
translation to various languages in parsing.rendering.

	stateupdaters

	Everything related to generating abstract code blocks from integration methods is here.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Devices

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Developer’s guide »

Devices

This document describes how to implement a new Device for Brian. This is a
somewhat complicated process, and you should first be familiar with devices
from the user point of view (Computational methods and efficiency) as well as the code
generation system (Code generation).

We wrote Brian’s devices system to allow for two major use cases, although
it can potentially be extended beyond this. The two use cases are:

	Runtime mode. In this mode, everything is managed by Python, including
memory management (using numpy by default) and running the simulation.
Actual computational work can be carried out in several different ways,
including numpy, weave or Cython.

	Standalone mode. In this mode, running a Brian script leads to generating
an entire source code project tree which can be compiled and run
independently of Brian or Python.

Runtime mode is handled by RuntimeDevice and is already implemented, so here
I will mainly discuss standalone devices. A good way to understand these
devices is to look at the implementation of CPPStandaloneDevice (the only
one implemented in the core of Brian). In many cases, the simplest way to
implement a new standalone device would be to derive a class from
CPPStandaloneDevice and overwrite just a few methods.

Memory management

Memory is managed primarily via the Device.add_array, Device.get_value and
Device.set_value methods. When a new array is created, the add_array
method is called, and when trying to access this memory the other two are
called. The RuntimeDevice uses numpy to manage the memory and returns the
underlying arrays in these methods. The CPPStandaloneDevice just stores
a dictionary of array names but doesn’t allocate any memory. This information
is later used to generate code that will allocate the memory, etc.

Code objects

As in the case of runtime code generation, computational work is done by
a collection of CodeObject s. In CPPtandaloneDevice, each code object
is converted into a pair of .cpp and .h files, and this is probably
a fairly typical way to do it. For this device, it just uses the same code
generation routines as for the runtime C++ device weave.

Building

The method Device.build is used to generate the project. This can be
implemented any way you like, although looking at CPPStandaloneDevice.build
is probably a good way to get an idea of how to do it.

Device override methods

Several functions and methods in Brian are decorated with the device_override
decorator. This mechanism allows a standalone device to override the behaviour
of any of these functions by implementing a method with the name provided to
device_override. For example, the CPPStandaloneDevice uses this to
override Network.run() as CPPStandaloneDevice.network_run.

Other methods

There are some other methods to implement, including initialising arrays,
creating spike queues for synaptic propagation. Take a look at the source code
for these.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Multi-threading with OpenMP

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Brian 2 2.0 documentation »

 	Developer’s guide »

Multi-threading with OpenMP

The following is an outline of how to make C++ standalone templates compatible
with OpenMP, and therefore make them work in a multi-threaded environment. This
should be considered as an extension to Code generation, that has to
be read first. The C++ standalone mode of Brian is compatible with OpenMP, and
therefore simulations can be launched by users with one or with multiple
threads. Therefore, when adding new templates, the developers need to make sure
that those templates are properly handling the situation if launched with
OpenMP.

Key concepts

All the simulations performed with the C++ standalone mode can be launched with
multi-threading, and make use of multiple cores on the same machine. Basically,
all the Brian operations that can easily be performed in parallel, such as
computing the equations for NeuronGroup, Synapses, and so on can and should
be split among several threads. The network construction, so far, is still
performed only by one single thread, and all created objects are shared by all
the threads.

Use of #pragma flags

In OpenMP, all the parallelism is handled thanks to extra comments, added in the
main C++ code, under the form:

#pragma omp ...

But to avoid any dependencies in the code that is generated by Brian when
OpenMP is not activated, we are using functions that will only add those
comments, during code generation, when such a multi-threading mode is turned on.
By default, nothing will be inserted.

Translations of the #pragma commands

All the translations from openmp_pragma() calls in the C++ templates are
handled
in the file devices/cpp_standalone/codeobject.py In this function, you can
see that all calls with various string inputs will generate #pragma statements
inserted into the C++ templates during code generation. For example:

{{ openmp_pragma('static') }}

will be transformed, during code generation, into:

#pragma omp for schedule(static)

You can find the list of all the translations in the core of the
openmp_pragma() function, and if some extra translations are needed, they
should be added here.

Execution of the OpenMP code

In this section, we are explaining the main ideas behind the OpenMP mode of
Brian, and how the simulation is executed in such a parallel context.
As can be seen in devices/cpp_standalone/templates/main.cpp, the appropriate
number of threads, defined by the user, is fixed at the beginning
of the main function in the C++ code with:

{{ openmp_pragma('set_num_threads') }}

equivalent to (thanks to the openmp_pragam() function defined above):
nothing if OpenMP is turned off (default), and to:

omp_set_dynamic(0);
omp_set_num_threads(nb_threads);

otherwise. When OpenMP creates a parallel context, this is the number of
threads that will be used. As said, network creation is performed without
any calls to OpenMP, on one single thread. Each template that wants to use
parallelism has to add {{ openmp_pragma{('parallel')}} to create a general
block that will be executed in parallel or
{{ openmp_pragma{('parallel-static')}} to execute a single loop in parallel.

How to make your template use OpenMP parallelism

To design a parallel template, such as for example
devices/cpp_standalone/templates/common_group.cpp, you can see that as soon
as you have loops that can safely be split across nodes, you just need to add
an openmp command in front of those loops:

{{openmp_pragma('parallel-static')}}
for(int _idx=0; _idx<N; _idx++)
{
 ...
}

By doing so, OpenMP will take care of splitting the indices and each thread
will loop only on a subset of indices, sharing the load. By default, the
scheduling use for splitting the indices is static, meaning that each node will
get the same number of indices: this is the faster scheduling in OpenMP, and it
makes sense for NeuronGroup or Synapses because operations are the same for
all indices. By having a look at examples of templates such as
devices/cpp_standalone/templates/statemonitor.cpp, you can see that you can
merge portions of code executed by only one node and portions executed in
parallel. In this template, for example, only one node is recording the time and
extending the size of the arrays to store the recorded values:

{{_dynamic_t}}.push_back(_clock_t);

// Resize the dynamic arrays
{{_recorded}}.resize(_new_size, _num_indices);

But then, values are written in the arrays by all the nodes:

{{ openmp_pragma('parallel-static') }}
for (int _i = 0; _i < _num_indices; _i++)
{

}

In general, operations that manipulate global data structures, e.g. that use
push_back for a std::vector, should only be executed by a single thread.

Synaptic propagation in parallel

General ideas

With OpenMP, synaptic propagation is also multi-threaded. Therefore, we have to
modify the SynapticPathway objects, handling spike propagation. As can be seen
in devices/cpp_standalone/templates/synapses_classes.cpp, such an object,
created during run time, will be able to get the number of threads decided by
the user:

_nb_threads = {{ openmp_pragma('get_num_threads') }};

By doing so, a SynapticPathway, instead of handling only one SpikeQueue,
will be divided into _nb_threads SpikeQueues, each of them handling a
subset of the total number of connections. All the calls to
SynapticPathway object are performed from within parallel blocks in the
synapses and synapses_push_spikes template, we have to take this
parallel context into account. This is why all the function of the
SynapticPathway object are taking care of the node number:

void push(int *spikes, unsigned int nspikes)
{
 queue[{{ openmp_pragma('get_thread_num') }}]->push(spikes, nspikes);
}

Such a method for the SynapticPathway will make sure that when spikes are
propagated, all the threads will propagate them to their connections. By
default, again, if OpenMP is turned off, the queue vector has size 1.

Preparation of the SynapticPathway

Here we are explaining the implementation of the prepare() method for
SynapticPathway:

{{ openmp_pragma('parallel') }}
{
 unsigned int length;
 if ({{ openmp_pragma('get_thread_num') }} == _nb_threads - 1)
 length = n_synapses - (unsigned int) {{ openmp_pragma('get_thread_num') }}*n_synapses/_nb_threads;
 else
 length = (unsigned int) n_synapses/_nb_threads;

 unsigned int padding = {{ openmp_pragma('get_thread_num') }}*(n_synapses/_nb_threads);

 queue[{{ openmp_pragma('get_thread_num') }}]->openmp_padding = padding;
 queue[{{ openmp_pragma('get_thread_num') }}]->prepare(&real_delays[padding], &sources[padding], length, _dt);
}

Basically, each threads is getting an equal number of synapses (except the
last one, that will get the remaining ones, if the number is not a multiple of
n_threads), and the queues are receiving a padding integer telling them what
part of the synapses belongs to each queue. After that, the parallel context is
destroyed, and network creation can continue. Note that this could have been
done without a parallel context, in a sequential manner, but this is just
speeding up everything.

Selection of the spikes

Here we are explaining the implementation of the peek() method for
SynapticPathway. This is an example of concurrent access to data structures
that are not well handled in parallel, such as std::vector. When peek() is
called, we need to return a vector of all the neuron spiking at that particular
time. Therefore, we need to ask every queue of the SynapticPathway what are the
id of the spiking neurons, and concatenate them. Because those ids are stored
in vectors with various shapes, we need to loop over nodes to perform this
concatenate, in a sequential manner:

{{ openmp_pragma('static-ordered') }}
for(int _thread=0; _thread < {{ openmp_pragma('get_num_threads') }}; _thread++)
{
 {{ openmp_pragma('ordered') }}
 {
 if (_thread == 0)
 all_peek.clear();
 all_peek.insert(all_peek.end(), queue[_thread]->peek()->begin(), queue[_thread]->peek()->end());
 }
}

The loop, with the keyword ‘static-ordered’, is therefore performed such that
node 0 enters it first, then node 1, and so on. Only one node at a time is
executing the block statement. This is needed because vector manipulations can
not be performed in a multi-threaded manner. At the end of the loop, all_peek
is now a vector where all sub queues have written the id of spiking cells, and
therefore this is the list of all spiking cells within the SynapticPathway.

Compilation of the code

One extra file needs to be modified, in order for OpenMP implementation to work.
This is the makefile devices/cpp_standalone/templates/makefile. As one can
simply see, the CFLAGS are dynamically modified during code generation thanks
to:

{{ openmp_pragma('compilation') }}

If OpenMP is activated, this will add the following dependencies:

-fopenmp

such that if OpenMP is turned off, nothing, in the generated code, does depend
on it.

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Python Module Index

 Navigation

 	
 index

 	
 modules |

 	Brian 2 2.0 documentation »

 Python Module Index

 _ |
 c |
 d |
 e |
 g |
 h |
 i |
 m |
 n |
 o |
 p |
 s |
 u

 		 	

 		
 _	

 	
 	
 brian2.__init__	

 		 	

 		
 c	

 	[image: -]
 	
 brian2.codegen	

 	
 	
 brian2.codegen._prefs	

 	
 	
 brian2.codegen.codeobject	

 	
 	
 brian2.codegen.cpp_prefs	

 	
 	
 brian2.codegen.generators	

 	
 	
 brian2.codegen.generators.base	

 	
 	
 brian2.codegen.generators.cpp_generator	

 	
 	
 brian2.codegen.generators.cython_generator	

 	
 	
 brian2.codegen.generators.numpy_generator	

 	
 	
 brian2.codegen.optimisation	

 	
 	
 brian2.codegen.permutation_analysis	

 	
 	
 brian2.codegen.runtime	

 	
 	
 brian2.codegen.runtime.cython_rt	

 	
 	
 brian2.codegen.runtime.cython_rt.cython_rt	

 	
 	
 brian2.codegen.runtime.cython_rt.extension_manager	

 	
 	
 brian2.codegen.runtime.numpy_rt	

 	
 	
 brian2.codegen.runtime.numpy_rt.numpy_rt	

 	
 	
 brian2.codegen.runtime.numpy_rt.synapse_vectorisation	

 	
 	
 brian2.codegen.runtime.weave_rt	

 	
 	
 brian2.codegen.runtime.weave_rt.weave_rt	

 	
 	
 brian2.codegen.statements	

 	
 	
 brian2.codegen.targets	

 	
 	
 brian2.codegen.templates	

 	
 	
 brian2.codegen.translation	

 	[image: -]
 	
 brian2.core	

 	
 	
 brian2.core.base	

 	
 	
 brian2.core.clocks	

 	
 	
 brian2.core.core_preferences	

 	
 	
 brian2.core.functions	

 	
 	
 brian2.core.magic	

 	
 	
 brian2.core.names	

 	
 	
 brian2.core.namespace	

 	
 	
 brian2.core.network	

 	
 	
 brian2.core.operations	

 	
 	
 brian2.core.preferences	

 	
 	
 brian2.core.spikesource	

 	
 	
 brian2.core.tracking	

 	
 	
 brian2.core.variables	

 		 	

 		
 d	

 	[image: -]
 	
 brian2.devices	

 	
 	
 brian2.devices.cpp_standalone	

 	
 	
 brian2.devices.cpp_standalone.codeobject	

 	
 	
 brian2.devices.cpp_standalone.device	

 	
 	
 brian2.devices.device	

 		 	

 		
 e	

 	[image: -]
 	
 brian2.equations	

 	
 	
 brian2.equations.codestrings	

 	
 	
 brian2.equations.equations	

 	
 	
 brian2.equations.refractory	

 	
 	
 brian2.equations.unitcheck	

 		 	

 		
 g	

 	[image: -]
 	
 brian2.groups	

 	
 	
 brian2.groups.group	

 	
 	
 brian2.groups.neurongroup	

 	
 	
 brian2.groups.subgroup	

 		 	

 		
 h	

 	
 	
 brian2.hears	

 		 	

 		
 i	

 	[image: -]
 	
 brian2.importexport	

 	
 	
 brian2.importexport.dictlike	

 	
 	
 brian2.importexport.importexport	

 	[image: -]
 	
 brian2.input	

 	
 	
 brian2.input.binomial	

 	
 	
 brian2.input.poissongroup	

 	
 	
 brian2.input.poissoninput	

 	
 	
 brian2.input.spikegeneratorgroup	

 	
 	
 brian2.input.timedarray	

 		 	

 		
 m	

 	[image: -]
 	
 brian2.memory	

 	
 	
 brian2.memory.dynamicarray	

 	[image: -]
 	
 brian2.monitors	

 	
 	
 brian2.monitors.ratemonitor	

 	
 	
 brian2.monitors.spikemonitor	

 	
 	
 brian2.monitors.statemonitor	

 		 	

 		
 n	

 	
 	
 brian2.numpy_	

 		 	

 		
 o	

 	
 	
 brian2.only	

 		 	

 		
 p	

 	[image: -]
 	
 brian2.parsing	

 	
 	
 brian2.parsing.bast	

 	
 	
 brian2.parsing.dependencies	

 	
 	
 brian2.parsing.expressions	

 	
 	
 brian2.parsing.functions	

 	
 	
 brian2.parsing.rendering	

 	
 	
 brian2.parsing.statements	

 	
 	
 brian2.parsing.sympytools	

 		 	

 		
 s	

 	[image: -]
 	
 brian2.spatialneuron	

 	
 	
 brian2.spatialneuron.morphology	

 	
 	
 brian2.spatialneuron.spatialneuron	

 	[image: -]
 	
 brian2.stateupdaters	

 	
 	
 brian2.stateupdaters.base	

 	
 	
 brian2.stateupdaters.exact	

 	
 	
 brian2.stateupdaters.explicit	

 	
 	
 brian2.stateupdaters.exponential_euler	

 	[image: -]
 	
 brian2.synapses	

 	
 	
 brian2.synapses.parse_synaptic_generator_syntax	

 	
 	
 brian2.synapses.spikequeue	

 	
 	
 brian2.synapses.synapses	

 		 	

 		
 u	

 	[image: -]
 	
 brian2.units	

 	
 	
 brian2.units.allunits	

 	
 	
 brian2.units.fundamentalunits	

 	
 	
 brian2.units.stdunits	

 	
 	
 brian2.units.unitsafefunctions	

 	[image: -]
 	
 brian2.utils	

 	
 	
 brian2.utils.arrays	

 	
 	
 brian2.utils.environment	

 	
 	
 brian2.utils.filetools	

 	
 	
 brian2.utils.logger	

 	
 	
 brian2.utils.stringtools	

 	
 	
 brian2.utils.topsort	

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

 Index

 Navigation

 	
 index

 	
 modules |

 	Brian 2 2.0 documentation »

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z

_

 	

 	__call__() (brian2.codegen.codeobject.CodeObject method)

 	

 	(brian2.codegen.templates.CodeObjectTemplate method)

 	(brian2.core.functions.Function method)

 	(brian2.core.network.TextReport method)

 	(brian2.core.preferences.DefaultValidator method)

 	(brian2.devices.cpp_standalone.codeobject.CPPStandaloneCodeObject method)

 	(brian2.devices.device.Dummy method)

 	(brian2.groups.group.Indexing method)

 	(brian2.stateupdaters.base.StateUpdateMethod method)

 	(brian2.stateupdaters.exact.IndependentStateUpdater method)

 	(brian2.stateupdaters.exact.LinearStateUpdater method)

 	(brian2.stateupdaters.explicit.ExplicitStateUpdater method)

 	(brian2.stateupdaters.exponential_euler.ExponentialEulerStateUpdater method)

 	(brian2.synapses.synapses.SynapticIndexing method)

 	__getitem__() (brian2.units.fundamentalunits.UnitRegistry method)

 	_clock (brian2.core.base.BrianObject attribute)

 	_connect_called (brian2.synapses.synapses.Synapses attribute)

 	_creation_stack (brian2.core.base.BrianObject attribute)

 	_dispname (brian2.units.fundamentalunits.Unit attribute)

 	_dt (brian2.synapses.spikequeue.SpikeQueue attribute)

 	_initialise_queue_codeobj (brian2.synapses.synapses.SynapticPathway attribute)

 	_latexname (brian2.units.fundamentalunits.Unit attribute)

 	_log_messages (brian2.utils.logger.BrianLogger attribute)

 	_name (brian2.units.fundamentalunits.Unit attribute)

 	_network (brian2.core.base.BrianObject attribute)

 	

 	_pathways (brian2.synapses.synapses.Synapses attribute)

 	_previous_dt (brian2.input.spikegeneratorgroup.SpikeGeneratorGroup attribute)

 	_refractory (brian2.groups.neurongroup.NeuronGroup attribute)

 	_registered_variables (brian2.synapses.synapses.Synapses attribute)

 	_scope_current_key (brian2.core.base.BrianObject attribute)

 	_scope_key (brian2.core.base.BrianObject attribute)

 	_source_end (brian2.synapses.spikequeue.SpikeQueue attribute)

 	_source_start (brian2.synapses.spikequeue.SpikeQueue attribute)

 	_spikes_changed (brian2.input.spikegeneratorgroup.SpikeGeneratorGroup attribute)

 	_stored_state (brian2.core.network.Network attribute)

 	_synaptic_updaters (brian2.synapses.synapses.Synapses attribute)

A

 	

 	abstract_code_dependencies() (in module brian2.parsing.dependencies)

 	abstract_code_from_function() (in module brian2.parsing.functions)

 	AbstractCodeFunction (class in brian2.parsing.functions)

 	activate() (brian2.devices.device.Device method)

 	active (brian2.core.base.BrianObject attribute)

 	active_device (in module brian2.devices.device)

 	add() (brian2.core.magic.MagicNetwork method)

 	

 	(brian2.core.network.Network method)

 	(brian2.core.tracking.InstanceFollower method)

 	(brian2.core.tracking.InstanceTrackerSet method)

 	(brian2.spatialneuron.morphology.Children method)

 	(brian2.units.fundamentalunits.UnitRegistry method)

 	add_arange() (brian2.core.variables.Variables method)

 	add_array() (brian2.core.variables.Variables method)

 	

 	(brian2.devices.cpp_standalone.device.CPPStandaloneDevice method)

 	(brian2.devices.device.Device method)

 	(brian2.devices.device.RuntimeDevice method)

 	add_arrays() (brian2.core.variables.Variables method)

 	add_attribute() (brian2.groups.group.VariableOwner method)

 	add_auxiliary_variable() (brian2.core.variables.Variables method)

 	add_constant() (brian2.core.variables.Variables method)

 	add_dependency() (brian2.core.base.BrianObject method)

 	add_dynamic_array() (brian2.core.variables.Variables method)

 	add_dynamic_implementation() (brian2.core.functions.FunctionImplementationContainer method)

 	add_implementation() (brian2.core.functions.FunctionImplementationContainer method)

 	add_numpy_implementation() (brian2.core.functions.FunctionImplementationContainer method)

 	add_object() (brian2.core.variables.Variables method)

 	add_reference() (brian2.core.variables.Variables method)

 	add_references() (brian2.core.variables.Variables method)

 	add_referred_subexpression() (brian2.core.variables.Variables method)

 	add_refractoriness() (in module brian2.equations.refractory)

 	add_subexpression() (brian2.core.variables.Variables method)

 	add_to_magic_network (brian2.core.base.BrianObject attribute)

 	additional_unit_register (in module brian2.units.fundamentalunits)

 	advance() (brian2.synapses.spikequeue.SpikeQueue method)

 	after_run() (brian2.core.base.BrianObject method)

 	

 	(brian2.core.magic.MagicNetwork method)

 	(brian2.core.network.Network method)

 	

 	all_registered_units() (in module brian2.units.fundamentalunits)

 	all_values() (brian2.monitors.spikemonitor.EventMonitor method)

 	

 	(brian2.monitors.spikemonitor.SpikeMonitor method)

 	allows_scalar_write (brian2.codegen.templates.CodeObjectTemplate attribute)

 	analyse_identifiers() (in module brian2.codegen.translation)

 	apply_stateupdater() (brian2.stateupdaters.base.StateUpdateMethod static method)

 	arange() (in module brian2.units.unitsafefunctions)

 	arange_arrays (brian2.devices.cpp_standalone.device.CPPStandaloneDevice attribute)

 	arccos() (in module brian2.units.unitsafefunctions)

 	arccosh() (in module brian2.units.unitsafefunctions)

 	arcsin() (in module brian2.units.unitsafefunctions)

 	arcsinh() (in module brian2.units.unitsafefunctions)

 	arctan() (in module brian2.units.unitsafefunctions)

 	arctanh() (in module brian2.units.unitsafefunctions)

 	area (brian2.spatialneuron.morphology.Cylinder attribute)

 	

 	(brian2.spatialneuron.morphology.Morphology attribute)

 	(brian2.spatialneuron.morphology.Section attribute)

 	(brian2.spatialneuron.morphology.Soma attribute)

 	(brian2.spatialneuron.morphology.SubMorphology attribute)

 	ArithmeticSimplifier (class in brian2.codegen.optimisation)

 	array (brian2.core.variables.Variable attribute)

 	array_cache (brian2.devices.cpp_standalone.device.CPPStandaloneDevice attribute)

 	array_read_write() (brian2.codegen.generators.base.CodeGenerator method)

 	arrays (brian2.devices.cpp_standalone.device.CPPStandaloneDevice attribute)

 	

 	(brian2.devices.device.RuntimeDevice attribute)

 	arrays_helper() (brian2.codegen.generators.base.CodeGenerator method)

 	ArrayVariable (class in brian2.core.variables)

 	as_file (brian2.core.preferences.BrianGlobalPreferences attribute)

 	assign_id() (brian2.core.names.Nameable method)

 	auto_target() (in module brian2.devices.device)

 	autoindent() (in module brian2.codegen.templates)

 	autoindent_postfilter() (in module brian2.codegen.templates)

 	AuxiliaryVariable (class in brian2.core.variables)

B

 	

 	before_run() (brian2.core.base.BrianObject method)

 	

 	(brian2.core.network.Network method)

 	(brian2.groups.group.CodeRunner method)

 	(brian2.groups.neurongroup.NeuronGroup method)

 	(brian2.input.poissoninput.PoissonInput method)

 	(brian2.input.spikegeneratorgroup.SpikeGeneratorGroup method)

 	(brian2.spatialneuron.spatialneuron.SpatialStateUpdater method)

 	(brian2.synapses.synapses.Synapses method)

 	(brian2.synapses.synapses.SynapticPathway method)

 	BinomialFunction (class in brian2.input.binomial)

 	brian2.__init__ (module)

 	brian2.codegen (module)

 	brian2.codegen._prefs (module)

 	brian2.codegen.codeobject (module)

 	brian2.codegen.cpp_prefs (module)

 	brian2.codegen.generators (module)

 	brian2.codegen.generators.base (module)

 	brian2.codegen.generators.cpp_generator (module)

 	brian2.codegen.generators.cython_generator (module)

 	brian2.codegen.generators.numpy_generator (module)

 	brian2.codegen.optimisation (module)

 	brian2.codegen.permutation_analysis (module)

 	brian2.codegen.runtime (module)

 	brian2.codegen.runtime.cython_rt (module)

 	brian2.codegen.runtime.cython_rt.cython_rt (module)

 	brian2.codegen.runtime.cython_rt.extension_manager (module)

 	brian2.codegen.runtime.numpy_rt (module)

 	brian2.codegen.runtime.numpy_rt.numpy_rt (module)

 	brian2.codegen.runtime.numpy_rt.synapse_vectorisation (module)

 	brian2.codegen.runtime.weave_rt (module)

 	brian2.codegen.runtime.weave_rt.weave_rt (module)

 	brian2.codegen.statements (module)

 	brian2.codegen.targets (module)

 	brian2.codegen.templates (module)

 	brian2.codegen.translation (module)

 	brian2.core (module)

 	brian2.core.base (module)

 	brian2.core.clocks (module)

 	brian2.core.core_preferences (module)

 	brian2.core.functions (module)

 	brian2.core.magic (module)

 	brian2.core.names (module)

 	brian2.core.namespace (module)

 	brian2.core.network (module)

 	brian2.core.operations (module)

 	brian2.core.preferences (module)

 	brian2.core.spikesource (module)

 	brian2.core.tracking (module)

 	brian2.core.variables (module)

 	brian2.devices (module)

 	brian2.devices.cpp_standalone (module)

 	brian2.devices.cpp_standalone.codeobject (module)

 	brian2.devices.cpp_standalone.device (module)

 	brian2.devices.device (module)

 	brian2.equations (module)

 	brian2.equations.codestrings (module)

 	brian2.equations.equations (module)

 	brian2.equations.refractory (module)

 	brian2.equations.unitcheck (module)

 	brian2.groups (module)

 	brian2.groups.group (module)

 	brian2.groups.neurongroup (module)

 	brian2.groups.subgroup (module)

 	brian2.hears (module)

 	brian2.importexport (module)

 	brian2.importexport.dictlike (module)

 	brian2.importexport.importexport (module)

 	brian2.input (module)

 	

 	brian2.input.binomial (module)

 	brian2.input.poissongroup (module)

 	brian2.input.poissoninput (module)

 	brian2.input.spikegeneratorgroup (module)

 	brian2.input.timedarray (module)

 	brian2.memory.dynamicarray (module)

 	brian2.monitors (module)

 	brian2.monitors.ratemonitor (module)

 	brian2.monitors.spikemonitor (module)

 	brian2.monitors.statemonitor (module)

 	brian2.numpy_ (module)

 	brian2.only (module)

 	brian2.parsing.bast (module)

 	brian2.parsing.dependencies (module)

 	brian2.parsing.expressions (module)

 	brian2.parsing.functions (module)

 	brian2.parsing.rendering (module)

 	brian2.parsing.statements (module)

 	brian2.parsing.sympytools (module)

 	brian2.spatialneuron (module)

 	brian2.spatialneuron.morphology (module)

 	brian2.spatialneuron.spatialneuron (module)

 	brian2.stateupdaters (module)

 	brian2.stateupdaters.base (module)

 	brian2.stateupdaters.exact (module)

 	brian2.stateupdaters.explicit (module)

 	brian2.stateupdaters.exponential_euler (module)

 	brian2.synapses (module)

 	brian2.synapses.parse_synaptic_generator_syntax (module)

 	brian2.synapses.spikequeue (module)

 	brian2.synapses.synapses (module)

 	brian2.units (module)

 	brian2.units.allunits (module)

 	brian2.units.fundamentalunits (module)

 	brian2.units.stdunits (module)

 	brian2.units.unitsafefunctions (module)

 	brian2.utils (module)

 	brian2.utils.arrays (module)

 	brian2.utils.environment (module)

 	brian2.utils.filetools (module)

 	brian2.utils.logger (module)

 	brian2.utils.stringtools (module)

 	brian2.utils.topsort (module)

 	brian_ast() (in module brian2.parsing.bast)

 	brian_dtype_from_dtype() (in module brian2.parsing.bast)

 	brian_dtype_from_value() (in module brian2.parsing.bast)

 	brian_excepthook() (in module brian2.utils.logger)

 	brian_object_exception() (in module brian2.core.base)

 	brian_prefs (in module brian2.core.preferences)

 	BrianASTRenderer (class in brian2.parsing.bast)

 	BrianGlobalPreferences (class in brian2.core.preferences)

 	BrianGlobalPreferencesView (class in brian2.core.preferences)

 	BrianLogger (class in brian2.utils.logger)

 	BrianObject (class in brian2.core.base)

 	BrianObjectException (class in brian2.core.base)

 	BrianPreference (class in brian2.core.preferences)

 	BridgeSound (class in brian2.hears)

 	build() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice method)

 	

 	(brian2.devices.device.Device method)

 	build_on_run (brian2.devices.cpp_standalone.device.CPPStandaloneDevice attribute)

 	build_options (brian2.devices.cpp_standalone.device.CPPStandaloneDevice attribute)

C

 	

 	c_data_type() (in module brian2.codegen.generators.cpp_generator)

 	calc_repeats() (in module brian2.utils.arrays)

 	cancel_identical_terms() (in module brian2.codegen.optimisation)

 	catch_logs (class in brian2.utils.logger)

 	ceil_func() (in module brian2.codegen.generators.numpy_generator)

 	check_all_validated() (brian2.core.preferences.BrianGlobalPreferences method)

 	check_dependencies() (brian2.core.magic.MagicNetwork method)

 	

 	(brian2.core.network.Network method)

 	check_dt() (in module brian2.core.clocks)

 	check_expression_for_multiple_stateful_functions() (in module brian2.parsing.sympytools)

 	check_flags() (brian2.equations.equations.Equations method)

 	check_for_order_independence() (in module brian2.codegen.permutation_analysis)

 	check_identifier() (brian2.equations.equations.Equations static method)

 	check_identifier_basic() (in module brian2.equations.equations)

 	check_identifier_constants() (in module brian2.equations.equations)

 	check_identifier_functions() (in module brian2.equations.equations)

 	check_identifier_refractory() (in module brian2.equations.refractory)

 	check_identifier_reserved() (in module brian2.equations.equations)

 	check_identifier_units() (in module brian2.equations.equations)

 	check_identifiers() (brian2.equations.equations.Equations method)

 	check_openmp_compatible() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice method)

 	check_preference_name() (in module brian2.core.preferences)

 	check_subexpressions() (in module brian2.equations.equations)

 	check_unit() (in module brian2.equations.unitcheck)

 	check_units() (brian2.equations.equations.Equations method)

 	

 	(in module brian2.units.fundamentalunits)

 	check_units_statements() (in module brian2.equations.unitcheck)

 	check_variable_write() (brian2.groups.group.VariableOwner method)

 	

 	(brian2.synapses.synapses.Synapses method)

 	children (brian2.spatialneuron.morphology.Morphology attribute)

 	

 	(brian2.spatialneuron.morphology.Node attribute)

 	Children (class in brian2.spatialneuron.morphology)

 	class_name (brian2.codegen.codeobject.CodeObject attribute)

 	clean_up_logging() (in module brian2.utils.logger)

 	clip_func() (in module brian2.codegen.generators.numpy_generator)

 	clock (brian2.core.base.BrianObject attribute)

 	

 	(brian2.core.spikesource.SpikeSource attribute)

 	Clock (class in brian2.core.clocks)

 	close() (brian2.utils.logger.std_silent class method)

 	code_object() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice method)

 	

 	(brian2.devices.device.Device method)

 	code_object_class() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice method)

 	

 	(brian2.devices.device.Device method)

 	code_objects (brian2.core.base.BrianObject attribute)

 	code_representation() (in module brian2.utils.stringtools)

 	CodeGenerator (class in brian2.codegen.generators.base)

 	CodeObject (class in brian2.codegen.codeobject)

 	CodeObjectTemplate (class in brian2.codegen.templates)

 	CodeRunner (class in brian2.groups.group)

 	CodeString (class in brian2.equations.codestrings)

 	

 	collect() (in module brian2.codegen.optimisation)

 	

 	(in module brian2.core.magic)

 	collect_commutative() (in module brian2.codegen.optimisation)

 	comp_name (brian2.spatialneuron.morphology.Node attribute)

 	compile() (brian2.codegen.codeobject.CodeObject method)

 	

 	(brian2.codegen.runtime.cython_rt.cython_rt.CythonCodeObject method)

 	(brian2.codegen.runtime.numpy_rt.numpy_rt.NumpyCodeObject method)

 	(brian2.codegen.runtime.weave_rt.weave_rt.WeaveCodeObject method)

 	compile_source() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice method)

 	conditional_write (brian2.core.variables.ArrayVariable attribute)

 	conditional_write() (brian2.codegen.generators.numpy_generator.NumpyCodeGenerator method)

 	connect() (brian2.synapses.synapses.Synapses method)

 	constant (brian2.core.variables.Variable attribute)

 	Constant (class in brian2.core.variables)

 	constant_or_scalar() (in module brian2.codegen.codeobject)

 	contained_objects (brian2.core.base.BrianObject attribute)

 	convert_unit_b1_to_b2() (in module brian2.hears)

 	convert_unit_b2_to_b1() (in module brian2.hears)

 	coordinates (brian2.spatialneuron.morphology.Morphology attribute)

 	coordinates_ (brian2.spatialneuron.morphology.Morphology attribute)

 	copy_directory() (in module brian2.utils.filetools)

 	copy_section() (brian2.spatialneuron.morphology.Cylinder method)

 	

 	(brian2.spatialneuron.morphology.Morphology method)

 	(brian2.spatialneuron.morphology.Section method)

 	(brian2.spatialneuron.morphology.Soma method)

 	copy_source_files() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice method)

 	cos() (in module brian2.units.unitsafefunctions)

 	cosh() (in module brian2.units.unitsafefunctions)

 	cpp_standalone_device (in module brian2.devices.cpp_standalone.device)

 	CPPCodeGenerator (class in brian2.codegen.generators.cpp_generator)

 	CPPNodeRenderer (class in brian2.parsing.rendering)

 	CPPStandaloneCodeObject (class in brian2.devices.cpp_standalone.codeobject)

 	CPPStandaloneDevice (class in brian2.devices.cpp_standalone.device)

 	CPPWriter (class in brian2.devices.cpp_standalone.device)

 	create() (brian2.units.fundamentalunits.Unit static method)

 	create_clock_variables() (brian2.core.variables.Variables method)

 	create_extension() (brian2.codegen.runtime.cython_rt.extension_manager.CythonExtensionManager method)

 	create_runner_codeobj() (in module brian2.codegen.codeobject)

 	create_scaled_unit() (brian2.units.fundamentalunits.Unit static method)

 	CurrentDeviceProxy (class in brian2.devices.device)

 	currenttime (brian2.synapses.spikequeue.SpikeQueue attribute)

 	custom_operation() (brian2.groups.group.Group method)

 	CustomSympyPrinter (class in brian2.parsing.sympytools)

 	Cylinder (class in brian2.spatialneuron.morphology)

 	cython_extension_manager (in module brian2.codegen.runtime.cython_rt.extension_manager)

 	CythonCodeGenerator (class in brian2.codegen.generators.cython_generator)

 	CythonCodeObject (class in brian2.codegen.runtime.cython_rt.cython_rt)

 	CythonExtensionManager (class in brian2.codegen.runtime.cython_rt.extension_manager)

 	CythonNodeRenderer (class in brian2.codegen.generators.cython_generator)

D

 	

 	debug() (brian2.utils.logger.BrianLogger method)

 	declare_types() (in module brian2.core.functions)

 	default_float_dtype_validator() (in module brian2.core.core_preferences)

 	defaultclock (in module brian2.core.clocks)

 	DefaultClockProxy (class in brian2.core.clocks)

 	defaults_as_file (brian2.core.preferences.BrianGlobalPreferences attribute)

 	DefaultValidator (class in brian2.core.preferences)

 	deindent() (in module brian2.utils.stringtools)

 	denormals_to_zero_code() (brian2.codegen.generators.cpp_generator.CPPCodeGenerator method)

 	derive() (brian2.codegen.templates.Templater method)

 	DESCRIPTION (brian2.stateupdaters.explicit.ExplicitStateUpdater attribute)

 	DESCRIPTION() (brian2.stateupdaters.explicit.ExplicitStateUpdater method)

 	dest_stderr (brian2.utils.logger.std_silent attribute)

 	dest_stdout (brian2.utils.logger.std_silent attribute)

 	determine_keywords() (brian2.codegen.generators.base.CodeGenerator method)

 	

 	(brian2.codegen.generators.cpp_generator.CPPCodeGenerator method)

 	(brian2.codegen.generators.cython_generator.CythonCodeGenerator method)

 	(brian2.codegen.generators.numpy_generator.NumpyCodeGenerator method)

 	device (brian2.core.variables.ArrayVariable attribute)

 	

 	(brian2.core.variables.Subexpression attribute)

 	Device (class in brian2.devices.device)

 	device (in module brian2.devices.device)

 	device_override() (in module brian2.core.base)

 	diagnostic() (brian2.utils.logger.BrianLogger method)

 	diagonal() (in module brian2.units.unitsafefunctions)

 	diagonal_noise() (in module brian2.stateupdaters.explicit)

 	diameter (brian2.spatialneuron.morphology.Cylinder attribute)

 	

 	(brian2.spatialneuron.morphology.Morphology attribute)

 	(brian2.spatialneuron.morphology.Node attribute)

 	(brian2.spatialneuron.morphology.Section attribute)

 	(brian2.spatialneuron.morphology.Soma attribute)

 	(brian2.spatialneuron.morphology.SubMorphology attribute)

 	DictImportExport (class in brian2.importexport.dictlike)

 	

 	diff_eq_expressions (brian2.equations.equations.Equations attribute)

 	diff_eq_names (brian2.equations.equations.Equations attribute)

 	dim (brian2.core.variables.Variable attribute)

 	

 	(brian2.core.variables.VariableView attribute)

 	(brian2.units.fundamentalunits.Dimension attribute)

 	(brian2.units.fundamentalunits.Quantity attribute)

 	(brian2.units.fundamentalunits.Unit attribute)

 	Dimension (class in brian2.units.fundamentalunits)

 	DIMENSIONLESS (in module brian2.units.fundamentalunits)

 	DimensionMismatchError (class in brian2.units.fundamentalunits)

 	dimensions (brian2.core.variables.DynamicArrayVariable attribute)

 	

 	(brian2.units.fundamentalunits.Quantity attribute)

 	dispname (brian2.units.fundamentalunits.Unit attribute)

 	distance (brian2.spatialneuron.morphology.Morphology attribute)

 	

 	(brian2.spatialneuron.morphology.Section attribute)

 	(brian2.spatialneuron.morphology.Soma attribute)

 	(brian2.spatialneuron.morphology.SubMorphology attribute)

 	do_validation() (brian2.core.preferences.BrianGlobalPreferences method)

 	dot() (in module brian2.units.unitsafefunctions)

 	dt (brian2.core.clocks.Clock attribute)

 	dt_ (brian2.core.clocks.Clock attribute)

 	dtype (brian2.core.variables.Variable attribute)

 	

 	(brian2.core.variables.VariableView attribute)

 	dtype_repr() (in module brian2.core.core_preferences)

 	dtype_str (brian2.core.variables.Variable attribute)

 	Dummy (class in brian2.devices.device)

 	dynamic (brian2.core.variables.Variable attribute)

 	dynamic_arrays (brian2.devices.cpp_standalone.device.CPPStandaloneDevice attribute)

 	dynamic_arrays_2d (brian2.devices.cpp_standalone.device.CPPStandaloneDevice attribute)

 	DynamicArray (class in brian2.memory.dynamicarray)

 	DynamicArray1D (class in brian2.memory.dynamicarray)

 	DynamicArrayVariable (class in brian2.core.variables)

E

 	

 	edits1() (brian2.utils.stringtools.SpellChecker method)

 	emit() (brian2.utils.logger.LogCapture method)

 	end_diameter (brian2.spatialneuron.morphology.Cylinder attribute)

 	

 	(brian2.spatialneuron.morphology.Section attribute)

 	end_distance (brian2.spatialneuron.morphology.Morphology attribute)

 	

 	(brian2.spatialneuron.morphology.Section attribute)

 	(brian2.spatialneuron.morphology.Soma attribute)

 	end_x (brian2.spatialneuron.morphology.Morphology attribute)

 	

 	(brian2.spatialneuron.morphology.SubMorphology attribute)

 	end_x_ (brian2.spatialneuron.morphology.Morphology attribute)

 	

 	(brian2.spatialneuron.morphology.Section attribute)

 	(brian2.spatialneuron.morphology.Soma attribute)

 	(brian2.spatialneuron.morphology.SubMorphology attribute)

 	end_y (brian2.spatialneuron.morphology.Morphology attribute)

 	

 	(brian2.spatialneuron.morphology.SubMorphology attribute)

 	end_y_ (brian2.spatialneuron.morphology.Morphology attribute)

 	

 	(brian2.spatialneuron.morphology.Section attribute)

 	(brian2.spatialneuron.morphology.Soma attribute)

 	(brian2.spatialneuron.morphology.SubMorphology attribute)

 	end_z (brian2.spatialneuron.morphology.Morphology attribute)

 	

 	(brian2.spatialneuron.morphology.SubMorphology attribute)

 	end_z_ (brian2.spatialneuron.morphology.Morphology attribute)

 	

 	(brian2.spatialneuron.morphology.Section attribute)

 	(brian2.spatialneuron.morphology.Soma attribute)

 	(brian2.spatialneuron.morphology.SubMorphology attribute)

 	ensure_directory() (in module brian2.utils.filetools)

 	ensure_directory_of_file() (in module brian2.utils.filetools)

 	epsilon_dt (brian2.core.clocks.Clock attribute)

 	eq_expressions (brian2.equations.equations.Equations attribute)

 	eq_names (brian2.equations.equations.Equations attribute)

 	EquationError (class in brian2.equations.equations)

 	Equations (class in brian2.equations.equations)

 	error() (brian2.utils.logger.BrianLogger method)

 	ErrorRaiser (class in brian2.core.preferences)

 	euler (in module brian2.stateupdaters.explicit)

 	eval() (brian2.core.functions.log10 class method)

 	

 	eval_pref() (brian2.core.preferences.BrianGlobalPreferences method)

 	evaluate_expr() (in module brian2.codegen.optimisation)

 	event (brian2.monitors.spikemonitor.EventMonitor attribute)

 	event_codes (brian2.groups.neurongroup.NeuronGroup attribute)

 	event_trains() (brian2.monitors.spikemonitor.EventMonitor method)

 	EventMonitor (class in brian2.monitors.spikemonitor)

 	events (brian2.groups.neurongroup.NeuronGroup attribute)

 	

 	(brian2.synapses.synapses.Synapses attribute)

 	exception_occured (brian2.utils.logger.BrianLogger attribute)

 	exp() (in module brian2.units.unitsafefunctions)

 	ExplicitStateUpdater (class in brian2.stateupdaters.explicit)

 	exponential_euler (in module brian2.stateupdaters.exponential_euler)

 	ExponentialEulerStateUpdater (class in brian2.stateupdaters.exponential_euler)

 	export_data() (brian2.importexport.dictlike.DictImportExport static method)

 	

 	(brian2.importexport.dictlike.PandasImportExport static method)

 	(brian2.importexport.importexport.ImportExport static method)

 	expr (brian2.core.variables.Subexpression attribute)

 	EXPRESSION (brian2.stateupdaters.explicit.ExplicitStateUpdater attribute)

 	Expression (class in brian2.equations.codestrings)

 	EXPRESSION() (brian2.stateupdaters.explicit.ExplicitStateUpdater method)

 	expression_complexity() (in module brian2.codegen.optimisation)

 	

 	(in module brian2.parsing.sympytools)

 	extract_abstract_code_functions() (in module brian2.parsing.functions)

 	extract_constant_subexpressions() (in module brian2.equations.equations)

F

 	

 	fail_for_dimension_mismatch() (in module brian2.units.fundamentalunits)

 	file_handler (brian2.utils.logger.BrianLogger attribute)

 	fill_with_array() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice method)

 	

 	(brian2.devices.device.Device method)

 	(brian2.devices.device.RuntimeDevice method)

 	filter() (brian2.utils.logger.HierarchyFilter method)

 	

 	(brian2.utils.logger.NameFilter method)

 	FilterbankGroup (class in brian2.hears)

 	find_name() (in module brian2.core.names)

 	find_synapses() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice method)

 	

 	(in module brian2.synapses.synapses)

 	FlatMorphology (class in brian2.spatialneuron.spatialneuron)

 	floor_func() (in module brian2.codegen.generators.numpy_generator)

 	flush_denormals (brian2.codegen.generators.cpp_generator.CPPCodeGenerator attribute)

 	

 	freeze() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice method)

 	from_file() (brian2.spatialneuron.morphology.Morphology static method)

 	from_points() (brian2.spatialneuron.morphology.Morphology static method)

 	from_swc_file() (brian2.spatialneuron.morphology.Morphology static method)

 	function (brian2.core.operations.NetworkOperation attribute)

 	Function (class in brian2.core.functions)

 	FunctionImplementation (class in brian2.core.functions)

 	FunctionImplementationContainer (class in brian2.core.functions)

 	FunctionRewriter (class in brian2.parsing.functions)

G

 	

 	generate_codeobj_source() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice method)

 	generate_coordinates() (brian2.spatialneuron.morphology.Morphology method)

 	generate_main_source() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice method)

 	generate_makefile() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice method)

 	generate_network_source() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice method)

 	generate_objects_source() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice method)

 	generate_rand_code() (in module brian2.devices.cpp_standalone.codeobject)

 	generate_run_source() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice method)

 	generate_synapses_classes_source() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice method)

 	generator_class (brian2.codegen.codeobject.CodeObject attribute)

 	get() (brian2.core.tracking.InstanceFollower method)

 	get_addressable_value() (brian2.core.variables.ArrayVariable method)

 	

 	(brian2.core.variables.Subexpression method)

 	(brian2.core.variables.Variable method)

 	get_addressable_value_with_unit() (brian2.core.variables.ArrayVariable method)

 	

 	(brian2.core.variables.Subexpression method)

 	(brian2.core.variables.Variable method)

 	get_array_filename() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice method)

 	get_array_name() (brian2.codegen.generators.base.CodeGenerator static method)

 	

 	(brian2.codegen.generators.cpp_generator.CPPCodeGenerator static method)

 	(brian2.devices.cpp_standalone.device.CPPStandaloneDevice method)

 	(brian2.devices.device.Device method)

 	(brian2.devices.device.RuntimeDevice method)

 	get_code() (brian2.core.functions.FunctionImplementation method)

 	get_compiler_and_args() (in module brian2.codegen.cpp_prefs)

 	get_conditional_write_vars() (brian2.codegen.generators.base.CodeGenerator method)

 	get_conditionally_linear_system() (in module brian2.stateupdaters.exponential_euler)

 	get_cpp_dtype() (in module brian2.codegen.generators.cython_generator)

 	get_default_codeobject_class() (in module brian2.devices.device)

 	get_device() (in module brian2.devices.device)

 	get_dimension() (brian2.units.fundamentalunits.Dimension method)

 	get_dimensions() (in module brian2.units.fundamentalunits)

 	get_display_name() (brian2.units.fundamentalunits.Unit method)

 	get_documentation() (brian2.core.preferences.BrianGlobalPreferences method)

 	get_dtype() (in module brian2.core.variables)

 	

 	(in module brian2.groups.group)

 	get_dtype_str() (in module brian2.core.variables)

 	

 	get_identifiers() (in module brian2.utils.stringtools)

 	get_identifiers_recursively() (in module brian2.codegen.translation)

 	get_item() (brian2.core.variables.VariableView method)

 	get_latex_name() (brian2.units.fundamentalunits.Unit method)

 	get_len() (brian2.core.variables.ArrayVariable method)

 	

 	(brian2.core.variables.Variable method)

 	(brian2.devices.device.Device method)

 	get_linear_system() (in module brian2.stateupdaters.exact)

 	get_local_namespace() (in module brian2.core.namespace)

 	get_logger() (in module brian2.utils.logger)

 	get_name() (brian2.units.fundamentalunits.Unit method)

 	get_namespace() (brian2.core.functions.FunctionImplementation method)

 	get_numpy_dtype() (in module brian2.codegen.generators.cython_generator)

 	get_objects_in_namespace() (in module brian2.core.magic)

 	get_or_create_dimension() (in module brian2.units.fundamentalunits)

 	get_profiling_info() (brian2.core.network.Network method)

 	get_read_write_funcs() (in module brian2.parsing.dependencies)

 	get_states() (brian2.core.magic.MagicNetwork method)

 	

 	(brian2.core.network.Network method)

 	(brian2.groups.group.VariableOwner method)

 	get_subexpression_with_index_array() (brian2.core.variables.VariableView method)

 	get_substituted_expressions() (brian2.equations.equations.Equations method)

 	get_template() (brian2.codegen.templates.LazyTemplateLoader method)

 	get_unit() (in module brian2.units.fundamentalunits)

 	get_unit_fast() (in module brian2.units.fundamentalunits)

 	get_unit_for_display() (in module brian2.units.fundamentalunits)

 	get_value() (brian2.core.variables.ArrayVariable method)

 	

 	(brian2.core.variables.AuxiliaryVariable method)

 	(brian2.core.variables.Constant method)

 	(brian2.core.variables.Variable method)

 	(brian2.devices.cpp_standalone.device.CPPStandaloneDevice method)

 	(brian2.devices.device.RuntimeDevice method)

 	get_value_with_unit() (brian2.core.variables.Variable method)

 	get_with_expression() (brian2.core.variables.VariableView method)

 	get_with_index_array() (brian2.core.variables.VariableView method)

 	getslices() (in module brian2.memory.dynamicarray)

 	Group (class in brian2.groups.group)

H

 	

 	handle_range() (in module brian2.synapses.parse_synaptic_generator_syntax)

 	handle_sample() (in module brian2.synapses.parse_synaptic_generator_syntax)

 	has_been_run (brian2.devices.cpp_standalone.device.CPPStandaloneDevice attribute)

 	has_repeated_indices() (brian2.codegen.generators.base.CodeGenerator method)

 	

 	has_same_dimensions() (brian2.units.fundamentalunits.Quantity method)

 	have_same_dimensions() (in module brian2.units.fundamentalunits)

 	heun (in module brian2.stateupdaters.explicit)

 	HierarchyFilter (class in brian2.utils.logger)

I

 	

 	id (brian2.core.names.Nameable attribute)

 	identifier_checks (brian2.equations.equations.Equations attribute)

 	identifiers (brian2.core.variables.Subexpression attribute)

 	

 	(brian2.equations.equations.Equations attribute)

 	(brian2.equations.equations.SingleEquation attribute)

 	implementation() (in module brian2.core.functions)

 	implementations (brian2.core.functions.Function attribute)

 	

 	(brian2.input.binomial.BinomialFunction attribute)

 	import_data() (brian2.importexport.dictlike.DictImportExport static method)

 	

 	(brian2.importexport.dictlike.PandasImportExport static method)

 	(brian2.importexport.importexport.ImportExport static method)

 	ImportExport (class in brian2.importexport.importexport)

 	in_best_unit() (brian2.units.fundamentalunits.Quantity method)

 	

 	(in module brian2.units.fundamentalunits)

 	in_directory (class in brian2.utils.filetools)

 	in_unit() (brian2.units.fundamentalunits.Quantity method)

 	

 	(in module brian2.units.fundamentalunits)

 	indent() (in module brian2.utils.stringtools)

 	independent (in module brian2.stateupdaters.exact)

 	IndependentStateUpdater (class in brian2.stateupdaters.exact)

 	index (brian2.spatialneuron.morphology.Node attribute)

 	Indexing (class in brian2.groups.group)

 	IndexWrapper (class in brian2.groups.group)

 	indices (brian2.core.variables.Variables attribute)

 	info() (brian2.utils.logger.BrianLogger method)

 	init_with_arange() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice method)

 	

 	(brian2.devices.device.Device method)

 	(brian2.devices.device.RuntimeDevice method)

 	init_with_zeros() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice method)

 	

 	(brian2.devices.device.Device method)

 	(brian2.devices.device.RuntimeDevice method)

 	initialise_queue() (brian2.synapses.synapses.SynapticPathway method)

 	initialize() (brian2.utils.logger.BrianLogger static method)

 	insert_code() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice method)

 	

 	(brian2.devices.device.Device method)

 	insert_device_code() (brian2.devices.device.Device method)

 	install() (brian2.utils.logger.LogCapture method)

 	InstanceFollower (class in brian2.core.tracking)

 	

 	InstanceTrackerSet (class in brian2.core.tracking)

 	int_func() (in module brian2.codegen.generators.numpy_generator)

 	invalidates_magic_network (brian2.core.base.BrianObject attribute)

 	invert_dict() (in module brian2.devices.cpp_standalone.device)

 	is_available() (brian2.codegen.codeobject.CodeObject class method)

 	

 	(brian2.codegen.runtime.cython_rt.cython_rt.CythonCodeObject class method)

 	(brian2.codegen.runtime.numpy_rt.numpy_rt.NumpyCodeObject class method)

 	(brian2.codegen.runtime.weave_rt.weave_rt.WeaveCodeObject class method)

 	is_boolean (brian2.core.variables.Variable attribute)

 	is_boolean() (in module brian2.parsing.bast)

 	is_boolean_dtype() (in module brian2.parsing.bast)

 	is_boolean_expression() (in module brian2.parsing.expressions)

 	is_constant_over_dt() (in module brian2.equations.codestrings)

 	is_dimensionless (brian2.units.fundamentalunits.Dimension attribute)

 	

 	(brian2.units.fundamentalunits.Quantity attribute)

 	is_dimensionless() (in module brian2.units.fundamentalunits)

 	is_float() (in module brian2.parsing.bast)

 	is_float_dtype() (in module brian2.parsing.bast)

 	is_integer() (in module brian2.parsing.bast)

 	is_integer_dtype() (in module brian2.parsing.bast)

 	is_locally_constant() (brian2.core.functions.Function method)

 	

 	(brian2.input.timedarray.TimedArray method)

 	is_scalar_expression() (in module brian2.codegen.translation)

 	is_scalar_type() (in module brian2.units.fundamentalunits)

 	is_stateful() (in module brian2.equations.equations)

 	is_stochastic (brian2.equations.equations.Equations attribute)

 	iscompound (brian2.units.fundamentalunits.Unit attribute)

 	it (brian2.monitors.spikemonitor.EventMonitor attribute)

 	it_ (brian2.monitors.spikemonitor.EventMonitor attribute)

 	iterate_all (brian2.codegen.templates.CodeObjectTemplate attribute)

K

 	

 	known() (brian2.utils.stringtools.SpellChecker method)

 	

 	known_edits2() (brian2.utils.stringtools.SpellChecker method)

L

 	

 	latexname (brian2.units.fundamentalunits.Unit attribute)

 	LazyTemplateLoader (class in brian2.codegen.templates)

 	length (brian2.spatialneuron.morphology.Morphology attribute)

 	

 	(brian2.spatialneuron.morphology.Section attribute)

 	(brian2.spatialneuron.morphology.Soma attribute)

 	(brian2.spatialneuron.morphology.SubMorphology attribute)

 	linear (in module brian2.stateupdaters.exact)

 	LinearStateUpdater (class in brian2.stateupdaters.exact)

 	LineInfo (class in brian2.codegen.translation)

 	linked_var() (in module brian2.core.variables)

 	LinkedVariable (class in brian2.core.variables)

 	linspace() (in module brian2.units.unitsafefunctions)

 	load_preferences() (brian2.core.preferences.BrianGlobalPreferences method)

 	

 	log() (in module brian2.units.unitsafefunctions)

 	log10 (class in brian2.core.functions)

 	log_level_debug() (brian2.utils.logger.BrianLogger static method)

 	log_level_diagnostic() (brian2.utils.logger.BrianLogger static method)

 	log_level_error() (brian2.utils.logger.BrianLogger static method)

 	log_level_info() (brian2.utils.logger.BrianLogger static method)

 	log_level_validator() (in module brian2.utils.logger)

 	log_level_warn() (brian2.utils.logger.BrianLogger static method)

 	LogCapture (class in brian2.utils.logger)

M

 	

 	magic_network (in module brian2.core.magic)

 	MagicError (class in brian2.core.magic)

 	MagicNetwork (class in brian2.core.magic)

 	make_statements() (in module brian2.codegen.translation)

 	method_choice (brian2.groups.neurongroup.NeuronGroup attribute)

 	methods (brian2.importexport.importexport.ImportExport attribute)

 	

 	milstein (in module brian2.stateupdaters.explicit)

 	modify_arg() (in module brian2.hears)

 	Morphology (class in brian2.spatialneuron.morphology)

 	MorphologyIndexWrapper (class in brian2.spatialneuron.morphology)

 	MultiTemplate (class in brian2.codegen.templates)

N

 	

 	N (brian2.input.poissoninput.PoissonInput attribute)

 	n (brian2.spatialneuron.morphology.Morphology attribute)

 	

 	(brian2.spatialneuron.morphology.SubMorphology attribute)

 	(brian2.synapses.spikequeue.SpikeQueue attribute)

 	n_sections (brian2.spatialneuron.morphology.SubMorphology attribute)

 	name (brian2.core.base.BrianObject attribute)

 	

 	(brian2.core.names.Nameable attribute)

 	(brian2.core.variables.Variable attribute)

 	(brian2.importexport.dictlike.DictImportExport attribute)

 	(brian2.importexport.dictlike.PandasImportExport attribute)

 	(brian2.importexport.importexport.ImportExport attribute)

 	(brian2.units.fundamentalunits.Unit attribute)

 	name() (brian2.spatialneuron.morphology.Children method)

 	Nameable (class in brian2.core.names)

 	NameFilter (class in brian2.utils.logger)

 	names (brian2.equations.equations.Equations attribute)

 	namespace (brian2.groups.neurongroup.NeuronGroup attribute)

 	

 	(brian2.synapses.synapses.Synapses attribute)

 	needs_reference_update (brian2.core.variables.DynamicArrayVariable attribute)

 	Network (class in brian2.core.network)

 	network_get_profiling_info() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice method)

 	network_operation() (in module brian2.core.operations)

 	

 	network_restore() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice method)

 	network_run() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice method)

 	network_schedule (brian2.devices.device.Device attribute)

 	network_store() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice method)

 	NetworkOperation (class in brian2.core.operations)

 	NeuronGroup (class in brian2.groups.neurongroup)

 	Node (class in brian2.spatialneuron.morphology)

 	NodeRenderer (class in brian2.parsing.rendering)

 	num_events (brian2.monitors.spikemonitor.EventMonitor attribute)

 	num_spikes (brian2.monitors.spikemonitor.SpikeMonitor attribute)

 	NumpyCodeGenerator (class in brian2.codegen.generators.numpy_generator)

 	NumpyCodeObject (class in brian2.codegen.runtime.numpy_rt.numpy_rt)

 	NumpyNodeRenderer (class in brian2.parsing.rendering)

O

 	

 	objects (brian2.core.network.Network attribute)

 	openmp_pragma() (in module brian2.devices.cpp_standalone.codeobject)

 	optimise_statements() (in module brian2.codegen.optimisation)

 	order (brian2.core.base.BrianObject attribute)

 	OrderDependenceError (class in brian2.codegen.permutation_analysis)

 	

 	ordered (brian2.equations.equations.Equations attribute)

 	OUTPUT (brian2.stateupdaters.explicit.ExplicitStateUpdater attribute)

 	OUTPUT() (brian2.stateupdaters.explicit.ExplicitStateUpdater method)

 	owner (brian2.core.variables.Variable attribute)

 	

 	(brian2.core.variables.Variables attribute)

P

 	

 	PandasImportExport (class in brian2.importexport.dictlike)

 	parameter_names (brian2.equations.equations.Equations attribute)

 	parent (brian2.spatialneuron.morphology.Morphology attribute)

 	

 	(brian2.spatialneuron.morphology.Node attribute)

 	parse_expression_unit() (in module brian2.parsing.expressions)

 	parse_preference_name() (in module brian2.core.preferences)

 	parse_statement() (in module brian2.parsing.statements)

 	parse_string_equations() (in module brian2.equations.equations)

 	parse_synapse_generator() (in module brian2.synapses.parse_synaptic_generator_syntax)

 	peek() (brian2.synapses.spikequeue.SpikeQueue method)

 	PoissonGroup (class in brian2.input.poissongroup)

 	PoissonInput (class in brian2.input.poissoninput)

 	

 	PopulationRateMonitor (class in brian2.monitors.ratemonitor)

 	PreferenceError (class in brian2.core.preferences)

 	prefs (in module brian2.core.preferences)

 	prepare() (brian2.synapses.spikequeue.SpikeQueue method)

 	PRINTER (in module brian2.parsing.sympytools)

 	profiling_info (brian2.core.network.Network attribute)

 	profiling_summary() (in module brian2.core.network)

 	ProfilingSummary (class in brian2.core.network)

 	push() (brian2.synapses.spikequeue.SpikeQueue method)

 	push_spikes() (brian2.synapses.synapses.SynapticPathway method)

Q

 	

 	Quantity (class in brian2.units.fundamentalunits)

 	quantity_with_dimensions() (in module brian2.units.fundamentalunits)

 	

 	queue (brian2.synapses.synapses.SynapticPathway attribute)

R

 	

 	r_length_1 (brian2.spatialneuron.morphology.Cylinder attribute)

 	

 	(brian2.spatialneuron.morphology.Morphology attribute)

 	(brian2.spatialneuron.morphology.Section attribute)

 	(brian2.spatialneuron.morphology.Soma attribute)

 	(brian2.spatialneuron.morphology.SubMorphology attribute)

 	r_length_2 (brian2.spatialneuron.morphology.Cylinder attribute)

 	

 	(brian2.spatialneuron.morphology.Morphology attribute)

 	(brian2.spatialneuron.morphology.Section attribute)

 	(brian2.spatialneuron.morphology.Soma attribute)

 	(brian2.spatialneuron.morphology.SubMorphology attribute)

 	rand_func() (in module brian2.codegen.generators.numpy_generator)

 	randn_func() (in module brian2.codegen.generators.numpy_generator)

 	rate (brian2.input.poissoninput.PoissonInput attribute)

 	ravel() (in module brian2.units.unitsafefunctions)

 	read_arrays() (brian2.codegen.generators.numpy_generator.NumpyCodeGenerator method)

 	read_only (brian2.core.variables.Variable attribute)

 	read_preference_file() (brian2.core.preferences.BrianGlobalPreferences method)

 	record (brian2.monitors.spikemonitor.EventMonitor attribute)

 	

 	(brian2.monitors.statemonitor.StateMonitor attribute)

 	record_single_timestep() (brian2.monitors.statemonitor.StateMonitor method)

 	record_variables (brian2.monitors.spikemonitor.EventMonitor attribute)

 	

 	(brian2.monitors.statemonitor.StateMonitor attribute)

 	reduced_node() (in module brian2.codegen.optimisation)

 	register() (brian2.importexport.importexport.ImportExport static method)

 	

 	(brian2.stateupdaters.base.StateUpdateMethod static method)

 	register_identifier_check() (brian2.equations.equations.Equations static method)

 	register_new_unit() (in module brian2.units.fundamentalunits)

 	register_preferences() (brian2.core.preferences.BrianGlobalPreferences method)

 	register_variable() (brian2.synapses.synapses.Synapses method)

 	reinit() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice method)

 	

 	(brian2.devices.device.Device method)

 	(brian2.hears.FilterbankGroup method)

 	(brian2.monitors.ratemonitor.PopulationRateMonitor method)

 	(brian2.monitors.spikemonitor.EventMonitor method)

 	(brian2.monitors.statemonitor.StateMonitor method)

 	reinit_devices() (in module brian2.devices.device)

 	remove() (brian2.core.magic.MagicNetwork method)

 	

 	(brian2.core.network.Network method)

 	(brian2.core.tracking.InstanceTrackerSet method)

 	(brian2.spatialneuron.morphology.Children method)

 	render_Assign() (brian2.parsing.rendering.CPPNodeRenderer method)

 	

 	(brian2.parsing.rendering.NodeRenderer method)

 	render_AugAssign() (brian2.parsing.rendering.NodeRenderer method)

 	render_BinOp() (brian2.codegen.generators.cython_generator.CythonNodeRenderer method)

 	

 	(brian2.codegen.optimisation.ArithmeticSimplifier method)

 	(brian2.parsing.bast.BrianASTRenderer method)

 	(brian2.parsing.rendering.CPPNodeRenderer method)

 	(brian2.parsing.rendering.NodeRenderer method)

 	render_BinOp_parentheses() (brian2.parsing.rendering.NodeRenderer method)

 	render_BoolOp() (brian2.parsing.bast.BrianASTRenderer method)

 	

 	(brian2.parsing.rendering.NodeRenderer method)

 	render_Call() (brian2.parsing.bast.BrianASTRenderer method)

 	

 	(brian2.parsing.rendering.NodeRenderer method)

 	render_code() (brian2.parsing.rendering.NodeRenderer method)

 	render_Compare() (brian2.parsing.bast.BrianASTRenderer method)

 	

 	(brian2.parsing.rendering.NodeRenderer method)

 	(brian2.parsing.rendering.SympyNodeRenderer method)

 	render_element_parentheses() (brian2.parsing.rendering.NodeRenderer method)

 	render_expr() (brian2.codegen.optimisation.Simplifier method)

 	

 	(brian2.parsing.rendering.NodeRenderer method)

 	

 	render_func() (brian2.parsing.rendering.NodeRenderer method)

 	

 	(brian2.parsing.rendering.SympyNodeRenderer method)

 	render_Name() (brian2.codegen.generators.cython_generator.CythonNodeRenderer method)

 	

 	(brian2.parsing.bast.BrianASTRenderer method)

 	(brian2.parsing.rendering.CPPNodeRenderer method)

 	(brian2.parsing.rendering.NodeRenderer method)

 	(brian2.parsing.rendering.SympyNodeRenderer method)

 	render_NameConstant() (brian2.codegen.generators.cython_generator.CythonNodeRenderer method)

 	

 	(brian2.parsing.bast.BrianASTRenderer method)

 	(brian2.parsing.rendering.CPPNodeRenderer method)

 	(brian2.parsing.rendering.NodeRenderer method)

 	render_node() (brian2.codegen.optimisation.ArithmeticSimplifier method)

 	

 	(brian2.codegen.optimisation.Simplifier method)

 	(brian2.parsing.bast.BrianASTRenderer method)

 	(brian2.parsing.rendering.NodeRenderer method)

 	render_Num() (brian2.parsing.bast.BrianASTRenderer method)

 	

 	(brian2.parsing.rendering.NodeRenderer method)

 	(brian2.parsing.rendering.SympyNodeRenderer method)

 	render_UnaryOp() (brian2.parsing.bast.BrianASTRenderer method)

 	

 	(brian2.parsing.rendering.NodeRenderer method)

 	(brian2.parsing.rendering.NumpyNodeRenderer method)

 	replace() (in module brian2.utils.stringtools)

 	replace_constants() (in module brian2.parsing.sympytools)

 	replace_func() (brian2.stateupdaters.explicit.ExplicitStateUpdater method)

 	reset_device() (in module brian2.devices.device)

 	reset_to_defaults() (brian2.core.preferences.BrianGlobalPreferences method)

 	resetter (brian2.groups.neurongroup.NeuronGroup attribute)

 	Resetter (class in brian2.groups.neurongroup)

 	resize() (brian2.core.variables.DynamicArrayVariable method)

 	

 	(brian2.devices.cpp_standalone.device.CPPStandaloneDevice method)

 	(brian2.devices.device.Device method)

 	(brian2.devices.device.RuntimeDevice method)

 	(brian2.memory.dynamicarray.DynamicArray method)

 	(brian2.memory.dynamicarray.DynamicArray1D method)

 	(brian2.monitors.ratemonitor.PopulationRateMonitor method)

 	(brian2.monitors.spikemonitor.EventMonitor method)

 	(brian2.monitors.statemonitor.StateMonitor method)

 	resize_along_first (brian2.core.variables.DynamicArrayVariable attribute)

 	resize_along_first() (brian2.devices.device.Device method)

 	

 	(brian2.devices.device.RuntimeDevice method)

 	(brian2.memory.dynamicarray.DynamicArray method)

 	resolve_all() (brian2.groups.group.Group method)

 	restore() (brian2.core.magic.MagicNetwork method)

 	

 	(brian2.core.network.Network method)

 	(in module brian2.core.magic)

 	restore_initial_state() (in module brian2.only)

 	restrict (brian2.codegen.generators.cpp_generator.CPPCodeGenerator attribute)

 	rk2 (in module brian2.stateupdaters.explicit)

 	rk4 (in module brian2.stateupdaters.explicit)

 	run() (brian2.codegen.codeobject.CodeObject method)

 	

 	(brian2.codegen.runtime.cython_rt.cython_rt.CythonCodeObject method)

 	(brian2.codegen.runtime.numpy_rt.numpy_rt.NumpyCodeObject method)

 	(brian2.codegen.runtime.weave_rt.weave_rt.WeaveCodeObject method)

 	(brian2.core.base.BrianObject method)

 	(brian2.core.magic.MagicNetwork method)

 	(brian2.core.network.Network method)

 	(brian2.core.operations.NetworkOperation method)

 	(brian2.devices.cpp_standalone.codeobject.CPPStandaloneCodeObject method)

 	(brian2.devices.cpp_standalone.device.CPPStandaloneDevice method)

 	(in module brian2.core.magic)

 	run_function() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice method)

 	run_on_event() (brian2.groups.neurongroup.NeuronGroup method)

 	run_regularly() (brian2.groups.group.Group method)

 	RunFunctionContext (class in brian2.devices.cpp_standalone.device)

 	runner() (brian2.groups.group.Group method)

 	running_from_ipython() (in module brian2.utils.environment)

 	runtime_device (in module brian2.devices.device)

 	RuntimeDevice (class in brian2.devices.device)

S

 	

 	scalar (brian2.core.variables.Variable attribute)

 	scale (brian2.units.fundamentalunits.Unit attribute)

 	scalefactor (brian2.units.fundamentalunits.Unit attribute)

 	schedule (brian2.core.network.Network attribute)

 	schedule_propagation_offset() (in module brian2.core.network)

 	Section (class in brian2.spatialneuron.morphology)

 	seed() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice method)

 	

 	(brian2.devices.device.Device method)

 	(brian2.devices.device.RuntimeDevice method)

 	(in module brian2.devices.device)

 	set_conditional_write() (brian2.core.variables.ArrayVariable method)

 	set_device() (in module brian2.devices.device)

 	set_display_name() (brian2.units.fundamentalunits.Unit method)

 	set_event_schedule() (brian2.groups.neurongroup.NeuronGroup method)

 	set_interval() (brian2.core.clocks.Clock method)

 	set_item() (brian2.core.variables.VariableView method)

 	set_latex_name() (brian2.units.fundamentalunits.Unit method)

 	set_name() (brian2.units.fundamentalunits.Unit method)

 	set_spikes() (brian2.input.spikegeneratorgroup.SpikeGeneratorGroup method)

 	set_states() (brian2.core.magic.MagicNetwork method)

 	

 	(brian2.core.network.Network method)

 	(brian2.groups.group.VariableOwner method)

 	set_value() (brian2.core.variables.ArrayVariable method)

 	

 	(brian2.core.variables.Variable method)

 	(brian2.devices.device.RuntimeDevice method)

 	set_with_expression() (brian2.core.variables.VariableView method)

 	set_with_expression_conditional() (brian2.core.variables.VariableView method)

 	set_with_index_array() (brian2.core.variables.VariableView method)

 	setup() (in module brian2.units.unitsafefunctions)

 	shape (brian2.core.variables.VariableView attribute)

 	shrink() (brian2.memory.dynamicarray.DynamicArray method)

 	Simplifier (class in brian2.codegen.optimisation)

 	simplify_path_env_var() (in module brian2.codegen.runtime.cython_rt.extension_manager)

 	sin() (in module brian2.units.unitsafefunctions)

 	SingleEquation (class in brian2.equations.equations)

 	sinh() (in module brian2.units.unitsafefunctions)

 	size (brian2.core.variables.ArrayVariable attribute)

 	slice() (brian2.hears.BridgeSound method)

 	slice_to_test() (in module brian2.synapses.synapses)

 	smooth_rate() (brian2.monitors.ratemonitor.PopulationRateMonitor method)

 	so_ext (brian2.codegen.runtime.cython_rt.extension_manager.CythonExtensionManager attribute)

 	Soma (class in brian2.spatialneuron.morphology)

 	Sound (in module brian2.hears)

 	source (brian2.monitors.ratemonitor.PopulationRateMonitor attribute)

 	

 	(brian2.monitors.spikemonitor.EventMonitor attribute)

 	SpatialNeuron (class in brian2.spatialneuron.spatialneuron)

 	spatialneuron_attribute() (brian2.spatialneuron.spatialneuron.SpatialNeuron static method)

 	spatialneuron_segment() (brian2.spatialneuron.spatialneuron.SpatialNeuron static method)

 	SpatialStateUpdater (class in brian2.spatialneuron.spatialneuron)

 	SpatialSubgroup (class in brian2.spatialneuron.spatialneuron)

 	SpellChecker (class in brian2.utils.stringtools)

 	spike_queue() (brian2.devices.device.Device method)

 	

 	(brian2.devices.device.RuntimeDevice method)

 	spike_trains() (brian2.monitors.spikemonitor.SpikeMonitor method)

 	SpikeGeneratorGroup (class in brian2.input.spikegeneratorgroup)

 	SpikeMonitor (class in brian2.monitors.spikemonitor)

 	SpikeQueue (class in brian2.synapses.spikequeue)

 	spikes (brian2.core.spikesource.SpikeSource attribute)

 	

 	(brian2.groups.neurongroup.NeuronGroup attribute)

 	(brian2.groups.subgroup.Subgroup attribute)

 	(brian2.input.poissongroup.PoissonGroup attribute)

 	(brian2.input.spikegeneratorgroup.SpikeGeneratorGroup attribute)

 	SpikeSource (class in brian2.core.spikesource)

 	split_expression() (in module brian2.stateupdaters.explicit)

 	split_stochastic() (brian2.equations.codestrings.Expression method)

 	

 	standard_unit_register (in module brian2.units.fundamentalunits)

 	start_diameter (brian2.spatialneuron.morphology.Cylinder attribute)

 	

 	(brian2.spatialneuron.morphology.Section attribute)

 	start_scope() (in module brian2.core.magic)

 	start_x (brian2.spatialneuron.morphology.Morphology attribute)

 	

 	(brian2.spatialneuron.morphology.SubMorphology attribute)

 	start_x_ (brian2.spatialneuron.morphology.Morphology attribute)

 	

 	(brian2.spatialneuron.morphology.Section attribute)

 	(brian2.spatialneuron.morphology.Soma attribute)

 	(brian2.spatialneuron.morphology.SubMorphology attribute)

 	start_y (brian2.spatialneuron.morphology.Morphology attribute)

 	

 	(brian2.spatialneuron.morphology.SubMorphology attribute)

 	start_y_ (brian2.spatialneuron.morphology.Morphology attribute)

 	

 	(brian2.spatialneuron.morphology.Section attribute)

 	(brian2.spatialneuron.morphology.Soma attribute)

 	(brian2.spatialneuron.morphology.SubMorphology attribute)

 	start_z (brian2.spatialneuron.morphology.Morphology attribute)

 	

 	(brian2.spatialneuron.morphology.SubMorphology attribute)

 	start_z_ (brian2.spatialneuron.morphology.Morphology attribute)

 	

 	(brian2.spatialneuron.morphology.Section attribute)

 	(brian2.spatialneuron.morphology.Soma attribute)

 	(brian2.spatialneuron.morphology.SubMorphology attribute)

 	state() (brian2.groups.group.VariableOwner method)

 	

 	(brian2.groups.neurongroup.NeuronGroup method)

 	state_updater (brian2.groups.neurongroup.NeuronGroup attribute)

 	

 	(brian2.synapses.synapses.Synapses attribute)

 	STATEMENT (brian2.stateupdaters.explicit.ExplicitStateUpdater attribute)

 	Statement (class in brian2.codegen.statements)

 	STATEMENT() (brian2.stateupdaters.explicit.ExplicitStateUpdater method)

 	Statements (class in brian2.equations.codestrings)

 	StateMonitor (class in brian2.monitors.statemonitor)

 	StateMonitorView (class in brian2.monitors.statemonitor)

 	StateUpdateMethod (class in brian2.stateupdaters.base)

 	StateUpdater (class in brian2.groups.neurongroup)

 	

 	(class in brian2.synapses.synapses)

 	stateupdaters (brian2.stateupdaters.base.StateUpdateMethod attribute)

 	static_array() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice method)

 	static_arrays (brian2.devices.cpp_standalone.device.CPPStandaloneDevice attribute)

 	std_silent (class in brian2.utils.logger)

 	stochastic_type (brian2.equations.equations.Equations attribute)

 	stochastic_variables (brian2.equations.codestrings.Expression attribute)

 	

 	(brian2.equations.equations.Equations attribute)

 	(brian2.equations.equations.SingleEquation attribute)

 	stop() (brian2.core.network.Network method)

 	

 	(in module brian2.core.magic)

 	store() (brian2.core.magic.MagicNetwork method)

 	

 	(brian2.core.network.Network method)

 	(in module brian2.core.magic)

 	str_to_sympy() (in module brian2.parsing.sympytools)

 	strip_empty_leading_and_trailing_lines() (in module brian2.utils.stringtools)

 	strip_empty_lines() (in module brian2.utils.stringtools)

 	stripped_deindented_lines() (in module brian2.utils.stringtools)

 	subexpr_names (brian2.equations.equations.Equations attribute)

 	Subexpression (class in brian2.core.variables)

 	subexpression_updater (brian2.groups.neurongroup.NeuronGroup attribute)

 	

 	(brian2.synapses.synapses.Synapses attribute)

 	SubexpressionUpdater (class in brian2.groups.neurongroup)

 	Subgroup (class in brian2.groups.subgroup)

 	SubMorphology (class in brian2.spatialneuron.morphology)

 	substitute_abstract_code_functions() (in module brian2.parsing.functions)

 	suggest() (brian2.utils.stringtools.SpellChecker method)

 	summed_updaters (brian2.synapses.synapses.Synapses attribute)

 	SummedVariableUpdater (class in brian2.synapses.synapses)

 	suppress_hierarchy() (brian2.utils.logger.BrianLogger static method)

 	suppress_name() (brian2.utils.logger.BrianLogger static method)

 	SymbolicConstant (class in brian2.core.functions)

 	sympy_to_str() (in module brian2.parsing.sympytools)

 	SympyNodeRenderer (class in brian2.parsing.rendering)

 	Synapses (class in brian2.synapses.synapses)

 	SynapseVectorisationError (class in brian2.codegen.runtime.numpy_rt.synapse_vectorisation)

 	SynapticIndexing (class in brian2.synapses.synapses)

 	SynapticPathway (class in brian2.synapses.synapses)

 	SynapticSubgroup (class in brian2.synapses.synapses)

T

 	

 	t (brian2.core.network.Network attribute)

 	t_ (brian2.core.network.Network attribute)

 	tan() (in module brian2.units.unitsafefunctions)

 	tanh() (in module brian2.units.unitsafefunctions)

 	TEMP_VAR (brian2.stateupdaters.explicit.ExplicitStateUpdater attribute)

 	TEMP_VAR() (brian2.stateupdaters.explicit.ExplicitStateUpdater method)

 	Templater (class in brian2.codegen.templates)

 	TextReport (class in brian2.core.network)

 	thresholder (brian2.groups.neurongroup.NeuronGroup attribute)

 	Thresholder (class in brian2.groups.neurongroup)

 	TimedArray (class in brian2.input.timedarray)

 	tmp_log (brian2.utils.logger.BrianLogger attribute)

 	tmp_script (brian2.utils.logger.BrianLogger attribute)

 	toplevel_categories (brian2.core.preferences.BrianGlobalPreferences attribute)

 	Topology (class in brian2.spatialneuron.morphology)

 	

 	topology() (brian2.spatialneuron.morphology.Morphology method)

 	topsort() (in module brian2.utils.topsort)

 	total_compartments (brian2.spatialneuron.morphology.Morphology attribute)

 	total_sections (brian2.spatialneuron.morphology.Morphology attribute)

 	trace() (in module brian2.units.unitsafefunctions)

 	Trackable (class in brian2.core.tracking)

 	translate() (brian2.codegen.generators.base.CodeGenerator method)

 	translate_expression() (brian2.codegen.generators.base.CodeGenerator method)

 	

 	(brian2.codegen.generators.cpp_generator.CPPCodeGenerator method)

 	(brian2.codegen.generators.cython_generator.CythonCodeGenerator method)

 	(brian2.codegen.generators.numpy_generator.NumpyCodeGenerator method)

 	translate_one_statement_sequence() (brian2.codegen.generators.base.CodeGenerator method)

 	

 	(brian2.codegen.generators.cpp_generator.CPPCodeGenerator method)

 	(brian2.codegen.generators.cython_generator.CythonCodeGenerator method)

 	(brian2.codegen.generators.numpy_generator.NumpyCodeGenerator method)

 	translate_statement() (brian2.codegen.generators.base.CodeGenerator method)

 	

 	(brian2.codegen.generators.cpp_generator.CPPCodeGenerator method)

 	(brian2.codegen.generators.cython_generator.CythonCodeGenerator method)

 	(brian2.codegen.generators.numpy_generator.NumpyCodeGenerator method)

 	translate_statement_sequence() (brian2.codegen.generators.base.CodeGenerator method)

 	translate_to_declarations() (brian2.codegen.generators.cpp_generator.CPPCodeGenerator method)

 	translate_to_read_arrays() (brian2.codegen.generators.cpp_generator.CPPCodeGenerator method)

 	translate_to_statements() (brian2.codegen.generators.cpp_generator.CPPCodeGenerator method)

 	translate_to_write_arrays() (brian2.codegen.generators.cpp_generator.CPPCodeGenerator method)

U

 	

 	ufunc_at_vectorisation() (brian2.codegen.generators.numpy_generator.NumpyCodeGenerator method)

 	

 	(in module brian2.codegen.runtime.numpy_rt.synapse_vectorisation)

 	uninstall() (brian2.utils.logger.LogCapture method)

 	unique (brian2.core.variables.ArrayVariable attribute)

 	unit (brian2.core.variables.Variable attribute)

 	Unit (class in brian2.units.fundamentalunits)

 	unit_and_type_from_string() (in module brian2.equations.equations)

 	UnitRegistry (class in brian2.units.fundamentalunits)

 	units (brian2.equations.equations.Equations attribute)

 	unregister_unit() (in module brian2.units.fundamentalunits)

 	

 	unregister_variable() (brian2.synapses.synapses.Synapses method)

 	UnsupportedEquationsException (class in brian2.stateupdaters.base)

 	update_abstract_code() (brian2.groups.group.CodeRunner method)

 	

 	(brian2.groups.neurongroup.Resetter method)

 	(brian2.groups.neurongroup.StateUpdater method)

 	(brian2.groups.neurongroup.Thresholder method)

 	(brian2.synapses.synapses.StateUpdater method)

 	(brian2.synapses.synapses.SynapticPathway method)

 	update_for_cross_compilation() (in module brian2.codegen.cpp_prefs)

 	update_namespace() (brian2.codegen.codeobject.CodeObject method)

 	

 	(brian2.codegen.runtime.cython_rt.cython_rt.CythonCodeObject method)

 	(brian2.codegen.runtime.numpy_rt.numpy_rt.NumpyCodeObject method)

 	(brian2.codegen.runtime.weave_rt.weave_rt.WeaveCodeObject method)

 	updaters (brian2.core.base.BrianObject attribute)

 	user_equations (brian2.groups.neurongroup.NeuronGroup attribute)

 	

 	(brian2.spatialneuron.spatialneuron.SpatialNeuron attribute)

 	user_unit_register (in module brian2.units.fundamentalunits)

V

 	

 	value (brian2.core.variables.Constant attribute)

 	values() (brian2.monitors.spikemonitor.EventMonitor method)

 	

 	(brian2.monitors.spikemonitor.SpikeMonitor method)

 	Variable (class in brian2.core.variables)

 	VariableOwner (class in brian2.groups.group)

 	variables (brian2.codegen.templates.CodeObjectTemplate attribute)

 	Variables (class in brian2.core.variables)

 	variables_by_owner() (in module brian2.core.variables)

 	variables_to_namespace() (brian2.codegen.runtime.cython_rt.cython_rt.CythonCodeObject method)

 	

 	(brian2.codegen.runtime.numpy_rt.numpy_rt.NumpyCodeObject method)

 	(brian2.codegen.runtime.weave_rt.weave_rt.WeaveCodeObject method)

 	VariableView (class in brian2.core.variables)

 	

 	variableview_get_subexpression_with_index_array() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice method)

 	variableview_get_with_expression() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice method)

 	variableview_set_with_index_array() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice method)

 	VarRewriter (class in brian2.parsing.functions)

 	VectorisationError (class in brian2.codegen.generators.numpy_generator)

 	vectorise_code() (brian2.codegen.generators.numpy_generator.NumpyCodeGenerator method)

 	visit_Call() (brian2.parsing.functions.FunctionRewriter method)

 	

 	(brian2.parsing.functions.VarRewriter method)

 	visit_Name() (brian2.parsing.functions.VarRewriter method)

 	volume (brian2.spatialneuron.morphology.Cylinder attribute)

 	

 	(brian2.spatialneuron.morphology.Morphology attribute)

 	(brian2.spatialneuron.morphology.Section attribute)

 	(brian2.spatialneuron.morphology.Soma attribute)

 	(brian2.spatialneuron.morphology.SubMorphology attribute)

W

 	

 	warn() (brian2.utils.logger.BrianLogger method)

 	weakproxy_with_fallback() (in module brian2.core.base)

 	weave_data_type() (in module brian2.codegen.runtime.weave_rt.weave_rt)

 	WeaveCodeGenerator (class in brian2.codegen.runtime.weave_rt.weave_rt)

 	WeaveCodeObject (class in brian2.codegen.runtime.weave_rt.weave_rt)

 	when (brian2.core.base.BrianObject attribute)

 	where() (in module brian2.units.unitsafefunctions)

 	with_dimensions() (brian2.units.fundamentalunits.Quantity static method)

 	word_substitute() (in module brian2.utils.stringtools)

 	wrap_function_change_dimensions() (in module brian2.units.fundamentalunits)

 	wrap_function_dimensionless() (in module brian2.units.fundamentalunits)

 	

 	wrap_function_keep_dimensions() (in module brian2.units.fundamentalunits)

 	wrap_function_remove_dimensions() (in module brian2.units.fundamentalunits)

 	wrap_function_to_method() (in module brian2.units.unitsafefunctions)

 	wrap_units() (in module brian2.hears)

 	wrap_units_class() (in module brian2.hears)

 	wrap_units_property() (in module brian2.hears)

 	WrappedSound (in module brian2.hears)

 	write() (brian2.devices.cpp_standalone.device.CPPWriter method)

 	write_arrays() (brian2.codegen.generators.numpy_generator.NumpyCodeGenerator method)

 	write_static_arrays() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice method)

 	writes_read_only (brian2.codegen.templates.CodeObjectTemplate attribute)

X

 	

 	x (brian2.spatialneuron.morphology.Morphology attribute)

 	

 	(brian2.spatialneuron.morphology.Node attribute)

 	(brian2.spatialneuron.morphology.SubMorphology attribute)

 	

 	x_ (brian2.spatialneuron.morphology.Morphology attribute)

 	

 	(brian2.spatialneuron.morphology.Section attribute)

 	(brian2.spatialneuron.morphology.Soma attribute)

 	(brian2.spatialneuron.morphology.SubMorphology attribute)

Y

 	

 	y (brian2.spatialneuron.morphology.Morphology attribute)

 	

 	(brian2.spatialneuron.morphology.Node attribute)

 	(brian2.spatialneuron.morphology.SubMorphology attribute)

 	

 	y_ (brian2.spatialneuron.morphology.Morphology attribute)

 	

 	(brian2.spatialneuron.morphology.Section attribute)

 	(brian2.spatialneuron.morphology.Soma attribute)

 	(brian2.spatialneuron.morphology.SubMorphology attribute)

Z

 	

 	z (brian2.spatialneuron.morphology.Morphology attribute)

 	

 	(brian2.spatialneuron.morphology.Node attribute)

 	(brian2.spatialneuron.morphology.SubMorphology attribute)

 	z_ (brian2.spatialneuron.morphology.Morphology attribute)

 	

 	(brian2.spatialneuron.morphology.Section attribute)

 	(brian2.spatialneuron.morphology.Soma attribute)

 	(brian2.spatialneuron.morphology.SubMorphology attribute)

 	

 	zero_arrays (brian2.devices.cpp_standalone.device.CPPStandaloneDevice attribute)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_images/advanced.stochastic_odes.2.png
0.0004 0.0006 0.0004 0.0004

0.0002 0.0004 0.0003 0.0003
0.0000
0.0002 0.0002 0.0002 0.0002
~0.0004 0.0000 0.0001 0.0001
~0.0006 ~0.0002 0.0000 0.0000
~0.0008
00010 ~0.0004 ~0.0001 ~0.0001
-0.0012 ~0.0006 -0.0002 -0.0002
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10

0.00030 0.00020 0.00014 0.00012
0.00025 0.00012 000010, — Milstein
0.00020 0.00015 0.00010 — heun
- - 0.00008
0.00015 0.00008

0.00010 0.00006
0.00010 0.00006

0.00004

0.00005 0.00005 0.00004
0.00000 0.00002 0.00002

0.00000
~0.00005 0.00000 0.00000
~0.0001Q ~0.00005 ~0.00002 ~0.00002

00 02 04 06 08 10 20 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10

_images/frompapers.Brette_2012.Fig1.1.png
1 (nA)
o
G

I-V curve

Activation curve (m(V))

0.8

0.6
£

0.4

0.2

75 =70 —65 —-60 -55 -50 -45

Voltage 4pfgss axon

[

0.0
-80 -70 -60 -50 -40 -30 -20

(mV)

—]

N

-10
-20
=30
£ —-40
=50
-60
=70

Distance from soma (um)

-80
20 40 60 80 100 -80-70-60-50-40-30-20-10 0O

Vs (mV)

_images/2-intro-to-brian-synapses_image_33_0.png
0015

— apre
0010 — apost

0005

0000

~0.005

-0.010

0015
0

0007

0006

0005

0004

0003

0002

001

0000
0 s B B w5 %

Time (ms)

_images/frompapers.Brette_2012.Fig3CF.1.png
V (mv)

dvydt (V/s)

Voltage traces

Activation curves

60 : 1.0 =
0 [o
0.8 s
20 , /
0 0.6 S
£ / /
-20 0.4 /)
—40 Sy
60) 02 S
-80 =2 0.0 o=
0 20 40 60 80 100 —70—60 —50 —40 —30 —20 —10 0
Phase A9t Phase pigtizoom)
400 20
350
300 15
@
250 g
200 Z 10 -
8
150 s
3
100 5
50
0 0
-80 —60 —40 —20 0 20 40 —70 —65 —60 —55 —50 —45 —40

V(mv)

V(mv)

_images/adaptive_threshold.1.png
20

30

15

10—

v (mv)

20

40 60
t(ms)

80

100

25

20

15

10

0
10 12 14 16 18 20

v at threshold crossing (mV)

_images/phase_locking.1.png
Xapul uoInaN A

0.0

1000

800

600

400

200

Time (ms)

_images/2-intro-to-brian-synapses_image_18_2.png
¥apur vounau B0,

1

xaput uoinay

e

Torget

Source

Source neuron index

_images/synapses.nonlinear.1.png
@

16
14
12
10
0.8

0.6

0.4
0.2

0.0
[

16
14
12
10

o 0.8

0.6
0.4
0.2

0.0
[

200

400

Time (ms)

600

800

1000

200

400

600

800

1000

_images/standalone.STDP_standalone.1.png
xewb /3ybragm

1000

800

600

400

200

Synapse index

o
S
]
© 9
S 2
© 1=
S 8
@
£
S
=
k=)
7}
=
< o
S <
~ o
S]
< o
00000000008 @B M
BOINSBOTN 333833355
xewb /3ybragm

Time (s)

_images/advanced.stochastic_odes.1.png
18

dt=1.ms 18 dt=0.5ms 16 dt = 200. us dt = 100. us
dt = 50. us 17 dt = 25. us 18 dt =10. us 22 dt=5.us
milstein

heun

exact 1

_modules/brian2/core/namespace.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.core.namespace

'''
Implementation of the namespace system, used to resolve the identifiers in
model equations of `NeuronGroup` and `Synapses`
'''
import inspect
import itertools

from brian2.utils.logger import get_logger
from brian2.units.fundamentalunits import standard_unit_register
from brian2.units.stdunits import stdunits
from brian2.core.functions import DEFAULT_FUNCTIONS, DEFAULT_CONSTANTS

__all__ = ['get_local_namespace',
 'DEFAULT_FUNCTIONS',
 'DEFAULT_UNITS',
 'DEFAULT_CONSTANTS']

logger = get_logger(__name__)

[docs]def get_local_namespace(level):
 '''
 Get the surrounding namespace.

 Parameters

 level : int, optional
 How far to go back to get the locals/globals. Each function/method
 call should add ``1`` to this argument, functions/method with a
 decorator have to add ``2``.

 Returns

 namespace : dict
 The locals and globals at the given depth of the stack frame.
 '''
 # Get the locals and globals from the stack frame
 frame = inspect.currentframe()
 for _ in xrange(level + 1):
 frame = frame.f_back
 # We return the full stack here, even if it contains a lot of stuff we are
 # not interested in -- it is cheaper to later raise an error when we find
 # a specific object with an incorrect type instead of going through this big
 # list now to check the types of all objects
 return dict(itertools.chain(frame.f_globals.iteritems(),
 frame.f_locals.iteritems()))

def _get_default_unit_namespace():
 '''
 Return the namespace that is used by default for looking up units when
 defining equations. Contains all registered units and everything from
 `brian2.units.stdunits` (ms, mV, nS, etc.).

 Returns

 namespace : dict
 The unit namespace
 '''
 namespace = dict([(u.name, u) for u in standard_unit_register.units])
 namespace.update(stdunits)
 return namespace

DEFAULT_UNITS = _get_default_unit_namespace()

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_images/IF_curve_LIF.1.png
90

80

o
R

=)
8

o o
A I

(s/ds) a1e1 buny

o
@

=)
&

10

15 20

10
VO (mV)

_modules/brian2/core/clocks.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.core.clocks

"""
Clocks for the simulator.
"""

__docformat__ = "restructuredtext en"

import numpy as np

from brian2.utils.logger import get_logger
from brian2.core.names import Nameable
from brian2.core.variables import Variables
from brian2.groups.group import VariableOwner
from brian2.units.fundamentalunits import check_units, Quantity, Unit
from brian2.units.allunits import second

__all__ = ['Clock', 'defaultclock']

logger = get_logger(__name__)

[docs]def check_dt(new_dt, old_dt, target_t):
 '''
 Check that the target time can be represented equally well with the new
 dt.

 Parameters

 new_dt : float
 The new dt value
 old_dt : float
 The old dt value
 target_t : float
 The target time

 Raises

 ValueError
 If using the new dt value would lead to a difference in the target
 time of more than `Clock.epsilon_dt` times ``new_dt`` (by default,
 0.01% of the new dt).

 Examples

 >>> from brian2 import *
 >>> check_dt(float(17*ms), float(0.1*ms), float(0*ms)) # For t=0s, every dt is fine
 >>> check_dt(float(0.05*ms), float(0.1*ms), float(10*ms)) # t=10*ms can be represented with the new dt
 >>> check_dt(float(0.2*ms), float(0.1*ms), float(10.1*ms)) # t=10.1ms cannot be represented with dt=0.2ms # doctest: +ELLIPSIS
 Traceback (most recent call last):
 ...
 ValueError: Cannot set dt from 100. us to 200. us, the time 10.1 ms is not a multiple of 200. us
 '''
 old_t = np.uint64(np.round(target_t / old_dt)) * old_dt
 new_t = np.uint64(np.round(target_t / new_dt)) * new_dt
 error_t = target_t
 if abs(new_t - old_t)/new_dt > Clock.epsilon_dt:
 raise ValueError(('Cannot set dt from {old} to {new}, the '
 'time {t} is not a multiple of '
 '{new}').format(old=old_dt * second,
 new=new_dt * second,
 t=error_t * second))

[docs]class Clock(VariableOwner):
 '''
 An object that holds the simulation time and the time step.

 Parameters

 dt : float
 The time step of the simulation as a float
 name : str, optional
 An explicit name, if not specified gives an automatically generated name

 Notes

 Clocks are run in the same `Network.run` iteration if `~Clock.t` is the
 same. The condition for two
 clocks to be considered as having the same time is
 ``abs(t1-t2)<epsilon*abs(t1)``, a standard test for equality of floating
 point values. The value of ``epsilon`` is ``1e-14``.
 '''

 def __init__(self, dt, name='clock*'):
 # We need a name right away because some devices (e.g. cpp_standalone)
 # need a name for the object when creating the variables
 Nameable.__init__(self, name=name)
 self._old_dt = None
 self.variables = Variables(self)
 self.variables.add_array('timestep', unit=Unit(1), size=1,
 dtype=np.uint64, read_only=True, scalar=True)
 self.variables.add_array('t', unit=second, size=1,
 dtype=np.double, read_only=True, scalar=True)
 self.variables.add_array('dt', unit=second, size=1, values=float(dt),
 dtype=np.float, read_only=True, constant=True,
 scalar=True)
 self.variables.add_constant('N', unit=Unit(1), value=1)
 self._enable_group_attributes()
 self.dt = dt
 logger.diagnostic("Created clock {name} with dt={dt}".format(name=self.name,
 dt=self.dt))

 @check_units(t=second)
 def _set_t_update_dt(self, target_t=0*second):
 new_dt = self.dt_
 old_dt = self._old_dt
 target_t = float(target_t)
 if old_dt is not None and new_dt != old_dt:
 self._old_dt = None
 # Only allow a new dt which allows to correctly set the new time step
 check_dt(new_dt, old_dt, target_t)

 new_timestep = self._calc_timestep(target_t)
 # Since these attributes are read-only for normal users, we have to
 # update them via the variables object directly
 self.variables['timestep'].set_value(new_timestep)
 self.variables['t'].set_value(new_timestep * new_dt)
 logger.diagnostic("Setting Clock {name} to t={t}, dt={dt}".format(name=self.name,
 t=self.t,
 dt=self.dt))

 def _calc_timestep(self, target_t):
 '''
 Calculate the integer time step for the target time. If it cannot be
 exactly represented (up to 0.01% of dt), round up.

 Parameters

 target_t : float
 The target time in seconds

 Returns

 timestep : int
 The target time in integers (based on dt)
 '''
 new_i = np.uint64(np.round(target_t / self.dt_))
 new_t = new_i * self.dt_
 if (new_t == target_t or
 np.abs(new_t - target_t)/self.dt_ <= Clock.epsilon_dt):
 new_timestep = new_i
 else:
 new_timestep = np.uint64(np.ceil(target_t / self.dt_))
 return new_timestep

 def __repr__(self):
 return 'Clock(dt=%r, name=%r)' % (self.dt, self.name)

 def _get_dt_(self):
 return self.variables['dt'].get_value().item()

 @check_units(dt_=1)
 def _set_dt_(self, dt_):
 self._old_dt = self._get_dt_()
 self.variables['dt'].set_value(dt_)

 @check_units(dt=second)
 def _set_dt(self, dt):
 self._set_dt_(float(dt))

 dt = property(fget=lambda self: Quantity(self.dt_, dim=second.dim),
 fset=_set_dt,
 doc='''The time step of the simulation in seconds.''',
)
 dt_ = property(fget=_get_dt_, fset=_set_dt_,
 doc='''The time step of the simulation as a float (in seconds)''')

 @check_units(start=second, end=second)
 def set_interval(self, start, end):
 '''
 set_interval(self, start, end)

 Set the start and end time of the simulation.

 Sets the start and end value of the clock precisely if
 possible (using epsilon) or rounding up if not. This assures that
 multiple calls to `Network.run` will not re-run the same time step.
 '''
 self._set_t_update_dt(target_t=start)
 end = float(end)
 self._i_end = self._calc_timestep(end)
 if self._i_end > 2**40:
 logger.warn('The end time of the simulation has been set to {}, '
 'which based on the dt value of {} means that {} '
 'time steps will be simulated. This can lead to '
 'numerical problems, e.g. the times t will not '
 'correspond to exact multiples of '
 'dt.'.format(str(end*second),
 str(self.dt),
 self._i_end),
 'many_timesteps')

 #: The relative difference for times (in terms of dt) so that they are
 #: considered identical.
 epsilon_dt = 1e-4

[docs]class DefaultClockProxy(object):
 '''
 Method proxy to access the defaultclock of the currently active device
 '''
 def __getattr__(self, name):
 if name == '_is_proxy':
 return True
 from brian2.devices.device import active_device
 return getattr(active_device.defaultclock, name)

 def __setattr__(self, key, value):
 from brian2.devices.device import active_device
 setattr(active_device.defaultclock, key, value)

#: The standard clock, used for objects that do not specify any clock or dt
defaultclock = DefaultClockProxy()

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/brian2/importexport/importexport.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.importexport.importexport

'''
Module defining the `ImportExport` class that enables getting state variable
data in and out of groups in various formats (see `Group.get_states` and
`Group.set_states`).
'''
import abc
from abc import abstractmethod, abstractproperty

[docs]class ImportExport(object):
 '''
 Class for registering new import/export methods (via static methods). Also
 the base class that should be extended for such methods
 (`ImportExport.export_data`, `ImportExport.import_data`, and
 `ImportExport.name` have to be overwritten).

 See Also

 VariableOwner.get_states, VariableOwner.set_states

 '''
 __metaclass__ = abc.ABCMeta

 #: A dictionary mapping import/export methods names to `ImportExport` objects
 methods = dict()

 @staticmethod
[docs] def register(importerexporter):
 '''
 Register a import/export method. Registered methods can be referred to
 via their name.

 Parameters

 importerexporter : `ImportExport`
 The importerexporter object, e.g. an `DictImportExport`.
 '''
 if not isinstance(importerexporter, ImportExport):
 t = str(type(importerexporter))
 error_msg = ('Given importerexporter of type {} does not seem to '
 'be a valid importerexporter.').format(t)
 raise ValueError(error_msg)
 name = importerexporter.name
 if name in ImportExport.methods:
 raise ValueError(('An import/export methods with the name {}'
 'has already been registered').format(name))
 ImportExport.methods[name] = importerexporter

 @staticmethod
 @abstractmethod
[docs] def export_data(group, variables):
 '''
 Asbtract static export data method with two obligatory parameters.
 It should return a copy of the current state variable values. The
 returned arrays are copies of the actual arrays that store the state
 variable values, therefore changing the values in the returned
 dictionary will not affect the state variables.

 Parameters

 group : `Group`
 Group object.
 variables : list of str
 The names of the variables to extract.
 '''
 raise NotImplementedError()

 @staticmethod
 @abstractmethod
[docs] def import_data(group, data):
 '''
 Import and set state variables.

 Parameters

 group : `Group`
 Group object.
 data : dict_like
 Data to import with variable names.
 '''
 raise NotImplementedError()

 @abstractproperty
 def name(self):
 '''
 Abstract property giving a method name.
 '''
 pass

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_images/frompapers.Brette_2004.1.png
10

0.8

0.6

0.4

0.2

=
o
e Ia)awWweled

4.0
35
25
2.0
0.0

Spike phase

_modules/brian2/memory/dynamicarray.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.memory.dynamicarray

'''
TODO: rewrite this (verbatim from Brian 1.x), more efficiency
'''
from numpy import *

__all__ = ['DynamicArray', 'DynamicArray1D']

[docs]def getslices(shape):
 return tuple(slice(0, x) for x in shape)

[docs]class DynamicArray(object):
 '''
 An N-dimensional dynamic array class

 The array can be resized in any dimension, and the class will handle
 allocating a new block of data and copying when necessary.

 .. warning::
 The data will NOT be contiguous for >1D arrays. To ensure this, you will
 either need to use 1D arrays, or to copy the data, or use the shrink
 method with the current size (although note that in both cases you
 negate the memory and efficiency benefits of the dynamic array).

 Initialisation arguments:

 ``shape``, ``dtype``
 The shape and dtype of the array to initialise, as in Numpy. For 1D
 arrays, shape can be a single int, for ND arrays it should be a tuple.
 ``factor``
 The resizing factor (see notes below). Larger values tend to lead to
 more wasted memory, but more computationally efficient code.
 ``use_numpy_resize``, ``refcheck``
 Normally, when you resize the array it creates a new array and copies
 the data. Sometimes, it is possible to resize an array without a copy,
 and if this option is set it will attempt to do this. However, this can
 cause memory problems if you are not careful so the option is off by
 default. You need to ensure that you do not create slices of the array
 so that no references to the memory exist other than the main array
 object. If you are sure you know what you're doing, you can switch this
 reference check off. Note that resizing in this way is only done if you
 resize in the first dimension.

 The array is initialised with zeros. The data is stored in the attribute
 ``data`` which is a Numpy array.

 Some numpy methods are implemented and can work directly on the array object,
 including ``len(arr)``, ``arr[...]`` and ``arr[...]=...``. In other cases,
 use the ``data`` attribute.

 Examples

 >>> x = DynamicArray((2, 3), dtype=int)
 >>> x[:] = 1
 >>> x.resize((3, 3))
 >>> x[:] += 1
 >>> x.resize((3, 4))
 >>> x[:] += 1
 >>> x.resize((4, 4))
 >>> x[:] += 1
 >>> x.data[:] = x.data**2
 >>> x.data
 array([[16, 16, 16, 4],
 [16, 16, 16, 4],
 [9, 9, 9, 4],
 [1, 1, 1, 1]])

 Notes

 The dynamic array returns a ``data`` attribute which is a view on the larger
 ``_data`` attribute. When a resize operation is performed, and a specific
 dimension is enlarged beyond the size in the ``_data`` attribute, the size
 is increased to the larger of ``cursize*factor`` and ``newsize``. This
 ensures that the amortized cost of increasing the size of the array is O(1).
 '''
 def __init__(self, shape, dtype=float, factor=2,
 use_numpy_resize=False, refcheck=True):
 if isinstance(shape, int):
 shape = (shape,)
 self._data = zeros(shape, dtype=dtype)
 self.data = self._data
 self.dtype = dtype
 self.shape = self._data.shape
 self.factor = factor
 self.use_numpy_resize = use_numpy_resize
 self.refcheck = refcheck

[docs] def resize(self, newshape):
 '''
 Resizes the data to the new shape, which can be a different size to the
 current data, but should have the same rank, i.e. same number of
 dimensions.
 '''
 datashapearr = array(self._data.shape)
 newshapearr = array(newshape)
 resizedimensions = newshapearr>datashapearr
 if resizedimensions.any():
 # resize of the data is needed
 minnewshapearr = datashapearr#.copy()
 dimstoinc = minnewshapearr[resizedimensions]
 incdims = array(dimstoinc*self.factor, dtype=int)
 newdims = maximum(incdims, dimstoinc+1)
 minnewshapearr[resizedimensions] = newdims
 newshapearr = maximum(newshapearr, minnewshapearr)
 do_resize = False
 if self.use_numpy_resize and self._data.flags['C_CONTIGUOUS']:
 if sum(resizedimensions)==resizedimensions[0]:
 do_resize = True
 if do_resize:
 self.data = None
 self._data.resize(tuple(newshapearr), refcheck=self.refcheck)
 else:
 newdata = zeros(tuple(newshapearr), dtype=self.dtype)
 slices = getslices(self._data.shape)
 newdata[slices] = self._data
 self._data = newdata
 self.data = self._data[getslices(newshape)]
 self.shape = self.data.shape

[docs] def resize_along_first(self, newshape):
 new_dimension = newshape[0]
 if new_dimension > self._data.shape[0]:
 new_size = maximum(self._data.shape[0]*self.factor, new_dimension + 1)
 final_new_shape = array(self._data.shape)
 final_new_shape[0] = new_size
 if self.use_numpy_resize and self._data.flags['C_CONTIGUOUS']:
 self.data = None
 self._data.resize(tuple(final_new_shape),
 refcheck=self.refcheck)
 else:
 newdata = zeros(tuple(final_new_shape), dtype=self.dtype)
 slices = getslices(self._data.shape)
 newdata[slices] = self._data
 self._data = newdata
 self. data = self._data[slice(0, new_dimension)]
 self.shape = newshape

[docs] def shrink(self, newshape):
 '''
 Reduces the data to the given shape, which should be smaller than the
 current shape. `resize` can also be used with smaller values, but
 it will not shrink the allocated memory, whereas `shrink` will
 reallocate the memory. This method should only be used infrequently, as
 if it is used frequently it will negate the computational efficiency
 benefits of the DynamicArray.
 '''
 if isinstance(newshape, int):
 newshape = (newshape,)
 shapearr = array(self.shape)
 newshapearr = array(newshape)
 if (newshapearr<=shapearr).all():
 newdata = zeros(newshapearr, dtype=self.dtype)
 newdata[:] = self._data[getslices(newshapearr)]
 self._data = newdata
 self.shape = tuple(newshapearr)
 self.data = self._data

 def __getitem__(self, item):
 return self.data.__getitem__(item)

 def __getslice__(self, start, end):
 return self.data.__getslice__(start, end)

 def __setitem__(self, item, val):
 self.data.__setitem__(item, val)

 def __setslice__(self, start, end, val):
 self.data.__setslice__(start, end, val)

 def __len__(self):
 return len(self.data)

 def __str__(self):
 return self.data.__str__()

 def __repr__(self):
 return self.data.__repr__()

[docs]class DynamicArray1D(DynamicArray):
 '''
 Version of `DynamicArray` with specialised ``resize`` method designed
 to be more efficient.
 '''
[docs] def resize(self, newshape):
 datashape, = self._data.shape
 if newshape > datashape:
 shape, = self.shape # we work with int shapes only
 newdatashape = max(newshape, int(shape*self.factor)+1)
 if self.use_numpy_resize and self._data.flags['C_CONTIGUOUS']:
 self.data = None
 self._data.resize(newdatashape, refcheck=self.refcheck)
 else:
 newdata = zeros(newdatashape, dtype=self.dtype)
 newdata[:shape] = self.data
 self._data = newdata
 self.data = self._data[:newshape]
 self.shape = (newshape,)

if __name__=='__main__':
 if 1:
 x = DynamicArray1D(2, use_numpy_resize=True)
 x[0] = 1
 x[1] = 2
 print x
 x.resize(3)
 print x, x._data
 x.resize(4)
 print x, x._data
 if 0:
 x = DynamicArray((2, 2), use_numpy_resize=True)
 x[0, 0] = 0
 x[0, 1] = 1
 x[1, 0] = 2
 x[1, 1] = 3
 print x
 x.resize((3, 2))
 print x
 if 0:
 import time, gc
 # speed comparison between numpy resize and not numpy resize
 max_size = 400*1024*1024/8 # 1GB array
 repeats = 5
 factor = 1.1
 collect = False
 def dotiming(**kwds):
 tottime = 0
 for _ in xrange(repeats):
 sz = 1
 x = DynamicArray(sz, dtype=float, factor=factor, **kwds)
 start = time.time()
 while sz<max_size:
 sz = int(sz*factor)+1
 x.resize(sz)
 if collect:
 gc.collect()
 tottime += time.time()-start
 return tottime/repeats
 print 'numpy resize', dotiming(use_numpy_resize=True)
 print 'orig', dotiming()
 if 0:
 x = DynamicArray(3, dtype=int)
 x[:] = [1, 2, 3]
 print x
 x.resize(5)
 print x
 x.shrink(4)
 print x
 if 0:
 x = DynamicArray((2, 3), dtype=int)
 x[:] = 1
 x.resize((3, 3))
 x[:] += 1
 x.resize((3, 4))
 x[:] += 1
 x.resize((4, 4))
 x[:] += 1
 x.data[:] = x.data**2
 print x.data
 if 0:
 def doprint():
 print x.data.shape, x._data.shape
 print x.data
 print x._data
 print
 x = DynamicArray((2, 3))
 x[:] = 1
 doprint()
 x.resize((2, 3))
 doprint()
 x.resize((3, 3))
 x[:] += 1
 doprint()
 x.resize((3, 4))
 x[:] += 1
 doprint()
 x.resize((4, 4))
 x[:] += 1
 doprint()
 x.resize((9, 7))
 x[:] += 1
 doprint()
 x.resize((4, 4))
 x[:] += 1
 doprint()
 x.shrink((4, 2))
 x[:] += 1
 doprint()

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_images/standalone.cuba_openmp.1.png
w
o
£
E

X9pul UoInaN

_modules/brian2/monitors/ratemonitor.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.monitors.ratemonitor

import numpy as np

from brian2.utils.logger import get_logger
from brian2.core.variables import Variables
from brian2.units.allunits import second, hertz
from brian2.units.fundamentalunits import Unit, Quantity, check_units
from brian2.groups.group import CodeRunner, Group

__all__ = ['PopulationRateMonitor']

logger = get_logger(__name__)

[docs]class PopulationRateMonitor(Group, CodeRunner):
 '''
 Record instantaneous firing rates, averaged across neurons from a
 `NeuronGroup` or other spike source.

 Parameters

 source : (`NeuronGroup`, `SpikeSource`)
 The source of spikes to record.
 name : str, optional
 A unique name for the object, otherwise will use
 ``source.name+'_ratemonitor_0'``, etc.
 codeobj_class : class, optional
 The `CodeObject` class to run code with.

 Notes

 Currently, this monitor can only monitor the instantaneous firing rates at
 each time step of the source clock. Any binning/smoothing of the firing
 rates has to be done manually afterwards.
 '''
 invalidates_magic_network = False
 add_to_magic_network = True
 def __init__(self, source, name='ratemonitor*',
 codeobj_class=None):

 #: The group we are recording from
 self.source = source

 self.codeobj_class = codeobj_class
 CodeRunner.__init__(self, group=self, code='', template='ratemonitor',
 clock=source.clock, when='end', order=0, name=name)

 self.add_dependency(source)

 self.variables = Variables(self)
 # Handle subgroups correctly
 start = getattr(source, 'start', 0)
 stop = getattr(source, 'stop', len(source))
 self.variables.add_constant('_source_start', Unit(1), start)
 self.variables.add_constant('_source_stop', Unit(1), stop)
 self.variables.add_reference('_spikespace', source)
 self.variables.add_dynamic_array('rate', size=0, unit=hertz,
 read_only=True)
 self.variables.add_dynamic_array('t', size=0, unit=second,
 read_only=True)
 self.variables.add_reference('_num_source_neurons', source, 'N')
 self.variables.add_array('N', unit=Unit(1), dtype=np.int32, size=1,
 scalar=True, read_only=True)
 self.variables.create_clock_variables(self._clock,
 prefix='_clock_')
 self._enable_group_attributes()

[docs] def resize(self, new_size):
 self.variables['N'].set_value(new_size)
 self.variables['rate'].resize(new_size)
 self.variables['t'].resize(new_size)

[docs] def reinit(self):
 '''
 Clears all recorded rates
 '''
 raise NotImplementedError()

 @check_units(width=second)
 def smooth_rate(self, window='gaussian', width=None):
 '''
 smooth_rate(self, window='gaussian', width=None)

 Return a smooth version of the population rate.

 Parameters

 window : str, ndarray
 The window to use for smoothing. Can be a string to chose a
 predefined window(``'flat'`` for a rectangular, and ``'gaussian'``
 for a Gaussian-shaped window). In this case the width of the window
 is determined by the ``width`` argument. Note that for the Gaussian
 window, the ``width`` parameter specifies the standard deviation of
 the Gaussian, the width of the actual window is ``4*width + dt``
 (rounded to the nearest dt). For the flat window, the width is
 rounded to the nearest odd multiple of dt to avoid shifting the rate
 in time.
 Alternatively, an arbitrary window can be given as a numpy array
 (with an odd number of elements). In this case, the width in units
 of time depends on the ``dt`` of the simulation, and no ``width``
 argument can be specified. The given window will be automatically
 normalized to a sum of 1.
 width : `Quantity`, optional
 The width of the ``window`` in seconds (for a predefined window).

 Returns

 rate : `Quantity`
 The population rate in Hz, smoothed with the given window. Note that
 the rates are smoothed and not re-binned, i.e. the length of the
 returned array is the same as the length of the ``rate`` attribute
 and can be plotted against the `PopulationRateMonitor` 's ``t``
 attribute.
 '''
 if width is None and isinstance(window, basestring):
 raise TypeError('Need a width when using a predefined window.')
 if width is not None and not isinstance(window, basestring):
 raise TypeError('Can only specify a width for a predefined window')

 if isinstance(window, basestring):
 if window == 'gaussian':
 width_dt = int(np.round(2*width / self.clock.dt))
 # Rounding only for the size of the window, not for the standard
 # deviation of the Gaussian
 window = np.exp(-np.arange(-width_dt,
 width_dt + 1)**2 *
 1. / (2 * (width/self.clock.dt) ** 2))
 elif window == 'flat':
 width_dt = int(width / 2 / self.clock.dt)*2 + 1
 used_width = width_dt * self.clock.dt
 if abs(used_width - width) > 1e-6*self.clock.dt:
 logger.info('width adjusted from %s to %s' % (width, used_width),
 'adjusted_width', once=True)
 window = np.ones(width_dt)
 else:
 raise NotImplementedError('Unknown pre-defined window "%s"' % window)
 else:
 try:
 window = np.asarray(window)
 except TypeError:
 raise TypeError('Cannot use a window of type %s' % type(window))
 if window.ndim != 1:
 raise TypeError('The provided window has to be '
 'one-dimensional.')
 if len(window) % 2 != 1:
 raise TypeError('The window has to have an odd number of '
 'values.')
 return Quantity(np.convolve(self.rate_,
 window * 1. / sum(window),
 mode='same'), dim=hertz.dim)

 def __repr__(self):
 description = '<{classname}, recording {source}>'
 return description.format(classname=self.__class__.__name__,
 source=self.source.name)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_images/frompapers.Rossant_et_al_2011bis.1.png
0.01

0.00
-0.01
-0.02
-0.03
—-0.04
-0.05
-0.06
-0.07

-0.08
0

0.00
-0.01
-0.02
-0.03
—-0.04
-0.05
-0.06
-0.07
-0.08

-0.09
0

uncorrelated inputs: 4 spikes/second

200

400
correlated inputs: 5 s

600

800

pikes/second

1000

200

400

600

800

1000

_modules/brian2/importexport/dictlike.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.importexport.dictlike

'''
Module providing `DictImportExport` and `PandasImportExport` (requiring a
working installation of pandas).
'''
import numpy as np
from importexport import ImportExport

[docs]class DictImportExport(ImportExport):
 '''
 An importer/exporter for variables in format of dict of numpy arrays.
 '''
 @property
 def name(self):
 return "dict"

 @staticmethod
[docs] def export_data(group, variables, units=True, level=0):
 data = {}
 for var in variables:
 data[var] = np.array(group.state(var, use_units=units,
 level=level+1),
 copy=True, subok=True)
 return data

 @staticmethod
[docs] def import_data(group, data, units=True, level=0):
 for key, value in data.iteritems():
 if getattr(group.variables[key], 'read_only'):
 raise TypeError('Variable {} is read-only.'.format(key))
 group.state(key, use_units=units, level=level+1)[:] = value

[docs]class PandasImportExport(ImportExport):
 '''
 An importer/exporter for variables in pandas DataFrame format.
 '''

 @property
 def name(self):
 return "pandas"

 @staticmethod
[docs] def export_data(group, variables, units=True, level=0):
 # pandas is not a default brian2 dependency, only import it here
 try:
 import pandas as pd
 except ImportError as ex:
 raise ImportError('Exporting to pandas needs a working installation'
 ' of pandas. Importing pandas failed: ' + str(ex))
 if units:
 raise NotImplementedError('Units not supported when exporting to '
 'pandas data frame')
 # we take advantage of the already implemented exporter
 data = DictImportExport.export_data(group, variables,
 units=units, level=level)
 pandas_data = pd.DataFrame(data)
 return pandas_data

 @staticmethod
[docs] def import_data(group, data, units=True, level=0):
 # pandas is not a default brian2 dependency, only import it here
 try:
 import pandas as pd
 except ImportError as ex:
 raise ImportError('Exporting to pandas needs a working installation'
 ' of pandas. Importing pandas failed: ' + str(ex))
 if units:
 raise NotImplementedError('Units not supported when importing from '
 'pandas data frame')
 colnames = data.columns
 array_data = data.values
 for e, colname in enumerate(colnames):
 if getattr(group.variables[colname], 'read_only'):
 raise TypeError('Variable {} is read-only.'.format(colname))
 state = group.state(colname, use_units=units, level=level+1)
 state[:] = np.squeeze(array_data[:, e])

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_images/2-intro-to-brian-synapses_image_16_0.png
0

Neuron index

. .
s .
i
H .
g4 .o .
® 2
o .
e Tt S

Source neuron index

_modules/brian2/monitors/spikemonitor.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.monitors.spikemonitor

import numbers

import numpy as np

from brian2.core.variables import Variables
from brian2.core.names import Nameable
from brian2.core.spikesource import SpikeSource
from brian2.units.fundamentalunits import Unit, Quantity
from brian2.groups.group import CodeRunner, Group

__all__ = ['EventMonitor', 'SpikeMonitor']

[docs]class EventMonitor(Group, CodeRunner):
 '''
 Record events from a `NeuronGroup` or another event source.

 The recorded events can be accessed in various ways:
 the attributes `~EventMonitor.i` and `~EventMonitor.t` store all the indices
 and event times, respectively. Alternatively, you can get a dictionary
 mapping neuron indices to event trains, by calling the `event_trains`
 method.

 Parameters

 source : `NeuronGroup`, `SpikeSource`
 The source of events to record.
 event : str
 The name of the event to record
 variables : str or sequence of str, optional
 Which variables to record at the time of the event (in addition to the
 index of the neuron). Can be the name of a variable or a list of names.
 record : bool, optional
 Whether or not to record each event in `i` and `t` (the `count` will
 always be recorded). Defaults to ``True``.
 when : str, optional
 When to record the events, by default records events in the same slot
 where the event is emitted.
 order : int, optional
 The priority of of this group for operations occurring at the same time
 step and in the same scheduling slot. Defaults to the order where the
 event is emitted + 1, i.e. it will be recorded directly afterwards.
 name : str, optional
 A unique name for the object, otherwise will use
 ``source.name+'_eventmonitor_0'``, etc.
 codeobj_class : class, optional
 The `CodeObject` class to run code with.

 See Also

 SpikeMonitor
 '''
 invalidates_magic_network = False
 add_to_magic_network = True

 def __init__(self, source, event, variables=None, record=True,
 when=None, order=None, name='eventmonitor*',
 codeobj_class=None):
 if not isinstance(source, SpikeSource):
 raise TypeError(('%s can only monitor groups producing spikes '
 '(such as NeuronGroup), but the given argument '
 'is of type %s.') % (self.__class__.__name__,
 type(source)))
 #: The source we are recording from
 self.source = source
 #: Whether to record times and indices of events
 self.record = record

 if when is None:
 if order is not None:
 raise ValueError('Cannot specify order if when is not specified.')
 if hasattr(source, 'thresholder'):
 parent_obj = source.thresholder[event]
 else:
 parent_obj = source
 when = parent_obj.when
 order = parent_obj.order + 1
 elif order is None:
 order = 0

 #: The event that we are listening to
 self.event = event

 if variables is None:
 variables = {}
 elif isinstance(variables, basestring):
 variables = {variables}

 #: The additional variables that will be recorded
 self.record_variables = set(variables)

 for variable in variables:
 if variable not in source.variables:
 raise ValueError(("'%s' is not a variable of the recorded "
 "group" % variable))

 if self.record:
 self.record_variables |= {'i', 't'}

 # Some dummy code so that code generation takes care of the indexing
 # and subexpressions
 code = ['_to_record_%s = _source_%s' % (v, v)
 for v in self.record_variables]
 code = '\n'.join(code)

 self.codeobj_class = codeobj_class

 # Since this now works for general events not only spikes, we have to
 # pass the information about which variable to use to the template,
 # it can not longer simply refer to "_spikespace"
 eventspace_name = '_{}space'.format(event)

 # Handle subgroups correctly
 start = getattr(source, 'start', 0)
 stop = getattr(source, 'stop', len(source))

 Nameable.__init__(self, name=name)

 self.variables = Variables(self)
 self.variables.add_reference(eventspace_name, source)

 for variable in self.record_variables:
 source_var = source.variables[variable]
 self.variables.add_reference('_source_%s' % variable,
 source, variable)
 self.variables.add_auxiliary_variable('_to_record_%s' % variable,
 unit=source_var.unit,
 dtype=source_var.dtype)
 self.variables.add_dynamic_array(variable, size=0,
 unit=source_var.unit,
 dtype=source_var.dtype,
 read_only=True)
 self.variables.add_arange('_source_idx', size=len(source))
 self.variables.add_array('count', size=len(source), unit=Unit(1),
 dtype=np.int32, read_only=True,
 index='_source_idx')
 self.variables.add_constant('_source_start', Unit(1), start)
 self.variables.add_constant('_source_stop', Unit(1), stop)
 self.variables.add_array('N', unit=Unit(1), size=1, dtype=np.int32,
 read_only=True, scalar=True)

 record_variables = {varname: self.variables[varname]
 for varname in self.record_variables}
 template_kwds = {'eventspace_variable': source.variables[eventspace_name],
 'record_variables': record_variables,
 'record': self.record}
 needed_variables = {eventspace_name} | self.record_variables
 CodeRunner.__init__(self, group=self, code=code, template='spikemonitor',
 name=None, # The name has already been initialized
 clock=source.clock, when=when,
 order=order, needed_variables=needed_variables,
 template_kwds=template_kwds)

 self.variables.create_clock_variables(self._clock,
 prefix='_clock_')

 self.add_dependency(source)
 self._enable_group_attributes()

[docs] def resize(self, new_size):
 # Note that this does not set N, this has to be done in the template
 # since we use a restricted pointer to access it (which promises that
 # we only change the value through this pointer)
 for variable in self.record_variables:
 self.variables[variable].resize(new_size)

[docs] def reinit(self):
 '''
 Clears all recorded spikes
 '''
 raise NotImplementedError()

 @property
 def it(self):
 '''
 Returns the pair (`i`, `t`).
 '''
 if not self.record:
 raise AttributeError('Indices and times have not been recorded.'
 'Set the record argument to True to record '
 'them.')
 return self.i, self.t

 @property
 def it_(self):
 '''
 Returns the pair (`i`, `t_`).
 '''
 if not self.record:
 raise AttributeError('Indices and times have not been recorded.'
 'Set the record argument to True to record '
 'them.')

 return self.i, self.t_

 def _values_dict(self, first_pos, sort_indices, used_indices, var):
 sorted_values = self.state(var, use_units=False)[sort_indices]
 dim = self.variables[var].unit.dim
 event_values = {}
 current_pos = 0 # position in the all_indices array
 for idx in xrange(len(self.source)):
 if current_pos < len(used_indices) and used_indices[current_pos] == idx:
 if current_pos < len(used_indices) - 1:
 event_values[idx] = Quantity(sorted_values[
 first_pos[current_pos]:
 first_pos[current_pos + 1]],
 dim=dim, copy=False)
 else:
 event_values[idx] = Quantity(
 sorted_values[first_pos[current_pos]:],
 dim=dim, copy=False)
 current_pos += 1
 else:
 event_values[idx] = Quantity([], dim=dim)
 return event_values

[docs] def values(self, var):
 '''
 Return a dictionary mapping neuron indices to arrays of variable values
 at the time of the events (sorted by time).

 Parameters

 var : str
 The name of the variable.

 Returns

 values : dict
 Dictionary mapping each neuron index to an array of variable
 values at the time of the events

 Examples

 >>> from brian2 import *
 >>> G = NeuronGroup(2, """dv/dt = 100*Hz : 1
 ... v_th : 1""", threshold='v>v_th', reset='v=0')
 >>> G.v_th = [0.5, 1]
 >>> mon = EventMonitor(G, event='spike', variables='v')
 >>> run(20*ms)
 >>> v_values = mon.values('v')
 >>> v_values[0]
 array([0.5, 0.5, 0.5, 0.5])
 >>> v_values[1]
 array([1., 1.])
 '''
 if not self.record:
 raise AttributeError('Indices and times have not been recorded.'
 'Set the record argument to True to record '
 'them.')
 indices = self.i[:]
 # We have to make sure that the sort is stable, otherwise our spike
 # times do not necessarily remain sorted.
 sort_indices = np.argsort(indices, kind='mergesort')
 used_indices, first_pos = np.unique(self.i[:][sort_indices],
 return_index=True)
 return self._values_dict(first_pos, sort_indices, used_indices, var)

[docs] def all_values(self):
 '''
 Return a dictionary mapping recorded variable names (including ``t``)
 to a dictionary mapping neuron indices to arrays of variable values at
 the time of the events (sorted by time). This is equivalent to (but more
 efficient than) calling `values` for each variable and storing the
 result in a dictionary.

 Returns

 all_values : dict
 Dictionary mapping variable names to dictionaries which themselves
 are mapping neuron indicies to arrays of variable values at the
 time of the events.

 Examples

 >>> from brian2 import *
 >>> G = NeuronGroup(2, """dv/dt = 100*Hz : 1
 ... v_th : 1""", threshold='v>v_th', reset='v=0')
 >>> G.v_th = [0.5, 1]
 >>> mon = EventMonitor(G, event='spike', variables='v')
 >>> run(20*ms)
 >>> all_values = mon.all_values()
 >>> all_values['t'][0]
 array([4.9, 9.9, 14.9, 19.9]) * msecond
 >>> all_values['v'][0]
 array([0.5, 0.5, 0.5, 0.5])
 '''
 if not self.record:
 raise AttributeError('Indices and times have not been recorded.'
 'Set the record argument to True to record '
 'them.')
 indices = self.i[:]
 sort_indices = np.argsort(indices)
 used_indices, first_pos = np.unique(self.i[:][sort_indices],
 return_index=True)
 all_values_dict = {}
 for varname in self.record_variables - {'i'}:
 all_values_dict[varname] = self._values_dict(first_pos,
 sort_indices,
 used_indices,
 varname)
 return all_values_dict

[docs] def event_trains(self):
 '''
 Return a dictionary mapping event indices to arrays of event times.
 Equivalent to calling ``values('t')``.

 Returns

 event_trains : dict
 Dictionary that stores an array with the event times for each
 neuron index.

 See Also

 SpikeMonitor.spike_trains
 '''
 return self.values('t')

 @property
 def num_events(self):
 '''
 Returns the total number of recorded events.
 '''
 return self.N[:]

 def __repr__(self):
 description = '<{classname}, recording event "{event}" from {source}>'
 return description.format(classname=self.__class__.__name__,
 event=self.event,
 source=self.group.name)

[docs]class SpikeMonitor(EventMonitor):
 '''
 Record spikes from a `NeuronGroup` or other spike source.

 The recorded spikes can be accessed in various ways (see Examples below):
 the attributes `~SpikeMonitor.i` and `~SpikeMonitor.t` store all the indices
 and spike times, respectively. Alternatively, you can get a dictionary
 mapping neuron indices to spike trains, by calling the `spike_trains`
 method. If you record additional variables with the ``variables`` argument,
 these variables can be accessed by their name (see Examples).

 Parameters

 source : (`NeuronGroup`, `SpikeSource`)
 The source of spikes to record.
 variables : str or sequence of str, optional
 Which variables to record at the time of the spike (in addition to the
 index of the neuron). Can be the name of a variable or a list of names.
 record : bool, optional
 Whether or not to record each spike in `i` and `t` (the `count` will
 always be recorded). Defaults to ``True``.
 when : str, optional
 When to record the events, by default records events in the same slot
 where the event is emitted.
 order : int, optional
 The priority of of this group for operations occurring at the same time
 step and in the same scheduling slot. Defaults to the order where the
 event is emitted + 1, i.e. it will be recorded directly afterwards.
 name : str, optional
 A unique name for the object, otherwise will use
 ``source.name+'_spikemonitor_0'``, etc.
 codeobj_class : class, optional
 The `CodeObject` class to run code with.

 Examples

 >>> from brian2 import *
 >>> spikes = SpikeGeneratorGroup(3, [0, 1, 2], [0, 1, 2]*ms)
 >>> spike_mon = SpikeMonitor(spikes)
 >>> net = Network(spikes, spike_mon)
 >>> net.run(3*ms)
 >>> print(spike_mon.i[:])
 [0 1 2]
 >>> print(spike_mon.t[:])
 [0. 1. 2.] ms
 >>> print(spike_mon.t_[:])
 [0. 0.001 0.002]
 >>> G = NeuronGroup(1, """dv/dt = (1 - v)/(10*ms) : 1
 ... dv_th/dt = (0.5 - v_th)/(20*ms) : 1""",
 ... threshold='v>v_th',
 ... reset='v = 0; v_th += 0.1')
 >>> crossings = SpikeMonitor(G, variables='v', name='crossings')
 >>> net = Network(G, crossings)
 >>> net.run(10*ms)
 >>> crossings.t
 <crossings.t: array([0. , 1.4, 4.6, 9.7]) * msecond>
 >>> crossings.v
 <crossings.v: array([0.00995017, 0.13064176, 0.27385096, 0.39950442])>
 '''
 def __init__(self, source, variables=None, record=True, when=None,
 order=None, name='spikemonitor*', codeobj_class=None):
 super(SpikeMonitor, self).__init__(source, event='spike',
 variables=variables, record=record,
 when=when, order=order, name=name,
 codeobj_class=codeobj_class)

 @property
 def num_spikes(self):
 '''
 Returns the total number of recorded spikes.
 '''
 return self.num_events

 # We "re-implement" the following functions only to get more specific
 # doc strings (and to make sure that the methods are included in the
 # reference documentation for SpikeMonitor).

[docs] def spike_trains(self):
 '''
 Return a dictionary mapping spike indices to arrays of spike times.

 Returns

 spike_trains : dict
 Dictionary that stores an array with the spike times for each
 neuron index.

 Examples

 >>> from brian2 import *
 >>> spikes = SpikeGeneratorGroup(3, [0, 1, 2], [0, 1, 2]*ms)
 >>> spike_mon = SpikeMonitor(spikes)
 >>> run(3*ms)
 >>> spike_trains = spike_mon.spike_trains()
 >>> spike_trains[1]
 array([1.]) * msecond
 '''
 return self.event_trains()

[docs] def values(self, var):
 '''
 Return a dictionary mapping neuron indices to arrays of variable values
 at the time of the spikes (sorted by time).

 Parameters

 var : str
 The name of the variable.

 Returns

 values : dict
 Dictionary mapping each neuron index to an array of variable
 values at the time of the spikes.

 Examples

 >>> from brian2 import *
 >>> G = NeuronGroup(2, """dv/dt = 100*Hz : 1
 ... v_th : 1""", threshold='v>v_th', reset='v=0')
 >>> G.v_th = [0.5, 1]
 >>> mon = SpikeMonitor(G, variables='v')
 >>> run(20*ms)
 >>> v_values = mon.values('v')
 >>> v_values[0]
 array([0.5, 0.5, 0.5, 0.5])
 >>> v_values[1]
 array([1., 1.])
 '''
 return super(SpikeMonitor, self).values(var)

[docs] def all_values(self):
 '''
 Return a dictionary mapping recorded variable names (including ``t``)
 to a dictionary mapping neuron indices to arrays of variable values at
 the time of the spikes (sorted by time). This is equivalent to (but more
 efficient than) calling `values` for each variable and storing the
 result in a dictionary.

 Returns

 all_values : dict
 Dictionary mapping variable names to dictionaries which themselves
 are mapping neuron indicies to arrays of variable values at the
 time of the spikes.

 Examples

 >>> from brian2 import *
 >>> G = NeuronGroup(2, """dv/dt = 100*Hz : 1
 ... v_th : 1""", threshold='v>v_th', reset='v=0')
 >>> G.v_th = [0.5, 1]
 >>> mon = SpikeMonitor(G, variables='v')
 >>> run(20*ms)
 >>> all_values = mon.all_values()
 >>> all_values['t'][0]
 array([4.9, 9.9, 14.9, 19.9]) * msecond
 >>> all_values['v'][0]
 array([0.5, 0.5, 0.5, 0.5])
 '''
 return super(SpikeMonitor, self).all_values()

 def __repr__(self):
 description = '<{classname}, recording from {source}>'
 return description.format(classname=self.__class__.__name__,
 source=self.group.name)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_images/morphology_random_section_compartment_1.png

_modules/brian2/monitors/statemonitor.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.monitors.statemonitor

import collections
import numbers

import numpy as np

from brian2.core.variables import (Variables, Subexpression, get_dtype)
from brian2.groups.group import Group, CodeRunner
from brian2.utils.logger import get_logger
from brian2.units.fundamentalunits import Unit, Quantity
from brian2.units.allunits import second

__all__ = ['StateMonitor']

logger = get_logger(__name__)

[docs]class StateMonitorView(object):
 def __init__(self, monitor, item):
 self.monitor = monitor
 self.item = item
 self.indices = self._calc_indices(item)
 self._group_attribute_access_active = True

 def __getattr__(self, item):
 # We do this because __setattr__ and __getattr__ are not active until
 # _group_attribute_access_active attribute is set, and if it is set,
 # then __getattr__ will not be called. Therefore, if getattr is called
 # with this name, it is because it hasn't been set yet and so this
 # method should raise an AttributeError to agree that it hasn't been
 # called yet.
 if item == '_group_attribute_access_active':
 raise AttributeError
 if not hasattr(self, '_group_attribute_access_active'):
 raise AttributeError

 mon = self.monitor
 if item == 't':
 return Quantity(mon.variables['t'].get_value(), dim=second.dim)
 elif item == 't_':
 return mon.variables['t'].get_value()
 elif item in mon.record_variables:
 unit = mon.variables[item].unit
 return Quantity(mon.variables[item].get_value().T[self.indices],
 dim=unit.dim, copy=True)
 elif item.endswith('_') and item[:-1] in mon.record_variables:
 return mon.variables[item[:-1]].get_value().T[self.indices].copy()
 else:
 raise AttributeError('Unknown attribute %s' % item)

 def _calc_indices(self, item):
 '''
 Convert the neuron indices to indices into the stored values. For example, if neurons [0, 5, 10] have been
 recorded, [5, 10] is converted to [1, 2].
 '''
 dtype = get_dtype(item)
 # scalar value
 if np.issubdtype(dtype, np.int) and not isinstance(item, np.ndarray):
 indices = np.nonzero(self.monitor.record == item)[0]
 if len(indices) == 0:
 raise IndexError('Index number %d has not been recorded' % item)
 return indices[0]

 if self.monitor.record_all:
 return item
 indices = []
 for index in item:
 if index in self.monitor.record:
 indices.append(np.nonzero(self.monitor.record == index)[0][0])
 else:
 raise IndexError('Index number %d has not been recorded' % index)
 return np.array(indices)

 def __repr__(self):
 description = '<{classname}, giving access to elements {elements} recorded by {monitor}>'
 return description.format(classname=self.__class__.__name__,
 elements=repr(self.item),
 monitor=self.monitor.name)

[docs]class StateMonitor(Group, CodeRunner):
 '''
 Record values of state variables during a run

 To extract recorded values after a run, use the ``t`` attribute for the
 array of times at which values were recorded, and variable name attribute
 for the values. The values will have shape ``(len(indices), len(t))``,
 where ``indices`` are the array indices which were recorded. When indexing
 the `StateMonitor` directly, the returned object can be used to get the
 recorded values for the specified indices, i.e. the indexing semantic
 refers to the indices in ``source``, not to the relative indices of the
 recorded values. For example, when recording only neurons with even numbers,
 `mon[[0, 2]].v` will return the values for neurons 0 and 2, whereas
 `mon.v[[0, 2]]` will return the values for the first and third *recorded*
 neurons, i.e. for neurons 0 and 4.

 Parameters

 source : `Group`
 Which object to record values from.
 variables : str, sequence of str, True
 Which variables to record, or ``True`` to record all variables
 (note that this may use a great deal of memory).
 record : bool, sequence of ints
 Which indices to record, nothing is recorded for ``False``,
 everything is recorded for ``True`` (warning: may use a great deal of
 memory), or a specified subset of indices.
 dt : `Quantity`, optional
 The time step to be used for the monitor. Cannot be combined with
 the `clock` argument.
 clock : `Clock`, optional
 The update clock to be used. If neither a clock, nor the ``dt`` argument
 is specified, the clock of the `source` will be used.
 when : str, optional
 At which point during a time step the values should be recorded.
 Defaults to ``'start'``.
 order : int, optional
 The priority of of this group for operations occurring at the same time
 step and in the same scheduling slot. Defaults to 0.
 name : str, optional
 A unique name for the object, otherwise will use
 ``source.name+'statemonitor_0'``, etc.
 codeobj_class : `CodeObject`, optional
 The `CodeObject` class to create.

 Examples

 Record all variables, first 5 indices::

 eqs = """
 dV/dt = (2-V)/(10*ms) : 1
 """
 threshold = 'V>1'
 reset = 'V = 0'
 G = NeuronGroup(100, eqs, threshold=threshold, reset=reset)
 G.V = rand(len(G))
 M = StateMonitor(G, True, record=range(5))
 run(100*ms)
 plot(M.t, M.V.T)
 show()

 Notes

 Since this monitor by default records in the ``'start'`` time slot,
 recordings of the membrane potential in integrate-and-fire models may look
 unexpected: the recorded membrane potential trace will never be above
 threshold in an integrate-and-fire model, because the reset statement will
 have been applied already. Set the ``when`` keyword to a different value if
 this is not what you want.

 Note that ``record=True`` only works in runtime mode for synaptic variables.
 This is because the actual array of indices has to be calculated and this is
 not possible in standalone mode, where the synapses have not been created
 yet at this stage. Consider using an explicit array of indices instead,
 i.e. something like ``record=np.arange(n_synapses)``.
 '''
 invalidates_magic_network = False
 add_to_magic_network = True
 def __init__(self, source, variables, record, dt=None, clock=None,
 when='start', order=0, name='statemonitor*', codeobj_class=None):
 self.source = source
 # Make the monitor use the explicitly defined namespace of its source
 # group (if it exists)
 self.namespace = getattr(source, 'namespace', None)
 self.codeobj_class = codeobj_class

 # run by default on source clock at the end
 if dt is None and clock is None:
 clock = source.clock

 # variables should always be a list of strings
 if variables is True:
 variables = source.equations.names
 elif isinstance(variables, str):
 variables = [variables]
 #: The variables to record
 self.record_variables = variables

 # record should always be an array of ints
 self.record_all = False
 if hasattr(record, '_indices'):
 # The ._indices method always returns absolute indices
 # If the source is already a subgroup of another group, we therefore
 # have to shift the indices to become relative to the subgroup
 record = record._indices() - getattr(source, '_offset', 0)
 if record is True:
 self.record_all = True
 try:
 record = np.arange(len(source), dtype=np.int32)
 except NotImplementedError:
 # In standalone mode, this is not possible for synaptic
 # variables because the number of synapses is not defined yet
 raise NotImplementedError(('Cannot determine the actual '
 'indices to record for record=True. '
 'This can occur for example in '
 'standalone mode when trying to '
 'record a synaptic variable. '
 'Consider providing an explicit '
 'array of indices for the record '
 'argument.'))
 elif record is False:
 record = np.array([], dtype=np.int32)
 elif isinstance(record, numbers.Number):
 record = np.array([record], dtype=np.int32)
 else:
 record = np.asarray(record, dtype=np.int32)

 #: The array of recorded indices
 self.record = record
 self.n_indices = len(record)

 # Some dummy code so that code generation takes care of the indexing
 # and subexpressions
 code = ['_to_record_%s = _source_%s' % (v, v)
 for v in variables]
 code = '\n'.join(code)

 CodeRunner.__init__(self, group=self, template='statemonitor',
 code=code, name=name,
 clock=clock,
 dt=dt,
 when=when,
 order=order,
 check_units=False)

 self.add_dependency(source)

 # Setup variables
 self.variables = Variables(self)

 self.variables.add_dynamic_array('t', size=0, unit=second,
 constant=False)
 self.variables.add_array('N', unit=Unit(1), dtype=np.int32,
 size=1, scalar=True, read_only=True)
 self.variables.add_array('_indices', size=len(self.record),
 unit=Unit(1), dtype=self.record.dtype,
 constant=True, read_only=True,
 values=self.record)
 self.variables.create_clock_variables(self._clock,
 prefix='_clock_')
 for varname in variables:
 var = source.variables[varname]
 if var.scalar and len(self.record) > 1:
 logger.warn(('Variable %s is a shared variable but it will be '
 'recorded once for every target.' % varname),
 once=True)
 index = source.variables.indices[varname]
 self.variables.add_reference('_source_%s' % varname,
 source, varname, index=index)
 if not index in ('_idx', '0') and index not in variables:
 self.variables.add_reference(index, source)
 self.variables.add_dynamic_array(varname,
 size=(0, len(self.record)),
 resize_along_first=True,
 unit=var.unit,
 dtype=var.dtype,
 constant=False,
 read_only=True)

 for varname in variables:
 var = self.source.variables[varname]
 self.variables.add_auxiliary_variable('_to_record_' + varname,
 unit=var.unit,
 dtype=var.dtype,
 scalar=var.scalar)

 self.recorded_variables = dict([(varname, self.variables[varname])
 for varname in variables])
 recorded_names = [varname for varname in variables]

 self.needed_variables = recorded_names
 self.template_kwds = {'_recorded_variables': self.recorded_variables}
 self._enable_group_attributes()

[docs] def resize(self, new_size):
 self.variables['N'].set_value(new_size)
 self.variables['t'].resize(new_size)

 for var in self.recorded_variables.values():
 var.resize((new_size, self.n_indices))

[docs] def reinit(self):
 raise NotImplementedError()

 def __getitem__(self, item):
 dtype = get_dtype(item)
 if np.issubdtype(dtype, np.int):
 return StateMonitorView(self, item)
 elif isinstance(item, collections.Sequence):
 index_array = np.array(item)
 if not np.issubdtype(index_array.dtype, np.int):
 raise TypeError('Index has to be an integer or a sequence '
 'of integers')
 return StateMonitorView(self, item)
 elif hasattr(item, '_indices'):
 # objects that support the indexing interface will return absolute
 # indices but here we need relative ones
 # TODO: How to we prevent the use of completely unrelated objects here?
 source_offset = getattr(self.source, '_offset', 0)
 return StateMonitorView(self, item._indices() - source_offset)
 else:
 raise TypeError('Cannot use object of type %s as an index'
 % type(item))

 def __getattr__(self, item):
 # We do this because __setattr__ and __getattr__ are not active until
 # _group_attribute_access_active attribute is set, and if it is set,
 # then __getattr__ will not be called. Therefore, if getattr is called
 # with this name, it is because it hasn't been set yet and so this
 # method should raise an AttributeError to agree that it hasn't been
 # called yet.
 if item == '_group_attribute_access_active':
 raise AttributeError
 if not hasattr(self, '_group_attribute_access_active'):
 raise AttributeError
 if item in self.record_variables:
 unit = self.variables[item].unit
 return Quantity(self.variables[item].get_value().T,
 dim=unit.dim, copy=True)
 elif item.endswith('_') and item[:-1] in self.record_variables:
 return self.variables[item[:-1]].get_value().T
 else:
 return Group.__getattr__(self, item)

 def __repr__(self):
 description = '<{classname}, recording {variables} from {source}>'
 return description.format(classname=self.__class__.__name__,
 variables=repr(self.record_variables),
 source=self.source.name)

[docs] def record_single_timestep(self):
 '''
 Records a single time step. Useful for recording the values at the end
 of the simulation -- otherwise a `StateMonitor` will not record the
 last simulated values since its ``when`` attribute defaults to
 ``'start'``, i.e. the last recording is at the *beginning* of the last
 time step.

 Notes

 This function will only work if the `StateMonitor` has been already run,
 but a run with a length of ``0*ms`` does suffice.

 Examples

 >>> from brian2 import *
 >>> G = NeuronGroup(1, 'dv/dt = -v/(5*ms) : 1')
 >>> G.v = 1
 >>> mon = StateMonitor(G, 'v', record=True)
 >>> run(0.5*ms)
 >>> mon.v
 array([[1. , 0.98019867, 0.96078944, 0.94176453, 0.92311635]])
 >>> mon.t[:]
 array([0., 100., 200., 300., 400.]) * usecond
 >>> G.v[:] # last value had not been recorded
 array([0.90483742])
 >>> mon.record_single_timestep()
 >>> mon.t[:]
 array([0., 100., 200., 300., 400., 500.]) * usecond
 >>> mon.v[:]
 array([[1. , 0.98019867, 0.96078944, 0.94176453, 0.92311635,
 0.90483742]])
 '''
 if self.codeobj is None:
 raise TypeError('Can only record a single time step after the '
 'network has been run once.')
 self.codeobj()

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_images/frompapers.Rothman_Manis_2003.1.png
60

40

20

v (mv)

-20

—40

-60

-80
40 60 80 100 120 140 160

t(ms)

_modules/brian2/core/operations.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.core.operations

import inspect

from brian2.core.base import BrianObject

__all__ = ['NetworkOperation', 'network_operation']

[docs]class NetworkOperation(BrianObject):
 """Object with function that is called every time step.

 Parameters

 function : function
 The function to call every time step, should take either no arguments
 in which case it is called as ``function()`` or one argument, in which
 case it is called with the current `Clock` time (`Quantity`).
 dt : `Quantity`, optional
 The time step to be used for the simulation. Cannot be combined with
 the `clock` argument.
 clock : `Clock`, optional
 The update clock to be used. If neither a clock, nor the `dt` argument
 is specified, the `defaultclock` will be used.
 when : str, optional
 In which scheduling slot to execute the operation during a time step.
 Defaults to ``'start'``.
 order : int, optional
 The priority of this operation for operations occurring at the same time
 step and in the same scheduling slot. Defaults to 0.

 See Also

 network_operation, Network, BrianObject
 """
 add_to_magic_network = True
 def __init__(self, function, dt=None, clock=None, when='start', order=0):
 BrianObject.__init__(self, dt=dt, clock=clock, when=when, order=order, name='networkoperation*')

 #: The function to be called each time step
 self.function = function

 is_method = inspect.ismethod(function)

 if (hasattr(function, 'func_code') or # Python 2
 hasattr(function, '__code__')): # Python 3:
 argcount = function.func_code.co_argcount
 if is_method:
 if argcount == 2:
 self._has_arg = True
 elif argcount == 1:
 self._has_arg = False
 else:
 raise TypeError(('Method "%s" cannot be used as a network '
 'operation, it needs to have either only '
 '"self" or "self, t" as arguments, but it '
 'has %d arguments.' % (function.__name__,
 argcount)))
 else:
 if (argcount >= 1 and
 function.func_code.co_varnames[0] == 'self'):
 raise TypeError('The first argument of the function "%s" '
 'is "self", suggesting it is an instance '
 'method and not a function. Did you use '
 '@network_operation on a class method? '
 'This will not work, explicitly create a '
 'NetworkOperation object instead -- see '
 'the documentation for more '
 'details.' % function.__name__)
 if argcount == 1:
 self._has_arg = True
 elif argcount == 0:
 self._has_arg = False
 else:
 raise TypeError(('Function "%s" cannot be used as a '
 'network operation, it needs to have '
 'either only "t" as an argument or have '
 'no arguments, but it has %d '
 'arguments.' % (function.__name__,
 argcount)))
 else:
 self._has_arg = False

[docs] def run(self):
 if self._has_arg:
 self.function(self._clock.t)
 else:
 self.function()

[docs]def network_operation(*args, **kwds):
 """
 network_operation(when=None)

 Decorator to make a function get called every time step of a simulation.

 The function being decorated should either have no arguments, or a single
 argument which will be called with the current time ``t``.

 Parameters

 dt : `Quantity`, optional
 The time step to be used for the simulation. Cannot be combined with
 the `clock` argument.
 clock : `Clock`, optional
 The update clock to be used. If neither a clock, nor the `dt` argument
 is specified, the `defaultclock` will be used.
 when : str, optional
 In which scheduling slot to execute the operation during a time step.
 Defaults to ``'start'``.
 order : int, optional
 The priority of this operation for operations occurring at the same time
 step and in the same scheduling slot. Defaults to 0.

 Examples

 Print something each time step:
 >>> from brian2 import *
 >>> @network_operation
 ... def f():
 ... print('something')
 ...
 >>> net = Network(f)

 Print the time each time step:

 >>> @network_operation
 ... def f(t):
 ... print('The time is', t)
 ...
 >>> net = Network(f)

 Specify a dt, etc.:

 >>> @network_operation(dt=0.5*ms, when='end')
 ... def f():
 ... print('This will happen at the end of each timestep.')
 ...
 >>> net = Network(f)

 Notes

 Converts the function into a `NetworkOperation`.

 If using the form::

 @network_operations(when='end')
 def f():
 ...

 Then the arguments to network_operation must be keyword arguments.

 See Also

 NetworkOperation, Network, BrianObject
 """
 # Notes on this decorator:
 # Normally, a decorator comes in two types, with or without arguments. If
 # it has no arguments, e.g.
 # @decorator
 # def f():
 # ...
 # then the decorator function is defined with an argument, and that
 # argument is the function f. In this case, the decorator function
 # returns a new function in place of f.
 #
 # However, you can also define:
 # @decorator(arg)
 # def f():
 # ...
 # in which case the argument to the decorator function is arg, and the
 # decorator function returns a 'function factory', that is a callable
 # object that takes a function as argument and returns a new function.
 #
 # It might be clearer just to note that the first form above is equivalent
 # to:
 # f = decorator(f)
 # and the second to:
 # f = decorator(arg)(f)
 #
 # In this case, we're allowing the decorator to be called either with or
 # without an argument, so we have to look at the arguments and determine
 # if it's a function argument (in which case we do the first case above),
 # or if the arguments are arguments to the decorator, in which case we
 # do the second case above.
 #
 # Here, the 'function factory' is the locally defined class
 # do_network_operation, which is a callable object that takes a function
 # as argument and returns a NetworkOperation object.
 class do_network_operation(object):
 def __init__(self, **kwds):
 self.kwds = kwds
 def __call__(self, f):
 new_network_operation = NetworkOperation(f, **self.kwds)
 # Depending on whether we were called as @network_operation or
 # @network_operation(...) we need different levels, the level is
 # 2 in the first case and 1 in the second case (because in the
 # first case we go originalcaller->network_operation->do_network_operation
 # and in the second case we go originalcaller->do_network_operation
 # at the time when this method is called).
 new_network_operation.__name__ = f.__name__
 new_network_operation.__doc__ = f.__doc__
 new_network_operation.__dict__.update(f.__dict__)
 return new_network_operation
 if len(args)==1 and callable(args[0]):
 # We're in case (1), the user has written:
 # @network_operation
 # def f():
 # ...
 # and the single argument to the decorator is the function f
 return do_network_operation()(args[0])
 else:
 # We're in case (2), the user has written:
 # @network_operation(...)
 # def f():
 # ...
 # and the arguments must be keyword arguments
 return do_network_operation(**kwds)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_images/morphology_deterministic_coords.png
150

100

50

(w) A

=50

-100

-150

100 150

50

-100 =50

-150

X (zm)

_modules/brian2/core/spikesource.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.core.spikesource

__all__ = ['SpikeSource']

[docs]class SpikeSource(object):
 '''
 A source of spikes.

 An object that can be used as a source of spikes for objects such as
 `SpikeMonitor`, `Synapses`, etc.

 The defining properties of `SpikeSource` are that it should have:

 * A length that can be extracted with ``len(obj)``, where the maximum spike
 index possible is ``len(obj)-1``.
 * An attribute `spikes`, an array of ints each from 0 to
 ``len(obj)-1`` with no repeats (but possibly not in sorted order). This
 should be updated each time step.
 * A `clock` attribute, this will be used as the default clock for objects
 with this as a source.

 .. attribute:: spikes

 An array of ints, each from 0 to ``len(obj)-1`` with no repeats (but
 possibly not in sorted order). Updated each time step.

 .. attribute:: clock

 The clock on which the spikes will be updated.
 '''
 # No implementation, just used for documentation purposes.
 pass

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_images/2-intro-to-brian-synapses_image_18_1.png
p=05

1

e

Torget

Source

1

xaput uoinay

Source neuron index

_modules/brian2/core/magic.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.core.magic

import weakref
import inspect
import itertools
import gc

from brian2.units.fundamentalunits import check_units
from brian2.units.allunits import second
from brian2.utils.logger import get_logger

from .network import Network
from .base import BrianObject, device_override

__all__ = ['MagicNetwork', 'magic_network',
 'MagicError',
 'run', 'stop', 'collect', 'store', 'restore',
 'start_scope',
]

logger = get_logger(__name__)

def _get_contained_objects(obj):
 '''
 Helper function to recursively get all contained objects.

 Parameters

 obj : `BrianObject`
 An object that (potentially) contains other objects, e.g. a
 `NeuronGroup` contains a `StateUpdater`, etc.

 Returns

 l : list of `BrianObject`
 A list of all the objects contained in `obj`
 '''
 l = []
 contained_objects = getattr(obj, 'contained_objects', [])
 l.extend(contained_objects)
 for contained_obj in contained_objects:
 l.extend(_get_contained_objects(contained_obj))

 return l

[docs]def get_objects_in_namespace(level):
 '''
 Get all the objects in the current namespace that derive from `BrianObject`.
 Used to determine the objects for the `MagicNetwork`.

 Parameters

 level : int, optional
 How far to go back to get the locals/globals. Each function/method
 call should add ``1`` to this argument, functions/method with a
 decorator have to add ``2``.

 Returns

 objects : set
 A set with weak references to the `BrianObject`\ s in the namespace.
 '''
 # Get the locals and globals from the stack frame
 objects = set()
 frame = inspect.stack()[level + 1][0]
 for k, v in itertools.chain(frame.f_globals.iteritems(),
 frame.f_locals.iteritems()):
 # We are only interested in numbers and functions, not in
 # everything else (classes, modules, etc.)
 if isinstance(v, BrianObject):
 objects.add(weakref.ref(v))
 del frame
 return objects

[docs]class MagicError(Exception):
 '''
 Error that is raised when something goes wrong in `MagicNetwork`

 See notes to `MagicNetwork` for more details.
 '''
 pass

[docs]class MagicNetwork(Network):
 '''
 `Network` that automatically adds all Brian objects

 In order to avoid bugs, this class will occasionally raise
 `MagicError` when the intent of the user is not clear. See the notes
 below for more details on this point. If you persistently see this
 error, then Brian is not able to safely guess what you intend to do, and
 you should use a `Network` object and call `Network.run` explicitly.

 Note that this class cannot be instantiated by the user, there can be only
 one instance `magic_network` of `MagicNetwork`.

 Notes

 All Brian objects that are visible at the point of the `run` call will be
 included in the network. This class is designed to work in the following
 two major use cases:

 1. You create a collection of Brian objects, and call `run` to run the
 simulation. Subsequently, you may call `run` again to run it again for
 a further duration. In this case, the `Network.t` time will start at 0
 and for the second call to `run` will continue from the end of the
 previous run.

 2. You have a loop in which at each iteration, you create some Brian
 objects and run a simulation using them. In this case, time is reset to
 0 for each call to `run`.

 In any other case, you will have to explicitly create a `Network` object
 yourself and call `Network.run` on this object. Brian has a built in
 system to guess which of the cases above applies and behave correctly.
 When it is not possible to safely guess which case you are in, it raises
 `MagicError`. The rules for this guessing system are explained below.

 If a simulation consists only of objects that have not been run, it will
 assume that you want to start a new simulation. If a simulation only
 consists of objects that have been simulated in the previous `run` call,
 it will continue that simulation at the previous time.

 If neither of these two situations apply, i.e., the network consists of a
 mix of previously run objects and new objects, an error will be raised.

 In these checks, "non-invalidating" objects (i.e. objects that have
 `BrianObject.invalidates_magic_network` set to ``False``) are ignored, e.g.
 creating new monitors is always possible.

 See Also

 Network, collect, run, stop, store, restore
 '''

 _already_created = False

 def __init__(self):
 if MagicNetwork._already_created:
 raise ValueError("There can be only one MagicNetwork.")
 MagicNetwork._already_created = True

 super(MagicNetwork, self).__init__(name='magicnetwork*')

 self._previous_refs = set()

[docs] def add(self, *objs):
 '''
 You cannot add objects directly to `MagicNetwork`
 '''
 raise MagicError("Cannot directly modify MagicNetwork")

[docs] def remove(self, *objs):
 '''
 You cannot remove objects directly from `MagicNetwork`
 '''
 raise MagicError("Cannot directly modify MagicNetwork")

 def _update_magic_objects(self, level):
 objects = collect(level+1)
 contained_objects = set()
 for obj in objects:
 for contained in _get_contained_objects(obj):
 contained_objects.add(contained)
 objects |= contained_objects

 # check whether we should restart time, continue time, or raise an
 # error
 some_known = False
 some_new = False
 for obj in objects:
 if obj._network == self.id:
 some_known = True # we are continuing a previous run
 elif obj._network is None and obj.invalidates_magic_network:
 some_new = True
 # Note that the inclusion of objects that have been run as part of
 # other objects will lead to an error in `Network.before_run`, we
 # do not have to deal with this case here.

 if some_known and some_new:
 raise MagicError(('The magic network contains a mix of objects '
 'that has been run before and new objects, Brian '
 'does not know whether you want to start a new '
 'simulation or continue an old one. Consider '
 'explicitly creating a Network object. Also note '
 'that you can find out which objects will be '
 'included in a magic network with the '
 'collect() function.'))
 elif some_new: # all objects are new, start a new simulation
 # reset time
 self.t_ = 0.0
 # reset id -- think of this as a new Network
 self.assign_id()

 for obj in objects:
 if obj._network is None:
 obj._network = self.id

 self.objects[:] = objects
 logger.debug("Updated MagicNetwork to include {numobjs} objects "
 "with names {names}".format(
 numobjs=len(self.objects),
 names=', '.join(obj.name for obj in self.objects)),
 name_suffix='magic_objects')

[docs] def check_dependencies(self):
 all_ids = set([obj.id for obj in self.objects])
 for obj in self.objects:
 if not obj.active:
 continue # object is already inactive, no need to check it
 for dependency in obj._dependencies:
 if not dependency in all_ids:
 logger.warn(('"%s" has been included in the network but '
 'not the object on which it depends.'
 'Setting "%s" to inactive.') % (obj.name,
 obj.name),
 name_suffix='dependency_warning')
 obj.active = False
 break

[docs] def after_run(self):
 self.objects[:] = []
 gc.collect() # Make sure that all unused objects are cleared

[docs] def run(self, duration, report=None, report_period=10*second,
 namespace=None, profile=True, level=0):
 self._update_magic_objects(level=level+1)
 Network.run(self, duration, report=report, report_period=report_period,
 namespace=namespace, profile=profile, level=level+1)

[docs] def store(self, name='default', filename=None, level=0):
 '''
 See `Network.store`.
 '''
 self._update_magic_objects(level=level+1)
 super(MagicNetwork, self).store(name=name, filename=filename)
 self.objects[:] = []

[docs] def restore(self, name='default', filename=None, level=0):
 '''
 See `Network.store`.
 '''
 self._update_magic_objects(level=level+1)
 super(MagicNetwork, self).restore(name=name, filename=filename)
 self.objects[:] = []

[docs] def get_states(self, units=True, format='dict', subexpressions=False,
 level=0):
 '''
 See `Network.get_states`.
 '''
 self._update_magic_objects(level=level+1)
 states = super(MagicNetwork, self).get_states(units, format,
 subexpressions,
 level=level+1)
 self.objects[:] = []
 return states

[docs] def set_states(self, values, units=True, format='dict', level=0):
 '''
 See `Network.set_states`.
 '''
 self._update_magic_objects(level=level+1)
 super(MagicNetwork, self).set_states(values, units, format,
 level=level+1)
 self.objects[:] = []

 def __str__(self):
 return 'MagicNetwork()'
 __repr__ = __str__

#: Automatically constructed `MagicNetwork` of all Brian objects
magic_network = MagicNetwork()

[docs]def collect(level=0):
 '''
 Return the list of `BrianObject`\ s that will be simulated if `run` is
 called.

 Parameters

 level : int, optional
 How much further up to go in the stack to find the objects. Needs
 only to be specified if `collect` is called as part of a function
 and should be increased by 1 for every level of nesting. Defaults to 0.

 Returns

 objects : set of `BrianObject`
 The objects that will be simulated.
 '''
 all_objects = set()
 for obj in get_objects_in_namespace(level=level+1):
 obj = obj()
 if obj.add_to_magic_network:
 gk = BrianObject._scope_current_key
 k = obj._scope_key
 if gk!=k:
 continue
 all_objects.add(obj)
 return all_objects

@check_units(duration=second, report_period=second)
[docs]def run(duration, report=None, report_period=10*second, namespace=None,
 profile=True, level=0):
 '''
 run(duration, report=None, report_period=10*second, namespace=None, level=0)

 Runs a simulation with all "visible" Brian objects for the given duration.
 Calls `collect` to gather all the objects, the simulation can
 be stopped by calling the global `stop` function.

 In order to avoid bugs, this function will occasionally raise
 `MagicError` when the intent of the user is not clear. See the notes to
 `MagicNetwork` for more details on this point. If you persistently see this
 error, then Brian is not able to safely guess what you intend to do, and
 you should use a `Network` object and call `Network.run` explicitly.

 Parameters

 duration : `Quantity`
 The amount of simulation time to run for. If the network consists of
 new objects since the last time `run` was called, the start time will
 be reset to 0. If `run` is called twice or more without changing the
 set of objects, the second and subsequent runs will start from the
 end time of the previous run. To explicitly reset the time to 0,
 do ``magic_network.t = 0*second``.
 report : {None, 'stdout', 'stderr', 'graphical', function}, optional
 How to report the progress of the simulation. If None, do not
 report progress. If stdout or stderr is specified, print the
 progress to stdout or stderr. If graphical, Tkinter is used to
 show a graphical progress bar. Alternatively, you can specify
 a callback ``function(elapsed, complete)`` which will be passed
 the amount of time elapsed (in seconds) and the fraction complete
 from 0 to 1.
 report_period : `Quantity`
 How frequently (in real time) to report progress.
 profile : bool, optional
 Whether to record profiling information (see `Network.profiling_info`).
 Defaults to ``False``.
 namespace : dict-like, optional
 A namespace in which objects which do not define their own
 namespace will be run. If not namespace is given, the locals and
 globals around the run function will be used.
 level : int, optional
 How deep to go down the stack frame to look for the locals/global
 (see `namespace` argument). Only necessary under particular
 circumstances, e.g. when calling the run function as part of a
 function call or lambda expression. This is used in tests, e.g.:
 ``assert_raises(MagicError, lambda: run(1*ms, level=3))``.

 See Also

 Network.run, MagicNetwork, collect, start_scope, stop

 Raises

 MagicError
 Error raised when it was not possible for Brian to safely guess the
 intended use. See `MagicNetwork` for more details.
 '''
 return magic_network.run(duration, report=report, report_period=report_period,
 namespace=namespace, profile=profile, level=2+level)

run.__module__ = __name__

[docs]def store(name='default', filename=None):
 '''
 Store the state of the network and all included objects.

 Parameters

 name : str, optional
 A name for the snapshot, if not specified uses ``'default'``.
 filename : str, optional
 A filename where the state should be stored. If not specified, the
 state will be stored in memory.

 See Also

 Network.store
 '''
 magic_network.store(name=name, filename=filename, level=1)

[docs]def restore(name='default', filename=None):
 '''
 Restore the state of the network and all included objects.

 Parameters

 name : str, optional
 The name of the snapshot to restore, if not specified uses
 ``'default'``.
 filename : str, optional
 The name of the file from where the state should be restored. If
 not specified, it is expected that the state exist in memory
 (i.e. `Network.store` was previously called without the ``filename``
 argument).

 See Also

 Network.restore
 '''
 magic_network.restore(name=name, filename=filename, level=1)

[docs]def stop():
 '''
 Stops all running simulations.

 See Also

 Network.stop, run, reinit
 '''
 Network._globally_stopped = True

[docs]def start_scope():
 '''
 Starts a new scope for magic functions

 All objects created before this call will no longer be automatically
 included by the magic functions such as `run`.
 '''
 BrianObject._scope_current_key += 1

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/brian2/core/core_preferences.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.core.core_preferences

'''
Definitions, documentation, default values and validation functions for core
Brian preferences.
'''
from numpy import float64, int32

from brian2.core.preferences import BrianPreference, prefs

[docs]def dtype_repr(dtype):
 return dtype.__name__

[docs]def default_float_dtype_validator(dtype):
 return dtype is float64

prefs.register_preferences('core', 'Core Brian preferences',
 default_float_dtype=BrianPreference(
 default=float64,
 docs='''
 Default dtype for all arrays of scalars (state variables, weights, etc.).

 Currently, this is not supported (only float64 can be used).
 ''',
 representor=dtype_repr,
 validator=default_float_dtype_validator,
),
 default_integer_dtype=BrianPreference(
 default=int32,
 docs='''
 Default dtype for all arrays of integer scalars.
 ''',
 representor=dtype_repr,
),
 outdated_dependency_error=BrianPreference(
 default=True,
 docs='''
 Whether to raise an error for outdated dependencies (``True``) or just
 a warning (``False``).
 '''
)
)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/brian2/core/variables.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.core.variables

'''
Classes used to specify the type of a function, variable or common
sub-expression.
'''
import collections
import functools
import numbers

import sympy
import numpy as np

from brian2.utils.stringtools import get_identifiers, word_substitute
from brian2.units.fundamentalunits import (Quantity, Unit, DIMENSIONLESS,
 fail_for_dimension_mismatch,
 have_same_dimensions, get_unit)
from brian2.utils.logger import get_logger

from .base import weakproxy_with_fallback, device_override
from .preferences import prefs

__all__ = ['Variable',
 'Constant',
 'ArrayVariable',
 'DynamicArrayVariable',
 'Subexpression',
 'AuxiliaryVariable',
 'VariableView',
 'Variables',
 'LinkedVariable',
 'linked_var'
]

logger = get_logger(__name__)

[docs]def get_dtype(obj):
 '''
 Helper function to return the `numpy.dtype` of an arbitrary object.

 Parameters

 obj : object
 Any object (but typically some kind of number or array).

 Returns

 dtype : `numpy.dtype`
 The type of the given object.
 '''
 if hasattr(obj, 'dtype'):
 return obj.dtype
 else:
 return np.obj2sctype(type(obj))

[docs]def get_dtype_str(val):
 '''
 Returns canonical string representation of the dtype of a value or dtype

 Returns

 dtype_str : str
 The numpy dtype name
 '''
 if isinstance(val, np.dtype):
 return val.name
 if isinstance(val, type):
 return get_dtype_str(val())

 is_bool = (val is True or
 val is False or
 val is np.True_ or
 val is np.False_)
 if is_bool:
 return 'bool'
 if hasattr(val, 'dtype'):
 return get_dtype_str(val.dtype)
 if isinstance(val, numbers.Number):
 return get_dtype_str(np.array(val).dtype)

 return 'unknown[%s, %s]' % (str(val), val.__class__.__name__)

[docs]def variables_by_owner(variables, owner):
 owner_name = getattr(owner, 'name', None)
 return dict([(varname, var) for varname, var in variables.iteritems()
 if getattr(var.owner, 'name', None) is owner_name])

[docs]class Variable(object):
 '''
 An object providing information about model variables (including implicit
 variables such as ``t`` or ``xi``). This class should never be
 instantiated outside of testing code, use one of its subclasses instead.

 Parameters

 name : 'str'
 The name of the variable. Note that this refers to the *original*
 name in the owning group. The same variable may be known under other
 names in other groups (e.g. the variable ``v`` of a `NeuronGroup` is
 known as ``v_post`` in a `Synapse` connecting to the group).
 unit : `Unit`
 The unit of the variable.
 owner : `Nameable`, optional
 The object that "owns" this variable, e.g. the `NeuronGroup` or
 `Synapses` object that declares the variable in its model equations.
 Defaults to ``None`` (the value used for `Variable` objects without an
 owner, e.g. external `Constant`\ s).
 dtype : `dtype`, optional
 The dtype used for storing the variable. Defaults to the preference
 `core.default_scalar.dtype`.
 scalar : bool, optional
 Whether the variable is a scalar value (``True``) or vector-valued, e.g.
 defined for every neuron (``False``). Defaults to ``False``.
 constant: bool, optional
 Whether the value of this variable can change during a run. Defaults
 to ``False``.
 read_only : bool, optional
 Whether this is a read-only variable, i.e. a variable that is set
 internally and cannot be changed by the user (this is used for example
 for the variable ``N``, the number of neurons in a group). Defaults
 to ``False``.
 array : bool, optional
 Whether this variable is an array. Allows for simpler check than testing
 ``isinstance(var, ArrayVariable)``. Defaults to ``False``.
 '''
 def __init__(self, name, unit, owner=None, dtype=None, scalar=False,
 constant=False, read_only=False, dynamic=False, array=False):
 if not isinstance(unit, Unit):
 if isinstance(unit, Quantity):
 unit = get_unit(unit)
 elif unit == 1:
 unit = Unit(1)
 else:
 raise TypeError(('unit argument has to be a Unit object, was '
 'type %s instead') % type(unit))
 #: The variable's unit.
 self.unit = unit

 #: The variable's name.
 self.name = name

 #: The `Group` to which this variable belongs.
 self.owner = weakproxy_with_fallback(owner) if owner is not None else None

 #: The dtype used for storing the variable.
 self.dtype = dtype
 if dtype is None:
 self.dtype = prefs.core.default_float_dtype

 if self.is_boolean:
 if not have_same_dimensions(unit, 1):
 raise ValueError('Boolean variables can only be dimensionless')

 #: Whether the variable is a scalar
 self.scalar = scalar

 #: Whether the variable is constant during a run
 self.constant = constant

 #: Whether the variable is read-only
 self.read_only = read_only

 #: Whether the variable is dynamically sized (only for non-scalars)
 self.dynamic = dynamic

 #: Whether the variable is an array
 self.array = array

 @property
 def is_boolean(self):
 return np.issubdtype(np.bool, self.dtype)

 @property
 def dim(self):
 '''
 The dimensions of this variable.
 '''
 return self.unit.dim

 @property
 def dtype_str(self):
 '''
 String representation of the numpy dtype
 '''
 return get_dtype_str(self)

[docs] def get_value(self):
 '''
 Return the value associated with the variable (without units). This
 is the way variables are accessed in generated code.
 '''
 raise TypeError('Cannot get value for variable %s' % self)

[docs] def set_value(self, value):
 '''
 Set the value associated with the variable.
 '''
 raise TypeError('Cannot set value for variable %s' % self)

[docs] def get_value_with_unit(self):
 '''
 Return the value associated with the variable (with units).
 '''
 return Quantity(self.get_value(), self.unit.dimensions)

[docs] def get_addressable_value(self, name, group):
 '''
 Get the value (without units) of this variable in a form that can be
 indexed in the context of a group. For example, if a
 postsynaptic variable ``x`` is accessed in a synapse ``S`` as
 ``S.x_post``, the synaptic indexing scheme can be used.

 Parameters

 name : str
 The name of the variable
 group : `Group`
 The group providing the context for the indexing. Note that this
 `group` is not necessarily the same as `Variable.owner`: a variable
 owned by a `NeuronGroup` can be indexed in a different way if
 accessed via a `Synapses` object.

 Returns

 variable : object
 The variable in an indexable form (without units).
 '''
 return self.get_value()

[docs] def get_addressable_value_with_unit(self, name, group):
 '''
 Get the value (with units) of this variable in a form that can be
 indexed in the context of a group. For example, if a postsynaptic
 variable ``x`` is accessed in a synapse ``S`` as ``S.x_post``, the
 synaptic indexing scheme can be used.

 Parameters

 name : str
 The name of the variable
 group : `Group`
 The group providing the context for the indexing. Note that this
 `group` is not necessarily the same as `Variable.owner`: a variable
 owned by a `NeuronGroup` can be indexed in a different way if
 accessed via a `Synapses` object.

 Returns

 variable : object
 The variable in an indexable form (with units).
 '''
 return self.get_value_with_unit()

[docs] def get_len(self):
 '''
 Get the length of the value associated with the variable or ``0`` for
 a scalar variable.
 '''
 if self.scalar:
 return 0
 else:
 return len(self.get_value())

 def __len__(self):
 return self.get_len()

 def __repr__(self):
 description = ('<{classname}(unit={unit}, '
 ' dtype={dtype}, scalar={scalar}, constant={constant},'
 ' read_only={read_only})>')
 return description.format(classname=self.__class__.__name__,
 unit=repr(self.unit),
 dtype=repr(self.dtype),
 scalar=repr(self.scalar),
 constant=repr(self.constant),
 read_only=repr(self.read_only))

--
Concrete classes derived from `Variable` -- these are the only ones ever
instantiated.
--

[docs]class Constant(Variable):
 '''
 A scalar constant (e.g. the number of neurons ``N``). Information such as
 the dtype or whether this variable is a boolean are directly derived from
 the `value`. Most of the time `Variables.add_constant` should be used
 instead of instantiating this class directly.

 Parameters

 name : str
 The name of the variable
 unit : `Unit`
 The unit of the variable. Note that the variable itself (as referenced
 by value) should never have units attached.
 value: reference to the variable value
 The value of the constant.
 owner : `Nameable`, optional
 The object that "owns" this variable, for constants that belong to a
 specific group, e.g. the ``N`` constant for a `NeuronGroup`. External
 constants will have ``None`` (the default value).
 '''
 def __init__(self, name, unit, value, owner=None):
 # Determine the type of the value
 is_bool = (value is True or
 value is False or
 value is np.True_ or
 value is np.False_)

 if is_bool:
 dtype = np.bool
 else:
 dtype = get_dtype(value)

 # Use standard Python types if possible for numpy scalars (generates
 # nicer code for C++ when using weave)
 if getattr(value, 'shape', None) == () and hasattr(value, 'dtype'):
 numpy_type = value.dtype
 if np.can_cast(numpy_type, np.int_):
 value = int(value)
 elif np.can_cast(numpy_type, np.float_):
 value = float(value)
 elif np.can_cast(numpy_type, np.complex_):
 value = complex(value)
 elif value is np.True_:
 value = True
 elif value is np.False_:
 value = False

 #: The constant's value
 self.value = value

 super(Constant, self).__init__(unit=unit, name=name, owner=owner,
 dtype=dtype, scalar=True, constant=True,
 read_only=True)

[docs] def get_value(self):
 return self.value

[docs]class AuxiliaryVariable(Variable):
 '''
 Variable description for an auxiliary variable (most likely one that is
 added automatically to abstract code, e.g. ``_cond`` for a threshold
 condition), specifying its type and unit for code generation. Most of the
 time `Variables.add_auxiliary_variable` should be used instead of
 instantiating this class directly.

 Parameters

 name : str
 The name of the variable
 unit : `Unit`
 The unit of the variable.
 dtype : `dtype`, optional
 The dtype used for storing the variable. If none is given, defaults
 to `core.default_float_dtype`.
 scalar : bool, optional
 Whether the variable is a scalar value (``True``) or vector-valued, e.g.
 defined for every neuron (``False``). Defaults to ``False``.
 '''
 def __init__(self, name, unit, dtype=None, scalar=False):
 super(AuxiliaryVariable, self).__init__(unit=unit,
 name=name, dtype=dtype,
 scalar=scalar)

[docs] def get_value(self):
 raise TypeError('Cannot get the value for an auxiliary variable (%s).' % self.name)

[docs]class ArrayVariable(Variable):
 '''
 An object providing information about a model variable stored in an array
 (for example, all state variables). Most of the time `Variables.add_array`
 should be used instead of instantiating this class directly.

 Parameters

 name : 'str'
 The name of the variable. Note that this refers to the *original*
 name in the owning group. The same variable may be known under other
 names in other groups (e.g. the variable ``v`` of a `NeuronGroup` is
 known as ``v_post`` in a `Synapse` connecting to the group).
 unit : `Unit`
 The unit of the variable
 owner : `Nameable`
 The object that "owns" this variable, e.g. the `NeuronGroup` or
 `Synapses` object that declares the variable in its model equations.
 size : int
 The size of the array
 device : `Device`
 The device responsible for the memory access.
 dtype : `dtype`, optional
 The dtype used for storing the variable. If none is given, defaults
 to `core.default_float_dtype`.
 constant : bool, optional
 Whether the variable's value is constant during a run.
 Defaults to ``False``.
 scalar : bool, optional
 Whether this array is a 1-element array that should be treated like a
 scalar (e.g. for a single delay value across synapses). Defaults to
 ``False``.
 read_only : bool, optional
 Whether this is a read-only variable, i.e. a variable that is set
 internally and cannot be changed by the user. Defaults
 to ``False``.
 unique : bool, optional
 Whether the values in this array are all unique. This information is
 only important for variables used as indices and does not have to
 reflect the actual contents of the array but only the possibility of
 non-uniqueness (e.g. synaptic indices are always unique but the
 corresponding pre- and post-synaptic indices are not). Defaults to
 ``False``.
 '''
 def __init__(self, name, unit, owner, size, device, dtype=None,
 constant=False, scalar=False, read_only=False, dynamic=False,
 unique=False):
 super(ArrayVariable, self).__init__(unit=unit, name=name, owner=owner,
 dtype=dtype, scalar=scalar,
 constant=constant,
 read_only=read_only,
 dynamic=dynamic,
 array=True)

 #: Wether all values in this arrays are necessarily unique (only
 #: relevant for index variables).
 self.unique = unique

 #: The `Device` responsible for memory access.
 self.device = device

 #: The size of this variable.
 self.size = size

 if scalar and size != 1:
 raise ValueError(('Scalar variables need to have size 1, not '
 'size %d.') % size)

 #: Another variable, on which the write is conditioned (e.g. a variable
 #: denoting the absence of refractoriness)
 self.conditional_write = None

[docs] def set_conditional_write(self, var):
 if not var.is_boolean:
 raise TypeError(('A variable can only be conditionally writeable '
 'depending on a boolean variable, %s is not '
 'boolean.') % var.name)
 self.conditional_write = var

[docs] def get_value(self):
 return self.device.get_value(self)

[docs] def set_value(self, value):
 self.device.fill_with_array(self, value)

[docs] def get_len(self):
 return self.size

[docs] def get_addressable_value(self, name, group):
 return VariableView(name=name, variable=self, group=group, unit=None)

[docs] def get_addressable_value_with_unit(self, name, group):
 return VariableView(name=name, variable=self, group=group,
 unit=self.unit)

[docs]class DynamicArrayVariable(ArrayVariable):
 '''
 An object providing information about a model variable stored in a dynamic
 array (used in `Synapses`). Most of the time `Variables.add_dynamic_array`
 should be used instead of instantiating this class directly.

 Parameters

 name : 'str'
 The name of the variable. Note that this refers to the *original*
 name in the owning group. The same variable may be known under other
 names in other groups (e.g. the variable ``v`` of a `NeuronGroup` is
 known as ``v_post`` in a `Synapse` connecting to the group).
 unit : `Unit`
 The unit of the variable
 owner : `Nameable`
 The object that "owns" this variable, e.g. the `NeuronGroup` or
 `Synapses` object that declares the variable in its model equations.
 size : int or tuple of int
 The (initial) size of the variable.
 device : `Device`
 The device responsible for the memory access.
 dtype : `dtype`, optional
 The dtype used for storing the variable. If none is given, defaults
 to `core.default_float_dtype`.
 constant : bool, optional
 Whether the variable's value is constant during a run.
 Defaults to ``False``.
 needs_reference_update : bool, optional
 Whether the code objects need a new reference to the underlying data at
 every time step. This should be set if the size of the array can be
 changed by other code objects. Defaults to ``False``.
 scalar : bool, optional
 Whether this array is a 1-element array that should be treated like a
 scalar (e.g. for a single delay value across synapses). Defaults to
 ``False``.
 read_only : bool, optional
 Whether this is a read-only variable, i.e. a variable that is set
 internally and cannot be changed by the user. Defaults
 to ``False``.
 unique : bool, optional
 Whether the values in this array are all unique. This information is
 only important for variables used as indices and does not have to
 reflect the actual contents of the array but only the possibility of
 non-uniqueness (e.g. synaptic indices are always unique but the
 corresponding pre- and post-synaptic indices are not). Defaults to
 ``False``.
 '''

 def __init__(self, name, unit, owner, size, device, dtype=None,
 constant=False, needs_reference_update=False,
 resize_along_first=False, scalar=False, read_only=False,
 unique=False):

 if isinstance(size, int):
 dimensions = 1
 else:
 dimensions = len(size)

 #: The number of dimensions
 self.dimensions = dimensions

 if constant and needs_reference_update:
 raise ValueError('A variable cannot be constant and '
 'need reference updates')
 #: Whether this variable needs an update of the reference to the
 #: underlying data whenever it is passed to a code object
 self.needs_reference_update = needs_reference_update

 #: Whether this array will be only resized along the first dimension
 self.resize_along_first = resize_along_first

 super(DynamicArrayVariable, self).__init__(unit=unit,
 owner=owner,
 name=name,
 size=size,
 device=device,
 constant=constant,
 dtype=dtype,
 scalar=scalar,
 dynamic=True,
 read_only=read_only,
 unique=unique)

[docs] def resize(self, new_size):
 '''
 Resize the dynamic array. Calls `self.device.resize` to do the
 actual resizing.

 Parameters

 new_size : int or tuple of int
 The new size.
 '''
 if self.resize_along_first:
 self.device.resize_along_first(self, new_size)
 else:
 self.device.resize(self, new_size)

 self.size = new_size

[docs]class Subexpression(Variable):
 '''
 An object providing information about a named subexpression in a model.
 Most of the time `Variables.add_subexpression` should be used instead of
 instantiating this class directly.

 Parameters

 name : str
 The name of the subexpression.
 unit : `Unit`
 The unit of the subexpression.
 owner : `Group`
 The group to which the expression refers.
 expr : str
 The subexpression itself.
 device : `Device`
 The device responsible for the memory access.
 dtype : `dtype`, optional
 The dtype used for the expression. Defaults to
 `core.default_float_dtype`.
 scalar: bool, optional
 Whether this is an expression only referring to scalar variables.
 Defaults to ``False``
 '''
 def __init__(self, name, unit, owner, expr, device, dtype=None,
 scalar=False):
 super(Subexpression, self).__init__(unit=unit, owner=owner,
 name=name, dtype=dtype,
 scalar=scalar,
 constant=False, read_only=True)

 #: The `Device` responsible for memory access
 self.device = device

 #: The expression defining the subexpression
 self.expr = expr.strip()

 if scalar:
 from brian2.parsing.sympytools import str_to_sympy
 # We check here if the corresponding sympy expression contains a
 # reference to _vectorisation_idx which indicates that an implicitly
 # vectorized function (e.g. rand()) has been used. We do not allow
 # this since it would lead to incorrect results when substituted into
 # vector equations
 sympy_expr = str_to_sympy(self.expr)
 if sympy.Symbol('_vectorisation_idx') in sympy_expr.atoms():
 raise SyntaxError(('The scalar subexpression %s refers to an '
 'implicitly vectorized function -- this is '
 'not allowed since it leads to different '
 'interpretations of this subexpression '
 'depending on whether it is used in a '
 'scalar or vector context.') % name)

 #: The identifiers used in the expression
 self.identifiers = get_identifiers(expr)

[docs] def get_addressable_value(self, name, group):
 return VariableView(name=name, variable=self, group=group, unit=None)

[docs] def get_addressable_value_with_unit(self, name, group):
 return VariableView(name=name, variable=self, group=group,
 unit=self.unit)

 def __contains__(self, var):
 return var in self.identifiers

 def __repr__(self):
 description = ('<{classname}(name={name}, unit={unit}, dtype={dtype}, '
 'expr={expr}, owner=<{owner}>)>')
 return description.format(classname=self.__class__.__name__,
 name=repr(self.name),
 unit=repr(self.unit),
 dtype=repr(self.dtype),
 expr=repr(self.expr),
 owner=self.owner.name)

--
Classes providing views on variables and storing variables information
--
[docs]class LinkedVariable(object):
 '''
 A simple helper class to make linking variables explicit. Users should use
 `linked_var` instead.

 Parameters

 group : `Group`
 The group through which the `variable` is accessed (not necessarily the
 same as ``variable.owner``.
 name : str
 The name of `variable` in `group` (not necessarily the same as
 ``variable.name``).
 variable : `Variable`
 The variable that should be linked.
 index : str or `ndarray`, optional
 An indexing array (or the name of a state variable), providing a mapping
 from the entries in the link source to the link target.
 '''
 def __init__(self, group, name, variable, index=None):
 self.group = group
 self.name = name
 self.variable = variable
 self.index = index

[docs]def linked_var(group_or_variable, name=None, index=None):
 '''
 Represents a link target for setting a linked variable.

 Parameters

 group_or_variable : `NeuronGroup` or `VariableView`
 Either a reference to the target `NeuronGroup` (e.g. ``G``) or a direct
 reference to a `VariableView` object (e.g. ``G.v``). In case only the
 group is specified, `name` has to be specified as well.
 name : str, optional
 The name of the target variable, necessary if `group_or_variable` is a
 `NeuronGroup`.
 index : str or `ndarray`, optional
 An indexing array (or the name of a state variable), providing a mapping
 from the entries in the link source to the link target.

 Examples

 >>> from brian2 import *
 >>> G1 = NeuronGroup(10, 'dv/dt = -v / (10*ms) : volt')
 >>> G2 = NeuronGroup(10, 'v : volt (linked)')
 >>> G2.v = linked_var(G1, 'v')
 >>> G2.v = linked_var(G1.v) # equivalent
 '''
 if isinstance(group_or_variable, VariableView):
 if name is not None:
 raise ValueError(('Cannot give a variable and a variable name at '
 'the same time.'))
 return LinkedVariable(group_or_variable.group,
 group_or_variable.name,
 group_or_variable.variable, index=index)
 elif name is None:
 raise ValueError('Need to provide a variable name')
 else:
 return LinkedVariable(group_or_variable,
 name,
 group_or_variable.variables[name], index=index)

[docs]class VariableView(object):
 '''
 A view on a variable that allows to treat it as an numpy array while
 allowing special indexing (e.g. with strings) in the context of a `Group`.

 Parameters

 name : str
 The name of the variable (not necessarily the same as ``variable.name``).
 variable : `Variable`
 The variable description.
 group : `Group`
 The group through which the variable is accessed (not necessarily the
 same as `variable.owner`).
 unit : `Unit`, optional
 The unit to be used for the variable, should be `None` when a variable
 is accessed without units (e.g. when accessing ``G.var_``).
 '''
 def __init__(self, name, variable, group, unit=None):
 self.name = name
 self.variable = variable
 self.index_var_name = group.variables.indices[name]
 if self.index_var_name in ('_idx', '0'):
 self.index_var = self.index_var_name
 else:
 self.index_var = group.variables[self.index_var_name]

 if isinstance(variable, Subexpression):
 # For subexpressions, we *always* have to go via codegen to get
 # their value -- since we cannot do this without the group, we
 # hold a strong reference
 self.group = group
 else:
 # For state variable arrays, we can do most access without the full
 # group, using the indexing reference below. We therefore only keep
 # a weak reference to the group.
 self.group = weakproxy_with_fallback(group)
 self.group_name = group.name
 # We keep a strong reference to the `Indexing` object so that basic
 # indexing is still possible, even if the group no longer exists
 self.indexing = self.group._indices
 self.unit = unit

 @property
 def dim(self):
 '''
 The dimensions of this variable.
 '''
 return self.unit.dim

[docs] def get_item(self, item, level=0, namespace=None):
 '''
 Get the value of this variable. Called by `__getitem__`.

 Parameters

 item : slice, `ndarray` or string
 The index for the setting operation
 level : int, optional
 How much farther to go up in the stack to find the implicit
 namespace (if used, see `run_namespace`).
 namespace : dict-like, optional
 An additional namespace that is used for variable lookup (if not
 defined, the implicit namespace of local variables is used).
 '''
 from brian2.core.namespace import get_local_namespace # avoids circular import
 if isinstance(item, basestring):
 # Check whether the group still exists to give a more meaningful
 # error message if it does not
 try:
 self.group.name
 except ReferenceError:
 raise ReferenceError(('Cannot use string expressions, the '
 'group "%s", providing the context for '
 'the expression, no longer exists. '
 'Consider holding an explicit reference '
 'to it to keep it '
 'alive.') % self.group_name)
 if namespace is None:
 namespace = get_local_namespace(level=level+1)
 values = self.get_with_expression(item,
 run_namespace=namespace)
 else:
 if isinstance(self.variable, Subexpression):
 if namespace is None:
 namespace = get_local_namespace(level=level + 1)
 values = self.get_subexpression_with_index_array(item,
 run_namespace=namespace)
 else:
 values = self.get_with_index_array(item)

 if self.unit is None:
 return values
 else:
 return Quantity(values, self.unit.dimensions)

 def __getitem__(self, item):
 return self.get_item(item, level=1)

[docs] def set_item(self, item, value, level=0, namespace=None):
 '''
 Set this variable. This function is called by `__setitem__` but there
 is also a situation where it should be called directly: if the context
 for string-based expressions is higher up in the stack, this function
 allows to set the `level` argument accordingly.

 Parameters

 item : slice, `ndarray` or string
 The index for the setting operation
 value : `Quantity`, `ndarray` or number
 The value for the setting operation
 level : int, optional
 How much farther to go up in the stack to find the implicit
 namespace (if used, see `run_namespace`).
 namespace : dict-like, optional
 An additional namespace that is used for variable lookup (if not
 defined, the implicit namespace of local variables is used).
 '''
 from brian2.core.namespace import get_local_namespace # avoids circular import
 variable = self.variable
 if variable.read_only:
 raise TypeError('Variable %s is read-only.' % self.name)

 # Check whether the group allows writing to the variable (e.g. for
 # synaptic variables, writing is only allowed after a connect)
 try:
 self.group.check_variable_write(variable)
 except ReferenceError:
 # Ignore problems with weakly referenced groups that don't exist
 # anymore at this time (e.g. when doing neuron.axon.var = ...)
 pass

 # The second part is equivalent to item == slice(None) but formulating
 # it this way prevents a FutureWarning if one of the elements is a
 # numpy array
 if isinstance(item, slice) and (item.start is None and
 item.stop is None and
 item.step is None):
 item = 'True'

 check_units = self.unit is not None

 if namespace is None:
 namespace = get_local_namespace(level=level+1)

 # Both index and values are strings, use a single code object do deal
 # with this situation
 if isinstance(value, basestring) and isinstance(item, basestring):
 self.set_with_expression_conditional(item, value,
 check_units=check_units,
 run_namespace=namespace)
 elif isinstance(item, basestring):
 try:
 float(value) # only checks for the exception
 try:
 # length-1 arrays are also convertible to float, but we
 # don't want the repr used later to be something like
 # array([...]).
 value = value[0]
 except (IndexError, TypeError):
 # was scalar already apparently
 pass
 except (TypeError, ValueError):
 if item != 'True':
 raise TypeError('When setting a variable based on a string '
 'index, the value has to be a string or a '
 'scalar.')

 if item == 'True':
 # We do not want to go through code generation for runtime
 self.set_with_index_array(slice(None), value,
 check_units=check_units)
 else:
 self.set_with_expression_conditional(item,
 repr(value),
 check_units=check_units,
 run_namespace=namespace)
 elif isinstance(value, basestring):
 self.set_with_expression(item, value,
 check_units=check_units,
 run_namespace=namespace)
 else: # No string expressions involved
 self.set_with_index_array(item, value,
 check_units=check_units)

 def __setitem__(self, item, value):
 self.set_item(item, value, level=1)

 @device_override('variableview_set_with_expression')
 def set_with_expression(self, item, code, run_namespace, check_units=True):
 '''
 Sets a variable using a string expression. Is called by
 `VariableView.set_item` for statements such as
 ``S.var[:, :] = 'exp(-abs(i-j)/space_constant)*nS'``

 Parameters

 item : `ndarray`
 The indices for the variable (in the context of this `group`).
 code : str
 The code that should be executed to set the variable values.
 Can contain references to indices, such as `i` or `j`
 run_namespace : dict-like, optional
 An additional namespace that is used for variable lookup (if not
 defined, the implicit namespace of local variables is used).
 check_units : bool, optional
 Whether to check the units of the expression.
 run_namespace : dict-like, optional
 An additional namespace that is used for variable lookup (if not
 defined, the implicit namespace of local variables is used).
 '''
 # Some fairly complicated code to raise a warning in ambiguous
 # situations, when indexing with a group. For example, in:
 # group.v[subgroup] = 'i'
 # the index 'i' is the index of 'group' ("absolute index") and not of
 # subgroup ("relative index")
 if hasattr(item, 'variables') or (isinstance(item, tuple)
 and any(hasattr(one_item, 'variables')
 for one_item in item)):
 # Determine the variables that are used in the expression
 from brian2.codegen.translation import get_identifiers_recursively
 identifiers = get_identifiers_recursively([code],
 self.group.variables)
 variables = self.group.resolve_all(identifiers, run_namespace,
 user_identifiers=set())
 if not isinstance(item, tuple):
 index_groups = [item]
 else:
 index_groups = item

 for varname, var in variables.iteritems():
 for index_group in index_groups:
 if not hasattr(index_group, 'variables'):
 continue
 if varname in index_group.variables or var.name in index_group.variables:
 indexed_var = index_group.variables.get(varname,
 index_group.variables.get(var.name))
 if not indexed_var is var:
 logger.warn(('The string expression used for setting '
 '{varname} refers to {referred_var} which '
 'might be ambiguous. It will be '
 'interpreted as referring to '
 '{referred_var} in {group}, not as '
 'a variable of a group used for '
 'indexing.').format(varname=self.name,
 referred_var=varname,
 group=self.group.name,
 index_group=index_group.name),
 'ambiguous_string_expression')
 break # no need to warn more than once for a variable

 indices = self.indexing(item)
 abstract_code = self.name + ' = ' + code
 variables = Variables(None)
 variables.add_array('_group_idx', unit=Unit(1),
 size=len(indices), dtype=np.int32)
 variables['_group_idx'].set_value(indices)

 # TODO: Have an additional argument to avoid going through the index
 # array for situations where iterate_all could be used
 from brian2.codegen.codeobject import create_runner_codeobj
 from brian2.devices.device import get_default_codeobject_class
 codeobj = create_runner_codeobj(self.group,
 abstract_code,
 'group_variable_set',
 additional_variables=variables,
 check_units=check_units,
 run_namespace=run_namespace,
 codeobj_class=get_default_codeobject_class('codegen.string_expression_target'))
 codeobj()

 @device_override('variableview_set_with_expression_conditional')
 def set_with_expression_conditional(self, cond, code, run_namespace,
 check_units=True):
 '''
 Sets a variable using a string expression and string condition. Is
 called by `VariableView.set_item` for statements such as
 ``S.var['i!=j'] = 'exp(-abs(i-j)/space_constant)*nS'``

 Parameters

 cond : str
 The string condition for which the variables should be set.
 code : str
 The code that should be executed to set the variable values.
 run_namespace : dict-like, optional
 An additional namespace that is used for variable lookup (if not
 defined, the implicit namespace of local variables is used).
 check_units : bool, optional
 Whether to check the units of the expression.
 '''
 variable = self.variable
 if variable.scalar and cond != 'True':
 raise IndexError(('Cannot conditionally set the scalar variable '
 '%s.') % self.name)
 abstract_code_cond = '_cond = '+cond
 abstract_code = self.name + ' = ' + code
 variables = Variables(None)
 variables.add_auxiliary_variable('_cond', unit=Unit(1), dtype=np.bool)
 from brian2.codegen.codeobject import create_runner_codeobj
 # TODO: Have an additional argument to avoid going through the index
 # array for situations where iterate_all could be used
 from brian2.devices.device import get_default_codeobject_class
 codeobj = create_runner_codeobj(self.group,
 {'condition': abstract_code_cond,
 'statement': abstract_code},
 'group_variable_set_conditional',
 additional_variables=variables,
 check_units=check_units,
 run_namespace=run_namespace,
 codeobj_class=get_default_codeobject_class('codegen.string_expression_target'))
 codeobj()

 @device_override('variableview_get_with_expression')
 def get_with_expression(self, code, run_namespace):
 '''
 Gets a variable using a string expression. Is called by
 `VariableView.get_item` for statements such as
 ``print G.v['g_syn > 0']``.

 Parameters

 code : str
 An expression that states a condition for elements that should be
 selected. Can contain references to indices, such as ``i`` or ``j``
 and to state variables. For example: ``'i>3 and v>0*mV'``.
 run_namespace : dict-like
 An additional namespace that is used for variable lookup (either
 an explicitly defined namespace or one taken from the local
 context).
 '''
 variable = self.variable
 if variable.scalar:
 raise IndexError(('Cannot access the variable %s with a '
 'string expression, it is a scalar '
 'variable.') % self.name)
 # Add the recorded variable under a known name to the variables
 # dictionary. Important to deal correctly with
 # the type of the variable in C++
 variables = Variables(None)
 variables.add_auxiliary_variable('_variable', unit=variable.unit,
 dtype=variable.dtype,
 scalar=variable.scalar)
 variables.add_auxiliary_variable('_cond', unit=Unit(1), dtype=np.bool)

 abstract_code = '_variable = ' + self.name + '\n'
 abstract_code += '_cond = ' + code
 from brian2.codegen.codeobject import create_runner_codeobj
 from brian2.devices.device import get_default_codeobject_class
 codeobj = create_runner_codeobj(self.group,
 abstract_code,
 'group_variable_get_conditional',
 additional_variables=variables,
 run_namespace=run_namespace,
 codeobj_class=get_default_codeobject_class('codegen.string_expression_target')
)
 return codeobj()

 @device_override('variableview_get_with_index_array')
 def get_with_index_array(self, item):
 variable = self.variable
 if variable.scalar:
 if not (isinstance(item, slice) and item == slice(None)):
 raise IndexError(('Illegal index for variable %s, it is a '
 'scalar variable.') % self.name)
 indices = 0
 elif (isinstance(item, slice) and item == slice(None)
 and self.index_var == '_idx'):
 indices = slice(None)
 else:
 indices = self.indexing(item, self.index_var)

 return variable.get_value()[indices]

 @device_override('variableview_get_subexpression_with_index_array')
 def get_subexpression_with_index_array(self, item, run_namespace):
 variable = self.variable
 if variable.scalar:
 if not (isinstance(item, slice) and item == slice(None)):
 raise IndexError(('Illegal index for variable %s, it is a '
 'scalar variable.') % self.name)
 indices = np.array(0)
 else:
 indices = self.indexing(item, self.index_var)

 # For "normal" variables, we can directly access the underlying data
 # and use the usual slicing syntax. For subexpressions, however, we
 # have to evaluate code for the given indices
 variables = Variables(None, default_index='_group_index')
 variables.add_auxiliary_variable('_variable',
 unit=variable.unit,
 dtype=variable.dtype,
 scalar=variable.scalar)
 if indices.shape == ():
 single_index = True
 indices = np.array([indices])
 else:
 single_index = False
 variables.add_array('_group_idx', unit=Unit(1),
 size=len(indices), dtype=np.int32)
 variables['_group_idx'].set_value(indices)
 # Force the use of this variable as a replacement for the original
 # index variable
 using_orig_index = [varname for varname, index in self.group.variables.indices.iteritems()
 if index == self.index_var_name and index != '0']
 for varname in using_orig_index:
 variables.indices[varname] = '_idx'

 abstract_code = '_variable = ' + self.name + '\n'
 from brian2.codegen.codeobject import create_runner_codeobj
 from brian2.devices.device import get_default_codeobject_class
 codeobj = create_runner_codeobj(self.group,
 abstract_code,
 'group_variable_get',
 # Setting the user code to an empty
 # string suppresses warnings if the
 # subexpression refers to variable
 # names that are also present in the
 # local namespace
 user_code='',
 needed_variables=['_group_idx'],
 additional_variables=variables,
 run_namespace=run_namespace,
 codeobj_class=get_default_codeobject_class('codegen.string_expression_target')
)
 result = codeobj()
 if single_index and not variable.scalar:
 return result[0]
 else:
 return result

 @device_override('variableview_set_with_index_array')
 def set_with_index_array(self, item, value, check_units):
 variable = self.variable
 if check_units:
 fail_for_dimension_mismatch(variable.unit, value,
 'Incorrect unit for setting variable %s' % self.name)
 if variable.scalar:
 if not (isinstance(item, slice) and item == slice(None)):
 raise IndexError(('Illegal index for variable %s, it is a '
 'scalar variable.') % self.name)
 indices = 0
 elif (isinstance(item, slice) and item == slice(None)
 and self.index_var == '_idx'):
 indices = slice(None)
 else:
 indices = self.indexing(item, self.index_var)

 q = Quantity(value, copy=False)
 if len(q.shape):
 if not len(q.shape) == 1 or len(q) != 1 and len(q) != len(indices):
 raise ValueError(('Provided values do not match the size '
 'of the indices, '
 '%d != %d.') % (len(q),
 len(indices)))
 variable.get_value()[indices] = value

 # Allow some basic calculations directly on the ArrayView object
 def __array__(self, dtype=None):
 try:
 # This will fail for subexpressions that refer to external
 # parameters
 value = self[:]
 except ValueError:
 raise ValueError(('Cannot get the values for variable {var}. If it '
 'is a subexpression referring to external '
 'variables, use "group.{var}[:]" instead of '
 '"group.{var}"'.format(var=self.variable.name)))
 return np.asanyarray(self[:], dtype=dtype)

 def __array_prepare__(self, array, context=None):
 if self.unit is None:
 return array
 else:
 this = self[:]
 if isinstance(this, Quantity):
 return Quantity.__array_prepare__(this, array,
 context=context)
 else:
 return array

 def __array_wrap__(self, out_arr, context=None):
 if self.unit is None:
 return out_arr
 else:
 this = self[:]
 if isinstance(this, Quantity):
 return Quantity.__array_wrap__(self[:], out_arr,
 context=context)
 else:
 return out_arr

 def __len__(self):
 return len(self.get_item(slice(None), level=1))

 def __neg__(self):
 return -self.get_item(slice(None), level=1)

 def __pos__(self):
 return self.get_item(slice(None), level=1)

 def __add__(self, other):
 return self.get_item(slice(None), level=1) + np.asanyarray(other)

 def __radd__(self, other):
 return np.asanyarray(other) + self.get_item(slice(None), level=1)

 def __sub__(self, other):
 return self.get_item(slice(None), level=1) - np.asanyarray(other)

 def __rsub__(self, other):
 return np.asanyarray(other) - self.get_item(slice(None), level=1)

 def __mul__(self, other):
 return self.get_item(slice(None), level=1) * np.asanyarray(other)

 def __rmul__(self, other):
 return np.asanyarray(other) * self.get_item(slice(None), level=1)

 def __div__(self, other):
 return self.get_item(slice(None), level=1) / np.asanyarray(other)

 def __truediv__(self, other):
 return self.get_item(slice(None), level=1) / np.asanyarray(other)

 def __floordiv__(self, other):
 return self.get_item(slice(None), level=1) // np.asanyarray(other)

 def __rdiv__(self, other):
 return np.asanyarray(other) / self.get_item(slice(None), level=1)

 def __rtruediv__(self, other):
 return np.asanyarray(other) / self.get_item(slice(None), level=1)

 def __rfloordiv__(self, other):
 return np.asanyarray(other) // self.get_item(slice(None), level=1)

 def __iadd__(self, other):
 if isinstance(other, basestring):
 raise TypeError(('In-place modification with strings not '
 'supported. Use group.var = "var + expression" '
 'instead of group.var += "expression".'))
 elif isinstance(self.variable, Subexpression):
 raise TypeError('Cannot assign to a subexpression.')
 else:
 rhs = self[:] + np.asanyarray(other)
 self[:] = rhs
 return self

 def __isub__(self, other):
 if isinstance(other, basestring):
 raise TypeError(('In-place modification with strings not '
 'supported. Use group.var = "var - expression" '
 'instead of group.var -= "expression".'))
 elif isinstance(self.variable, Subexpression):
 raise TypeError('Cannot assign to a subexpression.')
 else:
 rhs = self[:] - np.asanyarray(other)
 self[:] = rhs
 return self

 def __imul__(self, other):
 if isinstance(other, basestring):
 raise TypeError(('In-place modification with strings not '
 'supported. Use group.var = "var * expression" '
 'instead of group.var *= "expression".'))
 elif isinstance(self.variable, Subexpression):
 raise TypeError('Cannot assign to a subexpression.')
 else:
 rhs = self[:] * np.asanyarray(other)
 self[:] = rhs
 return self

 def __idiv__(self, other):
 if isinstance(other, basestring):
 raise TypeError(('In-place modification with strings not '
 'supported. Use group.var = "var / expression" '
 'instead of group.var /= "expression".'))
 elif isinstance(self.variable, Subexpression):
 raise TypeError('Cannot assign to a subexpression.')
 else:
 rhs = self[:] / np.asanyarray(other)
 self[:] = rhs
 return self

 # Also allow logical comparisons

 def __eq__(self, other):
 return self.get_item(slice(None), level=1) == np.asanyarray(other)

 def __ne__(self, other):
 return self.get_item(slice(None), level=1) != np.asanyarray(other)

 def __lt__(self, other):
 return self.get_item(slice(None), level=1) < np.asanyarray(other)

 def __le__(self, other):
 return self.get_item(slice(None), level=1) <= np.asanyarray(other)

 def __gt__(self, other):
 return self.get_item(slice(None), level=1) > np.asanyarray(other)

 def __ge__(self, other):
 return self.get_item(slice(None), level=1) >= np.asanyarray(other)

 def __repr__(self):
 varname = self.name
 if self.unit is None:
 varname += '_'

 if self.variable.scalar:
 dim = self.unit.dim if self.unit is not None else DIMENSIONLESS
 values = repr(Quantity(self.variable.get_value().item(),
 dim=dim))
 else:
 try:
 # This will fail for subexpressions that refer to external
 # parameters
 values = repr(self[:])
 except KeyError:
 values = ('[Subexpression refers to external parameters. Use '
 '"group.{var}[:]"]').format(var=self.variable.name)

 return '<%s.%s: %s>' % (self.group_name, varname,
 values)

 # Get access to some basic properties of the underlying array
 @property
 def shape(self):
 return self.get_item(slice(None), level=1).shape

 @property
 def dtype(self):
 return self.get_item(slice(None), level=1).dtype

[docs]class Variables(collections.Mapping):
 '''
 A container class for storing `Variable` objects. Instances of this class
 are used as the `Group.variables` attribute and can be accessed as
 (read-only) dictionaries.

 Parameters

 owner : `Nameable`
 The object (typically a `Group`) "owning" the variables.
 default_index : str, optional
 The index to use for the variables (only relevant for `ArrayVariable`
 and `DynamicArrayVariable`). Defaults to ``'_idx'``.
 '''

 def __init__(self, owner, default_index='_idx'):
 #: A reference to the `Group` owning these variables
 self.owner = weakproxy_with_fallback(owner)
 # The index that is used for arrays if no index is given explicitly
 self.default_index = default_index

 # We do the import here to avoid a circular dependency.
 from brian2.devices.device import get_device
 self.device = get_device()

 self._variables = {}
 #: A dictionary given the index name for every array name
 self.indices = collections.defaultdict(functools.partial(str, default_index))
 # Note that by using functools.partial (instead of e.g. a lambda
 # function) above, this object remains pickable.

 def __getitem__(self, item):
 return self._variables[item]

 def __len__(self):
 return len(self._variables)

 def __iter__(self):
 return iter(self._variables)

 def _add_variable(self, name, var, index=None):
 if name in self._variables:
 raise KeyError(('The name "%s" is already present in the variables'
 ' dictionary.') % name)
 #TODO: do some check for the name, part of it has to be device-specific
 self._variables[name] = var

 if isinstance(var, ArrayVariable):
 # Tell the device to actually create the array (or note it down for
 # later code generation in standalone).
 self.device.add_array(var)

 if getattr(var, 'scalar', False):
 if index not in (None, '0'):
 raise ValueError('Cannot set an index for a scalar variable')
 self.indices[name] = '0'

 if index is not None:
 self.indices[name] = index

[docs] def add_array(self, name, unit, size, values=None, dtype=None,
 constant=False, read_only=False, scalar=False, unique=False,
 index=None):
 '''
 Add an array (initialized with zeros).

 Parameters

 name : str
 The name of the variable.
 unit : `Unit`
 The unit of the variable
 size : int
 The size of the array.
 values : `ndarray`, optional
 The values to initalize the array with. If not specified, the array
 is initialized to zero.
 dtype : `dtype`, optional
 The dtype used for storing the variable. If none is given, defaults
 to `core.default_float_dtype`.
 constant : bool, optional
 Whether the variable's value is constant during a run.
 Defaults to ``False``.
 scalar : bool, optional
 Whether this is a scalar variable. Defaults to ``False``, if set to
 ``True``, also implies that `size` equals 1.
 read_only : bool, optional
 Whether this is a read-only variable, i.e. a variable that is set
 internally and cannot be changed by the user. Defaults
 to ``False``.
 index : str, optional
 The index to use for this variable. Defaults to
 `Variables.default_index`.
 unique : bool, optional
 See `ArrayVariable`. Defaults to ``False``.
 '''
 if np.asanyarray(size).shape == ():
 # We want a basic Python type for the size instead of something
 # like numpy.int64
 size = int(size)
 var = ArrayVariable(name=name, unit=unit, owner=self.owner,
 device=self.device, size=size,
 dtype=dtype,
 constant=constant,
 scalar=scalar,
 read_only=read_only,
 unique=unique)
 self._add_variable(name, var, index)
 # This could be avoided, but we currently need it so that standalone
 # allocates the memory
 self.device.init_with_zeros(var, dtype)
 if values is not None:
 if scalar:
 if np.asanyarray(values).shape != ():
 raise ValueError('Need a scalar value.')
 self.device.fill_with_array(var, values)
 else:
 if len(values) != size:
 raise ValueError(('Size of the provided values does not match '
 'size: %d != %d') % (len(values), size))
 self.device.fill_with_array(var, values)

[docs] def add_arrays(self, names, unit, size, values=None, dtype=None,
 constant=False, read_only=False, scalar=False, unique=False,
 index=None):
 '''
 Adds several arrays (initialized with zeros) with the same attributes
 (size, units, etc.).

 Parameters

 names : list of str
 The names of the variable.
 unit : `Unit`
 The unit of the variables
 size : int
 The sizes of the arrays.
 dtype : `dtype`, optional
 The dtype used for storing the variables. If none is given, defaults
 to `core.default_float_dtype`.
 constant : bool, optional
 Whether the variables' values are constant during a run.
 Defaults to ``False``.
 scalar : bool, optional
 Whether these are scalar variables. Defaults to ``False``, if set to
 ``True``, also implies that `size` equals 1.
 read_only : bool, optional
 Whether these are read-only variables, i.e. variables that are set
 internally and cannot be changed by the user. Defaults
 to ``False``.
 index : str, optional
 The index to use for these variables. Defaults to
 `Variables.default_index`.
 unique : bool, optional
 See `ArrayVariable`. Defaults to ``False``.
 '''
 for name in names:
 self.add_array(name, unit=unit, size=size, dtype=dtype,
 constant=constant, read_only=read_only,
 scalar=scalar, unique=unique, index=index)

[docs] def add_dynamic_array(self, name, unit, size, values=None, dtype=None,
 constant=False, needs_reference_update=False,
 resize_along_first=False, read_only=False,
 unique=False, scalar=False, index=None):
 '''
 Add a dynamic array.

 Parameters

 name : str
 The name of the variable.
 unit : `Unit`
 The unit of the variable
 size : int or tuple of int
 The (initital) size of the array.
 values : `ndarray`, optional
 The values to initalize the array with. If not specified, the array
 is initialized to zero.
 dtype : `dtype`, optional
 The dtype used for storing the variable. If none is given, defaults
 to `core.default_float_dtype`.
 constant : bool, optional
 Whether the variable's value is constant during a run.
 Defaults to ``False``.
 needs_reference_update : bool, optional
 Whether the code objects need a new reference to the underlying data at
 every time step. This should be set if the size of the array can be
 changed by other code objects. Defaults to ``False``.
 scalar : bool, optional
 Whether this is a scalar variable. Defaults to ``False``, if set to
 ``True``, also implies that `size` equals 1.
 read_only : bool, optional
 Whether this is a read-only variable, i.e. a variable that is set
 internally and cannot be changed by the user. Defaults
 to ``False``.
 index : str, optional
 The index to use for this variable. Defaults to
 `Variables.default_index`.
 unique : bool, optional
 See `DynamicArrayVariable`. Defaults to ``False``.
 '''
 var = DynamicArrayVariable(name=name, unit=unit, owner=self.owner,
 device=self.device,
 size=size, dtype=dtype,
 constant=constant,
 needs_reference_update=needs_reference_update,
 resize_along_first=resize_along_first,
 scalar=scalar,
 read_only=read_only, unique=unique)
 self._add_variable(name, var, index)
 if np.prod(size) > 0:
 self.device.resize(var, size)
 if values is None and np.prod(size) > 0:
 self.device.init_with_zeros(var, dtype)
 elif values is not None:
 if len(values) != size:
 raise ValueError(('Size of the provided values does not match '
 'size: %d != %d') % (len(values), size))
 if np.prod(size) > 0:
 self.device.fill_with_array(var, values)

[docs] def add_arange(self, name, size, start=0, dtype=np.int32, constant=True,
 read_only=True, unique=True, index=None):
 '''
 Add an array, initialized with a range of integers.

 Parameters

 name : str
 The name of the variable.
 size : int
 The size of the array.
 start : int
 The start value of the range.
 dtype : `dtype`, optional
 The dtype used for storing the variable. If none is given, defaults
 to `np.int32`.
 constant : bool, optional
 Whether the variable's value is constant during a run.
 Defaults to ``True``.
 read_only : bool, optional
 Whether this is a read-only variable, i.e. a variable that is set
 internally and cannot be changed by the user. Defaults
 to ``True``.
 index : str, optional
 The index to use for this variable. Defaults to
 `Variables.default_index`.
 unique : bool, optional
 See `ArrayVariable`. Defaults to ``True`` here.
 '''
 self.add_array(name=name, unit=Unit(1), size=size, dtype=dtype,
 constant=constant, read_only=read_only, unique=unique,
 index=index)
 self.device.init_with_arange(self._variables[name], start, dtype=dtype)

[docs] def add_constant(self, name, unit, value):
 '''
 Add a scalar constant (e.g. the number of neurons `N`).

 Parameters

 name : str
 The name of the variable
 unit : `Unit`
 The unit of the variable. Note that the variable itself (as referenced
 by value) should never have units attached.
 value: reference to the variable value
 The value of the constant.
 '''
 var = Constant(name=name, unit=unit, owner=self.owner, value=value)
 self._add_variable(name, var)

[docs] def add_subexpression(self, name, unit, expr, dtype=None, scalar=False,
 index=None):
 '''
 Add a named subexpression.

 Parameters

 name : str
 The name of the subexpression.
 unit : `Unit`
 The unit of the subexpression.
 expr : str
 The subexpression itself.
 dtype : `dtype`, optional
 The dtype used for the expression. Defaults to
 `core.default_float_dtype`.
 scalar : bool, optional
 Whether this is an expression only referring to scalar variables.
 Defaults to ``False``
 index : str, optional
 The index to use for this variable. Defaults to
 `Variables.default_index`.
 '''
 var = Subexpression(name=name, unit=unit, expr=expr, owner=self.owner,
 dtype=dtype, device=self.device, scalar=scalar)
 self._add_variable(name, var, index=index)

[docs] def add_auxiliary_variable(self, name, unit, dtype=None, scalar=False):
 '''
 Add an auxiliary variable (most likely one that is added automatically
 to abstract code, e.g. ``_cond`` for a threshold condition),
 specifying its type and unit for code generation.

 Parameters

 name : str
 The name of the variable
 unit : `Unit`
 The unit of the variable.
 dtype : `dtype`, optional
 The dtype used for storing the variable. If none is given, defaults
 to `core.default_float_dtype`.
 scalar : bool, optional
 Whether the variable is a scalar value (``True``) or vector-valued,
 e.g. defined for every neuron (``False``). Defaults to ``False``.
 '''
 var = AuxiliaryVariable(name=name, unit=unit, dtype=dtype,
 scalar=scalar)
 self._add_variable(name, var)

[docs] def add_referred_subexpression(self, name, group, subexpr, index):
 identifiers = subexpr.identifiers
 substitutions = {}
 for identifier in identifiers:
 if identifier not in subexpr.owner.variables:
 # external variable --> nothing to do
 continue
 subexpr_var = subexpr.owner.variables[identifier]
 if hasattr(subexpr_var, 'owner'):
 new_name = '_%s_%s_%s' % (name,
 subexpr.owner.name,
 identifier)
 else:
 new_name = '_%s_%s' % (name, identifier)
 substitutions[identifier] = new_name

 subexpr_var_index = group.variables.indices[identifier]
 if subexpr_var_index == group.variables.default_index:
 subexpr_var_index = index
 elif subexpr_var_index == '0':
 pass # nothing to do for a shared variable
 elif subexpr_var_index == index:
 pass # The same index as the main subexpression
 elif index != self.default_index:
 index_var = self._variables.get(index, None)
 if isinstance(index_var, DynamicArrayVariable):
 raise TypeError(('Cannot link to subexpression %s: it refers '
 'to the variable %s which is indexed with the '
 'dynamic index %s.') % (name,
 identifier,
 subexpr_var_index))
 else:
 self.add_reference(subexpr_var_index, group)

 self.indices[new_name] = subexpr_var_index

 if isinstance(subexpr_var, Subexpression):
 self.add_referred_subexpression(new_name,
 group,
 subexpr_var,
 subexpr_var_index)
 else:
 self.add_reference(new_name,
 group,
 identifier,
 subexpr_var_index)

 new_expr = word_substitute(subexpr.expr, substitutions)
 new_subexpr = Subexpression(name, subexpr.unit, self.owner, new_expr,
 device=subexpr.device,
 dtype=subexpr.dtype,
 scalar=subexpr.scalar)
 self._variables[name] = new_subexpr

[docs] def add_reference(self, name, group, varname=None, index=None):
 '''
 Add a reference to a variable defined somewhere else (possibly under
 a different name). This is for example used in `Subgroup` and
 `Synapses` to refer to variables in the respective `NeuronGroup`.

 Parameters

 name : str
 The name of the variable (in this group, possibly a different name
 from `var.name`).
 group : `Group`
 The group from which `var` is referenced
 varname : str, optional
 The variable to refer to. If not given, defaults to `name`.
 index : str, optional
 The index that should be used for this variable (defaults to
 `Variables.default_index`).
 '''
 if varname is None:
 varname = name
 if varname not in group.variables:
 raise KeyError(('Group {group} does not have a variable '
 '{name}.').format(group=group.name,
 name=varname))
 if index is None:
 if group.variables[varname].scalar:
 index = '0'
 else:
 index = self.default_index

 if (self.owner is not None and self.owner.name != group.name and
 index in self.owner.variables):
 if (not self.owner.variables[index].read_only and
 group.variables.indices[varname] != group.variables.default_index):
 raise TypeError(('Cannot link variable %s to %s in group %s -- '
 'need to precalculate direct indices but '
 'index %s can change') % (name,
 varname,
 group.name,
 index))

 # We don't overwrite existing names with references
 if name not in self._variables:
 var = group.variables[varname]
 if isinstance(var, Subexpression):
 self.add_referred_subexpression(name, group, var, index)
 else:
 self._variables[name] = var
 self.indices[name] = index

[docs] def add_references(self, group, varnames, index=None):
 '''
 Add all `Variable` objects from a name to `Variable` mapping with the
 same name as in the original mapping.

 Parameters

 group : `Group`
 The group from which the `variables` are referenced
 varnames : iterable of str
 The variables that should be referred to in the current group
 index : str, optional
 The index to use for all the variables (defaults to
 `Variables.default_index`)
 '''
 for name in varnames:
 self.add_reference(name, group, name, index)

[docs] def add_object(self, name, obj):
 '''
 Add an arbitrary Python object. This is only meant for internal use
 and therefore only names starting with an underscore are allowed.

 Parameters

 name : str
 The name used for this object (has to start with an underscore).
 obj : object
 An arbitrary Python object that needs to be accessed directly from
 a `CodeObject`.
 '''
 if not name.startswith('_'):
 raise ValueError('This method is only meant for internally used '
 'objects, the name therefore has to start with '
 'an underscore')
 self._variables[name] = obj

[docs] def create_clock_variables(self, clock, prefix=''):
 '''
 Convenience function to add the ``t`` and ``dt`` attributes of a
 `clock`.

 Parameters

 clock : `Clock`
 The clock that should be used for ``t`` and ``dt``.
 prefix : str, optional
 A prefix for the variable names. Used for example in monitors to
 not confuse the dynamic array of recorded times with the current
 time in the recorded group.
 '''
 for name in ['t', 'dt']:
 self.add_reference(prefix+name, clock, name)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/brian2/core/names.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.core.names

import uuid
import re

from brian2.utils.logger import get_logger
from brian2.core.tracking import Trackable

__all__ = ['Nameable']

logger = get_logger(__name__)

[docs]def find_name(name):
 if not name.endswith('*'):
 # explicitly given names are used as given. Network.before_run (and
 # the device in case of standalone) will check for name clashes later
 return name

 name = name[:-1]

 instances = set(Nameable.__instances__())
 allnames = set(obj().name for obj in instances
 if hasattr(obj(), 'name'))

 # Try the name without any additions first:
 if name not in allnames:
 return name

 # Name is already taken, try _1, _2, etc.
 i = 1
 while name+'_'+str(i) in allnames:
 i += 1
 return name+'_'+str(i)

[docs]class Nameable(Trackable):
 '''
 Base class to find a unique name for an object

 If you specify a name explicitly, and it has already been taken, a
 `ValueError` is raised. You can also specify a name with a wildcard asterisk
 in the end, i.e. in the form ``'name*'``. It will then try ``name`` first
 but if this is already specified, it will try ``name_1``, `name__2``, etc.
 This is the default mechanism used by most core objects in Brian, e.g.
 `NeuronGroup` uses a default name of ``'neurongroup*'``.

 Parameters

 name : str
 An name for the object, possibly ending in ``*`` to specify that
 variants of this name should be tried if the name (without the asterisk)
 is already taken. If (and only if) the name for this object has already
 been set, it is also possible to call the initialiser with ``None`` for
 the `name` argument. This situation can arise when a class derives from
 multiple classes that derive themselves from `Nameable` (e.g. `Group`
 and `CodeRunner`) and their initialisers are called explicitely.

 Raises

 ValueError
 If the name is already taken.
 '''
 def __init__(self, name):
 if getattr(self, '_name', None) is not None and name is None:
 # name has already been specified previously
 return

 self.assign_id()

 if not isinstance(name, basestring):
 raise TypeError(('"name" argument has to be a string, is type '
 '{type} instead').format(type=repr(type(name))))
 if not re.match(r"[_A-Za-z][_a-zA-Z0-9]**?$", name):
 raise ValueError("Name %s not valid variable name" % name)

 self._name = find_name(name)
 logger.diagnostic("Created object of class "+self.__class__.__name__+" with name "+self._name)

[docs] def assign_id(self):
 '''
 Assign a new id to this object. Under most circumstances, this method
 should only be called once at the creation of the object to generate a
 unique id. In the case of the `MagicNetwork`, however, the id should
 change when a new, independent set of objects is simulated.
 '''
 self._id = uuid.uuid4()

 name = property(fget=lambda self:self._name,
 doc='''
 The unique name for this object.

 Used when generating code. Should be an acceptable
 variable name, i.e. starting with a letter
 character and followed by alphanumeric characters and
 ``_``.
 ''')

 id = property(fget=lambda self:self._id,
 doc='''
 A unique id for this object.

 In contrast to names, which may be reused, the id stays
 unique. This is used in the dependency checking to not
 have to deal with the chore of comparing weak
 references, weak proxies and strong references.
 ''')

if __name__=='__main__':
 from brian2 import *
 from brian2.core.names import Nameable
 nam = Nameable('nameable')
 obj = BrianObject(name='object*')
 obj2 = BrianObject(name='object*')
 print nam.name, obj.name, obj2.name

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/brian2/core/tracking.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.core.tracking

from collections import defaultdict
from weakref import ref

__all__ = ['Trackable']

[docs]class InstanceTrackerSet(set):
 '''
 A `set` of `weakref.ref` to all existing objects of a certain class.

 Should not normally be directly used.
 '''
[docs] def add(self, value):
 '''
 Adds a `weakref.ref` to the ``value``
 '''
 # The second argument to ref is a callback that is called with the
 # ref as argument when the object has been deleted, here we just
 # remove it from the set in that case
 wr = ref(value, self.remove)
 set.add(self, wr)

[docs] def remove(self, value):
 '''
 Removes the ``value`` (which should be a weakref) if it is in the set

 Sometimes the value will have been removed from the set by `clear`,
 so we ignore `KeyError` in this case.
 '''
 try:
 set.remove(self, value)
 except KeyError:
 pass

[docs]class InstanceFollower(object):
 """
 Keep track of all instances of classes derived from `Trackable`

 The variable ``__instancesets__`` is a dictionary with keys which are class
 objects, and values which are `InstanceTrackerSet`, so
 ``__instanceset__[cls]`` is a set tracking all of the instances of class
 ``cls`` (or a subclass).
 """
 instance_sets = defaultdict(InstanceTrackerSet)
[docs] def add(self, value):
 for cls in value.__class__.__mro__: # MRO is the Method Resolution Order which contains all the superclasses of a class
 self.instance_sets[cls].add(value)

[docs] def get(self, cls):
 return self.instance_sets[cls]

[docs]class Trackable(object):
 '''
 Classes derived from this will have their instances tracked.

 The `classmethod` `__instances__()` will return an `InstanceTrackerSet`
 of the instances of that class, and its subclasses.
 '''
 __instancefollower__ = InstanceFollower() # static property of all objects of class derived from Trackable
 def __new__(typ, *args, **kw):
 obj = object.__new__(typ)
 obj.__instancefollower__.add(obj)
 return obj

 @classmethod
 def __instances__(cls):
 return cls.__instancefollower__.get(cls)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_images/synapses.spatial_connections.1.png
200

100

-100

-200

determininstic connections

random connections

200

100

-100

-200

-100

0

100

200

100

200

_modules/brian2/core/base.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.core.base

'''
All Brian objects should derive from `BrianObject`.
'''
import weakref
import traceback
import os
import sys

from brian2.utils.logger import get_logger
from brian2.core.names import Nameable
from brian2.units.allunits import second
from brian2.units.fundamentalunits import check_units

__all__ = ['BrianObject',
 'weakproxy_with_fallback',
 'BrianObjectException',
 'brian_object_exception',
]

logger = get_logger(__name__)

[docs]class BrianObject(Nameable):
 '''
 All Brian objects derive from this class, defines magic tracking and update.

 See the documentation for `Network` for an explanation of which
 objects get updated in which order.

 Parameters

 dt : `Quantity`, optional
 The time step to be used for the simulation. Cannot be combined with
 the `clock` argument.
 clock : `Clock`, optional
 The update clock to be used. If neither a clock, nor the `dt` argument
 is specified, the `defaultclock` will be used.
 when : str, optional
 In which scheduling slot to simulate the object during a time step.
 Defaults to ``'start'``.
 order : int, optional
 The priority of this object for operations occurring at the same time
 step and in the same scheduling slot. Defaults to 0.
 name : str, optional
 A unique name for the object - one will be assigned automatically if
 not provided (of the form ``brianobject_1``, etc.).

 Notes

 The set of all `BrianObject` objects is stored in ``BrianObject.__instances__()``.
 '''
 @check_units(dt=second)
 def __init__(self, dt=None, clock=None, when='start', order=0, name='brianobject*'):
 # Setup traceback information for this object
 creation_stack = []
 bases = []
 for modulename in ['brian2']:
 if modulename in sys.modules:
 base, _ = os.path.split(sys.modules[modulename].__file__)
 bases.append(base)
 for fname, linenum, funcname, line in traceback.extract_stack():
 if all(base not in fname for base in bases):
 s = ' File "{fname}", line {linenum}, in {funcname}\n {line}'.format(fname=fname,
 linenum=linenum,
 funcname=funcname,
 line=line)
 creation_stack.append(s)
 creation_stack = [''] + creation_stack
 #: A string indicating where this object was created (traceback with any parts of Brian code removed)
 self._creation_stack = ('Object was created here (most recent call only, full details in '
 'debug log):\n'+creation_stack[-1])
 self._full_creation_stack = 'Object was created here:\n'+'\n'.join(creation_stack)

 if dt is not None and clock is not None:
 raise ValueError('Can only specify either a dt or a clock, not both.')

 if not isinstance(when, basestring):
 from brian2.core.clocks import Clock
 # Give some helpful error messages for users coming from the alpha
 # version
 if isinstance(when, Clock):
 raise TypeError(("Do not use the 'when' argument for "
 "specifying a clock, either provide a "
 "timestep for the 'dt' argument or a Clock "
 "object for 'clock'."))
 if isinstance(when, tuple):
 raise TypeError("Use the separate keyword arguments, 'dt' (or "
 "'clock'), 'when', and 'order' instead of "
 "providing a tuple for 'when'. Only use the "
 "'when' argument for the scheduling slot.")
 # General error
 raise TypeError("The 'when' argument has to be a string "
 "specifying the scheduling slot (e.g. 'start').")

 Nameable.__init__(self, name)

 #: The clock used for simulating this object
 self._clock = clock
 if clock is None:
 from brian2.core.clocks import Clock, defaultclock
 if dt is not None:
 self._clock = Clock(dt=dt, name=self.name+'_clock*')
 else:
 self._clock = defaultclock

 if getattr(self._clock, '_is_proxy', False):
 from brian2.devices.device import get_device
 self._clock = get_device().defaultclock

 #: Used to remember the `Network` in which this object has been included
 #: before, to raise an error if it is included in a new `Network`
 self._network = None

 #: The ID string determining when the object should be updated in `Network.run`.
 self.when = when

 #: The order in which objects with the same clock and ``when`` should be updated
 self.order = order

 self._dependencies = set()
 self._contained_objects = []
 self._code_objects = []

 self._active = True

 #: The scope key is used to determine which objects are collected by magic
 self._scope_key = self._scope_current_key

 logger.diagnostic("Created BrianObject with name {self.name}, "
 "clock={self._clock}, "
 "when={self.when}, order={self.order}".format(self=self))

 #: Global key value for ipython cell restrict magic
 _scope_current_key = 0

 #: Whether or not `MagicNetwork` is invalidated when a new `BrianObject` of this type is added
 invalidates_magic_network = True

 #: Whether or not the object should be added to a `MagicNetwork`. Note that
 #: all objects in `BrianObject.contained_objects` are automatically added
 #: when the parent object is added, therefore e.g. `NeuronGroup` should set
 #: `add_to_magic_network` to ``True``, but it should not be set for all the
 #: dependent objects such as `StateUpdater`
 add_to_magic_network = False

[docs] def add_dependency(self, obj):
 '''
 Add an object to the list of dependencies. Takes care of handling
 subgroups correctly (i.e., adds its parent object).

 Parameters

 obj : `BrianObject`
 The object that this object depends on.
 '''
 from brian2.groups.subgroup import Subgroup
 if isinstance(obj, Subgroup):
 self._dependencies.add(obj.source.id)
 else:
 self._dependencies.add(obj.id)

[docs] def before_run(self, run_namespace):
 '''
 Optional method to prepare the object before a run.

 TODO
 '''
 pass

[docs] def after_run(self):
 '''
 Optional method to do work after a run is finished.

 Called by `Network.after_run` after the main simulation loop terminated.
 '''
 pass

[docs] def run(self):
 for codeobj in self._code_objects:
 codeobj()

 contained_objects = property(fget=lambda self:self._contained_objects,
 doc='''
 The list of objects contained within the `BrianObject`.

 When a `BrianObject` is added to a `Network`, its contained objects will
 be added as well. This allows for compound objects which contain
 a mini-network structure.

 Note that this attribute cannot be set directly, you need to modify
 the underlying list, e.g. ``obj.contained_objects.extend([A, B])``.
 ''')

 code_objects = property(fget=lambda self:self._code_objects,
 doc='''
 The list of `CodeObject` contained within the `BrianObject`.

 TODO: more details.

 Note that this attribute cannot be set directly, you need to modify
 the underlying list, e.g. ``obj.code_objects.extend([A, B])``.
 ''')

 updaters = property(fget=lambda self:self._updaters,
 doc='''
 The list of `Updater` that define the runtime behaviour of this object.

 TODO: more details.

 Note that this attribute cannot be set directly, you need to modify
 the underlying list, e.g. ``obj.updaters.extend([A, B])``.
 ''')

 clock = property(fget=lambda self: self._clock,
 doc='''
 The `Clock` determining when the object should be updated.

 Note that this cannot be changed after the object is
 created.
 ''')

 def _set_active(self, val):
 val = bool(val)
 self._active = val
 for obj in self.contained_objects:
 obj.active = val

 active = property(fget=lambda self:self._active,
 fset=_set_active,
 doc='''
 Whether or not the object should be run.

 Inactive objects will not have their `update`
 method called in `Network.run`. Note that setting or
 unsetting the `active` attribute will set or unset
 it for all `contained_objects`.
 ''')

 def __repr__(self):
 description = ('{classname}(clock={clock}, when={when}, order={order}, name={name})')
 return description.format(classname=self.__class__.__name__,
 when=self.when,
 clock=self._clock,
 order=self.order,
 name=repr(self.name))

 # This is a repeat from Nameable.name, but we want to get the documentation
 # here again
 name = Nameable.name

[docs]def weakproxy_with_fallback(obj):
 '''
 Attempts to create a `weakproxy` to the object, but falls back to the object if not possible.
 '''
 try:
 return weakref.proxy(obj)
 except TypeError:
 return obj

[docs]def device_override(name):
 '''
 Decorates a function/method to allow it to be overridden by the current `Device`.

 The ``name`` is the function name in the `Device` to use as an override if it exists.

 The returned function has an additional attribute ``original_function``
 which is a reference to the original, undecorated function.
 '''
 def device_override_decorator(func):
 def device_override_decorated_function(*args, **kwds):
 from brian2.devices.device import get_device
 curdev = get_device()
 if hasattr(curdev, name):
 return getattr(curdev, name)(*args, **kwds)
 else:
 return func(*args, **kwds)

 device_override_decorated_function.__doc__ = func.__doc__
 device_override_decorated_function.original_function = func

 return device_override_decorated_function

 return device_override_decorator

[docs]class BrianObjectException(Exception):
 '''
 High level exception that adds extra Brian-specific information to exceptions

 This exception should only be raised at a fairly high level in Brian code to
 pass information back to the user. It adds extra information about where a
 `BrianObject` was defined to better enable users to locate the source of
 problems.

 You should use the `brian_object_exception` function to raise this, and
 it should only be raised in an ``except`` block handling a prior
 exception.

 Parameters

 message : str
 Additional error information to add to the original exception.
 brianobj : BrianObject
 The object that caused the error to happen.
 original_exception : Exception
 The original exception that was raised.
 '''
 def __init__(self, message, brianobj, original_exception):
 self._brian_message = message
 self._brian_objname = brianobj.name
 self._brian_origexc = '\n'.join(traceback.format_exception_only(type(original_exception),
 original_exception))
 self._brian_origtb = traceback.format_exc()
 self._brian_objcreate = brianobj._creation_stack
 logger.diagnostic('Error was encountered with object "{objname}":\n{fullstack}'.format(
 objname=self._brian_objname,
 fullstack=brianobj._full_creation_stack))

 def __str__(self):
 return ('Original error and traceback:\n{origtb}\n'
 'Error encountered with object named "{objname}".\n'
 '{objcreate}\n\n'
 '{message} {origexc}'
 '(See above for original error message and traceback.)'
).format(origtb=self._brian_origtb,
 origexc=self._brian_origexc,
 objname=self._brian_objname, message=self._brian_message,
 objcreate=self._brian_objcreate)

[docs]def brian_object_exception(message, brianobj, original_exception):
 '''
 Returns a `BrianObjectException` derived from the original exception.

 Creates a new class derived from the class of the original exception
 and `BrianObjectException`. This allows exception handling code to
 respond both to the original exception class and `BrianObjectException`.

 See `BrianObjectException` for arguments and notes.
 '''
 DerivedBrianObjectException = type('BrianObjectException',
 (BrianObjectException, original_exception.__class__),
 {})
 return DerivedBrianObjectException(message, brianobj, original_exception)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_images/compartmental.rall.1.png
v (mV)

=52

-54

=56

-60

—62

—64

100

200

300
x (um)

400

500

600

_modules/brian2/core/functions.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.core.functions

import collections
import inspect
import types

import numpy as np
import sympy
from numpy.random import randn, rand
from sympy import Function as sympy_Function

import brian2.units.unitsafefunctions as unitsafe
from brian2.core.preferences import prefs
from brian2.core.variables import Constant
from brian2.units.fundamentalunits import (fail_for_dimension_mismatch, Unit,
 Quantity, get_dimensions,
 DIMENSIONLESS, is_dimensionless)

__all__ = ['DEFAULT_FUNCTIONS', 'Function', 'implementation', 'declare_types']

BRIAN_DTYPES = ['boolean', 'integer', 'float']
VALID_ARG_TYPES = BRIAN_DTYPES+['any']
VALID_RETURN_TYPES = BRIAN_DTYPES+['highest']

[docs]def declare_types(**types):
 '''
 Decorator to declare argument and result types for a function

 Usage is similar to `check_units` except that types must be one of ``{VALID_ARG_TYPES}``
 and the result type must be one of ``{VALID_RETURN_TYPES}``. Unspecified argument
 types are assumed to be ``'all'`` (i.e. anything is permitted), and an unspecified
 result type is assumed to be ``'float'``. Note that the ``'highest'`` option for
 result type will give the highest type of its argument, e.g. if the arguments
 were boolean and integer then the result would be integer, if the arguments were
 integer and float it would be float.
 '''
 def annotate_function_with_types(f):
 if hasattr(f, '_orig_arg_names'):
 arg_names = f._orig_arg_names
 else:
 arg_names = f.func_code.co_varnames[0:f.func_code.co_argcount]
 argtypes = []
 for name in arg_names:
 arg_type = types.get(name, 'any')
 if arg_type not in VALID_ARG_TYPES:
 raise ValueError("Argument type %s is not valid, must be one of %s, "
 "for argument %s" % (arg_type, VALID_ARG_TYPES, name))
 argtypes.append(arg_type)
 for n in types.keys():
 if n not in arg_names and n!='result':
 raise ValueError("Type specified for unknown argument "+n)
 return_type = types.get('result', 'float')
 if return_type not in VALID_RETURN_TYPES:
 raise ValueError("Result type %s is not valid, "
 "must be one of %s" % (return_type, VALID_RETURN_TYPES))
 f._arg_types = argtypes
 f._return_type = return_type
 f._orig_arg_names = arg_names
 f._annotation_attributes = getattr(f, '_annotation_attributes', [])+['_arg_types', '_return_type']
 return f
 return annotate_function_with_types

[docs]class Function(object):
 '''
 An abstract specification of a function that can be used as part of
 model equations, etc.

 Parameters

 pyfunc : function
 A Python function that is represented by this `Function` object.
 sympy_func : `sympy.Function`, optional
 A corresponding sympy function (if any). Allows functions to be
 interpreted by sympy and potentially make simplifications. For example,
 ``sqrt(x**2)`` could be replaced by ``abs(x)``.
 arg_units : list of `Unit`, optional
 If `pyfunc` does not provide unit information (which typically means
 that it was not annotated with a `check_units` decorator), the
 units of the arguments have to specified explicitly using this
 parameter.
 return_unit : `Unit` or callable, optional
 Same as for `arg_units`: if `pyfunc` does not provide unit information,
 this information has to be provided explictly here. `return_unit` can
 either be a specific `Unit`, if the function always returns the same
 unit, or a function of the input units, e.g. a "square" function would
 return the square of its input units, i.e. `return_unit` could be
 specified as ``lambda u: u**2``.
 arg_types : list of str, optional
 Similar to `arg_units`, but gives the type of the argument rather than
 its unit. In the current version of Brian arguments are specified
 by one of the following strings: 'boolean', 'integer', 'float', 'any'.
 If `arg_types` is not specified, 'any' will be assumed. In
 future versions, a more refined specification may be possible. Note that
 any argument with a type other than float should have no units. If
 return_type : str, optional
 Similar to `return_unit` and `arg_types`. In addition to 'boolean',
 'integer' and 'float' you can also use 'highest' which will return the
 highest type of its arguments. You can also give a function, as for
 `return_unit`. If the return type is not specified, it is assumed to
 be 'float'.
 stateless : bool, optional
 Whether this function does not have an internal state, i.e. if it
 always returns the same output when called with the same arguments.
 This is true for mathematical functions but not true for ``rand()``, for
 example. Defaults to ``True``.

 Notes

 If a function should be usable for code generation targets other than
 Python/numpy, implementations for these target languages have to be added
 using the `~brian2.codegen.functions.implementation` decorator or using the
 `~brian2.codegen.functions.add_implementations` function.
 '''
 def __init__(self, pyfunc, sympy_func=None,
 arg_units=None, return_unit=None,
 arg_types=None, return_type=None,
 stateless=True):
 self.pyfunc = pyfunc
 self.sympy_func = sympy_func
 self._arg_units = arg_units
 self._return_unit = return_unit
 if return_unit == bool:
 self._returns_bool = True
 else:
 self._returns_bool = False
 self._arg_types = arg_types
 self._return_type = return_type
 self.stateless = stateless
 if self._arg_units is None:
 if not hasattr(pyfunc, '_arg_units'):
 raise ValueError(('The Python function "%s" does not specify '
 'how it deals with units, need to specify '
 '"arg_units" or use the "@check_units" '
 'decorator.') % pyfunc.__name__)
 elif pyfunc._arg_units is None:
 # @check_units sets _arg_units to None if the units aren't
 # specified for all of its arguments
 raise ValueError(('The Python function "%s" does not specify '
 'the units for all of its '
 'arguments.') % pyfunc.__name__)
 else:
 self._arg_units = pyfunc._arg_units

 if self._return_unit is None:
 if not hasattr(pyfunc, '_return_unit'):
 raise ValueError(('The Python function "%s" does not specify '
 'how it deals with units, need to specify '
 '"return_unit" or use the "@check_units" '
 'decorator.') % pyfunc.__name__)
 elif pyfunc._return_unit is None:
 # @check_units sets _return_unit to None if no "result=..."
 # keyword is specified.
 raise ValueError(('The Python function "%s" does not specify '
 'the unit for its return '
 'value.') % pyfunc.__name__)
 else:
 self._return_unit = pyfunc._return_unit

 if self._arg_types is None:
 if hasattr(pyfunc, '_arg_types'):
 self._arg_types = pyfunc._arg_types
 else:
 self._arg_types = ['any']*len(self._arg_units)

 if self._return_type is None:
 self._return_type = getattr(pyfunc, '_return_type', 'float')

 for argtype, u in zip(self._arg_types, self._arg_units):
 if argtype!='float' and argtype!='any' and u is not None and not is_dimensionless(u):
 raise TypeError("Non-float arguments must be dimensionless in function "+pyfunc.__name__)
 if argtype not in VALID_ARG_TYPES:
 raise ValueError("Argument type %s is not valid, must be one of %s, "
 "in function %s" % (argtype, VALID_ARG_TYPES, pyfunc.__name__))

 if self._return_type not in VALID_RETURN_TYPES:
 raise ValueError("Return type %s is not valid, must be one of %s, "
 "in function %s" % (self._return_type, VALID_RETURN_TYPES, pyfunc.__name__))

 #: Stores implementations for this function in a
 #: `FunctionImplementationContainer`
 self.implementations = FunctionImplementationContainer(self)

[docs] def is_locally_constant(self, dt):
 '''
 Return whether this function (if interpreted as a function of time)
 should be considered constant over a timestep. This is most importantly
 used by `TimedArray` so that linear integration can be used. In its
 standard implementation, always returns ``False``.

 Parameters

 dt : float
 The length of a timestep (without units).

 Returns

 constant : bool
 Whether the results of this function can be considered constant
 over one timestep of length `dt`.
 '''
 return False

[docs] def __call__(self, *args):
 return self.pyfunc(*args)

[docs]class FunctionImplementation(object):
 '''
 A simple container object for function implementations.

 Parameters

 name : str, optional
 The name of the function in the target language. Should only be
 specified if the function has to be renamed for the target language.
 code : language-dependent, optional
 A language dependent argument specifying the implementation in the
 target language, e.g. a code string or a dictionary of code strings.
 namespace : dict-like, optional
 A dictionary of mappings from names to values that should be added
 to the namespace of a `CodeObject` using the function.
 dependencies : dict-like, optional
 A mapping of names to `Function` objects, for additional functions
 needed by this function.
 dynamic : bool, optional
 Whether this `code`/`namespace` is dynamic, i.e. generated for each
 new context it is used in. If set to ``True``, `code` and `namespace`
 have to be callable with a `Group` as an argument and are expected
 to return the final `code` and `namespace`. Defaults to ``False``.
 '''
 def __init__(self, name=None, code=None, namespace=None,
 dependencies=None, dynamic=False):
 self.name = name
 self.dependencies = dependencies
 self._code = code
 self._namespace = namespace
 self.dynamic = dynamic

[docs] def get_code(self, owner):
 if self.dynamic:
 return self._code(owner)
 else:
 return self._code

[docs] def get_namespace(self, owner):
 if self.dynamic:
 return self._namespace(owner)
 else:
 return self._namespace

[docs]class FunctionImplementationContainer(collections.Mapping):
 '''
 Helper object to store implementations and give access in a dictionary-like
 fashion, using `CodeGenerator` implementations as a fallback for `CodeObject`
 implementations.
 '''
 def __init__(self, function):
 self._function = function
 self._implementations = dict()

 def __getitem__(self, key):
 '''
 Find an implementation for this function that can be used by the
 `CodeObject` given as `key`. Will find implementations registered
 for `key` itself (or one of its parents), or for the `CodeGenerator`
 class that `key` uses (or one of its parents). In all cases,
 implementations registered for the corresponding names qualify as well.

 Parameters

 key : `CodeObject`
 The `CodeObject` that will use the `Function`

 Returns

 implementation : `FunctionImplementation`
 An implementation suitable for `key`.
 '''
 fallback = getattr(key, 'generator_class', None)

 for K in [key, fallback]:
 name = getattr(K, 'class_name',
 'no class name for key')
 for impl_key, impl in self._implementations.iteritems():
 impl_key_name = getattr(impl_key, 'class_name',
 'no class name for implementation')
 if ((impl_key_name is not None and impl_key_name in [K, name]) or
 (impl_key is not None and impl_key in [K, name])):
 return impl
 if hasattr(K, '__bases__'):
 for cls in inspect.getmro(K):
 if cls in self._implementations:
 return self._implementations[cls]
 name = getattr(cls, 'class_name', None)
 if name in self._implementations:
 return self._implementations[name]

 # Give a nicer error message if possible
 if getattr(key, 'class_name', None) is not None:
 key = key.class_name
 elif getattr(fallback, 'class_name', None) is not None:
 key = fallback.class_name
 keys = ', '.join([getattr(k, 'class_name', str(k))
 for k in self._implementations.iterkeys()])
 raise KeyError(('No implementation available for target {key}. '
 'Available implementations: {keys}').format(key=key,
 keys=keys))

[docs] def add_numpy_implementation(self, wrapped_func, dependencies=None,
 discard_units=None):
 '''
 Add a numpy implementation to a `Function`.

 Parameters

 function : `Function`
 The function description for which an implementation should be added.
 wrapped_func : callable
 The original function (that will be used for the numpy implementation)
 dependencies : list of `Function`, optional
 A list of functions this function needs.
 discard_units : bool, optional
 See `implementation`.
 '''
 if discard_units is None:
 discard_units = prefs['codegen.runtime.numpy.discard_units']

 # Get the original function inside the check_units decorator
 if hasattr(wrapped_func, '_orig_func'):
 orig_func = wrapped_func._orig_func
 else:
 orig_func = wrapped_func

 if discard_units:
 new_globals = dict(orig_func.func_globals)
 # strip away units in the function by changing its namespace
 for key, value in new_globals.iteritems():
 if isinstance(value, Quantity):
 new_globals[key] = np.asarray(value)
 unitless_func = types.FunctionType(orig_func.func_code, new_globals,
 orig_func.func_name,
 orig_func.func_defaults,
 orig_func.func_closure)
 self._implementations['numpy'] = FunctionImplementation(name=None,
 code=unitless_func,
 dependencies=dependencies)
 else:
 def wrapper_function(*args):
 if not len(args) == len(self._function._arg_units):
 raise ValueError(('Function %s got %d arguments, '
 'expected %d') % (self._function.pyfunc.__name__, len(args),
 len(self._function._arg_units)))
 new_args = []
 for arg, arg_unit in zip(args, self._function._arg_units):
 if arg_unit == bool:
 new_args.append(arg)
 else:
 new_args.append(Quantity.with_dimensions(arg,
 get_dimensions(arg_unit)))
 result = orig_func(*new_args)
 return_unit = self._function._return_unit
 if return_unit == bool:
 if not (isinstance(result, bool) or
 np.asarray(result).dtype == bool):
 raise TypeError('The function %s returned '
 '%s, but it was expected '
 'to return a boolean '
 'value ' % (orig_func.__name__,
 result))
 elif return_unit is 1 or return_unit.dim is DIMENSIONLESS:
 fail_for_dimension_mismatch(result,
 return_unit,
 'The function %s returned '
 '{value}, but it was expected '
 'to return a dimensionless '
 'quantity' % orig_func.__name__,
 value=result)
 else:
 fail_for_dimension_mismatch(result,
 return_unit,
 ('The function %s returned '
 '{value}, but it was expected '
 'to return a quantity with '
 'units %r') % (orig_func.__name__,
 return_unit),
 value=result)
 return np.asarray(result)

 self._implementations['numpy'] = FunctionImplementation(name=None,
 code=wrapper_function,
 dependencies=dependencies)

[docs] def add_implementation(self, target, code, namespace=None,
 dependencies=None, name=None):
 self._implementations[target] = FunctionImplementation(name=name,
 code=code,
 dependencies=dependencies,
 namespace=namespace)

[docs] def add_dynamic_implementation(self, target, code, namespace=None,
 dependencies=None, name=None):
 '''
 Adds an "dynamic implementation" for this function. `code` and `namespace`
 arguments are expected to be callables that will be called in
 `Network.before_run` with the owner of the `CodeObject` as an argument.
 This allows to generate code that depends on details of the context it
 is run in, e.g. the ``dt`` of a clock.
 '''
 if not callable(code):
 raise TypeError('code argument has to be a callable, is type %s instead' % type(code))
 if namespace is not None and not callable(namespace):
 raise TypeError('namespace argument has to be a callable, is type %s instead' % type(code))
 self._implementations[target] = FunctionImplementation(name=name,
 code=code,
 namespace=namespace,
 dependencies=dependencies,
 dynamic=True)

 def __len__(self):
 return len(self._implementations)

 def __iter__(self):
 return iter(self._implementations)

[docs]def implementation(target, code=None, namespace=None, dependencies=None,
 discard_units=None):
 '''
 A simple decorator to extend user-written Python functions to work with code
 generation in other languages.

 Parameters

 target : str
 Name of the code generation target (e.g. ``'weave'``) for which to add
 an implementation.
 code : str or dict-like, optional
 What kind of code the target language expects is language-specific,
 e.g. C++ code allows for a dictionary of code blocks instead of a
 single string.
 namespaces : dict-like, optional
 A namespace dictionary (i.e. a mapping of names to values) that
 should be added to a `CodeObject` namespace when using this function.
 dependencies : dict-like, optional
 A mapping of names to `Function` objects, for additional functions
 needed by this function.
 discard_units: bool, optional
 Numpy functions can internally make use of the unit system. However,
 during a simulation run, state variables are passed around as unitless
 values for efficiency. If `discard_units` is set to ``False``, input
 arguments will have units added to them so that the function can still
 use units internally (the units will be stripped away from the return
 value as well). Alternatively, if `discard_units` is set to ``True``,
 the function will receive unitless values as its input. The namespace
 of the function will be altered to make references to units (e.g.
 ``ms``) refer to the corresponding floating point values so that no
 unit mismatch errors are raised. Note that this system cannot work in
 all cases, e.g. it does not work with functions that internally imports
 values (e.g. does ``from brian2 import ms``) or access values with
 units indirectly (e.g. uses ``brian2.ms`` instead of ``ms``). If no
 value is given, defaults to the preference setting
 `codegen.runtime.numpy.discard_units`.

 Notes

 While it is in principle possible to provide a numpy implementation
 as an argument for this decorator, this is normally not necessary -- the
 numpy implementation should be provided in the decorated function.

 If this decorator is used with other directors such as `check_units` or
 `declare_types`, it should be the uppermost decorator (that is, the
 last one to be applied).

 Examples

 Sample usage::

 @implementation('cpp',"""
 #include<math.h>
 inline double usersin(double x)
 {
 return sin(x);
 }
 """)
 def usersin(x):
 return sin(x)
 '''

 def do_user_implementation(func):
 # Allow nesting of decorators
 if isinstance(func, Function):
 function = func
 else:
 function = Function(func)

 if discard_units: # Add a numpy implementation that discards units
 if not (target == 'numpy' and code is None):
 raise TypeError(("'discard_units' can only be set for code "
 "generation target 'numpy', without providing "
 "any code."))
 function.implementations.add_numpy_implementation(wrapped_func=func,
 dependencies=dependencies,
 discard_units=discard_units)
 else:
 function.implementations.add_implementation(target, code=code,
 dependencies=dependencies,
 namespace=namespace)
 # # copy any annotation attributes
 # if hasattr(func, '_annotation_attributes'):
 # for attrname in func._annotation_attributes:
 # setattr(function, attrname, getattr(func, attrname))
 # function._annotation_attributes = getattr(func, '_annotation_attributes', [])
 return function
 return do_user_implementation

[docs]class SymbolicConstant(Constant):
 '''
 Class for representing constants (e.g. pi) that are understood by sympy.
 '''
 def __init__(self, name, sympy_obj, value):
 super(SymbolicConstant, self).__init__(name, unit=Unit(1),
 value=value)
 self.sympy_obj = sympy_obj

##
Standard functions and constants
##

sympy does not have a log10 function, so let's define one
[docs]class log10(sympy_Function):
 nargs = 1

 @classmethod
[docs] def eval(cls, args):
 return sympy.functions.elementary.exponential.log(args, 10)

DEFAULT_FUNCTIONS = {
 # numpy functions that have the same name in numpy and math.h
 'cos': Function(unitsafe.cos,
 sympy_func=sympy.functions.elementary.trigonometric.cos),
 'sin': Function(unitsafe.sin,
 sympy_func=sympy.functions.elementary.trigonometric.sin),
 'tan': Function(unitsafe.tan,
 sympy_func=sympy.functions.elementary.trigonometric.tan),
 'cosh': Function(unitsafe.cosh,
 sympy_func=sympy.functions.elementary.hyperbolic.cosh),
 'sinh': Function(unitsafe.sinh,
 sympy_func=sympy.functions.elementary.hyperbolic.sinh),
 'tanh': Function(unitsafe.tanh,
 sympy_func=sympy.functions.elementary.hyperbolic.tanh),
 'exp': Function(unitsafe.exp,
 sympy_func=sympy.functions.elementary.exponential.exp),
 'log': Function(unitsafe.log,
 sympy_func=sympy.functions.elementary.exponential.log),
 'log10': Function(unitsafe.log10,
 sympy_func=log10),
 'sqrt': Function(np.sqrt,
 sympy_func=sympy.functions.elementary.miscellaneous.sqrt,
 arg_units=[None], return_unit=lambda u: u**0.5),
 'ceil': Function(np.ceil,
 sympy_func=sympy.functions.elementary.integers.ceiling,
 arg_units=[None], return_unit=lambda u: u),
 'floor': Function(np.floor,
 sympy_func=sympy.functions.elementary.integers.floor,
 arg_units=[None], return_unit=lambda u: u),
 # numpy functions that have a different name in numpy and math.h
 'arccos': Function(unitsafe.arccos,
 sympy_func=sympy.functions.elementary.trigonometric.acos),
 'arcsin': Function(unitsafe.arcsin,
 sympy_func=sympy.functions.elementary.trigonometric.asin),
 'arctan': Function(unitsafe.arctan,
 sympy_func=sympy.functions.elementary.trigonometric.atan),
 'abs': Function(np.abs, return_type='highest',
 sympy_func=sympy.functions.elementary.complexes.Abs,
 arg_units=[None], return_unit=lambda u: u),
 'sign': Function(pyfunc=np.sign, sympy_func=sympy.sign, return_type='highest',
 arg_units=[None], return_unit=1),
 # functions that need special treatment
 'rand': Function(pyfunc=rand, arg_units=[], return_unit=1, stateless=False),
 'randn': Function(pyfunc=randn, arg_units=[], return_unit=1, stateless=False),
 'clip': Function(pyfunc=np.clip, arg_units=[None, None, None],
 return_type='highest',
 return_unit=lambda u1, u2, u3: u1,),
 'int': Function(pyfunc=np.int_, return_type='integer',
 arg_units=[1], return_unit=1)
 }

DEFAULT_CONSTANTS = {'pi': SymbolicConstant('pi', sympy.pi, value=np.pi),
 'e': SymbolicConstant('e', sympy.E, value=np.e),
 'inf': SymbolicConstant('inf', sympy.oo, value=np.inf)}

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_images/1-intro-to-brian-neurons_image_54_0.png
Neuron index

Firing rate (sp/s)

2

20

w0 0
Time (ms)

0

000

0
%

05

10

20

25

30

_modules/brian2/core/network.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.core.network

'''
Module defining the `Network` object, the basis of all simulation runs.

Preferences

.. document_brian_prefs:: core.network

'''
import os
import sys
import time
from collections import defaultdict, Sequence, Counter, Mapping
import cPickle as pickle

from brian2.utils.logger import get_logger
from brian2.core.names import Nameable
from brian2.core.base import BrianObject, brian_object_exception
from brian2.core.clocks import Clock, defaultclock
from brian2.devices.device import device
from brian2.groups.group import Group
from brian2.units.fundamentalunits import check_units, Quantity
from brian2.units.allunits import second, msecond
from brian2.core.preferences import prefs, BrianPreference
from brian2.core.namespace import get_local_namespace
from .base import device_override

__all__ = ['Network', 'profiling_summary']

logger = get_logger(__name__)

prefs.register_preferences('core.network', 'Network preferences',
 default_schedule=BrianPreference(
 default=['start',
 'groups',
 'thresholds',
 'synapses',
 'resets',
 'end',
],
 docs='''
 Default schedule used for networks that
 don't specify a schedule.
 '''
)
)

def _format_time(time_in_s):
 '''
 Helper function to format time in seconds, minutes, hours, days, depending
 on the magnitude.

 Examples

 >>> from brian2.core.network import _format_time
 >>> _format_time(12345)
 '3h 25m 45s'
 >>> _format_time(123)
 '2m 3s'
 >>> _format_time(12.5)
 '12s'
 >>> _format_time(.5)
 '< 1s'

 '''
 divisors = [24*60*60, 60*60, 60, 1]
 letters = ['d', 'h', 'm', 's']
 remaining = time_in_s
 text = ''
 for divisor, letter in zip(divisors, letters):
 time_to_represent = int(remaining / divisor)
 remaining -= time_to_represent * divisor
 if time_to_represent > 0 or len(text):
 if len(text):
 text += ' '
 text += '%d%s' % (time_to_represent, letter)

 # less than one second
 if len(text) == 0:
 text = '< 1s'

 return text

[docs]class TextReport(object):
 '''
 Helper object to report simulation progress in `Network.run`.

 Parameters

 stream : file
 The stream to write to, commonly `sys.stdout` or `sys.stderr`.
 '''
 def __init__(self, stream):
 self.stream = stream

[docs] def __call__(self, elapsed, completed, start, duration):
 if completed == 0.0:
 self.stream.write(('Starting simulation at t=%s for a duration of '
 '%s\n') % (start, duration))
 else:
 report_msg = ('{t} ({percent}%) simulated in '
 '{real_t}').format(t=completed*duration,
 percent=int(completed*100.),
 real_t=_format_time(float(elapsed)))
 if completed < 1.0:
 remaining = int(round((1-completed)/completed*float(elapsed)))
 remaining_msg = (', estimated {remaining} '
 'remaining.\n').format(remaining=_format_time(remaining))
 else:
 remaining_msg = '\n'

 self.stream.write(report_msg + remaining_msg)

 # Flush the stream, this is useful if stream is a file
 self.stream.flush()

[docs]class Network(Nameable):
 '''
 Network(*objs, name='network*')

 The main simulation controller in Brian

 `Network` handles the running of a simulation. It contains a set of Brian
 objects that are added with `~Network.add`. The `~Network.run` method
 actually runs the simulation. The main run loop, determining which
 objects get called in what order is described in detail in the notes below.
 The objects in the `Network` are accesible via their names, e.g.
 `net['neurongroup']` would return the `NeuronGroup` with this name.

 Parameters

 objs : (`BrianObject`, container), optional
 A list of objects to be added to the `Network` immediately, see
 `~Network.add`.
 name : str, optional
 An explicit name, if not specified gives an automatically generated name

 Notes

 The main run loop performs the following steps:

 1. Prepare the objects if necessary, see `~Network.prepare`.
 2. Determine the end time of the simulation as `~Network.t`+``duration``.
 3. Determine which set of clocks to update. This will be the clock with the
 smallest value of `~Clock.t`. If there are several with the same value,
 then all objects with these clocks will be updated simultaneously.
 Set `~Network.t` to the clock time.
 4. If the `~Clock.t` value of these clocks is past the end time of the
 simulation, stop running. If the `Network.stop` method or the
 `stop` function have been called, stop running. Set `~Network.t` to the
 end time of the simulation.
 5. For each object whose `~BrianObject.clock` is set to one of the clocks from the
 previous steps, call the `~BrianObject.update` method. This method will
 not be called if the `~BrianObject.active` flag is set to ``False``.
 The order in which the objects are called is described below.
 6. Increase `Clock.t` by `Clock.dt` for each of the clocks and return to
 step 2.

 The order in which the objects are updated in step 4 is determined by
 the `Network.schedule` and the objects `~BrianObject.when` and
 `~BrianObject.order` attributes. The `~Network.schedule` is a list of
 string names. Each `~BrianObject.when` attribute should be one of these
 strings, and the objects will be updated in the order determined by the
 schedule. The default schedule is
 ``['start', 'groups', 'thresholds', 'synapses', 'resets', 'end']``. In
 addition to the names provided in the schedule, automatic names starting
 with ``before_`` and ``after_`` can be used. That means that all objects
 with ``when=='before_start'`` will be updated first, then
 those with ``when=='start'``, ``when=='after_start'``,
 ``when=='before_groups'``, ``when=='groups'`` and so forth. If several
 objects have the same `~BrianObject.when` attribute, then the order is
 determined by the `~BrianObject.order` attribute (lower first).

 See Also

 MagicNetwork, run, stop
 '''

 def __init__(self, *objs, **kwds):
 #: The list of objects in the Network, should not normally be modified
 #: directly.
 #: Note that in a `MagicNetwork`, this attribute only contains the
 #: objects during a run: it is filled in `before_run` and emptied in
 #: `after_run`
 self.objects = []

 name = kwds.pop('name', 'network*')

 if kwds:
 raise TypeError("Only keyword argument to Network is 'name'.")

 Nameable.__init__(self, name=name)

 #: Current time as a float
 self.t_ = 0.0

 for obj in objs:
 self.add(obj)

 #: Stored state of objects (store/restore)
 self._stored_state = {}

 # Stored profiling information (if activated via the keyword option)
 self._profiling_info = None

 self._schedule = None

 t = property(fget=lambda self: Quantity(self.t_, dim=second.dim, copy=False),
 doc='''
 Current simulation time in seconds (`Quantity`)
 ''')

 @device_override('network_get_profiling_info')
 def get_profiling_info(self):
 '''
 The only reason this is not directly implemented in `profiling_info`
 is to allow devices (e.g. `CPPStandaloneDevice`) to overwrite this.
 '''
 if self._profiling_info is None:
 raise ValueError('(No profiling info collected (did you run with '
 'profile=True?)')
 return sorted(self._profiling_info, key=lambda item: item[1],
 reverse=True)

 @property
 def profiling_info(self):
 '''
 The time spent in executing the various `CodeObject`\ s.

 A list of ``(name, time)`` tuples, containing the name of the
 `CodeObject` and the total execution time for simulations of this object
 (as a `Quantity` with unit `second`). The list is sorted descending
 with execution time.

 Profiling has to be activated using the ``profile`` keyword in `run` or
 `Network.run`.
 '''
 return self.get_profiling_info()

 _globally_stopped = False

 def __getitem__(self, item):
 if not isinstance(item, basestring):
 raise TypeError(('Need a name to access objects in a Network, '
 'got {type} instead').format(type=type(item)))
 for obj in self.objects:
 if obj.name == item:
 return obj

 raise KeyError('No object with name "%s" found' % item)

 def __delitem__(self, key):
 if not isinstance(key, basestring):
 raise TypeError(('Need a name to access objects in a Network, '
 'got {type} instead').format(type=type(key)))

 for obj in self.objects:
 if obj.name == key:
 self.remove(obj)
 return

 raise KeyError('No object with name "%s" found' % key)

 def __contains__(self, item):
 for obj in self.objects:
 if obj.name == item:
 return True
 return False

 def __len__(self):
 return len(self.objects)

 def __iter__(self):
 return iter(self.objects)

[docs] def add(self, *objs):
 """
 Add objects to the `Network`

 Parameters

 objs : (`BrianObject`, container)
 The `BrianObject` or container of Brian objects to be added. Specify
 multiple objects, or lists (or other containers) of objects.
 Containers will be added recursively. If the container is a `dict`
 then it will add the values from the dictionary but not the keys.
 If you want to add the keys, do ``add(objs.keys())``.
 """
 for obj in objs:
 if isinstance(obj, BrianObject):
 if obj._network is not None:
 raise RuntimeError('%s has already been simulated, cannot '
 'add it to the network. If you were '
 'trying to remove and add an object to '
 'temporarily stop it from being run, '
 'set its active flag to False instead.'
 % obj.name)
 if obj not in self.objects: # Don't include objects twice
 self.objects.append(obj)
 self.add(obj.contained_objects)
 else:
 # allow adding values from dictionaries
 if isinstance(obj, Mapping):
 self.add(*obj.values())
 else:
 try:
 for o in obj:
 # The following "if" looks silly but avoids an infinite
 # recursion if a string is provided as an argument
 # (which might occur during testing)
 if o is obj:
 raise TypeError()
 self.add(o)
 except TypeError:
 raise TypeError("Can only add objects of type BrianObject, "
 "or containers of such objects to Network")

[docs] def remove(self, *objs):
 '''
 Remove an object or sequence of objects from a `Network`.

 Parameters

 objs : (`BrianObject`, container)
 The `BrianObject` or container of Brian objects to be removed. Specify
 multiple objects, or lists (or other containers) of objects.
 Containers will be removed recursively.
 '''
 for obj in objs:
 if isinstance(obj, BrianObject):
 self.objects.remove(obj)
 self.remove(obj.contained_objects)
 else:
 try:
 for o in obj:
 self.remove(o)
 except TypeError:
 raise TypeError("Can only remove objects of type "
 "BrianObject, or containers of such "
 "objects from Network")

 def _full_state(self):
 state = {}
 for obj in self.objects:
 if hasattr(obj, '_full_state'):
 state[obj.name] = obj._full_state()
 clocks = set([obj.clock for obj in self.objects])
 for clock in clocks:
 state[clock.name] = clock._full_state()
 # Store the time as "0_t" -- this name is guaranteed not to clash with
 # the name of an object as names are not allowed to start with a digit
 state['0_t'] = self.t_
 return state

 @device_override('network_store')
 def store(self, name='default', filename=None):
 '''
 store(name='default', filename=None)

 Store the state of the network and all included objects.

 Parameters

 name : str, optional
 A name for the snapshot, if not specified uses ``'default'``.
 filename : str, optional
 A filename where the state should be stored. If not specified, the
 state will be stored in memory.

 Notes

 The state stored to disk can be restored with the `Network.restore`
 function. Note that it will only restore the *internal state* of all
 the objects (including undelivered spikes) -- the objects have to
 exist already and they need to have the same name as when they were
 stored. Equations, thresholds, etc. are *not* stored -- this is
 therefore not a general mechanism for object serialization. Also, the
 format of the file is not guaranteed to work across platforms or
 versions. If you are interested in storing the state of a network for
 documentation or analysis purposes use `Network.get_states` instead.
 '''
 clocks = [obj.clock for obj in self.objects]
 # Make sure that all clocks are up to date
 for clock in clocks:
 clock._set_t_update_dt(target_t=self.t)

 state = self._full_state()
 if filename is None:
 self._stored_state[name] = state
 else:
 # A single file can contain several states, so we'll read in the
 # existing file first if it exists
 if os.path.exists(filename):
 with open(filename, 'rb') as f:
 store_state = pickle.load(f)
 else:
 store_state = {}
 store_state[name] = state

 with open(filename, 'wb') as f:
 pickle.dump(store_state, f, protocol=pickle.HIGHEST_PROTOCOL)

 @device_override('network_restore')
 def restore(self, name='default', filename=None):
 '''
 restore(name='default', filename=None)

 Retore the state of the network and all included objects.

 Parameters

 name : str, optional
 The name of the snapshot to restore, if not specified uses
 ``'default'``.
 filename : str, optional
 The name of the file from where the state should be restored. If
 not specified, it is expected that the state exist in memory
 (i.e. `Network.store` was previously called without the ``filename``
 argument).
 '''
 if filename is None:
 state = self._stored_state[name]
 else:
 with open(filename, 'rb') as f:
 state = pickle.load(f)[name]
 self.t_ = state['0_t']
 clocks = set([obj.clock for obj in self.objects])
 restored_objects = set()
 for obj in self.objects:
 if obj.name in state:
 obj._restore_from_full_state(state[obj.name])
 restored_objects.add(obj.name)
 elif hasattr(obj, '_restore_from_full_state'):
 raise KeyError(('Stored state does not have a stored state for '
 '"%s". Note that the names of all objects have '
 'to be identical to the names when they were '
 'stored.') % obj.name)
 for clock in clocks:
 clock._restore_from_full_state(state[clock.name])
 clock_names = {c.name for c in clocks}

 unnused = set(state.keys()) - restored_objects - clock_names - {'0_t'}
 if len(unnused):
 raise KeyError('The stored state contains the state of the '
 'following objects which were not present in the '
 'network: %s. Note that the names of all objects '
 'have to be identical to the names when they were '
 'stored.' % (', '.join(unnused)))

[docs] def get_states(self, units=True, format='dict',
 subexpressions=False, read_only_variables=True, level=0):
 '''
 Return a copy of the current state variable values of objects in the
 network.. The returned arrays are copies of the actual arrays that
 store the state variable values, therefore changing the values in the
 returned dictionary will not affect the state variables.

 Parameters

 vars : list of str, optional
 The names of the variables to extract. If not specified, extract
 all state variables (except for internal variables, i.e. names that
 start with ``'_'``). If the ``subexpressions`` argument is ``True``,
 the current values of all subexpressions are returned as well.
 units : bool, optional
 Whether to include the physical units in the return value. Defaults
 to ``True``.
 format : str, optional
 The output format. Defaults to ``'dict'``.
 subexpressions: bool, optional
 Whether to return subexpressions when no list of variable names
 is given. Defaults to ``False``. This argument is ignored if an
 explicit list of variable names is given in ``vars``.
 read_only_variables : bool, optional
 Whether to return read-only variables (e.g. the number of neurons,
 the time, etc.). Setting it to ``False`` will assure that the
 returned state can later be used with `set_states`. Defaults to
 ``True``.
 level : int, optional
 How much higher to go up the stack to resolve external variables.
 Only relevant if extracting subexpressions that refer to external
 variables.

 Returns

 values : dict
 A dictionary mapping object names to the state variables of that
 object, in the specified ``format``.

 See Also

 VariableOwner.get_states
 '''
 states = dict()
 for obj in self.objects:
 if hasattr(obj, 'get_states'):
 states[obj.name] = obj.get_states(vars=None, units=units,
 format=format,
 subexpressions=subexpressions,
 read_only_variables=read_only_variables,
 level=level+1)
 return states

[docs] def set_states(self, values, units=True, format='dict', level=0):
 '''
 Set the state variables of objects in the network.

 Parameters

 values : dict
 A dictionary mapping object names to objects of ``format``, setting
 the states of this object.
 units : bool, optional
 Whether the ``values`` include physical units. Defaults to ``True``.
 format : str, optional
 The format of ``values``. Defaults to ``'dict'``
 level : int, optional
 How much higher to go up the stack to _resolve external variables.
 Only relevant when using string expressions to set values.

 See Also

 Group.set_states
 '''
 # For the moment, 'dict' is the only supported format -- later this will
 # be made into an extensible system, see github issue #306
 for obj_name, obj_values in values.iteritems():
 if obj_name not in self:
 raise KeyError(("Network does not include a network with "
 "name '%s'.") % obj_name)
 self[obj_name].set_states(obj_values, units=units, format=format,
 level=level+1)

 def _get_schedule(self):
 if self._schedule is None:
 return list(prefs.core.network.default_schedule)
 else:
 return list(self._schedule)

 def _set_schedule(self, schedule):
 if schedule is None:
 self._schedule = None
 logger.debug('Resetting network {self.name} schedule to '
 'default schedule')
 else:
 if (not isinstance(schedule, Sequence) or
 not all(isinstance(slot, basestring) for slot in schedule)):
 raise TypeError('Schedule has to be None or a sequence of '
 'scheduling slots')
 if any(slot.startswith('before_') or slot.startswith('after_')
 for slot in schedule):
 raise ValueError('Slot names are not allowed to start with '
 '"before_" or "after_" -- such slot names '
 'are created automatically based on the '
 'existing slot names.')
 self._schedule = list(schedule)
 logger.debug("Setting network {self.name} schedule to "
 "{self._schedule}".format(self=self),
 "_set_schedule")

 schedule = property(fget=_get_schedule,
 fset=_set_schedule,
 doc='''
 List of ``when`` slots in the order they will be updated, can be modified.

 See notes on scheduling in `Network`. Note that additional ``when``
 slots can be added, but the schedule should contain at least all of the
 names in the default schedule:
 ``['start', 'groups', 'thresholds', 'synapses', 'resets', 'end']``.

 The schedule can also be set to ``None``, resetting it to the default
 schedule set by the `core.network.default_schedule` preference.
 ''')

 def _sort_objects(self):
 '''
 Sorts the objects in the order defined by the schedule.

 Objects are sorted first by their ``when`` attribute, and secondly
 by the ``order`` attribute. The order of the ``when`` attribute is
 defined by the ``schedule``. In addition to the slot names defined in
 the schedule, automatic slot names starting with ``before_`` and
 ``after_`` can be used (e.g. the slots ``['groups', 'thresholds']``
 allow to use ``['before_groups', 'groups', 'after_groups',
 'before_thresholds', 'thresholds', 'after_thresholds']`).

 Final ties are resolved using the objects' names, leading to an
 arbitrary but deterministic sorting.
 '''
 # Provided slot names are assigned positions 1, 4, 7, ...
 # before_... names are assigned positions 0, 3, 6, ...
 # after_... names are assigned positions 2, 5, 8, ...
 when_to_int = dict((when, 1+i*3)
 for i, when in enumerate(self.schedule))
 when_to_int.update(('before_' + when, i*3)
 for i, when in enumerate(self.schedule))
 when_to_int.update(('after_' + when, 2+i*3)
 for i, when in enumerate(self.schedule))
 self.objects.sort(key=lambda obj: (when_to_int[obj.when],
 obj.order,
 obj.name))

[docs] def check_dependencies(self):
 all_ids = [obj.id for obj in self.objects]
 for obj in self.objects:
 for dependency in obj._dependencies:
 if not dependency in all_ids:
 raise ValueError(('"%s" has been included in the network '
 'but not the object on which it '
 'depends.') % obj.name)

 @device_override('network_before_run')
 def before_run(self, run_namespace):
 '''
 before_run(namespace)

 Prepares the `Network` for a run.

 Objects in the `Network` are sorted into the correct running order, and
 their `BrianObject.before_run` methods are called.

 Parameters

 namespace : dict-like, optional
 A namespace in which objects which do not define their own
 namespace will be run.
 '''
 from brian2.devices.device import get_device, all_devices

 prefs.check_all_validated()

 # Check names in the network for uniqueness
 names = [obj.name for obj in self.objects]
 non_unique_names = [name for name, count in Counter(names).iteritems()
 if count > 1]
 if len(non_unique_names):
 formatted_names = ', '.join("'%s'" % name
 for name in non_unique_names)
 raise ValueError('All objects in a network need to have unique '
 'names, the following name(s) were used more than '
 'once: %s' % formatted_names)

 self._stopped = False
 Network._globally_stopped = False

 device = get_device()
 if device.network_schedule is not None:
 # The device defines a fixed network schedule
 if device.network_schedule != self.schedule:
 # TODO: The human-readable name of a device should be easier to get
 device_name = all_devices.keys()[all_devices.values().index(device)]
 logger.warn(("The selected device '{device_name}' only "
 "supports a fixed schedule, but this schedule is "
 "not consistent with the network's schedule. The "
 "simulation will use the device's schedule.\n"
 "Device schedule: {device.network_schedule}\n"
 "Network schedule: {net.schedule}\n"
 "Set the network schedule explicitly or set the "
 "core.network.default_schedule preference to "
 "avoid this warning.").format(device_name=device_name,
 device=device,
 net=self),
 name_suffix='schedule_conflict', once=True)

 self._sort_objects()

 logger.debug("Preparing network {self.name} with {numobj} "
 "objects: {objnames}".format(self=self,
 numobj=len(self.objects),
 objnames=', '.join(obj.name for obj in self.objects)),
 "before_run")

 self.check_dependencies()

 for obj in self.objects:
 if obj.active:
 try:
 obj.before_run(run_namespace)
 except Exception as ex:
 raise brian_object_exception("An error occurred when preparing an object.", obj, ex)

 # Check that no object has been run as part of another network before
 for obj in self.objects:
 if obj._network is None:
 obj._network = self.id
 elif obj._network != self.id:
 raise RuntimeError(('%s has already been run in the '
 'context of another network. Use '
 'add/remove to change the objects '
 'in a simulated network instead of '
 'creating a new one.') % obj.name)

 logger.debug("Network {self.name} uses {num} "
 "clocks: {clocknames}".format(self=self,
 num=len(self._clocks),
 clocknames=', '.join('%s (dt=%s)' % (obj.name, obj.dt)
 for obj in self._clocks)),
 "before_run")

 @device_override('network_after_run')
 def after_run(self):
 '''
 after_run()
 '''
 for obj in self.objects:
 if obj.active:
 obj.after_run()

 def _nextclocks(self):
 clocks_times_dt = [(c,
 self._clock_variables[c][1][0],
 self._clock_variables[c][2][0])
 for c in self._clocks]
 minclock, min_time, minclock_dt = min(clocks_times_dt, key=lambda k: k[1])
 curclocks = set(clock for clock, time, dt in clocks_times_dt if
 (time == min_time or
 abs(time - min_time)/min(minclock_dt, dt) < Clock.epsilon_dt))
 return minclock, curclocks

 @device_override('network_run')
 @check_units(duration=second, report_period=second)
 def run(self, duration, report=None, report_period=10*second,
 namespace=None, profile=True, level=0):
 '''
 run(duration, report=None, report_period=60*second, namespace=None, level=0)

 Runs the simulation for the given duration.

 Parameters

 duration : `Quantity`
 The amount of simulation time to run for.
 report : {None, 'text', 'stdout', 'stderr', function}, optional
 How to report the progress of the simulation. If ``None``, do not
 report progress. If ``'text'`` or ``'stdout'`` is specified, print
 the progress to stdout. If ``'stderr'`` is specified, print the
 progress to stderr. Alternatively, you can specify a callback
 ``callable(elapsed, complete, duration)`` which will be passed
 the amount of time elapsed as a `Quantity`, the
 fraction complete from 0.0 to 1.0 and the total duration of the
 simulation (in biological time).
 The function will always be called at the beginning and the end
 (i.e. for fractions 0.0 and 1.0), regardless of the `report_period`.
 report_period : `Quantity`
 How frequently (in real time) to report progress.
 namespace : dict-like, optional
 A namespace that will be used in addition to the group-specific
 namespaces (if defined). If not specified, the locals
 and globals around the run function will be used.
 profile : bool, optional
 Whether to record profiling information (see
 `Network.profiling_info`). Defaults to ``True``.
 level : int, optional
 How deep to go up the stack frame to look for the locals/global
 (see `namespace` argument). Only used by run functions that call
 this run function, e.g. `MagicNetwork.run` to adjust for the
 additional nesting.

 Notes

 The simulation can be stopped by calling `Network.stop` or the
 global `stop` function.
 '''
 self._clocks = set([obj.clock for obj in self.objects])
 # We get direct references to the underlying variables for all clocks
 # to avoid expensive access during the run loop
 self._clock_variables = {c : (c.variables['timestep'].get_value(),
 c.variables['t'].get_value(),
 c.variables['dt'].get_value())
 for c in self._clocks}
 t_start = self.t
 t_end = self.t+duration
 for clock in self._clocks:
 clock.set_interval(self.t, t_end)

 # Get the local namespace
 if namespace is None:
 namespace = get_local_namespace(level=level+3)

 self.before_run(namespace)

 if len(self.objects)==0:
 return # TODO: raise an error? warning?

 # Find the first clock to be updated (see note below)
 clock, curclocks = self._nextclocks()
 start_time = time.time()

 logger.debug("Simulating network '%s' from time %s to %s." % (self.name,
 t_start,
 t_end),
 'run')

 if report is not None:
 report_period = float(report_period)
 next_report_time = start_time + report_period
 if report == 'text' or report == 'stdout':
 report_callback = TextReport(sys.stdout)
 elif report == 'stderr':
 report_callback = TextReport(sys.stderr)
 elif isinstance(report, basestring):
 raise ValueError(('Do not know how to handle report argument '
 '"%s".' % report))
 elif callable(report):
 report_callback = report
 else:
 raise TypeError(('Do not know how to handle report argument, '
 'it has to be one of "text", "stdout", '
 '"stderr", or a callable function/object, '
 'but it is of type %s') % type(report))
 report_callback(0*second, 0.0, t_start, duration)

 profiling_info = defaultdict(float)

 timestep, _, _ = self._clock_variables[clock]
 running = timestep[0] < clock._i_end
 while running and not self._stopped and not Network._globally_stopped:
 timestep, t, dt = self._clock_variables[clock]
 # update the network time to this clock's time
 self.t_ = t[0]
 if report is not None:
 current = time.time()
 if current > next_report_time:
 report_callback((current-start_time)*second,
 (self.t_ - float(t_start))/float(t_end),
 t_start, duration)
 next_report_time = current + report_period
 # update the objects with this clock
 for obj in self.objects:
 if obj._clock in curclocks and obj.active:
 if profile:
 obj_time = time.time()
 obj.run()
 profiling_info[obj.name] += (time.time() - obj_time)
 else:
 obj.run()

 # tick the clock forward one time step
 for c in curclocks:
 timestep, t, dt = self._clock_variables[c]
 timestep[0] += 1
 t[0] = timestep[0] * dt[0]

 # find the next clocks to be updated. The < operator for Clock
 # determines that the first clock to be updated should be the one
 # with the smallest t value, unless there are several with the
 # same t value in which case we update all of them
 clock, curclocks = self._nextclocks()

 if device._maximum_run_time is not None and time.time()-start_time>float(device._maximum_run_time):
 self._stopped = True
 else:
 timestep, _, _ = self._clock_variables[clock]
 running = timestep < clock._i_end

 end_time = time.time()
 if self._stopped or Network._globally_stopped:
 self.t_ = clock.t_
 else:
 self.t_ = float(t_end)

 device._last_run_time = end_time-start_time
 if duration>0:
 device._last_run_completed_fraction = (self.t-t_start)/duration
 else:
 device._last_run_completed_fraction = 1.0

 # check for nans
 for obj in self.objects:
 if isinstance(obj, Group):
 obj._check_for_invalid_states()

 if report is not None:
 report_callback((end_time-start_time)*second, 1.0, t_start, duration)
 self.after_run()

 logger.debug(("Finished simulating network '%s' "
 "(took %.2fs)") % (self.name, end_time-start_time),
 'run')
 # Store profiling info (or erase old info to avoid confusion)
 if profile:
 self._profiling_info = [(name, t*second)
 for name, t in profiling_info.iteritems()]
 # Dump a profiling summary to the log
 logger.debug('\n' + str(profiling_summary(self)))
 else:
 self._profiling_info = None

 @device_override('network_stop')
 def stop(self):
 '''
 stop()

 Stops the network from running, this is reset the next time `Network.run` is called.
 '''
 self._stopped = True

 def __repr__(self):
 return '<%s at time t=%s, containing objects: %s>' % (self.__class__.__name__,
 str(self.t),
 ', '.join((obj.__repr__() for obj in self.objects)))

[docs]class ProfilingSummary(object):
 '''
 Class to nicely display the results of profiling. Objects of this class are
 returned by `profiling_summary`.

 Parameters

 net : `Network`
 The `Network` object to profile.
 show : int, optional
 The number of results to show (the longest results will be shown). If
 not specified, all results will be shown.

 See Also

 Network.profiling_info
 '''
 def __init__(self, net, show=None):
 prof = net.profiling_info
 if len(prof):
 names, times = zip(*prof)
 else: # Can happen if a network has been run for 0ms
 # Use a dummy entry to prevent problems with empty lists later
 names = ['no code objects have been run']
 times = [0*second]
 self.total_time = sum(times)
 self.time_unit = msecond
 if self.total_time>1*second:
 self.time_unit = second
 if show is not None:
 names = names[:show]
 times = times[:show]
 if self.total_time>0*second:
 self.percentages = [100.0*time/self.total_time for time in times]
 else:
 self.percentages = [0. for _ in times]
 self.names_maxlen = max(len(name) for name in names)
 self.names = [name+' '*(self.names_maxlen-len(name)) for name in names]
 self.times = times

 def __repr__(self):
 times = ['%.2f %s' % (time/self.time_unit, self.time_unit) for time in self.times]
 times_maxlen = max(len(time) for time in times)
 times = [' '*(times_maxlen-len(time))+time for time in times]
 percentages = ['%.2f %%' % percentage for percentage in self.percentages]
 percentages_maxlen = max(len(percentage) for percentage in percentages)
 percentages = [(' '*(percentages_maxlen-len(percentage)))+percentage for percentage in percentages]

 s = 'Profiling summary'
 s += '\n'+'='*len(s)+'\n'
 for name, time, percentage in zip(self.names, times, percentages):
 s += '%s %s %s\n' % (name, time, percentage)
 return s

 def _repr_html_(self):
 times = ['%.2f %s' % (time/self.time_unit, self.time_unit) for time in self.times]
 percentages = ['%.2f %%' % percentage for percentage in self.percentages]
 s = '<h2 class="brian_prof_summary_header">Profiling summary</h2>\n'
 s += '<table class="brian_prof_summary_table">\n'
 for name, time, percentage in zip(self.names, times, percentages):
 s += '<tr>'
 s += '<td>%s</td>' % name
 s += '<td style="text-align: right">%s</td>' % time
 s += '<td style="text-align: right">%s</td>' % percentage
 s += '</tr>\n'
 s += '</table>'
 return s

[docs]def profiling_summary(net=None, show=None):
 '''
 Returns a `ProfilingSummary` of the profiling info for a run. This object
 can be transformed to a string explicitly but on an interactive console
 simply calling `profiling_summary` is enough since it will
 automatically convert the `ProfilingSummary` object.

 Parameters

 net : {`Network`, None} optional
 The `Network` object to profile, or `magic_network` if not specified.
 show : int
 The number of results to show (the longest results will be shown). If
 not specified, all results will be shown.
 '''
 if net is None:
 from .magic import magic_network
 net = magic_network
 return ProfilingSummary(net, show)

[docs]def schedule_propagation_offset(net=None):
 '''
 Returns the minimal time difference for a post-synaptic effect after a
 spike. With the default schedule, this time difference is 0, since the
 ``thresholds`` slot precedes the ``synapses`` slot. For the GeNN device,
 however, a post-synaptic effect will occur in the following time step, this
 function therefore returns one ``dt``.

 Parameters

 net : `Network`
 The network to check (uses the magic network if not specified).

 Returns

 offset : `Quantity`
 The minimum spike propagation delay: ``0*ms`` for the standard schedule
 but ``dt`` for schedules where ``synapses`` precedes ``thresholds``.

 Notes

 This function always returns ``0*ms`` or ``defaultclock.dt`` -- no attempt
 is made to deal with other clocks.
 '''
 from brian2.devices.device import get_device
 from brian2.core.magic import magic_network

 device = get_device()
 if device.network_schedule is not None:
 schedule = device.network_schedule
 else:
 if net is None:
 net = magic_network
 schedule = net.schedule

 if schedule.index('thresholds') < schedule.index('synapses'):
 return 0*second
 else:
 return defaultclock.dt

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_images/synapses.jeffress.1.png
1000

800

600

400

200

Time (ms)

X9pul UoInaN

<
S

~
?
(sw) Aejap Induj

MmN oA
cescs

m
o
T

<
o
T

1000

800

600

400

200

o

Time (ms)

_modules/brian2/devices/cpp_standalone/codeobject.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.devices.cpp_standalone.codeobject

'''
Module implementing the C++ "standalone" `CodeObject`
'''
from brian2.codegen.codeobject import CodeObject, constant_or_scalar
from brian2.codegen.targets import codegen_targets
from brian2.codegen.templates import Templater
from brian2.codegen.generators.cpp_generator import (CPPCodeGenerator,
 c_data_type)
from brian2.devices.device import get_device
from brian2.core.preferences import prefs
from brian2.core.functions import DEFAULT_FUNCTIONS
from brian2.utils.stringtools import replace

__all__ = ['CPPStandaloneCodeObject']

[docs]def openmp_pragma(pragma_type):

 nb_threads = prefs.devices.cpp_standalone.openmp_threads
 openmp_on = not (nb_threads == 0)

 ## First we need to deal with some special cases that have to be handle in case
 ## openmp is not activated
 if pragma_type == 'set_num_threads':
 if not openmp_on:
 return ''
 elif nb_threads > 0:
 # We have to fix the exact number of threads in all parallel sections
 return 'omp_set_dynamic(0);\nomp_set_num_threads(%d);' %nb_threads
 elif pragma_type == 'get_thread_num':
 if not openmp_on:
 return '0'
 else:
 return 'omp_get_thread_num()'
 elif pragma_type == 'get_num_threads':
 if not openmp_on:
 return '1'
 else:
 return '%d' %nb_threads
 elif pragma_type == 'with_openmp':
 # The returned value is a proper Python boolean, i.e. not something
 # that should be included in the generated code but rather for use
 # in {% if ... %} statements in the template
 return openmp_on

 ## Then by default, if openmp is off, we do not return any pragma statement in the templates
 elif not openmp_on:
 return ''
 ## Otherwise, we return the correct pragma statement
 elif pragma_type == 'static':
 return '#pragma omp for schedule(static)'
 elif pragma_type == 'single':
 return '#pragma omp single'
 elif pragma_type == 'single-nowait':
 return '#pragma omp single nowait'
 elif pragma_type == 'critical':
 return '#pragma omp critical'
 elif pragma_type == 'atomic':
 return '#pragma omp atomic'
 elif pragma_type == 'once':
 return '#pragma once'
 elif pragma_type == 'parallel-static':
 return '#pragma omp parallel for schedule(static)'
 elif pragma_type == 'static-ordered':
 return '#pragma omp for schedule(static) ordered'
 elif pragma_type == 'ordered':
 return '#pragma omp ordered'
 elif pragma_type == 'include':
 return '#include <omp.h>'
 elif pragma_type == 'parallel':
 return '#pragma omp parallel'
 elif pragma_type == 'master':
 return '#pragma omp master'
 elif pragma_type == 'barrier':
 return '#pragma omp barrier'
 elif pragma_type == 'compilation':
 return '-fopenmp'
 elif pragma_type == 'sections':
 return '#pragma omp sections'
 elif pragma_type == 'section':
 return '#pragma omp section'
 else:
 raise ValueError('Unknown OpenMP pragma "%s"' % pragma_type)

[docs]class CPPStandaloneCodeObject(CodeObject):
 '''
 C++ standalone code object

 The ``code`` should be a `~brian2.codegen.templates.MultiTemplate`
 object with two macros defined, ``main`` (for the main loop code) and
 ``support_code`` for any support code (e.g. function definitions).
 '''
 templater = Templater('brian2.devices.cpp_standalone', '.cpp',
 env_globals={'c_data_type': c_data_type,
 'openmp_pragma': openmp_pragma,
 'constant_or_scalar': constant_or_scalar,
 'prefs': prefs,
 'zip': zip})
 generator_class = CPPCodeGenerator

[docs] def __call__(self, **kwds):
 return self.run()

[docs] def run(self):
 get_device().main_queue.append(('run_code_object', (self,)))

codegen_targets.add(CPPStandaloneCodeObject)

At module initialization time, we do not yet know whether the code will be
run with OpenMP or not. We therefore use a "dynamic implementation" which
generates the rand/randn implementation during code generation.
[docs]def generate_rand_code(rand_func, owner):
 nb_threads = prefs.devices.cpp_standalone.openmp_threads
 if nb_threads == 0: # no OpenMP
 thread_number = '0'
 else:
 thread_number = 'omp_get_thread_num()'
 if rand_func == 'rand':
 rk_call = 'rk_double'
 elif rand_func == 'randn':
 rk_call = 'rk_gauss'
 else:
 raise AssertionError(rand_func)
 code = '''
 double _%RAND_FUNC%(const int _vectorisation_idx) {
 return %RK_CALL%(brian::_mersenne_twister_states[%THREAD_NUMBER%]);
 }
 '''
 code = replace(code, {'%THREAD_NUMBER%': thread_number,
 '%RAND_FUNC%': rand_func,
 '%RK_CALL%': rk_call})
 return {'support_code': code}

rand_impls = DEFAULT_FUNCTIONS['rand'].implementations
rand_impls.add_dynamic_implementation(CPPStandaloneCodeObject,
 code=lambda owner:
 generate_rand_code('rand', owner),
 namespace=lambda owner: {},
 name='_rand')

randn_impls = DEFAULT_FUNCTIONS['randn'].implementations
randn_impls.add_dynamic_implementation(CPPStandaloneCodeObject,
 code=lambda owner:
 generate_rand_code('randn', owner),
 namespace=lambda owner: {},
 name='_randn')

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/brian2/devices/device.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.devices.device

'''
Module containing the `Device` base class as well as the `RuntimeDevice`
implementation and some helper functions to access/set devices.
'''
from weakref import WeakKeyDictionary
import numbers

import numpy as np

from brian2.memory.dynamicarray import DynamicArray, DynamicArray1D
from brian2.codegen.targets import codegen_targets
from brian2.codegen.runtime.numpy_rt import NumpyCodeObject
from brian2.core.names import find_name
from brian2.core.preferences import prefs
from brian2.core.variables import ArrayVariable, DynamicArrayVariable
from brian2.core.functions import Function
from brian2.units import ms
from brian2.utils.logger import get_logger
from brian2.utils.stringtools import code_representation, indent

__all__ = ['Device', 'RuntimeDevice',
 'get_device', 'set_device',
 'all_devices', 'reinit_devices',
 'reset_device', 'device', 'seed'
]

logger = get_logger(__name__)

all_devices = {}

prefs.register_preferences('devices', 'Device preferences')

#: caches the automatically determined code generation target
_auto_target = None

[docs]def auto_target():
 '''
 Automatically chose a code generation target (invoked when the
 `codegen.target` preference is set to `'auto'`. Caches its result so it
 only does the check once. Prefers weave > cython > numpy.

 Returns

 target : class derived from `CodeObject`
 The target to use
 '''
 global _auto_target
 if _auto_target is None:
 target_dict = dict((target.class_name, target)
 for target in codegen_targets
 if target.class_name)
 using_fallback = False
 if 'weave' in target_dict and target_dict['weave'].is_available():
 _auto_target = target_dict['weave']
 elif 'cython' in target_dict and target_dict['cython'].is_available():
 _auto_target = target_dict['cython']
 else:
 _auto_target = target_dict['numpy']
 using_fallback = True

 if using_fallback:
 logger.info('Cannot use compiled code, falling back to the numpy '
 'code generation target. Note that this will likely '
 'be slower than using compiled code. Set the code '
 'generation to numpy manually to avoid this message:\n'
 'prefs.codegen.target = "numpy"',
 'codegen_fallback', once=True)
 else:
 logger.debug(('Chosing %r as the code generation '
 'target.') % _auto_target.class_name)

 return _auto_target

[docs]def get_default_codeobject_class(pref='codegen.target'):
 '''
 Returns the default `CodeObject` class from the preferences.
 '''
 codeobj_class = prefs[pref]
 if isinstance(codeobj_class, str):
 if codeobj_class == 'auto':
 return auto_target()
 for target in codegen_targets:
 if target.class_name == codeobj_class:
 return target
 # No target found
 targets = ['auto'] + [target.class_name
 for target in codegen_targets
 if target.class_name]
 raise ValueError("Unknown code generation target: %s, should be "
 " one of %s" % (codeobj_class, targets))
 return codeobj_class

[docs]class Device(object):
 '''
 Base Device object.
 '''
 def __init__(self):
 #: The network schedule that this device supports. If the device only
 #: supports a specific, fixed schedule, it has to set this attribute to
 #: the respective schedule (see `Network.schedule` for details). If it
 #: supports arbitrary schedules, it should be set to ``None`` (the
 #: default).
 self.network_schedule = None

 self.defaultclock = None

 self._maximum_run_time = None

 def _set_maximum_run_time(self, maximum_run_time):
 '''
 Sets a maximum time for a run before it will break. Used primarily for testing purposes. Not guaranteed to be
 respected by a device.
 '''
 self._maximum_run_time = maximum_run_time

[docs] def get_array_name(self, var, access_data=True):
 '''
 Return a globally unique name for `var`.

 Parameters

 access_data : bool, optional
 For `DynamicArrayVariable` objects, specifying `True` here means the
 name for the underlying data is returned. If specifying `False`,
 the name of object itself is returned (e.g. to allow resizing).

 Returns

 name : str
 The name for `var`.
 '''
 raise NotImplementedError()

[docs] def get_len(self, array):
 '''
 Return the length of the array.

 Parameters

 array : `ArrayVariable`
 The array for which the length is requested.

 Returns

 l : int
 The length of the array.
 '''
 raise NotImplementedError()

[docs] def add_array(self, var):
 '''
 Add an array to this device.

 Parameters

 var : `ArrayVariable`
 The array to add.
 '''
 raise NotImplementedError()

[docs] def init_with_zeros(self, var, dtype):
 '''
 Initialize an array with zeros.

 Parameters

 var : `ArrayVariable`
 The array to initialize with zeros.
 dtype : `dtype`
 The data type to use for the array.
 '''
 raise NotImplementedError()

[docs] def init_with_arange(self, var, start, dtype):
 '''
 Initialize an array with an integer range.

 Parameters

 var : `ArrayVariable`
 The array to fill with the integer range.
 start : int
 The start value for the integer range
 dtype : `dtype`
 The data type to use for the array.
 '''
 raise NotImplementedError()

[docs] def fill_with_array(self, var, arr):
 '''
 Fill an array with the values given in another array.

 Parameters

 var : `ArrayVariable`
 The array to fill.
 arr : `ndarray`
 The array values that should be copied to `var`.
 '''
 raise NotImplementedError()

[docs] def spike_queue(self, source_start, source_end):
 '''
 Create and return a new `SpikeQueue` for this `Device`.

 Parameters

 source_start : int
 The start index of the source group (necessary for subgroups)
 source_end : int
 The end index of the source group (necessary for subgroups)
 '''
 raise NotImplementedError()

[docs] def resize(self, var, new_size):
 '''
 Resize a `DynamicArrayVariable`.

 Parameters

 var : `DynamicArrayVariable`
 The variable that should be resized.
 new_size : int
 The new size of the variable
 '''
 raise NotImplementedError()

[docs] def resize_along_first(self, var, new_size):
 # Can be overwritten with a better implementation
 return self.resize(var, new_size)

[docs] def seed(self, seed=None):
 '''
 Set the seed for the random number generator.

 Parameters

 seed : int, optional
 The seed value for the random number generator, or ``None`` (the
 default) to set a random seed.
 '''
 raise NotImplementedError()

[docs] def code_object_class(self, codeobj_class=None):
 if codeobj_class is None:
 codeobj_class = get_default_codeobject_class()
 return codeobj_class

[docs] def code_object(self, owner, name, abstract_code, variables, template_name,
 variable_indices, codeobj_class=None,
 template_kwds=None, override_conditional_write=None):

 codeobj_class = self.code_object_class(codeobj_class)
 template = getattr(codeobj_class.templater, template_name)
 iterate_all = template.iterate_all
 generator = codeobj_class.generator_class(variables=variables,
 variable_indices=variable_indices,
 owner=owner,
 iterate_all=iterate_all,
 codeobj_class=codeobj_class,
 override_conditional_write=override_conditional_write,
 allows_scalar_write=template.allows_scalar_write,
 name=name,
 template_name=template_name)
 if template_kwds is None:
 template_kwds = dict()
 else:
 template_kwds = template_kwds.copy()

 # Check that all functions are available
 for varname, value in variables.iteritems():
 if isinstance(value, Function):
 try:
 value.implementations[codeobj_class]
 except KeyError as ex:
 # if we are dealing with numpy, add the default implementation
 if codeobj_class is NumpyCodeObject:
 value.implementations.add_numpy_implementation(value.pyfunc)
 else:
 raise NotImplementedError(('Cannot use function '
 '%s: %s') % (varname, ex))

 logger.diagnostic('%s abstract code:\n%s' % (name, indent(code_representation(abstract_code))))

 scalar_code, vector_code, kwds = generator.translate(abstract_code,
 dtype=prefs['core.default_float_dtype'])
 # Add the array names as keywords as well
 for varname, var in variables.iteritems():
 if isinstance(var, ArrayVariable):
 pointer_name = generator.get_array_name(var)
 if var.scalar:
 pointer_name += '[0]'
 template_kwds[varname] = pointer_name
 if hasattr(var, 'resize'):
 dyn_array_name = generator.get_array_name(var,
 access_data=False)
 template_kwds['_dynamic_'+varname] = dyn_array_name

 template_kwds.update(kwds)
 logger.diagnostic('%s snippet (scalar):\n%s' % (name, indent(code_representation(scalar_code))))
 logger.diagnostic('%s snippet (vector):\n%s' % (name, indent(code_representation(vector_code))))

 name = find_name(name)

 code = template(scalar_code, vector_code,
 owner=owner, variables=variables, codeobj_name=name,
 variable_indices=variable_indices,
 get_array_name=generator.get_array_name,
 **template_kwds)
 logger.diagnostic('%s code:\n%s' % (name, indent(code_representation(code))))

 codeobj = codeobj_class(owner, code, variables, variable_indices,
 template_name=template_name,
 template_source=template.template_source,
 name=name)
 codeobj.compile()
 return codeobj

[docs] def activate(self, build_on_run=True, **kwargs):
 '''
 Called when this device is set as the current device.
 '''
 from brian2.core.clocks import Clock # avoid import issues

 if self.defaultclock is None:
 self.defaultclock = Clock(dt=0.1*ms, name='defaultclock')
 self._set_maximum_run_time(None)
 self.build_on_run = build_on_run
 self.build_options = dict(kwargs)

[docs] def insert_device_code(self, slot, code):
 # Deprecated
 raise AttributeError("The method 'insert_device_code' has been renamed "
 "to 'insert_code'.")

[docs] def insert_code(self, slot, code):
 '''
 Insert code directly into a given slot in the device. By default does nothing.
 '''
 logger.warn("Ignoring device code, unknown slot: %s, code: %s" % (slot, code))

[docs] def build(self, **kwds):
 '''
 For standalone projects, called when the project is ready to be built. Does nothing for runtime mode.
 '''
 pass

[docs] def reinit(self):
 '''
 Reinitialize the device. For standalone devices, clears all the internal
 state of the device.
 '''
 pass

[docs]class RuntimeDevice(Device):
 '''
 The default device used in Brian, state variables are stored as numpy
 arrays in memory.
 '''
 def __init__(self):
 super(RuntimeDevice, self).__init__()
 #: Mapping from `Variable` objects to numpy arrays (or `DynamicArray`
 #: objects). Arrays in this dictionary will disappear as soon as the
 #: last reference to the `Variable` object used as a key is gone
 self.arrays = WeakKeyDictionary()
 # Note that the buffers only store a pointer to the actual random
 # numbers -- the buffer will be filled in weave/Cython code
 self.randn_buffer = np.zeros(1, dtype=np.intp)
 self.rand_buffer = np.zeros(1, dtype=np.intp)
 self.randn_buffer_index = np.zeros(1, dtype=np.int32)
 self.rand_buffer_index = np.zeros(1, dtype=np.int32)

[docs] def get_array_name(self, var, access_data=True):
 # if no owner is set, this is a temporary object (e.g. the array
 # of indices when doing G.x[indices] = ...). The name is not
 # necessarily unique over several CodeObjects in this case.
 owner_name = getattr(var.owner, 'name', 'temporary')

 if isinstance(var, DynamicArrayVariable):
 if access_data:
 return '_array_' + owner_name + '_' + var.name
 else:
 return '_dynamic_array_' + owner_name + '_' + var.name
 elif isinstance(var, ArrayVariable):
 return '_array_' + owner_name + '_' + var.name
 else:
 raise TypeError(('Do not have a name for variable of type '
 '%s') % type(var))

[docs] def add_array(self, var):
 # This creates the actual numpy arrays (or DynamicArrayVariable objects)
 if isinstance(var, DynamicArrayVariable):
 if var.dimensions == 1:
 arr = DynamicArray1D(var.size, dtype=var.dtype)
 else:
 arr = DynamicArray(var.size, dtype=var.dtype)
 else:
 arr = np.empty(var.size, dtype=var.dtype)

 self.arrays[var] = arr

[docs] def get_value(self, var, access_data=True):
 if isinstance(var, DynamicArrayVariable) and access_data:
 return self.arrays[var].data
 else:
 return self.arrays[var]

[docs] def set_value(self, var, value):
 self.arrays[var][:] = value

[docs] def resize(self, var, new_size):
 self.arrays[var].resize(new_size)

[docs] def resize_along_first(self, var, new_size):
 self.arrays[var].resize_along_first(new_size)

[docs] def init_with_zeros(self, var, dtype):
 self.arrays[var][:] = 0

[docs] def init_with_arange(self, var, start, dtype):
 self.arrays[var][:] = np.arange(start, stop=var.get_len()+start,
 dtype=dtype)

[docs] def fill_with_array(self, var, arr):
 self.arrays[var][:] = arr

[docs] def spike_queue(self, source_start, source_end):
 # Use the C++ version of the SpikeQueue when available
 try:
 from brian2.synapses.cythonspikequeue import SpikeQueue
 logger.diagnostic('Using the C++ SpikeQueue', once=True)
 except ImportError:
 from brian2.synapses.spikequeue import SpikeQueue
 logger.diagnostic('Using the Python SpikeQueue', once=True)

 return SpikeQueue(source_start=source_start, source_end=source_end)

[docs] def seed(self, seed=None):
 '''
 Set the seed for the random number generator.

 Parameters

 seed : int, optional
 The seed value for the random number generator, or ``None`` (the
 default) to set a random seed.
 '''
 np.random.seed(seed)
 self.rand_buffer_index[:] = 0
 self.randn_buffer_index[:] = 0

[docs]class Dummy(object):
 '''
 Dummy object
 '''
 def __getattr__(self, name):
 return Dummy()
[docs] def __call__(self, *args, **kwds):
 return Dummy()

 def __enter__(self):
 return Dummy()
 def __exit__(self, type, value, traceback):
 pass
 def __getitem__(self, i):
 return Dummy()
 def __setitem__(self, i, val):
 pass

[docs]class CurrentDeviceProxy(object):
 '''
 Method proxy for access to the currently active device
 '''
 def __getattr__(self, name):
 if not hasattr(active_device, name):
 if name.startswith('_'):
 # Do not fake private/magic attributes
 raise AttributeError(('Active device does not have an '
 'attribute %s') % name)
 else:
 logger.warn(("Active device does not have an attribute '%s', "
 "ignoring this") % name)
 attr = Dummy()
 else:
 attr = getattr(active_device, name)
 return attr

#: Proxy object to access methods of the current device
device = CurrentDeviceProxy()
#: The currently active device (set with `set_device`)
active_device = None

[docs]def get_device():
 '''
 Gets the actve `Device` object
 '''
 global active_device
 return active_device

#: A stack of previously set devices as a tuple with their options (see
#: `set_device`): (device, build_on_run, build_options)
previous_devices = []

[docs]def set_device(device, build_on_run=True, **kwargs):
 '''
 Set the device used for simulations.

 Parameters

 device : `Device` or str
 The `Device` object or the name of the device.
 build_on_run : bool, optional
 Whether a call to `run` (or `Network.run`) should directly trigger a
 `Device.build`. This is only relevant for standalone devices and means
 that a run call directly triggers the start of a simulation. If the
 simulation consists of multiple run calls, set ``build_on_run`` to
 ``False`` and call `Device.build` explicitly. Defaults to ``True``.
 kwargs : dict, optional
 Only relevant when ``build_on_run`` is ``True``: additional arguments
 that will be given to the `Device.build` call.
 '''
 global previous_devices
 if active_device is not None:
 prev_build_on_run = getattr(active_device, 'build_on_run', True)
 prev_build_options = getattr(active_device, 'build_options', {})
 previous_devices.append((active_device,
 prev_build_on_run,
 prev_build_options))
 _do_set_device(device, build_on_run, **kwargs)

def _do_set_device(device, build_on_run=True, **kwargs):
 global active_device

 if isinstance(device, str):
 device = all_devices[device]
 if active_device is not None and active_device.defaultclock is not None:
 previous_dt = active_device.defaultclock.dt
 else:
 previous_dt = None
 active_device = device

 active_device.activate(build_on_run=build_on_run, **kwargs)
 if previous_dt is not None:
 # Copy over the dt information of the defaultclock
 active_device.defaultclock.dt = previous_dt

[docs]def reset_device(device=None):
 '''
 Reset to a previously used device. Restores also the previously specified
 build options (see `set_device`) for the device. Mostly useful for internal
 Brian code and testing on various devices.

 Parameters

 device : `Device` or str, optional
 The device to go back to. If none is specified, go back to the device
 chosen with `set_device` before the current one.
 '''
 global previous_devices
 if isinstance(device, str):
 device = all_devices[device]

 if len(previous_devices) == 0 and device is None:
 device = runtime_device
 build_on_run = True
 build_options = {}
 elif device is None:
 device, build_on_run, build_options = previous_devices.pop()
 else:
 build_on_run = device.build_on_run
 build_options = device.build_options

 _do_set_device(device, build_on_run, **build_options)

[docs]def reinit_devices():
 '''
 Reinitialize all devices, call `Device.activate` again on the current
 device and reset the preferences. Used as a "teardown" function in testing,
 if users want to reset their device (e.g. for multiple standalone runs in a
 single script), calling ``device.reinit()`` followed by
 ``device.activate()`` should normally be sufficient.

 Notes

 This also resets the `defaultclock`, i.e. a non-standard ``dt`` has to be
 set again.
 '''
 from brian2 import restore_initial_state # avoids circular import

 for device in all_devices.itervalues():
 device.reinit()

 if active_device is not None:
 # Reactivate the current device
 reset_device(active_device)

 restore_initial_state()

[docs]def seed(seed=None):
 '''
 Set the seed for the random number generator.

 Parameters

 seed : int, optional
 The seed value for the random number generator, or ``None`` (the
 default) to set a random seed.

 Notes

 This function delegates the call to `Device.seed` of the current device.
 '''
 if seed is not None and not isinstance(seed, numbers.Integral):
 raise TypeError('Seed has to be None or an integer, was '
 '%s' % type(seed))
 get_device().seed(seed)

runtime_device = RuntimeDevice()
all_devices['runtime'] = runtime_device

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/brian2/core/preferences.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.core.preferences

'''
Brian global preferences are stored as attributes of a `BrianGlobalPreferences`
object ``prefs``.
'''
import itertools
import re
import os
from collections import MutableMapping
from StringIO import StringIO

from brian2.utils.stringtools import deindent, indent
from brian2.units.fundamentalunits import have_same_dimensions, Quantity

__all__ = ['PreferenceError', 'BrianPreference', 'prefs', 'brian_prefs']

[docs]def parse_preference_name(name):
 '''
 Split a preference name into a base and end name.

 Parameters

 name : str
 The full name of the preference.

 Returns

 basename : str
 The first part of the name up to the final ``.``.
 endname : str
 The last part of the name from the final ``.`` onwards.

 Examples

 >>> parse_preference_name('core.weave_compiler')
 ('core', 'weave_compiler')
 >>> parse_preference_name('codegen.cpp.compiler')
 ('codegen.cpp', 'compiler')
 '''
 # parse the name
 parts = name.split('.')
 basename = '.'.join(parts[:-1])
 endname = parts[-1]
 return basename, endname

[docs]def check_preference_name(name):
 '''
 Make sure that a preference name is valid. This currently checks that the
 name does not contain illegal characters and does not clash with method
 names such as "keys" or "items".

 Parameters

 name : str
 The name to check.

 Raises

 PreferenceError
 In case the name is invalid.
 '''
 if not re.match("[A-Za-z][_a-zA-Z0-9]*$", name):
 raise PreferenceError(('Illegal preference name "%s": A preference '
 'name can only start with a letter and only '
 'contain letters, digits or underscore.' % name))
 if name in dir(MutableMapping) or name in prefs.__dict__:
 raise PreferenceError(('Illegal preference name "%s": This is also the '
 'name of a method.') % name)

[docs]class PreferenceError(Exception):
 '''
 Exception relating to the Brian preferences system.
 '''
 pass

[docs]class DefaultValidator(object):
 '''
 Default preference validator

 Used by `BrianPreference` as the default validator if none is given.
 First checks if the provided value is of the same class as the default
 value, and then if the default is a `Quantity`, checks that the units
 match.
 '''
 def __init__(self, value):
 self.value = value

[docs] def __call__(self, value):
 if not isinstance(value, self.value.__class__):
 return False
 if isinstance(self.value, Quantity):
 if not have_same_dimensions(self.value, value):
 return False
 return True

[docs]class BrianPreference(object):
 '''
 Used for defining a Brian preference.

 Parameters

 default : object
 The default value.
 docs : str
 Documentation for the preference value.
 validator : func
 A function that True or False depending on whether the preference value
 is valid or not. If not specified, uses the `DefaultValidator` for the
 default value provided (check if the class is the same, and for
 `Quantity` objects, whether the units are consistent).
 representor : func
 A function that returns a string representation of a valid preference
 value that can be passed to `eval`. By default, uses `repr` which
 works in almost all cases.
 '''
 def __init__(self, default, docs, validator=None, representor=repr):
 self.representor = representor
 if validator is None:
 validator = DefaultValidator(default)
 self.validator = validator
 self.default = default
 self.docs = docs

[docs]class BrianGlobalPreferences(MutableMapping):
 '''
 Class of the ``prefs`` object.

 Used for getting/setting/validating/registering preference values.
 All preferences must be registered via `register_preferences`. To get or
 set a preference, you can either use a dictionary-based or an
 attribute-based interface::

 prefs['core.default_float_dtype'] = float32
 prefs.core.default_float_dtype = float32

 Preferences can be read from files, see `load_preferences` and
 `read_preference_file`. Note that `load_preferences` is called
 automatically when Brian has finished importing.
 '''
 def __init__(self):
 self.prefs = {}
 self.backup_prefs = {}
 self.prefs_unvalidated = {}
 self.pref_register = {}
 self.eval_namespace = {}
 exec deindent('''
 from numpy import *
 from brian2.units import *
 from brian2.units.stdunits import *
 ''') in self.eval_namespace

 def __getitem__(self, item):
 if item in self.pref_register:
 # This asks for a category, not a single preference
 return BrianGlobalPreferencesView(item, self)
 return self.prefs[item]

 def __len__(self):
 return len(self.prefs)

 def __iter__(self):
 return iter(self.prefs)

 def __contains__(self, item):
 return item in self.prefs

 def __setitem__(self, name, value):
 basename, endname = parse_preference_name(name)
 if basename not in self.pref_register:
 raise PreferenceError("Preference category " + basename +
 " is unregistered. Spelling error?")
 prefdefs, _ = self.pref_register[basename]
 if endname in prefdefs:
 # do validation
 pref = prefdefs[endname]
 if not pref.validator(value):
 raise PreferenceError(
 "Value %s for preference %s is invalid." % (value, name))
 self.prefs[name] = value
 if name in self.prefs_unvalidated:
 del self.prefs_unvalidated[name]
 else:
 raise PreferenceError("Preference " + name + " is unregistered. "
 "Spelling error?")

 def __delitem__(self, item):
 raise PreferenceError("Preferences cannot be deleted.")

 def __getattr__(self, name):
 if name in self.__dict__ or name.startswith('__'):
 return MutableMapping.__getattr__(self, name)

 # This function might get called from BrianGlobalPreferencesView with
 # a prefixed name -- therefore the name can contain dots!
 if name in self.pref_register:
 # This asks for a category, not a single preference
 return BrianGlobalPreferencesView(name, self)

 basename, _ = parse_preference_name(name)
 if len(basename) and basename not in self.pref_register:
 raise AssertionError(('__getattr__ received basename %s which is '
 'unregistered. This should never happen!') %
 basename)

 return self[name]

 def __setattr__(self, name, value):
 # Do not allow to set a category name to something else
 if 'pref_register' in self.__dict__ and name in self.pref_register:
 raise PreferenceError('Cannot set a preference category.')
 else:
 MutableMapping.__setattr__(self, name, value)

 def __delattr__(self, name):
 if 'pref_register' in self.__dict__ and name in self.pref_register:
 raise PreferenceError('Cannot delete a preference category.')
 else:
 MutableMapping.__setattr__(self, name, value)

 toplevel_categories = property(fget=lambda self: [category for category in
 self.pref_register
 if not '.' in category],
 doc='The toplevel preference categories')

 def _get_docstring(self):
 '''
 Document the toplevel categories, used as a docstring for the object.
 '''
 s = 'Preference categories:\n\n'
 for category in self.toplevel_categories:
 s += '** %s **\n' % category
 _, category_doc = self.pref_register[category]
 s += ' ' + category_doc + '\n\n'

 return s

 def __dir__(self):
 res = dir(type(self)) + self.__dict__.keys()
 categories = self.toplevel_categories
 res.extend(categories)
 return res

[docs] def eval_pref(self, value):
 '''
 Evaluate a string preference in the units namespace
 '''
 return eval(value, self.eval_namespace)

 def _set_preference(self, name, value):
 '''
 Try to set the preference and allow for unregistered base names. This
 method is used internally when reading preferences from the file
 because the preferences are potentially defined in packages that are
 not imported yet. Unvalidated preferences are safed and will be
 validated as soon as the category is registered. `Network.run` will
 also check for unvalidated preferences.
 '''
 basename, _ = parse_preference_name(name)
 if basename not in self.pref_register:
 self.prefs_unvalidated[name] = value
 else:
 # go via the standard __setitem__ method
 self[name] = value

 def _backup(self):
 '''
 Store a backup copy of the preferences to restore with `_restore`.
 '''
 self.backup_prefs.update(**self.prefs)

 def _restore(self):
 '''
 Restore a copy of the values of the preferences backed up with `_backup`.
 '''
 self.prefs.update(**self.backup_prefs)

 def _get_one_documentation(self, basename, link_targets):
 '''
 Document a single category of preferences.
 '''

 s = ''
 if not basename in self.pref_register:
 raise ValueError('No preferences under the name "%s" are registered' % basename)
 prefdefs, basedoc = self.pref_register[basename]
 s += deindent(basedoc, docstring=True).strip() + '\n\n'
 for name in sorted(prefdefs.keys()):
 pref = prefdefs[name]
 name = basename + '.' + name
 linkname = name.replace('_', '-').replace('.', '-')
 if link_targets:
 # Make a link target
 s += '.. _brian-pref-{name}:\n\n'.format(name=linkname)
 s += '``{name}`` = ``{default}``\n'.format(name=name,
 default=pref.representor(pref.default))
 s += indent(deindent(pref.docs, docstring=True))
 s += '\n\n'
 return s

[docs] def get_documentation(self, basename=None, link_targets=True):
 '''
 Generates a string documenting all preferences with the given
 `basename`. If no `basename` is given, all preferences are documented.
 '''
 s = ''
 if basename is None:
 basenames = [tuple(basename.split('.')) for basename in self.pref_register.keys()]
 basenames.sort()
 for basename in basenames:
 lev = len(basename)
 basename = '.'.join(basename)
 if lev==1:
 s += basename+'\n'+'"'*len(basename)+'\n\n'
 else:
 s += '**' + basename + '**\n\n'
 s += self._get_one_documentation(basename, link_targets)
 #for basename in self.pref_register:
 #s += '**' + basename + '**\n\n'
 #s += basename+'\n'+'"'*len(basename)+'\n\n'
 #s += self._get_one_documentation(basename, link_targets)
 else:
 s += self._get_one_documentation(basename, link_targets)

 return s

 def _as_pref_file(self, valuefunc):
 '''
 Helper function used to generate the preference file for the default or current preference values.
 '''
 s = ''
 for basename, (prefdefs, basedoc) in self.pref_register.items():
 s += '#' + '-' * 79 + '\n'
 s += '\n'.join(['# ' + line for line in deindent(basedoc, docstring=True).strip().split('\n')]) + '\n'
 s += '#' + '-' * 79 + '\n\n'
 s += '[' + basename + ']\n\n'
 for name in sorted(prefdefs.keys()):
 pref = prefdefs[name]
 s += '\n'.join(['# ' + line for line in deindent(pref.docs, docstring=True).strip().split('\n')]) + '\n\n'
 s += name + ' = ' + pref.representor(valuefunc(pref, basename + '.' + name)) + '\n\n'
 return s

 def _get_defaults_as_file(self):
 return self._as_pref_file(lambda pref, fullname: pref.default)

 defaults_as_file = property(fget=_get_defaults_as_file,
 doc='Get a Brian preference doc file format '
 'string for the default preferences')

 def _get_as_file(self):
 return self._as_pref_file(lambda pref, fullname: self[fullname])

 as_file = property(fget=_get_as_file,
 doc='Get a Brian preference doc file format '
 'string for the current preferences')

[docs] def read_preference_file(self, file):
 '''
 Reads a Brian preferences file

 The file format for Brian preferences is a plain text file of the form::

 a.b.c = 1
 # Comment line
 [a]
 b.d = 2
 [a.b]
 e = 3

 Blank and comment lines are ignored, all others should be of one of the
 following two forms::

 key = value
 [section]

 `eval` is called on the values, so strings should be written as, e.g.
 ``'3'`` rather than ``3``. The eval is called with all unit names
 available.
 Within a section, the section name is prepended to the key. So in the above
 example, it would give the following unvalidated dictionary::

 {'a.b.c': 1,
 'a.b.d': 2,
 'a.b.e': 3,
 }

 Parameters

 file : file, str
 The file object or filename of the preference file.
 '''
 if isinstance(file, str):
 filename = file
 file = open(file, 'r')
 else:
 filename = repr(file)
 lines = file.readlines()
 file.close()
 # remove empty lines
 lines = [line.strip() for line in lines]
 lines = [line for line in lines if line]
 # Remove comments
 lines = [line for line in lines if not line.startswith('#')]
 bases = [] # start with no base
 for line in lines:
 # Match section names, which are used as a prefix for subsequent entries
 m = re.match('\[([^\]]*)\]', line)
 if m:
 bases = m.group(1).strip().split('.')
 continue
 # Match entries
 m = re.match('(.*?)=(.*)', line)
 if m:
 extname = m.group(1).strip()
 value = m.group(2).strip()
 keyname = '.'.join(bases + extname.split('.'))
 self._set_preference(keyname, self.eval_pref(value))
 continue
 # Otherwise raise a parsing error
 raise PreferenceError("Parsing error in preference file " + filename)

[docs] def load_preferences(self):
 '''
 Load all the preference files, but do not validate them.

 Preference files are read in the following order:

 1. ``brian2/default_preferences`` from the Brian installation directory.
 2. ``~/.brian/user_preferences`` from the user's home directory
 3. ``./brian_preferences`` from the current directory

 Files that are missing are ignored. Preferences read at each step
 override preferences from previous steps.

 See Also

 read_preference_file
 '''
 curdir, _ = os.path.split(__file__)
 basedir = os.path.normpath(os.path.join(curdir, '..'))
 default_prefs = os.path.join(basedir, 'default_preferences')
 user_prefs = os.path.join(os.path.expanduser('~'),
 '.brian/user_preferences')
 cur_prefs = 'brian_preferences'
 files = [default_prefs, user_prefs, cur_prefs]
 for file in files:
 try:
 self.read_preference_file(file)
 except IOError:
 pass

[docs] def reset_to_defaults(self):
 '''
 Resets the parameters to their default values.
 '''
 self.read_preference_file(StringIO(self.defaults_as_file))

[docs] def register_preferences(self, prefbasename, prefbasedoc, **prefs):
 '''
 Registers a set of preference names, docs and validation functions.

 Parameters

 prefbasename : str
 The base name of the preference.
 prefbasedoc : str
 Documentation for this base name
 **prefs : dict of (name, `BrianPreference`) pairs
 The preference names to be defined. The full preference name will be
 ``prefbasename.name``, and the `BrianPreference` value is used to define
 the default value, docs, and validation function.

 Raises

 PreferenceError
 If the base name is already registered.

 See Also

 BrianPreference
 '''
 if prefbasename in self.pref_register:
 # During the initial import phase the same base category may be
 # created twice, ignore that
 previous = self.pref_register[prefbasename]
 if not (len(previous[0]) == 0 and previous[1] == prefbasedoc):
 raise PreferenceError("Base name " + prefbasename +
 " already registered.")
 # Check that the new category does not clash with a preference name of
 # the parent category. For example, if a category "a" with the
 # preference "b" is already registered, do not allow to register a
 # preference category "a.b"
 basename, category_name = parse_preference_name(prefbasename)
 if len(basename) and basename in self.pref_register:
 parent_preferences, _ = self.pref_register[basename]
 if category_name in parent_preferences:
 raise PreferenceError(('Cannot register category "%s", '
 'parent category "%s" already has a '
 'preference named "%s".') %
 (prefbasename, basename, category_name))

 self.pref_register[prefbasename] = (prefs, prefbasedoc)
 for k, v in prefs.items():
 fullname = prefbasename + '.' + k
 # The converse of the above check: Check that a preference name
 # does not clash with a category
 if fullname in self.pref_register:
 raise PreferenceError(('Cannot register "%s" as a preference, '
 'it is already registered as a '
 'preference category.') % fullname)
 check_preference_name(k)
 self.prefs_unvalidated[fullname] = v.default
 self.do_validation()

 # Update the docstring (a new toplevel category might have been added)
 self.__doc__ = self._get_docstring()

[docs] def do_validation(self):
 '''
 Validates preferences that have not yet been validated.
 '''
 for name, value in self.prefs_unvalidated.items():
 self[name] = value

[docs] def check_all_validated(self):
 '''
 Checks that all preferences that have been set have been validated.

 Logs a warning if not. Should be called by `Network.run` or other
 key Brian functions.
 '''
 if len(self.prefs_unvalidated):
 from brian2.utils.logger import get_logger
 logger = get_logger(__name__)
 logger.warn("The following preferences values have been set but "
 "are not registered preferences:\n%s\nThis is usually "
 "because of a spelling mistake or missing library "
 "import." % ', '.join(self.prefs_unvalidated.keys()),
 once=True)

 def __repr__(self):
 description = '<{classname} with top-level categories: {categories}>'
 categories = ', '.join(['"%s"' % category for category
 in self.toplevel_categories])
 return description.format(classname=self.__class__.__name__,
 categories=categories)

[docs]class BrianGlobalPreferencesView(MutableMapping):
 '''
 A class allowing for accessing preferences in a subcategory. It forwards
 requests to `BrianGlobalPreferences` and provides documentation and
 autocompletion support for all preferences in the given category. This
 object is used to allow accessing preferences via attributes of the
 `prefs` object.

 Parameters

 basename : str
 The name of the preference category. Has to correspond to a key in
 `BrianGlobalPreferences.pref_register`.
 all_prefs : `BrianGlobalPreferences`
 A reference to the main object storing the preferences.
 '''

 def __init__(self, basename, all_prefs):
 self._basename = basename
 self._all_prefs = all_prefs
 self._subcategories = [key for key in all_prefs.pref_register.iterkeys()
 if key.startswith(basename + '.')]
 self._preferences = all_prefs.pref_register[basename][0].keys()
 self.__doc__ = all_prefs.get_documentation(basename=basename,
 link_targets=False)

 _sub_preferences = property(lambda self: [pref[len(self._basename+'.'):] for pref in self._all_prefs
 if pref.startswith(self._basename+'.')],
 doc='All preferences in this category and its subcategories')

 def __getitem__(self, item):
 return self._all_prefs[self._basename + '.' + item]

 def __setitem__(self, item, value):
 self._all_prefs[self._basename + '.' + item] = value

 def __delitem__(self, item):
 raise PreferenceError("Preferences cannot be deleted.")

 def __len__(self):
 return len(self._sub_preferences)

 def __iter__(self):
 return iter(self._sub_preferences)

 def __contains__(self, item):
 return item in self._sub_preferences

 def __getattr__(self, name):
 return getattr(self._all_prefs, self._basename + '.' + name)

 def __setattr__(self, name, value):
 # Names starting with an underscore are not preferences but normal
 # instance attributes
 if name.startswith('_'):
 MutableMapping.__setattr__(self, name, value)
 else:
 self._all_prefs[self._basename + '.' + name] = value

 def __delattr__(self, name):
 # Names starting with an underscore are not preferences but normal
 # instance attributes
 if name.startswith('_'):
 MutableMapping.__delattr__(self, name)
 else:
 del self._all_prefs[self._basename + '.' + name]

 def __dir__(self):
 res = dir(type(self)) + self.__dict__.keys()
 res.extend(self._preferences)
 res.extend([category[len(self._basename+'.'):]
 for category in self._subcategories])
 return res

 def __repr__(self):
 description = '<{classname} for preference category "{category}">'
 return description.format(classname=self.__class__.__name__,
 category=self._basename)

: Object storing Brian's preferences
prefs = BrianGlobalPreferences()

Simple class to give a useful error message when using `brian_prefs`
[docs]class ErrorRaiser(object):
 def __getattr__(self, item):
 raise AttributeError(("The global preferences object has been renamed "
 "from 'brian_prefs' to 'prefs'"))

 def __getitem__(self, item):
 raise AttributeError(("The global preferences object has been renamed "
 "from 'brian_prefs' to 'prefs'"))

brian_prefs = ErrorRaiser()

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/brian2/devices/cpp_standalone/device.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.devices.cpp_standalone.device

'''
Module implementing the C++ "standalone" device.
'''
import os
import shutil
import subprocess
import sys
import inspect
import platform
from collections import defaultdict, Counter
import numbers
import tempfile
from distutils import ccompiler

import numpy as np
from cpuinfo import cpuinfo

import brian2

from brian2.codegen.cpp_prefs import get_compiler_and_args
from brian2.core.network import Network
from brian2.devices.device import Device, all_devices, set_device, reset_device
from brian2.core.variables import *
from brian2.core.namespace import get_local_namespace
from brian2.groups.group import Group
from brian2.parsing.rendering import CPPNodeRenderer
from brian2.synapses.synapses import Synapses
from brian2.core.preferences import prefs, BrianPreference
from brian2.utils.filetools import copy_directory, ensure_directory, in_directory
from brian2.utils.stringtools import word_substitute
from brian2.codegen.generators.cpp_generator import c_data_type
from brian2.units.fundamentalunits import Quantity, have_same_dimensions
from brian2.units import second, ms
from brian2.utils.logger import get_logger, std_silent

from .codeobject import CPPStandaloneCodeObject, openmp_pragma

__all__ = []

logger = get_logger(__name__)

Preferences
prefs.register_preferences(
 'devices.cpp_standalone',
 'C++ standalone preferences ',
 openmp_threads=BrianPreference(
 default=0,
 docs='''
 The number of threads to use if OpenMP is turned on. By default, this value is set to 0 and the C++ code
 is generated without any reference to OpenMP. If greater than 0, then the corresponding number of threads
 are used to launch the simulation.
 ''',
),
 openmp_spatialneuron_strategy=BrianPreference(
 default=None,
 validator=lambda val: val in [None, 'branches', 'systems'],
 docs='''
 Which strategy to chose for solving the three tridiagonal systems with
 OpenMP: `'branches'` means to solve the three systems sequentially, but
 for all the branches in parallel, `'systems'` means to solve the three
 systems in parallel, but all the branches within each system
 sequentially. The `'branches'` approach is usually better for
 morphologies with many branches and a large number of threads, while the
 `'systems'` strategy should be better for morphologies with few
 branches (e.g. cables) and/or simulations with no more than three
 threads. If not specified (the default), the `'systems'` strategy will
 be used when using no more than three threads or when the morphology
 has less than three branches in total.
 '''
)
)

[docs]class CPPWriter(object):
 def __init__(self, project_dir):
 self.project_dir = project_dir
 self.source_files = []
 self.header_files = []

[docs] def write(self, filename, contents):
 logger.diagnostic('Writing file %s:\n%s' % (filename, contents))
 if filename.lower().endswith('.cpp') or filename.lower().endswith('.c'):
 self.source_files.append(filename)
 elif filename.lower().endswith('.h'):
 self.header_files.append(filename)
 elif filename.endswith('.*'):
 self.write(filename[:-1]+'cpp', contents.cpp_file)
 self.write(filename[:-1]+'h', contents.h_file)
 return
 fullfilename = os.path.join(self.project_dir, filename)
 if os.path.exists(fullfilename):
 if open(fullfilename, 'r').read()==contents:
 return
 open(fullfilename, 'w').write(contents)

[docs]def invert_dict(x):
 return dict((v, k) for k, v in x.iteritems())

[docs]class CPPStandaloneDevice(Device):
 '''
 The `Device` used for C++ standalone simulations.
 '''
 def __init__(self):
 super(CPPStandaloneDevice, self).__init__()
 #: Dictionary mapping `ArrayVariable` objects to their globally
 #: unique name
 self.arrays = {}
 #: Dictionary mapping `ArrayVariable` objects to their value or to
 #: ``None`` if the value (potentially) depends on executed code. This
 #: mechanism allows to access state variables in standalone mode if
 #: their value is known at run time
 self.array_cache = {}
 #: List of all dynamic arrays
 #: Dictionary mapping `DynamicArrayVariable` objects with 1 dimension to
 #: their globally unique name
 self.dynamic_arrays = {}
 #: Dictionary mapping `DynamicArrayVariable` objects with 2 dimensions
 #: to their globally unique name
 self.dynamic_arrays_2d = {}
 #: List of all arrays to be filled with zeros
 self.zero_arrays = []
 #: Dictionary of all arrays to be filled with numbers (mapping
 #: `ArrayVariable` objects to start value)
 self.arange_arrays = {}

 #: Whether the simulation has been run
 self.has_been_run = False

 #: Whether a run should trigger a build
 self.build_on_run = False

 #: build options
 self.build_options = None

 #: Dict of all static saved arrays
 self.static_arrays = {}

 self.code_objects = {}
 self.main_queue = []
 self.runfuncs = {}
 self.networks = []
 self.net_synapses = []
 self.static_array_specs =[]
 self.report_func = ''
 self.synapses = []

 self.clocks = set([])

[docs] def reinit(self):
 # Remember the build_on_run setting and its options -- important during
 # testing
 build_on_run = self.build_on_run
 build_options = self.build_options
 self.__init__()
 super(CPPStandaloneDevice, self).reinit()
 self.build_on_run = build_on_run
 self.build_options = build_options

[docs] def freeze(self, code, ns):
 # this is a bit of a hack, it should be passed to the template somehow
 for k, v in ns.items():
 if (isinstance(v, Variable) and
 v.scalar and v.constant and v.read_only):
 try:
 v = v.get_value()
 except NotImplementedError:
 continue
 if isinstance(v, basestring):
 code = word_substitute(code, {k: v})
 elif isinstance(v, numbers.Number):
 # Use a renderer to correctly transform constants such as True or inf
 renderer = CPPNodeRenderer()
 string_value = renderer.render_expr(repr(v))
 if v < 0:
 string_value = '(%s)' % string_value
 code = word_substitute(code, {k: string_value})
 else:
 pass # don't deal with this object
 return code

[docs] def insert_code(self, slot, code):
 '''
 Insert code directly into main.cpp
 '''
 if slot=='main':
 self.main_queue.append(('insert_code', code))
 else:
 logger.warn("Ignoring device code, unknown slot: %s, code: %s" % (slot, code))

[docs] def static_array(self, name, arr):
 arr = np.atleast_1d(arr)
 assert len(arr), 'length for %s: %d' % (name, len(arr))
 name = '_static_array_' + name
 basename = name
 i = 0
 while name in self.static_arrays:
 i += 1
 name = basename+'_'+str(i)
 self.static_arrays[name] = arr.copy()
 return name

[docs] def get_array_name(self, var, access_data=True):
 '''
 Return a globally unique name for `var`.

 Parameters

 access_data : bool, optional
 For `DynamicArrayVariable` objects, specifying `True` here means the
 name for the underlying data is returned. If specifying `False`,
 the name of object itself is returned (e.g. to allow resizing).
 '''
 if isinstance(var, DynamicArrayVariable):
 if access_data:
 return self.arrays[var]
 elif var.dimensions == 1:
 return self.dynamic_arrays[var]
 else:
 return self.dynamic_arrays_2d[var]
 elif isinstance(var, ArrayVariable):
 return self.arrays[var]
 else:
 raise TypeError(('Do not have a name for variable of type '
 '%s') % type(var))

[docs] def get_array_filename(self, var, basedir='results'):
 '''
 Return a file name for a variable.

 Parameters

 var : `ArrayVariable`
 The variable to get a filename for.
 basedir : str
 The base directory for the filename, defaults to ``'results'``.
 Returns

 filename : str
 A filename of the form
 ``'results/'+varname+'_'+str(hash(varname))``, where varname is the
 name returned by `get_array_name`.

 Notes

 The reason that the filename is not simply ``'results/' + varname`` is
 that this could lead to file names that are not unique in file systems
 that are not case sensitive (e.g. on Windows).
 '''
 varname = self.get_array_name(var, access_data=False)
 return os.path.join(basedir, varname + '_' + str(hash(varname)))

[docs] def add_array(self, var):
 # Note that a dynamic array variable is added to both the arrays and
 # the _dynamic_array dictionary
 if isinstance(var, DynamicArrayVariable):
 # The code below is slightly more complicated than just looking
 # for a unique name as above for static_array, the name has
 # potentially to be unique for more than one dictionary, with
 # different prefixes. This is because dynamic arrays are added to
 # a ``dynamic_arrays`` dictionary (with a `_dynamic` prefix) and to
 # the general ``arrays`` dictionary. We want to make sure that we
 # use the same name in the two dictionaries, not for example
 # ``_dynamic_array_source_name_2`` and ``_array_source_name_1``
 # (this would work fine, but it would make the code harder to read).
 orig_dynamic_name = dynamic_name = '_dynamic_array_%s_%s' % (var.owner.name, var.name)
 orig_array_name = array_name = '_array_%s_%s' % (var.owner.name, var.name)
 suffix = 0

 if var.dimensions == 1:
 dynamic_dict = self.dynamic_arrays
 elif var.dimensions == 2:
 dynamic_dict = self.dynamic_arrays_2d
 else:
 raise AssertionError(('Did not expect a dynamic array with %d '
 'dimensions.') % var.dimensions)
 while (dynamic_name in dynamic_dict.values() or
 array_name in self.arrays.values()):
 suffix += 1
 dynamic_name = orig_dynamic_name + '_%d' % suffix
 array_name = orig_array_name + '_%d' % suffix
 dynamic_dict[var] = dynamic_name
 self.arrays[var] = array_name
 else:
 orig_array_name = array_name = '_array_%s_%s' % (var.owner.name, var.name)
 suffix = 0
 while (array_name in self.arrays.values()):
 suffix += 1
 array_name = orig_array_name + '_%d' % suffix
 self.arrays[var] = array_name

[docs] def init_with_zeros(self, var, dtype):
 self.zero_arrays.append(var)
 self.array_cache[var] = np.zeros(var.size, dtype=dtype)

[docs] def init_with_arange(self, var, start, dtype):
 self.arange_arrays[var] = start
 self.array_cache[var] = np.arange(0, var.size, dtype=dtype) + start

[docs] def fill_with_array(self, var, arr):
 arr = np.asarray(arr)
 if arr.size == 0:
 return # nothing to do
 array_name = self.get_array_name(var, access_data=False)
 if isinstance(var, DynamicArrayVariable):
 # We can never be sure about the size of a dynamic array, so
 # we can't do correct broadcasting. Therefore, we do not cache
 # them at all for now.
 self.array_cache[var] = None
 else:
 new_arr = np.empty(var.size, dtype=var.dtype)
 new_arr[:] = arr
 self.array_cache[var] = new_arr

 if arr.size == 1:
 if var.size == 1:
 value = CPPNodeRenderer().render_expr(repr(arr.item(0)))
 # For a single assignment, generate a code line instead of storing the array
 self.main_queue.append(('set_by_single_value', (array_name,
 0,
 value)))
 else:
 self.main_queue.append(('set_by_constant', (array_name,
 arr.item(),
 isinstance(var, DynamicArrayVariable))))
 else:
 # Using the std::vector instead of a pointer to the underlying
 # data for dynamic arrays is fast enough here and it saves us some
 # additional work to set up the pointer
 static_array_name = self.static_array(array_name, arr)
 self.main_queue.append(('set_by_array', (array_name,
 static_array_name,
 isinstance(var, DynamicArrayVariable))))

[docs] def resize(self, var, new_size):
 array_name = self.get_array_name(var, access_data=False)
 self.main_queue.append(('resize_array', (array_name, new_size)))

[docs] def variableview_set_with_index_array(self, variableview, item,
 value, check_units):
 if isinstance(item, slice) and item == slice(None):
 item = 'True'
 value = Quantity(value)

 if (isinstance(item, int) or (isinstance(item, np.ndarray) and item.shape==())) and value.size == 1:
 array_name = self.get_array_name(variableview.variable, access_data=False)
 value_str = CPPNodeRenderer().render_expr(repr(np.asarray(value).item(0)))
 if self.array_cache.get(variableview.variable, None) is not None:
 self.array_cache[variableview.variable][item] = value
 # For a single assignment, generate a code line instead of storing the array
 self.main_queue.append(('set_by_single_value', (array_name,
 item,
 value_str)))
 # Simple case where we don't have to do any indexing
 elif (item == 'True' and variableview.index_var in ('_idx', '0')):
 self.fill_with_array(variableview.variable, value)
 else:
 # We have to calculate indices. This will not work for synaptic
 # variables
 try:
 indices = np.asarray(variableview.indexing(item,
 index_var=variableview.index_var))
 except NotImplementedError:
 raise NotImplementedError(('Cannot set variable "%s" this way in '
 'standalone, try using string '
 'expressions.') % variableview.name)
 # Using the std::vector instead of a pointer to the underlying
 # data for dynamic arrays is fast enough here and it saves us some
 # additional work to set up the pointer
 arrayname = self.get_array_name(variableview.variable,
 access_data=False)
 if (indices.shape != () and
 (value.shape == () or
 (value.size == 1 and indices.size > 1))):
 value = np.repeat(value, indices.size)
 elif (value.shape != indices.shape and len(value) != len(indices)):
 raise ValueError(('Provided values do not match the size '
 'of the indices, '
 '%d != %d.') % (len(value),
 len(indices)))

 staticarrayname_index = self.static_array('_index_'+arrayname,
 indices)
 staticarrayname_value = self.static_array('_value_'+arrayname,
 value)
 self.array_cache[variableview.variable] = None
 self.main_queue.append(('set_array_by_array', (arrayname,
 staticarrayname_index,
 staticarrayname_value)))

[docs] def get_value(self, var, access_data=True):
 # Usually, we cannot retrieve the values of state variables in
 # standalone scripts since their values might depend on the evaluation
 # of expressions at runtime. For some variables we do know the value
 # however (values that have been set with explicit values and not
 # changed in code objects)
 if self.array_cache.get(var, None) is not None:
 return self.array_cache[var]
 else:
 # After the network has been run, we can retrieve the values from
 # disk
 if self.has_been_run:
 dtype = var.dtype
 fname = os.path.join(self.project_dir,
 self.get_array_filename(var))
 with open(fname, 'rb') as f:
 data = np.fromfile(f, dtype=dtype)
 # This is a bit of an heuristic, but our 2d dynamic arrays are
 # only expanding in one dimension, we assume here that the
 # other dimension has size 0 at the beginning
 if isinstance(var.size, tuple) and len(var.size) == 2:
 if var.size[0] * var.size[1] == len(data):
 size = var.size
 elif var.size[0] == 0:
 size = (len(data)//var.size[1], var.size[1])
 elif var.size[1] == 0:
 size = (var.size[0], len(data)//var.size[0])
 else:
 raise IndexError(('Do not now how to deal with 2d '
 'array of size %s, the array on disk '
 'has length %d') % (str(var.size),
 len(data)))

 var.size = size
 return data.reshape(var.size)
 var.size = len(data)
 return data
 raise NotImplementedError('Cannot retrieve the values of state '
 'variables in standalone code before the '
 'simulation has been run.')

[docs] def variableview_get_subexpression_with_index_array(self, variableview,
 item,
 run_namespace=None):
 if not self.has_been_run:
 raise NotImplementedError('Cannot retrieve the values of state '
 'variables in standalone code before the '
 'simulation has been run.')
 # Temporarily switch to the runtime device to evaluate the subexpression
 # (based on the values stored on disk)
 set_device('runtime')
 result = VariableView.get_subexpression_with_index_array(variableview, item,
 run_namespace=run_namespace)
 reset_device()
 return result

[docs] def variableview_get_with_expression(self, variableview, code,
 run_namespace=None):
 raise NotImplementedError('Cannot retrieve the values of state '
 'variables with string expressions in '
 'standalone scripts.')

[docs] def code_object_class(self, codeobj_class=None):
 # Ignore the requested codeobj_class
 return CPPStandaloneCodeObject

[docs] def code_object(self, owner, name, abstract_code, variables, template_name,
 variable_indices, codeobj_class=None, template_kwds=None,
 override_conditional_write=None):
 if template_kwds is None:
 template_kwds = dict()
 else:
 template_kwds = dict(template_kwds)
 template_kwds['user_headers'] = prefs['codegen.cpp.headers']
 codeobj = super(CPPStandaloneDevice, self).code_object(owner, name, abstract_code, variables,
 template_name, variable_indices,
 codeobj_class=codeobj_class,
 template_kwds=template_kwds,
 override_conditional_write=override_conditional_write,
)
 self.code_objects[codeobj.name] = codeobj

 # Mark all the non-read-only or non-constant variables used in this code
 # object as "dirty". This is almost certainly too much, most of these
 # variables will only be read. However, the templates for synapse
 # creation will write to read-only variables.. This is noted in the
 # WRITES_TO_READ_ONLY_VARIABLES comment in the template.
 template = getattr(codeobj.templater, template_name)
 written_readonly_vars = {codeobj.variables[varname]
 for varname in template.writes_read_only}
 for var in codeobj.variables.itervalues():
 if (isinstance(var, ArrayVariable) and
 (not var.read_only or not var.constant or
 var in written_readonly_vars)):
 self.array_cache[var] = None

 return codeobj

[docs] def check_openmp_compatible(self, nb_threads):
 if nb_threads > 0:
 logger.warn("OpenMP code is not yet well tested, and may be inaccurate.", "openmp", once=True)
 logger.diagnostic("Using OpenMP with %d threads " % nb_threads)

[docs] def generate_objects_source(self, writer, arange_arrays, synapses, static_array_specs, networks):
 arr_tmp = CPPStandaloneCodeObject.templater.objects(
 None, None,
 array_specs=self.arrays,
 dynamic_array_specs=self.dynamic_arrays,
 dynamic_array_2d_specs=self.dynamic_arrays_2d,
 zero_arrays=self.zero_arrays,
 arange_arrays=arange_arrays,
 synapses=synapses,
 clocks=self.clocks,
 static_array_specs=static_array_specs,
 networks=networks,
 get_array_filename=self.get_array_filename,
 get_array_name=self.get_array_name,
 code_objects=self.code_objects.values())
 writer.write('objects.*', arr_tmp)

[docs] def generate_main_source(self, writer):
 main_lines = []
 procedures = [('', main_lines)]
 runfuncs = {}
 for func, args in self.main_queue:
 if func=='run_code_object':
 codeobj, = args
 main_lines.append('_run_%s();' % codeobj.name)
 elif func=='run_network':
 net, netcode = args
 main_lines.extend(netcode)
 elif func=='set_by_constant':
 arrayname, value, is_dynamic = args
 size_str = arrayname+'.size()' if is_dynamic else '_num_'+arrayname
 code = '''
 {pragma}
 for(int i=0; i<{size_str}; i++)
 {{
 {arrayname}[i] = {value};
 }}
 '''.format(arrayname=arrayname, size_str=size_str,
 value=CPPNodeRenderer().render_expr(repr(value)),
 pragma=openmp_pragma('static'))
 main_lines.extend(code.split('\n'))
 elif func=='set_by_array':
 arrayname, staticarrayname, is_dynamic = args
 size_str = arrayname+'.size()' if is_dynamic else '_num_'+arrayname
 code = '''
 {pragma}
 for(int i=0; i<{size_str}; i++)
 {{
 {arrayname}[i] = {staticarrayname}[i];
 }}
 '''.format(arrayname=arrayname, size_str=size_str,
 staticarrayname=staticarrayname,
 pragma=openmp_pragma('static'))
 main_lines.extend(code.split('\n'))
 elif func=='set_by_single_value':
 arrayname, item, value = args
 code = '{arrayname}[{item}] = {value};'.format(arrayname=arrayname,
 item=item,
 value=value)
 main_lines.extend([code])
 elif func=='set_array_by_array':
 arrayname, staticarrayname_index, staticarrayname_value = args
 code = '''
 {pragma}
 for(int i=0; i<_num_{staticarrayname_index}; i++)
 {{
 {arrayname}[{staticarrayname_index}[i]] = {staticarrayname_value}[i];
 }}
 '''.format(arrayname=arrayname, staticarrayname_index=staticarrayname_index,
 staticarrayname_value=staticarrayname_value, pragma=openmp_pragma('static'))
 main_lines.extend(code.split('\n'))
 elif func=='resize_array':
 array_name, new_size = args
 main_lines.append("{array_name}.resize({new_size});".format(array_name=array_name,
 new_size=new_size))
 elif func=='insert_code':
 main_lines.append(args)
 elif func=='start_run_func':
 name, include_in_parent = args
 if include_in_parent:
 main_lines.append('%s();' % name)
 main_lines = []
 procedures.append((name, main_lines))
 elif func=='end_run_func':
 name, include_in_parent = args
 name, main_lines = procedures.pop(-1)
 runfuncs[name] = main_lines
 name, main_lines = procedures[-1]
 elif func=='seed':
 seed = args
 nb_threads = prefs.devices.cpp_standalone.openmp_threads
 if nb_threads == 0: # no OpenMP
 nb_threads = 1
 main_lines.append('for (int _i=0; _i<{nb_threads}; _i++)'.format(nb_threads=nb_threads))
 if seed is None: # random
 main_lines.append(' rk_randomseed(brian::_mersenne_twister_states[_i]);')
 else:
 main_lines.append(' rk_seed({seed!r}L + _i, brian::_mersenne_twister_states[_i]);'.format(seed=seed))
 else:
 raise NotImplementedError("Unknown main queue function type "+func)

 self.runfuncs = runfuncs

 # generate the finalisations
 for codeobj in self.code_objects.itervalues():
 if hasattr(codeobj.code, 'main_finalise'):
 main_lines.append(codeobj.code.main_finalise)

 # The code_objects are passed in the right order to run them because they were
 # sorted by the Network object. To support multiple clocks we'll need to be
 # smarter about that.
 main_tmp = CPPStandaloneCodeObject.templater.main(None, None,
 main_lines=main_lines,
 code_objects=self.code_objects.values(),
 report_func=self.report_func,
 dt=float(self.defaultclock.dt),
 user_headers=prefs['codegen.cpp.headers']
)
 writer.write('main.cpp', main_tmp)

[docs] def generate_codeobj_source(self, writer):
 # Generate data for non-constant values
 code_object_defs = defaultdict(list)
 for codeobj in self.code_objects.itervalues():
 lines = []
 for k, v in codeobj.variables.iteritems():
 if isinstance(v, ArrayVariable):
 try:
 if isinstance(v, DynamicArrayVariable):
 if v.dimensions == 1:
 dyn_array_name = self.dynamic_arrays[v]
 array_name = self.arrays[v]
 line = '{c_type}* const {array_name} = {dyn_array_name}.empty()? 0 : &{dyn_array_name}[0];'
 line = line.format(c_type=c_data_type(v.dtype), array_name=array_name,
 dyn_array_name=dyn_array_name)
 lines.append(line)
 line = 'const int _num{k} = {dyn_array_name}.size();'
 line = line.format(k=k, dyn_array_name=dyn_array_name)
 lines.append(line)
 else:
 lines.append('const int _num%s = %s;' % (k, v.size))
 except TypeError:
 pass
 for line in lines:
 # Sometimes an array is referred to by to different keys in our
 # dictionary -- make sure to never add a line twice
 if not line in code_object_defs[codeobj.name]:
 code_object_defs[codeobj.name].append(line)

 # Generate the code objects
 for codeobj in self.code_objects.itervalues():
 ns = codeobj.variables
 # TODO: fix these freeze/CONSTANTS hacks somehow - they work but not elegant.
 code = self.freeze(codeobj.code.cpp_file, ns)
 code = code.replace('%CONSTANTS%', '\n'.join(code_object_defs[codeobj.name]))
 code = '#include "objects.h"\n'+code

 writer.write('code_objects/'+codeobj.name+'.cpp', code)
 writer.write('code_objects/'+codeobj.name+'.h', codeobj.code.h_file)

[docs] def generate_network_source(self, writer, compiler):
 maximum_run_time = self._maximum_run_time
 if maximum_run_time is not None:
 maximum_run_time = float(maximum_run_time)
 network_tmp = CPPStandaloneCodeObject.templater.network(None, None, maximum_run_time=maximum_run_time)
 writer.write('network.*', network_tmp)

[docs] def generate_synapses_classes_source(self, writer):
 synapses_classes_tmp = CPPStandaloneCodeObject.templater.synapses_classes(None, None)
 writer.write('synapses_classes.*', synapses_classes_tmp)

[docs] def generate_run_source(self, writer):
 run_tmp = CPPStandaloneCodeObject.templater.run(None, None, run_funcs=self.runfuncs,
 code_objects=self.code_objects.values(),
 user_headers=prefs['codegen.cpp.headers'],
 array_specs=self.arrays,
 clocks=self.clocks
)
 writer.write('run.*', run_tmp)

[docs] def generate_makefile(self, writer, compiler, compiler_flags, linker_flags, nb_threads):
 if compiler=='msvc':
 if nb_threads>1:
 openmp_flag = '/openmp'
 else:
 openmp_flag = ''
 # Generate the visual studio makefile
 source_bases = [fname.replace('.cpp', '').replace('.c', '').replace('/', '\\') for fname in writer.source_files]
 win_makefile_tmp = CPPStandaloneCodeObject.templater.win_makefile(
 None, None,
 source_files=writer.source_files,
 source_bases=source_bases,
 compiler_flags=compiler_flags,
 linker_flags=linker_flags,
 openmp_flag=openmp_flag,
)
 writer.write('win_makefile', win_makefile_tmp)
 else:
 # Generate the makefile
 if os.name=='nt':
 rm_cmd = 'del *.o /s\n\tdel main.exe $(DEPS)'
 else:
 rm_cmd = 'rm $(OBJS) $(PROGRAM) $(DEPS)'
 makefile_tmp = CPPStandaloneCodeObject.templater.makefile(None, None,
 source_files=' '.join(writer.source_files),
 header_files=' '.join(writer.header_files),
 compiler_flags=compiler_flags,
 linker_flags=linker_flags,
 rm_cmd=rm_cmd)
 writer.write('makefile', makefile_tmp)

[docs] def copy_source_files(self, writer, directory):
 # Copy the brianlibdirectory
 brianlib_dir = os.path.join(os.path.split(inspect.getsourcefile(CPPStandaloneCodeObject))[0],
 'brianlib')
 brianlib_files = copy_directory(brianlib_dir, os.path.join(directory, 'brianlib'))
 for file in brianlib_files:
 if file.lower().endswith('.cpp'):
 writer.source_files.append('brianlib/'+file)
 elif file.lower().endswith('.h'):
 writer.header_files.append('brianlib/'+file)

 # Copy the CSpikeQueue implementation
 shutil.copy2(os.path.join(os.path.split(inspect.getsourcefile(Synapses))[0], 'cspikequeue.cpp'),
 os.path.join(directory, 'brianlib', 'spikequeue.h'))
 shutil.copy2(os.path.join(os.path.split(inspect.getsourcefile(Synapses))[0], 'stdint_compat.h'),
 os.path.join(directory, 'brianlib', 'stdint_compat.h'))

 # Copy the RandomKit implementation
 if not os.path.exists(os.path.join(directory, 'brianlib', 'randomkit')):
 os.mkdir(os.path.join(directory, 'brianlib', 'randomkit'))
 shutil.copy2(os.path.join(os.path.split(inspect.getsourcefile(brian2))[0],
 'random', 'randomkit', 'randomkit.c'),
 os.path.join(directory, 'brianlib', 'randomkit', 'randomkit.c'))
 shutil.copy2(os.path.join(os.path.split(inspect.getsourcefile(brian2))[0],
 'random', 'randomkit', 'randomkit.h'),
 os.path.join(directory, 'brianlib', 'randomkit', 'randomkit.h'))

[docs] def write_static_arrays(self, directory):
 # # Find np arrays in the namespaces and convert them into static
 # # arrays. Hopefully they are correctly used in the code: For example,
 # # this works for the namespaces for functions with C++ (e.g. TimedArray
 # # treats it as a C array) but does not work in places that are
 # # implicitly vectorized (state updaters, resets, etc.). But arrays
 # # shouldn't be used there anyway.
 for code_object in self.code_objects.itervalues():
 for name, value in code_object.variables.iteritems():
 if isinstance(value, np.ndarray):
 self.static_arrays[name] = value

 logger.diagnostic("static arrays: "+str(sorted(self.static_arrays.keys())))

 static_array_specs = []
 for name, arr in sorted(self.static_arrays.items()):
 arr.tofile(os.path.join(directory, 'static_arrays', name))
 static_array_specs.append((name, c_data_type(arr.dtype), arr.size, name))
 self.static_array_specs = static_array_specs

[docs] def find_synapses(self):
 # Write the global objects
 networks = [net() for net in Network.__instances__()
 if net().name != '_fake_network']
 synapses = []
 for net in networks:
 net_synapses = [s for s in net.objects if isinstance(s, Synapses)]
 synapses.extend(net_synapses)
 self.networks = networks
 self.net_synapses = synapses

[docs] def compile_source(self, directory, compiler, debug, clean):
 num_threads = prefs.devices.cpp_standalone.openmp_threads
 with in_directory(directory):
 if compiler == 'msvc':
 from distutils import msvc9compiler
 # TODO: handle debug
 if debug:
 logger.warn('Debug flag currently ignored for MSVC', once=True)
 vcvars_loc = prefs['codegen.cpp.msvc_vars_location']
 if vcvars_loc == '':
 for version in xrange(16, 8, -1):
 fname = msvc9compiler.find_vcvarsall(version)
 if fname:
 vcvars_loc = fname
 break
 if vcvars_loc == '':
 raise IOError("Cannot find vcvarsall.bat on standard "
 "search path. Set the "
 "codegen.cpp.msvc_vars_location preference "
 "explicitly.")
 # TODO: copy vcvars and make replacements for 64 bit automatically
 arch_name = prefs['codegen.cpp.msvc_architecture']
 if arch_name == '':
 mach = platform.machine()
 if mach == 'AMD64':
 arch_name = 'x86_amd64'
 else:
 arch_name = 'x86'

 vcvars_cmd = '"{vcvars_loc}" {arch_name}'.format(
 vcvars_loc=vcvars_loc, arch_name=arch_name)
 make_cmd = 'nmake /f win_makefile'
 if os.path.exists('winmake.log'):
 os.remove('winmake.log')
 with std_silent(debug):
 if clean:
 os.system('%s >>winmake.log 2>&1 && %s clean >>winmake.log 2>&1' % (vcvars_cmd, make_cmd))
 x = os.system('%s >>winmake.log 2>&1 && %s >>winmake.log 2>&1' % (vcvars_cmd, make_cmd))
 if x!=0:
 if os.path.exists('winmake.log'):
 print open('winmake.log', 'r').read()
 raise RuntimeError("Project compilation failed")
 else:
 with std_silent(debug):
 if clean:
 os.system('make clean')
 if debug:
 x = os.system('make debug')
 else:
 x = os.system('make')
 if x!=0:
 raise RuntimeError("Project compilation failed")

[docs] def seed(self, seed=None):
 '''
 Set the seed for the random number generator.

 Parameters

 seed : int, optional
 The seed value for the random number generator, or ``None`` (the
 default) to set a random seed.
 '''
 self.main_queue.append(('seed', seed))

[docs] def run(self, directory, with_output, run_args):
 with in_directory(directory):
 if not with_output:
 stdout = open('results/stdout.txt', 'w')
 else:
 stdout = None
 if os.name=='nt':
 x = subprocess.call(['main'] + run_args, stdout=stdout)
 else:
 x = subprocess.call(['./main'] + run_args, stdout=stdout)
 if x:
 if stdout is not None:
 stdout.close()
 if os.path.exists('results/stdout.txt'):
 print open('results/stdout.txt', 'r').read()
 raise RuntimeError("Project run failed (project directory: "
 "%s)" % os.path.abspath(directory))
 self.has_been_run = True
 if os.path.isfile('results/last_run_info.txt'):
 last_run_info = open('results/last_run_info.txt', 'r').read()
 self._last_run_time, self._last_run_completed_fraction = map(float, last_run_info.split())

 # Make sure that integration did not create NaN or very large values
 owners = [var.owner for var in self.arrays]
 # We don't want to check the same owner twice but var.owner is a
 # weakproxy which we can't put into a set. We therefore store the name
 # of all objects we already checked. Furthermore, under some specific
 # instances a variable might have been created whose owner no longer
 # exists (e.g. a `_sub_idx` variable for a subgroup) -- we ignore the
 # resulting reference error.
 already_checked = set()
 for owner in owners:
 try:
 if owner.name in already_checked:
 continue
 if isinstance(owner, Group):
 owner._check_for_invalid_states()
 already_checked.add(owner.name)
 except ReferenceError:
 pass

[docs] def build(self, directory='output',
 compile=True, run=True, debug=False, clean=True,
 with_output=True, additional_source_files=None,
 run_args=None, direct_call=True, **kwds):
 '''
 Build the project

 TODO: more details

 Parameters

 directory : str, optional
 The output directory to write the project to, any existing files
 will be overwritten. If the given directory name is ``None``, then
 a temporary directory will be used (used in the test suite to avoid
 problems when running several tests in parallel). Defaults to
 ``'output'``.
 compile : bool, optional
 Whether or not to attempt to compile the project. Defaults to
 ``True``.
 run : bool, optional
 Whether or not to attempt to run the built project if it
 successfully builds. Defaults to ``True``.
 debug : bool, optional
 Whether to compile in debug mode. Defaults to ``False``.
 with_output : bool, optional
 Whether or not to show the ``stdout`` of the built program when run.
 Output will be shown in case of compilation or runtime error.
 Defaults to ``True``.
 clean : bool, optional
 Whether or not to clean the project before building. Defaults to
 ``True``.
 additional_source_files : list of str, optional
 A list of additional ``.cpp`` files to include in the build.
 direct_call : bool, optional
 Whether this function was called directly. Is used internally to
 distinguish an automatic build due to the ``build_on_run`` option
 from a manual ``device.build`` call.
 '''
 if self.build_on_run and direct_call:
 raise RuntimeError('You used set_device with build_on_run=True '
 '(the default option), which will automatically '
 'build the simulation at the first encountered '
 'run call - do not call device.build manually '
 'in this case. If you want to call it manually, '
 'e.g. because you have multiple run calls, use '
 'set_device with build_on_run=False.')
 if self.has_been_run:
 raise RuntimeError('The network has already been built and run '
 'before. To build several simulations in '
 'the same script, call "device.reinit()" '
 'and "device.activate()". Note that you '
 'will have to set build options (e.g. the '
 'directory) and defaultclock.dt again.')
 renames = {'project_dir': 'directory',
 'compile_project': 'compile',
 'run_project': 'run'}
 if len(kwds):
 msg = ''
 for kwd in kwds:
 if kwd in renames:
 msg += ("Keyword argument '%s' has been renamed to "
 "'%s'. ") % (kwd, renames[kwd])
 else:
 msg += "Unknown keyword argument '%s'. " % kwd
 raise TypeError(msg)

 if additional_source_files is None:
 additional_source_files = []
 if run_args is None:
 run_args = []
 if directory is None:
 directory = tempfile.mkdtemp()
 self.project_dir = directory
 ensure_directory(directory)

 compiler, extra_compile_args = get_compiler_and_args()
 compiler_obj = ccompiler.new_compiler(compiler=compiler)
 compiler_flags = (ccompiler.gen_preprocess_options(prefs['codegen.cpp.define_macros'],
 prefs['codegen.cpp.include_dirs']+['brianlib/randomkit']) +
 extra_compile_args)
 if sys.platform=='win32':
 wincrypt = ['advapi32']
 else:
 wincrypt = []
 linker_flags = (ccompiler.gen_lib_options(compiler_obj,
 library_dirs=prefs['codegen.cpp.library_dirs']+['brianlib/randomkit'],
 runtime_library_dirs=prefs['codegen.cpp.runtime_library_dirs'],
 libraries=prefs['codegen.cpp.libraries']+wincrypt) +
 prefs['codegen.cpp.extra_link_args'])

 additional_source_files.append('brianlib/randomkit/randomkit.c')

 for d in ['code_objects', 'results', 'static_arrays']:
 ensure_directory(os.path.join(directory, d))

 writer = CPPWriter(directory)

 # Get the number of threads if specified in an openmp context
 nb_threads = prefs.devices.cpp_standalone.openmp_threads
 # If the number is negative, we need to throw an error
 if (nb_threads < 0):
 raise ValueError('The number of OpenMP threads can not be negative !')

 logger.diagnostic("Writing C++ standalone project to directory "+os.path.normpath(directory))

 self.check_openmp_compatible(nb_threads)

 arange_arrays = sorted([(var, start)
 for var, start in self.arange_arrays.iteritems()],
 key=lambda (var, start): var.name)

 self.write_static_arrays(directory)
 self.find_synapses()

 # Not sure what the best place is to call Network.after_run -- at the
 # moment the only important thing it does is to clear the objects stored
 # in magic_network. If this is not done, this might lead to problems
 # for repeated runs of standalone (e.g. in the test suite).
 for net in self.networks:
 net.after_run()

 # Check that all names are globally unique
 names = [obj.name for net in self.networks for obj in net.objects]
 non_unique_names = [name for name, count in Counter(names).iteritems()
 if count > 1]
 if len(non_unique_names):
 formatted_names = ', '.join("'%s'" % name
 for name in non_unique_names)
 raise ValueError('All objects need to have unique names in '
 'standalone mode, the following name(s) were used '
 'more than once: %s' % formatted_names)

 self.generate_objects_source(writer, arange_arrays, self.net_synapses, self.static_array_specs, self.networks)
 self.generate_main_source(writer)
 self.generate_codeobj_source(writer)
 self.generate_network_source(writer, compiler)
 self.generate_synapses_classes_source(writer)
 self.generate_run_source(writer)
 self.copy_source_files(writer, directory)

 writer.source_files.extend(additional_source_files)

 self.generate_makefile(writer, compiler,
 compiler_flags=' '.join(compiler_flags),
 linker_flags=' '.join(linker_flags),
 nb_threads=nb_threads)

 if compile:
 self.compile_source(directory, compiler, debug, clean)
 if run:
 self.run(directory, with_output, run_args)

[docs] def network_run(self, net, duration, report=None, report_period=10*second,
 namespace=None, profile=True, level=0, **kwds):
 if kwds:
 logger.warn(('Unsupported keyword argument(s) provided for run: '
 '%s') % ', '.join(kwds.keys()))
 net._clocks = {obj.clock for obj in net.objects}
 t_end = net.t+duration
 for clock in net._clocks:
 clock.set_interval(net.t, t_end)

 # Get the local namespace
 if namespace is None:
 namespace = get_local_namespace(level=level+2)

 net.before_run(namespace)

 self.clocks.update(net._clocks)
 net.t_ = float(t_end)

 # TODO: remove this horrible hack
 for clock in self.clocks:
 if clock.name=='clock':
 clock._name = '_clock'

 # Extract all the CodeObjects
 # Note that since we ran the Network object, these CodeObjects will be sorted into the right
 # running order, assuming that there is only one clock
 code_objects = []
 for obj in net.objects:
 if obj.active:
 for codeobj in obj._code_objects:
 code_objects.append((obj.clock, codeobj))

 # Code for a progress reporting function
 standard_code = '''
 void report_progress(const double elapsed, const double completed, const double start, const double duration)
 {
 if (completed == 0.0)
 {
 %STREAMNAME% << "Starting simulation at t=" << start << " s for duration " << duration << " s";
 } else
 {
 %STREAMNAME% << completed*duration << " s (" << (int)(completed*100.) << "%) simulated in " << elapsed << " s";
 if (completed < 1.0)
 {
 const int remaining = (int)((1-completed)/completed*elapsed+0.5);
 %STREAMNAME% << ", estimated " << remaining << " s remaining.";
 }
 }

 %STREAMNAME% << std::endl << std::flush;
 }
 '''
 if report is None:
 self.report_func = ''
 elif report == 'text' or report == 'stdout':
 self.report_func = standard_code.replace('%STREAMNAME%', 'std::cout')
 elif report == 'stderr':
 self.report_func = standard_code.replace('%STREAMNAME%', 'std::cerr')
 elif isinstance(report, basestring):
 self.report_func = '''
 void report_progress(const double elapsed, const double completed, const double start, const double duration)
 {
 %REPORT%
 }
 '''.replace('%REPORT%', report)
 else:
 raise TypeError(('report argument has to be either "text", '
 '"stdout", "stderr", or the code for a report '
 'function'))

 if report is not None:
 report_call = 'report_progress'
 else:
 report_call = 'NULL'

 # Generate the updaters
 run_lines = ['{net.name}.clear();'.format(net=net)]
 all_clocks = set()
 for clock, codeobj in code_objects:
 run_lines.append('{net.name}.add(&{clock.name}, _run_{codeobj.name});'.format(clock=clock, net=net,
 codeobj=codeobj))
 all_clocks.add(clock)

 # Under some rare circumstances (e.g. a NeuronGroup only defining a
 # subexpression that is used by other groups (via linking, or recorded
 # by a StateMonitor) *and* not calculating anything itself *and* using a
 # different clock than all other objects) a clock that is not used by
 # any code object should nevertheless advance during the run. We include
 # such clocks without a code function in the network.
 for clock in net._clocks:
 if clock not in all_clocks:
 run_lines.append('{net.name}.add(&{clock.name}, NULL);'.format(clock=clock, net=net))

 run_lines.append('{net.name}.run({duration!r}, {report_call}, {report_period!r});'.format(net=net,
 duration=float(duration),
 report_call=report_call,
 report_period=float(report_period)))
 self.main_queue.append(('run_network', (net, run_lines)))

 # Manually set the cache for the clocks, simulation scripts might
 # want to access the time (which has been set in code and is therefore
 # not accessible by the normal means until the code has been built and
 # run)
 for clock in net._clocks:
 self.array_cache[clock.variables['timestep']] = np.array([clock._i_end])
 self.array_cache[clock.variables['t']] = np.array([clock._i_end * clock.dt_])

 if self.build_on_run:
 if self.has_been_run:
 raise RuntimeError('The network has already been built and run '
 'before. Use set_device with '
 'build_on_run=False and an explicit '
 'device.build call to use multiple run '
 'statements with this device.')
 self.build(direct_call=False, **self.build_options)

[docs] def network_store(self, net, name='default'):
 raise NotImplementedError(('The store/restore mechanism is not '
 'supported in the C++ standalone'))

[docs] def network_restore(self, net, name='default'):
 raise NotImplementedError(('The store/restore mechanism is not '
 'supported in the C++ standalone'))

[docs] def network_get_profiling_info(self, net):
 if net._profiling_info is None:
 net._profiling_info = []
 fname = os.path.join(self.project_dir, 'results', 'profiling_info.txt')
 with open(fname) as f:
 for line in f:
 (key, val) = line.split()
 net._profiling_info.append((key, float(val)*second))
 return sorted(net._profiling_info, key=lambda item: item[1],
 reverse=True)

[docs] def run_function(self, name, include_in_parent=True):
 '''
 Context manager to divert code into a function

 Code that happens within the scope of this context manager will go into the named function.

 Parameters

 name : str
 The name of the function to divert code into.
 include_in_parent : bool
 Whether or not to include a call to the newly defined function in the parent context.
 '''
 return RunFunctionContext(name, include_in_parent)

[docs]class RunFunctionContext(object):
 def __init__(self, name, include_in_parent):
 self.name = name
 self.include_in_parent = include_in_parent
 def __enter__(self):
 cpp_standalone_device.main_queue.append(('start_run_func', (self.name, self.include_in_parent)))
 def __exit__(self, type, value, traceback):
 cpp_standalone_device.main_queue.append(('end_run_func', (self.name, self.include_in_parent)))

cpp_standalone_device = CPPStandaloneDevice()
all_devices['cpp_standalone'] = cpp_standalone_device

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/brian2/stateupdaters/exponential_euler.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.stateupdaters.exponential_euler

import sympy as sp

from brian2.parsing.sympytools import sympy_to_str, str_to_sympy

from .base import StateUpdateMethod, UnsupportedEquationsException

__all__ = ['exponential_euler']

[docs]def get_conditionally_linear_system(eqs, variables=None):
 '''
 Convert equations into a linear system using sympy.

 Parameters

 eqs : `Equations`
 The model equations.

 Returns

 coefficients : dict of (sympy expression, sympy expression) tuples
 For every variable x, a tuple (M, B) containing the coefficients M and
 B (as sympy expressions) for M * x + B

 Raises

 ValueError
 If one of the equations cannot be converted into a M * x + B form.

 Examples

 >>> from brian2 import Equations
 >>> eqs = Equations("""
 ... dv/dt = (-v + w**2) / tau : 1
 ... dw/dt = -w / tau : 1
 ... """)
 >>> system = get_conditionally_linear_system(eqs)
 >>> print(system['v'])
 (-1/tau, w**2.0/tau)
 >>> print(system['w'])
 (-1/tau, 0)

 '''
 diff_eqs = eqs.get_substituted_expressions(variables)

 coefficients = {}

 for name, expr in diff_eqs:
 var = sp.Symbol(name, real=True)

 # Factor out the variable
 s_expr = sp.collect(str_to_sympy(expr.code, variables).expand(),
 var, evaluate=False)

 if len(s_expr) > 2 or var not in s_expr:
 raise ValueError(('The expression "%s", defining the variable %s, '
 'could not be separated into linear components') %
 (expr, name))
 coefficients[name] = (s_expr[var], s_expr.get(1, 0))

 return coefficients

[docs]class ExponentialEulerStateUpdater(StateUpdateMethod):
 '''
 A state updater for conditionally linear equations, i.e. equations where
 each variable only depends linearly on itself (but possibly non-linearly
 on other variables). Typical Hodgkin-Huxley equations fall into this
 category, it is therefore the default integration method used in the
 GENESIS simulator, for example.
 '''

[docs] def __call__(self, equations, variables=None):
 if equations.is_stochastic:
 raise UnsupportedEquationsException('Cannot solve stochastic '
 'equations with this state '
 'updater.')

 # Try whether the equations are conditionally linear
 try:
 system = get_conditionally_linear_system(equations, variables)
 except ValueError:
 raise UnsupportedEquationsException('Can only solve conditionally '
 'linear systems with this '
 'state updater.')

 code = []
 for var, (A, B) in system.iteritems():
 s_var = sp.Symbol(var)
 s_dt = sp.Symbol('dt')
 if A == 0:
 update_expression = s_var + s_dt * B
 elif B != 0:
 BA = B / A
 # Avoid calculating B/A twice
 BA_name = '_BA_' + var
 s_BA = sp.Symbol(BA_name)
 code += [BA_name + ' = ' + sympy_to_str(BA)]
 update_expression = (s_var + s_BA)*sp.exp(A*s_dt) - s_BA
 else:
 update_expression = s_var*sp.exp(A*s_dt)

 # The actual update step
 update = '_{var} = {expr}'
 code += [update.format(var=var, expr=sympy_to_str(update_expression))]

 # Replace all the variables with their updated value
 for var in system:
 code += ['{var} = _{var}'.format(var=var)]

 return '\n'.join(code)

 # Copy doc from parent class
 __call__.__doc__ = StateUpdateMethod.__call__.__doc__

exponential_euler = ExponentialEulerStateUpdater()

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/brian2/stateupdaters/explicit.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.stateupdaters.explicit

'''
Numerical integration functions.
'''

import string
import operator

import sympy
from sympy.core.sympify import SympifyError
from pyparsing import (Literal, Group, Word, ZeroOrMore, Suppress, restOfLine,
 ParseException)

from brian2.parsing.sympytools import str_to_sympy, sympy_to_str
from .base import StateUpdateMethod, UnsupportedEquationsException

__all__ = ['milstein', 'heun', 'euler', 'rk2', 'rk4', 'ExplicitStateUpdater']

#===
Class for simple definition of explicit state updaters
#===

def _symbol(name, positive=None):
 ''' Shorthand for ``sympy.Symbol(name, real=True)``. '''
 return sympy.Symbol(name, real=True, positive=positive)

#: reserved standard symbols
SYMBOLS = {'__x' : _symbol('__x'),
 '__t' : _symbol('__t', positive=True),
 'dt': _symbol('dt', positive=True),
 't': _symbol('t', positive=True),
 '__f' : sympy.Function('__f'),
 '__g' : sympy.Function('__g'),
 '__dW': _symbol('__dW')}

[docs]def split_expression(expr):
 '''
 Split an expression into a part containing the function ``f`` and another
 one containing the function ``g``. Returns a tuple of the two expressions
 (as sympy expressions).

 Parameters

 expr : str
 An expression containing references to functions ``f`` and ``g``.

 Returns

 (non_stochastic, stochastic) : tuple of sympy expressions
 A pair of expressions representing the non-stochastic (containing
 function-independent terms and terms involving ``f``) and the
 stochastic part of the expression (terms involving ``g`` and/or ``dW``).

 Examples

 >>> split_expression('dt * __f(__x, __t)')
 (dt*__f(__x, __t), None)
 >>> split_expression('dt * __f(__x, __t) + __dW * __g(__x, __t)')
 (dt*__f(__x, __t), __dW*__g(__x, __t))
 >>> split_expression('1/(2*dt**.5)*(__g_support - __g(__x, __t))*(__dW**2)')
 (0, __dW**2*__g_support*dt**(-0.5)/2 - __dW**2*dt**(-0.5)*__g(__x, __t)/2)
 '''

 f = SYMBOLS['__f']
 g = SYMBOLS['__g']
 dW = SYMBOLS['__dW']
 # Arguments of the f and g functions
 x_f = sympy.Wild('x_f', exclude=[f, g], real=True)
 t_f = sympy.Wild('t_f', exclude=[f, g], real=True)
 x_g = sympy.Wild('x_g', exclude=[f, g], real=True)
 t_g = sympy.Wild('t_g', exclude=[f, g], real=True)

 # Reorder the expression so that f(x,t) and g(x,t) are factored out
 sympy_expr = sympy.sympify(expr, locals=SYMBOLS).expand()
 sympy_expr = sympy.collect(sympy_expr, f(x_f, t_f))
 sympy_expr = sympy.collect(sympy_expr, g(x_g, t_g))

 # Constant part, contains neither f, g nor dW
 independent = sympy.Wild('independent', exclude=[f,g,dW], real=True)
 # The exponent of the random number
 dW_exponent = sympy.Wild('dW_exponent', exclude=[f,g,dW,0], real=True)
 # The factor for the random number, not containing the g function
 independent_dW = sympy.Wild('independent_dW', exclude=[f,g,dW], real=True)
 # The factor for the f function
 f_factor = sympy.Wild('f_factor', exclude=[f, g], real=True)
 # The factor for the g function
 g_factor = sympy.Wild('g_factor', exclude=[f, g], real=True)

 match_expr = (independent + f_factor * f(x_f, t_f) +
 independent_dW * dW ** dW_exponent + g_factor * g(x_g, t_g))
 matches = sympy_expr.match(match_expr)

 if matches is None:
 raise ValueError(('Expression "%s" in the state updater description '
 'could not be parsed.' % sympy_expr))

 # Non-stochastic part
 if x_f in matches:
 # Includes the f function
 non_stochastic = matches[independent] + (matches[f_factor]*
 f(matches[x_f], matches[t_f]))
 else:
 # Does not include f, might be 0
 non_stochastic = matches[independent]

 # Stochastic part
 if independent_dW in matches and matches[independent_dW] != 0:
 # includes a random variable term with a non-zero factor
 stochastic = (matches[g_factor]*g(matches[x_g], matches[t_g]) +
 matches[independent_dW] * dW ** matches[dW_exponent])
 elif x_g in matches:
 # Does not include a random variable but the g function
 stochastic = matches[g_factor]*g(matches[x_g], matches[t_g])
 else:
 # Contains neither random variable nor g function --> empty
 stochastic = None

 return (non_stochastic, stochastic)

[docs]class ExplicitStateUpdater(StateUpdateMethod):
 '''
 An object that can be used for defining state updaters via a simple
 description (see below). Resulting instances can be passed to the
 ``method`` argument of the `NeuronGroup` constructor. As other state
 updater functions the `ExplicitStateUpdater` objects are callable,
 returning abstract code when called with an `Equations` object.

 A description of an explicit state updater consists of a (multi-line)
 string, containing assignments to variables and a final "x_new = ...",
 stating the integration result for a single timestep. The assignments
 can be used to define an arbitrary number of intermediate results and
 can refer to ``f(x, t)`` (the function being integrated, as a function of
 ``x``, the previous value of the state variable and ``t``, the time) and
 ``dt``, the size of the timestep.

 For example, to define a Runge-Kutta 4 integrator (already provided as
 `rk4`), use::

 k1 = dt*f(x,t)
 k2 = dt*f(x+k1/2,t+dt/2)
 k3 = dt*f(x+k2/2,t+dt/2)
 k4 = dt*f(x+k3,t+dt)
 x_new = x+(k1+2*k2+2*k3+k4)/6

 Note that for stochastic equations, the function `f` only corresponds to
 the non-stochastic part of the equation. The additional function `g`
 corresponds to the stochastic part that has to be multiplied with the
 stochastic variable xi (a standard normal random variable -- if the
 algorithm needs a random variable with a different variance/mean you have
 to multiply/add it accordingly). Equations with more than one
 stochastic variable do not have to be treated differently, the part
 referring to ``g`` is repeated for all stochastic variables automatically.

 Stochastic integrators can also make reference to ``dW`` (a normal
 distributed random number with variance ``dt``) and ``g(x, t)``, the
 stochastic part of an equation. A stochastic state updater could therefore
 use a description like::

 x_new = x + dt*f(x,t) + g(x, t) * dW

 For simplicity, the same syntax is used for state updaters that only support
 additive noise, even though ``g(x, t)`` does not depend on ``x`` or ``t``
 in that case.

 There a some restrictions on the complexity of the expressions (but most
 can be worked around by using intermediate results as in the above Runge-
 Kutta example): Every statement can only contain the functions ``f`` and
 ``g`` once; The expressions have to be linear in the functions, e.g. you
 can use ``dt*f(x, t)`` but not ``f(x, t)**2``.

 Parameters

 description : str
 A state updater description (see above).
 stochastic : {None, 'additive', 'multiplicative'}
 What kind of stochastic equations this state updater supports: ``None``
 means no support of stochastic equations, ``'additive'`` means only
 equations with additive noise and ``'multiplicative'`` means
 supporting arbitrary stochastic equations.

 Raises

 ValueError
 If the parsing of the description failed.

 Notes

 Since clocks are updated *after* the state update, the time ``t`` used
 in the state update step is still at its previous value. Enumerating the
 states and discrete times, ``x_new = x + dt*f(x, t)`` is therefore
 understood as :math:`x_{i+1} = x_i + dt f(x_i, t_i)`, yielding the correct
 forward Euler integration. If the integrator has to refer to the time at
 the end of the timestep, simply use ``t + dt`` instead of ``t``.

 See also

 euler, rk2, rk4, milstein
 '''

 #===
 # Parsing definitions
 #===
 #: Legal names for temporary variables
 TEMP_VAR = ~Literal('x_new') + Word(string.ascii_letters + '_',
 string.ascii_letters +
 string.digits + '_').setResultsName('identifier')

 #: A single expression
 EXPRESSION = restOfLine.setResultsName('expression')

 #: An assignment statement
 STATEMENT = Group(TEMP_VAR + Suppress('=') +
 EXPRESSION).setResultsName('statement')

 #: The last line of a state updater description
 OUTPUT = Group(Suppress(Literal('x_new')) + Suppress('=') + EXPRESSION).setResultsName('output')

 #: A complete state updater description
 DESCRIPTION = ZeroOrMore(STATEMENT) + OUTPUT

 def __init__(self, description, stochastic=None, custom_check=None):
 self._description = description
 self.stochastic = stochastic
 self.custom_check = custom_check

 try:
 parsed = ExplicitStateUpdater.DESCRIPTION.parseString(description,
 parseAll=True)
 except ParseException as p_exc:
 ex = SyntaxError('Parsing failed: ' + str(p_exc.msg))
 ex.text = str(p_exc.line)
 ex.offset = p_exc.column
 ex.lineno = p_exc.lineno
 raise ex

 self.statements = []
 self.symbols = SYMBOLS.copy()
 for element in parsed:
 expression = str_to_sympy(element.expression)
 # Replace all symbols used in state updater expressions by unique
 # names that cannot clash with user-defined variables or functions
 expression = expression.subs(sympy.Function('f'),
 self.symbols['__f'])
 expression = expression.subs(sympy.Function('g'),
 self.symbols['__g'])
 symbols = list(expression.atoms(sympy.Symbol))
 unique_symbols = []
 for symbol in symbols:
 if symbol.name == 'dt':
 unique_symbols.append(symbol)
 else:
 unique_symbols.append(_symbol('__' + symbol.name))
 for symbol, unique_symbol in zip(symbols, unique_symbols):
 expression = expression.subs(symbol, unique_symbol)

 self.symbols.update(dict(((symbol.name, symbol)
 for symbol in unique_symbols)))
 if element.getName() == 'statement':
 self.statements.append(('__'+element.identifier, expression))
 elif element.getName() == 'output':
 self.output = expression
 else:
 raise AssertionError('Unknown element name: %s' %
 element.getName())

 def __repr__(self):
 # recreate a description string
 description = '\n'.join(['%s = %s' % (var, expr)
 for var, expr in self.statements])
 if len(description):
 description += '\n'
 description += 'x_new = ' + str(self.output)
 r = "{classname}('''{description}''', stochastic={stochastic})"
 return r.format(classname=self.__class__.__name__,
 description=description,
 stochastic=repr(self.stochastic))

 def __str__(self):
 s = '%s\n' % self.__class__.__name__

 if len(self.statements) > 0:
 s += 'Intermediate statements:\n'
 s += '\n'.join([(var + ' = ' + sympy_to_str(expr))
 for var, expr in self.statements])
 s += '\n'

 s += 'Output:\n'
 s += sympy_to_str(self.output)
 return s

 def _latex(self, *args):
 from sympy import latex, Symbol
 s = [r'\begin{equation}']
 for var, expr in self.statements:
 expr = expr.subs(Symbol('x'), Symbol('x_t'))
 s.append(latex(Symbol(var)) + ' = ' + latex(expr) + r'\\')
 expr = self.output.subs(Symbol('x'), 'x_t')
 s.append(r'x_{t+1} = ' + latex(expr))
 s.append(r'\end{equation}')
 return '\n'.join(s)

 def _repr_latex_(self):
 return self._latex()

[docs] def replace_func(self, x, t, expr, temp_vars, eq_symbols,
 stochastic_variable=None):
 '''
 Used to replace a single occurance of ``f(x, t)`` or ``g(x, t)``:
 `expr` is the non-stochastic (in the case of ``f``) or stochastic
 part (``g``) of the expression defining the right-hand-side of the
 differential equation describing `var`. It replaces the variable
 `var` with the value given as `x` and `t` by the value given for
 `t`. Intermediate variables will be replaced with the appropriate
 replacements as well.

 For example, in the `rk2` integrator, the second step involves the
 calculation of ``f(k/2 + x, dt/2 + t)``. If `var` is ``v`` and
 `expr` is ``-v / tau``, this will result in ``-(_k_v/2 + v)/tau``.

 Note that this deals with only one state variable `var`, given as
 an argument to the surrounding `_generate_RHS` function.
 '''

 try:
 s_expr = str_to_sympy(str(expr))
 except SympifyError as ex:
 raise ValueError('Error parsing the expression "%s": %s' %
 (expr, str(ex)))

 for var in eq_symbols:
 # Generate specific temporary variables for the state variable,
 # e.g. '_k_v' for the state variable 'v' and the temporary
 # variable 'k'.
 if stochastic_variable is None:
 temp_var_replacements = dict(((self.symbols[temp_var],
 _symbol(temp_var+'_'+var))
 for temp_var in temp_vars))
 else:
 temp_var_replacements = dict(((self.symbols[temp_var],
 _symbol(temp_var+'_'+var+'_'+stochastic_variable))
 for temp_var in temp_vars))
 # In the expression given as 'x', replace 'x' by the variable
 # 'var' and all the temporary variables by their
 # variable-specific counterparts.
 x_replacement = x.subs(self.symbols['__x'], eq_symbols[var])
 x_replacement = x_replacement.subs(temp_var_replacements)

 # Replace the variable `var` in the expression by the new `x`
 # expression
 s_expr = s_expr.subs(eq_symbols[var], x_replacement)

 # If the expression given for t in the state updater description
 # is not just "t" (or rather "__t"), then replace t in the
 # equations by it, and replace "__t" by "t" afterwards.
 if t != self.symbols['__t']:
 s_expr = s_expr.subs(SYMBOLS['t'], t)
 s_expr = s_expr.replace(self.symbols['__t'], SYMBOLS['t'])

 return s_expr

 def _non_stochastic_part(self, eq_symbols, non_stochastic,
 non_stochastic_expr, stochastic_variable,
 temp_vars, var):
 non_stochastic_results = []
 if stochastic_variable is None or len(stochastic_variable) == 0:
 # Replace the f(x, t) part
 replace_f = lambda x, t: self.replace_func(x, t, non_stochastic,
 temp_vars, eq_symbols)
 non_stochastic_result = non_stochastic_expr.replace(
 self.symbols['__f'],
 replace_f)
 # Replace x by the respective variable
 non_stochastic_result = non_stochastic_result.subs(
 self.symbols['__x'],
 eq_symbols[var])
 # Replace intermediate variables
 temp_var_replacements = dict((self.symbols[temp_var],
 _symbol(temp_var + '_' + var))
 for temp_var in temp_vars)
 non_stochastic_result = non_stochastic_result.subs(
 temp_var_replacements)
 non_stochastic_results.append(non_stochastic_result)
 elif isinstance(stochastic_variable, basestring):
 # Replace the f(x, t) part
 replace_f = lambda x, t: self.replace_func(x, t, non_stochastic,
 temp_vars, eq_symbols,
 stochastic_variable)
 non_stochastic_result = non_stochastic_expr.replace(
 self.symbols['__f'],
 replace_f)
 # Replace x by the respective variable
 non_stochastic_result = non_stochastic_result.subs(
 self.symbols['__x'],
 eq_symbols[var])
 # Replace intermediate variables
 temp_var_replacements = dict((self.symbols[temp_var],
 _symbol(
 temp_var + '_' + var + '_' + stochastic_variable))
 for temp_var in temp_vars)

 non_stochastic_result = non_stochastic_result.subs(
 temp_var_replacements)
 non_stochastic_results.append(non_stochastic_result)
 else:
 # Replace the f(x, t) part
 replace_f = lambda x, t: self.replace_func(x, t, non_stochastic,
 temp_vars, eq_symbols)
 non_stochastic_result = non_stochastic_expr.replace(
 self.symbols['__f'],
 replace_f)
 # Replace x by the respective variable
 non_stochastic_result = non_stochastic_result.subs(
 self.symbols['__x'],
 eq_symbols[var])
 # Replace intermediate variables
 temp_var_replacements = dict((self.symbols[temp_var],
 reduce(operator.add, [_symbol(
 temp_var + '_' + var + '_' + xi)
 for xi in
 stochastic_variable]))
 for temp_var in temp_vars)

 non_stochastic_result = non_stochastic_result.subs(
 temp_var_replacements)
 non_stochastic_results.append(non_stochastic_result)

 return non_stochastic_results

 def _stochastic_part(self, eq_symbols, stochastic, stochastic_expr,
 stochastic_variable, temp_vars, var):
 stochastic_results = []
 if isinstance(stochastic_variable, basestring):
 # Replace the g(x, t) part
 replace_f = lambda x, t: self.replace_func(x, t,
 stochastic.get(stochastic_variable, 0),
 temp_vars, eq_symbols,
 stochastic_variable)
 stochastic_result = stochastic_expr.replace(self.symbols['__g'],
 replace_f)
 # Replace x by the respective variable
 stochastic_result = stochastic_result.subs(self.symbols['__x'],
 eq_symbols[var])
 # Replace dW by the respective variable
 stochastic_result = stochastic_result.subs(self.symbols['__dW'],
 stochastic_variable)
 # Replace intermediate variables
 temp_var_replacements = dict((self.symbols[temp_var],
 _symbol(
 temp_var + '_' + var + '_' + stochastic_variable))
 for temp_var in temp_vars)

 stochastic_result = stochastic_result.subs(temp_var_replacements)
 stochastic_results.append(stochastic_result)
 else:
 for xi in stochastic_variable:
 # Replace the g(x, t) part
 replace_f = lambda x, t: self.replace_func(x, t,
 stochastic.get(xi, 0),
 temp_vars,
 eq_symbols, xi)
 stochastic_result = stochastic_expr.replace(self.symbols['__g'],
 replace_f)
 # Replace x by the respective variable
 stochastic_result = stochastic_result.subs(self.symbols['__x'],
 eq_symbols[var])

 # Replace dW by the respective variable
 stochastic_result = stochastic_result.subs(self.symbols['__dW'],
 xi)

 # Replace intermediate variables
 temp_var_replacements = dict((self.symbols[temp_var],
 _symbol(temp_var + '_' + var + '_' + xi))
 for temp_var in temp_vars)

 stochastic_result = stochastic_result.subs(
 temp_var_replacements)
 stochastic_results.append(stochastic_result)
 return stochastic_results

 def _generate_RHS(self, eqs, var, eq_symbols, temp_vars, expr,
 non_stochastic_expr, stochastic_expr,
 stochastic_variable=()):
 '''
 Helper function used in `__call__`. Generates the right hand side of
 an abstract code statement by appropriately replacing f, g and t.
 For example, given a differential equation ``dv/dt = -(v + I) / tau``
 (i.e. `var` is ``v` and `expr` is ``(-v + I) / tau``) together with
 the `rk2` step ``return x + dt*f(x + k/2, t + dt/2)``
 (i.e. `non_stochastic_expr` is
 ``x + dt*f(x + k/2, t + dt/2)`` and `stochastic_expr` is ``None``),
 produces ``v + dt*(-v - _k_v/2 + I + _k_I/2)/tau``.

 '''

 # Note: in the following we are silently ignoring the case that a
 # state updater does not care about either the non-stochastic or the
 # stochastic part of an equation. We do trust state updaters to
 # correctly specify their own abilities (i.e. they do not claim to
 # support stochastic equations but actually just ignore the stochastic
 # part). We can't really check the issue here, as we are only dealing
 # with one line of the state updater description. It is perfectly valid
 # to write the euler update as:
 # non_stochastic = dt * f(x, t)
 # stochastic = dt**.5 * g(x, t) * xi
 # return x + non_stochastic + stochastic
 #
 # In the above case, we'll deal with lines which do not define either
 # the stochastic or the non-stochastic part.

 non_stochastic, stochastic = expr.split_stochastic()

 if non_stochastic_expr is not None:
 # We do have a non-stochastic part in the state updater description
 non_stochastic_results = self._non_stochastic_part(eq_symbols,
 non_stochastic,
 non_stochastic_expr,
 stochastic_variable,
 temp_vars, var)
 else:
 non_stochastic_results = []

 if not (stochastic is None or stochastic_expr is None):
 # We do have a stochastic part in the state
 # updater description
 stochastic_results = self._stochastic_part(eq_symbols,
 stochastic,
 stochastic_expr,
 stochastic_variable,
 temp_vars, var)
 else:
 stochastic_results = []

 RHS = sympy.Number(0)
 # All the parts (one non-stochastic and potentially more than one
 # stochastic part) are combined with addition
 for non_stochastic_result in non_stochastic_results:
 RHS += non_stochastic_result
 for stochastic_result in stochastic_results:
 RHS += stochastic_result

 return sympy_to_str(RHS)

[docs] def __call__(self, eqs, variables=None):
 '''
 Apply a state updater description to model equations.

 Parameters

 eqs : `Equations`
 The equations describing the model

 variables: dict-like, optional
 The `Variable` objects for the model. Ignored by the explicit
 state updater.

 Examples

 >>> from brian2 import *
 >>> eqs = Equations('dv/dt = -v / tau : volt')
 >>> print(euler(eqs))
 _v = -dt*v/tau + v
 v = _v
 >>> print(rk4(eqs))
 __k_1_v = -dt*v/tau
 __k_2_v = -dt*(0.5*__k_1_v + v)/tau
 __k_3_v = -dt*(0.5*__k_2_v + v)/tau
 __k_4_v = -dt*(__k_3_v + v)/tau
 _v = 0.166666666666667*__k_1_v + 0.333333333333333*__k_2_v + 0.333333333333333*__k_3_v + 0.166666666666667*__k_4_v + v
 v = _v
 '''
 # Non-stochastic numerical integrators should work for all equations,
 # except for stochastic equations
 if eqs.is_stochastic:
 if self.stochastic is None:
 raise UnsupportedEquationsException('Cannot integrate '
 'stochastic equations with '
 'this state updater.')
 if (self.stochastic != 'multiplicative' and
 eqs.stochastic_type == 'multiplicative'):
 raise UnsupportedEquationsException('Cannot integrate '
 'equations with '
 'multiplicative noise with '
 'this state updater.')

 if self.custom_check:
 self.custom_check(eqs, variables)
 # The final list of statements
 statements = []

 stochastic_variables = eqs.stochastic_variables

 # The variables for the intermediate results in the state updater
 # description, e.g. the variable k in rk2
 intermediate_vars = [var for var, expr in self.statements]

 # A dictionary mapping all the variables in the equations to their
 # sympy representations
 eq_variables = dict(((var, _symbol(var)) for var in eqs.eq_names))

 # Generate the random numbers for the stochastic variables
 for stochastic_variable in stochastic_variables:
 statements.append(stochastic_variable + ' = ' + 'dt**.5 * randn()')

 substituted_expressions = eqs.get_substituted_expressions(variables)

 # Process the intermediate statements in the stateupdater description
 for intermediate_var, intermediate_expr in self.statements:

 # Split the expression into a non-stochastic and a stochastic part
 non_stochastic_expr, stochastic_expr = split_expression(intermediate_expr)

 # Execute the statement by appropriately replacing the functions f
 # and g and the variable x for every equation in the model.
 # We use the model equations where the subexpressions have
 # already been substituted into the model equations.
 for var, expr in substituted_expressions:
 for xi in stochastic_variables:
 RHS = self._generate_RHS(eqs, var, eq_variables, intermediate_vars,
 expr, non_stochastic_expr,
 stochastic_expr, xi)
 statements.append(intermediate_var+'_'+var+'_'+xi+' = '+RHS)
 if not stochastic_variables: # no stochastic variables
 RHS = self._generate_RHS(eqs, var, eq_variables, intermediate_vars,
 expr, non_stochastic_expr,
 stochastic_expr)
 statements.append(intermediate_var+'_'+var+' = '+RHS)

 # Process the "return" line of the stateupdater description
 non_stochastic_expr, stochastic_expr = split_expression(self.output)

 # Assign a value to all the model variables described by differential
 # equations
 for var, expr in substituted_expressions:
 RHS = self._generate_RHS(eqs, var, eq_variables, intermediate_vars,
 expr, non_stochastic_expr, stochastic_expr,
 stochastic_variables)
 statements.append('_' + var + ' = ' + RHS)

 # Assign everything to the final variables
 for var, expr in substituted_expressions:
 statements.append(var + ' = ' + '_' + var)

 return '\n'.join(statements)

#===
Excplicit state updaters
#===

these objects can be used like functions because they are callable

#: Forward Euler state updater
euler = ExplicitStateUpdater('x_new = x + dt * f(x,t) + g(x,t) * dW',
 stochastic='additive')

#: Second order Runge-Kutta method (midpoint method)
rk2 = ExplicitStateUpdater('''
 k = dt * f(x,t)
 x_new = x + dt*f(x + k/2, t + dt/2)''')

#: Classical Runge-Kutta method (RK4)
rk4 = ExplicitStateUpdater('''
 k_1 = dt*f(x,t)
 k_2 = dt*f(x+k_1/2,t+dt/2)
 k_3 = dt*f(x+k_2/2,t+dt/2)
 k_4 = dt*f(x+k_3,t+dt)
 x_new = x+(k_1+2*k_2+2*k_3+k_4)/6
 ''')

[docs]def diagonal_noise(equations, variables):
 '''
 Checks whether we deal with diagonal noise, i.e. one independent noise
 variable per variable.

 Raises

 UnsupportedEquationsException
 If the noise is not diagonal.
 '''
 if not equations.is_stochastic:
 return

 stochastic_vars = []
 for _, expr in equations.get_substituted_expressions(variables):
 expr_stochastic_vars = expr.stochastic_variables
 if len(expr_stochastic_vars) > 1:
 # More than one stochastic variable --> no diagonal noise
 raise UnsupportedEquationsException('Cannot integrate stochastic '
 'equations with non-diagonal '
 'noise with this state '
 'updater.')
 stochastic_vars.extend(expr_stochastic_vars)

 # If there's no stochastic variable is used in more than one equation, we
 # have diagonal noise
 if len(stochastic_vars) != len(set(stochastic_vars)):
 raise UnsupportedEquationsException('Cannot integrate stochastic '
 'equations with non-diagonal '
 'noise with this state '
 'updater.')

#: Derivative-free Milstein method
milstein = ExplicitStateUpdater('''
 x_support = x + dt*f(x, t) + dt**.5 * g(x, t)
 g_support = g(x_support, t)
 k = 1/(2*dt**.5)*(g_support - g(x, t))*(dW**2)
 x_new = x + dt*f(x,t) + g(x, t) * dW + k
 ''', stochastic='multiplicative', custom_check=diagonal_noise)

#: Stochastic Heun method (for multiplicative Stratonovic SDEs with non-diagonal
#: diffusion matrix)
heun = ExplicitStateUpdater('''
 x_support = x + g(x,t) * dW
 g_support = g(x_support,t+dt)
 x_new = x + dt*f(x,t) + .5*dW*(g(x,t)+g_support)
 ''', stochastic='multiplicative')

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/brian2/units/fundamentalunits.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.units.fundamentalunits

"""
Defines physical units and quantities

===================== ======== ======
Quantity Unit Symbol
--------------------- -------- ------
Length metre m
Mass kilogram kg
Time second s
Electric current ampere A
Temperature kelvin K
Quantity of substance mole mol
Luminosity candle cd
===================== ======== ======
"""
from __future__ import division

import numbers
import collections
from warnings import warn
import operator
import itertools

import numpy as np
from sympy import latex

__all__ = [
 'DimensionMismatchError', 'get_or_create_dimension',
 'get_dimensions', 'is_dimensionless', 'have_same_dimensions',
 'in_unit', 'in_best_unit', 'Quantity', 'Unit', 'register_new_unit',
 'check_units', 'is_scalar_type', 'get_unit', 'get_unit_fast',
 'unit_checking'
]

unit_checking = True

def _flatten(iterable):
 '''
 Flatten a given list `iterable`.
 '''
 for e in iterable:
 if isinstance(e, list):
 for f in _flatten(e):
 yield f
 else:
 yield e

def _short_str(arr):
 '''
 Return a short string representation of an array, suitable for use in
 error messages.
 '''
 arr = np.asanyarray(arr)
 old_printoptions = np.get_printoptions()
 np.set_printoptions(edgeitems=2, threshold=5)
 arr_string = str(arr)
 np.set_printoptions(**old_printoptions)
 return arr_string

#===
Numpy ufuncs
#===

Note: A list of numpy ufuncs can be found here:
http://docs.scipy.org/doc/numpy/reference/ufuncs.html#available-ufuncs

#: ufuncs that work on all dimensions and preserve the dimensions, e.g. abs
UFUNCS_PRESERVE_DIMENSIONS = ['absolute', 'rint', 'negative', 'conj',
 'conjugate', 'floor', 'ceil', 'trunc']

#: ufuncs that work on all dimensions but change the dimensions, e.g. square
UFUNCS_CHANGE_DIMENSIONS = ['multiply', 'divide', 'true_divide',
 'floor_divide', 'sqrt', 'square', 'reciprocal',
 'dot']

#: ufuncs that work with matching dimensions, e.g. add
UFUNCS_MATCHING_DIMENSIONS = ['add', 'subtract', 'maximum', 'minimum',
 'remainder', 'mod', 'fmod']

#: ufuncs that compare values, i.e. work only with matching dimensions but do
#: not result in a value with dimensions, e.g. equals
UFUNCS_COMPARISONS = ['less', 'less_equal', 'greater', 'greater_equal',
 'equal', 'not_equal']

#: Logical operations that work on all quantities and return boolean arrays
UFUNCS_LOGICAL = ['logical_and', 'logical_or', 'logical_xor', 'logical_not',
 'isreal', 'iscomplex', 'isfinite', 'isinf', 'isnan']

#: ufuncs that only work on dimensionless quantities
UFUNCS_DIMENSIONLESS = ['sin', 'sinh', 'arcsin', 'arcsinh', 'cos', 'cosh',
 'arccos', 'arccosh', 'tan', 'tanh', 'arctan',
 'arctanh', 'log', 'log2', 'log10', 'log1p',
 'exp', 'exp2', 'expm1']

#: ufuncs that only work on two dimensionless quantities
UFUNCS_DIMENSIONLESS_TWOARGS = ['logaddexp', 'logaddexp2', 'arctan2',
 'hypot']

#: ufuncs that only work on integers and therefore never on quantities
UFUNCS_INTEGERS = ['bitwise_and', 'bitwise_or', 'bitwise_xor', 'invert',
 'left_shift', 'right_shift']

#==
Utility functions
#==

[docs]def fail_for_dimension_mismatch(obj1, obj2=None, error_message=None,
 **error_quantities):
 '''
 Compare the dimensions of two objects.

 Parameters

 obj1, obj2 : {array-like, `Quantity`}
 The object to compare. If `obj2` is ``None``, assume it to be
 dimensionless
 error_message : str, optional
 An error message that is used in the DimensionMismatchError
 error_quantities : dict mapping str to `Quantity`, optional
 Quantities in this dictionary will be converted using the `_short_str`
 helper method and inserted into the ``error_message`` (which should
 have placeholders with the corresponding names). The reason for doing
 this in a somewhat complicated way instead of directly including all the
 details in ``error_messsage`` is that converting large quantity arrays
 to strings can be rather costly and we don't want to do it if no error
 occured.

 Returns

 dim1, dim2 : `Dimension`, `Dimension`
 The dimensions of the two arguments (so that later code does not need
 to get the dimensions again).

 Raises

 DimensionMismatchError
 If the dimensions of `obj1` and `obj2` do not match (or, if `obj2` is
 ``None``, in case `obj1` is not dimensionsless).

 Notes

 Implements special checking for ``0``, treating it as having "any
 dimensions".
 '''
 if not unit_checking:
 return None, None

 dim1 = get_dimensions(obj1)
 if obj2 is None:
 dim2 = DIMENSIONLESS
 else:
 dim2 = get_dimensions(obj2)

 if dim1 is not dim2:
 # Special treatment for "0":
 # if it is not a Quantity, it has "any dimension".
 # This allows expressions like 3*mV + 0 to pass (useful in cases where
 # zero is treated as the neutral element, e.g. in the Python sum
 # builtin) or comparisons like 3 * mV == 0 to return False instead of
 # failing # with a DimensionMismatchError. Note that 3*mV == 0*second
 # is not allowed, though.
 if ((dim1 is DIMENSIONLESS and np.all(obj1 == 0)) or
 (dim2 is DIMENSIONLESS and np.all(obj2 == 0))):
 return dim1, dim2

 # We do another check here, this should allow Brian1 units to pass as
 # having the same dimensions as a Brian2 unit
 if dim1 == dim2:
 return dim1, dim2

 if error_message is None:
 error_message = 'Dimension mismatch'
 else:
 error_quantities = {name: _short_str(q)
 for name, q in error_quantities.iteritems()}
 error_message = error_message.format(**error_quantities)
 # If we are comparing an object to a specific unit, we don't want to
 # restate this unit (it is probably mentioned in the text already)
 if obj2 is None or isinstance(obj2, Unit):
 raise DimensionMismatchError(error_message, dim1)
 else:
 raise DimensionMismatchError(error_message, dim1, dim2)
 else:
 return dim1, dim2

[docs]def wrap_function_dimensionless(func):
 '''
 Returns a new function that wraps the given function `func` so that it
 raises a DimensionMismatchError if the function is called on a quantity
 with dimensions (excluding dimensionless quantitities). Quantities are
 transformed to unitless numpy arrays before calling `func`.

 These checks/transformations apply only to the very first argument, all
 other arguments are ignored/untouched.
 '''
 def f(x, *args, **kwds): # pylint: disable=C0111
 fail_for_dimension_mismatch(x,
 error_message=('%s expects a dimensionless '
 'argument but got '
 '{value}' % func.__name__),
 value=x)
 return func(np.array(x, copy=False), *args, **kwds)
 f._arg_units = [1]
 f._return_unit = 1
 f.__name__ = func.__name__
 f.__doc__ = func.__doc__
 return f

[docs]def wrap_function_keep_dimensions(func):
 '''
 Returns a new function that wraps the given function `func` so that it
 keeps the dimensions of its input. Quantities are transformed to
 unitless numpy arrays before calling `func`, the output is a quantity
 with the original dimensions re-attached.

 These transformations apply only to the very first argument, all
 other arguments are ignored/untouched, allowing to work functions like
 ``sum`` to work as expected with additional ``axis`` etc. arguments.
 '''
 def f(x, *args, **kwds): # pylint: disable=C0111
 return Quantity(func(np.array(x, copy=False), *args, **kwds), dim=x.dim)
 f._arg_units = [None]
 f._return_unit = lambda u : u
 f.__name__ = func.__name__
 f.__doc__ = func.__doc__
 return f

[docs]def wrap_function_change_dimensions(func, change_dim_func):
 '''
 Returns a new function that wraps the given function `func` so that it
 changes the dimensions of its input. Quantities are transformed to
 unitless numpy arrays before calling `func`, the output is a quantity
 with the original dimensions passed through the function
 `change_dim_func`. A typical use would be a ``sqrt`` function that uses
 ``lambda d: d ** 0.5`` as ``change_dim_func``.

 These transformations apply only to the very first argument, all
 other arguments are ignored/untouched.
 '''
 def f(x, *args, **kwds): # pylint: disable=C0111
 ar = np.array(x, copy=False)
 return Quantity(func(ar, *args, **kwds),
 dim=change_dim_func(ar, x.dim))
 f._arg_units = [None]
 f._return_unit = change_dim_func
 f.__name__ = func.__name__
 f.__doc__ = func.__doc__
 return f

[docs]def wrap_function_remove_dimensions(func):
 '''
 Returns a new function that wraps the given function `func` so that it
 removes any dimensions from its input. Useful for functions that are
 returning integers (indices) or booleans, irrespective of the datatype
 contained in the array.

 These transformations apply only to the very first argument, all
 other arguments are ignored/untouched.
 '''
 def f(x, *args, **kwds): # pylint: disable=C0111
 return func(np.array(x, copy=False), *args, **kwds)
 f._arg_units = [None]
 f._return_unit = 1
 f.__name__ = func.__name__
 f.__doc__ = func.__doc__
 return f

SI dimensions (see table at the top of the file) and various descriptions,
each description maps to an index i, and the power of each dimension
is stored in the variable dims[i]
_di = {"Length": 0, "length": 0, "metre": 0, "metres": 0, "meter": 0,
 "meters": 0, "m": 0,
 "Mass": 1, "mass": 1, "kilogram": 1, "kilograms": 1, "kg": 1,
 "Time": 2, "time": 2, "second": 2, "seconds": 2, "s": 2,
 "Electric Current":3, "electric current": 3, "Current": 3, "current": 3,
 "ampere": 3, "amperes": 3, "A": 3,
 "Temperature": 4, "temperature": 4, "kelvin": 4, "kelvins": 4, "K": 4,
 "Quantity of Substance": 5, "Quantity of substance": 5,
 "quantity of substance": 5, "Substance": 5, "substance": 5, "mole": 5,
 "moles": 5, "mol": 5,
 "Luminosity": 6, "luminosity": 6, "candle": 6, "candles": 6, "cd": 6}

_ilabel = ["m", "kg", "s", "A", "K", "mol", "cd"]

The same labels with the names used for constructing them in Python code
_iclass_label = ["metre", "kilogram", "second", "amp", "kelvin", "mole",
 "candle"]

SI unit _prefixes, see table at end of file
_siprefixes = {"y": 1e-24, "z": 1e-21, "a": 1e-18, "f": 1e-15, "p": 1e-12,
 "n": 1e-9, "u": 1e-6, "m": 1e-3, "c": 1e-2, "d": 1e-1, "": 1,
 "da": 1e1, "h": 1e2, "k": 1e3, "M": 1e6, "G": 1e9, "T": 1e12,
 "P": 1e15, "E": 1e18, "Z": 1e21, "Y": 1e24}

[docs]class Dimension(object):
 '''
 Stores the indices of the 7 basic SI unit dimension (length, mass, etc.).

 Provides a subset of arithmetic operations appropriate to dimensions:
 multiplication, division and powers, and equality testing.

 Parameters

 dims : sequence of `float`
 The dimension indices of the 7 basic SI unit dimensions.

 Notes

 Users shouldn't use this class directly, it is used internally in Quantity
 and Unit. Even internally, never use ``Dimension(...)`` to create a new
 instance, use `get_or_create_dimension` instead. This function makes
 sure that only one Dimension instance exists for every combination of
 indices, allowing for a very fast dimensionality check with ``is``.
 '''
 __slots__ = ["_dims"]

 __array_priority__ = 1000
 #### INITIALISATION ####

 def __init__(self, dims):
 self._dims = dims

 #### METHODS ####
[docs] def get_dimension(self, d):
 """
 Return a specific dimension.

 Parameters

 d : `str`
 A string identifying the SI basic unit dimension. Can be either a
 description like "length" or a basic unit like "m" or "metre".

 Returns

 dim : `float`
 The dimensionality of the dimension `d`.
 """
 return self._dims[_di[d]]

 @property
 def is_dimensionless(self):
 '''
 Whether this Dimension is dimensionless.

 Notes

 Normally, instead one should check dimension for being identical to
 `DIMENSIONLESS`.
 '''
 return all([x == 0 for x in self._dims])

 @property
 def dim(self):
 '''
 Returns the `Dimension` object itself. This can be useful, because it
 allows to check for the dimension of an object by checking its ``dim``
 attribute -- this will return a `Dimension` object for `Quantity`,
 `Unit` and `Dimension`.
 '''
 return self

 #### REPRESENTATION ####
 def _str_representation(self, python_code=False):
 """
 String representation in basic SI units, or ``"1"`` for dimensionless.
 Use ``python_code=False`` for display purposes and ``True`` for valid
 Python code.
 """

 if python_code:
 power_operator = " ** "
 else:
 power_operator = "^"

 parts = []
 for i in range(len(self._dims)):
 if self._dims[i]:
 if python_code:
 s = _iclass_label[i]
 else:
 s = _ilabel[i]
 if self._dims[i] != 1:
 s += power_operator + str(self._dims[i])
 parts.append(s)
 if python_code:
 s = " * ".join(parts)
 if not len(s):
 return "%s()" % self.__class__.__name__
 else:
 s = " ".join(parts)
 if not len(s):
 return "1"
 return s.strip()

 def _latex(self, *args):
 parts = []
 for i in xrange(len(self._dims)):
 if self._dims[i]:
 s = _ilabel[i]
 if self._dims[i] != 1:
 s += '^{%s}' % str(self._dims[i])
 parts.append(s)
 s = "\,".join(parts)
 if not len(s):
 return "1"
 return s.strip()

 def _repr_latex(self):
 return '$%s$' % latex(self)

 def __repr__(self):
 return self._str_representation(python_code=True)

 def __str__(self):
 return self._str_representation(python_code=False)

 #### ARITHMETIC ####
 # Note that none of the dimension arithmetic objects do sanity checking
 # on their inputs, although most will throw an exception if you pass the
 # wrong sort of input
 def __mul__(self, value):
 return get_or_create_dimension([x + y for x, y in
 itertools.izip(self._dims, value._dims)])

 def __div__(self, value):
 return get_or_create_dimension([x - y for x, y in
 itertools.izip(self._dims, value._dims)])

 def __truediv__(self, value):
 return self.__div__(value)

 def __pow__(self, value):
 value = np.array(value, copy=False)
 if value.size > 1:
 raise TypeError('Too many exponents')
 return get_or_create_dimension([x * value for x in self._dims])

 def __imul__(self, value):
 raise TypeError('Dimension object is immutable')

 def __idiv__(self, value):
 raise TypeError('Dimension object is immutable')

 def __itruediv__(self, value):
 raise TypeError('Dimension object is immutable')

 def __ipow__(self, value):
 raise TypeError('Dimension object is immutable')

 #### COMPARISON ####
 def __eq__(self, value):
 return np.allclose(self._dims, value._dims)

 def __ne__(self, value):
 return not self.__eq__(value)

 def __hash__(self):
 return hash(self._dims)

 #### MAKE DIMENSION PICKABLE ####
 def __getstate__(self):
 return self._dims

 def __setstate__(self, state):
 self._dims = state

#: The singleton object for dimensionless Dimensions.
DIMENSIONLESS = Dimension((0, 0, 0, 0, 0, 0, 0))

_dimensions = {(0, 0, 0, 0, 0, 0, 0): DIMENSIONLESS}

[docs]def get_or_create_dimension(*args, **kwds):
 """
 Create a new Dimension object or get a reference to an existing one.
 This function takes care of only creating new objects if they were not
 created before and otherwise returning a reference to an existing object.
 This allows to compare dimensions very efficiently using ``is``.

 Parameters

 args : sequence of `float`
 A sequence with the indices of the 7 elements of an SI dimension.
 kwds : keyword arguments
 a sequence of ``keyword=value`` pairs where the keywords are the names of
 the SI dimensions, or the standard unit.

 Examples

 The following are all definitions of the dimensions of force

 >>> from brian2 import *
 >>> get_or_create_dimension(length=1, mass=1, time=-2)
 metre * kilogram * second ** -2
 >>> get_or_create_dimension(m=1, kg=1, s=-2)
 metre * kilogram * second ** -2
 >>> get_or_create_dimension([1, 1, -2, 0, 0, 0, 0])
 metre * kilogram * second ** -2

 Notes

 The 7 units are (in order):

 Length, Mass, Time, Electric Current, Temperature,
 Quantity of Substance, Luminosity

 and can be referred to either by these names or their SI unit names,
 e.g. length, metre, and m all refer to the same thing here.
 """
 if len(args):
 # initialisation by list
 dims = args[0]
 try:
 if len(dims) != 7:
 raise TypeError()
 except TypeError:
 raise TypeError('Need a sequence of exactly 7 items')
 else:
 # initialisation by keywords
 dims = [0, 0, 0, 0, 0, 0, 0]
 for k in kwds.keys():
 # _di stores the index of the dimension with name 'k'
 dims[_di[k]] = kwds[k]

 dims = tuple(dims)

 # check whether this Dimension object has already been created
 if dims in _dimensions:
 return _dimensions[dims]
 else:
 new_dim = Dimension(dims)
 _dimensions[dims] = new_dim
 return new_dim

[docs]class DimensionMismatchError(Exception):
 """
 Exception class for attempted operations with inconsistent dimensions.

 For example, ``3*mvolt + 2*amp`` raises this exception. The purpose of this
 class is to help catch errors based on incorrect units. The exception will
 print a representation of the dimensions of the two inconsistent objects
 that were operated on.

 Parameters

 description : ``str``
 A description of the type of operation being performed, e.g. Addition,
 Multiplication, etc.
 dims : ``Dimension``
 The dimensions of the objects involved in the operation, any number of
 them is possible
 """
 def __init__(self, description, *dims):
 # Call the base class constructor to make Exception pickable, see:
 # http://bugs.python.org/issue1692335
 Exception.__init__(self, description, *dims)
 self.dims = dims
 self.desc = description

 def __repr__(self):
 dims_repr = [repr(dim) for dim in self.dims]
 return '%s(%r, %s)' % (self.__class__.__name__,
 self.desc, ', '.join(dims_repr))

 def __str__(self):
 s = self.desc
 if len(self.dims)==0:
 pass
 elif len(self.dims) == 1:
 s += ' (unit is ' + get_unit_for_display(self.dims[0])
 elif len(self.dims) == 2:
 d1, d2 = self.dims
 s += ' (units are %s and %s' % (get_unit_for_display(d1),
 get_unit_for_display(d2))
 else:
 s += (' (units are ' +
 ' '.join(['(' + get_unit_for_display(d) + ')'
 for d in self.dims]))
 if len(self.dims):
 s += ').'
 return s

[docs]def is_scalar_type(obj):
 """
 Tells you if the object is a 1d number type.

 Parameters

 obj : `object`
 The object to check.

 Returns

 scalar : `bool`
 ``True`` if `obj` is a scalar that can be interpreted as a
 dimensionless `Quantity`.
 """
 try:
 return obj.ndim == 0
 except AttributeError:
 return np.isscalar(obj) and not isinstance(obj, basestring)

[docs]def get_dimensions(obj):
 """
 Return the dimensions of any object that has them.

 Slightly more general than `Quantity.dimensions` because it will
 return `DIMENSIONLESS` if the object is of number type but not a `Quantity`
 (e.g. a `float` or `int`).

 Parameters

 obj : `object`
 The object to check.

 Returns

 dim: `Dimension`
 The dimensions of the `obj`.
 """
 try:
 return obj.dim
 except AttributeError:
 # The following is not very pretty, but it will avoid the costly
 # isinstance check for the common types
 if (type(obj) in [int, long, float, np.int32, np.int64,
 np.float32, np.float64, np.ndarray] or
 isinstance(obj, (numbers.Number, np.number, np.ndarray))):
 return DIMENSIONLESS
 try:
 return Quantity(obj).dim
 except TypeError:
 raise TypeError('Object of type %s does not have dimensions' %
 type(obj))

[docs]def is_dimensionless(obj):
 """
 Test if a value is dimensionless or not.

 Parameters

 obj : `object`
 The object to check.

 Returns

 dimensionless : `bool`
 ``True`` if `obj` is dimensionless.
 """
 return get_dimensions(obj) is DIMENSIONLESS

[docs]def have_same_dimensions(obj1, obj2):
 """Test if two values have the same dimensions.

 Parameters

 obj1, obj2 : {`Quantity`, array-like, number}
 The values of which to compare the dimensions.

 Returns

 same : `bool`
 ``True`` if `obj1` and `obj2` have the same dimensions.
 """

 if not unit_checking:
 return True # ignore units when unit checking is disabled

 # If dimensions are consistently created using get_or_create_dimensions,
 # the fast "is" comparison should always return the correct result.
 # To be safe, we also do an equals comparison in case it fails. This
 # should only add a small amount of unnecessary computation for cases in
 # which this function returns False which very likely leads to a
 # DimensionMismatchError anyway.
 dim1 = get_dimensions(obj1)
 dim2 = get_dimensions(obj2)
 return (dim1 is dim2) or (dim1 == dim2)

[docs]def in_unit(x, u, precision=None):
 """
 Display a value in a certain unit with a given precision.

 Parameters

 x : {`Quantity`, array-like, number}
 The value to display
 u : {`Quantity`, `Unit`}
 The unit to display the value `x` in.
 precision : `int`, optional
 The number of digits of precision (in the given unit, see Examples).
 If no value is given, numpy's `get_printoptions` value is used.

 Returns

 s : `str`
 A string representation of `x` in units of `u`.

 Examples

 >>> from brian2 import *
 >>> in_unit(3 * volt, mvolt)
 '3000. mV'
 >>> in_unit(123123 * msecond, second, 2)
 '123.12 s'
 >>> in_unit(10 * uA/cm**2, nA/um**2)
 '1.00000000e-04 nA/um^2'
 >>> in_unit(10 * mV, ohm * amp)
 '0.01 ohm A'
 >>> in_unit(10 * nS, ohm) # doctest: +NORMALIZE_WHITESPACE
 ... # doctest: +IGNORE_EXCEPTION_DETAIL
 Traceback (most recent call last):
 ...
 DimensionMismatchError: Non-matching unit for method "in_unit",
 dimensions were (m^-2 kg^-1 s^3 A^2) (m^2 kg s^-3 A^-2)

 See Also

 Quantity.in_unit
 """
 if is_dimensionless(x):
 fail_for_dimension_mismatch(x, u,
 'Non-matching unit for function '
 '"in_unit"')
 return str(np.array(x / u, copy=False))
 else:
 return x.in_unit(u, precision=precision)

[docs]def in_best_unit(x, precision=None):
 """
 Represent the value in the "best" unit.

 Parameters

 x : {`Quantity`, array-like, number}
 The value to display
 precision : `int`, optional
 The number of digits of precision (in the best unit, see Examples).
 If no value is given, numpy's `get_printoptions` value is used.

 Returns

 representation : `str`
 A string representation of this `Quantity`.

 Examples

 >>> from brian2.units import *

 >>> in_best_unit(0.00123456 * volt)
 '1.23456 mV'
 >>> in_best_unit(0.00123456 * volt, 2)
 '1.23 mV'
 >>> in_best_unit(0.123456)
 '0.123456'
 >>> in_best_unit(0.123456, 2)
 '0.12'

 See Also

 Quantity.in_best_unit
 """
 if is_dimensionless(x):
 if precision is None:
 precision = np.get_printoptions()['precision']
 return str(np.round(x, precision))

 u = x._get_best_unit()
 return x.in_unit(u, precision=precision)

[docs]def quantity_with_dimensions(floatval, dims):
 '''
 Create a new `Quantity` with the given dimensions. Calls
 `get_or_create_dimensions` with the dimension tuple of the `dims`
 argument to make sure that unpickling (which calls this function) does not
 accidentally create new Dimension objects which should instead refer to
 existing ones.

 Parameters

 floatval : `float`
 The floating point value of the quantity.
 dims : `Dimension`
 The dimensions of the quantity.

 Returns

 q : `Quantity`
 A quantity with the given dimensions.

 Examples

 >>> from brian2 import *
 >>> quantity_with_dimensions(0.001, volt.dim)
 1. * mvolt

 See Also

 get_or_create_dimensions
 '''
 return Quantity(floatval, get_or_create_dimension(dims._dims))

[docs]class Quantity(np.ndarray, object):
 """
 A number with an associated physical dimension. In most cases, it is not
 necessary to create a Quantity object by hand, instead use multiplication
 and division of numbers with the constant unit names ``second``,
 ``kilogram``, etc.

 Notes

 The `Quantity` class defines arithmetic operations which check for
 consistency of dimensions and raise the DimensionMismatchError exception
 if they are inconsistent. It also defines default and other representations
 for a number for printing purposes.

 See the documentation on the Unit class for more details
 about the available unit names like mvolt, etc.

 Casting rules

 The rules that define the casting operations for
 Quantity object are:

 1. Quantity op Quantity = Quantity
 Performs dimension checking if appropriate
 2. (Scalar or Array) op Quantity = Quantity
 Assumes that the scalar or array is dimensionless

 There is one exception to the above rule, the number ``0`` is interpreted
 as having "any dimension".

 Examples

 >>> from brian2 import *
 >>> I = 3 * amp # I is a Quantity object
 >>> R = 2 * ohm # same for R
 >>> I * R
 6. * volt
 >>> (I * R).in_unit(mvolt)
 '6000. mV'
 >>> (I * R) / mvolt
 6000.0
 >>> X = I + R # doctest: +IGNORE_EXCEPTION_DETAIL
 Traceback (most recent call last):
 ...
 DimensionMismatchError: Addition, dimensions were (A) (m^2 kg s^-3 A^-2)
 >>> Is = np.array([1, 2, 3]) * amp
 >>> Is * R
 array([2., 4., 6.]) * volt
 >>> np.asarray(Is * R) # gets rid of units
 array([2., 4., 6.])

 See also

 Unit

 Attributes

 dimensions
 is_dimensionless
 dim : Dimensions
 The dimensions of this quantity.

 Methods

 with_dimensions
 has_same_dimensions
 in_unit
 in_best_unit
 """
 __slots__ = ["dim"]

 __array_priority__ = 1000

 #==
 # Construction and handling of numpy ufuncs
 #==
 def __new__(cls, arr, dim=None, dtype=None, copy=False, force_quantity=False):

 # Do not create dimensionless quantities, use pure numpy arrays instead
 if dim is DIMENSIONLESS and not force_quantity:
 arr = np.array(arr, dtype=dtype, copy=copy)
 if arr.shape == ():
 # For scalar values, return a simple Python object instead of
 # a numpy scalar
 return arr.item()
 return arr

 # All np.ndarray subclasses need something like this, see
 # http://www.scipy.org/Subclasses
 subarr = np.array(arr, dtype=dtype, copy=copy).view(cls)

 # We only want numerical datatypes
 if not np.issubclass_(np.dtype(subarr.dtype).type,
 (np.number, np.bool_)):
 raise TypeError('Quantities can only be created from numerical data.')

 # If a dimension is given, force this dimension
 if dim is not None:
 subarr.dim = dim
 return subarr

 # Use the given dimension or the dimension of the given array (if any)
 try:
 subarr.dim = arr.dim
 except AttributeError:
 if not isinstance(arr, (np.ndarray, np.number, numbers.Number)):
 # check whether it is an iterable containing Quantity objects
 try:
 is_quantity = [isinstance(x, Quantity)
 for x in _flatten(arr)]
 except TypeError:
 # Not iterable
 is_quantity = [False]
 if len(is_quantity) == 0:
 # Empty list
 subarr.dim = DIMENSIONLESS
 elif all(is_quantity):
 dims = [x.dim for x in _flatten(arr)]
 one_dim = dims[0]
 for d in dims:
 if d != one_dim:
 raise DimensionMismatchError('Mixing quantities '
 'with different '
 'dimensions is not '
 'allowed',
 d, one_dim)
 subarr.dim = dims[0]
 elif any(is_quantity):
 raise TypeError('Mixing quantities and non-quantities is '
 'not allowed.')

 return subarr

 def __array_finalize__(self, orig):
 self.dim = getattr(orig, 'dim', DIMENSIONLESS)

 def __array_prepare__(self, array, context=None):
 if context is None:
 return array

 uf, args, _ = context

 if uf.__name__ in (UFUNCS_PRESERVE_DIMENSIONS +
 UFUNCS_CHANGE_DIMENSIONS +
 UFUNCS_LOGICAL):
 # always allowed
 pass
 elif uf.__name__ in UFUNCS_INTEGERS:
 # Numpy should already raise a TypeError by itself
 raise TypeError('%s cannot be used on quantities.' % uf.__name__)
 elif uf.__name__ in UFUNCS_MATCHING_DIMENSIONS + UFUNCS_COMPARISONS:
 # Ok if dimension of arguments match
 fail_for_dimension_mismatch(args[0], args[1],
 error_message=('Cannot calculate '
 '{val1} %s {val2}, the '
 'units do not '
 'match') % uf.__name__,
 val1=args[0], val2=args[1])
 elif uf.__name__ in UFUNCS_DIMENSIONLESS:
 # Ok if argument is dimensionless
 fail_for_dimension_mismatch(args[0],
 error_message=('%s expects a '
 'dimensionless argument '
 'but got '
 '{value}') % uf.__name__,
 value=args[0])
 elif uf.__name__ in UFUNCS_DIMENSIONLESS_TWOARGS:
 # Ok if both arguments are dimensionless
 fail_for_dimension_mismatch(args[0],
 error_message=('Both arguments for '
 '"%s" should be '
 'dimensionless but '
 'first argument was '
 '{value}') % uf.__name__,
 value=args[0])
 fail_for_dimension_mismatch(args[1],
 error_message=('Both arguments for '
 '"%s" should be '
 'dimensionless but '
 'second argument was '
 '{value}') % uf.__name__,
 value=args[1])
 elif uf.__name__ == 'power':
 fail_for_dimension_mismatch(args[1],
 error_message='The exponent for a '
 'power operation has to '
 'be dimensionless but '
 'was {value}',
 value=args[1])
 if np.array(args[1], copy=False).size != 1:
 raise TypeError('Only length-1 arrays can be used as an '
 'exponent for quantities.')
 elif uf.__name__ in ('sign', 'ones_like'):
 return np.array(array, copy=False)
 else:
 warn("Unknown ufunc '%s' in __array_prepare__" % uf.__name__)

 return array

 def __array_wrap__(self, array, context=None):
 dim = DIMENSIONLESS

 if not context is None:
 uf, args, _ = context
 if uf.__name__ in (UFUNCS_PRESERVE_DIMENSIONS +
 UFUNCS_MATCHING_DIMENSIONS):
 dim = self.dim
 elif uf.__name__ in (UFUNCS_DIMENSIONLESS +
 UFUNCS_DIMENSIONLESS_TWOARGS):
 # We should have been arrived here only for dimensionless
 # quantities
 dim = DIMENSIONLESS
 elif uf.__name__ in (UFUNCS_COMPARISONS +
 UFUNCS_LOGICAL +
 ['sign', 'ones_like']):
 # Do not touch the return value (boolean or integer array)
 return array
 elif uf.__name__ == 'sqrt':
 dim = self.dim ** 0.5
 elif uf.__name__ == 'power':
 dim = get_dimensions(args[0]) ** np.array(args[1], copy=False)
 elif uf.__name__ == 'square':
 dim = self.dim ** 2
 elif uf.__name__ in ('divide', 'true_divide', 'floor_divide'):
 dim = get_dimensions(args[0]) / get_dimensions(args[1])
 elif uf.__name__ == 'reciprocal':
 dim = get_dimensions(args[0]) ** -1
 elif uf.__name__ in ('multiply', 'dot'):
 dim = get_dimensions(args[0]) * get_dimensions(args[1])
 else:
 warn("Unknown ufunc '%s' in __array_wrap__" % uf.__name__)
 #TODO: Remove units in this case?

 # This seems to be better than using type(self) instead of quantity
 # This may convert units to Quantities, e.g. np.square(volt) leads to
 # a 1 * volt ** 2 quantitiy instead of volt ** 2. But this should
 # rarely be an issue. The alternative leads to more confusing
 # behaviour: np.float64(3) * mV would result in a dimensionless float64
 result = array.view(Quantity)
 result.dim = dim
 return result

 def __deepcopy__(self, memo):
 return Quantity(self, copy=True)

#==
Quantity-specific functions (not existing in ndarray)
#==
 @staticmethod
[docs] def with_dimensions(value, *args, **keywords):
 """
 Create a `Quantity` object with dimensions.

 Parameters

 value : {array_like, number}
 The value of the dimension
 args : {`Dimension`, sequence of float}
 Either a single argument (a `Dimension`) or a sequence of 7 values.
 kwds
 Keywords defining the dimensions, see `Dimension` for details.

 Returns

 q : `Quantity`
 A `Quantity` object with the given dimensions

 Examples

 All of these define an equivalent `Quantity` object:

 >>> from brian2 import *
 >>> Quantity.with_dimensions(2, get_or_create_dimension(length=1))
 2. * metre
 >>> Quantity.with_dimensions(2, length=1)
 2. * metre
 >>> 2 * metre
 2. * metre
 """
 if len(args) and isinstance(args[0], Dimension):
 dimensions = args[0]
 else:
 dimensions = get_or_create_dimension(*args, **keywords)
 return Quantity(value, dim=dimensions)

 ### ATTRIBUTES ###
 is_dimensionless = property(lambda self: self.dim.is_dimensionless,
 doc='Whether this is a dimensionless quantity.')

 @property
 def dimensions(self):
 '''
 The dimensions of this quantity.
 '''
 return self.dim

 @dimensions.setter
 def dimensions(self, dim):
 self.dim = dim

 #### METHODS ####

[docs] def has_same_dimensions(self, other):
 """
 Return whether this object has the same dimensions as another.

 Parameters

 other : {`Quantity`, array-like, number}
 The object to compare the dimensions against.

 Returns

 same : `bool`
 ``True`` if `other` has the same dimensions.
 """
 if not unit_checking:
 return True # ignore units if unit checking is disabled

 other_dim = get_dimensions(other)
 return (self.dim is other_dim) or (self.dim == other_dim)

[docs] def in_unit(self, u, precision=None, python_code=False):
 """
 Represent the quantity in a given unit. If `python_code` is ``True``,
 this will return valid python code, i.e. a string like ``5.0 * um ** 2``
 instead of ``5.0 um^2``

 Parameters

 u : {`Quantity`, `Unit`}
 The unit in which to show the quantity.
 precision : `int`, optional
 The number of digits of precision (in the given unit, see Examples).
 If no value is given, numpy's `get_printoptions` value is used.
 python_code : `bool`, optional
 Whether to return valid python code (``True``) or a human readable
 string (``False``, the default).

 Returns

 s : `str`
 String representation of the object in unit `u`.

 Examples

 >>> from brian2.units import *
 >>> from brian2.units.stdunits import *
 >>> x = 25.123456 * mV
 >>> x.in_unit(volt)
 '0.02512346 V'
 >>> x.in_unit(volt, 3)
 '0.025 V'
 >>> x.in_unit(mV, 3)
 '25.123 mV'

 See Also

 in_unit
 """

 fail_for_dimension_mismatch(self, u,
 'Non-matching unit for method "in_unit"')

 value = np.array(self / u, copy=False)
 # numpy uses the printoptions setting only in arrays, not in array
 # scalars, so we use this hackish way of turning the scalar first into
 # an array, then removing the square brackets from the output
 if value.shape == ():
 s = np.array_str(np.array([value]), precision=precision)
 s = s.replace('[', '').replace(']', '').strip()
 else:
 if python_code:
 s = np.array_repr(value, precision=precision)
 else:
 s = np.array_str(value, precision=precision)

 if not u.is_dimensionless:
 if isinstance(u, Unit):
 if python_code:
 s += ' * ' + repr(u)
 else:
 s += ' ' + str(u)
 else:
 if python_code:
 s += ' * ' + repr(u.dim)
 else:
 s += ' ' + str(u.dim)
 elif python_code == True: # Make a quantity without unit recognisable
 return '%s(%s)' % (self.__class__.__name__, s.strip())
 return s.strip()

 def _get_best_unit(self, *regs):
 """
 Return the best unit for this `Quantity`.

 Parameters

 regs : any number of `UnitRegistry` objects
 The registries that are searched for units. If none are provided, it
 will check the standard, user and additional unit registers in turn.

 Returns

 u : `Quantity` or `Unit`
 The best-fitting unit for the quantity `x`.
 """
 if self.is_dimensionless:
 return Unit(1)
 if len(regs):
 for r in regs:
 try:
 return r[self]
 except KeyError:
 pass
 return Quantity(1, self.dim)
 else:
 return self._get_best_unit(standard_unit_register, user_unit_register,
 additional_unit_register)

[docs] def in_best_unit(self, precision=None, python_code=False, *regs):
 """
 Represent the quantity in the "best" unit.

 Parameters

 python_code : `bool`, optional
 If set to ``False`` (the default), will return a string like
 ``5.0 um^2`` which is not a valid Python expression. If set to
 ``True``, it will return ``5.0 * um ** 2`` instead.
 precision : `int`, optional
 The number of digits of precision (in the best unit, see
 Examples). If no value is given, numpy's
 `get_printoptions` value is used.
 regs : `UnitRegistry` objects
 The registries where to search for units. If none are given, the
 standard, user-defined and additional registries are searched in
 that order.

 Returns

 representation : `str`
 A string representation of this `Quantity`.

 Examples

 >>> from brian2.units import *

 >>> x = 0.00123456 * volt

 >>> x.in_best_unit()
 '1.23456 mV'

 >>> x.in_best_unit(3)
 '1.235 mV'

 See Also

 in_best_unit
 """
 u = self._get_best_unit(*regs)
 return self.in_unit(u, precision=precision, python_code=python_code)

#==
Overwritten ndarray methods
#==

 #### Setting/getting items ####
 def __getitem__(self, key):
 ''' Overwritten to assure that single elements (i.e., indexed with a
 single integer or a tuple of integers) retain their unit.
 '''
 return Quantity(np.ndarray.__getitem__(self, key), self.dim)

 def __getslice__(self, start, end):
 return self.__getitem__(slice(start, end))

 def __setitem__(self, key, value):
 fail_for_dimension_mismatch(self, value,
 'Inconsistent units in assignment')
 return super(Quantity, self).__setitem__(key, value)

 def __setslice__(self, start, end, value):
 return self.__setitem__(slice(start, end), value)

 #### ARITHMETIC ####
 def _binary_operation(self, other, operation,
 dim_operation=lambda a, b: a, fail_for_mismatch=False,
 operator_str=None, inplace=False):
 '''
 General implementation for binary operations.

 Parameters

 other : {`Quantity`, `ndarray`, scalar}
 The object with which the operation should be performed.
 operation : function of two variables
 The function with which the two objects are combined. For example,
 `operator.mul` for a multiplication.
 dim_operation : function of two variables, optional
 The function with which the dimension of the resulting object is
 calculated (as a function of the dimensions of the two involved
 objects). For example, `operator.mul` for a multiplication. If not
 specified, the dimensions of `self` are used for the resulting
 object.
 fail_for_mismatch : bool, optional
 Whether to fail for a dimension mismatch between `self` and `other`
 (defaults to ``False``)
 operator_str : str, optional
 The string to use for the operator in an error message.
 inplace: bool, optional
 Whether to do the operation in-place (defaults to ``False``).

 Notes

 For in-place operations on scalar values, a copy of the original object
 is returned, i.e. it rather works like a fundamental Python type and
 not like a numpy array scalar, preventing weird effects when a reference
 to the same value was stored in another variable. See github issue #469.
 '''
 other_dim = None

 if fail_for_mismatch:
 if inplace:
 message = ('Cannot calculate ... %s {value}, units do not '
 'match') % operator_str
 _, other_dim = fail_for_dimension_mismatch(self, other,
 message, value=other)
 else:
 message = ('Cannot calculate {value1} %s {value2}, units do not '
 'match') % operator_str
 _, other_dim = fail_for_dimension_mismatch(self, other, message,
 value1=self,
 value2=other)

 if other_dim is None:
 other_dim = get_dimensions(other)

 if inplace:
 if self.shape == ():
 self_value = Quantity(self, copy=True)
 else:
 self_value = self
 operation(self_value, other)
 self_value.dim = dim_operation(self.dim, other_dim)
 return self_value
 else:
 newdims = dim_operation(self.dim, other_dim)
 self_arr = np.array(self, copy=False)
 other_arr = np.array(other, copy=False)
 result = operation(self_arr, other_arr)
 return Quantity(result, newdims)

 def __mul__(self, other):
 return self._binary_operation(other, operator.mul, operator.mul)

 def __rmul__(self, other):
 return self.__mul__(other)

 def __imul__(self, other):
 return self._binary_operation(other, np.ndarray.__imul__, operator.mul,
 inplace=True)

 def __div__(self, other):
 return self._binary_operation(other, operator.truediv, operator.truediv)

 def __truediv__(self, other):
 return self.__div__(other)

 def __rdiv__(self, other):
 # division with swapped arguments
 rdiv = lambda a, b: operator.truediv(b, a)
 return self._binary_operation(other, rdiv, rdiv)

 def __rtruediv__(self, other):
 return self.__rdiv__(other)

 def __idiv__(self, other):
 return self._binary_operation(other, np.ndarray.__itruediv__,
 operator.truediv, inplace=True)

 def __itruediv__(self, other):
 return self._binary_operation(other, np.ndarray.__itruediv__,
 operator.truediv, inplace=True)

 def __mod__(self, other):
 return self._binary_operation(other, operator.mod,
 fail_for_mismatch=True,
 operator_str=r'%')

 def __add__(self, other):
 return self._binary_operation(other, operator.add,
 fail_for_mismatch=True,
 operator_str='+')

 def __radd__(self, other):
 return self.__add__(other)

 def __iadd__(self, other):
 return self._binary_operation(other, np.ndarray.__iadd__,
 fail_for_mismatch=True,
 operator_str='+=',
 inplace=True)

 def __sub__(self, other):
 return self._binary_operation(other, operator.sub,
 fail_for_mismatch=True,
 operator_str='-')

 def __rsub__(self, other):
 # We allow operations with 0 even for dimension mismatches, e.g.
 # 0 - 3*mV is allowed. In this case, the 0 is not represented by a
 # Quantity object so we cannot simply call Quantity.__sub__
 if ((not isinstance(other, Quantity) or other.dim is DIMENSIONLESS) and
 np.all(other == 0)):
 return self.__neg__()
 else:
 return Quantity(other, copy=False, force_quantity=True).__sub__(self)

 def __isub__(self, other):
 return self._binary_operation(other, np.ndarray.__isub__,
 fail_for_mismatch=True,
 operator_str='-=',
 inplace=True)
 def __pow__(self, other):
 if isinstance(other, np.ndarray) or is_scalar_type(other):
 fail_for_dimension_mismatch(other,
 error_message='Cannot calculate '
 '{base} ** {exponent}, '
 'the exponent has to be '
 'dimensionless',
 base=self, exponent=other)
 other = np.array(other, copy=False)
 return Quantity(np.array(self, copy=False)**other,
 self.dim**other)
 else:
 return NotImplemented

 def __rpow__(self, other):
 if self.is_dimensionless:
 if isinstance(other, np.ndarray) or isinstance(other, np.ndarray):
 new_array = np.array(other, copy=False)**np.array(self,
 copy=False)
 return Quantity(new_array, DIMENSIONLESS)
 else:
 return NotImplemented
 else:
 raise DimensionMismatchError(('Cannot calculate '
 '{base} ** {exponent}, the '
 'exponent has to be '
 'dimensionless').format(base=_short_str(other),
 exponent=_short_str(self)),
 self.dim)

 def __ipow__(self, other):
 if isinstance(other, np.ndarray) or is_scalar_type(other):
 fail_for_dimension_mismatch(other,
 error_message='Cannot calculate '
 '... **= {exponent}, '
 'the exponent has to be '
 'dimensionless',
 exponent=other)
 other = np.array(other, copy=False)
 super(Quantity, self).__ipow__(other)
 self.dim = self.dim ** other
 return self
 else:
 return NotImplemented

 def __neg__(self):
 return Quantity(-np.array(self, copy=False), self.dim)

 def __pos__(self):
 return self

 def __abs__(self):
 return Quantity(abs(np.array(self, copy=False)), self.dim)

 def tolist(self):
 '''
 Convert the array into a list.

 Returns

 l : list of `Quantity`
 A (possibly nested) list equivalent to the original array.
 '''
 def replace_with_quantity(seq, dim):
 '''
 Replace all the elements in the list with an equivalent `Quantity`
 with the given `dim`.
 '''
 # No recursion needed for single values
 if not isinstance(seq, list):
 return Quantity(seq, dim)

 def top_replace(s):
 '''
 Recursivley descend into the list.
 '''
 for i in s:
 if not isinstance(i, list):
 yield Quantity(i, dim)
 else:
 yield type(i)(top_replace(i))

 return type(seq)(top_replace(seq))

 return replace_with_quantity(np.array(self, copy=False).tolist(),
 self.dim)

 #### COMPARISONS ####
 def _comparison(self, other, operator_str, operation):
 is_scalar = is_scalar_type(other)
 if not is_scalar and not isinstance(other, np.ndarray):
 return NotImplemented
 if not is_scalar or not np.isinf(other):
 message = ('Cannot perform comparison {value1} %s {value2}, '
 'units do not match') % operator_str
 fail_for_dimension_mismatch(self, other, message,
 value1=self, value2=other)
 return operation(np.array(self, copy=False),
 np.array(other, copy=False))

 def __lt__(self, other):
 return self._comparison(other, '<', operator.lt)

 def __le__(self, other):
 return self._comparison(other, '<=', operator.le)

 def __gt__(self, other):
 return self._comparison(other, '>', operator.gt)

 def __ge__(self, other):
 return self._comparison(other, '>=', operator.ge)

 def __eq__(self, other):
 return self._comparison(other, '==', operator.eq)

 def __ne__(self, other):
 return self._comparison(other, '!=', operator.ne)

 #### MAKE QUANTITY PICKABLE ####
 def __reduce__(self):
 return quantity_with_dimensions, (np.array(self, copy=False), self.dim)

 #### REPRESENTATION ####
 def __repr__(self):
 return self.in_best_unit(python_code=True)

 # TODO: Use sympy's _latex method, then latex(unit) should work
 def _latex(self, expr):
 from sympy import Matrix
 best_unit = self._get_best_unit()
 if isinstance(best_unit, Unit):
 best_unit_latex = latex(best_unit)
 else: # A quantity
 best_unit_latex = latex(best_unit.dimensions)
 unitless = np.array(self / best_unit, copy=False)
 if unitless.ndim == 0:
 sympy_quantity = np.float(unitless)
 else:
 sympy_quantity = Matrix(unitless)
 return latex(sympy_quantity) + '\,' + best_unit_latex

 def _repr_latex_(self):
 return '$' + latex(self) + '$'

 def __str__(self):
 return self.in_best_unit()

 #### Mathematic methods ####

 cumsum = wrap_function_keep_dimensions(np.ndarray.cumsum)
 diagonal = wrap_function_keep_dimensions(np.ndarray.diagonal)
 max = wrap_function_keep_dimensions(np.ndarray.max)
 mean = wrap_function_keep_dimensions(np.ndarray.mean)
 min = wrap_function_keep_dimensions(np.ndarray.min)
 ptp = wrap_function_keep_dimensions(np.ndarray.ptp)

 # To work around an issue in matplotlib 1.3.1 (see
 # https://github.com/matplotlib/matplotlib/pull/2591), we make `ravel`
 # return a unitless array and emit a warning explaining the issue.
 use_matplotlib_units_fix = False
 try:
 import matplotlib
 if matplotlib.__version__ == '1.3.1':
 use_matplotlib_units_fix = True
 except ImportError:
 pass

 if use_matplotlib_units_fix:
 def ravel(self, *args, **kwds):
 # Note that we don't use Brian's logging system here as we don't want
 # the unit system to depend on other parts of Brian
 warn(('As a workaround for a bug in matplotlib 1.3.1, calling '
 '"ravel()" on a quantity will return unit-less values. If you '
 'get this warning during plotting, consider removing the units '
 'before plotting, e.g. by dividing by the unit. If you are '
 'explicitly calling "ravel()", consider using "flatten()" '
 'instead.'))
 return np.array(self, copy=False).ravel(*args, **kwds)

 ravel._arg_units = [None]
 ravel._return_unit = 1
 ravel.__name__ = np.ndarray.ravel.__name__
 ravel.__doc__ = np.ndarray.ravel.__doc__
 else:
 ravel = wrap_function_keep_dimensions(np.ndarray.ravel)

 round = wrap_function_keep_dimensions(np.ndarray.round)
 std = wrap_function_keep_dimensions(np.ndarray.std)
 sum = wrap_function_keep_dimensions(np.ndarray.sum)
 trace = wrap_function_keep_dimensions(np.ndarray.trace)
 var = wrap_function_change_dimensions(np.ndarray.var, lambda ar, d: d ** 2)
 all = wrap_function_remove_dimensions(np.ndarray.all)
 any = wrap_function_remove_dimensions(np.ndarray.any)
 nonzero = wrap_function_remove_dimensions(np.ndarray.nonzero)
 argmax = wrap_function_remove_dimensions(np.ndarray.argmax)
 argmin = wrap_function_remove_dimensions(np.ndarray.argmin)
 argsort = wrap_function_remove_dimensions(np.ndarray.argsort)

 def fill(self, values): # pylint: disable=C0111
 fail_for_dimension_mismatch(self, values, 'fill')
 super(Quantity, self).fill(values)
 fill.__doc__ = np.ndarray.fill.__doc__

 def put(self, indices, values, *args, **kwds): # pylint: disable=C0111
 fail_for_dimension_mismatch(self, values, 'fill')
 super(Quantity, self).put(indices, values, *args, **kwds)
 put.__doc__ = np.ndarray.put.__doc__

 def clip(self, a_min, a_max, *args, **kwds): # pylint: disable=C0111
 fail_for_dimension_mismatch(self, a_min, 'clip')
 fail_for_dimension_mismatch(self, a_max, 'clip')
 return Quantity(np.clip(np.array(self, copy=False),
 np.array(a_min, copy=False),
 np.array(a_max, copy=False),
 *args, **kwds),
 self.dim)
 clip.__doc__ = np.ndarray.clip.__doc__

 def dot(self, other, **kwds): # pylint: disable=C0111
 return Quantity(np.array(self).dot(np.array(other),
 **kwds),
 self.dim*get_dimensions(other))
 dot.__doc__ = np.ndarray.dot.__doc__

 def searchsorted(self, v, **kwds): # pylint: disable=C0111
 fail_for_dimension_mismatch(self, v, 'searchsorted')
 return super(Quantity, self).searchsorted(np.array(v, copy=False),
 **kwds)
 searchsorted.__doc__ = np.ndarray.searchsorted.__doc__

 def prod(self, *args, **kwds): # pylint: disable=C0111
 prod_result = super(Quantity, self).prod(*args, **kwds)
 # Calculating the correct dimensions is not completly trivial (e.g.
 # like doing self.dim**self.size) because prod can be called on
 # multidimensional arrays along a certain axis.
 # Our solution: Use a "dummy matrix" containing a 1 (without units) at
 # each entry and sum it, using the same keyword arguments as provided.
 # The result gives the exponent for the dimensions.
 # This relies on sum and prod having the same arguments, which is true
 # now and probably remains like this in the future
 dim_exponent = np.ones_like(self).sum(*args, **kwds)
 # The result is possibly multidimensional but all entries should be
 # identical
 if dim_exponent.size > 1:
 dim_exponent = dim_exponent[0]
 return Quantity(np.array(prod_result, copy=False),
 self.dim ** dim_exponent)
 prod.__doc__ = np.ndarray.prod.__doc__

 def cumprod(self, *args, **kwds): # pylint: disable=C0111
 if not self.is_dimensionless:
 raise TypeError('cumprod over array elements on quantities '
 'with dimensions is not possible.')
 return Quantity(np.array(self, copy=False).cumprod(*args, **kwds))
 cumprod.__doc__ = np.ndarray.cumprod.__doc__

[docs]class Unit(Quantity):
 r'''
 A physical unit.

 Normally, you do not need to worry about the implementation of
 units. They are derived from the `Quantity` object with
 some additional information (name and string representation).

 Basically, a unit is just a number with given dimensions, e.g.
 mvolt = 0.001 with the dimensions of voltage. The units module
 defines a large number of standard units, and you can also define
 your own (see below).

 The unit class also keeps track of various things that were used
 to define it so as to generate a nice string representation of it.
 See below.

 When creating scaled units, you can use the following prefixes:

 ====== ====== ==============
 Factor Name Prefix
 ====== ====== ==============
 10^24 yotta Y
 10^21 zetta Z
 10^18 exa E
 10^15 peta P
 10^12 tera T
 10^9 giga G
 10^6 mega M
 10^3 kilo k
 10^2 hecto h
 10^1 deka da
 1
 10^-1 deci d
 10^-2 centi c
 10^-3 milli m
 10^-6 micro u (\mu in SI)
 10^-9 nano n
 10^-12 pico p
 10^-15 femto f
 10^-18 atto a
 10^-21 zepto z
 10^-24 yocto y
 ====== ====== ==============

 Defining your own

 It can be useful to define your own units for printing
 purposes. So for example, to define the newton metre, you
 write
 >>> from brian2.units.allunits import metre, newton
 >>> Nm = newton * metre

 You can then do

 >>> (1*Nm).in_unit(Nm)
 '1. N m'

 which returns ``"1 N m"`` because the `Unit` class generates a new
 display name of ``"N m"`` from the display names ``"N"`` and ``"m"`` for
 newtons and metres automatically.

 To register this unit for use in the automatic printing
 of the `Quantity.in_best_unit` method, see the documentation
 for the `~brian2.units.fundamentalunits.UnitRegistry` class.

 Construction

 The best way to construct a new unit is to use standard units
 already defined and arithmetic operations, e.g. ``newton*metre``.
 See the documentation for the static methods `Unit.create`
 and `Unit.create_scaled_units` for more details.

 If you don't like the automatically generated display name for
 the unit, use the `Unit.set_display_name` method.

 Representation

 A new unit defined by multiplication, division or taking powers
 generates a name for the unit automatically, so that for
 example the name for ``pfarad/mmetre**2`` is ``"pF/mm^2"``, etc. If you
 don't like the automatically generated name, use the
 `Unit.set_display_name` method.
 '''
 __slots__ = ["dim", "scale", "scalefactor", "_dispname", "_name",
 "_latexname", "iscompound"]

 __array_priority__ = 100

 automatically_register_units = True

 #### CONSTRUCTION ####
 def __new__(cls, arr, dim=None, scale=None, dtype=None, copy=False):
 if dim is None:
 dim = DIMENSIONLESS
 obj = super(Unit, cls).__new__(cls, arr, dim=dim, dtype=dtype,
 copy=copy, force_quantity=True)
 if Unit.automatically_register_units:
 register_new_unit(obj)
 return obj

 def __array_finalize__(self, orig):
 self.dim = getattr(orig, 'dim', DIMENSIONLESS)
 self.scale = getattr(orig, 'scale', ("", "", "", "", "", "", ""))
 self.scalefactor = getattr(orig, 'scalefactor', '')
 self._name = getattr(orig, '_name', '')
 self._dispname = getattr(orig, '_dispname', '')
 self._latexname = getattr(orig, '_latexname', '')
 self.iscompound = getattr(orig, '_iscompound', False)
 return self

 def __init__(self, value, dim=None, scale=None):
 if dim is None:
 dim = DIMENSIONLESS
 self.dim = dim #: The Dimensions of this unit
 if scale is None:
 scale = ("", "", "", "", "", "", "")
 if not len(scale) == 7:
 raise ValueError('scale needs seven entries')

 #: The scale for this unit (a 7-tuple)
 self.scale = scale
 #: The scalefactor for this unit, e.g. 'm' for milli
 self.scalefactor = ""
 #: The full name of this unit.
 self._name = ""
 #: The display name of this unit.
 self._dispname = ""
 #: A LaTeX expression for the name of this unit.
 self._latexname = ""
 #: Whether this unit is a combination of other units.
 self.iscompound = False

 @staticmethod
[docs] def create(dim, name="", dispname="", latexname=None, scalefactor="",
 **keywords):
 """
 Create a new named unit.

 Parameters

 dim : `Dimension`
 The dimensions of the unit.
 name : `str`, optional
 The full name of the unit, e.g. ``'volt'``
 dispname : `str`, optional
 The display name, e.g. ``'V'``
 latexname : str, optional
 The name as a LaTeX expression (math mode is assumed, do not add
 $ signs or similar), e.g. ``'\omega'``. If no `latexname` is
 specified, `dispname` will be used.
 scalefactor : str, optional
 The scaling factor, e.g. ``'m'`` for mvolt
 keywords
 The scaling for each SI dimension, e.g. ``length="m"``,
 ``mass="-1"``, etc.

 Returns

 u : `Unit`
 The new unit.
 """
 scale = ["", "", "", "", "", "", ""]
 for k in keywords:
 scale[_di[k]] = keywords[k]
 v = 1.0
 for s, i in itertools.izip(scale, dim._dims):
 if i:
 v *= _siprefixes[s] ** i
 u = Unit(v * _siprefixes[scalefactor], dim=dim, scale=tuple(scale))
 u.scalefactor = scalefactor + ""
 u._name = str(name)
 u._dispname = str(dispname)
 if latexname is None:
 latexname = u._dispname
 u._latexname = r'\mathrm{' + latexname + '}'
 u.iscompound = False
 return u

 @staticmethod
[docs] def create_scaled_unit(baseunit, scalefactor):
 """
 Create a scaled unit from a base unit.

 Parameters

 baseunit : `Unit`
 The unit of which to create a scaled version, e.g. ``volt``,
 ``amp``.
 scalefactor : `str`
 The scaling factor, e.g. ``"m"`` for mvolt, mamp

 Returns

 u : `Unit`
 The new unit.
 """
 u = Unit(np.array(baseunit, copy=False) * _siprefixes[scalefactor],
 dim=baseunit.dim, scale=baseunit.scale)
 u.scalefactor = scalefactor
 u._name = scalefactor + baseunit._name
 u._dispname = scalefactor + baseunit._dispname
 # As u --> \mu is the only transformation we have, I think it
 # makes sense to just special-case it here instead of coming
 # up with a general system for scale factors
 # TODO: Unfortunately, \mu gives the typographically incorrect symbol,
 #it should be an upright letter :-/
 if scalefactor == 'u':
 scalefactor = r'\mu'
 u._latexname = r'\mathrm{' + scalefactor + '}' + r'\,' + baseunit.latexname
 u.iscompound = False
 return u

 #### METHODS ####
[docs] def get_name(self):
 if self._name == "":
 if self.scalefactor:
 parts = [repr(_siprefixes[self.scalefactor])]
 else:
 parts = []
 for i in range(7):
 if self.dim._dims[i]:
 s = self.scale[i] + _iclass_label[i]
 if self.dim._dims[i] != 1:
 s += ' ** ' + str(self.dim._dims[i])
 parts.append(s)
 s = " * ".join(parts)
 s = s.strip()
 if not len(s):
 return "%s(1)" % self.__class__.__name__
 else:
 return s
 else:
 return self._name

[docs] def set_name(self, name):
 """Sets the name for the unit
 """
 self._name = name

[docs] def get_display_name(self):
 if self._dispname == "":
 s = self.scalefactor + " "
 for i in range(7):
 if self.dim._dims[i]:
 s += self.scale[i] + _ilabel[i]
 if self.dim._dims[i] != 1:
 s += "^" + str(self.dim._dims[i])
 s += " "
 s = s.strip()
 if not len(s):
 return "1"
 else:
 return s
 else:
 return self._dispname

[docs] def set_display_name(self, name):
 """Sets the display name for the unit
 """
 self._dispname = name

[docs] def get_latex_name(self):
 if self._latexname == "":
 if len(self.scalefactor):
 if self.scalefactor == 'u':
 scalefactor = r'\mu'
 else:
 scalefactor = self.scalefactor
 s = r'\mathrm{' + scalefactor + "} "
 else:
 s = ''
 for i in range(7):
 if self.dim._dims[i]:
 s += self.scale[i] + _ilabel[i]
 if self.dim._dims[i] != 1:
 s += "^{" + str(self.dim._dims[i]) + '}'
 s += " "
 s = s.strip()
 if not len(s):
 return "1"
 else:
 return s
 else:
 return self._latexname

[docs] def set_latex_name(self, name):
 self._latexname = name

 name = property(fget=get_name, fset=set_name,
 doc='The name of the unit')

 dispname = property(fget=get_display_name, fset=set_display_name,
 doc='The display name of the unit')

 latexname = property(fget=get_latex_name, fset=set_latex_name,
 doc='The LaTeX name of the unit')

 #### REPRESENTATION ####
 def __repr__(self):
 return self.name

 def __str__(self):
 return self.dispname

 def _latex(self, *args):
 return self.latexname

 def _repr_latex_(self):
 return '$' + latex(self) + '$'

 #### ARITHMETIC ####
 def __mul__(self, other):
 if isinstance(other, Unit):
 u = Unit(np.array(self, copy=False) * np.array(other, copy=False))
 u.name = self.name + " * " + other.name
 u.dispname = self.dispname + ' ' + other.dispname
 u.latexname = self.latexname + r'\,' + other.latexname
 u.dim = self.dim * other.dim
 u.iscompound = True
 return u
 else:
 return super(Unit, self).__mul__(other)

 def __rmul__(self, other):
 return self.__mul__(other)

 def __div__(self, other):
 if isinstance(other, Unit):
 u = Unit(np.array(self, copy=False) / np.array(other, copy=False))
 if other.iscompound:
 u.dispname = '(' + self.dispname + ')'
 u.name = '(' + self.name + ')'
 else:
 u.dispname = self.dispname
 u.name = self.name
 u.dispname += '/'
 u.name += ' / '
 if other.iscompound:
 u.dispname += '(' + other.dispname + ')'
 u.name += '(' + other.name + ')'
 else:
 u.dispname += other.dispname
 u.name += other.name
 u.dim = self.dim / other.dim
 u.iscompound = True

 u.latexname = r'\frac{%s}{%s}' % (self.latexname, other.latexname)

 return u
 else:
 return super(Unit, self).__div__(other)

 def __rdiv__(self, other):
 if isinstance(other, Unit):
 return other.__div__(self)
 else:
 try:
 if other == 1:
 return self**-1
 except (ValueError, TypeError, DimensionMismatchError):
 pass
 return super(Unit, self).__rdiv__(other)

 def __pow__(self, other):
 if is_scalar_type(other):
 u = Unit(np.array(self, copy=False) ** other)
 if self.iscompound:
 u.dispname = '(' + self.dispname + ')'
 u.name = '(' + self.name + ')'
 u.latexname = r'\left(%s\right)' % self.latexname
 else:
 u.dispname = self.dispname
 u.name = self.name
 u.latexname = self.latexname
 u.dispname += '^' + str(other)
 u.name += ' ** ' + repr(other)
 u.latexname += '^{%s}' % latex(other)
 u.dim = self.dim ** other
 return u
 else:
 return super(Unit, self).__pow__(other)

 def __iadd__(self, other):
 raise TypeError('Units cannot be modified in-place')

 def __isub__(self, other):
 raise TypeError('Units cannot be modified in-place')

 def __imul__(self, other):
 raise TypeError('Units cannot be modified in-place')

 def __idiv__(self, other):
 raise TypeError('Units cannot be modified in-place')

 def __itruediv__(self, other):
 raise TypeError('Units cannot be modified in-place')

 def __ifloordiv__(self, other):
 raise TypeError('Units cannot be modified in-place')

 def __imod__(self, other):
 raise TypeError('Units cannot be modified in-place')

 def __ipow__(self, other, modulo=None):
 raise TypeError('Units cannot be modified in-place')

 def __eq__(self, other):
 if isinstance(other, Unit):
 return (other.dim == self.dim and
 other.scalefactor == self.scalefactor and
 other.scale == self.scale)
 else:
 return Quantity.__eq__(self, other)

 def __neq__(self, other):
 return not self.__eq__(other)

 def __hash__(self):
 return hash((self.dim, self.scalefactor, self.scale,
 self.name, self.dispname))

[docs]class UnitRegistry(object):
 """
 Stores known units for printing in best units.

 All a user needs to do is to use the `register_new_unit`
 function.

 Default registries:

 The units module defines three registries, the standard units,
 user units, and additional units. Finding best units is done
 by first checking standard, then user, then additional. New
 user units are added by using the `register_new_unit` function.

 Standard units includes all the basic non-compound unit names
 built in to the module, including volt, amp, etc. Additional
 units defines some compound units like newton metre (Nm) etc.

 Methods

 add
 __getitem__
 """

 def __init__(self):
 self.units = set()
 self.units_for_dimensions = collections.defaultdict(list)

[docs] def add(self, u):
 """Add a unit to the registry
 """
 if u in self.units:
 return
 self.units.add(u)
 self.units_for_dimensions[u.dim].append(u)

 def remove(self, u):
 """Remove a unit from the registry
 """
 self.units.remove(u)
 dim = u.dim
 self.units_for_dimensions[dim].remove(u)

[docs] def __getitem__(self, x):
 """Returns the best unit for quantity x

 The algorithm is to consider the value:

 m=abs(x/u)

 for all matching units u. We select the unit where this ratio is the
 closest to 10 (if it is an array with several values, we select the
 unit where the deviations from that are the smallest. More precisely,
 the unit that minimizes the sum of (log10(m)-1)**2 over all entries).
 """
 matching = self.units_for_dimensions.get(x.dim, [])
 if len(matching) == 0:
 raise KeyError("Unit not found in registry.")

 # determine how well this unit represents the value
 matching_values = np.array(matching, copy=False)
 x_flat = np.array(x, copy=False).flatten()
 floatreps = np.tile(np.abs(x_flat), (len(matching), 1)).T / matching_values
 # ignore zeros, they are well represented in any unit
 floatreps[floatreps == 0] = np.nan
 if np.all(np.isnan(floatreps)):
 return matching[0] # all zeros, use the base unit

 deviations = np.nansum((np.log10(floatreps) - 1)**2, axis=0)
 return matching[deviations.argmin()]

[docs]def register_new_unit(u):
 """Register a new unit for automatic displaying of quantities

 Parameters

 u : `Unit`
 The unit that should be registered.

 Examples

 >>> from brian2 import *
 >>> 2.0*farad/metre**2
 2. * metre ** -4 * kilogram ** -1 * second ** 4 * amp ** 2
 >>> register_new_unit(pfarad / mmetre**2)
 >>> 2.0*farad/metre**2
 2000000. * pfarad / mmetre ** 2
 >>> unregister_unit(pfarad / mmetre**2)
 >>> 2.0*farad/metre**2
 2. * metre ** -4 * kilogram ** -1 * second ** 4 * amp ** 2
 """
 user_unit_register.add(u)

[docs]def unregister_unit(u):
 """Remove a previously registered unit for automatic displaying of
 quantities

 Parameters

 u : `Unit`
 The unit that should be unregistered.
 """
 user_unit_register.remove(u)

#: `UnitRegistry` containing all the standard units (metre, kilogram, um2...)
standard_unit_register = UnitRegistry()
#: `UnitRegistry` containing additional units (newton*metre, farad / metre, ...)
additional_unit_register = UnitRegistry()
#: `UnitRegistry` containing all units defined by the user
user_unit_register = UnitRegistry()

[docs]def all_registered_units(*regs):
 """
 Generator returning all registered units.

 Parameters

 regs : any number of `UnitRegistry` objects.
 If given, units from the given registries are returned. If none are
 given, units are returned from the standard units, the user-registered
 units and the "additional units" (e.g. ``newton * metre``) in that
 order.

 Returns

 u : `Unit`
 A single unit from the registry.
 """
 if not len(regs):
 regs = [standard_unit_register,
 user_unit_register,
 additional_unit_register]
 for r in regs:
 for u in r.units:
 yield u

[docs]def get_unit(x, *regs):
 '''
 Find the most appropriate consistent unit from the unit registries.

 Parameters

 x : {`Quantity`, `Dimension`, array-like, number}
 The value to find a unit for.

 Returns

 q : `Unit`
 The equivalent `Unit` for the quantity `x`.
 '''
 for u in all_registered_units(*regs):
 if np.array(u, copy=False) == 1 and have_same_dimensions(u, x):
 return u
 dim = getattr(x, 'dim', DIMENSIONLESS) # For units, get dimensions
 return Unit(1.0, dim=dim)

[docs]def get_unit_for_display(x):
 '''
 Return a string representation of the most appropriate unit or ``'1'`` for
 a dimensionless quantity
 '''
 if x is 1 or x is DIMENSIONLESS or have_same_dimensions(x, 1):
 return '1'
 else:
 return repr(get_unit(x))

[docs]def get_unit_fast(x):
 '''
 Return a `Quantity` with value 1 and the same dimensions.
 '''
 return Quantity.with_dimensions(1, get_dimensions(x))

DECORATORS

[docs]def check_units(**au):
 """Decorator to check units of arguments passed to a function

 Examples

 >>> from brian2.units import *
 >>> @check_units(I=amp, R=ohm, wibble=metre, result=volt)
 ... def getvoltage(I, R, **k):
 ... return I*R

 You don't have to check the units of every variable in the function, and
 you can define what the units should be for variables that aren't
 explicitly named in the definition of the function. For example, the code
 above checks that the variable wibble should be a length, so writing

 >>> getvoltage(1*amp, 1*ohm, wibble=1) # doctest: +IGNORE_EXCEPTION_DETAIL
 Traceback (most recent call last):
 ...
 DimensionMismatchError: Function "getvoltage" variable "wibble" has wrong dimensions, dimensions were (1) (m)

 fails, but

 >>> getvoltage(1*amp, 1*ohm, wibble=1*metre)
 1. * volt

 passes. String arguments or ``None`` are not checked

 >>> getvoltage(1*amp, 1*ohm, wibble='hello')
 1. * volt

 By using the special name ``result``, you can check the return value of the
 function.

 You can also use ``1`` or ``bool`` as a special value to check for a
 unitless number or a boolean value, respectively:
 >>> @check_units(value=1, absolute=bool, result=bool)
 ... def is_high(value, absolute=False):
 ... if absolute:
 ... return abs(value) >= 5
 ... else:
 ... return value >= 5

 This will then again raise an error if the argument if not of the expected
 type:
 >>> is_high(7)
 True
 >>> is_high(-7, True)
 True
 >>> is_high(3, 4) # doctest: +IGNORE_EXCEPTION_DETAIL
 Traceback (most recent call last):
 ...
 TypeError: Function "is_high" expected a boolean value for argument "absolute" but got 4.

 Raises

 DimensionMismatchError
 In case the input arguments or the return value do not have the
 expected dimensions.
 TypeError
 If an input argument or return value was expected to be a boolean but
 is not.

 Notes

 This decorator will destroy the signature of the original function, and
 replace it with the signature ``(*args, **kwds)``. Other decorators will
 do the same thing, and this decorator critically needs to know the signature
 of the function it is acting on, so it is important that it is the first
 decorator to act on a function. It cannot be used in combination with
 another decorator that also needs to know the signature of the function.

 Note that the ``bool`` type is "strict", i.e. it expects a proper
 boolean value and does not accept 0 or 1. This is not the case the other
 way round, declaring an argument or return value as "1" *does* allow for a
 ``True`` or ``False`` value.
 """
 def do_check_units(f):
 def new_f(*args, **kwds):
 newkeyset = kwds.copy()
 arg_names = f.func_code.co_varnames[0:f.func_code.co_argcount]
 for (n, v) in zip(arg_names, args[0:f.func_code.co_argcount]):
 if (not isinstance(v, (Quantity, basestring, bool))
 and v is not None
 and n in au):
 try:
 # allow e.g. to pass a Python list of values
 v = Quantity(v)
 except TypeError:
 if have_same_dimensions(au[n], 1):
 raise TypeError(('Argument %s is not a unitless '
 'value/array.') % n)
 else:
 raise TypeError(('Argument %s is not a quantity, '
 'expected a quantity with dimensions '
 '%s') % (n, au[n]))
 newkeyset[n] = v

 for k in newkeyset.iterkeys():
 # string variables are allowed to pass, the presumption is they
 # name another variable. None is also allowed, useful for
 # default parameters
 if (k in au.keys() and not isinstance(newkeyset[k], str) and
 not newkeyset[k] is None):

 if au[k] == bool:
 if not isinstance(newkeyset[k], bool):
 error_message = ('Function "{f.__name__}" '
 'expected a boolean value '
 'for argument "{k}" but got '
 '{value}').format(f=f, k=k,
 value=newkeyset[k])
 raise TypeError(error_message)
 elif not have_same_dimensions(newkeyset[k], au[k]):
 error_message = ('Function "{f.__name__}" '
 'expected a quantitity with unit '
 '{unit} for argument "{k}" but got '
 '{value}').format(f=f, k=k,
 unit=repr(au[k]),
 value=newkeyset[k])
 raise DimensionMismatchError(error_message,
 newkeyset[k])
 result = f(*args, **kwds)
 if 'result' in au:
 if au['result'] == bool:
 if not isinstance(result, bool):
 error_message = ('The return value of function '
 '"{f.__name__}" was expected to be '
 'a boolean value, but was of type '
 '{type}').format(f=f,
 type=type(result))
 raise TypeError(error_message)
 elif not have_same_dimensions(result, au['result']):
 error_message = ('The return value of function '
 '"{f.__name__}" was expected to have '
 'unit {unit} but was '
 '{value}').format(f=f,
 unit=repr(au['result']),
 value=result)
 raise DimensionMismatchError(error_message,
 get_dimensions(result))
 return result
 new_f._orig_func = f
 new_f.__doc__ = f.__doc__
 new_f.__name__ = f.__name__
 # store the information in the function, necessary when using the
 # function in expressions or equations
 arg_units = []
 all_specified = True
 if hasattr(f, '_orig_arg_names'):
 arg_names = f._orig_arg_names
 else:
 arg_names = f.func_code.co_varnames[:f.func_code.co_argcount]
 for name in arg_names:
 unit = au.get(name, None)
 if unit is None:
 all_specified = False
 break
 else:
 arg_units.append(unit)
 if all_specified:
 new_f._arg_units = arg_units
 else:
 new_f._arg_units = None
 return_unit = au.get('result', None)
 if return_unit is None:
 new_f._return_unit = None
 else:
 new_f._return_unit = return_unit
 if return_unit == bool:
 new_f._returns_bool = True
 else:
 new_f._returns_bool = False
 new_f._orig_arg_names = arg_names

 # copy any annotation attributes
 if hasattr(f, '_annotation_attributes'):
 for attrname in f._annotation_attributes:
 setattr(new_f, attrname, getattr(f, attrname))
 new_f._annotation_attributes = getattr(f, '_annotation_attributes', [])+['_arg_units',
 '_return_unit',
 '_orig_func',
 '_returns_bool']
 return new_f
 return do_check_units

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/brian2/units/unitsafefunctions.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.units.unitsafefunctions

"""
Unit-aware replacements for numpy functions.
"""
from functools import wraps

import pkg_resources
import numpy as np

from .fundamentalunits import (Quantity, wrap_function_dimensionless,
 wrap_function_remove_dimensions,
 fail_for_dimension_mismatch, is_dimensionless,
 DIMENSIONLESS)

__all__ = [
 'log', 'log10', 'exp',
 'sin', 'cos', 'tan',
 'arcsin', 'arccos', 'arctan',
 'sinh', 'cosh', 'tanh',
 'arcsinh', 'arccosh', 'arctanh',
 'diagonal', 'ravel', 'trace', 'dot',
 'where',
 'ones_like', 'zeros_like',
 'arange', 'linspace'
]

[docs]def where(condition, *args, **kwds): # pylint: disable=C0111
 if len(args) == 0:
 # nothing to do
 return np.where(condition, *args, **kwds)
 elif len(args) == 2:
 # check that x and y have the same dimensions
 fail_for_dimension_mismatch(args[0], args[1],
 'x and y need to have the same dimensions')

 if is_dimensionless(args[0]):
 return np.where(condition, *args, **kwds)
 else:
 # as both arguments have the same unit, just use the first one's
 dimensionless_args = [np.asarray(arg) for arg in args]
 return Quantity.with_dimensions(np.where(condition,
 *dimensionless_args),
 args[0].dimensions)
 else:
 # illegal number of arguments, let numpy take care of this
 return np.where(condition, *args, **kwds)

where.__doc__ = np.where.__doc__

Functions that work on dimensionless quantities only
sin = wrap_function_dimensionless(np.sin)
sinh = wrap_function_dimensionless(np.sinh)
arcsin = wrap_function_dimensionless(np.arcsin)
arcsinh = wrap_function_dimensionless(np.arcsinh)
cos = wrap_function_dimensionless(np.cos)
cosh = wrap_function_dimensionless(np.cosh)
arccos = wrap_function_dimensionless(np.arccos)
arccosh = wrap_function_dimensionless(np.arccosh)
tan = wrap_function_dimensionless(np.tan)
tanh = wrap_function_dimensionless(np.tanh)
arctan = wrap_function_dimensionless(np.arctan)
arctanh = wrap_function_dimensionless(np.arctanh)

log = wrap_function_dimensionless(np.log)
log10 = wrap_function_dimensionless(np.log10)
exp = wrap_function_dimensionless(np.exp)

ones_like = wrap_function_remove_dimensions(np.ones_like)
zeros_like = wrap_function_remove_dimensions(np.zeros_like)

[docs]def wrap_function_to_method(func):
 '''
 Wraps a function so that it calls the corresponding method on the
 Quantities object (if called with a Quantities object as the first
 argument). All other arguments are left untouched.
 '''
 @wraps(func)
 def f(x, *args, **kwds): # pylint: disable=C0111
 if isinstance(x, Quantity):
 return getattr(x, func.__name__)(*args, **kwds)
 else:
 # no need to wrap anything
 return func(x, *args, **kwds)
 f.__doc__ = func.__doc__
 f.__name__ = func.__name__
 return f

@wraps(np.arange)
[docs]def arange(*args, **kwargs):
 # arange has a bit of a complicated argument structure unfortunately
 # we leave the actual checking of the number of arguments to numpy, though

 # default values
 start = kwargs.pop('start', 0)
 step = kwargs.pop('step', 1)
 stop = kwargs.pop('stop', None)
 if len(args) == 1:
 if stop is not None:
 raise TypeError('Duplicate definition of "stop"')
 stop = args[0]
 elif len(args) == 2:
 if start != 0:
 raise TypeError('Duplicate definition of "start"')
 if stop is not None:
 raise TypeError('Duplicate definition of "stop"')
 start, stop = args
 elif len(args) == 3:
 if start != 0:
 raise TypeError('Duplicate definition of "start"')
 if stop is not None:
 raise TypeError('Duplicate definition of "stop"')
 if step != 1:
 raise TypeError('Duplicate definition of "step"')
 start, stop, step = args
 elif len(args) > 3:
 raise TypeError('Need between 1 and 3 non-keyword arguments')
 if stop is None:
 raise TypeError('Missing stop argument.')
 fail_for_dimension_mismatch(start, stop,
 error_message=('Start value {start} and stop '
 'value {stop} have to have the '
 'same units.'),
 start=start, stop=stop)
 fail_for_dimension_mismatch(stop, step,
 error_message=('Stop value {stop} and step '
 'value {step} have to have the '
 'same units.'),
 stop=stop, step=step)
 dim = getattr(stop, 'dim', DIMENSIONLESS)
 return Quantity(np.arange(start=np.asarray(start),
 stop=np.asarray(stop),
 step=np.asarray(step),
 **kwargs),
 dim=dim, copy=False)

@wraps(np.linspace)
[docs]def linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None):
 fail_for_dimension_mismatch(start, stop,
 error_message=('Start value {start} and stop '
 'value {stop} have to have the '
 'same units.'),
 start=start, stop=stop)
 dim = getattr(start, 'dim', DIMENSIONLESS)
 if pkg_resources.parse_version(np.__version__) < pkg_resources.parse_version('1.9.0'):
 if dtype is not None:
 raise TypeError('The "dtype" argument needs numpy >= 1.9.0')
 result = np.linspace(np.asarray(start), np.asarray(stop), num=num,
 endpoint=endpoint, retstep=retstep)
 else:
 result = np.linspace(np.asarray(start), np.asarray(stop), num=num,
 endpoint=endpoint, retstep=retstep, dtype=dtype)
 return Quantity(result, dim=dim, copy=False)

these functions discard subclass info -- maybe a bug in numpy?
ravel = wrap_function_to_method(np.ravel)
diagonal = wrap_function_to_method(np.diagonal)
trace = wrap_function_to_method(np.trace)
dot = wrap_function_to_method(np.dot)

This is a very minor detail: setting the __module__ attribute allows the
automatic reference doc generation mechanism to attribute the functions to
this module. Maybe also helpful for IDEs and other code introspection tools.
sin.__module__ = __name__
sinh.__module__ = __name__
arcsin.__module__ = __name__
arcsinh.__module__ = __name__
cos.__module__ = __name__
cosh.__module__ = __name__
arccos.__module__ = __name__
arccosh.__module__ = __name__
tan.__module__ = __name__
tanh.__module__ = __name__
arctan.__module__ = __name__
arctanh.__module__ = __name__

log.__module__ = __name__
exp.__module__ = __name__
ravel.__module__ = __name__
diagonal.__module__ = __name__
trace.__module__ = __name__
dot.__module__ = __name__
arange.__module__ = __name__
linspace.__module__ = __name__

[docs]def setup():
 '''
 Setup function for doctests (used by nosetest).
 We do not want to test this module's docstrings as they
 are inherited from numpy.
 '''
 from nose import SkipTest
 raise SkipTest('Do not test numpy docstrings')

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/brian2/input/poissongroup.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.input.poissongroup

'''
Implementation of `PoissonGroup`.
'''

import numpy as np

from brian2.core.spikesource import SpikeSource
from brian2.core.variables import Variables
from brian2.units.fundamentalunits import check_units, Unit
from brian2.units.stdunits import Hz
from brian2.groups.group import Group
from brian2.groups.subgroup import Subgroup
from brian2.groups.neurongroup import Thresholder

__all__ = ['PoissonGroup']

[docs]class PoissonGroup(Group, SpikeSource):
 '''
 Poisson spike source

 Parameters

 N : int
 Number of neurons
 rates : `Quantity`, str
 Single rate, array of rates of length N, or a string expression
 evaluating to a rate. This string expression will be evaluated at every
 time step, it can therefore be time-dependent (e.g. refer to a
 `TimedArray`).
 dt : `Quantity`, optional
 The time step to be used for the simulation. Cannot be combined with
 the `clock` argument.
 clock : `Clock`, optional
 The update clock to be used. If neither a clock, nor the `dt` argument
 is specified, the `defaultclock` will be used.
 when : str, optional
 When to run within a time step, defaults to the ``'thresholds'`` slot.
 order : int, optional
 The priority of of this group for operations occurring at the same time
 step and in the same scheduling slot. Defaults to 0.
 name : str, optional
 Unique name, or use poissongroup, poissongroup_1, etc.
 '''
 add_to_magic_network = True

 @check_units(rates=Hz)
 def __init__(self, N, rates, dt=None, clock=None, when='thresholds',
 order=0, name='poissongroup*', codeobj_class=None):

 Group.__init__(self, dt=dt, clock=clock, when=when, order=order,
 name=name)
 self.namespace = None
 self.codeobj_class = codeobj_class

 self._N = N = int(N)

 # TODO: In principle, it would be nice to support Poisson groups with
 # refactoriness, but we can't currently, since the refractoriness
 # information is reset in the state updater which we are not using
 # We could either use a specific template or simply not bother and make
 # users write their own NeuronGroup (with threshold rand() < rates*dt)
 # for more complex use cases.

 self.variables = Variables(self)
 # standard variables
 self.variables.add_constant('N', unit=Unit(1), value=self._N)
 self.variables.add_arange('i', self._N, constant=True, read_only=True)
 self.variables.add_array('_spikespace', size=N+1, unit=Unit(1),
 dtype=np.int32)
 self.variables.create_clock_variables(self._clock)

 # The firing rates
 if isinstance(rates, basestring):
 self.variables.add_subexpression('rates', unit=Hz,
 expr=rates)
 else:
 self.variables.add_array('rates', size=N, unit=Hz)
 self._rates = rates

 self.start = 0
 self.stop = N

 self._refractory = False

 # To avoid a warning about the local variable rates, we set the real
 # threshold condition only after creating the object
 self.events = {'spike': 'False'}
 self.thresholder = {'spike': Thresholder(self)}
 self.events = {'spike': 'rand() < rates * dt'}
 self.contained_objects.append(self.thresholder['spike'])

 self._enable_group_attributes()

 if not isinstance(rates, basestring):
 self.rates = rates

 def __getitem__(self, item):
 if not isinstance(item, slice):
 raise TypeError('Subgroups can only be constructed using slicing syntax')
 start, stop, step = item.indices(self._N)
 if step != 1:
 raise IndexError('Subgroups have to be contiguous')
 if start >= stop:
 raise IndexError('Illegal start/end values for subgroup, %d>=%d' %
 (start, stop))

 return Subgroup(self, start, stop)

 @property
 def spikes(self):
 '''
 The spikes returned by the most recent thresholding operation.
 '''
 # Note that we have to directly access the ArrayVariable object here
 # instead of using the Group mechanism by accessing self._spikespace
 # Using the latter would cut _spikespace to the length of the group
 spikespace = self.variables['_spikespace'].get_value()
 return spikespace[:spikespace[-1]]

 def __repr__(self):
 description = '{classname}({N}, rates={rates})'
 return description.format(classname=self.__class__.__name__,
 N=self.N, rates=repr(self._rates))

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/brian2/input/binomial.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.input.binomial

'''
Implementation of `BinomialFunction`
'''
import numpy as np

from brian2.core.base import Nameable
from brian2.core.functions import Function, DEFAULT_FUNCTIONS
from brian2.units.fundamentalunits import check_units
from brian2.utils.stringtools import replace

__all__ = ['BinomialFunction']

def _pre_calc_constants_approximated(n, p):
 loc = n*p
 scale = np.sqrt(n*p*(1-p))
 return loc, scale

def _pre_calc_constants(n, p):
 reverse = p > 0.5
 if reverse:
 P = 1.0 - p
 else:
 P = p
 q = 1.0 - P
 qn = np.exp(n * np.log(q))
 bound = min(n, n*P + 10.0*np.sqrt(n*P*q + 1))
 return reverse, q, P, qn, bound

def _generate_cython_code(n, p, use_normal, name):
 # Cython implementation
 # Inversion transform sampling
 if use_normal:
 loc, scale = _pre_calc_constants_approximated(n, p)
 cython_code = '''
 cdef float %NAME%(const int vectorisation_idx):
 return _randn(vectorisation_idx) * %SCALE% + %LOC%
 '''
 cython_code = replace(cython_code, {'%SCALE%': '%.15f' % scale,
 '%LOC%': '%.15f' % loc,
 '%NAME%': name})
 dependencies = {'_randn': DEFAULT_FUNCTIONS['randn']}
 else:
 reverse, q, P, qn, bound = _pre_calc_constants(n, p)
 # The following code is an almost exact copy of numpy's
 # rk_binomial_inversion function
 # (numpy/random/mtrand/distributions.c)
 cython_code = '''
 cdef long %NAME%(const int vectorisation_idx):
 cdef long X = 0
 cdef double px = %QN%
 cdef double U = _rand(vectorisation_idx)
 while U > px:
 X += 1
 if X > %BOUND%:
 X = 0
 px = %QN%
 U = _rand(vectorisation_idx)
 else:
 U -= px
 px = ((%N%-X+1) * %P% * px)/(X*%Q%)
 return %RETURN_VALUE%
 '''
 cython_code = replace(cython_code, {'%N%': '%d' % n,
 '%P%': '%.15f' % p,
 '%Q%': '%.15f' % q,
 '%QN%': '%.15f' % qn,
 '%BOUND%': '%.15f' % bound,
 '%RETURN_VALUE%': '%d-X' % n if reverse else 'X',
 '%NAME%': name})
 dependencies = {'_rand': DEFAULT_FUNCTIONS['rand']}

 return cython_code, dependencies

def _generate_cpp_code(n, p, use_normal, name):
 # C++ implementation
 # Inversion transform sampling
 if use_normal:
 loc, scale = _pre_calc_constants_approximated(n, p)
 loc = n*p
 scale = np.sqrt(n*p*(1-p))
 cpp_code = '''
 float %NAME%(const int vectorisation_idx)
 {
 return _randn(vectorisation_idx) * %SCALE% + %LOC%;
 }
 '''
 cpp_code = replace(cpp_code, {'%SCALE%': '%.15f' % scale,
 '%LOC%': '%.15f' % loc,
 '%NAME%': name})
 dependencies = {'_randn': DEFAULT_FUNCTIONS['randn']}
 else:
 reverse, q, P, qn, bound = _pre_calc_constants(n, p)
 # The following code is an almost exact copy of numpy's
 # rk_binomial_inversion function
 # (numpy/random/mtrand/distributions.c)
 cpp_code = '''
 long %NAME%(const int vectorisation_idx)
 {
 long X = 0;
 double px = %QN%;
 double U = _rand(vectorisation_idx);
 while (U > px)
 {
 X++;
 if (X > %BOUND%)
 {
 X = 0;
 px = %QN%;
 U = _rand(vectorisation_idx);
 } else
 {
 U -= px;
 px = ((%N%-X+1) * %P% * px)/(X*%Q%);
 }
 }
 return %RETURN_VALUE%;
 }
 '''
 cpp_code = replace(cpp_code, {'%N%': '%d' % n,
 '%P%': '%.15f' % P,
 '%Q%': '%.15f' % q,
 '%QN%': '%.15f' % qn,
 '%BOUND%': '%.15f' % bound,
 '%RETURN_VALUE%': '%d-X' % n if reverse else 'X',
 '%NAME%': name})
 dependencies = {'_rand': DEFAULT_FUNCTIONS['rand']}

 return {'support_code': cpp_code}, dependencies

[docs]class BinomialFunction(Function, Nameable):
 '''
 BinomialFunction(n, p, approximate=True, name='_binomial*')

 A function that generates samples from a binomial distribution.

 Parameters

 n : int
 Number of samples
 p : float
 Probablility
 approximate : bool, optional
 Whether to approximate the binomial with a normal distribution if
 :math:`n p > 5 \wedge n (1 - p) > 5`. Defaults to ``True``.
 '''

 #: Container for implementing functions for different targets
 #: This container can be extended by other codegeneration targets/devices
 #: The key has to be the name of the target, the value a function
 #: that takes three parameters (n, p, use_normal) and returns a tuple of
 #: (code, dependencies)
 implementations = {
 'cpp': _generate_cpp_code,
 'cython': _generate_cython_code
 }
 @check_units(n=1, p=1)
 def __init__(self, n, p, approximate=True, name='_binomial*'):
 Nameable.__init__(self, name)

 #Python implementation
 use_normal = approximate and (n*p > 5) and n*(1-p) > 5
 if use_normal:
 loc = n*p
 scale = np.sqrt(n*p*(1-p))
 def sample_function(vectorisation_idx):
 try:
 N = len(vectorisation_idx)
 except TypeError:
 N = int(vectorisation_idx)
 return np.random.normal(loc, scale, size=N)
 else:
 def sample_function(vectorisation_idx):
 try:
 N = len(vectorisation_idx)
 except TypeError:
 N = int(vectorisation_idx)
 return np.random.binomial(n, p, size=N)

 Function.__init__(self, pyfunc=lambda: sample_function(1),
 arg_units=[], return_unit=1, stateless=False)

 self.implementations.add_implementation('numpy', sample_function)

 for target, func in BinomialFunction.implementations.iteritems():
 code, dependencies = func(n=n, p=p, use_normal=use_normal,
 name=self.name)
 self.implementations.add_implementation(target, code,
 dependencies=dependencies,
 name=self.name)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/brian2/input/timedarray.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.input.timedarray

'''
Implementation of `TimedArray`.
'''

import numpy as np

from brian2.core.clocks import defaultclock
from brian2.core.functions import Function
from brian2.units.allunits import second
from brian2.units.fundamentalunits import check_units, get_unit
from brian2.core.names import Nameable
from brian2.utils.logger import get_logger
from brian2.utils.stringtools import replace

__all__ = ['TimedArray']

logger = get_logger(__name__)

def _find_K(group_dt, dt):
 dt_ratio = dt / group_dt
 if dt_ratio > 1 and np.floor(dt_ratio) != dt_ratio:
 logger.warn(('Group uses a dt of %s while TimedArray uses dt '
 'of %s') % (group_dt*second, dt*second), once=True)
 # Find an upsampling factor that should avoid rounding issues even
 # for multistep methods
 K = max(int(2**np.ceil(np.log2(8/group_dt*dt))), 1)
 return K

[docs]class TimedArray(Function, Nameable):
 '''
 TimedArray(values, dt, name=None)

 A function of time built from an array of values. The returned object can
 be used as a function, including in model equations etc. The resulting
 function has to be called as `funcion_name(t)` if the provided value array
 is one-dimensional and as `function_name(t, i)` if it is two-dimensional.

 Parameters

 values : ndarray or `Quantity`
 An array of values providing the values at various points in time. This
 array can either be one- or two-dimensional. If it is two-dimensional
 it's first dimension should be the time.
 dt : `Quantity`
 The time distance between values in the `values` array.
 name : str, optional
 A unique name for this object, see `Nameable` for details. Defaults
 to ``'_timedarray*'``.

 Notes

 For time values corresponding to elements outside of the range of `values`
 provided, the first respectively last element is returned.

 Examples

 >>> from brian2 import *
 >>> ta = TimedArray([1, 2, 3, 4] * mV, dt=0.1*ms)
 >>> print(ta(0.3*ms))
 4. mV
 >>> G = NeuronGroup(1, 'v = ta(t) : volt')
 >>> mon = StateMonitor(G, 'v', record=True)
 >>> net = Network(G, mon)
 >>> net.run(1*ms) # doctest: +ELLIPSIS
 ...
 >>> print(mon[0].v)
 [1. 2. 3. 4. 4. 4. 4. 4. 4. 4.] mV
 >>> ta2d = TimedArray([[1, 2], [3, 4], [5, 6]]*mV, dt=0.1*ms)
 >>> G = NeuronGroup(4, 'v = ta2d(t, i%2) : volt')
 >>> mon = StateMonitor(G, 'v', record=True)
 >>> net = Network(G, mon)
 >>> net.run(0.2*ms) # doctest: +ELLIPSIS
 ...
 >>> print mon.v[:]
 [[1. 3.]
 [2. 4.]
 [1. 3.]
 [2. 4.]] mV
 '''
 @check_units(dt=second)
 def __init__(self, values, dt, name=None):
 if name is None:
 name = '_timedarray*'
 Nameable.__init__(self, name)
 unit = get_unit(values)
 self.unit = unit
 values = np.asarray(values, dtype=np.double)
 self.values = values
 dt = float(dt)
 self.dt = dt
 if values.ndim == 1:
 self._init_1d()
 elif values.ndim == 2:
 self._init_2d()
 else:
 raise NotImplementedError(('Only 1d and 2d arrays are supported '
 'for TimedArray'))

 def _init_1d(self):
 unit = self.unit
 values = self.values
 dt = self.dt

 # Python implementation (with units), used when calling the TimedArray
 # directly, outside of a simulation
 @check_units(t=second, result=unit)
 def timed_array_func(t):
 # We round according to the current defaultclock.dt
 K = _find_K(float(defaultclock.dt), dt)
 epsilon = dt / K
 i = np.clip(np.int_(np.round(np.asarray(t/epsilon)) / K),
 0, len(values)-1)
 return values[i] * unit

 Function.__init__(self, pyfunc=timed_array_func)

 # we use dynamic implementations because we want to do upsampling
 # in a way that avoids rounding problems with the group's dt
 def create_numpy_implementation(owner):
 group_dt = owner.clock.dt_

 K = _find_K(group_dt, dt)
 n_values = len(values)
 epsilon = dt / K
 def unitless_timed_array_func(t):
 timestep = np.clip(np.int_(np.round(t/epsilon) / K),
 0, n_values-1)
 return values[timestep]

 unitless_timed_array_func._arg_units = [second]
 unitless_timed_array_func._return_unit = unit

 return unitless_timed_array_func

 self.implementations.add_dynamic_implementation('numpy',
 create_numpy_implementation)

 def create_cpp_implementation(owner):
 group_dt = owner.clock.dt_
 K = _find_K(group_dt, dt)
 support_code = '''
 inline double %NAME%(const double t)
 {
 const double epsilon = %DT% / %K%;
 int i = (int)((t/epsilon + 0.5)/%K%);
 if(i < 0)
 i = 0;
 if(i >= %NUM_VALUES%)
 i = %NUM_VALUES%-1;
 return _namespace%NAME%_values[i];
 }
 '''.replace('%NAME%', self.name).replace('%DT%', '%.18f' % dt).replace('%K%', str(K)).replace('%NUM_VALUES%', str(len(self.values)))
 cpp_code = {'support_code': support_code}

 return cpp_code

 def create_cpp_namespace(owner):
 return {'%s_values' % self.name: self.values}

 self.implementations.add_dynamic_implementation('cpp',
 code=create_cpp_implementation,
 namespace=create_cpp_namespace,
 name=self.name)
 def create_cython_implementation(owner):
 group_dt = owner.clock.dt_
 K = _find_K(group_dt, dt)
 code = '''
 cdef double %NAME%(const double t):
 global _namespace%NAME%_values
 cdef double epsilon = %DT% / %K%
 cdef int i = (int)((t/epsilon + 0.5)/%K%)
 if i < 0:
 i = 0
 if i >= %NUM_VALUES%:
 i = %NUM_VALUES% - 1
 return _namespace%NAME%_values[i]
 '''.replace('%NAME%', self.name).replace('%DT%', '%.18f' % dt).replace('%K%', str(K)).replace('%NUM_VALUES%', str(len(self.values)))

 return code

 def create_cython_namespace(owner):
 return {'%s_values' % self.name: self.values}

 self.implementations.add_dynamic_implementation('cython',
 code=create_cython_implementation,
 namespace=create_cython_namespace,
 name=self.name)

 def _init_2d(self):
 unit = self.unit
 values = self.values
 dt = self.dt

 # Python implementation (with units), used when calling the TimedArray
 # directly, outside of a simulation
 @check_units(i=1, t=second, result=unit)
 def timed_array_func(t, i):
 # We round according to the current defaultclock.dt
 K = _find_K(float(defaultclock.dt), dt)
 epsilon = dt / K
 time_step = np.clip(np.int_(np.round(np.asarray(t/epsilon)) / K),
 0, len(values)-1)
 return values[time_step, i] * unit

 Function.__init__(self, pyfunc=timed_array_func)

 # we use dynamic implementations because we want to do upsampling
 # in a way that avoids rounding problems with the group's dt
 def create_numpy_implementation(owner):
 group_dt = owner.clock.dt_

 K = _find_K(group_dt, dt)
 n_values = len(values)
 epsilon = dt / K
 def unitless_timed_array_func(t, i):
 timestep = np.clip(np.int_(np.round(t/epsilon) / K),
 0, n_values-1)
 return values[timestep, i]

 unitless_timed_array_func._arg_units = [second]
 unitless_timed_array_func._return_unit = unit

 return unitless_timed_array_func

 self.implementations.add_dynamic_implementation('numpy',
 create_numpy_implementation)

 def create_cpp_implementation(owner):
 group_dt = owner.clock.dt_
 K = _find_K(group_dt, dt)
 support_code = '''
 inline double %NAME%(const double t, const int i)
 {
 const double epsilon = %DT% / %K%;
 if (i < 0 || i >= %COLS%)
 return NAN;
 int timestep = (int)((t/epsilon + 0.5)/%K%);
 if(timestep < 0)
 timestep = 0;
 else if(timestep >= %ROWS%)
 timestep = %ROWS%-1;
 return _namespace%NAME%_values[timestep*%COLS% + i];
 }
 '''
 support_code = replace(support_code, {'%NAME%': self.name,
 '%DT%': '%.18f' % dt,
 '%K%': str(K),
 '%COLS%': str(self.values.shape[1]),
 '%ROWS%': str(self.values.shape[0])})
 cpp_code = {'support_code': support_code}

 return cpp_code

 def create_cpp_namespace(owner):
 return {'%s_values' % self.name: self.values.astype(np.double,
 order='C',
 copy=False).ravel()}

 self.implementations.add_dynamic_implementation('cpp',
 code=create_cpp_implementation,
 namespace=create_cpp_namespace,
 name=self.name)

 def create_cython_implementation(owner):
 group_dt = owner.clock.dt_
 K = _find_K(group_dt, dt)
 code = '''
 cdef double %NAME%(const double t, const int i):
 global _namespace%NAME%_values
 cdef double epsilon = %DT% / %K%
 if i < 0 or i >= %COLS%:
 return _numpy.nan
 cdef int timestep = (int)((t/epsilon + 0.5)/%K%)
 if timestep < 0:
 timestep = 0
 elif timestep >= %ROWS%:
 timestep = %ROWS%-1
 return _namespace%NAME%_values[timestep*%COLS% + i]
 '''
 code = replace(code, {'%NAME%': self.name,
 '%DT%': '%.18f' % dt,
 '%K%': str(K),
 '%COLS%': str(self.values.shape[1]),
 '%ROWS%': str(self.values.shape[0])})

 return code

 def create_cython_namespace(owner):
 return {'%s_values' % self.name: self.values.astype(np.double,
 order='C',
 copy=False).ravel()}

 self.implementations.add_dynamic_implementation('cython',
 code=create_cython_implementation,
 namespace=create_cython_namespace,
 name=self.name)

[docs] def is_locally_constant(self, dt):
 if dt > self.dt:
 return False
 dt_ratio = self.dt / float(dt)
 if np.floor(dt_ratio) != dt_ratio:
 logger.info(("dt of the TimedArray is not an integer multiple of "
 "the group's dt, the TimedArray's return value can "
 "therefore not be considered constant over one "
 "timestep, making linear integration impossible."),
 once=True)
 return False
 return True

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/brian2/input/spikegeneratorgroup.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.input.spikegeneratorgroup

'''
Module defining `SpikeGeneratorGroup`.
'''
import numpy as np

from brian2.core.spikesource import SpikeSource
from brian2.units.fundamentalunits import check_units, Unit, Quantity
from brian2.units.allunits import second
from brian2.core.variables import Variables
from brian2.groups.group import CodeRunner, Group

__all__ = ['SpikeGeneratorGroup']

[docs]class SpikeGeneratorGroup(Group, CodeRunner, SpikeSource):
 '''
 SpikeGeneratorGroup(N, indices, times, dt=None, clock=None,
 period=1e100*second, when='thresholds', order=0,
 sorted=False, name='spikegeneratorgroup*',
 codeobj_class=None)

 A group emitting spikes at given times.

 Parameters

 N : int
 The number of "neurons" in this group
 indices : array of integers
 The indices of the spiking cells
 times : `Quantity`
 The spike times for the cells given in ``indices``. Has to have the
 same length as ``indices``.
 period : `Quantity`, optional
 If this is specified, it will repeat spikes with this period.
 dt : `Quantity`, optional
 The time step to be used for the simulation. Cannot be combined with
 the `clock` argument.
 clock : `Clock`, optional
 The update clock to be used. If neither a clock, nor the `dt` argument
 is specified, the `defaultclock` will be used.
 when : str, optional
 When to run within a time step, defaults to the ``'thresholds'`` slot.
 order : int, optional
 The priority of of this group for operations occurring at the same time
 step and in the same scheduling slot. Defaults to 0.
 sorted : bool, optional
 Whether the given indices and times are already sorted. Set to ``True``
 if your events are already sorted (first by spike time, then by index),
 this can save significant time at construction if your arrays contain
 large numbers of spikes. Defaults to ``False``.

 Notes

 * In a time step, `SpikeGeneratorGroup` emits all spikes that happened
 at :math:`t-dt < t_{spike} \leq t`. This might lead to unexpected
 or missing spikes if you change the time step dt between runs.
 * `SpikeGeneratorGroup` does not currently raise any warning if a neuron
 spikes more that once during a time step, but other code (e.g. for
 synaptic propagation) might assume that neurons only spike once per
 time step and will therefore not work properly.
 * If `sorted` is set to ``True``, the given arrays will not be copied
 (only affects runtime mode)..
 '''

 @check_units(N=1, indices=1, times=second, period=second)
 def __init__(self, N, indices, times, dt=None, clock=None,
 period=1e100*second, when='thresholds', order=0, sorted=False,
 name='spikegeneratorgroup*', codeobj_class=None):

 Group.__init__(self, dt=dt, clock=clock, when=when, order=order, name=name)

 # Let other objects know that we emit spikes events
 self.events = {'spike': None}

 self.codeobj_class = codeobj_class

 times = Quantity(times)
 if N < 1 or int(N) != N:
 raise TypeError('N has to be an integer >=1.')
 N = int(N) # Make sure that it is an integer, values such as 10.0 would
 # otherwise make weave compilation fail
 if len(indices) != len(times):
 raise ValueError(('Length of the indices and times array must '
 'match, but %d != %d') % (len(indices),
 len(times)))
 if period < 0*second:
 raise ValueError('The period cannot be negative.')
 elif len(times) and period <= np.max(times):
 raise ValueError('The period has to be greater than the maximum of '
 'the spike times')
 if len(times) and np.min(times) < 0*second:
 raise ValueError('Spike times cannot be negative')
 if len(indices) and (np.min(indices) < 0 or np.max(indices) >= N):
 raise ValueError('Indices have to lie in the interval [0, %d[' % N)

 self.start = 0
 self.stop = N

 if not sorted:
 # sort times and indices first by time, then by indices
 rec = np.rec.fromarrays([times, indices], names=['t', 'i'])
 rec.sort()
 times = np.ascontiguousarray(rec.t)
 indices = np.ascontiguousarray(rec.i)

 self.variables = Variables(self)

 # We store the indices and times also directly in the Python object,
 # this way we can use them for checks in `before_run` even in standalone
 # TODO: Remove this when the checks in `before_run` have been moved to the template
 self._spike_time = times
 self._neuron_index = indices

 # standard variables
 self.variables.add_constant('N', unit=Unit(1), value=N)
 self.variables.add_array('period', unit=second, size=1,
 constant=True, read_only=True, scalar=True)
 self.variables.add_arange('i', N)
 self.variables.add_dynamic_array('spike_number',
 values=np.arange(len(indices)),
 size=len(indices), unit=Unit(1),
 dtype=np.int32, read_only=True,
 constant=True, index='spike_number',
 unique=True)
 self.variables.add_dynamic_array('neuron_index', values=indices,
 size=len(indices), unit=Unit(1),
 dtype=np.int32, index='spike_number',
 read_only=True, constant=True)
 self.variables.add_dynamic_array('spike_time', values=times, size=len(times),
 unit=second, index='spike_number',
 read_only=True, constant=True)
 self.variables.add_array('_spikespace', size=N+1, unit=Unit(1),
 dtype=np.int32)
 self.variables.add_array('_lastindex', size=1, values=0, unit=Unit(1),
 dtype=np.int32, read_only=True, scalar=True)
 self.variables.create_clock_variables(self._clock)

 #: Remember the dt we used the last time when we checked the spike bins
 #: to not repeat the work for multiple runs with the same dt
 self._previous_dt = None

 #: "Dirty flag" that will be set when spikes are changed after the
 #: `before_run` check
 self._spikes_changed = True

 CodeRunner.__init__(self, self,
 code='',
 template='spikegenerator',
 clock=self._clock,
 when=when,
 order=order,
 name=None)

 # Activate name attribute access
 self._enable_group_attributes()

 self.variables['period'].set_value(period)

[docs] def before_run(self, run_namespace):
 # Do some checks on the period vs. dt
 dt = self.dt_[:] # make a copy
 period = self.period_
 if period < np.inf:
 if period < dt:
 raise ValueError('The period of %s is %s, which is smaller '
 'than its dt of %s.' % (self.name,
 self.period,
 dt))
 if (abs(int(period/dt)*dt - period) >
 period * np.finfo(dt.dtype).eps):
 raise NotImplementedError('The period of %s is %s, which is '
 'not an integer multiple of its dt '
 'of %s.' % (self.name,
 self.period,
 dt))

 # Check that we don't have more than one spike per neuron in a time bin
 if self._previous_dt is None or dt != self._previous_dt or self._spikes_changed:
 # We shift all the spikes by a tiny amount to make sure that spikes
 # at exact multiples of dt do not end up in the previous time bin
 # This shift has to be quite significant relative to machine
 # epsilon, we use 1e-3 of the dt here
 shift = 1e-3*dt
 timebins = np.asarray(np.asarray(self._spike_time + shift)/dt,
 dtype=np.int32)
 index_timebins = np.rec.fromarrays([self._neuron_index,
 timebins], names=['i', 't'])
 if not len(np.unique(index_timebins)) == len(timebins):
 raise ValueError('Using a dt of %s, some neurons of '
 'SpikeGeneratorGroup "%s" spike more than '
 'once during a time step.' % (str(self.dt),
 self.name))
 self._previous_dt = dt
 self._spikes_changed = False

 super(SpikeGeneratorGroup, self).before_run(run_namespace=run_namespace)

 @check_units(indices=1, times=second, period=second)
 def set_spikes(self, indices, times, period=1e100*second, sorted=False):
 '''
 set_spikes(indices, times, period=1e100*second, sorted=False)

 Change the spikes that this group will generate.

 This can be used to set the input for a second run of a model based on
 the output of a first run (if the input for the second run is already
 known before the first run, then all the information should simply be
 included in the initial `SpikeGeneratorGroup` initializer call,
 instead).

 Parameters

 indices : array of integers
 The indices of the spiking cells
 times : `Quantity`
 The spike times for the cells given in ``indices``. Has to have the
 same length as ``indices``.
 period : `Quantity`, optional
 If this is specified, it will repeat spikes with this period.
 sorted : bool, optional
 Whether the given indices and times are already sorted. Set to
 ``True`` if your events are already sorted (first by spike time,
 then by index), this can save significant time at construction if
 your arrays contain large numbers of spikes. Defaults to ``False``.
 '''
 times = Quantity(times)
 if len(indices) != len(times):
 raise ValueError(('Length of the indices and times array must '
 'match, but %d != %d') % (len(indices),
 len(times)))

 if period < 0*second:
 raise ValueError('The period cannot be negative.')
 elif len(times) and period <= np.max(times):
 raise ValueError('The period has to be greater than the maximum of '
 'the spike times')

 if not sorted:
 # sort times and indices first by time, then by indices
 rec = np.rec.fromarrays([times, indices], names=['t', 'i'])
 rec.sort()
 times = np.ascontiguousarray(rec.t)
 indices = np.ascontiguousarray(rec.i)

 self.variables['period'].set_value(period)
 self.variables['neuron_index'].resize(len(indices))
 self.variables['spike_time'].resize(len(indices))
 self.variables['spike_number'].resize(len(indices))
 self.variables['spike_number'].set_value(np.arange(len(indices)))
 self.variables['neuron_index'].set_value(indices)
 self.variables['spike_time'].set_value(times)
 self.variables['_lastindex'].set_value(0)

 # Update the internal variables used in `SpikeGeneratorGroup.before_run`
 self._neuron_index = indices
 self._spike_time = times
 self._spikes_changed = True

 @property
 def spikes(self):
 '''
 The spikes returned by the most recent thresholding operation.
 '''
 # Note that we have to directly access the ArrayVariable object here
 # instead of using the Group mechanism by accessing self._spikespace
 # Using the latter would cut _spikespace to the length of the group
 spikespace = self.variables['_spikespace'].get_value()
 return spikespace[:spikespace[-1]]

 def __repr__(self):
 return ('{cls}({N}, indices=<length {l} array>, '
 'times=<length {l} array>').format(cls=self.__class__.__name__,
 N=self.N,
 l=self.variables['neuron_index'].size)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/brian2/synapses/parse_synaptic_generator_syntax.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.synapses.parse_synaptic_generator_syntax

from brian2 import *
from brian2.parsing.rendering import NodeRenderer
import ast

__all__ = ['parse_synapse_generator']

def _cname(obj):
 return obj.__class__.__name__

[docs]def handle_range(*args, **kwds):
 '''
 Checks the arguments/keywords for the range iterator

 Should have 1-3 positional arguments.

 Returns a dict with keys low, high, step. Default values are
 low=0, step=1.
 '''
 if len(args) == 0 or len(args) > 3:
 raise SyntaxError("Range iterator takes 1-3 positional arguments.")
 if len(kwds):
 raise SyntaxError("Range iterator doesn't accept any keyword "
 "arguments.")
 if len(args) == 1:
 high = args[0]
 low = '0'
 step = '1'
 elif len(args) == 2:
 low, high = args
 step = '1'
 else:
 low, high, step = args
 return {'low': low, 'high': high, 'step': step}

[docs]def handle_sample(*args, **kwds):
 '''
 Checks the arguments/keywords for the sample iterator

 Should have 1-3 positional arguments and 1 keyword argument (either p or
 size).

 Returns a dict with keys ``low, high, step, sample_size, p, size``. Default
 values are ``low=0``, ``step=1`. Sample size will be either ``'random'`` or
 ``'fixed'``. In the first case, ``p`` will have a value and size will be
 ``None`` (and vice versa for the second case).
 '''
 if len(args) == 0 or len(args) > 3:
 raise SyntaxError("Sample iterator takes 1-3 positional arguments.")
 if len(kwds) != 1 or ('p' not in kwds and 'size' not in kwds):
 raise SyntaxError("Sample iterator accepts one keyword argument, "
 "either 'p' or 'size'.")
 if len(args) == 1:
 high = args[0]
 low = '0'
 step = '1'
 elif len(args) == 2:
 low, high = args
 step = '1'
 else:
 low, high, step = args
 if 'p' in kwds:
 sample_size = 'random'
 p = kwds['p']
 size = None
 else:
 sample_size = 'fixed'
 size = kwds['size']
 p = None
 return {'low': low, 'high': high, 'step': step,
 'p': p, 'size': size, 'sample_size': sample_size}

iterator_function_handlers = {
 'range': handle_range,
 'sample': handle_sample,
 }

[docs]def parse_synapse_generator(expr):
 '''
 Returns a parsed form of a synapse generator expression.

 The general form is:

 ``element for iteration_variable in iterator_func(...)``

 or

 ``element for iteration_variable in iterator_func(...) if if_expression``

 Returns a dictionary with keys:

 ``original_expression``
 The original expression as a string.
 ``element``
 As above, a string expression.
 ``iteration_variable``
 A variable name, as above.
 ``iterator_func``
 String. Either ``range`` or ``sample``.
 ``if_expression``
 String expression or ``None``.
 ``iterator_kwds``
 Dictionary of key/value pairs representing the keywords. See
 `handle_range` and `handle_sample`.
 '''
 nr = NodeRenderer(use_vectorisation_idx=False)
 parse_error = ("Error parsing expression '%s'. Expression must have "
 "generator syntax, for example 'k for k in range(i-10, "
 "i+10)'." % expr)
 try:
 node = ast.parse('[%s]' % expr, mode='eval').body
 except Exception as e:
 raise SyntaxError(parse_error + " Error encountered was %s" % e)
 if _cname(node) != 'ListComp':
 raise SyntaxError(parse_error + " Expression is not a generator "
 "expression.")
 element = node.elt
 if len(node.generators) != 1:
 raise SyntaxError(parse_error + " Generator expression must involve "
 "only one iterator.")
 generator = node.generators[0]
 target = generator.target
 if _cname(target) != 'Name':
 raise SyntaxError(parse_error + " Generator must iterate over a single "
 "variable (not tuple, etc.).")
 iteration_variable = target.id
 iterator = generator.iter
 if _cname(iterator) != 'Call' or _cname(iterator.func) != 'Name':
 raise SyntaxError(parse_error + " Iterator expression must be one of "
 "the supported functions: " +
 str(iterator_function_handlers.keys()))
 iterator_funcname = iterator.func.id
 if iterator_funcname not in iterator_function_handlers:
 raise SyntaxError(parse_error + " Iterator expression must be one of "
 "the supported functions: " +
 str(iterator_function_handlers.keys()))
 if (getattr(iterator, 'starargs', None) is not None or
 getattr(iterator, 'kwargs', None) is not None):
 raise SyntaxError(parse_error + " Star arguments not supported.")
 args = []
 for argnode in iterator.args:
 args.append(nr.render_node(argnode))
 keywords = {}
 for kwdnode in iterator.keywords:
 keywords[kwdnode.arg] = nr.render_node(kwdnode.value)
 try:
 iterator_handler = iterator_function_handlers[iterator_funcname]
 iterator_kwds = iterator_handler(*args,**keywords)
 except SyntaxError as exc:
 raise SyntaxError(parse_error + " " + exc.msg)
 if len(generator.ifs) == 0:
 condition = ast.parse('True', mode='eval').body
 elif len(generator.ifs) > 1:
 raise SyntaxError(parse_error + " Generator must have at most one if "
 "statement.")
 else:
 condition = generator.ifs[0]
 parsed = {
 'original_expression': expr,
 'element': nr.render_node(element),
 'iteration_variable': iteration_variable,
 'iterator_func': iterator_funcname,
 'iterator_kwds': iterator_kwds,
 'if_expression': nr.render_node(condition),
 }
 return parsed

if __name__=='__main__':
 for parsed in [
 parse_synapse_generator('k for k in sample(0, N, p=p) if abs(i-k)<10'),
 parse_synapse_generator('k for k in sample(0, N, size=5) if abs(i-k)<10'),
 parse_synapse_generator('k+1 for k in range(i-100, i+100, 2)'),
]:
 print 'PARSED:'
 for k, v in parsed.items():
 print ' '+k+': '+str(v)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/brian2/input/poissoninput.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.input.poissoninput

'''
Implementation of `PoissonInput`.
'''
from .binomial import BinomialFunction

from brian2.core.variables import Variables
from brian2.groups.group import CodeRunner
from brian2.units.fundamentalunits import (check_units, have_same_dimensions,
 get_unit, Quantity,
 DimensionMismatchError)
from brian2.units.stdunits import Hz

__all__ = ['PoissonInput']

[docs]class PoissonInput(CodeRunner):
 '''
 PoissonInput(target, target_var, N, rate, weight, when='synapses', order=0)

 Adds independent Poisson input to a target variable of a `Group`. For large
 numbers of inputs, this is much more efficient than creating a
 `PoissonGroup`. The synaptic events are generated randomly during the
 simulation and are not preloaded and stored in memory. All the inputs must
 target the same variable, have the same frequency and same synaptic weight.
 All neurons in the target `Group` receive independent realizations of
 Poisson spike trains.

 Parameters

 target : `Group`
 The group that is targeted by this input.
 target_var : str
 The variable of `target` that is targeted by this input.
 N : int
 The number of inputs
 rate : `Quantity`
 The rate of each of the inputs
 weight : str or `Quantity`
 Either a string expression (that can be interpreted in the context of
 `target`) or a `Quantity` that will be added for every event to
 the `target_var` of `target`. The unit has to match the unit of
 `target_var`
 when : str, optional
 When to update the target variable during a time step. Defaults to
 the `synapses` scheduling slot.
 order : int, optional
 The priority of of the update compared to other operations occurring at
 the same time step and in the same scheduling slot. Defaults to 0.

 '''
 @check_units(N=1, rate=Hz)
 def __init__(self, target, target_var, N, rate, weight, when='synapses',
 order=0):
 if target_var not in target.variables:
 raise KeyError('%s is not a variable of %s' % (target_var, target.name))

 if isinstance(weight, basestring):
 weight = '(%s)' % weight
 else:
 weight_unit = get_unit(weight)
 weight = repr(weight)
 target_unit = target.variables[target_var].unit
 # This will be checked automatically in the abstract code as well
 # but doing an explicit check here allows for a clearer error
 # message
 if not have_same_dimensions(weight_unit, target_unit):
 raise DimensionMismatchError(('The provided weight does not '
 'have the same unit as the '
 'target variable "%s"') % target_var,
 weight_unit.dim,
 target_unit.dim)
 self._N = N
 self._rate = rate
 binomial_sampling = BinomialFunction(N, rate*target.clock.dt,
 name='poissoninput_binomial*')

 code = '{targetvar} += {binomial}()*{weight}'.format(targetvar=target_var,
 binomial=binomial_sampling.name,
 weight=weight)
 self._stored_dt = target.dt_[:] # make a copy
 # FIXME: we need an explicit reference here for on-the-fly subgroups
 # For example: PoissonInput(group[:N], ...)
 self._group = target
 CodeRunner.__init__(self,
 group=target,
 template='stateupdate',
 code=code,
 user_code='',
 when=when,
 order=order,
 name='poissoninput*',
 clock=target.clock
)
 self.variables = Variables(self)
 self.variables._add_variable(binomial_sampling.name, binomial_sampling)

 rate = property(fget=lambda self: self._rate,
 doc='The rate of each input')
 N = property(fget=lambda self: self._N,
 doc='The number of inputs')

[docs] def before_run(self, run_namespace):
 if self._group.dt_ != self._stored_dt:
 raise NotImplementedError('The dt used for simulating %s changed '
 'after the PoissonInput source was '
 'created.' % self.group.name)
 CodeRunner.before_run(self, run_namespace=run_namespace)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/brian2/stateupdaters/base.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.stateupdaters.base

'''
This module defines the `StateUpdateMethod` class that acts as a base class for
all stateupdaters and allows to register stateupdaters so that it is able to
return a suitable stateupdater object for a given set of equations. This is used
for example in `NeuronGroup` when no state updater is given explicitly.
'''
from abc import abstractmethod, ABCMeta
import collections
import time

from brian2.utils.logger import get_logger

__all__ = ['StateUpdateMethod']

logger = get_logger(__name__)

[docs]class UnsupportedEquationsException(Exception):
 pass

[docs]class StateUpdateMethod(object):
 __metaclass__ = ABCMeta

 #: A dictionary mapping state updater names to `StateUpdateMethod` objects
 stateupdaters = dict()

 @abstractmethod
[docs] def __call__(self, equations, variables=None):
 '''
 Generate abstract code from equations. The method also gets the
 the variables because some state updaters have to check whether
 variable names reflect other state variables (which can change from
 timestep to timestep) or are external values (which stay constant during
 a run) For convenience, this arguments are optional -- this allows to
 directly see what code a state updater generates for a set of equations
 by simply writing ``euler(eqs)``, for example.

 Parameters

 equations : `Equations`
 The model equations.
 variables : dict, optional
 The `Variable` objects for the model variables.

 Returns

 code : str
 The abstract code performing a state update step.
 '''
 pass

 @staticmethod
[docs] def register(name, stateupdater):
 '''
 Register a state updater. Registered state updaters can be referred to
 via their name.

 Parameters

 name : str
 A short name for the state updater (e.g. `'euler'`)
 stateupdater : `StateUpdaterMethod`
 The state updater object, e.g. an `ExplicitStateUpdater`.
 '''

 # only deal with lower case names -- we don't want to have 'Euler' and
 # 'euler', for example
 name = name.lower()
 if name in StateUpdateMethod.stateupdaters:
 raise ValueError(('A stateupdater with the name "%s" '
 'has already been registered') % name)

 if not isinstance(stateupdater, StateUpdateMethod):
 raise ValueError(('Given stateupdater of type %s does not seem to '
 'be a valid stateupdater.' % str(type(stateupdater))))

 StateUpdateMethod.stateupdaters[name] = stateupdater

 @staticmethod
[docs] def apply_stateupdater(equations, variables, method, group_name=None):
 '''
 Applies a given state updater to equations. If a `method` is given, the
 state updater with the given name is used or if is a callable, then it
 is used directly. If a `method` is a list of names, all the
 methods will be tried until one that doesn't raise an
 `UnsupportedEquationsException` is found.

 Parameters

 equations : `Equations`
 The model equations.
 variables : `dict`
 The dictionary of `Variable` objects, describing the internal
 model variables.
 method : {callable, str, list of str}
 A callable usable as a state updater, the name of a registered
 state updater or a list of names of state updaters.

 Returns

 abstract_code : str
 The code integrating the given equations.
 '''
 if (isinstance(method, collections.Iterable) and
 not isinstance(method, basestring)):
 the_method = None
 start_time = time.time()
 for one_method in method:
 try:
 one_method_start_time = time.time()
 code = StateUpdateMethod.apply_stateupdater(equations,
 variables,
 one_method,
 group_name=group_name)
 the_method = one_method
 one_method_time = time.time() - one_method_start_time
 break
 except UnsupportedEquationsException:
 pass
 except TypeError:
 raise TypeError(('Each element in the list of methods has '
 'to be a string or a callable, got %s.')
 % type(one_method))
 total_time = time.time() - start_time
 if the_method is None:
 raise ValueError(('No stateupdater that is suitable for the '
 'given equations has been found.'))

 # If only one method was tried
 if method[0] == the_method:
 timing = 'took %.2fs' % one_method_time
 else:
 timing = ('took %.2fs, trying other methods took '
 '%.2fs') % (one_method_time,
 total_time-one_method_time)

 if group_name is not None:
 msg_text = ("No numerical integration method specified for group "
 "'{group_name}', using method '{method}' ({timing}).")
 else:
 msg_text = ("No numerical integration method specified, "
 "using method '{method}' ({timing}).")
 logger.info(msg_text.format(group_name=group_name,
 method=the_method,
 timing=timing), 'method_choice')
 return code
 else:
 if hasattr(method, '__call__'):
 # if this is a standard state updater, i.e. if it has a
 # can_integrate method, check this method and raise a warning if it
 # claims not to be applicable.
 stateupdater = method
 method = getattr(stateupdater, '__name__', repr(stateupdater)) # For logging, get a nicer name
 elif isinstance(method, basestring):
 method = method.lower() # normalize name to lower case
 stateupdater = StateUpdateMethod.stateupdaters.get(method, None)
 if stateupdater is None:
 raise ValueError('No state updater with the name "%s" '
 'is known' % method)
 else:
 raise TypeError(('method argument has to be a string, a '
 'callable, or an iterable of such objects. '
 'Got %s') % type(method))
 start_time = time.time()
 code = stateupdater(equations, variables)
 method_time = time.time() - start_time
 timing = 'took %.2fs' % method_time
 if group_name is not None:
 logger.debug(('Group {group_name}: using numerical integration '
 'method {method} ({timing})').format(group_name=group_name,
 method=method,
 timing=timing),
 'method_choice')
 else:
 logger.debug(('Using numerical integration method: {method} '
 '({timing})').format(method=method,
 timing=timing),
 'method_choice')

 return code

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/brian2/parsing/functions.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.parsing.functions

import ast
import inspect

from brian2.utils.stringtools import deindent, indent, get_identifiers

from rendering import NodeRenderer

__all__ = ['AbstractCodeFunction',
 'abstract_code_from_function',
 'extract_abstract_code_functions',
 'substitute_abstract_code_functions',
]

[docs]class AbstractCodeFunction(object):
 '''
 The information defining an abstract code function

 Has attributes corresponding to initialisation parameters

 Parameters

 name : str
 The function name.
 args : list of str
 The arguments to the function.
 code : str
 The abstract code string consisting of the body of the function less
 the return statement.
 return_expr : str or None
 The expression returned, or None if there is nothing returned.
 '''
 def __init__(self, name, args, code, return_expr):
 self.name = name
 self.args = args
 self.code = code
 self.return_expr = return_expr
 def __str__(self):
 s = 'def %s(%s):\n%s\n return %s\n' % (self.name,
 ', '.join(self.args),
 indent(self.code),
 self.return_expr)
 return s
 __repr__ = __str__

[docs]def abstract_code_from_function(func):
 '''
 Converts the body of the function to abstract code

 Parameters

 func : function, str or ast.FunctionDef
 The function object to convert. Note that the arguments to the
 function are ignored.

 Returns

 func : AbstractCodeFunction
 The corresponding abstract code function

 Raises

 SyntaxError
 If unsupported features are used such as if statements or indexing.
 '''
 if callable(func):
 code = deindent(inspect.getsource(func))
 funcnode = ast.parse(code, mode='exec').body[0]
 elif isinstance(func, str):
 funcnode = ast.parse(func, mode='exec').body[0]
 elif func.__class__ is ast.FunctionDef:
 funcnode = func
 else:
 raise TypeError("Unsupported function type")

 if funcnode.args.vararg is not None:
 raise SyntaxError("No support for variable number of arguments")
 if funcnode.args.kwarg is not None:
 raise SyntaxError("No support for arbitrary keyword arguments")
 if len(funcnode.args.defaults):
 raise SyntaxError("No support for default values in functions")

 nodes = funcnode.body
 nr = NodeRenderer()
 lines = []
 return_expr = None
 for node in nodes:
 if node.__class__ is ast.Return:
 return_expr = nr.render_node(node.value)
 break
 else:
 lines.append(nr.render_node(node))
 abstract_code = '\n'.join(lines)
 try:
 # Python 2
 args = [arg.id for arg in funcnode.args.args]
 except AttributeError:
 # Python 3
 args = [arg.arg for arg in funcnode.args.args]
 name = funcnode.name
 return AbstractCodeFunction(name, args, abstract_code, return_expr)

[docs]def extract_abstract_code_functions(code):
 '''
 Returns a set of abstract code functions from function definitions.

 Returns all functions defined at the top level and ignores any other
 code in the string.

 Parameters

 code : str
 The code string defining some functions.

 Returns

 funcs : dict
 A mapping ``(name, func)`` for ``func`` an `AbstractCodeFunction`.
 '''
 code = deindent(code)
 nodes = ast.parse(code, mode='exec').body
 funcs = {}
 for node in nodes:
 if node.__class__ is ast.FunctionDef:
 func = abstract_code_from_function(node)
 funcs[func.name] = func
 return funcs

[docs]class VarRewriter(ast.NodeTransformer):
 '''
 Rewrites all variable names in names by prepending pre
 '''
 def __init__(self, pre):
 self.pre = pre
[docs] def visit_Name(self, node):
 return ast.Name(id=self.pre+node.id, ctx=node.ctx)

[docs] def visit_Call(self, node):
 args = [self.visit(arg) for arg in node.args]
 return ast.Call(func=ast.Name(id=node.func.id, ctx=ast.Load()),
 args=args, keywords=[], starargs=None, kwargs=None)

[docs]class FunctionRewriter(ast.NodeTransformer):
 '''
 Inlines a function call using temporary variables

 numcalls is the number of times the function rewriter has been called so
 far, this is used to make sure that when recursively inlining there is no
 name aliasing. The substitute_abstract_code_functions ensures that this is
 kept up to date between recursive runs.

 The pre attribute is the set of lines to be inserted above the currently
 being processed line, i.e. the inline code.

 The visit method returns the current line processed so that the function
 call is replaced with the output of the inlining.
 '''
 def __init__(self, func, numcalls=0):
 self.func = func
 self.numcalls = numcalls
 self.pre = []
 self.suspend = False
[docs] def visit_Call(self, node):
 # we suspend operations during an inlining operation, then resume
 # afterwards, see below, so we only ever try to expand one inline
 # function call at a time, i.e. no f(f(x)). This case is handled
 # by the recursion.
 if self.suspend:
 return node
 # We only work with the function we're provided
 if node.func.id!=self.func.name:
 return node
 # Suspend while processing arguments (no recursion)
 self.suspend = True
 args = [self.visit(arg) for arg in node.args]
 self.suspend = False
 # The basename is used for function-local variables
 basename = '_inline_'+self.func.name+'_'+str(self.numcalls)
 # Assign all the function-local variables
 for argname, arg in zip(self.func.args, args):
 newpre = ast.Assign(targets=[ast.Name(id='%s_%s'%(basename, argname),
 ctx=ast.Store())],
 value=arg)
 self.pre.append(newpre)
 # Rewrite the lines of code of the function using the names defined
 # above
 vr = VarRewriter(basename+'_')
 for funcline in ast.parse(self.func.code).body:
 self.pre.append(vr.visit(funcline))
 # And rewrite the return expression
 return_expr = vr.visit(ast.parse(self.func.return_expr, mode='eval').body)
 self.pre.append(ast.Assign(targets=[ast.Name(id=basename,
 ctx=ast.Store())],
 value=return_expr))
 # Finally we replace the function call with the output of the inlining
 newnode = ast.Name(id=basename)
 self.numcalls += 1
 return newnode

[docs]def substitute_abstract_code_functions(code, funcs):
 '''
 Performs inline substitution of all the functions in the code

 Parameters

 code : str
 The abstract code to make inline substitutions into.
 funcs : list, dict or set of AbstractCodeFunction
 The function substitutions to use, note in the case of a dict, the
 keys are ignored and the function name is used.

 Returns

 code : str
 The code with inline substitutions performed.
 '''
 if isinstance(funcs, (list, set)):
 newfuncs = dict()
 for f in funcs:
 newfuncs[f.name] = f
 funcs = newfuncs

 code = deindent(code)
 lines = ast.parse(code, mode='exec').body

 # This is a slightly nasty hack, but basically we just check by looking at
 # the existing identifiers how many inline operations have already been
 # performed by previous calls to this function
 ids = get_identifiers(code)
 funcstarts = {}
 for func in funcs.values():
 subids = set([id for id in ids if id.startswith('_inline_'+func.name+'_')])
 subids = set([id.replace('_inline_'+func.name+'_', '') for id in subids])
 alli = []
 for subid in subids:
 p = subid.find('_')
 if p>0:
 subid = subid[:p]
 i = int(subid)
 alli.append(i)
 if len(alli)==0:
 i = 0
 else:
 i = max(alli)+1
 funcstarts[func.name] = i

 # Now we rewrite all the lines, replacing each line with a sequence of
 # lines performing the inlining
 newlines = []
 for line in lines:
 for func in funcs.values():
 rw = FunctionRewriter(func, funcstarts[func.name])
 line = rw.visit(line)
 newlines.extend(rw.pre)
 funcstarts[func.name] = rw.numcalls
 newlines.append(line)

 # Now we render to a code string
 nr = NodeRenderer()
 newcode = '\n'.join(nr.render_node(line) for line in newlines)

 # We recurse until no changes in the code to ensure that all functions
 # are expanded if one function refers to another, etc.
 if newcode==code:
 return newcode
 else:
 return substitute_abstract_code_functions(newcode, funcs)

if __name__=='__main__':
 if 1:
 def f(x):
 y = x*x
 return y
 def g(x):
 return f(x)+1
 code = '''
 z = f(x)
 z = f(x)+f(y)
 w = f(z)
 h = f(f(w))
 p = g(g(x))
 '''
 funcs = [abstract_code_from_function(f),
 abstract_code_from_function(g),
]
 print substitute_abstract_code_functions(code, funcs)
 if 0:
 code = '''
 def f(x):
 return x*x
 def g(V):
 V += 1
 '''
 funcs = extract_abstract_code_functions(code)
 for k, v in funcs.items():
 print v
 if 0:
 def f(V, w):
 V = w
 V += x
 x = y*z
 return x+y
 print abstract_code_from_function(f)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/brian2/parsing/dependencies.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.parsing.dependencies

import ast

from brian2.utils.stringtools import deindent
from collections import namedtuple

__all__ = ['abstract_code_dependencies']

[docs]def get_read_write_funcs(parsed_code):
 allids = set([])
 read = set([])
 write = set([])
 funcs = set([])
 for node in ast.walk(parsed_code):
 if node.__class__ is ast.Name:
 allids.add(node.id)
 if node.ctx.__class__ is ast.Store:
 write.add(node.id)
 elif node.ctx.__class__ is ast.Load:
 read.add(node.id)
 else:
 raise SyntaxError
 elif node.__class__ is ast.Call:
 funcs.add(node.func.id)

 read = read-funcs

 # check that there's no funky stuff going on with functions
 if funcs.intersection(write):
 raise SyntaxError("Cannot assign to functions in abstract code")

 return allids, read, write, funcs

[docs]def abstract_code_dependencies(code, known_vars=None, known_funcs=None):
 '''
 Analyses identifiers used in abstract code blocks

 Parameters

 code : str
 The abstract code block.
 known_vars : set
 The set of known variable names.
 known_funcs : set
 The set of known function names.

 Returns

 results : namedtuple with the following fields
 ``all``
 The set of all identifiers that appear in this code block,
 including functions.
 ``read``
 The set of values that are read, excluding functions.
 ``write``
 The set of all values that are written to.
 ``funcs``
 The set of all function names.
 ``known_all``
 The set of all identifiers that appear in this code block and
 are known.
 ``known_read``
 The set of known values that are read, excluding functions.
 ``known_write``
 The set of known values that are written to.
 ``known_funcs``
 The set of known functions that are used.
 ``unknown_read``
 The set of all unknown variables whose values are read. Equal
 to ``read-known_vars``.
 ``unknown_write``
 The set of all unknown variables written to. Equal to
 ``write-known_vars``.
 ``unknown_funcs``
 The set of all unknown function names, equal to
 ``funcs-known_funcs``.
 ``undefined_read``
 The set of all unknown variables whose values are read before they
 are written to. If this set is nonempty it usually indicates an
 error, since a variable that is read should either have been
 defined in the code block (in which case it will appear in
 ``newly_defined``) or already be known.
 ``newly_defined``
 The set of all variable names which are newly defined in this
 abstract code block.
 '''
 if known_vars is None:
 known_vars = set([])
 if known_funcs is None:
 known_funcs = set([])
 if not isinstance(known_vars, set):
 known_vars = set(known_vars)
 if not isinstance(known_funcs, set):
 known_funcs = set(known_funcs)

 code = deindent(code, docstring=True)
 parsed_code = ast.parse(code, mode='exec')

 # Get the list of all variables that are read from and written to,
 # ignoring the order
 allids, read, write, funcs = get_read_write_funcs(parsed_code)

 # Now check if there are any values that are unknown and read before
 # they are written to
 defined = known_vars.copy()
 newly_defined = set([])
 undefined_read = set([])
 for line in parsed_code.body:
 _, cur_read, cur_write, _ = get_read_write_funcs(line)
 undef = cur_read-defined
 undefined_read |= undef
 newly_defined |= (cur_write-defined)-undefined_read
 defined |= cur_write

 # Return the results as a named tuple
 results = dict(
 all=allids,
 read=read,
 write=write,
 funcs=funcs,
 known_all=allids.intersection(known_vars.union(known_funcs)),
 known_read=read.intersection(known_vars),
 known_write=write.intersection(known_vars),
 known_funcs=funcs.intersection(known_funcs),
 unknown_read=read-known_vars,
 unknown_write=write-known_vars,
 unknown_funcs=funcs-known_funcs,
 undefined_read=undefined_read,
 newly_defined=newly_defined,
)
 return namedtuple('AbstractCodeDependencies', results.keys())(**results)

if __name__=='__main__':
 code = '''
 x = y+z
 a = f(b)
 '''
 known_vars = {'y', 'z'}
 print deindent(code)
 print 'known_vars:', known_vars
 print
 r = abstract_code_dependencies(code, known_vars)
 for k, v in r.__dict__.items():
 print k+':', ', '.join(list(v))

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/brian2/parsing/statements.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.parsing.statements

from pyparsing import (CharsNotIn, Optional, Suppress, Word, Regex,
 ParseException, alphas, nums)

VARIABLE = Word(alphas + '_',
 alphas + nums + '_').setResultsName('variable')

OP = Regex(r'(\+|\-|*|/|//|%|**|>>|<<|&|\^|\|)?=').setResultsName('operation')
EXPR = CharsNotIn('#').setResultsName('expression')
COMMENT = CharsNotIn('#').setResultsName('comment')
STATEMENT = VARIABLE + OP + EXPR + Optional(Suppress('#') + COMMENT)

[docs]def parse_statement(code):
 '''
 Parses a single line of code into "var op expr".

 Parameters

 code : str
 A string containing a single statement of the form
 ``var op expr # comment``, where the ``# comment`` part is optional.

 Returns

 var, op, expr, comment : str, str, str, str
 The four parts of the statement.

 Examples

 >>> parse_statement('v = -65*mV # reset the membrane potential')
 ('v', '=', '-65*mV', 'reset the membrane potential')
 >>> parse_statement('v += dt*(-v/tau)')
 ('v', '+=', 'dt*(-v/tau)', '')
 '''

 try:
 parsed = STATEMENT.parseString(code, parseAll=True)
 except ParseException as p_exc:
 raise ValueError('Parsing the statement failed: \n' + str(p_exc.line) +
 '\n' + ' ' * (p_exc.column - 1) + '^\n' + str(p_exc))
 if len(parsed['expression'].strip()) == 0:
 raise ValueError(('Empty expression in the RHS of the statement:'
 '"%s" ') % code)
 return (parsed['variable'].strip(),
 parsed['operation'],
 parsed['expression'].strip(),
 parsed.get('comment', '').strip())

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/brian2/parsing/sympytools.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.parsing.sympytools

'''
Utility functions for parsing expressions and statements.
'''
import re
from collections import Counter

import sympy
from sympy.printing.precedence import precedence
from sympy.printing.str import StrPrinter

from brian2.core.functions import (DEFAULT_FUNCTIONS, DEFAULT_CONSTANTS, log10,
 Function)
from brian2.parsing.rendering import SympyNodeRenderer

[docs]def check_expression_for_multiple_stateful_functions(expr, variables):
 identifiers = re.findall(r'\w+', expr)
 # Don't bother counting if we don't have any duplicates in the first place
 if len(identifiers) == len(set(identifiers)):
 return
 identifier_count = Counter(identifiers)
 for identifier, count in identifier_count.iteritems():
 var = variables.get(identifier, None)
 if count > 1 and isinstance(var, Function) and not var.stateless:
 raise NotImplementedError(('The expression "{expr}" contains '
 'more than one call of {func}, this '
 'is currently not supported since '
 '{func} is a stateful function and '
 'its multiple calls might be '
 'treated incorrectly (e.g.'
 '"rand() - rand()" could be '
 ' simplified to '
 '"0.0").').format(expr=expr,
 func=identifier))

SYMPY_NAMESPACE = None

[docs]def str_to_sympy(expr, variables=None):
 '''
 Parses a string into a sympy expression. There are two reasons for not
 using `sympify` directly: 1) sympify does a ``from sympy import *``,
 adding all functions to its namespace. This leads to issues when trying to
 use sympy function names as variable names. For example, both ``beta`` and
 ``factor`` -- quite reasonable names for variables -- are sympy functions,
 using them as variables would lead to a parsing error. 2) We want to use
 a common syntax across expressions and statements, e.g. we want to allow
 to use `and` (instead of `&`) and function names like `ceil` (instead of
 `ceiling`).

 Parameters

 expr : str
 The string expression to parse.
 variables : dict, optional
 Dictionary mapping variable/function names in the expr to their
 respective `Variable`/`Function` objects.

 Returns

 s_expr
 A sympy expression

 Raises

 SyntaxError
 In case of any problems during parsing.

 Notes

 Parsing is done in two steps: First, the expression is parsed and rendered
 as a new string by `SympyNodeRenderer`, translating function names (e.g.
 `ceil` to `ceiling`) and operator names (e.g. `and` to `&`), all unknown
 names are wrapped in `Symbol(...)` or `Function(...)`. The resulting string
 is then evaluated in the `from sympy import *` namespace.
 '''
 global SYMPY_NAMESPACE # We only evaluate the namespace for sympy once

 if variables is None:
 variables = {}
 check_expression_for_multiple_stateful_functions(expr, variables)
 if SYMPY_NAMESPACE is None:
 SYMPY_NAMESPACE = {}
 exec 'from sympy import *' in SYMPY_NAMESPACE
 # also add the log10 function to the namespace
 SYMPY_NAMESPACE['log10'] = log10
 SYMPY_NAMESPACE['_vectorisation_idx'] = sympy.Symbol('_vectorisation_idx')
 rendered = SympyNodeRenderer().render_expr(expr)

 try:
 s_expr = eval(rendered, SYMPY_NAMESPACE)
 except (TypeError, ValueError, NameError) as ex:
 raise SyntaxError('Error during evaluation of sympy expression: '
 + str(ex))

 return s_expr

[docs]class CustomSympyPrinter(StrPrinter):
 '''
 Printer that overrides the printing of some basic sympy objects. E.g.
 print "a and b" instead of "And(a, b)".
 '''

 def _print_And(self, expr):
 return ' and '.join(['(%s)' % self.doprint(arg) for arg in expr.args])

 def _print_Or(self, expr):
 return ' or '.join(['(%s)' % self.doprint(arg) for arg in expr.args])

 def _print_Not(self, expr):
 if len(expr.args) != 1:
 raise AssertionError('"Not" with %d arguments?' % len(expr.args))
 return 'not (%s)' % self.doprint(expr.args[0])

 def _print_Relational(self, expr):
 return '%s %s %s' % (self.parenthesize(expr.lhs, precedence(expr)),
 self._relationals.get(expr.rel_op) or expr.rel_op,
 self.parenthesize(expr.rhs, precedence(expr)))

 def _print_Function(self, expr):
 # Special workaround for the int function
 if expr.func.__name__ == 'int_':
 return "int(%s)" % self.stringify(expr.args, ", ")
 elif expr.func.__name__ == 'Mod':
 return '((%s)%%(%s))' % (self.doprint(expr.args[0]), self.doprint(expr.args[1]))
 else:
 return expr.func.__name__ + "(%s)" % self.stringify(expr.args, ", ")

PRINTER = CustomSympyPrinter()

[docs]def sympy_to_str(sympy_expr):
 '''
 Converts a sympy expression into a string. This could be as easy as
 ``str(sympy_exp)`` but it is possible that the sympy expression contains
 functions like ``Abs`` (for example, if an expression such as
 ``sqrt(x**2)`` appeared somewhere). We do want to re-translate ``Abs`` into
 ``abs`` in this case.

 Parameters

 sympy_expr : sympy.core.expr.Expr
 The expression that should be converted to a string.

 Returns
 str_expr : str
 A string representing the sympy expression.
 '''

 # replace the standard functions by our names if necessary
 replacements = dict((f.sympy_func, sympy.Function(name)) for
 name, f in DEFAULT_FUNCTIONS.iteritems()
 if f.sympy_func is not None and isinstance(f.sympy_func,
 sympy.FunctionClass)
 and str(f.sympy_func) != name)
 # replace constants with our names as well
 replacements.update(dict((c.sympy_obj, sympy.Symbol(name)) for
 name, c in DEFAULT_CONSTANTS.iteritems()
 if str(c.sympy_obj) != name))

 # Replace _vectorisation_idx by an empty symbol
 replacements[sympy.Symbol('_vectorisation_idx')] = sympy.Symbol('')
 for old, new in replacements.iteritems():
 if sympy_expr.has(old):
 sympy_expr = sympy_expr.subs(old, new)

 return PRINTER.doprint(sympy_expr)

[docs]def replace_constants(sympy_expr, variables=None):
 '''
 Replace constant values in a sympy expression with their numerical value.

 Parameters

 sympy_expr : `sympy.Expr`
 The expression
 variables : dict-like, optional
 Dictionary of `Variable` objects

 Returns

 new_expr : `sympy.Expr`
 Expressions with all constants replaced
 '''
 if variables is None:
 return sympy_expr

 symbols = set([symbol for symbol in sympy_expr.atoms()
 if isinstance(symbol, sympy.Symbol)])
 for symbol in symbols:
 symbol_str = str(symbol)
 if symbol_str in variables:
 var = variables[symbol_str]
 if (getattr(var, 'scalar', False) and
 getattr(var, 'constant', False)):
 # TODO: We should handle variables of other data types better
 float_val = var.get_value()
 sympy_expr = sympy_expr.xreplace({symbol: sympy.Float(float_val)})

 return sympy_expr

[docs]def expression_complexity(expr, complexity=None):
 '''
 Returns the complexity of an expression (either string or sympy)

 The complexity is defined as 1 for each arithmetic operation except divide which is 2,
 and all other operations are 20. This can be overridden using the complexity
 argument.

 Note: calling this on a statement rather than an expression is likely to lead to errors.

 Parameters

 expr: `sympy.Expr` or str
 The expression.
 complexity: None or dict (optional)
 A dictionary mapping expression names to their complexity, to overwrite default behaviour.

 Returns

 complexity: int
 The complexity of the expression.
 '''
 if isinstance(expr, str):
 # we do this because sympy.count_ops doesn't handle inequalities (TODO: handle sympy as well str)
 for op in ['<=', '>=', '==', '<', '>']:
 expr = expr.replace(op, '+')
 # work around bug with rand() and randn() (TODO: improve this)
 expr = expr.replace('rand()', 'rand(0)')
 expr = expr.replace('randn()', 'randn(0)')
 subs = {'ADD':1, 'DIV':2, 'MUL':1, 'SUB':1}
 if complexity is not None:
 subs.update(complexity)
 ops = sympy.count_ops(expr, visual=True)
 for atom in ops.atoms():
 if hasattr(atom, 'name'):
 subs[atom.name] = 20 # unknown operations assumed to have a large cost
 return ops.evalf(subs=subs)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/brian2/parsing/bast.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.parsing.bast

'''
Brian AST representation

This is a standard Python AST representation with additional information added.
'''

import ast
import numpy
from __builtin__ import all as logical_all # defensive programming against numpy import

__all__ = ['brian_ast', 'BrianASTRenderer', 'dtype_hierarchy']

This codifies the idea that operations involving e.g. boolean and integer will end up
as integer. In general the output type will be the max of the hierarchy values here.
dtype_hierarchy = {'boolean': 0,
 'integer': 1,
 'float': 2,
 }
This is just so you can invert from number to string
for tc, i in dtype_hierarchy.items():
 dtype_hierarchy[i] = tc

[docs]def is_boolean(value):
 return isinstance(value, bool)

[docs]def is_integer(value):
 return isinstance(value, (int, numpy.integer))

[docs]def is_float(value):
 return isinstance(value, (float, numpy.float))

[docs]def brian_dtype_from_value(value):
 '''
 Returns 'boolean', 'integer' or 'float'
 '''
 if is_float(value):
 return 'float'
 elif is_integer(value):
 return 'integer'
 elif is_boolean(value):
 return 'boolean'
 raise TypeError("Unknown dtype for value "+str(value))

The following functions are called very often during the optimisation process
so we don't use numpy.issubdtype but instead a precalculated list of all
standard types

bool_dtype =numpy.dtype(numpy.bool)
[docs]def is_boolean_dtype(obj):
 return numpy.dtype(obj) is bool_dtype

integer_dtypes = {numpy.dtype(c) for c in numpy.typecodes['AllInteger']}
[docs]def is_integer_dtype(obj):
 return numpy.dtype(obj) in integer_dtypes

float_dtypes = {numpy.dtype(c) for c in numpy.typecodes['AllFloat']}
[docs]def is_float_dtype(obj):
 return numpy.dtype(obj) in float_dtypes

[docs]def brian_dtype_from_dtype(dtype):
 '''
 Returns 'boolean', 'integer' or 'float'
 '''
 if is_float_dtype(dtype):
 return 'float'
 elif is_integer_dtype(dtype):
 return 'integer'
 elif is_boolean_dtype(dtype):
 return 'boolean'
 raise TypeError("Unknown dtype: "+str(dtype))

[docs]def brian_ast(expr, variables):
 '''
 Returns an AST tree representation with additional information

 Each node will be a standard Python ``ast`` node with the
 following additional attributes:

 ``dtype``
 One of ``'boolean'``, ``'integer'`` or ``'float'``, referring to the data type
 of the value of this node.
 ``scalar``
 Either ``True`` or ``False`` if the node uses any vector-valued variables.
 ``complexity``
 An integer representation of the computational complexity of the node. This
 is a very rough representation used for things like ``2*(x+y)`` is less
 complex than ``2*x+2*y`` and ``exp(x)`` is more complex than ``2*x`` but
 shouldn't be relied on for fine distinctions between expressions.

 Parameters

 expr : str
 The expression to convert into an AST representation
 variables : dict
 The dictionary of `Variable` objects used in the expression.
 '''
 node = ast.parse(expr, mode='eval').body
 renderer = BrianASTRenderer(variables)
 return renderer.render_node(node)

[docs]class BrianASTRenderer(object):
 '''
 This class is modelled after `NodeRenderer` - see there for details.
 '''
 def __init__(self, variables, copy_variables=True):
 if copy_variables:
 self.variables = variables.copy()
 else:
 self.variables = variables

[docs] def render_node(self, node):
 nodename = node.__class__.__name__
 methname = 'render_'+nodename
 if not hasattr(self, methname):
 raise SyntaxError("Unknown syntax: "+nodename)
 return getattr(self, methname)(node)

[docs] def render_NameConstant(self, node):
 if node.value is not True and node.value is not False:
 raise SyntaxError("Unknown NameConstant "+str(node.value))
 # NameConstant only used for True and False and None, and we don't support None
 node.dtype = 'boolean'
 node.scalar = True
 node.complexity = 0
 node.stateless = True
 return node

[docs] def render_Name(self, node):
 node.complexity = 0
 if node.id=='True' or node.id=='False':
 node.dtype = 'boolean'
 node.scalar = True
 elif node.id in self.variables:
 var = self.variables[node.id]
 dtype = var.dtype
 node.dtype = brian_dtype_from_dtype(dtype)
 node.scalar = var.scalar
 else: # don't think we need to handle other names (pi, e, inf)?
 node.dtype = 'float'
 node.scalar = True # I think this assumption is OK, but not certain
 node.stateless = True
 return node

[docs] def render_Num(self, node):
 node.complexity = 0
 node.dtype = brian_dtype_from_value(node.n)
 node.scalar = True
 node.stateless = True
 return node

[docs] def render_Call(self, node):
 if len(node.keywords):
 raise ValueError("Keyword arguments not supported.")
 elif getattr(node, 'starargs', None) is not None:
 raise ValueError("Variable number of arguments not supported")
 elif getattr(node, 'kwargs', None) is not None:
 raise ValueError("Keyword arguments not supported")
 node.args = [self.render_node(subnode) for subnode in node.args]
 node.dtype = 'float' # default dtype
 # Condition for scalarity of function call: stateless and arguments are scalar
 node.scalar = False
 if node.func.id in self.variables:
 funcvar = self.variables[node.func.id]
 # sometimes this attribute doesn't exist, if so assume it's not stateless
 node.stateless = getattr(funcvar, 'stateless', False)
 if node.stateless:
 node.scalar = logical_all(subnode.scalar for subnode in node.args)
 # check that argument types are valid
 node_arg_types = [subnode.dtype for subnode in node.args]
 for subnode, argtype in zip(node.args, funcvar._arg_types):
 if argtype!='any' and argtype!=subnode.dtype:
 raise TypeError("Function %s takes arguments with types %s but "
 "received %s" % (node.func.id, funcvar._arg_types, node_arg_types))
 # compute return type
 return_type = funcvar._return_type
 if return_type=='highest':
 return_type = dtype_hierarchy[max(dtype_hierarchy[nat] for nat in node_arg_types)]
 node.dtype = return_type
 else:
 node.stateless = False
 # we leave node.func because it is an ast.Name object that doesn't have a dtype
 # TODO: variable complexity for function calls?
 node.complexity = 20+sum(subnode.complexity for subnode in node.args)
 return node

[docs] def render_BinOp(self, node):
 node.left = self.render_node(node.left)
 node.right = self.render_node(node.right)
 # TODO: we could capture some syntax errors here, e.g. bool+bool
 # captures, e.g. int+float->float
 newdtype = dtype_hierarchy[max(dtype_hierarchy[subnode.dtype] for subnode in [node.left, node.right])]
 node.dtype = newdtype
 node.scalar = node.left.scalar and node.right.scalar
 node.complexity = 1+node.left.complexity+node.right.complexity
 node.stateless = node.left.stateless and node.right.stateless
 return node

[docs] def render_BoolOp(self, node):
 node.values = [self.render_node(subnode) for subnode in node.values]
 node.dtype = 'boolean'
 for subnode in node.values:
 if subnode.dtype!='boolean':
 raise TypeError("Boolean operator acting on non-booleans")
 node.scalar = logical_all(subnode.scalar for subnode in node.values)
 node.complexity = 1+sum(subnode.complexity for subnode in node.values)
 node.stateless = logical_all(subnode.stateless
 for subnode in node.values)
 return node

[docs] def render_Compare(self, node):
 node.left = self.render_node(node.left)
 node.comparators = [self.render_node(subnode) for subnode in node.comparators]
 node.dtype = 'boolean'
 comparators = [node.left]+node.comparators
 node.scalar = logical_all(subnode.scalar for subnode in comparators)
 node.complexity = 1+sum(subnode.complexity for subnode in comparators)
 node.stateless = node.left.stateless and all(c.stateless
 for c in node.comparators)
 return node

[docs] def render_UnaryOp(self, node):
 node.operand = self.render_node(node.operand)
 node.dtype = node.operand.dtype
 if node.dtype=='boolean' and node.op.__class__.__name__ != 'Not':
 raise TypeError("Unary operator %s does not apply to boolean types" % node.op.__class__.__name__)
 node.scalar = node.operand.scalar
 node.complexity = 1+node.operand.complexity
 node.stateless = node.operand.stateless
 return node

if __name__=='__main__':
 import brian2
 eqs = '''
 x : 1
 y : 1 (shared)
 a : integer
 b : boolean
 c : integer (shared)
 '''
 expr = 'x<3.0+1.0'

 G = brian2.NeuronGroup(2, eqs)
 variables = {}
 variables.update(**brian2.DEFAULT_FUNCTIONS)
 variables.update(**brian2.DEFAULT_CONSTANTS)
 variables.update(**G.variables)
 node = brian_ast(expr, variables)

 print node.dtype, node.scalar, node.complexity

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/brian2/groups/neurongroup.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.groups.neurongroup

'''
This model defines the `NeuronGroup`, the core of most simulations.
'''
import string

import numpy as np
import sympy
from pyparsing import Word

from brian2.codegen.translation import analyse_identifiers
from brian2.core.spikesource import SpikeSource
from brian2.core.variables import (Variables, LinkedVariable,
 DynamicArrayVariable, Subexpression)
from brian2.equations.equations import (Equations, DIFFERENTIAL_EQUATION,
 SUBEXPRESSION, PARAMETER,
 check_subexpressions,
 extract_constant_subexpressions)
from brian2.equations.refractory import add_refractoriness
from brian2.parsing.expressions import (parse_expression_unit,
 is_boolean_expression)
from brian2.stateupdaters.base import StateUpdateMethod
from brian2.units.allunits import second
from brian2.units.fundamentalunits import (Quantity, Unit,
 have_same_dimensions,
 DimensionMismatchError,
 fail_for_dimension_mismatch)
from brian2.utils.logger import get_logger
from brian2.utils.stringtools import get_identifiers
from .group import Group, CodeRunner, get_dtype
from .subgroup import Subgroup

__all__ = ['NeuronGroup']

logger = get_logger(__name__)

IDENTIFIER = Word(string.ascii_letters + '_',
 string.ascii_letters + string.digits + '_').setResultsName('identifier')

def _valid_event_name(event_name):
 '''
 Helper function to check whether a name is a valid name for an event.

 Parameters

 event_name : str
 The name to check

 Returns

 is_valid : bool
 Whether the given name is valid
 '''
 parse_result = list(IDENTIFIER.scanString(event_name))

 # parse_result[0][0][0] refers to the matched string -- this should be the
 # full identifier, if not it is an illegal identifier like "3foo" which only
 # matched on "foo"
 return len(parse_result) == 1 and parse_result[0][0][0] == event_name

def _guess_membrane_potential(equations):
 '''
 Little helper function to guess which variable represents the membrane
 potential. This follows the same logic as in Brian1 but is only used to
 give a suggestion in the error message when a Brian1-style syntax is used
 for threshold or reset.
 '''
 if len(equations) == 1:
 return equations.keys()[0]
 for name, eq in equations.iteritems():
 if name in ['V', 'v', 'Vm', 'vm']:
 return name

 # nothing found
 return None

[docs]class StateUpdater(CodeRunner):
 '''
 The `CodeRunner` that updates the state variables of a `NeuronGroup`
 at every timestep.
 '''
 def __init__(self, group, method):
 self.method_choice = method
 CodeRunner.__init__(self, group,
 'stateupdate',
 code='', # will be set in update_abstract_code
 clock=group.clock,
 when='groups',
 order=group.order,
 name=group.name + '_stateupdater*',
 check_units=False,
 generate_empty_code=False)

 def _get_refractory_code(self, run_namespace):
 ref = self.group._refractory
 if ref is False:
 # No refractoriness
 abstract_code = ''
 elif isinstance(ref, Quantity):
 fail_for_dimension_mismatch(ref, second, ('Refractory period has to '
 'be specified in units '
 'of seconds but got '
 '{value}'),
 value=ref)

 abstract_code = 'not_refractory = (t - lastspike) > %f\n' % ref
 else:
 identifiers = get_identifiers(ref)
 variables = self.group.resolve_all(identifiers,
 run_namespace,
 user_identifiers=identifiers)
 unit = parse_expression_unit(str(ref), variables)
 if have_same_dimensions(unit, second):
 abstract_code = 'not_refractory = (t - lastspike) > %s\n' % ref
 elif have_same_dimensions(unit, Unit(1)):
 if not is_boolean_expression(str(ref), variables):
 raise TypeError(('Refractory expression is dimensionless '
 'but not a boolean value. It needs to '
 'either evaluate to a timespan or to a '
 'boolean value.'))
 # boolean condition
 # we have to be a bit careful here, we can't just use the given
 # condition as it is, because we only want to *leave*
 # refractoriness, based on the condition
 abstract_code = 'not_refractory = not_refractory or not (%s)\n' % ref
 else:
 raise TypeError(('Refractory expression has to evaluate to a '
 'timespan or a boolean value, expression'
 '"%s" has units %s instead') % (ref, unit))
 return abstract_code

[docs] def update_abstract_code(self, run_namespace):

 # Update the not_refractory variable for the refractory period mechanism
 self.abstract_code = self._get_refractory_code(run_namespace=run_namespace)

 # Get the names used in the refractory code
 _, used_known, unknown = analyse_identifiers(self.abstract_code, self.group.variables,
 recursive=True)

 # Get all names used in the equations (and always get "dt")
 names = self.group.equations.names
 external_names = self.group.equations.identifiers | {'dt'}

 variables = self.group.resolve_all(used_known | unknown | names | external_names,
 run_namespace,
 # we don't need to raise any warnings
 # for the user here, warnings will
 # be raised in create_runner_codeobj
 user_identifiers=set())
 if len(self.group.equations.diff_eq_names) > 0:
 self.abstract_code += StateUpdateMethod.apply_stateupdater(self.group.equations,
 variables,
 self.method_choice,
 group_name=self.group.name)
 user_code = '\n'.join(['{var} = {expr}'.format(var=var, expr=expr)
 for var, expr in
 self.group.equations.get_substituted_expressions(variables)])
 self.user_code = user_code

[docs]class SubexpressionUpdater(CodeRunner):
 '''
 The `CodeRunner` that updates the state variables storing the values of
 subexpressions that have been marked as "constant over dt".
 '''
 def __init__(self, group, subexpressions, when='before_start'):
 code_lines = []
 for subexpr in subexpressions.ordered:
 code_lines.append('{} = {}'.format(subexpr.varname,
 subexpr.expr))
 code = '\n'.join(code_lines)
 CodeRunner.__init__(self, group,
 'stateupdate',
 code=code, # will be set in update_abstract_code
 clock=group.clock,
 when=when,
 order=group.order,
 name=group.name + '_subexpression_update*')

[docs]class Thresholder(CodeRunner):
 '''
 The `CodeRunner` that applies the threshold condition to the state
 variables of a `NeuronGroup` at every timestep and sets its ``spikes``
 and ``refractory_until`` attributes.
 '''
 def __init__(self, group, when='thresholds', event='spike'):
 self.event = event
 if group._refractory is False or event != 'spike':
 template_kwds = {'_uses_refractory': False}
 needed_variables = []
 else:
 template_kwds = {'_uses_refractory': True}
 needed_variables=['t', 'not_refractory', 'lastspike']
 # Since this now works for general events not only spikes, we have to
 # pass the information about which variable to use to the template,
 # it can not longer simply refer to "_spikespace"
 eventspace_name = '_{}space'.format(event)
 template_kwds['eventspace_variable'] = group.variables[eventspace_name]
 needed_variables.append(eventspace_name)
 self.variables = Variables(self)
 self.variables.add_auxiliary_variable('_cond', unit=Unit(1),
 dtype=np.bool)
 CodeRunner.__init__(self, group,
 'threshold',
 code='', # will be set in update_abstract_code
 clock=group.clock,
 when=when,
 order=group.order,
 name=group.name+'_thresholder*',
 needed_variables=needed_variables,
 template_kwds=template_kwds)

[docs] def update_abstract_code(self, run_namespace):
 code = self.group.events[self.event]
 # Raise a useful error message when the user used a Brian1 syntax
 if not isinstance(code, basestring):
 if isinstance(code, Quantity):
 t = 'a quantity'
 else:
 t = '%s' % type(code)
 error_msg = 'Threshold condition has to be a string, not %s.' % t
 if self.event == 'spike':
 try:
 vm_var = _guess_membrane_potential(self.group.equations)
 except AttributeError: # not a group with equations...
 vm_var = None
 if vm_var is not None:
 error_msg += " Probably you intended to use '%s > ...'?" % vm_var
 raise TypeError(error_msg)

 self.user_code = '_cond = ' + code

 identifiers = get_identifiers(code)
 variables = self.group.resolve_all(identifiers,
 run_namespace,
 user_identifiers=identifiers)
 if not is_boolean_expression(code, variables):
 raise TypeError(('Threshold condition "%s" is not a boolean '
 'expression') % code)
 if self.group._refractory is False or self.event != 'spike':
 self.abstract_code = '_cond = %s' % code
 else:
 self.abstract_code = '_cond = (%s) and not_refractory' % code

[docs]class Resetter(CodeRunner):
 '''
 The `CodeRunner` that applies the reset statement(s) to the state
 variables of neurons that have spiked in this timestep.
 '''
 def __init__(self, group, when='resets', order=None, event='spike'):
 self.event = event
 # Since this now works for general events not only spikes, we have to
 # pass the information about which variable to use to the template,
 # it can not longer simply refer to "_spikespace"
 eventspace_name = '_{}space'.format(event)
 template_kwds = {'eventspace_variable': group.variables[eventspace_name]}
 needed_variables= [eventspace_name]
 order = order if order is not None else group.order
 CodeRunner.__init__(self, group,
 'reset',
 code='', # will be set in update_abstract_code
 clock=group.clock,
 when=when,
 order=order,
 name=group.name + '_resetter*',
 override_conditional_write=['not_refractory'],
 needed_variables=needed_variables,
 template_kwds=template_kwds)

[docs] def update_abstract_code(self, run_namespace):
 code = self.group.event_codes[self.event]
 # Raise a useful error message when the user used a Brian1 syntax
 if not isinstance(code, basestring):
 if isinstance(code, Quantity):
 t = 'a quantity'
 else:
 t = '%s' % type(code)
 error_msg = 'Reset statement has to be a string, not %s.' % t
 if self.event == 'spike':
 vm_var = _guess_membrane_potential(self.group.equations)
 if vm_var is not None:
 error_msg += " Probably you intended to use '%s = ...'?" % vm_var
 raise TypeError(error_msg)

 self.abstract_code = code

[docs]class NeuronGroup(Group, SpikeSource):
 '''
 A group of neurons.

 Parameters

 N : int
 Number of neurons in the group.
 model : (str, `Equations`)
 The differential equations defining the group
 method : (str, function), optional
 The numerical integration method. Either a string with the name of a
 registered method (e.g. "euler") or a function that receives an
 `Equations` object and returns the corresponding abstract code. If no
 method is specified, a suitable method will be chosen automatically.
 threshold : str, optional
 The condition which produces spikes. Should be a single line boolean
 expression.
 reset : str, optional
 The (possibly multi-line) string with the code to execute on reset.
 refractory : {str, `Quantity`}, optional
 Either the length of the refractory period (e.g. ``2*ms``), a string
 expression that evaluates to the length of the refractory period
 after each spike (e.g. ``'(1 + rand())*ms'``), or a string expression
 evaluating to a boolean value, given the condition under which the
 neuron stays refractory after a spike (e.g. ``'v > -20*mV'``)
 events : dict, optional
 User-defined events in addition to the "spike" event defined by the
 ``threshold``. Has to be a mapping of strings (the event name) to
 strings (the condition) that will be checked.
 namespace: dict, optional
 A dictionary mapping variable/function names to the respective objects.
 If no `namespace` is given, the "implicit" namespace, consisting of
 the local and global namespace surrounding the creation of the class,
 is used.
 dtype : (`dtype`, `dict`), optional
 The `numpy.dtype` that will be used to store the values, or a
 dictionary specifying the type for variable names. If a value is not
 provided for a variable (or no value is provided at all), the preference
 setting `core.default_float_dtype` is used.
 codeobj_class : class, optional
 The `CodeObject` class to run code with.
 dt : `Quantity`, optional
 The time step to be used for the simulation. Cannot be combined with
 the `clock` argument.
 clock : `Clock`, optional
 The update clock to be used. If neither a clock, nor the `dt` argument
 is specified, the `defaultclock` will be used.
 order : int, optional
 The priority of of this group for operations occurring at the same time
 step and in the same scheduling slot. Defaults to 0.
 name : str, optional
 A unique name for the group, otherwise use ``neurongroup_0``, etc.

 Notes

 `NeuronGroup` contains a `StateUpdater`, `Thresholder` and `Resetter`, and
 these are run at the 'groups', 'thresholds' and 'resets' slots (i.e. the
 values of their `when` attribute take these values). The `order`
 attribute will be passed down to the contained objects but can be set
 individually by setting the `order` attribute of the `state_updater`,
 `thresholder` and `resetter` attributes, respectively.
 '''
 add_to_magic_network = True

 def __init__(self, N, model,
 method=('linear', 'euler', 'heun'),
 threshold=None,
 reset=None,
 refractory=False,
 events=None,
 namespace=None,
 dtype=None,
 dt=None,
 clock=None,
 order=0,
 name='neurongroup*',
 codeobj_class=None):
 Group.__init__(self, dt=dt, clock=clock, when='start', order=order,
 name=name)

 self.codeobj_class = codeobj_class

 try:
 self._N = N = int(N)
 except ValueError:
 if isinstance(N, str):
 raise TypeError("First NeuronGroup argument should be size, not equations.")
 raise
 if N < 1:
 raise ValueError("NeuronGroup size should be at least 1, was " + str(N))

 self.start = 0
 self.stop = self._N

 ##### Prepare and validate equations
 if isinstance(model, basestring):
 model = Equations(model)
 if not isinstance(model, Equations):
 raise TypeError(('model has to be a string or an Equations '
 'object, is "%s" instead.') % type(model))

 # Check flags
 model.check_flags({DIFFERENTIAL_EQUATION: ('unless refractory',),
 PARAMETER: ('constant', 'shared', 'linked'),
 SUBEXPRESSION: ('shared',
 'constant over dt')})

 # add refractoriness
 #: The original equations as specified by the user (i.e. without
 #: the multiplied `int(not_refractory)` term for equations marked as
 #: `(unless refractory)`)
 self.user_equations = model
 if refractory is not False:
 model = add_refractoriness(model)
 uses_refractoriness = len(model) and any(
 ['unless refractory' in eq.flags
 for eq in model.itervalues()
 if eq.type == DIFFERENTIAL_EQUATION])

 # Separate subexpressions depending whether they are considered to be
 # constant over a time step or not
 model, constant_over_dt = extract_constant_subexpressions(model)
 self.equations = model

 self._linked_variables = set()
 logger.diagnostic("Creating NeuronGroup of size {self._N}, "
 "equations {self.equations}.".format(self=self))

 if namespace is None:
 namespace = {}
 #: The group-specific namespace
 self.namespace = namespace

 # All of the following will be created in before_run

 #: The refractory condition or timespan
 self._refractory = refractory
 if uses_refractoriness and refractory is False:
 logger.warn('Model equations use the "unless refractory" flag but '
 'no refractory keyword was given.', 'no_refractory')

 #: The state update method selected by the user
 self.method_choice = method

 if events is None:
 events = {}

 if threshold is not None:
 if 'spike' in events:
 raise ValueError(("The NeuronGroup defines both a threshold "
 "and a 'spike' event"))
 events['spike'] = threshold

 # Setup variables
 # Since we have to create _spikespace and possibly other "eventspace"
 # variables, we pass the supported events
 self._create_variables(dtype, events=events.keys())

 #: Events supported by this group
 self.events = events

 #: Code that is triggered on events (e.g. reset)
 self.event_codes = {}

 #: Checks the spike threshold (or abitrary user-defined events)
 self.thresholder = {}

 #: Reset neurons which have spiked (or perform arbitrary actions for
 #: user-defined events)
 self.resetter = {}

 for event_name in events.iterkeys():
 if not isinstance(event_name, basestring):
 raise TypeError(('Keys in the "events" dictionary have to be '
 'strings, not type %s.') % type(event_name))
 if not _valid_event_name(event_name):
 raise TypeError(("The name '%s' cannot be used as an event "
 "name.") % event_name)
 # By default, user-defined events are checked after the threshold
 when = 'thresholds' if event_name == 'spike' else 'after_thresholds'
 # creating a Thresholder will take care of checking the validity
 # of the condition
 thresholder = Thresholder(self, event=event_name, when=when)
 self.thresholder[event_name] = thresholder
 self.contained_objects.append(thresholder)

 if reset is not None:
 self.run_on_event('spike', reset, when='resets')

 #: Performs numerical integration step
 self.state_updater = StateUpdater(self, method)
 self.contained_objects.append(self.state_updater)

 #: Update the "constant over a time step" subexpressions
 self.subexpression_updater = None
 if len(constant_over_dt):
 self.subexpression_updater = SubexpressionUpdater(self,
 constant_over_dt)
 self.contained_objects.append(self.subexpression_updater)

 if refractory is not False:
 # Set the refractoriness information
 self.variables['lastspike'].set_value(-np.inf*second)
 self.variables['not_refractory'].set_value(True)

 # Activate name attribute access
 self._enable_group_attributes()

 @property
 def spikes(self):
 '''
 The spikes returned by the most recent thresholding operation.
 '''
 # Note that we have to directly access the ArrayVariable object here
 # instead of using the Group mechanism by accessing self._spikespace
 # Using the latter would cut _spikespace to the length of the group
 spikespace = self.variables['_spikespace'].get_value()
 return spikespace[:spikespace[-1]]

[docs] def state(self, name, use_units=True, level=0):
 try:
 return Group.state(self, name, use_units=use_units, level=level+1)
 except KeyError as ex:
 if name in self._linked_variables:
 raise TypeError(('Link target for variable %s has not been '
 'set.') % name)
 else:
 raise ex

[docs] def run_on_event(self, event, code, when='after_resets', order=None):
 '''
 Run code triggered by a custom-defined event (see `NeuronGroup`
 documentation for the specification of events).The created `Resetter`
 object will be automatically added to the group, it therefore does not
 need to be added to the network manually. However, a reference to the
 object will be returned, which can be used to later remove it from the
 group or to set it to inactive.

 Parameters

 event : str
 The name of the event that should trigger the code
 code : str
 The code that should be executed
 when : str, optional
 The scheduling slot that should be used to execute the code.
 Defaults to `'after_resets'`.
 order : int, optional
 The order for operations in the same scheduling slot. Defaults to
 the order of the `NeuronGroup`.

 Returns

 obj : `Resetter`
 A reference to the object that will be run.
 '''
 if event not in self.events:
 error_message = "Unknown event '%s'." % event
 if event == 'spike':
 error_message += ' Did you forget to define a threshold?'
 raise ValueError(error_message)
 if event in self.resetter:
 raise ValueError(("Cannot add code for event '%s', code for this "
 "event has already been added.") % event)
 self.event_codes[event] = code
 resetter = Resetter(self, when=when, order=order, event=event)
 self.resetter[event] = resetter
 self.contained_objects.append(resetter)

 return resetter

[docs] def set_event_schedule(self, event, when='after_thresholds', order=None):
 '''
 Change the scheduling slot for checking the condition of an event.

 Parameters

 event : str
 The name of the event for which the scheduling should be changed
 when : str, optional
 The scheduling slot that should be used to check the condition.
 Defaults to `'after_thresholds'`.
 order : int, optional
 The order for operations in the same scheduling slot. Defaults to
 the order of the `NeuronGroup`.
 '''
 if event not in self.thresholder:
 raise ValueError("Unknown event '%s'." % event)
 order = order if order is not None else self.order
 self.thresholder[event].when = when
 self.thresholder[event].order = order

 def __setattr__(self, key, value):
 # attribute access is switched off until this attribute is created by
 # _enable_group_attributes
 if not hasattr(self, '_group_attribute_access_active') or key in self.__dict__:
 object.__setattr__(self, key, value)
 elif key in self._linked_variables:
 if not isinstance(value, LinkedVariable):
 raise ValueError(('Cannot set a linked variable directly, link '
 'it to another variable using "linked_var".'))
 linked_var = value.variable

 if isinstance(linked_var, DynamicArrayVariable):
 raise NotImplementedError(('Linking to variable %s is not '
 'supported, can only link to '
 'state variables of fixed '
 'size.') % linked_var.name)

 eq = self.equations[key]
 if eq.unit != linked_var.unit:
 raise DimensionMismatchError(('Unit of variable %s does not '
 'match its link target %s') % (key,
 linked_var.name))

 if not isinstance(linked_var, Subexpression):
 var_length = len(linked_var)
 else:
 var_length = len(linked_var.owner)

 if value.index is not None:
 try:
 index_array = np.asarray(value.index)
 if not np.issubsctype(index_array.dtype, np.int):
 raise TypeError()
 except TypeError:
 raise TypeError(('The index for a linked variable has '
 'to be an integer array'))
 size = len(index_array)
 source_index = value.group.variables.indices[value.name]
 if source_index not in ('_idx', '0'):
 # we are indexing into an already indexed variable,
 # calculate the indexing into the target variable
 index_array = value.group.variables[source_index].get_value()[index_array]

 if not index_array.ndim == 1 or size != len(self):
 raise TypeError(('Index array for linked variable %s '
 'has to be a one-dimensional array of '
 'length %d, but has shape '
 '%s') % (key,
 len(self),
 str(index_array.shape)))
 if min(index_array) < 0 or max(index_array) >= var_length:
 raise ValueError('Index array for linked variable %s '
 'contains values outside of the valid '
 'range [0, %d[' % (key,
 var_length))
 self.variables.add_array('_%s_indices' % key, unit=Unit(1),
 size=size, dtype=index_array.dtype,
 constant=True, read_only=True,
 values=index_array)
 index = '_%s_indices' % key
 else:
 if linked_var.scalar or (var_length == 1 and self._N != 1):
 index = '0'
 else:
 index = value.group.variables.indices[value.name]
 if index == '_idx':
 target_length = var_length
 else:
 target_length = len(value.group.variables[index])
 # we need a name for the index that does not clash with
 # other names and a reference to the index
 new_index = '_' + value.name + '_index_' + index
 self.variables.add_reference(new_index,
 value.group,
 index)
 index = new_index

 if len(self) != target_length:
 raise ValueError(('Cannot link variable %s to %s, the size of '
 'the target group does not match '
 '(%d != %d). You can provide an indexing '
 'scheme with the "index" keyword to link '
 'groups with different sizes') % (key,
 linked_var.name,
 len(self),
 target_length))

 self.variables.add_reference(key,
 value.group,
 value.name,
 index=index)
 log_msg = ('Setting {target}.{targetvar} as a link to '
 '{source}.{sourcevar}').format(target=self.name,
 targetvar=key,
 source=value.variable.owner.name,
 sourcevar=value.variable.name)
 if index is not None:
 log_msg += '(using "{index}" as index variable)'.format(index=index)
 logger.diagnostic(log_msg)
 else:
 if isinstance(value, LinkedVariable):
 raise TypeError(('Cannot link variable %s, it has to be marked '
 'as a linked variable with "(linked)" in the '
 'model equations.') % key)
 else:
 Group.__setattr__(self, key, value, level=1)

 def __getitem__(self, item):
 if not isinstance(item, slice):
 raise TypeError('Subgroups can only be constructed using slicing syntax')
 start, stop, step = item.indices(self._N)
 if step != 1:
 raise IndexError('Subgroups have to be contiguous')
 if start >= stop:
 raise IndexError('Illegal start/end values for subgroup, %d>=%d' %
 (start, stop))

 return Subgroup(self, start, stop)

 def _create_variables(self, user_dtype, events):
 '''
 Create the variables dictionary for this `NeuronGroup`, containing
 entries for the equation variables and some standard entries.
 '''
 self.variables = Variables(self)
 self.variables.add_constant('N', Unit(1), self._N)

 # Standard variables always present
 for event in events:
 self.variables.add_array('_{}space'.format(event), unit=Unit(1),
 size=self._N+1, dtype=np.int32,
 constant=False)
 # Add the special variable "i" which can be used to refer to the neuron index
 self.variables.add_arange('i', size=self._N, constant=True,
 read_only=True)
 # Add the clock variables
 self.variables.create_clock_variables(self._clock)

 for eq in self.equations.itervalues():
 dtype = get_dtype(eq, user_dtype)

 if eq.type in (DIFFERENTIAL_EQUATION, PARAMETER):
 if 'linked' in eq.flags:
 # 'linked' cannot be combined with other flags
 if not len(eq.flags) == 1:
 raise SyntaxError(('The "linked" flag cannot be '
 'combined with other flags'))
 self._linked_variables.add(eq.varname)
 else:
 constant = 'constant' in eq.flags
 shared = 'shared' in eq.flags
 size = 1 if shared else self._N
 self.variables.add_array(eq.varname, size=size,
 unit=eq.unit, dtype=dtype,
 constant=constant,
 scalar=shared)
 elif eq.type == SUBEXPRESSION:
 self.variables.add_subexpression(eq.varname, unit=eq.unit,
 expr=str(eq.expr),
 dtype=dtype,
 scalar='shared' in eq.flags)
 else:
 raise AssertionError('Unknown type of equation: ' + eq.eq_type)

 # Add the conditional-write attribute for variables with the
 # "unless refractory" flag
 for eq in self.equations.itervalues():
 if eq.type == DIFFERENTIAL_EQUATION and 'unless refractory' in eq.flags:
 not_refractory_var = self.variables['not_refractory']
 self.variables[eq.varname].set_conditional_write(not_refractory_var)

 # Stochastic variables
 for xi in self.equations.stochastic_variables:
 self.variables.add_auxiliary_variable(xi, unit=second**-0.5)

 # Check scalar subexpressions
 for eq in self.equations.itervalues():
 if eq.type == SUBEXPRESSION and 'shared' in eq.flags:
 var = self.variables[eq.varname]
 for identifier in var.identifiers:
 if identifier in self.variables:
 if not self.variables[identifier].scalar:
 raise SyntaxError(('Shared subexpression %s refers '
 'to non-shared variable %s.')
 % (eq.varname, identifier))

[docs] def before_run(self, run_namespace=None):
 # Check units
 self.equations.check_units(self, run_namespace=run_namespace)
 # Check that subexpressions that refer to stateful functions are labeled
 # as "constant over dt"
 check_subexpressions(self, self.equations, run_namespace)

 def _repr_html_(self):
 text = [r'NeuronGroup "%s" with %d neurons.
' % (self.name, self._N)]
 text.append(r'Model:<nr>')
 text.append(sympy.latex(self.equations))

 def add_event_to_text(event):
 if event=='spike':
 event_header = 'Spiking behaviour'
 event_condition = 'Threshold condition'
 event_code = 'Reset statement(s)'
 else:
 event_header = 'Event "%s"' % event
 event_condition = 'Event condition'
 event_code = 'Executed statement(s)'
 condition = self.events[event]
 text.append(r'%s:<ul style="list-style-type: none; margin-top: 0px;">' % event_header)
 text.append(r'<i>%s: </i>' % event_condition)
 text.append('<code>%s</code>' % str(condition))
 statements = self.event_codes.get(event, None)
 if statements is not None:
 text.append(r'<i>%s:</i>' % event_code)
 if '\n' in str(statements):
 text.append('</br>')
 text.append(r'<code>%s</code>' % str(statements))
 text.append('')

 if 'spike' in self.events:
 add_event_to_text('spike')
 for event in self.events:
 if event!='spike':
 add_event_to_text(event)

 return '\n'.join(text)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/brian2/groups/group.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.groups.group

'''
This module defines the `VariableOwner` class, a mix-in class for everything
that saves state variables, e.g. `Clock` or `NeuronGroup`, the class `Group`
for objects that in addition to storing state variables also execute code, i.e.
objects such as `NeuronGroup` or `StateMonitor` but not `Clock`, and finally
`CodeRunner`, a class to run code in the context of a `Group`.
'''
import collections
from collections import OrderedDict
import weakref
import numbers
import inspect

import numpy as np

from brian2.core.base import BrianObject
from brian2.core.names import Nameable
from brian2.core.preferences import prefs
from brian2.core.variables import (Variables, Constant, Variable,
 ArrayVariable, DynamicArrayVariable,
 Subexpression, AuxiliaryVariable)
from brian2.core.functions import Function
from brian2.core.namespace import (get_local_namespace,
 DEFAULT_FUNCTIONS,
 DEFAULT_UNITS,
 DEFAULT_CONSTANTS)
from brian2.codegen.codeobject import create_runner_codeobj
from brian2.codegen.generators.numpy_generator import NumpyCodeGenerator
from brian2.equations.equations import BOOLEAN, INTEGER, FLOAT, Equations
from brian2.units.fundamentalunits import (fail_for_dimension_mismatch, Unit,
 get_unit, DIMENSIONLESS)
from brian2.utils.logger import get_logger
from brian2.utils.stringtools import get_identifiers, SpellChecker
from brian2.importexport.importexport import ImportExport

__all__ = ['Group', 'VariableOwner', 'CodeRunner']

logger = get_logger(__name__)

def _display_value(obj):
 '''
 Helper function for warning messages that display the value of objects. This
 functions returns a nicer representation for symbolic constants and
 functions.

 Parameters

 obj : object
 The object to display

 Returns

 value : str
 A string representation of the object
 '''
 try:
 return repr(obj.get_value())
 except AttributeError:
 pass
 try:
 return repr(obj.value)
 except AttributeError:
 pass
 if isinstance(obj, Function):
 return '<Function>'
 return repr(obj)

def _conflict_warning(message, resolutions):
 '''
 A little helper functions to generate warnings for logging. Specific
 to the `Group._resolve` method and should only be used by it.

 Parameters

 message : str
 The first part of the warning message.
 resolutions : list of str
 A list of (namespace, object) tuples.
 '''
 if len(resolutions) == 0:
 # nothing to warn about
 return
 elif len(resolutions) == 1:
 second_part = ('but the name also refers to a variable in the %s '
 'namespace with value %s.') % (resolutions[0][0],
 _display_value(resolutions[0][1]))
 else:
 second_part = ('but the name also refers to a variable in the following '
 'namespaces: %s.') % (', '.join([r[0]
 for r in resolutions]))

 logger.warn(message + ' ' + second_part,
 'Group.resolve.resolution_conflict', once=True)

[docs]def get_dtype(equation, dtype=None):
 '''
 Helper function to interpret the `dtype` keyword argument in `NeuronGroup`
 etc.

 Parameters

 equation : `SingleEquation`
 The equation for which a dtype should be returned
 dtype : `dtype` or dict, optional
 Either the `dtype` to be used as a default dtype for all float variables
 (instead of the `core.default_float_dtype` preference) or a
 dictionary stating the `dtype` for some variables; all other variables
 will use the preference default

 Returns

 d : `dtype`
 The dtype for the variable defined in `equation`
 '''
 # Check explicitly provided dtype for compatibility with the variable type
 if isinstance(dtype, collections.Mapping):
 if equation.varname in dtype:
 BASIC_TYPES = {BOOLEAN: 'b',
 INTEGER: 'iu',
 FLOAT: 'f'}
 provided_dtype = np.dtype(dtype[equation.varname])
 if not provided_dtype.kind in BASIC_TYPES[equation.var_type]:
 raise TypeError(('Error determining dtype for variable %s: %s '
 'is not a correct type for %s variables') % (equation.varname,
 provided_dtype.name,
 equation.var_type))
 else:
 return dtype[equation.varname]
 else: # continue as if no dtype had been specified at all
 dtype = None

 # Use default dtypes (or a provided standard dtype for floats)
 if equation.var_type == BOOLEAN:
 return np.bool
 elif equation.var_type == INTEGER:
 return prefs['core.default_integer_dtype']
 elif equation.var_type == FLOAT:
 if dtype is not None:
 dtype = np.dtype(dtype)
 if not dtype.kind == 'f':
 raise TypeError(('%s is not a valid floating point '
 'dtype') % dtype)
 return dtype
 else:
 return prefs['core.default_float_dtype']
 else:
 raise ValueError(('Do not know how to determine a dtype for '
 'variable %s of type %s') % (equation.varname,
 equation.var_type))

def _same_value(obj1, obj2):
 '''
 Helper function used during namespace resolution.
 '''
 if obj1 is obj2:
 return True
 try:
 obj1 = obj1.get_value()
 except (AttributeError, TypeError):
 pass

 try:
 obj2 = obj2.get_value()
 except (AttributeError, TypeError):
 pass

 return obj1 is obj2

def _same_function(func1, func2):
 '''
 Helper function, used during namespace resolution for comparing whether to
 functions are the same. This takes care of treating a function and a
 `Function` variables whose `Function.pyfunc` attribute matches as the
 same. This prevents the user from getting spurious warnings when having
 for example a numpy function such as :np:func:`~random.randn` in the local
 namespace, while the ``randn`` symbol in the numpy namespace used for the
 code objects refers to a `RandnFunction` specifier.
 '''
 # use the function itself if it doesn't have a pyfunc attribute
 func1 = getattr(func1, 'pyfunc', func1)
 func2 = getattr(func2, 'pyfunc', func2)

 return func1 is func2

[docs]class Indexing(object):
 '''
 Object responsible for calculating flat index arrays from arbitrary group-
 specific indices. Stores strong references to the necessary variables so
 that basic indexing (i.e. slicing, integer arrays/values, ...) works even
 when the respective `VariableOwner` no longer exists. Note that this object
 does not handle string indexing.
 '''
 def __init__(self, group, default_index='_idx'):
 self.group = weakref.proxy(group)
 self.N = group.variables['N']
 self.default_index = default_index

[docs] def __call__(self, item=slice(None), index_var=None):
 '''
 Return flat indices to index into state variables from arbitrary
 group specific indices. In the default implementation, raises an error
 for multidimensional indices and transforms slices into arrays.

 Parameters

 item : slice, array, int
 The indices to translate.

 Returns

 indices : `numpy.ndarray`
 The flat indices corresponding to the indices given in `item`.

 See Also

 SynapticIndexing
 '''
 if index_var is None:
 index_var = self.default_index

 if hasattr(item, '_indices'):
 item = item._indices()

 if isinstance(item, tuple):
 raise IndexError(('Can only interpret 1-d indices, '
 'got %d dimensions.') % len(item))
 else:
 if isinstance(item, basestring) and item == 'True':
 item = slice(None)
 if isinstance(item, slice):
 if index_var == '0':
 return 0
 if index_var == '_idx':
 start, stop, step = item.indices(int(self.N.get_value()))
 else:
 start, stop, step = item.indices(index_var.size)
 index_array = np.arange(start, stop, step, dtype=np.int32)
 else:
 index_array = np.asarray(item)
 if index_array.dtype == np.bool:
 index_array = np.nonzero(index_array)[0]
 elif not np.issubdtype(index_array.dtype, np.int):
 raise TypeError(('Indexing is only supported for integer '
 'and boolean arrays, not for type '
 '%s' % index_array.dtype))

 if index_var != '_idx':
 try:
 return index_var.get_value()[index_array]
 except IndexError as ex:
 # We try to emulate numpy's indexing semantics here:
 # slices never lead to IndexErrors, instead they return an
 # empty array if they don't match anything
 if isinstance(item, slice):
 return np.array([], dtype=np.int32)
 else:
 raise ex
 else:
 return index_array

[docs]class IndexWrapper(object):
 '''
 Convenience class to allow access to the indices via indexing syntax. This
 allows for example to get all indices for synapses originating from neuron
 10 by writing `synapses.indices[10, :]` instead of
 `synapses._indices.((10, slice(None))`.
 '''
 def __init__(self, group):
 self.group = weakref.proxy(group)
 self.indices = group._indices

 def __getitem__(self, item):
 if isinstance(item, basestring):
 variables = Variables(None)
 variables.add_auxiliary_variable('_indices', unit=Unit(1),
 dtype=np.int32)
 variables.add_auxiliary_variable('_cond', unit=Unit(1),
 dtype=np.bool)

 abstract_code = '_cond = ' + item
 namespace = get_local_namespace(level=1)
 from brian2.devices.device import get_default_codeobject_class
 codeobj = create_runner_codeobj(self.group,
 abstract_code,
 'group_get_indices',
 run_namespace=namespace,
 additional_variables=variables,
 codeobj_class=get_default_codeobject_class('codegen.string_expression_target')
)
 return codeobj()
 else:
 return self.indices(item)

[docs]class VariableOwner(Nameable):
 '''
 Mix-in class for accessing arrays by attribute.

 # TODO: Overwrite the __dir__ method to return the state variables
 # (should make autocompletion work)
 '''
 def _enable_group_attributes(self):
 if not hasattr(self, 'variables'):
 raise ValueError(('Classes derived from VariableOwner need a '
 'variables attribute.'))
 if not 'N' in self.variables:
 raise ValueError('Each VariableOwner needs an "N" variable.')
 if not hasattr(self, 'codeobj_class'):
 self.codeobj_class = None
 if not hasattr(self, '_indices'):
 self._indices = Indexing(self)
 if not hasattr(self, 'indices'):
 self.indices = IndexWrapper(self)
 if not hasattr(self, '_stored_states'):
 self._stored_states = {}
 self._group_attribute_access_active = True

[docs] def state(self, name, use_units=True, level=0):
 '''
 Return the state variable in a way that properly supports indexing in
 the context of this group

 Parameters

 name : str
 The name of the state variable
 use_units : bool, optional
 Whether to use the state variable's unit.
 level : int, optional
 How much farther to go down in the stack to find the namespace.
 Returns

 var : `VariableView` or scalar value
 The state variable's value that can be indexed (for non-scalar
 values).
 '''
 try:
 var = self.variables[name]
 except KeyError:
 raise KeyError("State variable "+name+" not found.")

 if use_units:
 return var.get_addressable_value_with_unit(name=name, group=self)
 else:
 return var.get_addressable_value(name=name, group=self)

 def __getattr__(self, name):
 # We do this because __setattr__ and __getattr__ are not active until
 # _group_attribute_access_active attribute is set, and if it is set,
 # then __getattr__ will not be called. Therefore, if getattr is called
 # with this name, it is because it hasn't been set yet and so this
 # method should raise an AttributeError to agree that it hasn't been
 # called yet.
 if name=='_group_attribute_access_active':
 raise AttributeError
 if not '_group_attribute_access_active' in self.__dict__:
 raise AttributeError
 if (name in self.__getattribute__('__dict__') or
 name in self.__getattribute__('__class__').__dict__):
 # Makes sure that classes can override the "variables" mechanism
 # with instance/class attributes and properties
 return object.__getattribute__(self, name)
 # We want to make sure that accessing variables without units is fast
 # because this is what is used during simulations
 # We do not specifically check for len(name) here, we simply assume
 # that __getattr__ is not called with an empty string (which wouldn't
 # be possible using the normal dot syntax, anyway)
 try:
 if name[-1] == '_':
 name = name[:-1]
 use_units = False
 else:
 use_units = True
 return self.state(name, use_units)

 except KeyError:
 raise AttributeError('No attribute with name ' + name)

 def __setattr__(self, name, val, level=0):
 # attribute access is switched off until this attribute is created by
 # _enable_group_attributes
 if not hasattr(self, '_group_attribute_access_active') or name in self.__dict__:
 object.__setattr__(self, name, val)
 elif (name in self.__getattribute__('__dict__') or
 name in self.__getattribute__('__class__').__dict__):
 # Makes sure that classes can override the "variables" mechanism
 # with instance/class attributes and properties
 return object.__setattr__(self, name, val)
 elif name in self.variables:
 var = self.variables[name]
 if not isinstance(val, basestring):
 if var.unit.dim is DIMENSIONLESS:
 fail_for_dimension_mismatch(val, var.unit,
 ('%s should be set with a '
 'dimensionless value, but got '
 '{value}') % name,
 value=val)
 else:
 fail_for_dimension_mismatch(val, var.unit,
 ('%s should be set with a '
 'value with units %r, but got '
 '{value}') % (name, var.unit),
 value=val)
 if var.read_only:
 raise TypeError('Variable %s is read-only.' % name)
 # Make the call X.var = ... equivalent to X.var[:] = ...
 var.get_addressable_value_with_unit(name, self).set_item(slice(None),
 val,
 level=level+1)
 elif len(name) and name[-1]=='_' and name[:-1] in self.variables:
 # no unit checking
 var = self.variables[name[:-1]]
 if var.read_only:
 raise TypeError('Variable %s is read-only.' % name[:-1])
 # Make the call X.var = ... equivalent to X.var[:] = ...
 var.get_addressable_value(name[:-1], self).set_item(slice(None),
 val,
 level=level+1)
 elif hasattr(self, name) or name.startswith('_'):
 object.__setattr__(self, name, val)
 else:
 # Try to suggest the correct name in case of a typo
 checker = SpellChecker([varname for varname, var in self.variables.iteritems()
 if not (varname.startswith('_') or var.read_only)])
 if name.endswith('_'):
 suffix = '_'
 name = name[:-1]
 else:
 suffix = ''
 error_msg = 'Could not find a state variable with name "%s".' % name
 suggestions = checker.suggest(name)
 if len(suggestions) == 1:
 suggestion, = suggestions
 error_msg += ' Did you mean to write "%s%s"?' % (suggestion,
 suffix)
 elif len(suggestions) > 1:
 error_msg += (' Did you mean to write any of the following: %s ?' %
 (', '.join(['"%s%s"' % (suggestion, suffix)
 for suggestion in suggestions])))
 error_msg += (' Use the add_attribute method if you intend to add '
 'a new attribute to the object.')
 raise AttributeError(error_msg)

[docs] def add_attribute(self, name):
 '''
 Add a new attribute to this group. Using this method instead of simply
 assigning to the new attribute name is necessary because Brian will
 raise an error in that case, to avoid bugs passing unnoticed
 (misspelled state variable name, un-declared state variable, ...).

 Parameters

 name : str
 The name of the new attribute

 Raises

 AttributeError
 If the name already exists as an attribute or a state variable.
 '''
 if name in self.variables:
 raise AttributeError('Cannot add an attribute "%s", it is already '
 'a state variable of this group.' % name)
 if hasattr(self, name):
 raise AttributeError('Cannot add an attribute "%s", it is already '
 'an attribute of this group.' % name)
 object.__setattr__(self, name, None)

[docs] def get_states(self, vars=None, units=True, format='dict',
 subexpressions=False, read_only_variables=True, level=0):
 '''
 Return a copy of the current state variable values. The returned arrays
 are copies of the actual arrays that store the state variable values,
 therefore changing the values in the returned dictionary will not affect
 the state variables.

 Parameters

 vars : list of str, optional
 The names of the variables to extract. If not specified, extract
 all state variables (except for internal variables, i.e. names that
 start with ``'_'``). If the ``subexpressions`` argument is ``True``,
 the current values of all subexpressions are returned as well.
 units : bool, optional
 Whether to include the physical units in the return value. Defaults
 to ``True``.
 format : str, optional
 The output format. Defaults to ``'dict'``.
 subexpressions: bool, optional
 Whether to return subexpressions when no list of variable names
 is given. Defaults to ``False``. This argument is ignored if an
 explicit list of variable names is given in ``vars``.
 read_only_variables : bool, optional
 Whether to return read-only variables (e.g. the number of neurons,
 the time, etc.). Setting it to ``False`` will assure that the
 returned state can later be used with `set_states`. Defaults to
 ``True``.
 level : int, optional
 How much higher to go up the stack to resolve external variables.
 Only relevant if extracting subexpressions that refer to external
 variables.

 Returns

 values : dict or specified format
 The variables specified in ``vars``, in the specified ``format``.

 '''
 if format not in ImportExport.methods:
 raise NotImplementedError("Format '%s' is not supported" % format)
 if vars is None:
 vars = []
 for name, var in self.variables.iteritems():
 if name.startswith('_'):
 continue
 if subexpressions or not isinstance(var, Subexpression):
 if read_only_variables or not getattr(var, 'read_only', False):
 if not isinstance(var, AuxiliaryVariable):
 vars.append(name)
 data = ImportExport.methods[format].export_data(self, vars, units=units, level=level)
 return data

[docs] def set_states(self, values, units=True, format='dict', level=0):
 '''
 Set the state variables.

 Parameters

 values : depends on ``format``
 The values according to ``format``.
 units : bool, optional
 Whether the ``values`` include physical units. Defaults to ``True``.
 format : str, optional
 The format of ``values``. Defaults to ``'dict'``
 level : int, optional
 How much higher to go up the stack to resolve external variables.
 Only relevant when using string expressions to set values.
 '''
 # For the moment, 'dict' is the only supported format -- later this will
 # be made into an extensible system, see github issue #306
 if format not in ImportExport.methods:
 raise NotImplementedError("Format '%s' is not supported" % format)
 ImportExport.methods[format].import_data(self, values, units=units, level=level)

[docs] def check_variable_write(self, variable):
 '''
 Function that can be overwritten to raise an error if writing to a
 variable should not be allowed. Note that this does *not* deal with
 incorrect writes that are general to all kind of variables (incorrect
 units, writing to a read-only variable, etc.). This function is only
 used for type-specific rules, e.g. for raising an error in `Synapses`
 when writing to a synaptic variable before any `~Synapses.connect`
 call.

 By default this function does nothing.

 Parameters

 variable : `Variable`
 The variable that the user attempts to set.
 '''
 pass

 def _full_state(self):
 state = {}
 for var in self.variables.itervalues():
 if not isinstance(var, ArrayVariable):
 continue # we are only interested in arrays
 if var.owner is None or var.owner.name != self.name:
 continue # we only store the state of our own variables

 state[var.name] = (var.get_value().copy(), var.size)

 return state

 def _restore_from_full_state(self, state):
 for var_name, (values, size) in state.iteritems():
 var = self.variables[var_name]
 if isinstance(var, DynamicArrayVariable):
 var.resize(size)
 var.set_value(values)

 def _check_expression_scalar(self, expr, varname, level=0,
 run_namespace=None):
 '''
 Helper function to check that an expression only refers to scalar
 variables, used when setting a scalar variable with a string expression.

 Parameters

 expr : str
 The expression to check.
 varname : str
 The variable that is being set (only used for the error message)
 level : int, optional
 How far to go up in the stack to find the local namespace (if
 `run_namespace` is not set).
 run_namespace : dict-like, optional
 A specific namespace provided for this expression.

 Raises

 ValueError
 If the expression refers to a non-scalar variable.
 '''
 identifiers = get_identifiers(expr)
 referred_variables = self.resolve_all(identifiers,
 run_namespace=run_namespace,
 level=level+1)
 for ref_varname, ref_var in referred_variables.iteritems():
 if not getattr(ref_var, 'scalar', False):
 raise ValueError(('String expression for setting scalar '
 'variable %s refers to %s which is not '
 'scalar.') % (varname, ref_varname))

 def __len__(self):
 return int(self.variables['N'].get_value())

[docs]class Group(VariableOwner, BrianObject):

 def _resolve(self, identifier, run_namespace, user_identifier=True,
 additional_variables=None):
 '''
 Resolve an identifier (i.e. variable, constant or function name) in the
 context of this group. This function will first lookup the name in the
 state variables, then look for a standard function or unit of that
 name and finally look in `Group.namespace` and in `run_namespace`. If
 the latter is not given, it will try to find the variable in the local
 namespace where the original function call took place. See
 :ref:`external-variables`.

 Parameters

 identifiers : str
 The name to look up.
 run_namespace : dict-like, optional
 An additional namespace that is used for variable lookup (if not
 defined, the implicit namespace of local variables is used).
 user_identifier : bool, optional
 Whether this is an identifier that was used by the user (and not
 something automatically generated that the user might not even
 know about). Will be used to determine whether to display a
 warning in the case of namespace clashes. Defaults to ``True``.
 additional_variables : dict-like, optional
 An additional mapping of names to `Variable` objects that will be
 checked before `Group.variables`.

 Returns

 obj : `Variable` or `Function`
 Returns a `Variable` object describing the variable or a `Function`
 object for a function. External variables are represented as
 `Constant` objects

 Raises

 KeyError
 If the `identifier` could not be resolved
 '''
 resolved_internal = None

 if identifier in (additional_variables or {}):
 resolved_internal = additional_variables[identifier]
 elif identifier in getattr(self, 'variables', {}):
 resolved_internal = self.variables[identifier]

 if resolved_internal is not None:
 if not user_identifier:
 return resolved_internal # no need to go further
 # We already found the identifier, but we try to resolve it in the
 # external namespace nevertheless, to report a warning if it is
 # present there as well.
 self._resolve_external(identifier, run_namespace=run_namespace,
 internal_variable=resolved_internal)
 return resolved_internal

 # We did not find the name internally, try to resolve it in the external
 # namespace
 return self._resolve_external(identifier, run_namespace=run_namespace)

[docs] def resolve_all(self, identifiers, run_namespace, user_identifiers=None,
 additional_variables=None):
 '''
 Resolve a list of identifiers. Calls `Group._resolve` for each
 identifier.

 Parameters

 identifiers : iterable of str
 The names to look up.
 run_namespace : dict-like, optional
 An additional namespace that is used for variable lookup (if not
 defined, the implicit namespace of local variables is used).
 user_identifiers : iterable of str, optional
 The names in ``identifiers`` that were provided by the user (i.e.
 are part of user-specified equations, abstract code, etc.). Will
 be used to determine when to issue namespace conflict warnings. If
 not specified, will be assumed to be identical to ``identifiers``.
 additional_variables : dict-like, optional
 An additional mapping of names to `Variable` objects that will be
 checked before `Group.variables`.

 Returns

 variables : dict of `Variable` or `Function`
 A mapping from name to `Variable`/`Function` object for each of the
 names given in `identifiers`

 Raises

 KeyError
 If one of the names in `identifier` cannot be resolved
 '''
 if user_identifiers is None:
 user_identifiers = identifiers
 assert isinstance(run_namespace, collections.Mapping)
 resolved = {}
 for identifier in identifiers:
 resolved[identifier] = self._resolve(identifier,
 user_identifier=identifier in user_identifiers,
 additional_variables=additional_variables,
 run_namespace=run_namespace)
 return resolved

 def _resolve_external(self, identifier, run_namespace, user_identifier=True,
 internal_variable=None):
 '''
 Resolve an external identifier in the context of a `Group`. If the `Group`
 declares an explicit namespace, this namespace is used in addition to the
 standard namespace for units and functions. Additionally, the namespace in
 the `run_namespace` argument (i.e. the namespace provided to `Network.run`)
 is used.

 Parameters

 identifier : str
 The name to resolve.
 group : `Group`
 The group that potentially defines an explicit namespace for looking up
 external names.
 run_namespace : dict
 A namespace (mapping from strings to objects), as provided as an
 argument to the `Network.run` function or returned by
 `get_local_namespace`.
 user_identifier : bool, optional
 Whether this is an identifier that was used by the user (and not
 something automatically generated that the user might not even
 know about). Will be used to determine whether to display a
 warning in the case of namespace clashes. Defaults to ``True``.
 internal_variable : `Variable`, optional
 The internal variable object that corresponds to this name (if any).
 This is used to give warnings if it also corresponds to a variable
 from an external namespace.
 '''
 # We save tuples of (namespace description, referred object) to
 # give meaningful warnings in case of duplicate definitions
 matches = []

 namespaces = OrderedDict()
 # Default namespaces (units and functions)
 namespaces['constants'] = DEFAULT_CONSTANTS
 namespaces['units'] = DEFAULT_UNITS
 namespaces['functions'] = DEFAULT_FUNCTIONS
 if getattr(self, 'namespace', None) is not None:
 namespaces['group-specific'] = self.namespace

 # explicit or implicit run namespace
 namespaces['run'] = run_namespace

 for description, namespace in namespaces.iteritems():
 if identifier in namespace:
 match = namespace[identifier]
 if ((isinstance(match, (numbers.Number,
 np.ndarray,
 np.number,
 Function,
 Variable))) or
 (inspect.isfunction(match) and
 hasattr(match, '_arg_units') and
 hasattr(match, '_return_unit'))
):
 matches.append((description, match))

 if len(matches) == 0:
 # No match at all
 if internal_variable is not None:
 return None
 else:
 raise KeyError(('The identifier "%s" could not be resolved.') %
 (identifier))

 elif len(matches) > 1:
 # Possibly, all matches refer to the same object
 first_obj = matches[0][1]
 found_mismatch = False
 for m in matches:
 if _same_value(m[1], first_obj):
 continue
 if _same_function(m[1], first_obj):
 continue
 try:
 proxy = weakref.proxy(first_obj)
 if m[1] is proxy:
 continue
 except TypeError:
 pass

 # Found a mismatch
 found_mismatch = True
 break

 if found_mismatch and user_identifier and internal_variable is None:
 _conflict_warning(('The name "%s" refers to different objects '
 'in different namespaces used for resolving '
 'names in the context of group "%s". '
 'Will use the object from the %s namespace '
 'with the value %s,') %
 (identifier, getattr(self, 'name',
 '<unknown>'),
 matches[0][0],
 _display_value(first_obj)), matches[1:])

 if internal_variable is not None and user_identifier:
 # Filter out matches that are identical (a typical case being an
 # externally defined "N" with the the number of neurons and a later
 # use of "N" in an expression (which refers to the internal variable
 # storing the number of neurons in the group)
 if isinstance(internal_variable, Constant):
 filtered_matches = []
 for match in matches:
 if not _same_value(match[1], internal_variable):
 filtered_matches.append(match)
 else:
 filtered_matches = matches
 if len(filtered_matches) == 0:
 pass # Nothing to warn about
 else:
 warning_message = ('"{name}" is an internal variable of group '
 '"{group}", but also exists in the ')
 if len(matches) == 1:
 warning_message += ('{namespace} namespace with the value '
 '{value}. ').format(namespace=filtered_matches[0][0],
 value=_display_value(filtered_matches[0][1]))
 else:
 warning_message += ('following namespaces: '
 '{namespaces}. ').format(namespaces=' ,'.join(match[0]
 for match in filtered_matches))
 warning_message += 'The internal variable will be used.'
 logger.warn(warning_message.format(name=identifier,
 group=self.name),
 'Group.resolve.resolution_conflict', once=True)

 if internal_variable is not None:
 return None # We were only interested in the warnings above

 # use the first match (according to resolution order)
 resolved = matches[0][1]

 # Replace pure Python functions by a Functions object
 if callable(resolved) and not isinstance(resolved, Function):
 resolved = Function(resolved,
 arg_units=getattr(resolved, '_arg_units', None),
 return_unit=getattr(resolved, '_return_unit', None),
 stateless=getattr(resolved, 'stateless', False))

 if not isinstance(resolved, (Function, Variable)):
 # Wrap the value in a Constant object
 unit = get_unit(resolved)
 value = np.asarray(resolved)
 if value.shape != ():
 raise KeyError('Variable %s was found in the namespace, but is'
 ' not a scalar value' % identifier)
 resolved = Constant(identifier, unit=unit, value=value)

 return resolved

[docs] def runner(self, *args, **kwds):
 raise AttributeError("The 'runner' method has been renamed to "
 "'run_regularly'.")

[docs] def custom_operation(self, *args, **kwds):
 raise AttributeError("The 'custom_operation' method has been renamed "
 "to 'run_regularly'.")

[docs] def run_regularly(self, code, dt=None, clock=None, when='start',
 order=0, name=None, codeobj_class=None):
 '''
 Run abstract code in the group's namespace. The created `CodeRunner`
 object will be automatically added to the group, it therefore does not
 need to be added to the network manually. However, a reference to the
 object will be returned, which can be used to later remove it from the
 group or to set it to inactive.

 Parameters

 code : str
 The abstract code to run.
 dt : `Quantity`, optional
 The time step to use for this custom operation. Cannot be combined
 with the `clock` argument.
 clock : `Clock`, optional
 The update clock to use for this operation. If neither a clock nor
 the `dt` argument is specified, defaults to the clock of the group.
 when : str, optional
 When to run within a time step, defaults to the ``'start'`` slot.
 name : str, optional
 A unique name, if non is given the name of the group appended with
 'run_regularly', 'run_regularly_1', etc. will be used. If a
 name is given explicitly, it will be used as given (i.e. the group
 name will not be prepended automatically).
 codeobj_class : class, optional
 The `CodeObject` class to run code with. If not specified, defaults
 to the `group`'s ``codeobj_class`` attribute.

 Returns

 obj : `CodeRunner`
 A reference to the object that will be run.
 '''
 if name is None:
 name = self.name + '_run_regularly*'

 if dt is None and clock is None:
 clock = self._clock

 runner = CodeRunner(self, 'stateupdate', code=code, name=name,
 dt=dt, clock=clock, when=when, order=order,
 codeobj_class=codeobj_class)
 self.contained_objects.append(runner)
 return runner

 def _check_for_invalid_states(self):
 '''
 Checks if any state variables updated by differential equations have
 invalid values, and logs a warning if so.
 '''
 equations = getattr(self, 'equations', None)
 if not isinstance(equations, Equations):
 return
 for varname in equations.diff_eq_names:
 self._check_for_invalid_values(varname, self.state(varname,
 use_units=False))

 def _check_for_invalid_values(self, k, v):
 '''
 Checks if variable named k value v has invalid values, and logs a
 warning if so.
 '''
 v = np.asarray(v)
 if np.isnan(v).any() or (np.abs(v) > 1e50).any():
 logger.warn(("{name}'s variable '{k}' has NaN, very large values, "
 "or encountered an error in numerical integration. "
 "This is usually a sign that an unstable or invalid "
 "integration method was "
 "chosen.").format(name=self.name,
 k=k),
 name_suffix="invalid_values", once=True)

[docs]class CodeRunner(BrianObject):
 '''
 A "code runner" that runs a `CodeObject` every timestep and keeps a
 reference to the `Group`. Used in `NeuronGroup` for `Thresholder`,
 `Resetter` and `StateUpdater`.

 On creation, we try to run the before_run method with an empty additional
 namespace (see `Network.before_run`). If the namespace is already complete
 this might catch unit mismatches.

 Parameters

 group : `Group`
 The group to which this object belongs.
 template : `Template`
 The template that should be used for code generation
 code : str, optional
 The abstract code that should be executed every time step. The
 `update_abstract_code` method might generate this code dynamically
 before every run instead.
 dt : `Quantity`, optional
 The time step to be used for the simulation. Cannot be combined with
 the `clock` argument.
 user_code : str, optional
 The abstract code as specified by the user, i.e. without any additions
 of internal code that the user not necessarily knows about. This will
 be used for warnings and error messages.
 clock : `Clock`, optional
 The update clock to be used. If neither a clock, nor the `dt` argument
 is specified, the `defaultclock` will be used.
 when : str, optional
 In which scheduling slot to execute the operation during a time step.
 Defaults to ``'start'``.
 order : int, optional
 The priority of this operation for operations occurring at the same time
 step and in the same scheduling slot. Defaults to 0.
 name : str, optional
 The name for this object.
 check_units : bool, optional
 Whether the units should be checked for consistency before a run. Is
 activated (``True``) by default but should be switched off for state
 updaters (units are already checked for the equations and the generated
 abstract code might have already replaced variables with their unit-less
 values)
 template_kwds : dict, optional
 A dictionary of additional information that is passed to the template.
 needed_variables: list of str, optional
 A list of variables that are neither present in the abstract code, nor
 in the ``USES_VARIABLES`` statement in the template. This is only
 rarely necessary, an example being a `StateMonitor` where the
 names of the variables are neither known to the template nor included
 in the abstract code statements.
 override_conditional_write: list of str, optional
 A list of variable names which are used as conditions (e.g. for
 refractoriness) which should be ignored.
 codeobj_class : class, optional
 The `CodeObject` class to run code with. If not specified, defaults to
 the `group`'s ``codeobj_class`` attribute.
 generate_empty_code : bool, optional
 Whether to generate a `CodeObject` if there is no abstract code to
 execute. Defaults to ``True`` but should be switched off e.g. for a
 `StateUpdater` when there is nothing to do.
 '''
 add_to_magic_network = True
 invalidates_magic_network = True
 def __init__(self, group, template, code='', user_code=None,
 dt=None, clock=None, when='start',
 order=0, name='coderunner*', check_units=True,
 template_kwds=None, needed_variables=None,
 override_conditional_write=None,
 codeobj_class=None,
 generate_empty_code=True
):
 BrianObject.__init__(self, clock=clock, dt=dt, when=when, order=order,
 name=name)
 self.group = weakref.proxy(group)
 self.template = template
 self.user_code = user_code
 self.abstract_code = code
 self.check_units = check_units
 if needed_variables is None:
 needed_variables = []
 self.needed_variables = needed_variables
 self.template_kwds = template_kwds
 self.override_conditional_write = override_conditional_write
 if codeobj_class is None:
 codeobj_class = group.codeobj_class
 self.codeobj_class = codeobj_class
 self.generate_empty_code = generate_empty_code
 self.codeobj = None

[docs] def update_abstract_code(self, run_namespace):
 '''
 Update the abstract code for the code object. Will be called in
 `before_run` and should update the `CodeRunner.abstract_code`
 attribute.

 Does nothing by default.
 '''
 pass

[docs] def before_run(self, run_namespace):
 self.update_abstract_code(run_namespace=run_namespace)
 # If the CodeRunner has variables, add them
 if hasattr(self, 'variables'):
 additional_variables = self.variables
 else:
 additional_variables = None

 if not self.generate_empty_code and len(self.abstract_code) == 0:
 self.codeobj = None
 self.code_objects[:] = []
 else:
 self.codeobj = create_runner_codeobj(group=self.group,
 code=self.abstract_code,
 user_code=self.user_code,
 template_name=self.template,
 name=self.name+'_codeobject*',
 check_units=self.check_units,
 additional_variables=additional_variables,
 needed_variables=self.needed_variables,
 run_namespace=run_namespace,
 template_kwds=self.template_kwds,
 override_conditional_write=self.override_conditional_write,
 codeobj_class=self.codeobj_class
)
 self.code_objects[:] = [weakref.proxy(self.codeobj)]

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/brian2/stateupdaters/exact.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.stateupdaters.exact

'''
Exact integration for linear equations.
'''
import itertools

import sympy as sp
from sympy import Wild, Symbol

from brian2.equations.codestrings import is_constant_over_dt
from brian2.parsing.sympytools import sympy_to_str, str_to_sympy
from brian2.stateupdaters.base import (StateUpdateMethod,
 UnsupportedEquationsException)
from brian2.utils.logger import get_logger

__all__ = ['linear', 'independent']

logger = get_logger(__name__)

[docs]def get_linear_system(eqs, variables):
 '''
 Convert equations into a linear system using sympy.

 Parameters

 eqs : `Equations`
 The model equations.

 Returns

 (diff_eq_names, coefficients, constants) : (list of str, `sympy.Matrix`, `sympy.Matrix`)
 A tuple containing the variable names (`diff_eq_names`) corresponding
 to the rows of the matrix `coefficients` and the vector `constants`,
 representing the system of equations in the form M * X + B

 Raises

 ValueError
 If the equations cannot be converted into an M * X + B form.
 '''
 diff_eqs = eqs.get_substituted_expressions(variables)
 diff_eq_names = [name for name, _ in diff_eqs]

 symbols = [Symbol(name, real=True) for name in diff_eq_names]

 coefficients = sp.zeros(len(diff_eq_names))
 constants = sp.zeros(len(diff_eq_names), 1)

 for row_idx, (name, expr) in enumerate(diff_eqs):
 s_expr = str_to_sympy(expr.code, variables).expand()

 current_s_expr = s_expr
 for col_idx, symbol in enumerate(symbols):
 current_s_expr = current_s_expr.collect(symbol)
 constant_wildcard = Wild('c', exclude=[symbol])
 factor_wildcard = Wild('c_'+name, exclude=symbols)
 one_pattern = factor_wildcard*symbol + constant_wildcard
 matches = current_s_expr.match(one_pattern)
 if matches is None:
 raise UnsupportedEquationsException(('The expression "%s", '
 'defining the variable '
 '%s, could not be '
 'separated into linear '
 'components.') %
 (expr, name))

 coefficients[row_idx, col_idx] = matches[factor_wildcard]
 current_s_expr = matches[constant_wildcard]

 # The remaining constant should be a true constant
 constants[row_idx] = current_s_expr

 return (diff_eq_names, coefficients, constants)

[docs]class IndependentStateUpdater(StateUpdateMethod):
 '''
 A state update for equations that do not depend on other state variables,
 i.e. 1-dimensional differential equations. The individual equations are
 solved by sympy.
 '''

[docs] def __call__(self, equations, variables=None):
 if equations.is_stochastic:
 raise UnsupportedEquationsException('Cannot solve stochastic '
 'equations with this state '
 'updater')
 if variables is None:
 variables = {}

 diff_eqs = equations.get_substituted_expressions(variables)

 t = Symbol('t', real=True, positive=True)
 dt = Symbol('dt', real=True, positive=True)
 t0 = Symbol('t0', real=True, positive=True)
 f0 = Symbol('f0', real=True)
 # TODO: Shortcut for simple linear equations? Is all this effort really
 # worth it?

 code = []
 for name, expression in diff_eqs:
 rhs = str_to_sympy(expression.code, variables)

 # We have to be careful and use the real=True assumption as well,
 # otherwise sympy doesn't consider the symbol a match to the content
 # of the equation
 var = Symbol(name, real=True)
 f = sp.Function(name)
 rhs = rhs.subs(var, f(t))
 derivative = sp.Derivative(f(t), t)
 diff_eq = sp.Eq(derivative, rhs)
 # TODO: simplify=True sometimes fails with 0.7.4, see:
 # https://github.com/sympy/sympy/issues/2666
 try:
 general_solution = sp.dsolve(diff_eq, f(t), simplify=True)
 except RuntimeError:
 general_solution = sp.dsolve(diff_eq, f(t), simplify=False)
 # Check whether this is an explicit solution
 if not getattr(general_solution, 'lhs', None) == f(t):
 raise UnsupportedEquationsException('Cannot explicitly solve: '
 + str(diff_eq))
 # Solve for C1 (assuming "var" as the initial value and "t0" as time)
 if general_solution.has(Symbol('C1')):
 if general_solution.has(Symbol('C2')):
 raise UnsupportedEquationsException('Too many constants in solution: %s' % str(general_solution))
 constant_solution = sp.solve(general_solution, Symbol('C1'))
 if len(constant_solution) != 1:
 raise UnsupportedEquationsException(("Couldn't solve for the constant "
 "C1 in : %s ") % str(general_solution))
 constant = constant_solution[0].subs(t, t0).subs(f(t0), var)
 solution = general_solution.rhs.subs('C1', constant)
 else:
 solution = general_solution.rhs.subs(t, t0).subs(f(t0), var)
 # Evaluate the expression for one timestep
 solution = solution.subs(t, t + dt).subs(t0, t)
 # only try symplifying it -- it sometimes raises an error
 try:
 solution = solution.simplify()
 except ValueError:
 pass

 code.append(name + ' = ' + sympy_to_str(solution))

 return '\n'.join(code)

[docs]class LinearStateUpdater(StateUpdateMethod):
 '''
 A state updater for linear equations. Derives a state updater step from the
 analytical solution given by sympy. Uses the matrix exponential (which is
 only implemented for diagonalizable matrices in sympy).
 '''
[docs] def __call__(self, equations, variables=None, simplify=True):
 if equations.is_stochastic:
 raise UnsupportedEquationsException('Cannot solve stochastic '
 'equations with this state '
 'updater.')
 if variables is None:
 variables = {}

 # Get a representation of the ODE system in the form of
 # dX/dt = M*X + B
 varnames, matrix, constants = get_linear_system(equations, variables)

 # No differential equations, nothing to do (this occurs sometimes in the
 # test suite where the whole model is nothing more than something like
 # 'v : 1')
 if matrix.shape == (0, 0):
 return ''

 # Make sure that the matrix M is constant, i.e. it only contains
 # external variables or constant variables
 t = Symbol('t', real=True, positive=True)

 # Check for time dependence
 dt_value = variables['dt'].get_value()[0] if 'dt' in variables else None

 # This will raise an error if we meet the symbol "t" anywhere
 # except as an argument of a locally constant function
 for entry in itertools.chain(matrix, constants):
 if not is_constant_over_dt(entry, variables, dt_value):
 raise UnsupportedEquationsException(
 ('Expression "{}" is not guaranteed to be constant over a '
 'time step').format(sympy_to_str(entry)))

 symbols = [Symbol(variable, real=True) for variable in varnames]
 solution = sp.solve_linear_system(matrix.row_join(constants), *symbols)
 if solution is None or set(symbols) != set(solution.keys()):
 raise UnsupportedEquationsException('Cannot solve the given '
 'equations with this '
 'stateupdater.')
 b = sp.ImmutableMatrix([solution[symbol] for symbol in symbols]).transpose()

 # Solve the system
 dt = Symbol('dt', real=True, positive=True)
 try:
 A = (matrix * dt).exp()
 except NotImplementedError:
 raise UnsupportedEquationsException('Cannot solve the given '
 'equations with this '
 'stateupdater.')
 if simplify:
 A = A.applyfunc(lambda x:
 sp.factor_terms(sp.cancel(sp.signsimp(x))))
 C = sp.ImmutableMatrix([A.dot(b)]) - b
 _S = sp.MatrixSymbol('_S', len(varnames), 1)
 updates = A * _S + C.transpose()
 updates = updates.as_explicit()

 # The solution contains _S[0, 0], _S[1, 0] etc. for the state variables,
 # replace them with the state variable names
 abstract_code = []
 for idx, (variable, update) in enumerate(zip(varnames, updates)):
 rhs = update
 for row_idx, varname in enumerate(varnames):
 rhs = rhs.subs(_S[row_idx, 0], varname)

 # Do not overwrite the real state variables yet, the update step
 # of other state variables might still need the original values
 abstract_code.append('_' + variable + ' = ' + sympy_to_str(rhs))

 # Update the state variables
 for variable in varnames:
 abstract_code.append('{variable} = _{variable}'.format(variable=variable))
 return '\n'.join(abstract_code)

 def __repr__(self):
 return '%s()' % self.__class__.__name__

independent = IndependentStateUpdater()
linear = LinearStateUpdater()

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/brian2/groups/subgroup.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.groups.subgroup

from brian2.core.base import weakproxy_with_fallback
from brian2.core.spikesource import SpikeSource
from brian2.core.variables import Variables
from brian2.units.fundamentalunits import Unit

from .group import Group, Indexing

__all__ = ['Subgroup']

[docs]class Subgroup(Group, SpikeSource):
 '''
 Subgroup of any `Group`

 Parameters

 source : SpikeSource
 The source object to subgroup.
 start, stop : int
 Select only spikes with indices from ``start`` to ``stop-1``.
 name : str, optional
 A unique name for the group, or use ``source.name+'_subgroup_0'``, etc.
 '''
 def __init__(self, source, start, stop, name=None):
 # First check if the source is itself a Subgroup
 # If so, then make this a Subgroup of the original Group
 if isinstance(source, Subgroup):
 source = source.source
 start = start + source.start
 stop = stop + source.start
 self.source = source
 else:
 self.source = weakproxy_with_fallback(source)

 if name is None:
 name = source.name + '_subgroup*'
 # We want to update the spikes attribute after it has been updated
 # by the parent, we do this in slot 'thresholds' with an order
 # one higher than the parent order to ensure it takes place after the
 # parent threshold operation
 Group.__init__(self,
 clock=source._clock,
 when='thresholds',
 order=source.order+1, name=name)
 self._N = stop-start
 self.start = start
 self.stop = stop

 self.events = self.source.events

 # All the variables have to go via the _sub_idx to refer to the
 # appropriate values in the source group
 self.variables = Variables(self, default_index='_sub_idx')

 # overwrite the meaning of N and i
 if self.start > 0:
 self.variables.add_constant('_offset', unit=Unit(1), value=self.start)
 self.variables.add_reference('_source_i', source, 'i')
 self.variables.add_subexpression('i', unit=Unit(1),
 dtype=source.variables['i'].dtype,
 expr='_source_i - _offset',
 index='_idx')
 else:
 # no need to calculate anything if this is a subgroup starting at 0
 self.variables.add_reference('i', source)

 self.variables.add_constant('N', unit=Unit(1), value=self._N)
 # add references for all variables in the original group
 self.variables.add_references(source, source.variables.keys())

 # Only the variable _sub_idx itself is stored in the subgroup
 # and needs the normal index for this group
 self.variables.add_arange('_sub_idx', size=self._N, start=self.start,
 index='_idx')

 # special indexing for subgroups
 self._indices = Indexing(self, self.variables['_sub_idx'])

 for key, value in self.source.variables.indices.iteritems():
 if value not in ('_idx', '0'):
 raise ValueError(('Do not know how to deal with variable %s '
 'using index %s in a subgroup') % (key,
 value))

 self.namespace = self.source.namespace
 self.codeobj_class = self.source.codeobj_class

 self._enable_group_attributes()

 spikes = property(lambda self: self.source.spikes)

 def __getitem__(self, item):
 if not isinstance(item, slice):
 raise TypeError('Subgroups can only be constructed using slicing syntax')
 start, stop, step = item.indices(self._N)
 if step != 1:
 raise IndexError('Subgroups have to be contiguous')
 if start >= stop:
 raise IndexError('Illegal start/end values for subgroup, %d>=%d' %
 (start, stop))
 return Subgroup(self.source, self.start + start, self.start + stop)

 def __repr__(self):
 description = '<{classname} {name} of {source} from {start} to {end}>'
 return description.format(classname=self.__class__.__name__,
 name=repr(self.name),
 source=repr(self.source.name),
 start=self.start,
 end=self.stop)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/brian2/parsing/expressions.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.parsing.expressions

'''
AST parsing based analysis of expressions
'''

import ast

from brian2.core.functions import Function
from brian2.parsing.rendering import NodeRenderer
from brian2.units.fundamentalunits import (Unit, get_unit_fast,
 DimensionMismatchError,
 have_same_dimensions,
 get_dimensions
)

__all__ = ['is_boolean_expression',
 'parse_expression_unit',]

[docs]def is_boolean_expression(expr, variables):
 '''
 Determines if an expression is of boolean type or not

 Parameters

 expr : str
 The expression to test
 variables : dict-like of `Variable`
 The variables used in the expression.

 Returns

 isbool : bool
 Whether or not the expression is boolean.

 Raises

 SyntaxError
 If the expression ought to be boolean but is not,
 for example ``x<y and z`` where ``z`` is not a boolean variable.

 Notes

 We test the following cases recursively on the abstract syntax tree:

 * The node is a boolean operation. If all the subnodes are boolean
 expressions we return ``True``, otherwise we raise the ``SyntaxError``.
 * The node is a function call, we return ``True`` or ``False`` depending
 on whether the function description has the ``_returns_bool`` attribute
 set.
 * The node is a variable name, we return ``True`` or ``False`` depending
 on whether ``is_boolean`` attribute is set or if the name is ``True`` or
 ``False``.
 * The node is a comparison, we return ``True``.
 * The node is a unary operation, we return ``True`` if the operation is
 ``not``, otherwise ``False``.
 * Otherwise we return ``False``.
 '''

 # If we are working on a string, convert to the top level node
 if isinstance(expr, str):
 mod = ast.parse(expr, mode='eval')
 expr = mod.body

 if expr.__class__ is ast.BoolOp:
 if all(is_boolean_expression(node, variables)
 for node in expr.values):
 return True
 else:
 raise SyntaxError("Expression ought to be boolean but is not (e.g. 'x<y and 3')")
 elif expr.__class__ is getattr(ast, 'NameConstant', None):
 value = expr.value
 if value is True or value is False:
 return True
 else:
 raise ValueError('Do not know how to deal with value %s' % value)
 elif expr.__class__ is ast.Name:
 name = expr.id
 if name in variables:
 return variables[name].is_boolean
 else:
 return name == 'True' or name == 'False'
 elif expr.__class__ is ast.Call:
 name = expr.func.id
 if name in variables and hasattr(variables[name], '_returns_bool'):
 return variables[name]._returns_bool
 else:
 raise SyntaxError('Unknown function %s' % name)
 elif expr.__class__ is ast.Compare:
 return True
 elif expr.__class__ is ast.UnaryOp:
 return expr.op.__class__.__name__ == 'Not'
 else:
 return False

def _get_value_from_expression(expr, variables):
 '''
 Returns the scalar value of an expression, and checks its validity.

 Parameters

 expr : str or `ast.Expression`
 The expression to check.
 variables : dict of `Variable` objects
 The information about all variables used in `expr` (including `Constant`
 objects for external variables)

 Returns

 value : float
 The value of the expression

 Raises

 SyntaxError
 If the expression cannot be evaluated to a scalar value
 DimensionMismatchError
 If any part of the expression is dimensionally inconsistent.
 '''
 # If we are working on a string, convert to the top level node
 if isinstance(expr, basestring):
 mod = ast.parse(expr, mode='eval')
 expr = mod.body

 if expr.__class__ is ast.Name:
 name = expr.id
 if name in variables:
 if not getattr(variables[name], 'constant', False):
 raise SyntaxError('Value %s is not constant' % name)
 if not getattr(variables[name], 'scalar', False):
 raise SyntaxError('Value %s is not scalar' % name)
 return variables[name].get_value()
 elif name in ['True', 'False']:
 return 1.0 if name == 'True' else 0.0
 else:
 raise ValueError('Unknown identifier %s' % name)
 elif expr.__class__ is getattr(ast, 'NameConstant', None):
 value = expr.value
 if value is True or value is False:
 return 1.0 if value else 0.0
 else:
 raise ValueError('Do not know how to deal with value %s' % value)
 elif expr.__class__ is ast.Num:
 return expr.n
 elif expr.__class__ is ast.BoolOp:
 raise SyntaxError('Cannot determine the numerical value for a boolean operation.')
 elif expr.__class__ is ast.Compare:
 raise SyntaxError('Cannot determine the numerical value for a boolean operation.')
 elif expr.__class__ is ast.Call:
 raise SyntaxError('Cannot determine the numerical value for a function call.')
 elif expr.__class__ is ast.BinOp:
 op = expr.op.__class__.__name__
 left = _get_value_from_expression(expr.left, variables)
 right = _get_value_from_expression(expr.right, variables)
 if op=='Add' or op=='Sub':
 v = left + right
 elif op=='Mult':
 v = left * right
 elif op=='Div':
 v = left / right
 elif op=='Pow':
 v = left**right
 elif op=='Mod':
 v = left % right
 else:
 raise SyntaxError("Unsupported operation "+op)
 return v
 elif expr.__class__ is ast.UnaryOp:
 op = expr.op.__class__.__name__
 # check validity of operand and get its unit
 v = _get_value_from_expression(expr.operand, variables)
 if op=='Not':
 raise SyntaxError(('Cannot determine the numerical value '
 'for a boolean operation.'))
 if op=='USub':
 return -v
 else:
 raise SyntaxError('Unknown unary operation ' + op)
 else:
 raise SyntaxError('Unsupported operation ' + str(expr.__class__))

[docs]def parse_expression_unit(expr, variables):
 '''
 Returns the unit value of an expression, and checks its validity

 Parameters

 expr : str
 The expression to check.
 variables : dict
 Dictionary of all variables used in the `expr` (including `Constant`
 objects for external variables)

 Returns

 unit : Quantity
 The output unit of the expression

 Raises

 SyntaxError
 If the expression cannot be parsed, or if it uses ``a**b`` for ``b``
 anything other than a constant number.
 DimensionMismatchError
 If any part of the expression is dimensionally inconsistent.
 '''

 # If we are working on a string, convert to the top level node
 if isinstance(expr, basestring):
 mod = ast.parse(expr, mode='eval')
 expr = mod.body
 if expr.__class__ is getattr(ast, 'NameConstant', None):
 # new class for True, False, None in Python 3.4
 value = expr.value
 if value is True or value is False:
 return Unit(1)
 else:
 raise ValueError('Do not know how to handle value %s' % value)
 if expr.__class__ is ast.Name:
 name = expr.id
 # Raise an error if a function is called as if it were a variable
 # (most of the time this happens for a TimedArray)
 if name in variables and isinstance(variables[name], Function):
 raise SyntaxError('%s was used like a variable/constant, but it is '
 'a function.' % name)
 if name in variables:
 return variables[name].unit
 elif name in ['True', 'False']:
 return Unit(1)
 else:
 raise KeyError('Unknown identifier %s' % name)
 elif expr.__class__ is ast.Num:
 return get_unit_fast(1)
 elif expr.__class__ is ast.BoolOp:
 # check that the units are valid in each subexpression
 for node in expr.values:
 parse_expression_unit(node, variables)
 # but the result is a bool, so we just return 1 as the unit
 return get_unit_fast(1)
 elif expr.__class__ is ast.Compare:
 # check that the units are consistent in each subexpression
 subexprs = [expr.left]+expr.comparators
 subunits = []
 for node in subexprs:
 subunits.append(parse_expression_unit(node, variables))
 for left, right in zip(subunits[:-1], subunits[1:]):
 if not have_same_dimensions(left, right):
 msg = ('Comparison of expressions with different units. Expression '
 '"{}" has unit ({}), while expression "{}" has units ({})').format(
 NodeRenderer().render_node(expr.left), get_dimensions(left),
 NodeRenderer().render_node(expr.comparators[0]), get_dimensions(right))
 raise DimensionMismatchError(msg)
 # but the result is a bool, so we just return 1 as the unit
 return get_unit_fast(1)
 elif expr.__class__ is ast.Call:
 if len(expr.keywords):
 raise ValueError("Keyword arguments not supported.")
 elif getattr(expr, 'starargs', None) is not None:
 raise ValueError("Variable number of arguments not supported")
 elif getattr(expr, 'kwargs', None) is not None:
 raise ValueError("Keyword arguments not supported")

 func = variables.get(expr.func.id, None)
 if func is None:
 raise SyntaxError('Unknown function %s' % expr.func.id)
 if not hasattr(func, '_arg_units') or not hasattr(func, '_return_unit'):
 raise ValueError(('Function %s does not specify how it '
 'deals with units.') % expr.func.id)

 if len(func._arg_units) != len(expr.args):
 raise SyntaxError('Function %s was called with %d parameters, '
 'needs %d.' % (expr.func.id,
 len(expr.args),
 len(func._arg_units)))

 for idx, (arg, expected_unit) in enumerate(zip(expr.args,
 func._arg_units)):
 # A "None" in func._arg_units means: No matter what unit
 if expected_unit is None:
 continue
 elif expected_unit == bool:
 if not is_boolean_expression(arg, variables):
 raise TypeError(('Argument number %d for function %s was '
 'expected to be a boolean value, but is '
 '"%s".') % (idx + 1, expr.func.id,
 NodeRenderer().render_node(arg)))
 else:
 arg_unit = parse_expression_unit(arg, variables)
 if not have_same_dimensions(arg_unit, expected_unit):
 msg = ('Argument number {} for function {} does not have the '
 'correct units. Expression "{}" has units ({}), but '
 'should be ({}).').format(
 idx+1, expr.func.id,
 NodeRenderer().render_node(arg),
 get_dimensions(arg_unit), get_dimensions(expected_unit))
 raise DimensionMismatchError(msg)

 if func._return_unit == bool:
 return Unit(1)
 elif isinstance(func._return_unit, (Unit, int)):
 # Function always returns the same unit
 return get_unit_fast(func._return_unit)
 else:
 # Function returns a unit that depends on the arguments
 arg_units = [parse_expression_unit(arg, variables)
 for arg in expr.args]
 return func._return_unit(*arg_units)

 elif expr.__class__ is ast.BinOp:
 op = expr.op.__class__.__name__
 left = parse_expression_unit(expr.left, variables)
 right = parse_expression_unit(expr.right, variables)
 if op=='Add' or op=='Sub':
 u = left+right
 elif op=='Mult':
 u = left*right
 elif op=='Div':
 u = left/right
 elif op=='Pow':
 if have_same_dimensions(left, 1) and have_same_dimensions(right, 1):
 return get_unit_fast(1)
 n = _get_value_from_expression(expr.right, variables)
 u = left**n
 elif op=='Mod':
 u = left % right
 else:
 raise SyntaxError("Unsupported operation "+op)
 return u
 elif expr.__class__ is ast.UnaryOp:
 op = expr.op.__class__.__name__
 # check validity of operand and get its unit
 u = parse_expression_unit(expr.operand, variables)
 if op=='Not':
 return get_unit_fast(1)
 else:
 return u
 else:
 raise SyntaxError('Unsupported operation ' + str(expr.__class__))

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/brian2/parsing/rendering.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.parsing.rendering

import ast

import sympy

from brian2.core.functions import DEFAULT_FUNCTIONS, DEFAULT_CONSTANTS

__all__ = ['NodeRenderer',
 'NumpyNodeRenderer',
 'CPPNodeRenderer',
 'SympyNodeRenderer'
]

[docs]class NodeRenderer(object):
 expression_ops = {
 # BinOp
 'Add': '+',
 'Sub': '-',
 'Mult': '*',
 'Div': '/',
 'Pow': '**',
 'Mod': '%',
 # Compare
 'Lt': '<',
 'LtE': '<=',
 'Gt': '>',
 'GtE': '>=',
 'Eq': '==',
 'NotEq': '!=',
 # Unary ops
 'Not': 'not',
 'UAdd': '+',
 'USub': '-',
 # Bool ops
 'And': 'and',
 'Or': 'or',
 # Augmented assign
 'AugAdd': '+=',
 'AugSub': '-=',
 'AugMult': '*=',
 'AugDiv': '/=',
 'AugPow': '**=',
 'AugMod': '%=',
 }

 def __init__(self, use_vectorisation_idx=True):
 self.use_vectorisation_idx = use_vectorisation_idx

[docs] def render_expr(self, expr, strip=True):
 if strip:
 expr = expr.strip()
 node = ast.parse(expr, mode='eval')
 return self.render_node(node.body)

[docs] def render_code(self, code):
 lines = []
 for node in ast.parse(code).body:
 lines.append(self.render_node(node))
 return '\n'.join(lines)

[docs] def render_node(self, node):
 nodename = node.__class__.__name__
 methname = 'render_'+nodename
 if not hasattr(self, methname):
 raise SyntaxError("Unknown syntax: "+nodename)
 return getattr(self, methname)(node)

[docs] def render_func(self, node):
 return self.render_Name(node)

[docs] def render_NameConstant(self, node):
 return str(node.value)

[docs] def render_Name(self, node):
 return node.id

[docs] def render_Num(self, node):
 return repr(node.n)

[docs] def render_Call(self, node):
 if len(node.keywords):
 raise ValueError("Keyword arguments not supported.")
 elif getattr(node, 'starargs', None) is not None:
 raise ValueError("Variable number of arguments not supported")
 elif getattr(node, 'kwargs', None) is not None:
 raise ValueError("Keyword arguments not supported")
 if len(node.args) == 0 and self.use_vectorisation_idx:
 # argument-less function call such as randn() are transformed into
 # randn(_vectorisation_idx) -- this is important for Python code
 # in particular, because it has to return an array of values.
 return '%s(%s)' % (self.render_func(node.func),
 '_vectorisation_idx')
 else:
 return '%s(%s)' % (self.render_func(node.func),
 ', '.join(self.render_node(arg) for arg in node.args))

[docs] def render_element_parentheses(self, node):
 '''
 Render an element with parentheses around it or leave them away for
 numbers, names and function calls.
 '''
 if node.__class__.__name__ in ['Name', 'NameConstant']:
 return self.render_node(node)
 elif node.__class__.__name__ == 'Num' and node.n >= 0:
 return self.render_node(node)
 elif node.__class__.__name__ == 'Call':
 return self.render_node(node)
 else:
 return '(%s)' % self.render_node(node)

[docs] def render_BinOp_parentheses(self, left, right, op):
 # Use a simplified checking whether it is possible to omit parentheses:
 # only omit parentheses for numbers, variable names or function calls.
 # This means we still put needless parentheses because we ignore
 # precedence rules, e.g. we write "3 + (4 * 5)" but at least we do
 # not do "(3) + ((4) + (5))"
 op_class = op.__class__.__name__
 # Give a more useful error message when using bit-wise operators
 if op_class in ['BitXor', 'BitAnd', 'BitOr']:
 correction = {'BitXor': ('^', '**'),
 'BitAnd': ('&', 'and'),
 'BitOr': ('|', 'or')}.get(op_class)
 raise SyntaxError('The operator "{}" is not supported, use "{}" '
 'instead.'.format(correction[0], correction[1]))
 return '%s %s %s' % (self.render_element_parentheses(left),
 self.expression_ops[op_class],
 self.render_element_parentheses(right))

[docs] def render_BinOp(self, node):
 return self.render_BinOp_parentheses(node.left, node.right, node.op)

[docs] def render_BoolOp(self, node):
 op = node.op
 left = node.values[0]
 remaining = node.values[1:]
 while len(remaining):
 right = remaining[0]
 remaining = remaining[1:]
 s = self.render_BinOp_parentheses(left, right, op)
 op = self.expression_ops[node.op.__class__.__name__]
 return (' '+op+' ').join('%s' % self.render_element_parentheses(v) for v in node.values)

[docs] def render_Compare(self, node):
 if len(node.comparators)>1:
 raise SyntaxError("Can only handle single comparisons like a<b not a<b<c")
 return self.render_BinOp_parentheses(node.left, node.comparators[0], node.ops[0])

[docs] def render_UnaryOp(self, node):
 return '%s %s' % (self.expression_ops[node.op.__class__.__name__],
 self.render_element_parentheses(node.operand))

[docs] def render_Assign(self, node):
 if len(node.targets)>1:
 raise SyntaxError("Only support syntax like a=b not a=b=c")
 return '%s = %s' % (self.render_node(node.targets[0]),
 self.render_node(node.value))

[docs] def render_AugAssign(self, node):
 target = node.target.id
 rhs = self.render_node(node.value)
 op = self.expression_ops['Aug'+node.op.__class__.__name__]
 return '%s %s %s' % (target, op, rhs)

[docs]class NumpyNodeRenderer(NodeRenderer):
 expression_ops = NodeRenderer.expression_ops.copy()
 expression_ops.update({
 # Unary ops
 # We'll handle "not" explicitly below
 # Bool ops
 'And': '*',
 'Or': '+',
 })

[docs] def render_UnaryOp(self, node):
 if node.op.__class__.__name__ == 'Not':
 return 'logical_not(%s)' % self.render_node(node.operand)
 else:
 return NodeRenderer.render_UnaryOp(self, node)

[docs]class SympyNodeRenderer(NodeRenderer):
 expression_ops = NodeRenderer.expression_ops.copy()
 expression_ops.update({
 # Compare
 'Eq': 'Eq',
 'NotEq': 'Ne',
 # Unary ops
 'Not': '~',
 # Bool ops
 'And': '&',
 'Or': '|',
 })

[docs] def render_func(self, node):
 if node.id in DEFAULT_FUNCTIONS:
 f = DEFAULT_FUNCTIONS[node.id]
 if f.sympy_func is not None and isinstance(f.sympy_func,
 sympy.FunctionClass):
 return '%s' % str(f.sympy_func)
 # special workaround for the "int" function
 if node.id == 'int':
 return 'Function("int_")'
 else:
 return 'Function("%s")' % node.id

[docs] def render_Compare(self, node):
 if len(node.comparators)>1:
 raise SyntaxError("Can only handle single comparisons like a<b not a<b<c")
 op = node.ops[0]
 if op.__class__.__name__ in ('Eq', 'NotEq'):
 return '%s(%s, %s)' % (self.expression_ops[op.__class__.__name__],
 self.render_node(node.left),
 self.render_node(node.comparators[0]))
 else:
 return NodeRenderer.render_Compare(self, node)

[docs] def render_Name(self, node):
 if node.id in DEFAULT_CONSTANTS:
 c = DEFAULT_CONSTANTS[node.id]
 return '%s' % str(c.sympy_obj)
 elif node.id in ['t', 'dt']:
 return 'Symbol("%s", real=True, positive=True)' % node.id
 else:
 return 'Symbol("%s", real=True)' % node.id

[docs] def render_Num(self, node):
 return 'Float(%s)' % node.n

[docs]class CPPNodeRenderer(NodeRenderer):
 expression_ops = NodeRenderer.expression_ops.copy()
 expression_ops.update({
 # Unary ops
 'Not': '!',
 # Bool ops
 'And': '&&',
 'Or': '||',
 })

[docs] def render_BinOp(self, node):
 if node.op.__class__.__name__=='Pow':
 return '_brian_pow(%s, %s)' % (self.render_node(node.left),
 self.render_node(node.right))
 elif node.op.__class__.__name__=='Mod':
 return '_brian_mod(%s, %s)' % (self.render_node(node.left),
 self.render_node(node.right))
 else:
 return NodeRenderer.render_BinOp(self, node)

[docs] def render_NameConstant(self, node):
 # In Python 3.4, None, True and False go here
 return {True: 'true',
 False: 'false'}.get(node.value, node.value)

[docs] def render_Name(self, node):
 # Replace Python's True and False with their C++ bool equivalents
 return {'True': 'true',
 'False': 'false',
 'inf': 'INFINITY'}.get(node.id, node.id)

[docs] def render_Assign(self, node):
 return NodeRenderer.render_Assign(self, node)+';'

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_images/1-intro-to-brian-neurons_image_51_0.png
Neuron index

ERR T

w0 0
Time (ms)

05

10

20

25

30

_images/frompapers.Diesmann_et_al_1999.1.png
100

time (ms)

.. . . . o
o . I

. o

~ © n < - o

Jaquinu dnoub

_static/up.png

_static/down-pressed.png

_images/1-intro-to-brian-neurons_image_30_0.png
10

08

06

04

02

00
0

o

T
Time (ms)

£

=

_images/compartmental.hodgkin_huxley_1952.1.png
10

[Jouiw] (AW) A [1ofew] s

Position (cm)

_images/synapses.gapjunctions.1.png
10

0.8

0.6

0.4

0.2

0.0

100

200

Time (ms)

300

400

500

_images/synapses.licklider.1.png
Frequency

999

367

134

49

Time (ms)

_images/compartmental.hh_with_spikes.1.png
120

100

80

60

40

20

60

59

58

57

56

55

54

53

52

120
100
80
60
40
20
-20

o ® © « «~ of
e

(w2) uonisod

Time (ms)

_static/ajax-loader.gif

_static/comment.png

_static/plus.png

_static/down.png

_static/comment-close.png

_static/file.png

_images/2-intro-to-brian-synapses_image_18_0.png
Neuron index

»
.

of o
B4 . .o
£
L4
® ool e .
o

e Tt S

Source neuron index

_static/brian-logo.png
BRIAN

_images/2-intro-to-brian-synapses_image_23_0.png
0

¥apur vounau B0,

‘ W
‘...‘.... .,.‘..,.‘.
i

fife
it

..i
i
i 3

W \,:

e

Torget

Source

0

xaput uoinay

Source neuron index

_images/morphology_random_section_compartment_3.png

_static/minus.png

_images/2-intro-to-brian-synapses_image_35_0.png
-0.010

~0.005

0000

0005

0010

.0 0 20 g £
At (ms)

_images/frompapers.Touboul_Brette_2008.1.png
0.30

0.28

0.26

0.22

0.20

-47.7

-47.6

-47.9 -47.8

018
-483 482 481 480
vr (mv)

_images/compartmental.lfp.1.png
(mv)

v

LFP (mV)

120

100
80
60
40
20

-20

0.12

20

40

60

80

100

120

140

160

0.10
0.08
0.06
0.04
0.02
0.00

-0.02
[

20

40

60

80
Time (ms)

100

120

140

160

_images/frompapers.Brette_Gerstner_2005.1.png
20

4 o
b M

(Aw) [enuajod aueiquiaw

E
ki

-80

140

120

100

80

60

40

20

time (ms)

_images/compartmental.spike_initiation.1.png
v (mV)

60

80
Time (ms)

100

120

140

160

_images/codegen_code_paths.png

_images/synapses.synapses.1.png
10

0.8

0.6

0.4

0.2

0.0

10
Time (ms)

15

_images/frompapers.Brette_2012.Fig4.1.png
V (mv)

=25

=30

=35

—40

—45

=50

=55

-60

—65

Voltage across axon

- —

-

0 10 20 30 40 50 60

Location (um)

_static/up-pressed.png

_static/comment-bright.png

_modules/brian2/utils/logger.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.utils.logger

'''
Brian's logging module.

Preferences

.. document_brian_prefs:: logging
'''
import atexit
import logging
import os
import shutil
import sys
import tempfile
import time
from warnings import warn

import numpy
try:
 import scipy
except ImportError:
 scipy = None
try:
 import scipy.weave as weave
except ImportError:
 try:
 import weave
 except ImportError:
 weave = None
import sympy

import brian2
from brian2.core.preferences import prefs, BrianPreference

from .environment import running_from_ipython

__all__ = ['get_logger', 'BrianLogger', 'std_silent']

#===
Logging preferences
#===

[docs]def log_level_validator(log_level):
 log_levels = ('CRITICAL', 'ERROR', 'WARNING', 'INFO', 'DEBUG', 'DIAGNOSTIC')
 return log_level.upper() in log_levels

#: Our new log level for more detailed debug output (mostly useful for debugging
#: Brian itself, not for user scripts)
DIAGNOSTIC = 5

#: Translation from string representation to number
LOG_LEVELS = {'CRITICAL': logging.CRITICAL,
 'ERROR': logging.ERROR,
 'WARNING': logging.WARNING,
 'INFO': logging.INFO,
 'DEBUG': logging.DEBUG,
 'DIAGNOSTIC': DIAGNOSTIC}
logging.addLevelName(DIAGNOSTIC, 'DIAGNOSTIC')

prefs.register_preferences('logging', 'Logging system preferences',
 delete_log_on_exit=BrianPreference(
 default=True,
 docs='''
 Whether to delete the log and script file on exit.

 If set to ``True`` (the default), log files (and the copy of the main
 script) will be deleted after the brian process has exited, unless an
 uncaught exception occured. If set to ``False``, all log files will be kept.
 ''',
),
 file_log_level=BrianPreference(
 default='DIAGNOSTIC',
 docs='''
 What log level to use for the log written to the log file.

 In case file logging is activated (see `logging.file_log`), which log
 level should be used for logging. Has to be one of CRITICAL, ERROR,
 WARNING, INFO, DEBUG or DIAGNOSTIC.
 ''',
 validator=log_level_validator),
 console_log_level=BrianPreference(
 default='INFO',
 docs='''
 What log level to use for the log written to the console.

 Has to be one of CRITICAL, ERROR, WARNING, INFO, DEBUG or DIAGNOSTIC.
 ''',
 validator=log_level_validator),
 file_log=BrianPreference(
 default=True,
 docs='''
 Whether to log to a file or not.

 If set to ``True`` (the default), logging information will be written
 to a file. The log level can be set via the `logging.file_log_level`
 preference.
 '''),
 save_script=BrianPreference(
 default=True,
 docs='''
 Whether to save a copy of the script that is run.

 If set to ``True`` (the default), a copy of the currently run script
 is saved to a temporary location. It is deleted after a successful
 run (unless `logging.delete_log_on_exit` is ``False``) but is kept after
 an uncaught exception occured. This can be helpful for debugging,
 in particular when several simulations are running in parallel.
 '''),
 std_redirection=BrianPreference(
 default=True,
 docs='''
 Whether or not to redirect stdout/stderr to null at certain places.

 This silences a lot of annoying compiler output, but will also hide
 error messages making it harder to debug problems. You can always
 temporarily switch it off when debugging. If
 `logging.std_redirection_to_file` is set to ``True`` as well, then the
 output is saved to a file and if an error occurs the name of this file
 will be printed.
 '''
),
 std_redirection_to_file=BrianPreference(
 default=True,
 docs='''
 Whether to redirect stdout/stderr to a file.

 If both ``logging.std_redirection`` and this preference are set to
 ``True``, all standard output/error (most importantly output from
 the compiler) will be stored in files and if an error occurs the name
 of this file will be printed. If `logging.std_redirection` is ``True``
 and this preference is ``False``, then all standard output/error will
 be completely suppressed, i.e. neither be displayed nor stored in a
 file.

 The value of this preference is ignore if `logging.std_redirection` is
 set to ``False``.
 '''
),
)

#===
Initial setup
#===

def _encode(text):
 ''' Small helper function to encode unicode strings as UTF-8. '''
 return text.encode('UTF-8')

UNHANDLED_ERROR_MESSAGE = ('Brian 2 encountered an unexpected error. '
'If you think this is bug in Brian 2, please report this issue either to the '
'mailing list at <http://groups.google.com/group/brian-development/>, '
'or to the issue tracker at <https://github.com/brian-team/brian2/issues>.')

[docs]def brian_excepthook(exc_type, exc_obj, exc_tb):
 '''
 Display a message mentioning the debug log in case of an uncaught
 exception.
 '''
 # Do not catch Ctrl+C
 if exc_type == KeyboardInterrupt:
 return
 BrianLogger.exception_occured = True

 message = UNHANDLED_ERROR_MESSAGE
 if BrianLogger.tmp_log is not None:
 message += (' Please include this file with debug information in your '
 'report: {} ').format(BrianLogger.tmp_log)
 if BrianLogger.tmp_script is not None:
 message += (' Additionally, you can also include a copy '
 'of the script that was run, available '
 'at: {}').format(BrianLogger.tmp_script)
 if hasattr(std_silent, 'dest_fname_stdout'):
 message += (' You can also include a copy of the '
 'redirected std stream outputs, available at '
 '{stdout} and {stderr}').format(
 stdout=std_silent.dest_fname_stdout,
 stderr=std_silent.dest_fname_stderr)
 message += ' Thanks!' # very important :)

 logging.getLogger('brian2').error(message,
 exc_info=(exc_type, exc_obj, exc_tb))

[docs]def clean_up_logging():
 '''
 Shutdown the logging system and delete the debug log file if no error
 occured.
 '''
 logging.shutdown()
 if not BrianLogger.exception_occured and prefs['logging.delete_log_on_exit']:
 if BrianLogger.tmp_log is not None:
 try:
 os.remove(BrianLogger.tmp_log)
 except (IOError, OSError) as exc:
 warn('Could not delete log file: %s' % exc)
 if BrianLogger.tmp_script is not None:
 try:
 os.remove(BrianLogger.tmp_script)
 except (IOError, OSError) as exc:
 warn('Could not delete copy of script file: %s' % exc)
 std_silent.close()

sys.excepthook = brian_excepthook
atexit.register(clean_up_logging)

[docs]class HierarchyFilter(object):
 '''
 A class for suppressing all log messages in a subtree of the name hierarchy.
 Does exactly the opposite as the `logging.Filter` class, which allows
 messages in a certain name hierarchy to *pass*.

 Parameters

 name : str
 The name hiearchy to suppress. See `BrianLogger.suppress_hierarchy` for
 details.
 '''

 def __init__(self, name):
 self.orig_filter = logging.Filter(name)

[docs] def filter(self, record):
 '''
 Filter out all messages in a subtree of the name hierarchy.
 '''
 # do the opposite of what the standard filter class would do
 return not self.orig_filter.filter(record)

[docs]class NameFilter(object):
 '''
 A class for suppressing log messages ending with a certain name.

 Parameters

 name : str
 The name to suppress. See `BrianLogger.suppress_name` for details.
 '''

 def __init__(self, name):
 self.name = name

[docs] def filter(self, record):
 '''
 Filter out all messages ending with a certain name.
 '''
 # The last part of the name
 record_name = record.name.split('.')[-1]
 return self.name != record_name

[docs]class BrianLogger(object):
 '''
 Convenience object for logging. Call `get_logger` to get an instance of
 this class.

 Parameters

 name : str
 The name used for logging, normally the name of the module.
 '''

 #: Class attribute to remember whether any exception occured
 exception_occured = False

 #: Class attribute for remembering log messages that should only be
 #: displayed once
 _log_messages = set()

 #: The name of the temporary log file (by default deleted after the run if
 #: no exception occurred), if any
 tmp_log = None

 #: The `logging.FileHandler` responsible for logging to the temporary log
 #: file
 file_handler = None

 #: The name of the temporary copy of the main script file (by default
 #: deleted after the run if no exception occurred), if any
 tmp_script = None

 def __init__(self, name):
 self.name = name

 def _log(self, log_level, msg, name_suffix, once):
 '''
 Log an entry.

 Parameters

 log_level : {'debug', 'info', 'warn', 'error'}
 The level with which to log the message.
 msg : str
 The log message.
 name_suffix : str
 A suffix that will be added to the logger name.
 once : bool
 Whether to suppress identical messages if they are logged again.
 '''
 name = self.name
 if name_suffix:
 name += '.' + name_suffix

 if once:
 # Check whether this exact message has already been displayed
 log_tuple = (name, log_level, msg)
 if log_tuple in BrianLogger._log_messages:
 return
 else:
 BrianLogger._log_messages.add(log_tuple)

 the_logger = logging.getLogger(name)
 the_logger.log(LOG_LEVELS[log_level], msg)

[docs] def diagnostic(self, msg, name_suffix=None, once=False):
 '''
 Log a diagnostic message.

 Parameters

 msg : str
 The message to log.
 name_suffix : str, optional
 A suffix to add to the name, e.g. a class or function name.
 once : bool, optional
 Whether this message should be logged only once and not repeated
 if sent another time.
 '''
 self._log('DIAGNOSTIC', msg, name_suffix, once)

[docs] def debug(self, msg, name_suffix=None, once=False):
 '''
 Log a debug message.

 Parameters

 msg : str
 The message to log.
 name_suffix : str, optional
 A suffix to add to the name, e.g. a class or function name.
 once : bool, optional
 Whether this message should be logged only once and not repeated
 if sent another time.
 '''
 self._log('DEBUG', msg, name_suffix, once)

[docs] def info(self, msg, name_suffix=None, once=False):
 '''
 Log an info message.

 Parameters

 msg : str
 The message to log.
 name_suffix : str, optional
 A suffix to add to the name, e.g. a class or function name.
 once : bool, optional
 Whether this message should be logged only once and not repeated
 if sent another time.
 '''
 self._log('INFO', msg, name_suffix, once)

[docs] def warn(self, msg, name_suffix=None, once=False):
 '''
 Log a warn message.

 Parameters

 msg : str
 The message to log.
 name_suffix : str, optional
 A suffix to add to the name, e.g. a class or function name.
 once : bool, optional
 Whether this message should be logged only once and not repeated
 if sent another time.
 '''
 self._log('WARNING', msg, name_suffix, once)

[docs] def error(self, msg, name_suffix=None, once=False):
 '''
 Log an error message.

 Parameters

 msg : str
 The message to log.
 name_suffix : str, optional
 A suffix to add to the name, e.g. a class or function name.
 once : bool, optional
 Whether this message should be logged only once and not repeated
 if sent another time.
 '''
 self._log('ERROR', msg, name_suffix, once)

 @staticmethod
 def _suppress(filterobj, filter_log_file):
 '''
 Apply a filter object to log messages.

 Parameters

 filterobj : `logging.Filter`
 A filter object to apply to log messages.
 filter_log_file : bool
 Whether the filter also applies to log messages in the log file.
 '''
 BrianLogger.console_handler.addFilter(filterobj)

 if filter_log_file:
 BrianLogger.file_handler.addFilter(filterobj)

 @staticmethod
[docs] def suppress_hierarchy(name, filter_log_file=False):
 '''
 Suppress all log messages in a given hiearchy.

 Parameters

 name : str
 Suppress all log messages in the given `name` hierarchy. For
 example, specifying ``'brian2'`` suppresses all messages logged
 by Brian, specifying ``'brian2.codegen'`` suppresses all messages
 generated by the code generation modules.
 filter_log_file : bool, optional
 Whether to suppress the messages also in the log file. Defaults to
 ``False`` meaning that suppressed messages are not displayed on
 the console but are still saved to the log file.
 '''

 suppress_filter = HierarchyFilter(name)

 BrianLogger._suppress(suppress_filter, filter_log_file)

 @staticmethod
[docs] def suppress_name(name, filter_log_file=False):
 '''
 Suppress all log messages with a given name.

 Parameters

 name : str
 Suppress all log messages ending in the given `name`. For
 example, specifying ``'resolution_conflict'`` would suppress
 messages with names such as
 ``brian2.equations.codestrings.CodeString.resolution_conflict`` or
 ``brian2.equations.equations.Equations.resolution_conflict``.
 filter_log_file : bool, optional
 Whether to suppress the messages also in the log file. Defaults to
 ``False`` meaning that suppressed messages are not displayed on
 the console but are still saved to the log file.
 '''
 suppress_filter = NameFilter(name)

 BrianLogger._suppress(suppress_filter, filter_log_file)

 @staticmethod
[docs] def log_level_diagnostic():
 '''
 Set the log level to "diagnostic".
 '''
 BrianLogger.console_handler.setLevel(DIAGNOSTIC)

 @staticmethod
[docs] def log_level_debug():
 '''
 Set the log level to "debug".
 '''
 BrianLogger.console_handler.setLevel(logging.DEBUG)

 @staticmethod
[docs] def log_level_info():
 '''
 Set the log level to "info".
 '''
 BrianLogger.console_handler.setLevel(logging.INFO)

 @staticmethod
[docs] def log_level_warn():
 '''
 Set the log level to "warn".
 '''
 BrianLogger.console_handler.setLevel(logging.WARN)

 @staticmethod
[docs] def log_level_error():
 '''
 Set the log level to "error".
 '''
 BrianLogger.console_handler.setLevel(logging.ERROR)

 @staticmethod
[docs] def initialize():
 '''
 Initialize Brian's logging system. This function will be called
 automatically when Brian is imported.
 '''
 # get the main logger
 logger = logging.getLogger('brian2')
 logger.propagate = False
 logger.setLevel(LOG_LEVELS['DIAGNOSTIC'])

 # Log to a file
 if prefs['logging.file_log']:
 try:
 # Temporary filename used for logging
 BrianLogger.tmp_log = tempfile.NamedTemporaryFile(prefix='brian_debug_',
 suffix='.log',
 delete=False)
 BrianLogger.tmp_log = BrianLogger.tmp_log.name
 BrianLogger.file_handler = logging.FileHandler(BrianLogger.tmp_log, mode='wt')
 BrianLogger.file_handler.setLevel(
 LOG_LEVELS[prefs['logging.file_log_level'].upper()])
 BrianLogger.file_handler.setFormatter(logging.Formatter(
 '%(asctime)s %(levelname)-10s %(name)s: %(message)s'))
 logger.addHandler(BrianLogger.file_handler)
 except IOError as ex:
 warn('Could not create log file: %s' % ex)

 # Save a copy of the script
 BrianLogger.tmp_script = None
 if prefs['logging.save_script']:
 if len(sys.argv[0]) and not running_from_ipython():
 try:
 tmp_file = tempfile.NamedTemporaryFile(
 prefix='brian_script_',
 suffix='.py',
 delete=False)
 with tmp_file:
 # Timestamp
 tmp_file.write(_encode(u'# %s\n' % time.asctime()))
 # Command line arguments
 tmp_file.write(
 _encode(u'# Run as: %s\n\n' % (' '.join(sys.argv))))
 # The actual script file
 # TODO: We are copying the script file as it is, this might clash
 # with the encoding we used for the comments added above
 with open(os.path.abspath(sys.argv[0]),
 'rb') as script_file:
 shutil.copyfileobj(script_file, tmp_file)
 BrianLogger.tmp_script = tmp_file.name
 except IOError as ex:
 warn(
 'Could not copy script file to temp directory: %s' % ex)

 # create console handler with a higher log level
 BrianLogger.console_handler = logging.StreamHandler()
 BrianLogger.console_handler.setLevel(LOG_LEVELS[prefs['logging.console_log_level']])
 BrianLogger.console_handler.setFormatter(
 logging.Formatter('%(levelname)-10s %(message)s [%(name)s]'))

 # add the handler to the logger
 logger.addHandler(BrianLogger.console_handler)

 # We want to log all warnings
 logging.captureWarnings(True) # pylint: disable=E1101
 # Manually connect to the warnings logger so that the warnings end up in
 # the log file. Note that connecting to the console handler here means
 # duplicated warning messages in the ipython notebook, but not doing so
 # would mean that they are not displayed at all in the standard ipython
 # interface...
 warn_logger = logging.getLogger('py.warnings')
 warn_logger.addHandler(BrianLogger.console_handler)
 if BrianLogger.file_handler is not None:
 warn_logger.addHandler(BrianLogger.file_handler)

 # Put some standard info into the log file
 logger.log(DIAGNOSTIC,
 'Logging to file: %s, copy of main script saved as: %s' %
 (BrianLogger.tmp_log, BrianLogger.tmp_script))
 logger.log(DIAGNOSTIC, 'Python interpreter: %s' % sys.executable)
 logger.log(DIAGNOSTIC, 'Platform: %s' % sys.platform)
 version_infos = {'brian': brian2.__version__,
 'numpy': numpy.__version__,
 'scipy': scipy.__version__ if scipy else 'not installed',
 'weave': weave.__version__ if weave else 'not installed',
 'sympy': sympy.__version__,
 'python': sys.version,
 }
 for _name, _version in version_infos.iteritems():
 logger.log(DIAGNOSTIC,
 '{name} version is: {version}'.format(name=_name,
 version=str(
 _version)))

[docs]def get_logger(module_name='brian2'):
 '''
 Get an object that can be used for logging.

 Parameters

 module_name : str
 The name used for logging, should normally be the module name as
 returned by ``__name__``.

 Returns

 logger : `BrianLogger`
 '''

 return BrianLogger(module_name)

[docs]class catch_logs(object):
 '''
 A context manager for catching log messages. Use this for testing the
 messages that are logged. Defaults to catching warning/error messages and
 this is probably the only real use case for testing. Note that while this
 context manager is active, *all* log messages are suppressed. Using this
 context manager returns a list of (log level, name, message) tuples.

 Parameters

 log_level : int or str, optional
 The log level above which messages are caught.

 Examples

 >>> logger = get_logger('brian2.logtest')
 >>> logger.warn('An uncaught warning') # doctest: +SKIP
 WARNING brian2.logtest: An uncaught warning
 >>> with catch_logs() as l:
 ... logger.warn('a caught warning')
 ... print('l contains: %s' % l)
 ...
 l contains: [('WARNING', 'brian2.logtest', 'a caught warning')]

 '''
 _entered = False

 def __init__(self, log_level=logging.WARN):
 self.log_list = []
 self.handler = LogCapture(self.log_list, log_level)
 self._entered = False

 def __enter__(self):
 if self._entered:
 raise RuntimeError('Cannot enter %r twice' % self)
 self._entered = True
 return self.log_list

 def __exit__(self, *exc_info):
 if not self._entered:
 raise RuntimeError('Cannot exit %r without entering first' % self)
 self.handler.uninstall()

[docs]class LogCapture(logging.Handler):
 '''
 A class for capturing log warnings. This class is used by
 `~brian2.utils.logger.catch_logs` to allow testing in a similar
 way as with `warnings.catch_warnings`.
 '''
 captured_loggers = ['brian2', 'py.warnings']

 def __init__(self, log_list, log_level=logging.WARN):
 logging.Handler.__init__(self, level=log_level)
 self.log_list = log_list
 # make a copy of the previous handlers
 self.handlers = {}
 for logger_name in LogCapture.captured_loggers:
 self.handlers[logger_name] = list(logging.getLogger(logger_name).handlers)
 self.install()

[docs] def emit(self, record):
 # Append a tuple consisting of (level, name, msg) to the list of
 # warnings
 self.log_list.append((record.levelname, record.name, record.msg))

[docs] def install(self):
 '''
 Install this handler to catch all warnings. Temporarily disconnect all
 other handlers.
 '''
 for logger_name in LogCapture.captured_loggers:
 the_logger = logging.getLogger(logger_name)
 for handler in self.handlers[logger_name]:
 the_logger.removeHandler(handler)
 the_logger.addHandler(self)

[docs] def uninstall(self):
 '''
 Uninstall this handler and re-connect the previously installed
 handlers.
 '''
 for logger_name in LogCapture.captured_loggers:
 the_logger = logging.getLogger(logger_name)
 for handler in self.handlers[logger_name]:
 the_logger.addHandler(handler)

See http://stackoverflow.com/questions/26126160/redirecting-standard-out-in-err-back-after-os-dup2
for an explanation of how this function works. Note that 1 and 2 are the file
numbers for stdout and stderr
[docs]class std_silent(object):
 '''
 Context manager that temporarily silences stdout and stderr but keeps the
 output saved in a temporary file and writes it if an exception is raised.
 '''
 dest_stdout = None
 dest_stderr = None

 def __init__(self, alwaysprint=False):
 self.alwaysprint = alwaysprint or not prefs['logging.std_redirection']
 self.redirect_to_file = prefs['logging.std_redirection_to_file']
 if (not self.alwaysprint and
 self.redirect_to_file and
 std_silent.dest_stdout is None):
 std_silent.dest_fname_stdout = tempfile.NamedTemporaryFile(prefix='brian_stdout_',
 suffix='.log',
 delete=False).name
 std_silent.dest_fname_stderr = tempfile.NamedTemporaryFile(prefix='brian_stderr_',
 suffix='.log',
 delete=False).name
 std_silent.dest_stdout = open(std_silent.dest_fname_stdout, 'w')
 std_silent.dest_stderr = open(std_silent.dest_fname_stderr, 'w')

 def __enter__(self):
 if not self.alwaysprint and self.redirect_to_file:
 sys.stdout.flush()
 sys.stderr.flush()
 self.orig_out_fd = os.dup(1)
 self.orig_err_fd = os.dup(2)
 os.dup2(std_silent.dest_stdout.fileno(), 1)
 os.dup2(std_silent.dest_stderr.fileno(), 2)

 def __exit__(self, exc_type, exc_value, traceback):
 if not self.alwaysprint and self.redirect_to_file:
 std_silent.dest_stdout.flush()
 std_silent.dest_stderr.flush()
 if exc_type is not None:
 with open(std_silent.dest_fname_stdout, 'r') as f:
 out = f.read()
 with open(std_silent.dest_fname_stderr, 'r') as f:
 err = f.read()
 os.dup2(self.orig_out_fd, 1)
 os.dup2(self.orig_err_fd, 2)
 os.close(self.orig_out_fd)
 os.close(self.orig_err_fd)
 if exc_type is not None:
 sys.stdout.write(out)
 sys.stderr.write(err)

 @classmethod
[docs] def close(cls):
 if std_silent.dest_stdout is not None:
 std_silent.dest_stdout.close()
 if prefs['logging.delete_log_on_exit']:
 try:
 os.remove(std_silent.dest_fname_stdout)
 except (IOError, OSError):
 # TODO: this happens quite frequently - why?
 # The file objects are closed as far as Python is concerned,
 # but maybe Windows is still hanging on to them?
 pass
 if std_silent.dest_stderr is not None:
 std_silent.dest_stderr.close()
 if prefs['logging.delete_log_on_exit']:
 try:
 os.remove(std_silent.dest_fname_stderr)
 except (IOError, OSError):
 pass

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/brian2/utils/environment.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.utils.environment

'''
Utility functions to get information about the environment Brian is running in.
'''

import __builtin__ as builtins

[docs]def running_from_ipython():
 '''
 Check whether we are currently running under ipython.

 Returns

 ipython : bool
 Whether running under ipython or not.
 '''
 return getattr(builtins, '__IPYTHON__', False)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/brian2/equations/unitcheck.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.equations.unitcheck

'''
Utility functions for handling the units in `Equations`.
'''
import re

from brian2.units.fundamentalunits import (get_unit, Unit,
 fail_for_dimension_mismatch)

from brian2.parsing.expressions import parse_expression_unit
from brian2.parsing.statements import parse_statement
from brian2.core.variables import Variable

__all__ = ['unit_from_expression', 'check_unit',
 'check_units_statements']

[docs]def check_unit(expression, unit, variables):
 '''
 Compares the unit for an expression to an expected unit in a given
 namespace.

 Parameters

 expression : str
 The expression to evaluate.
 unit : `Unit`
 The expected unit for the `expression`.
 variables : dict
 Dictionary of all variables (including external constants) used in
 the `expression`.

 Raises

 KeyError
 In case on of the identifiers cannot be resolved.
 DimensionMismatchError
 If an unit mismatch occurs during the evaluation.
 '''
 expr_unit = parse_expression_unit(expression, variables)
 fail_for_dimension_mismatch(expr_unit, unit, ('Expression %s does not '
 'have the expected unit %r') %
 (expression.strip(), unit))

[docs]def check_units_statements(code, variables):
 '''
 Check the units for a series of statements. Setting a model variable has to
 use the correct unit. For newly introduced temporary variables, the unit
 is determined and used to check the following statements to ensure
 consistency.

 Parameters

 code : str
 The statements as a (multi-line) string
 variables : dict of `Variable` objects
 The information about all variables used in `code` (including
 `Constant` objects for external variables)

 Raises

 KeyError
 In case on of the identifiers cannot be resolved.
 DimensionMismatchError
 If an unit mismatch occurs during the evaluation.
 '''
 variables = dict(variables)
 # Avoid a circular import
 from brian2.codegen.translation import analyse_identifiers
 known = set(variables.keys())
 newly_defined, _, unknown = analyse_identifiers(code, known)

 if len(unknown):
 raise AssertionError(('Encountered unknown identifiers, this should '
 'not happen at this stage. Unkown identifiers: %s'
 % unknown))

 code = re.split(r'[;\n]', code)
 for line in code:
 line = line.strip()
 if not len(line):
 continue # skip empty lines

 varname, op, expr, comment = parse_statement(line)
 if op in ('+=', '-=', '*=', '/=', '%='):
 # Replace statements such as "w *=2" by "w = w * 2"
 expr = '{var} {op_first} {expr}'.format(var=varname,
 op_first=op[0],
 expr=expr)
 op = '='
 elif op == '=':
 pass
 else:
 raise AssertionError('Unknown operator "%s"' % op)

 expr_unit = parse_expression_unit(expr, variables)

 if varname in variables:
 expected_unit = variables[varname].unit
 fail_for_dimension_mismatch(expr_unit, expected_unit,
 ('The right-hand-side of code '
 'statement ""%s" does not have the '
 'expected unit %r') % (line,
 expected_unit))
 elif varname in newly_defined:
 # note the unit for later
 variables[varname] = Variable(name=varname,
 unit=get_unit(expr_unit),
 scalar=False)
 else:
 raise AssertionError(('Variable "%s" is neither in the variables '
 'dictionary nor in the list of undefined '
 'variables.' % varname))

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/brian2/equations/equations.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.equations.equations

'''
Differential equations for Brian models.
'''
import collections
import keyword
import re
import string
import numpy as np
import sympy
from pyparsing import (Group, ZeroOrMore, OneOrMore, Optional, Word, CharsNotIn,
 Combine, Suppress, restOfLine, LineEnd, ParseException)

from brian2.core.namespace import (DEFAULT_FUNCTIONS,
 DEFAULT_CONSTANTS,
 DEFAULT_UNITS)
from brian2.core.variables import Constant
from brian2.core.functions import Function
from brian2.equations.codestrings import is_constant_over_dt
from brian2.parsing.sympytools import sympy_to_str, str_to_sympy
from brian2.units.fundamentalunits import (Unit, Quantity, have_same_dimensions,
 get_unit, DIMENSIONLESS,
 DimensionMismatchError)
from brian2.units.allunits import (metre, meter, second, amp, kelvin, mole,
 candle, kilogram, radian, steradian, hertz,
 newton, pascal, joule, watt, coulomb, volt,
 farad, ohm, siemens, weber, tesla, henry,
 celsius, lumen, lux, becquerel, gray,
 sievert, katal, kgram, kgramme)
from brian2.utils.logger import get_logger
from brian2.utils.topsort import topsort

from .codestrings import Expression
from .unitcheck import check_unit

__all__ = ['Equations']

logger = get_logger(__name__)

Equation types (currently simple strings but always use the constants,
this might get refactored into objects, for example)
PARAMETER = 'parameter'
DIFFERENTIAL_EQUATION = 'differential equation'
SUBEXPRESSION = 'subexpression'

variable types (FLOAT is the only one that is possible for variables that
have dimensions). These types will be later translated into dtypes, either
using the default values from the preferences, or explicitly given dtypes in
the construction of the `NeuronGroup`, `Synapses`, etc. object
FLOAT = 'float'
INTEGER = 'integer'
BOOLEAN = 'boolean'

Definitions of equation structure for parsing with pyparsing
TODO: Maybe move them somewhere else to not pollute the namespace here?
Only IDENTIFIER and EQUATIONS are ever used later
###
Basic Elements
###

identifiers like in C: can start with letter or underscore, then a
combination of letters, numbers and underscores
Note that the check_identifiers function later performs more checks, e.g.
names starting with underscore should only be used internally
IDENTIFIER = Word(string.ascii_letters + '_',
 string.ascii_letters + string.digits + '_').setResultsName('identifier')

very broad definition here, expression will be analysed by sympy anyway
allows for multi-line expressions, where each line can have comments
EXPRESSION = Combine(OneOrMore((CharsNotIn(':#\n') +
 Suppress(Optional(LineEnd()))).ignore('#' + restOfLine)),
 joinString=' ').setResultsName('expression')

a unit
very broad definition here, again. Whether this corresponds to a valid unit
string will be checked later
UNIT = Word(string.ascii_letters + string.digits + '*/.- ').setResultsName('unit')

a single Flag (e.g. "const" or "event-driven")
FLAG = Word(string.ascii_letters, string.ascii_letters + '_- ' + string.digits)

Flags are comma-separated and enclosed in parantheses: "(flag1, flag2)"
FLAGS = (Suppress('(') + FLAG + ZeroOrMore(Suppress(',') + FLAG) +
 Suppress(')')).setResultsName('flags')

###
Equations
###
Three types of equations
Parameter:
x : volt (flags)
PARAMETER_EQ = Group(IDENTIFIER + Suppress(':') + UNIT +
 Optional(FLAGS)).setResultsName(PARAMETER)

Static equation:
x = 2 * y : volt (flags)
STATIC_EQ = Group(IDENTIFIER + Suppress('=') + EXPRESSION + Suppress(':') +
 UNIT + Optional(FLAGS)).setResultsName(SUBEXPRESSION)

Differential equation
dx/dt = -x / tau : volt
DIFF_OP = (Suppress('d') + IDENTIFIER + Suppress('/') + Suppress('dt'))
DIFF_EQ = Group(DIFF_OP + Suppress('=') + EXPRESSION + Suppress(':') + UNIT +
 Optional(FLAGS)).setResultsName(DIFFERENTIAL_EQUATION)

ignore comments
EQUATION = (PARAMETER_EQ | STATIC_EQ | DIFF_EQ).ignore('#' + restOfLine)
EQUATIONS = ZeroOrMore(EQUATION)

[docs]class EquationError(Exception):
 '''
 Exception type related to errors in an equation definition.
 '''
 pass

[docs]def check_identifier_basic(identifier):
 '''
 Check an identifier (usually resulting from an equation string provided by
 the user) for conformity with the rules. The rules are:

 1. Only ASCII characters
 2. Starts with a character, then mix of alphanumerical characters and
 underscore
 3. Is not a reserved keyword of Python

 Parameters

 identifier : str
 The identifier that should be checked

 Raises

 ValueError
 If the identifier does not conform to the above rules.
 '''

 # Check whether the identifier is parsed correctly -- this is always the
 # case, if the identifier results from the parsing of an equation but there
 # might be situations where the identifier is specified directly
 parse_result = list(IDENTIFIER.scanString(identifier))

 # parse_result[0][0][0] refers to the matched string -- this should be the
 # full identifier, if not it is an illegal identifier like "3foo" which only
 # matched on "foo"
 if len(parse_result) != 1 or parse_result[0][0][0] != identifier:
 raise ValueError('"%s" is not a valid variable name.' % identifier)

 if keyword.iskeyword(identifier):
 raise ValueError(('"%s" is a Python keyword and cannot be used as a '
 'variable.') % identifier)

 if identifier.startswith('_'):
 raise ValueError(('Variable "%s" starts with an underscore, '
 'this is only allowed for variables used '
 'internally') % identifier)

[docs]def check_identifier_reserved(identifier):
 '''
 Check that an identifier is not using a reserved special variable name. The
 special variables are: 't', 'dt', and 'xi', as well as everything starting
 with `xi_`.

 Parameters

 identifier: str
 The identifier that should be checked

 Raises

 ValueError
 If the identifier is a special variable name.
 '''
 if identifier in ('t', 'dt', 'xi') or identifier.startswith('xi_'):
 raise ValueError(('"%s" has a special meaning in equations and cannot '
 ' be used as a variable name.') % identifier)

[docs]def check_identifier_units(identifier):
 '''
 Make sure that identifier names do not clash with unit names.
 '''
 if identifier in DEFAULT_UNITS:
 raise ValueError('"%s" is the name of a unit, cannot be used as a '
 'variable name.' % identifier)

[docs]def check_identifier_functions(identifier):
 '''
 Make sure that identifier names do not clash with function names.
 '''
 if identifier in DEFAULT_FUNCTIONS:
 raise ValueError('"%s" is the name of a function, cannot be used as a '
 'variable name.' % identifier)

[docs]def check_identifier_constants(identifier):
 '''
 Make sure that identifier names do not clash with function names.
 '''
 if identifier in DEFAULT_CONSTANTS:
 raise ValueError('"%s" is the name of a constant, cannot be used as a '
 'variable name.' % identifier)

[docs]def unit_and_type_from_string(unit_string):
 '''
 Returns the unit that results from evaluating a string like
 "siemens / metre ** 2", allowing for the special string "1" to signify
 dimensionless units, the string "boolean" for a boolean and "integer" for
 an integer variable.

 Parameters

 unit_string : str
 The string that should evaluate to a unit

 Returns

 u, type : (Unit, {FLOAT, INTEGER or BOOL})
 The resulting unit and the type of the variable.

 Raises

 ValueError
 If the string cannot be evaluated to a unit.
 '''

 # We avoid using DEFAULT_NUMPY_NAMESPACE here as importing core.namespace
 # would introduce a circular dependency between it and the equations
 # package
 base_units = [metre, meter, second, amp, kelvin, mole, candle, kilogram,
 radian, steradian, hertz, newton, pascal, joule, watt,
 coulomb, volt, farad, ohm, siemens, weber, tesla, henry,
 celsius, lumen, lux, becquerel, gray, sievert, katal, kgram,
 kgramme]
 namespace = dict((repr(unit), unit) for unit in base_units)
 namespace['Hz'] = hertz # Also allow Hz instead of hertz
 unit_string = unit_string.strip()

 # Special case: dimensionless unit
 if unit_string == '1':
 return Unit(1, dim=DIMENSIONLESS), FLOAT

 # Another special case: boolean variable
 if unit_string == 'boolean':
 return Unit(1, dim=DIMENSIONLESS), BOOLEAN
 if unit_string == 'bool':
 raise TypeError("Use 'boolean' not 'bool' as the unit for a boolean "
 "variable.")

 # Yet another special case: integer variable
 if unit_string == 'integer':
 return Unit(1, dim=DIMENSIONLESS), INTEGER

 # Check first whether the expression evaluates at all, using only base units
 try:
 evaluated_unit = eval(unit_string, namespace)
 except Exception as ex:
 raise ValueError(('"%s" does not evaluate to a unit when only using '
 'base units (e.g. volt but not mV): %s') %
 (unit_string, ex))

 # Check whether the result is a unit
 if not isinstance(evaluated_unit, Unit):
 if isinstance(evaluated_unit, Quantity):
 raise ValueError(('"%s" does not evaluate to a unit but to a '
 'quantity -- make sure to only use units, e.g. '
 '"siemens/metre**2" and not "1 * siemens/metre**2"') %
 unit_string)
 else:
 raise ValueError(('"%s" does not evaluate to a unit, the result '
 'has type %s instead.' % (unit_string,
 type(evaluated_unit))))

 # No error has been raised, all good
 return evaluated_unit, FLOAT

[docs]def parse_string_equations(eqns):
 """
 Parse a string defining equations.

 Parameters

 eqns : str
 The (possibly multi-line) string defining the equations. See the
 documentation of the `Equations` class for details.

 Returns

 equations : dict
 A dictionary mapping variable names to
 `~brian2.equations.equations.Equations` objects
 """
 equations = {}

 try:
 parsed = EQUATIONS.parseString(eqns, parseAll=True)
 except ParseException as p_exc:
 raise EquationError('Parsing failed: \n' + str(p_exc.line) + '\n' +
 ' ' * (p_exc.column - 1) + '^\n' + str(p_exc))
 for eq in parsed:
 eq_type = eq.getName()
 eq_content = dict(eq.items())
 # Check for reserved keywords
 identifier = eq_content['identifier']

 # Convert unit string to Unit object
 unit, var_type = unit_and_type_from_string(eq_content['unit'])

 expression = eq_content.get('expression', None)
 if not expression is None:
 # Replace multiple whitespaces (arising from joining multiline
 # strings) with single space
 p = re.compile(r'\s{2,}')
 expression = Expression(p.sub(' ', expression))
 flags = list(eq_content.get('flags', []))

 equation = SingleEquation(eq_type, identifier, unit, var_type=var_type,
 expr=expression, flags=flags)

 if identifier in equations:
 raise EquationError('Duplicate definition of variable "%s"' %
 identifier)

 equations[identifier] = equation

 return equations

[docs]class SingleEquation(object):
 '''
 Class for internal use, encapsulates a single equation or parameter.

 .. note::
 This class should never be used directly, it is only useful as part of
 the `Equations` class.

 Parameters

 type : {PARAMETER, DIFFERENTIAL_EQUATION, SUBEXPRESSION}
 The type of the equation.
 varname : str
 The variable that is defined by this equation.
 unit : Unit
 The unit of the variable
 var_type : {FLOAT, INTEGER, BOOLEAN}
 The type of the variable (floating point value or boolean).
 expr : `Expression`, optional
 The expression defining the variable (or ``None`` for parameters).
 flags: list of str, optional
 A list of flags that give additional information about this equation.
 What flags are possible depends on the type of the equation and the
 context.

 '''
 def __init__(self, type, varname, unit, var_type=FLOAT, expr=None,
 flags=None):
 self.type = type
 self.varname = varname
 self.unit = unit
 self.var_type = var_type
 if not have_same_dimensions(unit, 1):
 if var_type == BOOLEAN:
 raise TypeError('Boolean variables are necessarily dimensionless.')
 elif var_type == INTEGER:
 raise TypeError('Integer variables are necessarily dimensionless.')

 if type == DIFFERENTIAL_EQUATION:
 if var_type != FLOAT:
 raise TypeError('Differential equations can only define floating point variables')
 self.expr = expr
 if flags is None:
 self.flags = []
 else:
 self.flags = flags

 # will be set later in the sort_subexpressions method of Equations
 self.update_order = -1

 identifiers = property(lambda self: self.expr.identifiers
 if not self.expr is None else set([]),
 doc='All identifiers in the RHS of this equation.')

 stochastic_variables = property(lambda self: set([variable for variable in self.identifiers
 if variable =='xi' or variable.startswith('xi_')]),
 doc='Stochastic variables in the RHS of this equation')

 def _latex(self, *args):
 if self.type == DIFFERENTIAL_EQUATION:
 return (r'\frac{\mathrm{d}' + sympy.latex(self.varname) + r'}{\mathrm{d}t} = ' +
 sympy.latex(str_to_sympy(self.expr.code)))
 elif self.type == SUBEXPRESSION:
 return (sympy.latex(self.varname) + ' = ' +
 sympy.latex(str_to_sympy(self.expr.code)))
 elif self.type == PARAMETER:
 return sympy.latex(self.varname)

 def __str__(self):
 if self.type == DIFFERENTIAL_EQUATION:
 s = 'd' + self.varname + '/dt'
 else:
 s = self.varname

 if not self.expr is None:
 s += ' = ' + str(self.expr)

 s += ' : ' + str(self.unit)

 if len(self.flags):
 s += ' (' + ', '.join(self.flags) + ')'

 return s

 def __repr__(self):
 s = '<' + self.type + ' ' + self.varname

 if not self.expr is None:
 s += ': ' + self.expr.code

 s += ' (Unit: ' + str(self.unit)

 if len(self.flags):
 s += ', flags: ' + ', '.join(self.flags)

 s += ')>'
 return s

 def _repr_pretty_(self, p, cycle):
 '''
 Pretty printing for ipython.
 '''
 if cycle:
 # should never happen
 raise AssertionError('Cyclical call of SingleEquation._repr_pretty')

 if self.type == DIFFERENTIAL_EQUATION:
 p.text('d' + self.varname + '/dt')
 else:
 p.text(self.varname)

 if not self.expr is None:
 p.text(' = ')
 p.pretty(self.expr)

 p.text(' : ')
 p.pretty(self.unit)

 if len(self.flags):
 p.text(' (' + ', '.join(self.flags) + ')')

 def _repr_latex_(self):
 return '$' + sympy.latex(self) + '$'

[docs]class Equations(collections.Mapping):
 """
 Container that stores equations from which models can be created.

 String equations can be of any of the following forms:

 1. ``dx/dt = f : unit (flags)`` (differential equation)
 2. ``x = f : unit (flags)`` (equation)
 3. ``x : unit (flags)`` (parameter)

 String equations can span several lines and contain Python-style comments
 starting with ``#``

 Parameters

 eqs : `str` or list of `SingleEquation` objects
 A multiline string of equations (see above) -- for internal purposes
 also a list of `SingleEquation` objects can be given. This is done for
 example when adding new equations to implement the refractory
 mechanism. Note that in this case the variable names are not checked
 to allow for "internal names", starting with an underscore.
 kwds: keyword arguments
 Keyword arguments can be used to replace variables in the equation
 string. Arguments have to be of the form ``varname=replacement``, where
 `varname` has to correspond to a variable name in the given equation.
 The replacement can be either a string (replacing a name with a new
 name, e.g. ``tau='tau_e'``) or a value (replacing the variable name
 with the value, e.g. ``tau=tau_e`` or ``tau=10*ms``).
 """

 def __init__(self, eqns, **kwds):
 if isinstance(eqns, basestring):
 self._equations = parse_string_equations(eqns)
 # Do a basic check for the identifiers
 self.check_identifiers()
 else:
 self._equations = {}
 for eq in eqns:
 if not isinstance(eq, SingleEquation):
 raise TypeError(('The list should only contain '
 'SingleEquation objects, not %s') % type(eq))
 if eq.varname in self._equations:
 raise EquationError('Duplicate definition of variable "%s"' %
 eq.varname)
 self._equations[eq.varname] = eq

 # save these to change the keys of the dictionary later
 model_var_replacements = []
 for varname, replacement in kwds.iteritems():

 for eq in self.itervalues():
 # Replacing the name of a model variable (works only for strings)
 if eq.varname == varname:
 if not isinstance(replacement, basestring):
 raise ValueError(('Cannot replace model variable "%s" '
 'with a value') % varname)
 if replacement in self:
 raise EquationError(('Cannot replace model variable "%s" '
 'with "%s", duplicate definition '
 'of "%s".' % (varname, replacement,
 replacement)))
 # make sure that the replacement is a valid identifier
 Equations.check_identifier(replacement)
 eq.varname = replacement
 model_var_replacements.append((varname, replacement))

 if varname in eq.identifiers:
 if isinstance(replacement, basestring):
 # replace the name with another name
 new_code = re.sub('\\b' + varname + '\\b',
 replacement, eq.expr.code)
 else:
 # replace the name with a value
 new_code = re.sub('\\b' + varname + '\\b',
 '(' + repr(replacement) + ')',
 eq.expr.code)
 try:
 eq.expr = Expression(new_code)
 except ValueError as ex:
 raise ValueError(('Replacing "%s" with "%r" failed: %s') %
 (varname, replacement, ex))

 # For change in model variable names, we have already changed the
 # varname attribute of the SingleEquation object, but not the key of
 # our dicitionary
 for varname, replacement in model_var_replacements:
 self._equations[replacement] = self._equations.pop(varname)

 # Check for special symbol xi (stochastic term)
 uses_xi = None
 for eq in self._equations.itervalues():
 if not eq.expr is None and 'xi' in eq.expr.identifiers:
 if not eq.type == DIFFERENTIAL_EQUATION:
 raise EquationError(('The equation defining %s contains the '
 'symbol "xi" but is not a differential '
 'equation.') % eq.varname)
 elif not uses_xi is None:
 raise EquationError(('The equation defining %s contains the '
 'symbol "xi", but it is already used '
 'in the equation defining %s.') %
 (eq.varname, uses_xi))
 else:
 uses_xi = eq.varname

 # rearrange subexpressions
 self._sort_subexpressions()

 def __iter__(self):
 return iter(self._equations)

 def __len__(self):
 return len(self._equations)

 def __getitem__(self, key):
 return self._equations[key]

 def __add__(self, other_eqns):
 if isinstance(other_eqns, basestring):
 other_eqns = parse_string_equations(other_eqns)
 elif not isinstance(other_eqns, Equations):
 return NotImplemented

 return Equations(self.values() + other_eqns.values())

 #: A set of functions that are used to check identifiers (class attribute).
 #: Functions can be registered with the static method
 #: `Equations.register_identifier_check` and will be automatically
 #: used when checking identifiers
 identifier_checks = {check_identifier_basic, check_identifier_reserved,
 check_identifier_functions, check_identifier_units}

 @staticmethod
[docs] def register_identifier_check(func):
 '''
 Register a function for checking identifiers.

 Parameters

 func : callable
 The function has to receive a single argument, the name of the
 identifier to check, and raise a ValueError if the identifier
 violates any rule.

 '''
 if not hasattr(func, '__call__'):
 raise ValueError('Can only register callables.')

 Equations.identifier_checks.add(func)

 @staticmethod
[docs] def check_identifier(identifier):
 '''
 Perform all the registered checks. Checks can be registered via
 `Equations.register_identifier_check`.

 Parameters

 identifier : str
 The identifier that should be checked

 Raises

 ValueError
 If any of the registered checks fails.
 '''
 for check_func in Equations.identifier_checks:
 check_func(identifier)

[docs] def check_identifiers(self):
 '''
 Check all identifiers for conformity with the rules.

 Raises

 ValueError
 If an identifier does not conform to the rules.

 See also

 Equations.check_identifier : The function that is called for each identifier.
 '''
 for name in self.names:
 Equations.check_identifier(name)

[docs] def get_substituted_expressions(self, variables=None,
 include_subexpressions=False):
 '''
 Return a list of ``(varname, expr)`` tuples, containing all
 differential equations (and optionally subexpressions) with all the
 subexpression variables substituted with the respective expressions.

 Parameters

 variables : dict, optional
 A mapping of variable names to `Variable`/`Function` objects.
 include_subexpressions : bool
 Whether also to return substituted subexpressions. Defaults to
 ``False``.

 Returns

 expr_tuples : list of (str, `CodeString`)
 A list of ``(varname, expr)`` tuples, where ``expr`` is a
 `CodeString` object with all subexpression variables substituted
 with the respective expression.
 '''

 subst_exprs = []
 substitutions = {}
 for eq in self.ordered:
 # Skip parameters
 if eq.expr is None:
 continue

 new_sympy_expr = str_to_sympy(eq.expr.code, variables).xreplace(substitutions)
 new_str_expr = sympy_to_str(new_sympy_expr)
 expr = Expression(new_str_expr)

 if eq.type == SUBEXPRESSION:
 substitutions.update({sympy.Symbol(eq.varname, real=True): str_to_sympy(expr.code, variables)})
 if include_subexpressions:
 subst_exprs.append((eq.varname, expr))
 elif eq.type == DIFFERENTIAL_EQUATION:
 # a differential equation that we have to check
 subst_exprs.append((eq.varname, expr))
 else:
 raise AssertionError('Unknown equation type %s' % eq.type)

 return subst_exprs

 def _get_stochastic_type(self):
 '''
 Returns the type of stochastic differential equations (additivive or
 multiplicative). The system is only classified as ``additive`` if *all*
 equations have only additive noise (or no noise).

 Returns

 type : str
 Either ``None`` (no noise variables), ``'additive'`` (factors for
 all noise variables are independent of other state variables or
 time), ``'multiplicative'`` (at least one of the noise factors
 depends on other state variables and/or time).
 '''

 # TODO: Add debug output

 if not self.is_stochastic:
 return None

 for _, expr in self.get_substituted_expressions():
 _, stochastic = expr.split_stochastic()
 if stochastic is not None:
 for factor in stochastic.itervalues():
 if 't' in factor.identifiers:
 # noise factor depends on time
 return 'multiplicative'

 for identifier in factor.identifiers:
 if identifier in self.diff_eq_names:
 # factor depends on another state variable
 return 'multiplicative'

 return 'additive'

 ##
 # Properties
 ##

 # Lists of equations or (variable, expression tuples)
 ordered = property(lambda self: sorted(self._equations.itervalues(),
 key=lambda key: key.update_order),
 doc='A list of all equations, sorted '
 'according to the order in which they should '
 'be updated')

 diff_eq_expressions = property(lambda self: [(varname, eq.expr) for
 varname, eq in self.iteritems()
 if eq.type == DIFFERENTIAL_EQUATION],
 doc='A list of (variable name, expression) '
 'tuples of all differential equations.')

 eq_expressions = property(lambda self: [(varname, eq.expr) for
 varname, eq in self.iteritems()
 if eq.type in (SUBEXPRESSION,
 DIFFERENTIAL_EQUATION)],
 doc='A list of (variable name, expression) '
 'tuples of all equations.')

 # Sets of names

 names = property(lambda self: set([eq.varname for eq in self.ordered]),
 doc='All variable names defined in the equations.')

 diff_eq_names = property(lambda self: set([eq.varname for eq in self.ordered
 if eq.type == DIFFERENTIAL_EQUATION]),
 doc='All differential equation names.')

 subexpr_names = property(lambda self: set([eq.varname for eq in self.ordered
 if eq.type == SUBEXPRESSION]),
 doc='All subexpression names.')

 eq_names = property(lambda self: set([eq.varname for eq in self.ordered
 if eq.type in (DIFFERENTIAL_EQUATION,
 SUBEXPRESSION)]),
 doc='All equation names (including subexpressions).')

 parameter_names = property(lambda self: set([eq.varname for eq in self.ordered
 if eq.type == PARAMETER]),
 doc='All parameter names.')

 units = property(lambda self:dict([(var, eq.unit) for var, eq in
 self._equations.iteritems()]),
 doc='Dictionary of all internal variables and their corresponding units.')

 identifiers = property(lambda self: set().union(*[eq.identifiers for
 eq in self._equations.itervalues()]) -
 self.names,
 doc=('Set of all identifiers used in the equations, '
 'excluding the variables defined in the equations'))

 stochastic_variables = property(lambda self: set([variable for variable in self.identifiers
 if variable =='xi' or variable.startswith('xi_')]))

 # general properties
 is_stochastic = property(lambda self: len(self.stochastic_variables) > 0,
 doc='Whether the equations are stochastic.')

 stochastic_type = property(fget=_get_stochastic_type)

 def _sort_subexpressions(self):
 '''
 Sorts the subexpressions in a way that resolves their dependencies
 upon each other. After this method has been run, the subexpressions
 returned by the ``ordered`` property are in the order in which
 they should be updated
 '''

 # Get a dictionary of all the dependencies on other subexpressions,
 # i.e. ignore dependencies on parameters and differential equations
 static_deps = {}
 for eq in self._equations.itervalues():
 if eq.type == SUBEXPRESSION:
 static_deps[eq.varname] = [dep for dep in eq.identifiers if
 dep in self._equations and
 self._equations[dep].type == SUBEXPRESSION]

 try:
 sorted_eqs = topsort(static_deps)
 except ValueError:
 raise ValueError('Cannot resolve dependencies between static '
 'equations, dependencies contain a cycle.')

 # put the equations objects in the correct order
 for order, static_variable in enumerate(sorted_eqs):
 self._equations[static_variable].update_order = order

 # Sort differential equations and parameters after subexpressions
 for eq in self._equations.itervalues():
 if eq.type == DIFFERENTIAL_EQUATION:
 eq.update_order = len(sorted_eqs)
 elif eq.type == PARAMETER:
 eq.update_order = len(sorted_eqs) + 1

[docs] def check_units(self, group, run_namespace):
 '''
 Check all the units for consistency.

 Parameters

 group : `Group`
 The group providing the context
 run_namespace : dict-like, optional
 An additional namespace that is used for variable lookup (if not
 defined, the implicit namespace of local variables is used).
 level : int, optional
 How much further to go up in the stack to find the calling frame

 Raises

 DimensionMismatchError
 In case of any inconsistencies.
 '''
 all_variables = dict(group.variables)
 external = frozenset().union(*[expr.identifiers
 for _, expr in self.eq_expressions])
 external -= set(all_variables.keys())

 resolved_namespace = group.resolve_all(external, run_namespace,
 user_identifiers=external) # all variables are user defined

 all_variables.update(resolved_namespace)
 for var, eq in self._equations.iteritems():
 if eq.type == PARAMETER:
 # no need to check units for parameters
 continue

 if eq.type == DIFFERENTIAL_EQUATION:
 try:
 check_unit(str(eq.expr), self.units[var] / second,
 all_variables)
 except DimensionMismatchError as ex:
 raise DimensionMismatchError(('Inconsistent units in '
 'differential equation '
 'defining variable %s:'
 '\n%s') % (eq.varname,
 ex.desc),
 *ex.dims)
 elif eq.type == SUBEXPRESSION:
 try:
 check_unit(str(eq.expr), self.units[var],
 all_variables)
 except DimensionMismatchError as ex:
 raise DimensionMismatchError(('Inconsistent units in '
 'subexpression %s:'
 '\n%s') % (eq.varname,
 ex.desc),
 *ex.dims)
 else:
 raise AssertionError('Unknown equation type: "%s"' % eq.type)

[docs] def check_flags(self, allowed_flags, incompatible_flags=None):
 '''
 Check the list of flags.

 Parameters

 allowed_flags : dict
 A dictionary mapping equation types (PARAMETER,
 DIFFERENTIAL_EQUATION, SUBEXPRESSION) to a list of strings (the
 allowed flags for that equation type)
 incompatible_flags : list of tuple
 A list of flag combinations that are not allowed for the same
 equation.
 Notes

 Not specifying allowed flags for an equation type is the same as
 specifying an empty list for it.

 Raises

 ValueError
 If any flags are used that are not allowed.
 '''
 if incompatible_flags is None:
 incompatible_flags = []

 for eq in self.itervalues():
 for flag in eq.flags:
 if not eq.type in allowed_flags or len(allowed_flags[eq.type]) == 0:
 raise ValueError('Equations of type "%s" cannot have any flags.' % eq.type)
 if not flag in allowed_flags[eq.type]:
 raise ValueError(('Equations of type "%s" cannot have a '
 'flag "%s", only the following flags '
 'are allowed: %s') % (eq.type,
 flag, allowed_flags[eq.type]))
 # Check for incompatibilities
 for flag_combinations in incompatible_flags:
 if flag in flag_combinations:
 remaining_flags = set(flag_combinations) - set([flag])
 for remaining_flag in remaining_flags:
 if remaining_flag in eq.flags:
 raise ValueError("Flag '{}' cannot be "
 "combined with flag "
 "'{}'".format(flag,
 remaining_flag))

 ##
 # Representation
 ##

 def __str__(self):
 strings = [str(eq) for eq in self.ordered]
 return '\n'.join(strings)

 def __repr__(self):
 return '<Equations object consisting of %d equations>' % len(self._equations)

 def _latex(self, *args):
 equations = []
 t = sympy.Symbol('t')
 for eq in self._equations.itervalues():
 # do not use SingleEquations._latex here as we want nice alignment
 varname = sympy.Symbol(eq.varname)
 if eq.type == DIFFERENTIAL_EQUATION:
 lhs = r'\frac{\mathrm{d}' + sympy.latex(varname) + r'}{\mathrm{d}t}'
 else:
 # Normal equation or parameter
 lhs = varname
 if not eq.type == PARAMETER:
 rhs = str_to_sympy(eq.expr.code)
 if len(eq.flags):
 flag_str = ', flags: ' + ', '.join(eq.flags)
 else:
 flag_str = ''
 if eq.type == PARAMETER:
 eq_latex = r'%s &&& \text{(unit: $%s$%s)}' % (sympy.latex(lhs),
 sympy.latex(eq.unit),
 flag_str)
 else:
 eq_latex = r'%s &= %s && \text{(unit of $%s$: $%s$%s)}' % (sympy.latex(lhs),
 sympy.latex(rhs),
 sympy.latex(varname),
 sympy.latex(eq.unit),
 flag_str)
 equations.append(eq_latex)
 return r'\begin{align*}' + (r'\\' + '\n').join(equations) + r'\end{align*}'

 def _repr_latex_(self):
 return sympy.latex(self)

 def _repr_pretty_(self, p, cycle):
 ''' Pretty printing for ipython '''
 if cycle:
 # Should never happen
 raise AssertionError('Cyclical call of Equations._repr_pretty_')
 for eq in self._equations.itervalues():
 p.pretty(eq)
 p.breakable('\n')

[docs]def is_stateful(expression, variables):
 '''
 Whether the given expression refers to stateful functions (and is therefore
 not guaranteed to give the same result if called repetively).

 Parameters

 expression : `sympy.Expression`
 The sympy expression to check.
 variables : dict
 The dictionary mapping variable names to `Variable` or `Function`
 objects.

 Returns

 stateful : bool
 ``True``, if the given expression refers to a stateful function like
 ``rand()`` and ``False`` otherwise.
 '''
 func_name = str(expression.func)
 func_variable = variables.get(func_name, None)
 if func_variable is not None and not func_variable.stateless:
 return True
 for arg in expression.args:
 if is_stateful(arg, variables):
 return True
 return False

[docs]def check_subexpressions(group, equations, run_namespace):
 '''
 Checks the subexpressions in the equations and raises an error if a
 subexpression refers to stateful functions without being marked as
 "constant over dt".

 Parameters

 group : `Group`
 The group providing the context.
 equations : `Equations`
 The equations to check.
 run_namespace : dict
 The run namespace for resolving variables.

 Raises

 SyntaxError
 For subexpressions not marked as "constant over dt" that refer to
 stateful functions.
 '''
 for eq in equations.ordered:
 if eq.type == SUBEXPRESSION:
 # Check whether the expression is stateful (most commonly by
 # referring to rand() or randn()
 variables = group.resolve_all(eq.identifiers,
 run_namespace,
 # we don't need to raise any warnings
 # for the user here, warnings will
 # be raised in create_runner_codeobj
 user_identifiers=set())
 expression = str_to_sympy(eq.expr.code, variables=variables)

 # Check whether the expression refers to stateful functions
 if is_stateful(expression, variables):
 raise SyntaxError("The subexpression '{}' refers to a stateful "
 "function (e.g. rand()). Such expressions "
 "should only be evaluated once per timestep, "
 "add the 'constant over dt'"
 "flag.".format(eq.varname))

[docs]def extract_constant_subexpressions(eqs):
 without_const_subexpressions = []
 const_subexpressions = []
 for eq in eqs.ordered:
 if eq.type == SUBEXPRESSION and 'constant over dt' in eq.flags:
 if 'shared' in eq.flags:
 flags = ['shared']
 else:
 flags = None
 without_const_subexpressions.append(SingleEquation(PARAMETER,
 eq.varname,
 eq.unit,
 var_type=eq.var_type,
 flags=flags))
 const_subexpressions.append(eq)
 else:
 without_const_subexpressions.append(eq)

 return (Equations(without_const_subexpressions),
 Equations(const_subexpressions))

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/brian2/equations/refractory.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.equations.refractory

'''
Module implementing Brian's refractory mechanism.
'''

from brian2.units.fundamentalunits import Unit
from brian2.units.allunits import second

from .equations import (Equations, SingleEquation, DIFFERENTIAL_EQUATION,
 PARAMETER, Expression, BOOLEAN)

__all__ = ['add_refractoriness']

[docs]def check_identifier_refractory(identifier):
 '''
 Check that the identifier is not using a name reserved for the refractory
 mechanism. The reserved names are `not_refractory`, `refractory`,
 `refractory_until`.

 Parameters

 identifier : str
 The identifier to check.

 Raises

 ValueError
 If the identifier is a variable name used for the refractory mechanism.
 '''
 if identifier in ('not_refractory', 'refractory', 'refractory_until'):
 raise ValueError(('The name "%s" is used in the refractory mechanism '
 ' and should not be used as a variable name.' % identifier))

Equations.register_identifier_check(check_identifier_refractory)

[docs]def add_refractoriness(eqs):
 '''
 Extends a given set of equations with the refractory mechanism. New
 parameters are added and differential equations with the "unless refractory"
 flag are changed so that their right-hand side is 0 when the neuron is
 refractory (by multiplication with the ``not_refractory`` variable).

 Parameters

 eqs : `Equations`
 The equations without refractory mechanism.

 Returns

 new_eqs : `Equations`
 New equations, with added parameters and changed differential
 equations having the "unless refractory" flag.
 '''
 new_equations = []

 # replace differential equations having the active flag
 for eq in eqs.itervalues():
 if eq.type == DIFFERENTIAL_EQUATION and 'unless refractory' in eq.flags:
 # the only case where we have to change anything
 new_code = 'int(not_refractory)*(' + eq.expr.code + ')'
 new_equations.append(SingleEquation(DIFFERENTIAL_EQUATION,
 eq.varname, eq.unit,
 expr=Expression(new_code),
 flags=eq.flags))
 else:
 new_equations.append(eq)

 # add new parameters
 new_equations.append(SingleEquation(PARAMETER, 'not_refractory', Unit(1),
 var_type=BOOLEAN))
 new_equations.append(SingleEquation(PARAMETER, 'lastspike', second))

 return Equations(new_equations)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/brian2/equations/codestrings.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.equations.codestrings

'''
Module defining `CodeString`, a class for a string of code together with
information about its namespace. Only serves as a parent class, its subclasses
`Expression` and `Statements` are the ones that are actually used.
'''
import sympy

from brian2.utils.logger import get_logger
from brian2.utils.stringtools import get_identifiers
from brian2.parsing.sympytools import str_to_sympy, sympy_to_str

__all__ = ['Expression', 'Statements']

logger = get_logger(__name__)

[docs]class CodeString(object):
 '''
 A class for representing "code strings", i.e. a single Python expression
 or a sequence of Python statements.

 Parameters

 code : str
 The code string, may be an expression or a statement(s) (possibly
 multi-line).

 '''

 def __init__(self, code):

 # : The code string
 self.code = code

 # : Set of identifiers in the code string
 self.identifiers = get_identifiers(code)

 def __str__(self):
 return self.code

 def __repr__(self):
 return '%s(%r)' % (self.__class__.__name__, self.code)

[docs]class Statements(CodeString):
 '''
 Class for representing statements.

 Parameters

 code : str
 The statement or statements. Several statements can be given as a
 multi-line string or separated by semicolons.

 Notes

 Currently, the implementation of this class does not add anything to
 `~brian2.equations.codestrings.CodeString`, but it should be used instead
 of that class for clarity and to allow for future functionality that is
 only relevant to statements and not to expressions.
 '''
 pass

[docs]class Expression(CodeString):
 '''
 Class for representing an expression.

 Parameters

 code : str, optional
 The expression. Note that the expression has to be written in a form
 that is parseable by sympy. Alternatively, a sympy expression can be
 provided (in the ``sympy_expression`` argument).
 sympy_expression : sympy expression, optional
 A sympy expression. Alternatively, a plain string expression can be
 provided (in the ``code`` argument).
 '''

 def __init__(self, code=None, sympy_expression=None):
 if code is None and sympy_expression is None:
 raise TypeError('Have to provide either a string or a sympy expression')
 if code is not None and sympy_expression is not None:
 raise TypeError('Provide a string expression or a sympy expression, not both')

 if code is None:
 code = sympy_to_str(sympy_expression)
 else:
 # Just try to convert it to a sympy expression to get syntax errors
 # for incorrect expressions
 str_to_sympy(code)
 super(Expression, self).__init__(code=code)

 stochastic_variables = property(lambda self: set([variable for variable in self.identifiers
 if variable =='xi' or variable.startswith('xi_')]),
 doc='Stochastic variables in this expression')

[docs] def split_stochastic(self):
 '''
 Split the expression into a stochastic and non-stochastic part.

 Splits the expression into a tuple of one `Expression` objects f (the
 non-stochastic part) and a dictionary mapping stochastic variables
 to `Expression` objects. For example, an expression of the form
 ``f + g * xi_1 + h * xi_2`` would be returned as:
 ``(f, {'xi_1': g, 'xi_2': h})``
 Note that the `Expression` objects for the stochastic parts do not
 include the stochastic variable itself.

 Returns

 (f, d) : (`Expression`, dict)
 A tuple of an `Expression` object and a dictionary, the first
 expression being the non-stochastic part of the equation and
 the dictionary mapping stochastic variables (``xi`` or starting
 with ``xi_``) to `Expression` objects. If no stochastic variable
 is present in the code string, a tuple ``(self, None)`` will be
 returned with the unchanged `Expression` object.
 '''
 stochastic_variables = []
 for identifier in self.identifiers:
 if identifier == 'xi' or identifier.startswith('xi_'):
 stochastic_variables.append(identifier)

 # No stochastic variable
 if not len(stochastic_variables):
 return (self, None)

 stochastic_symbols = [sympy.Symbol(variable, real=True)
 for variable in stochastic_variables]

 # Note that collect only works properly if the expression is expanded
 collected = str_to_sympy(self.code).expand().collect(stochastic_symbols,
 evaluate=False)

 f_expr = None
 stochastic_expressions = {}
 for var, s_expr in collected.iteritems():
 expr = Expression(sympy_expression=s_expr)
 if var == 1:
 if any(s_expr.has(s) for s in stochastic_symbols):
 raise AssertionError(('Error when separating expression '
 '"%s" into stochastic and non-'
 'stochastic term: non-stochastic '
 'part was determined to be "%s" but '
 'contains a stochastic symbol)' % (self.code,
 s_expr)))
 f_expr = expr
 elif var in stochastic_symbols:
 stochastic_expressions[str(var)] = expr
 else:
 raise ValueError(('Expression "%s" cannot be separated into '
 'stochastic and non-stochastic '
 'term') % self.code)

 if f_expr is None:
 f_expr = Expression('0.0')

 return f_expr, stochastic_expressions

 def _repr_pretty_(self, p, cycle):
 '''
 Pretty printing for ipython.
 '''
 if cycle:
 raise AssertionError('Cyclical call of CodeString._repr_pretty')
 # Make use of sympy's pretty printing
 p.pretty(str_to_sympy(self.code))

[docs]def is_constant_over_dt(expression, variables, dt_value):
 '''
 Check whether an expression can be considered as constant over a time step.
 This is *not* the case when the expression either:

 1. contains the variable ``t`` (except as the argument of a function that
 can be considered as constant over a time step, e.g. a `TimedArray` with
 a dt equal to or greater than the dt used to evaluate this expression)
 2. refers to a stateful function such as ``rand()``.

 Parameters

 expression : `sympy.Expr`
 The (sympy) expression to analyze
 variables : dict
 The variables dictionary.
 dt_value : float or None
 The length of a timestep (without units), can be ``None`` if the
 time step is not yet known.

 Returns

 is_constant : bool
 Whether the expression can be considered to be constant over a time
 step.
 '''
 t_symbol = sympy.Symbol('t', real=True, positive=True)
 if expression is t_symbol:
 return False # The full expression is simply "t"
 func_name = str(expression.func)
 func_variable = variables.get(func_name, None)
 if func_variable is not None and not func_variable.stateless:
 return False
 for arg in expression.args:
 if arg is t_symbol and dt_value is not None:
 # We found "t" -- if it is not the only argument of a locally
 # constant function we bail out
 if not (func_variable is not None and
 func_variable.is_locally_constant(dt_value)):
 return False
 else:
 if not is_constant_over_dt(arg, variables, dt_value):
 return False
 return True

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/brian2/utils/topsort.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.utils.topsort

from copy import copy

__all__ = ['topsort']

[docs]def topsort(graph):
 '''
 Topologically sort a graph

 The graph should be of the form ``{node: [list of nodes], ...}``.
 '''
 # make a copy so as not to destroy original
 graph = dict((k, copy(v)) for k, v in graph.iteritems())
 # Use the standard algorithm for topological sorting:
 # http://en.wikipedia.org/wiki/Topological_sorting
 # List that will contain the sorted elements
 sorted_items = []
 # set of all nodes with no incoming edges:
 no_incoming = set([node for node, edges in graph.iteritems() if len(edges)==0])

 while len(no_incoming):
 n = no_incoming.pop()
 sorted_items.append(n)
 # find nodes m with edges to n
 outgoing = [m for m, edges in graph.iteritems() if n in edges]
 for m in outgoing:
 graph[m].remove(n)
 if len(graph[m])==0:
 # no other dependencies
 no_incoming.add(m)

 if any([len(edges) > 0 for edges in graph.itervalues()]):
 raise ValueError('Cannot topologically sort cyclic graph.')

 return sorted_items

if __name__=='__main__':
 graph = {
 'a': ['b', 'c'],
 'b': ['c'],
 'c': [],
 }
 print topsort(graph)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/brian2/only.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.only

'''
A dummy package to allow wildcard import from brian2 without also importing
the pylab (numpy + matplotlib) namespace.

Usage: ``from brian2.only import *``

'''
import gc
To minimize the problems with imports, import the packages in a sensible
order

The units and utils package does not depend on any other Brian package and
should be imported first
from brian2.units import *
from brian2.utils import *
from brian2.core.tracking import *
from brian2.core.names import *
from brian2.core.spikesource import *

The following packages only depend on something in the above set
from brian2.core.variables import linked_var
from brian2.core.functions import *
from brian2.core.preferences import *
from brian2.core.clocks import *
from brian2.equations import *

The base class only depends on the above sets
from brian2.core.base import *

The rest...
from brian2.core.network import *
from brian2.core.magic import *
from brian2.core.operations import *
from brian2.stateupdaters import *
from brian2.codegen import *
from brian2.core.namespace import *
from brian2.groups import *
from brian2.synapses import *
from brian2.monitors import *
from brian2.importexport import *
from brian2.input import *
from brian2.spatialneuron import *
from brian2.devices import set_device, get_device, device, all_devices, seed
import brian2.devices.cpp_standalone as _cpp_standalone

preferences
from brian2.core.core_preferences import *
prefs.load_preferences()
prefs.do_validation()

prefs._backup()

set_device(all_devices['runtime'])

[docs]def restore_initial_state():
 '''
 Restores internal Brian variables to the state they are in when Brian is imported

 Resets ``defaultclock.dt = 0.1*ms``,
 `BrianGlobalPreferences._restore` preferences, and set
 `BrianObject._scope_current_key` back to 0.
 '''
 prefs._restore()
 BrianObject._scope_current_key = 0
 defaultclock.dt = 0.1*ms
 gc.collect()

make the test suite available via brian2.test()
from brian2.tests import run as test

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/brian2/utils/arrays.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.utils.arrays

'''
Helper module containing functions that operate on numpy arrays.
'''
import numpy as np

[docs]def calc_repeats(delay):
 '''
 Calculates offsets corresponding to an array, where repeated values are
 subsequently numbered, i.e. if there n identical values, the returned array
 will have values from 0 to n-1 at their positions.
 The code is complex because tricks are needed for vectorisation.

 This function is used in the Python `SpikeQueue` to calculate the offset
 array for the insertion of spikes with their respective delays into the
 queue and in the numpy code for synapse creation to calculate how many
 synapses for each source-target pair exist.

 Examples

 >>> import numpy as np
 >>> print(calc_repeats(np.array([7, 5, 7, 3, 7, 5])))
 [0 0 1 0 2 1]
 '''
 # We use merge sort because it preserves the input order of equal
 # elements in the sorted output
 I = np.argsort(delay, kind='mergesort')
 xs = delay[I]
 J = (xs[1:] != xs[:-1])
 A = np.hstack((0, np.cumsum(J)))
 B = np.hstack((0, np.cumsum(np.logical_not(J))))
 BJ = np.hstack((0, B[:-1][J]))
 ei = B-BJ[A]
 ofs = np.zeros_like(delay, dtype=np.int32)
 ofs[I] = np.array(ei, dtype=ofs.dtype)
 return ofs

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/brian2/utils/stringtools.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.utils.stringtools

"""
A collection of tools for string formatting tasks.
"""

import re
import string

__all__ = ['indent',
 'deindent',
 'word_substitute',
 'replace',
 'get_identifiers',
 'strip_empty_lines',
 'stripped_deindented_lines',
 'strip_empty_leading_and_trailing_lines',
 'code_representation',
 'SpellChecker'
]

[docs]def indent(text, numtabs=1, spacespertab=4, tab=None):
 '''
 Indents a given multiline string.

 By default, indentation is done using spaces rather than tab characters.
 To use tab characters, specify the tab character explictly, e.g.::

 indent(text, tab='\t')

 Note that in this case ``spacespertab`` is ignored.

 Examples

 >>> multiline = """def f(x):
 ... return x*x"""
 >>> print(multiline)
 def f(x):
 return x*x
 >>> print(indent(multiline))
 def f(x):
 return x*x
 >>> print(indent(multiline, numtabs=2))
 def f(x):
 return x*x
 >>> print(indent(multiline, spacespertab=2))
 def f(x):
 return x*x
 >>> print(indent(multiline, tab='####'))
 ####def f(x):
 #### return x*x
 '''
 if tab is None:
 tab = ' '*spacespertab
 indent = tab*numtabs
 indentedstring = indent+text.replace('\n', '\n'+indent)
 return indentedstring

[docs]def deindent(text, numtabs=None, spacespertab=4, docstring=False):
 '''
 Returns a copy of the string with the common indentation removed.

 Note that all tab characters are replaced with ``spacespertab`` spaces.

 If the ``docstring`` flag is set, the first line is treated differently and
 is assumed to be already correctly tabulated.

 If the ``numtabs`` option is given, the amount of indentation to remove is
 given explicitly and not the common indentation.

 Examples

 Normal strings, e.g. function definitions:

 >>> multiline = """ def f(x):
 ... return x**2"""
 >>> print(multiline)
 def f(x):
 return x**2
 >>> print(deindent(multiline))
 def f(x):
 return x**2
 >>> print(deindent(multiline, docstring=True))
 def f(x):
 return x**2
 >>> print(deindent(multiline, numtabs=1, spacespertab=2))
 def f(x):
 return x**2

 Docstrings:

 >>> docstring = """First docstring line.
 ... This line determines the indentation."""
 >>> print(docstring)
 First docstring line.
 This line determines the indentation.
 >>> print(deindent(docstring, docstring=True))
 First docstring line.
 This line determines the indentation.
 '''
 text = text.replace('\t', ' '*spacespertab)
 lines = text.split('\n')
 # if it's a docstring, we search for the common tabulation starting from
 # line 1, otherwise we use all lines
 if docstring:
 start = 1
 else:
 start = 0
 if docstring and len(lines)<2: # nothing to do
 return text
 # Find the minimum indentation level
 if numtabs is not None:
 indentlevel = numtabs*spacespertab
 else:
 lineseq = [len(line)-len(line.lstrip()) for line in lines[start:] if len(line.strip())]
 if len(lineseq)==0:
 indentlevel = 0
 else:
 indentlevel = min(lineseq)
 # remove the common indentation
 lines[start:] = [line[indentlevel:] for line in lines[start:]]
 return '\n'.join(lines)

[docs]def word_substitute(expr, substitutions):
 '''
 Applies a dict of word substitutions.

 The dict ``substitutions`` consists of pairs ``(word, rep)`` where each
 word ``word`` appearing in ``expr`` is replaced by ``rep``. Here a 'word'
 means anything matching the regexp ``\\bword\\b``.

 Examples

 >>> expr = 'a*_b+c5+8+f(A)'
 >>> print(word_substitute(expr, {'a':'banana', 'f':'func'}))
 banana*_b+c5+8+func(A)
 '''
 for var, replace_var in substitutions.iteritems():
 expr = re.sub(r'\b' + var + r'\b', str(replace_var), expr)
 return expr

[docs]def replace(s, substitutions):
 '''
 Applies a dictionary of substitutions. Simpler than `word_substitute`, it
 does not attempt to only replace words
 '''
 for before, after in substitutions.iteritems():
 s = s.replace(before, after)
 return s

KEYWORDS = {'and', 'or', 'not', 'True', 'False'}

[docs]def get_identifiers(expr, include_numbers=False):
 '''
 Return all the identifiers in a given string ``expr``, that is everything
 that matches a programming language variable like expression, which is
 here implemented as the regexp ``\\b[A-Za-z_][A-Za-z0-9_]*\\b``.

 Parameters

 expr : str
 The string to analyze
 include_numbers : bool, optional
 Whether to include number literals in the output. Defaults to ``False``.

 Returns

 identifiers : set
 A set of all the identifiers (and, optionally, numbers) in `expr`.

 Examples

 >>> expr = '3-a*_b+c5+8+f(A - .3e-10, tau_2)*17'
 >>> ids = get_identifiers(expr)
 >>> print(sorted(list(ids)))
 ['A', '_b', 'a', 'c5', 'f', 'tau_2']
 >>> ids = get_identifiers(expr, include_numbers=True)
 >>> print(sorted(list(ids)))
 ['.3e-10', '17', '3', '8', 'A', '_b', 'a', 'c5', 'f', 'tau_2']
 '''
 identifiers = set(re.findall(r'\b[A-Za-z_][A-Za-z0-9_]*\b', expr))
 if include_numbers:
 # only the number, not a + or -
 numbers = set(re.findall(r'(?<=[^A-Za-z_])[0-9]*\.?[0-9]+(?:[eE][-+]?[0-9]+)?|^[0-9]*\.?[0-9]+(?:[eE][-+]?[0-9]+)?',
 expr))
 else:
 numbers = set()
 return (identifiers - KEYWORDS) | numbers

[docs]def strip_empty_lines(s):
 '''
 Removes all empty lines from the multi-line string `s`.

 Examples

 >>> multiline = """A string with
 ...
 ... an empty line."""
 >>> print(strip_empty_lines(multiline))
 A string with
 an empty line.
 '''
 return '\n'.join(line for line in s.split('\n') if line.strip())

[docs]def strip_empty_leading_and_trailing_lines(s):
 '''
 Removes all empty leading and trailing lines in the multi-line string `s`.
 '''
 lines = s.split('\n')
 while lines and not lines[0].strip(): del lines[0]
 while lines and not lines[-1].strip(): del lines[-1]
 return '\n'.join(lines)

[docs]def stripped_deindented_lines(code):
 '''
 Returns a list of the lines in a multi-line string, deindented.
 '''
 code = deindent(code)
 code = strip_empty_lines(code)
 lines = code.split('\n')
 return lines

[docs]def code_representation(code):
 '''
 Returns a string representation for several different formats of code

 Formats covered include:
 - A single string
 - A list of statements/strings
 - A dict of strings
 - A dict of lists of statements/strings
 '''
 if not isinstance(code, (basestring, list, tuple, dict)):
 code = str(code)
 if isinstance(code, basestring):
 return strip_empty_leading_and_trailing_lines(code)
 if not isinstance(code, dict):
 code = {None: code}
 else:
 code = code.copy()
 for k, v in code.items():
 if isinstance(v, (list, tuple)):
 v = '\n'.join([str(line) for line in v])
 code[k] = v
 if len(code)==1 and code.keys()[0] is None:
 return strip_empty_leading_and_trailing_lines(code.values()[0])
 output = []
 for k, v in code.iteritems():
 msg = 'Key %s:\n' % k
 msg += indent(str(v))
 output.append(msg)
 return strip_empty_leading_and_trailing_lines('\n'.join(output))

The below is adapted from Peter Norvig's spelling corrector
http://norvig.com/spell.py (MIT licensed)
[docs]class SpellChecker(object):
 '''
 A simple spell checker that will be used to suggest the correct name if the
 user made a typo (e.g. for state variable names).

 Parameters

 words : iterable of str
 The known words
 alphabet : iterable of str, optional
 The allowed characters. Defaults to the characters allowed for
 identifiers, i.e. ascii characters, digits and the underscore.
 '''
 def __init__(self, words,
 alphabet=string.ascii_lowercase+string.digits+'_'):
 self.words = words
 self.alphabet = alphabet

[docs] def edits1(self, word):
 s = [(word[:i], word[i:]) for i in range(len(word) + 1)]
 deletes = [a + b[1:] for a, b in s if b]
 transposes = [a + b[1] + b[0] + b[2:] for a, b in s if len(b)>1]
 replaces = [a + c + b[1:] for a, b in s for c in self.alphabet if b]
 inserts = [a + c + b for a, b in s for c in self.alphabet]
 return set(deletes + transposes + replaces + inserts)

[docs] def known_edits2(self, word):
 return set(e2 for e1 in self.edits1(word)
 for e2 in self.edits1(e1) if e2 in self.words)

[docs] def known(self, words):
 return set(w for w in words if w in self.words)

[docs] def suggest(self, word):
 return self.known(self.edits1(word)) or self.known_edits2(word) or set()

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/brian2/utils/filetools.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.utils.filetools

'''
File system tools
'''

import os
import sys
from contextlib import contextmanager

__all__ = ['ensure_directory', 'ensure_directory_of_file', 'in_directory',
 'copy_directory']

[docs]def ensure_directory_of_file(f):
 '''
 Ensures that a directory exists for filename to go in (creates if
 necessary), and returns the directory path.
 '''
 d = os.path.dirname(f)
 if not os.path.exists(d):
 os.makedirs(d)
 return d

[docs]def ensure_directory(d):
 '''
 Ensures that a given directory exists (creates it if necessary)
 '''
 if not os.path.exists(d):
 os.makedirs(d)
 return d

[docs]class in_directory(object):
 '''
 Safely temporarily work in a subdirectory

 Usage::

 with in_directory(directory):
 ... do stuff here

 Guarantees that the code in the with block will be executed in directory,
 and that after the block is completed we return to the original directory.
 '''
 def __init__(self,new_dir):
 self.orig_dir = os.getcwd()
 self.new_dir = new_dir
 def __enter__(self):
 os.chdir(self.new_dir)
 def __exit__(self,*exc_info):
 os.chdir(self.orig_dir)

[docs]def copy_directory(source, target):
 '''
 Copies directory source to target.
 '''
 relnames = []
 sourcebase = os.path.normpath(source)+os.path.sep
 for root, dirnames, filenames in os.walk(source):
 for filename in filenames:
 fullname = os.path.normpath(os.path.join(root, filename))
 relname = fullname.replace(sourcebase, '')
 relnames.append(relname)
 tgtname = os.path.join(target, relname)
 ensure_directory_of_file(tgtname)
 contents = open(fullname).read()
 if os.path.exists(tgtname) and open(tgtname).read()==contents:
 continue
 open(tgtname, 'w').write(contents)
 return relnames

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/index.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 All modules for which code is available

		abc

		brian2.codegen.codeobject

		brian2.codegen.cpp_prefs

		brian2.codegen.generators.base

		brian2.codegen.generators.cpp_generator

		brian2.codegen.generators.cython_generator

		brian2.codegen.generators.numpy_generator

		brian2.codegen.optimisation

		brian2.codegen.permutation_analysis

		brian2.codegen.runtime.cython_rt.cython_rt

		brian2.codegen.runtime.cython_rt.extension_manager

		brian2.codegen.runtime.numpy_rt.numpy_rt

		brian2.codegen.runtime.numpy_rt.synapse_vectorisation

		brian2.codegen.runtime.weave_rt.weave_rt

		brian2.codegen.statements

		brian2.codegen.templates

		brian2.codegen.translation

		brian2.core.base

		brian2.core.clocks

		brian2.core.core_preferences

		brian2.core.functions

		brian2.core.magic

		brian2.core.names

		brian2.core.namespace

		brian2.core.network

		brian2.core.operations

		brian2.core.preferences

		brian2.core.spikesource

		brian2.core.tracking

		brian2.core.variables

		brian2.devices.cpp_standalone.codeobject

		brian2.devices.cpp_standalone.device

		brian2.devices.device

		brian2.equations.codestrings

		brian2.equations.equations

		brian2.equations.refractory

		brian2.equations.unitcheck

		brian2.groups.group

		brian2.groups.neurongroup

		brian2.groups.subgroup

		brian2.hears

		brian2.importexport.dictlike

		brian2.importexport.importexport

		brian2.input.binomial

		brian2.input.poissongroup

		brian2.input.poissoninput

		brian2.input.spikegeneratorgroup

		brian2.input.timedarray

		brian2.memory.dynamicarray

		brian2.monitors.ratemonitor

		brian2.monitors.spikemonitor

		brian2.monitors.statemonitor

		brian2.only

		brian2.parsing.bast

		brian2.parsing.dependencies

		brian2.parsing.expressions

		brian2.parsing.functions

		brian2.parsing.rendering

		brian2.parsing.statements

		brian2.parsing.sympytools

		brian2.spatialneuron.morphology

		brian2.spatialneuron.spatialneuron

		brian2.stateupdaters.base

		brian2.stateupdaters.exact

		brian2.stateupdaters.explicit

		brian2.stateupdaters.exponential_euler

		brian2.synapses.parse_synaptic_generator_syntax

		brian2.synapses.spikequeue

		brian2.synapses.synapses

		brian2.units.fundamentalunits

		brian2.units.unitsafefunctions

		brian2.utils.arrays

		brian2.utils.environment

		brian2.utils.filetools

		brian2.utils.logger

		brian2.utils.stringtools

		brian2.utils.topsort

		pyparsing

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/abc.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for abc

Copyright 2007 Google, Inc. All Rights Reserved.
Licensed to PSF under a Contributor Agreement.

"""Abstract Base Classes (ABCs) according to PEP 3119."""

import types

from _weakrefset import WeakSet

Instance of old-style class
class _C: pass
_InstanceType = type(_C())

def abstractmethod(funcobj):
 """A decorator indicating abstract methods.

 Requires that the metaclass is ABCMeta or derived from it. A
 class that has a metaclass derived from ABCMeta cannot be
 instantiated unless all of its abstract methods are overridden.
 The abstract methods can be called using any of the normal
 'super' call mechanisms.

 Usage:

 class C:
 __metaclass__ = ABCMeta
 @abstractmethod
 def my_abstract_method(self, ...):
 ...
 """
 funcobj.__isabstractmethod__ = True
 return funcobj

class abstractproperty(property):
 """A decorator indicating abstract properties.

 Requires that the metaclass is ABCMeta or derived from it. A
 class that has a metaclass derived from ABCMeta cannot be
 instantiated unless all of its abstract properties are overridden.
 The abstract properties can be called using any of the normal
 'super' call mechanisms.

 Usage:

 class C:
 __metaclass__ = ABCMeta
 @abstractproperty
 def my_abstract_property(self):
 ...

 This defines a read-only property; you can also define a read-write
 abstract property using the 'long' form of property declaration:

 class C:
 __metaclass__ = ABCMeta
 def getx(self): ...
 def setx(self, value): ...
 x = abstractproperty(getx, setx)
 """
 __isabstractmethod__ = True

class ABCMeta(type):

 """Metaclass for defining Abstract Base Classes (ABCs).

 Use this metaclass to create an ABC. An ABC can be subclassed
 directly, and then acts as a mix-in class. You can also register
 unrelated concrete classes (even built-in classes) and unrelated
 ABCs as 'virtual subclasses' -- these and their descendants will
 be considered subclasses of the registering ABC by the built-in
 issubclass() function, but the registering ABC won't show up in
 their MRO (Method Resolution Order) nor will method
 implementations defined by the registering ABC be callable (not
 even via super()).

 """

 # A global counter that is incremented each time a class is
 # registered as a virtual subclass of anything. It forces the
 # negative cache to be cleared before its next use.
 _abc_invalidation_counter = 0

 def __new__(mcls, name, bases, namespace):
 cls = super(ABCMeta, mcls).__new__(mcls, name, bases, namespace)
 # Compute set of abstract method names
 abstracts = set(name
 for name, value in namespace.items()
 if getattr(value, "__isabstractmethod__", False))
 for base in bases:
 for name in getattr(base, "__abstractmethods__", set()):
 value = getattr(cls, name, None)
 if getattr(value, "__isabstractmethod__", False):
 abstracts.add(name)
 cls.__abstractmethods__ = frozenset(abstracts)
 # Set up inheritance registry
 cls._abc_registry = WeakSet()
 cls._abc_cache = WeakSet()
 cls._abc_negative_cache = WeakSet()
 cls._abc_negative_cache_version = ABCMeta._abc_invalidation_counter
 return cls

 def register(cls, subclass):
 """Register a virtual subclass of an ABC."""
 if not isinstance(subclass, (type, types.ClassType)):
 raise TypeError("Can only register classes")
 if issubclass(subclass, cls):
 return # Already a subclass
 # Subtle: test for cycles *after* testing for "already a subclass";
 # this means we allow X.register(X) and interpret it as a no-op.
 if issubclass(cls, subclass):
 # This would create a cycle, which is bad for the algorithm below
 raise RuntimeError("Refusing to create an inheritance cycle")
 cls._abc_registry.add(subclass)
 ABCMeta._abc_invalidation_counter += 1 # Invalidate negative cache

 def _dump_registry(cls, file=None):
 """Debug helper to print the ABC registry."""
 print >> file, "Class: %s.%s" % (cls.__module__, cls.__name__)
 print >> file, "Inv.counter: %s" % ABCMeta._abc_invalidation_counter
 for name in sorted(cls.__dict__.keys()):
 if name.startswith("_abc_"):
 value = getattr(cls, name)
 print >> file, "%s: %r" % (name, value)

 def __instancecheck__(cls, instance):
 """Override for isinstance(instance, cls)."""
 # Inline the cache checking when it's simple.
 subclass = getattr(instance, '__class__', None)
 if subclass is not None and subclass in cls._abc_cache:
 return True
 subtype = type(instance)
 # Old-style instances
 if subtype is _InstanceType:
 subtype = subclass
 if subtype is subclass or subclass is None:
 if (cls._abc_negative_cache_version ==
 ABCMeta._abc_invalidation_counter and
 subtype in cls._abc_negative_cache):
 return False
 # Fall back to the subclass check.
 return cls.__subclasscheck__(subtype)
 return (cls.__subclasscheck__(subclass) or
 cls.__subclasscheck__(subtype))

 def __subclasscheck__(cls, subclass):
 """Override for issubclass(subclass, cls)."""
 # Check cache
 if subclass in cls._abc_cache:
 return True
 # Check negative cache; may have to invalidate
 if cls._abc_negative_cache_version < ABCMeta._abc_invalidation_counter:
 # Invalidate the negative cache
 cls._abc_negative_cache = WeakSet()
 cls._abc_negative_cache_version = ABCMeta._abc_invalidation_counter
 elif subclass in cls._abc_negative_cache:
 return False
 # Check the subclass hook
 ok = cls.__subclasshook__(subclass)
 if ok is not NotImplemented:
 assert isinstance(ok, bool)
 if ok:
 cls._abc_cache.add(subclass)
 else:
 cls._abc_negative_cache.add(subclass)
 return ok
 # Check if it's a direct subclass
 if cls in getattr(subclass, '__mro__', ()):
 cls._abc_cache.add(subclass)
 return True
 # Check if it's a subclass of a registered class (recursive)
 for rcls in cls._abc_registry:
 if issubclass(subclass, rcls):
 cls._abc_cache.add(subclass)
 return True
 # Check if it's a subclass of a subclass (recursive)
 for scls in cls.__subclasses__():
 if issubclass(subclass, scls):
 cls._abc_cache.add(subclass)
 return True
 # No dice; update negative cache
 cls._abc_negative_cache.add(subclass)
 return False

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/brian2/hears.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.hears

'''
This is only a bridge for using Brian 1 hears with Brian 2.

NOTES:

* Slicing sounds with Brian 2 units doesn't work, you need to either use Brian 1 units or replace calls to
 ``sound[:20*ms]`` with ``sound.slice(None, 20*ms)``, etc.

TODO: handle properties (e.g. sound.duration)

Not working examples:

* time_varying_filter1 (care with units)
'''

try:
 import brian as b1
 import brian.hears as b1h
except ImportError:
 raise ImportError("brian2.hears is a bridge between Brian 2 and the version of Brian Hears from "
 "Brian 1, you need to have Brian 1 installed to use it.")

from brian2.core.clocks import Clock
from brian2.core.operations import network_operation
from brian2.groups.neurongroup import NeuronGroup
from brian2.utils.logger import get_logger
from brian2.units.fundamentalunits import Quantity
from brian2.units import second

from numpy import asarray, array, ndarray
from inspect import isclass, ismethod

logger = get_logger(__name__)

logger.warn("You are using the bridge between Brian 2 and Brian Hears from Brian 1. "
 "This is not guaranteed to work in all cases that brian.hears works. "
 "See the limitations in the online documentation.")

[docs]def convert_unit_b1_to_b2(val):
 return Quantity.with_dimensions(float(val), arg.dim._dims)

[docs]def convert_unit_b2_to_b1(val):
 return b1.Quantity.with_dimensions(float(val), arg.dim._dims)

[docs]def modify_arg(arg):
 '''
 Modify arguments to make them compatible with Brian 1.

 - Arrays of units are replaced with straight arrays
 - Single values are replaced with Brian 1 equivalents
 - Slices are handled so we can use e.g. sound[:20*ms]

 The second part was necessary because some functions/classes test if an object is an array or not to see if it
 is a sequence, but because brian2.Quantity derives from ndarray this was causing problems.
 '''
 if isinstance(arg, Quantity):
 if len(arg.shape)==0:
 arg = b1.Quantity.with_dimensions(float(arg), arg.dim._dims)
 else:
 arg = asarray(arg)
 elif isinstance(arg, slice):
 arg = slice(modify_arg(arg.start), modify_arg(arg.stop), modify_arg(arg.step))
 return arg

[docs]def wrap_units(f):
 '''
 Wrap a function to convert units into a form that Brian 1 can handle. Also, check the output argument, if it is
 a ``b1h.Sound`` wrap it.
 '''
 def new_f(*args, **kwds):
 newargs = []
 newkwds = {}
 for arg in args:
 newargs.append(modify_arg(arg))
 for k, v in kwds.items():
 newkwds[k] = modify_arg(v)
 rv = f(*newargs, **newkwds)
 if rv.__class__==b1h.Sound:
 rv.__class__ = BridgeSound
 elif isinstance(rv, b1.Quantity):
 rv = Quantity.with_dimensions(float(rv), rv.dim._dims)
 return rv
 return new_f

[docs]def wrap_units_property(p):
 fget = p.fget
 fset = p.fset
 fdel = p.fdel
 if fget is not None:
 fget = wrap_units(fget)
 if fset is not None:
 fset = wrap_units(fset)
 if fdel is not None:
 fdel = wrap_units(fdel)
 new_p = property(fget, fset, fdel)
 return new_p

[docs]def wrap_units_class(_C):
 '''
 Wrap a class to convert units into a form that Brian 1 can handle in all methods
 '''
 class new_class(_C):
 for _k in _C.__dict__.keys():
 _v = getattr(_C, _k)
 if hasattr(ndarray, _k) and getattr(ndarray, _k) is _v:
 continue
 if ismethod(_v):
 _v = wrap_units(_v)
 exec '%s = _v' % _k
 elif isinstance(_v, property):
 _v = wrap_units_property(_v)
 exec '%s = _v' % _k
 del _k
 del _v
 return new_class

WrappedSound = wrap_units_class(b1h.Sound)
[docs]class BridgeSound(WrappedSound):
 '''
 We add a new method slice because slicing with units can't work with Brian 2 units.
 '''
[docs] def slice(self, *args):
 return self.__getitem__(slice(*args))

Sound = BridgeSound

[docs]class FilterbankGroup(NeuronGroup):
 def __init__(self, filterbank, targetvar, *args, **kwds):
 self.targetvar = targetvar
 self.filterbank = filterbank
 self.buffer = None
 filterbank.buffer_init()

 # Sanitize the clock - does it have the right dt value?
 if 'clock' in kwds:
 if int(1/kwds['clock'].dt)!=int(filterbank.samplerate):
 raise ValueError('Clock should have 1/dt=samplerate')
 kwds['clock'] = Clock(dt=float(kwds['clock'].dt)*second)
 else:
 kwds['clock'] = Clock(dt=1*second/float(filterbank.samplerate))

 buffersize = kwds.pop('buffersize', 32)
 if not isinstance(buffersize, int):
 buffersize = int(buffersize*self.samplerate)
 self.buffersize = buffersize
 self.buffer_pointer = buffersize
 self.buffer_start = -buffersize

 NeuronGroup.__init__(self, filterbank.nchannels, *args, **kwds)

 @network_operation(clock=self.clock, when='start')
 def apply_filterbank_output():
 if self.buffer_pointer>=self.buffersize:
 self.buffer_pointer = 0
 self.buffer_start += self.buffersize
 self.buffer = self.filterbank.buffer_fetch(self.buffer_start, self.buffer_start+self.buffersize)
 setattr(self, targetvar, self.buffer[self.buffer_pointer, :])
 self.buffer_pointer += 1

 self.contained_objects.append(apply_filterbank_output)

[docs] def reinit(self):
 NeuronGroup.reinit(self)
 self.filterbank.buffer_init()
 self.buffer_pointer = self.buffersize
 self.buffer_start = -self.buffersize

handled_explicitly = {'Sound', 'FilterbankGroup'}

__all__ = [k for k in b1h.__dict__.keys() if not k.startswith('_')]
for k in __all__:
 if k in handled_explicitly:
 continue
 curobj = getattr(b1h, k)
 if callable(curobj):
 if isclass(curobj):
 curobj = wrap_units_class(curobj)
 else:
 curobj = wrap_units(curobj)
 exec '%s = curobj' % k

__all__.extend(['convert_unit_b1_to_b2',
 'convert_unit_b2_to_b1',
])

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/pyparsing.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for pyparsing

module pyparsing.py
#
Copyright (c) 2003-2013 Paul T. McGuire
#
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
#
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#

__doc__ = \
"""
pyparsing module - Classes and methods to define and execute parsing grammars

The pyparsing module is an alternative approach to creating and executing simple grammars,
vs. the traditional lex/yacc approach, or the use of regular expressions. With pyparsing, you
don't need to learn a new syntax for defining grammars or matching expressions - the parsing module
provides a library of classes that you use to construct the grammar directly in Python.

Here is a program to parse "Hello, World!" (or any greeting of the form C{"<salutation>, <addressee>!"})::

 from pyparsing import Word, alphas

 # define grammar of a greeting
 greet = Word(alphas) + "," + Word(alphas) + "!"

 hello = "Hello, World!"
 print (hello, "->", greet.parseString(hello))

The program outputs the following::

 Hello, World! -> ['Hello', ',', 'World', '!']

The Python representation of the grammar is quite readable, owing to the self-explanatory
class names, and the use of '+', '|' and '^' operators.

The parsed results returned from C{parseString()} can be accessed as a nested list, a dictionary, or an
object with named attributes.

The pyparsing module handles some of the problems that are typically vexing when writing text parsers:
 - extra or missing whitespace (the above program will also handle "Hello,World!", "Hello , World !", etc.)
 - quoted strings
 - embedded comments
"""

__version__ = "2.0.1"
__versionTime__ = "16 July 2013 22:22"
__author__ = "Paul McGuire <ptmcg@users.sourceforge.net>"

import string
from weakref import ref as wkref
import copy
import sys
import warnings
import re
import sre_constants
import collections
#~ sys.stderr.write("testing pyparsing module, version %s, %s\n" % (__version__,__versionTime__))

__all__ = [
'And', 'CaselessKeyword', 'CaselessLiteral', 'CharsNotIn', 'Combine', 'Dict', 'Each', 'Empty',
'FollowedBy', 'Forward', 'GoToColumn', 'Group', 'Keyword', 'LineEnd', 'LineStart', 'Literal',
'MatchFirst', 'NoMatch', 'NotAny', 'OneOrMore', 'OnlyOnce', 'Optional', 'Or',
'ParseBaseException', 'ParseElementEnhance', 'ParseException', 'ParseExpression', 'ParseFatalException',
'ParseResults', 'ParseSyntaxException', 'ParserElement', 'QuotedString', 'RecursiveGrammarException',
'Regex', 'SkipTo', 'StringEnd', 'StringStart', 'Suppress', 'Token', 'TokenConverter', 'Upcase',
'White', 'Word', 'WordEnd', 'WordStart', 'ZeroOrMore',
'alphanums', 'alphas', 'alphas8bit', 'anyCloseTag', 'anyOpenTag', 'cStyleComment', 'col',
'commaSeparatedList', 'commonHTMLEntity', 'countedArray', 'cppStyleComment', 'dblQuotedString',
'dblSlashComment', 'delimitedList', 'dictOf', 'downcaseTokens', 'empty', 'hexnums',
'htmlComment', 'javaStyleComment', 'keepOriginalText', 'line', 'lineEnd', 'lineStart', 'lineno',
'makeHTMLTags', 'makeXMLTags', 'matchOnlyAtCol', 'matchPreviousExpr', 'matchPreviousLiteral',
'nestedExpr', 'nullDebugAction', 'nums', 'oneOf', 'opAssoc', 'operatorPrecedence', 'printables',
'punc8bit', 'pythonStyleComment', 'quotedString', 'removeQuotes', 'replaceHTMLEntity',
'replaceWith', 'restOfLine', 'sglQuotedString', 'srange', 'stringEnd',
'stringStart', 'traceParseAction', 'unicodeString', 'upcaseTokens', 'withAttribute',
'indentedBlock', 'originalTextFor', 'ungroup', 'infixNotation',
]

PY_3 = sys.version.startswith('3')
if PY_3:
 _MAX_INT = sys.maxsize
 basestring = str
 unichr = chr
 _ustr = str

 # build list of single arg builtins, that can be used as parse actions
 singleArgBuiltins = [sum, len, sorted, reversed, list, tuple, set, any, all, min, max]

else:
 _MAX_INT = sys.maxint
 range = xrange

 def _ustr(obj):
 """Drop-in replacement for str(obj) that tries to be Unicode friendly. It first tries
 str(obj). If that fails with a UnicodeEncodeError, then it tries unicode(obj). It
 then < returns the unicode object | encodes it with the default encoding | ... >.
 """
 if isinstance(obj,unicode):
 return obj

 try:
 # If this works, then _ustr(obj) has the same behaviour as str(obj), so
 # it won't break any existing code.
 return str(obj)

 except UnicodeEncodeError:
 # The Python docs (http://docs.python.org/ref/customization.html#l2h-182)
 # state that "The return value must be a string object". However, does a
 # unicode object (being a subclass of basestring) count as a "string
 # object"?
 # If so, then return a unicode object:
 return unicode(obj)
 # Else encode it... but how? There are many choices... :)
 # Replace unprintables with escape codes?
 #return unicode(obj).encode(sys.getdefaultencoding(), 'backslashreplace_errors')
 # Replace unprintables with question marks?
 #return unicode(obj).encode(sys.getdefaultencoding(), 'replace')
 # ...

 # build list of single arg builtins, tolerant of Python version, that can be used as parse actions
 singleArgBuiltins = []
 import __builtin__
 for fname in "sum len sorted reversed list tuple set any all min max".split():
 try:
 singleArgBuiltins.append(getattr(__builtin__,fname))
 except AttributeError:
 continue

def _xml_escape(data):
 """Escape &, <, >, ", ', etc. in a string of data."""

 # ampersand must be replaced first
 from_symbols = '&><"\''
 to_symbols = ('&'+s+';' for s in "amp gt lt quot apos".split())
 for from_,to_ in zip(from_symbols, to_symbols):
 data = data.replace(from_, to_)
 return data

class _Constants(object):
 pass

alphas = string.ascii_lowercase + string.ascii_uppercase
nums = "0123456789"
hexnums = nums + "ABCDEFabcdef"
alphanums = alphas + nums
_bslash = chr(92)
printables = "".join(c for c in string.printable if c not in string.whitespace)

class ParseBaseException(Exception):
 """base exception class for all parsing runtime exceptions"""
 # Performance tuning: we construct a *lot* of these, so keep this
 # constructor as small and fast as possible
 def __init__(self, pstr, loc=0, msg=None, elem=None):
 self.loc = loc
 if msg is None:
 self.msg = pstr
 self.pstr = ""
 else:
 self.msg = msg
 self.pstr = pstr
 self.parserElement = elem

 def __getattr__(self, aname):
 """supported attributes by name are:
 - lineno - returns the line number of the exception text
 - col - returns the column number of the exception text
 - line - returns the line containing the exception text
 """
 if(aname == "lineno"):
 return lineno(self.loc, self.pstr)
 elif(aname in ("col", "column")):
 return col(self.loc, self.pstr)
 elif(aname == "line"):
 return line(self.loc, self.pstr)
 else:
 raise AttributeError(aname)

 def __str__(self):
 return "%s (at char %d), (line:%d, col:%d)" % \
 (self.msg, self.loc, self.lineno, self.column)
 def __repr__(self):
 return _ustr(self)
 def markInputline(self, markerString = ">!<"):
 """Extracts the exception line from the input string, and marks
 the location of the exception with a special symbol.
 """
 line_str = self.line
 line_column = self.column - 1
 if markerString:
 line_str = "".join(line_str[:line_column],
 markerString, line_str[line_column:])
 return line_str.strip()
 def __dir__(self):
 return "loc msg pstr parserElement lineno col line " \
 "markInputline __str__ __repr__".split()

class ParseException(ParseBaseException):
 """exception thrown when parse expressions don't match class;
 supported attributes by name are:
 - lineno - returns the line number of the exception text
 - col - returns the column number of the exception text
 - line - returns the line containing the exception text
 """
 pass

class ParseFatalException(ParseBaseException):
 """user-throwable exception thrown when inconsistent parse content
 is found; stops all parsing immediately"""
 pass

class ParseSyntaxException(ParseFatalException):
 """just like C{L{ParseFatalException}}, but thrown internally when an
 C{L{ErrorStop<And._ErrorStop>}} ('-' operator) indicates that parsing is to stop immediately because
 an unbacktrackable syntax error has been found"""
 def __init__(self, pe):
 super(ParseSyntaxException, self).__init__(
 pe.pstr, pe.loc, pe.msg, pe.parserElement)

#~ class ReparseException(ParseBaseException):
 #~ """Experimental class - parse actions can raise this exception to cause
 #~ pyparsing to reparse the input string:
 #~ - with a modified input string, and/or
 #~ - with a modified start location
 #~ Set the values of the ReparseException in the constructor, and raise the
 #~ exception in a parse action to cause pyparsing to use the new string/location.
 #~ Setting the values as None causes no change to be made.
 #~ """
 #~ def __init_(self, newstring, restartLoc):
 #~ self.newParseText = newstring
 #~ self.reparseLoc = restartLoc

class RecursiveGrammarException(Exception):
 """exception thrown by C{validate()} if the grammar could be improperly recursive"""
 def __init__(self, parseElementList):
 self.parseElementTrace = parseElementList

 def __str__(self):
 return "RecursiveGrammarException: %s" % self.parseElementTrace

class _ParseResultsWithOffset(object):
 def __init__(self,p1,p2):
 self.tup = (p1,p2)
 def __getitem__(self,i):
 return self.tup[i]
 def __repr__(self):
 return repr(self.tup)
 def setOffset(self,i):
 self.tup = (self.tup[0],i)

class ParseResults(object):
 """Structured parse results, to provide multiple means of access to the parsed data:
 - as a list (C{len(results)})
 - by list index (C{results[0], results[1]}, etc.)
 - by attribute (C{results.<resultsName>})
 """
 #~ __slots__ = ("__toklist", "__tokdict", "__doinit", "__name", "__parent", "__accumNames", "__weakref__")
 def __new__(cls, toklist, name=None, asList=True, modal=True):
 if isinstance(toklist, cls):
 return toklist
 retobj = object.__new__(cls)
 retobj.__doinit = True
 return retobj

 # Performance tuning: we construct a *lot* of these, so keep this
 # constructor as small and fast as possible
 def __init__(self, toklist, name=None, asList=True, modal=True, isinstance=isinstance):
 if self.__doinit:
 self.__doinit = False
 self.__name = None
 self.__parent = None
 self.__accumNames = {}
 if isinstance(toklist, list):
 self.__toklist = toklist[:]
 else:
 self.__toklist = [toklist]
 self.__tokdict = dict()

 if name is not None and name:
 if not modal:
 self.__accumNames[name] = 0
 if isinstance(name,int):
 name = _ustr(name) # will always return a str, but use _ustr for consistency
 self.__name = name
 if not toklist in (None,'',[]):
 if isinstance(toklist,basestring):
 toklist = [toklist]
 if asList:
 if isinstance(toklist,ParseResults):
 self[name] = _ParseResultsWithOffset(toklist.copy(),0)
 else:
 self[name] = _ParseResultsWithOffset(ParseResults(toklist[0]),0)
 self[name].__name = name
 else:
 try:
 self[name] = toklist[0]
 except (KeyError,TypeError,IndexError):
 self[name] = toklist

 def __getitem__(self, i):
 if isinstance(i, (int,slice)):
 return self.__toklist[i]
 else:
 if i not in self.__accumNames:
 return self.__tokdict[i][-1][0]
 else:
 return ParseResults([v[0] for v in self.__tokdict[i]])

 def __setitem__(self, k, v, isinstance=isinstance):
 if isinstance(v,_ParseResultsWithOffset):
 self.__tokdict[k] = self.__tokdict.get(k,list()) + [v]
 sub = v[0]
 elif isinstance(k,int):
 self.__toklist[k] = v
 sub = v
 else:
 self.__tokdict[k] = self.__tokdict.get(k,list()) + [_ParseResultsWithOffset(v,0)]
 sub = v
 if isinstance(sub,ParseResults):
 sub.__parent = wkref(self)

 def __delitem__(self, i):
 if isinstance(i,(int,slice)):
 mylen = len(self.__toklist)
 del self.__toklist[i]

 # convert int to slice
 if isinstance(i, int):
 if i < 0:
 i += mylen
 i = slice(i, i+1)
 # get removed indices
 removed = list(range(*i.indices(mylen)))
 removed.reverse()
 # fixup indices in token dictionary
 for name in self.__tokdict:
 occurrences = self.__tokdict[name]
 for j in removed:
 for k, (value, position) in enumerate(occurrences):
 occurrences[k] = _ParseResultsWithOffset(value, position - (position > j))
 else:
 del self.__tokdict[i]

 def __contains__(self, k):
 return k in self.__tokdict

 def __len__(self): return len(self.__toklist)
 def __bool__(self): return len(self.__toklist) > 0
 __nonzero__ = __bool__
 def __iter__(self): return iter(self.__toklist)
 def __reversed__(self): return iter(self.__toklist[::-1])
 def keys(self):
 """Returns all named result keys."""
 return self.__tokdict.keys()

 def pop(self, index=-1):
 """Removes and returns item at specified index (default=last).
 Will work with either numeric indices or dict-key indicies."""
 ret = self[index]
 del self[index]
 return ret

 def get(self, key, defaultValue=None):
 """Returns named result matching the given key, or if there is no
 such name, then returns the given C{defaultValue} or C{None} if no
 C{defaultValue} is specified."""
 if key in self:
 return self[key]
 else:
 return defaultValue

 def insert(self, index, insStr):
 """Inserts new element at location index in the list of parsed tokens."""
 self.__toklist.insert(index, insStr)
 # fixup indices in token dictionary
 for name in self.__tokdict:
 occurrences = self.__tokdict[name]
 for k, (value, position) in enumerate(occurrences):
 occurrences[k] = _ParseResultsWithOffset(value, position + (position > index))

 def items(self):
 """Returns all named result keys and values as a list of tuples."""
 return [(k,self[k]) for k in self.__tokdict]

 def values(self):
 """Returns all named result values."""
 return [v[-1][0] for v in self.__tokdict.values()]

 def __getattr__(self, name):
 if True: #name not in self.__slots__:
 if name in self.__tokdict:
 if name not in self.__accumNames:
 return self.__tokdict[name][-1][0]
 else:
 return ParseResults([v[0] for v in self.__tokdict[name]])
 else:
 return ""
 return None

 def __add__(self, other):
 ret = self.copy()
 ret += other
 return ret

 def __iadd__(self, other):
 if other.__tokdict:
 offset = len(self.__toklist)
 addoffset = (lambda a: (a<0 and offset) or (a+offset))
 otheritems = other.__tokdict.items()
 otherdictitems = [(k, _ParseResultsWithOffset(v[0],addoffset(v[1])))
 for (k,vlist) in otheritems for v in vlist]
 for k,v in otherdictitems:
 self[k] = v
 if isinstance(v[0],ParseResults):
 v[0].__parent = wkref(self)

 self.__toklist += other.__toklist
 self.__accumNames.update(other.__accumNames)
 return self

 def __radd__(self, other):
 if isinstance(other,int) and other == 0:
 return self.copy()

 def __repr__(self):
 return "(%s, %s)" % (repr(self.__toklist), repr(self.__tokdict))

 def __str__(self):
 out = []
 for i in self.__toklist:
 if isinstance(i, ParseResults):
 out.append(_ustr(i))
 else:
 out.append(repr(i))
 return '[' + ', '.join(out) + ']'

 def _asStringList(self, sep=''):
 out = []
 for item in self.__toklist:
 if out and sep:
 out.append(sep)
 if isinstance(item, ParseResults):
 out += item._asStringList()
 else:
 out.append(_ustr(item))
 return out

 def asList(self):
 """Returns the parse results as a nested list of matching tokens, all converted to strings."""
 out = []
 for res in self.__toklist:
 if isinstance(res,ParseResults):
 out.append(res.asList())
 else:
 out.append(res)
 return out

 def asDict(self):
 """Returns the named parse results as dictionary."""
 return dict(self.items())

 def copy(self):
 """Returns a new copy of a C{ParseResults} object."""
 ret = ParseResults(self.__toklist)
 ret.__tokdict = self.__tokdict.copy()
 ret.__parent = self.__parent
 ret.__accumNames.update(self.__accumNames)
 ret.__name = self.__name
 return ret

 def asXML(self, doctag=None, namedItemsOnly=False, indent="", formatted=True):
 """Returns the parse results as XML. Tags are created for tokens and lists that have defined results names."""
 nl = "\n"
 out = []
 namedItems = dict((v[1],k) for (k,vlist) in self.__tokdict.items()
 for v in vlist)
 nextLevelIndent = indent + " "

 # collapse out indents if formatting is not desired
 if not formatted:
 indent = ""
 nextLevelIndent = ""
 nl = ""

 selfTag = None
 if doctag is not None:
 selfTag = doctag
 else:
 if self.__name:
 selfTag = self.__name

 if not selfTag:
 if namedItemsOnly:
 return ""
 else:
 selfTag = "ITEM"

 out += [nl, indent, "<", selfTag, ">"]

 worklist = self.__toklist
 for i,res in enumerate(worklist):
 if isinstance(res,ParseResults):
 if i in namedItems:
 out += [res.asXML(namedItems[i],
 namedItemsOnly and doctag is None,
 nextLevelIndent,
 formatted)]
 else:
 out += [res.asXML(None,
 namedItemsOnly and doctag is None,
 nextLevelIndent,
 formatted)]
 else:
 # individual token, see if there is a name for it
 resTag = None
 if i in namedItems:
 resTag = namedItems[i]
 if not resTag:
 if namedItemsOnly:
 continue
 else:
 resTag = "ITEM"
 xmlBodyText = _xml_escape(_ustr(res))
 out += [nl, nextLevelIndent, "<", resTag, ">",
 xmlBodyText,
 "</", resTag, ">"]

 out += [nl, indent, "</", selfTag, ">"]
 return "".join(out)

 def __lookup(self,sub):
 for k,vlist in self.__tokdict.items():
 for v,loc in vlist:
 if sub is v:
 return k
 return None

 def getName(self):
 """Returns the results name for this token expression."""
 if self.__name:
 return self.__name
 elif self.__parent:
 par = self.__parent()
 if par:
 return par.__lookup(self)
 else:
 return None
 elif (len(self) == 1 and
 len(self.__tokdict) == 1 and
 self.__tokdict.values()[0][0][1] in (0,-1)):
 return self.__tokdict.keys()[0]
 else:
 return None

 def dump(self,indent='',depth=0):
 """Diagnostic method for listing out the contents of a C{ParseResults}.
 Accepts an optional C{indent} argument so that this string can be embedded
 in a nested display of other data."""
 out = []
 out.append(indent+_ustr(self.asList()))
 keys = self.items()
 keys.sort()
 for k,v in keys:
 if out:
 out.append('\n')
 out.append("%s%s- %s: " % (indent,(' '*depth), k))
 if isinstance(v,ParseResults):
 if v.keys():
 out.append(v.dump(indent,depth+1))
 else:
 out.append(_ustr(v))
 else:
 out.append(_ustr(v))
 return "".join(out)

 # add support for pickle protocol
 def __getstate__(self):
 return (self.__toklist,
 (self.__tokdict.copy(),
 self.__parent is not None and self.__parent() or None,
 self.__accumNames,
 self.__name))

 def __setstate__(self,state):
 self.__toklist = state[0]
 (self.__tokdict,
 par,
 inAccumNames,
 self.__name) = state[1]
 self.__accumNames = {}
 self.__accumNames.update(inAccumNames)
 if par is not None:
 self.__parent = wkref(par)
 else:
 self.__parent = None

 def __dir__(self):
 return dir(super(ParseResults,self)) + list(self.keys())

collections.MutableMapping.register(ParseResults)

def col (loc,strg):
 """Returns current column within a string, counting newlines as line separators.
 The first column is number 1.

 Note: the default parsing behavior is to expand tabs in the input string
 before starting the parsing process. See L{I{ParserElement.parseString}<ParserElement.parseString>} for more information
 on parsing strings containing C{<TAB>}s, and suggested methods to maintain a
 consistent view of the parsed string, the parse location, and line and column
 positions within the parsed string.
 """
 return (loc<len(strg) and strg[loc] == '\n') and 1 or loc - strg.rfind("\n", 0, loc)

def lineno(loc,strg):
 """Returns current line number within a string, counting newlines as line separators.
 The first line is number 1.

 Note: the default parsing behavior is to expand tabs in the input string
 before starting the parsing process. See L{I{ParserElement.parseString}<ParserElement.parseString>} for more information
 on parsing strings containing C{<TAB>}s, and suggested methods to maintain a
 consistent view of the parsed string, the parse location, and line and column
 positions within the parsed string.
 """
 return strg.count("\n",0,loc) + 1

def line(loc, strg):
 """Returns the line of text containing loc within a string, counting newlines as line separators.
 """
 lastCR = strg.rfind("\n", 0, loc)
 nextCR = strg.find("\n", loc)
 if nextCR >= 0:
 return strg[lastCR+1:nextCR]
 else:
 return strg[lastCR+1:]

def _defaultStartDebugAction(instring, loc, expr):
 print (("Match " + _ustr(expr) + " at loc " + _ustr(loc) + "(%d,%d)" % (lineno(loc,instring), col(loc,instring))))

def _defaultSuccessDebugAction(instring, startloc, endloc, expr, toks):
 print ("Matched " + _ustr(expr) + " -> " + str(toks.asList()))

def _defaultExceptionDebugAction(instring, loc, expr, exc):
 print ("Exception raised:" + _ustr(exc))

def nullDebugAction(*args):
 """'Do-nothing' debug action, to suppress debugging output during parsing."""
 pass

Only works on Python 3.x - nonlocal is toxic to Python 2 installs
#~ 'decorator to trim function calls to match the arity of the target'
#~ def _trim_arity(func, maxargs=3):
 #~ if func in singleArgBuiltins:
 #~ return lambda s,l,t: func(t)
 #~ limit = 0
 #~ foundArity = False
 #~ def wrapper(*args):
 #~ nonlocal limit,foundArity
 #~ while 1:
 #~ try:
 #~ ret = func(*args[limit:])
 #~ foundArity = True
 #~ return ret
 #~ except TypeError:
 #~ if limit == maxargs or foundArity:
 #~ raise
 #~ limit += 1
 #~ continue
 #~ return wrapper

this version is Python 2.x-3.x cross-compatible
'decorator to trim function calls to match the arity of the target'
def _trim_arity(func, maxargs=2):
 if func in singleArgBuiltins:
 return lambda s,l,t: func(t)
 limit = [0]
 foundArity = [False]
 def wrapper(*args):
 while 1:
 try:
 ret = func(*args[limit[0]:])
 foundArity[0] = True
 return ret
 except TypeError:
 if limit[0] <= maxargs and not foundArity[0]:
 limit[0] += 1
 continue
 raise
 return wrapper

class ParserElement(object):
 """Abstract base level parser element class."""
 DEFAULT_WHITE_CHARS = " \n\t\r"
 verbose_stacktrace = False

 def setDefaultWhitespaceChars(chars):
 """Overrides the default whitespace chars
 """
 ParserElement.DEFAULT_WHITE_CHARS = chars
 setDefaultWhitespaceChars = staticmethod(setDefaultWhitespaceChars)

 def inlineLiteralsUsing(cls):
 """
 Set class to be used for inclusion of string literals into a parser.
 """
 ParserElement.literalStringClass = cls
 inlineLiteralsUsing = staticmethod(inlineLiteralsUsing)

 def __init__(self, savelist=False):
 self.parseAction = list()
 self.failAction = None
 #~ self.name = "<unknown>" # don't define self.name, let subclasses try/except upcall
 self.strRepr = None
 self.resultsName = None
 self.saveAsList = savelist
 self.skipWhitespace = True
 self.whiteChars = ParserElement.DEFAULT_WHITE_CHARS
 self.copyDefaultWhiteChars = True
 self.mayReturnEmpty = False # used when checking for left-recursion
 self.keepTabs = False
 self.ignoreExprs = list()
 self.debug = False
 self.streamlined = False
 self.mayIndexError = True # used to optimize exception handling for subclasses that don't advance parse index
 self.errmsg = ""
 self.modalResults = True # used to mark results names as modal (report only last) or cumulative (list all)
 self.debugActions = (None, None, None) #custom debug actions
 self.re = None
 self.callPreparse = True # used to avoid redundant calls to preParse
 self.callDuringTry = False

 def copy(self):
 """Make a copy of this C{ParserElement}. Useful for defining different parse actions
 for the same parsing pattern, using copies of the original parse element."""
 cpy = copy.copy(self)
 cpy.parseAction = self.parseAction[:]
 cpy.ignoreExprs = self.ignoreExprs[:]
 if self.copyDefaultWhiteChars:
 cpy.whiteChars = ParserElement.DEFAULT_WHITE_CHARS
 return cpy

 def setName(self, name):
 """Define name for this expression, for use in debugging."""
 self.name = name
 self.errmsg = "Expected " + self.name
 if hasattr(self,"exception"):
 self.exception.msg = self.errmsg
 return self

 def setResultsName(self, name, listAllMatches=False):
 """Define name for referencing matching tokens as a nested attribute
 of the returned parse results.
 NOTE: this returns a *copy* of the original C{ParserElement} object;
 this is so that the client can define a basic element, such as an
 integer, and reference it in multiple places with different names.

 You can also set results names using the abbreviated syntax,
 C{expr("name")} in place of C{expr.setResultsName("name")} -
 see L{I{__call__}<__call__>}.
 """
 newself = self.copy()
 if name.endswith("*"):
 name = name[:-1]
 listAllMatches=True
 newself.resultsName = name
 newself.modalResults = not listAllMatches
 return newself

 def setBreak(self,breakFlag = True):
 """Method to invoke the Python pdb debugger when this element is
 about to be parsed. Set C{breakFlag} to True to enable, False to
 disable.
 """
 if breakFlag:
 _parseMethod = self._parse
 def breaker(instring, loc, doActions=True, callPreParse=True):
 import pdb
 pdb.set_trace()
 return _parseMethod(instring, loc, doActions, callPreParse)
 breaker._originalParseMethod = _parseMethod
 self._parse = breaker
 else:
 if hasattr(self._parse,"_originalParseMethod"):
 self._parse = self._parse._originalParseMethod
 return self

 def setParseAction(self, *fns, **kwargs):
 """Define action to perform when successfully matching parse element definition.
 Parse action fn is a callable method with 0-3 arguments, called as C{fn(s,loc,toks)},
 C{fn(loc,toks)}, C{fn(toks)}, or just C{fn()}, where:
 - s = the original string being parsed (see note below)
 - loc = the location of the matching substring
 - toks = a list of the matched tokens, packaged as a C{L{ParseResults}} object
 If the functions in fns modify the tokens, they can return them as the return
 value from fn, and the modified list of tokens will replace the original.
 Otherwise, fn does not need to return any value.

 Note: the default parsing behavior is to expand tabs in the input string
 before starting the parsing process. See L{I{parseString}<parseString>} for more information
 on parsing strings containing C{<TAB>}s, and suggested methods to maintain a
 consistent view of the parsed string, the parse location, and line and column
 positions within the parsed string.
 """
 self.parseAction = list(map(_trim_arity, list(fns)))
 self.callDuringTry = ("callDuringTry" in kwargs and kwargs["callDuringTry"])
 return self

 def addParseAction(self, *fns, **kwargs):
 """Add parse action to expression's list of parse actions. See L{I{setParseAction}<setParseAction>}."""
 self.parseAction += list(map(_trim_arity, list(fns)))
 self.callDuringTry = self.callDuringTry or ("callDuringTry" in kwargs and kwargs["callDuringTry"])
 return self

 def setFailAction(self, fn):
 """Define action to perform if parsing fails at this expression.
 Fail acton fn is a callable function that takes the arguments
 C{fn(s,loc,expr,err)} where:
 - s = string being parsed
 - loc = location where expression match was attempted and failed
 - expr = the parse expression that failed
 - err = the exception thrown
 The function returns no value. It may throw C{L{ParseFatalException}}
 if it is desired to stop parsing immediately."""
 self.failAction = fn
 return self

 def _skipIgnorables(self, instring, loc):
 exprsFound = True
 while exprsFound:
 exprsFound = False
 for e in self.ignoreExprs:
 try:
 while 1:
 loc,dummy = e._parse(instring, loc)
 exprsFound = True
 except ParseException:
 pass
 return loc

 def preParse(self, instring, loc):
 if self.ignoreExprs:
 loc = self._skipIgnorables(instring, loc)

 if self.skipWhitespace:
 wt = self.whiteChars
 instrlen = len(instring)
 while loc < instrlen and instring[loc] in wt:
 loc += 1

 return loc

 def parseImpl(self, instring, loc, doActions=True):
 return loc, []

 def postParse(self, instring, loc, tokenlist):
 return tokenlist

 #~ @profile
 def _parseNoCache(self, instring, loc, doActions=True, callPreParse=True):
 debugging = (self.debug) #and doActions)

 if debugging or self.failAction:
 #~ print ("Match",self,"at loc",loc,"(%d,%d)" % (lineno(loc,instring), col(loc,instring)))
 if (self.debugActions[0]):
 self.debugActions[0](instring, loc, self)
 if callPreParse and self.callPreparse:
 preloc = self.preParse(instring, loc)
 else:
 preloc = loc
 tokensStart = preloc
 try:
 try:
 loc,tokens = self.parseImpl(instring, preloc, doActions)
 except IndexError:
 raise ParseException(instring, len(instring), self.errmsg, self)
 except ParseBaseException as err:
 #~ print ("Exception raised:", err)
 if self.debugActions[2]:
 self.debugActions[2](instring, tokensStart, self, err)
 if self.failAction:
 self.failAction(instring, tokensStart, self, err)
 raise
 else:
 if callPreParse and self.callPreparse:
 preloc = self.preParse(instring, loc)
 else:
 preloc = loc
 tokensStart = preloc
 if self.mayIndexError or loc >= len(instring):
 try:
 loc,tokens = self.parseImpl(instring, preloc, doActions)
 except IndexError:
 raise ParseException(instring, len(instring), self.errmsg, self)
 else:
 loc,tokens = self.parseImpl(instring, preloc, doActions)

 tokens = self.postParse(instring, loc, tokens)

 retTokens = ParseResults(tokens, self.resultsName, asList=self.saveAsList, modal=self.modalResults)
 if self.parseAction and (doActions or self.callDuringTry):
 if debugging:
 try:
 for fn in self.parseAction:
 tokens = fn(instring, tokensStart, retTokens)
 if tokens is not None:
 retTokens = ParseResults(tokens,
 self.resultsName,
 asList=self.saveAsList and isinstance(tokens,(ParseResults,list)),
 modal=self.modalResults)
 except ParseBaseException as err:
 #~ print "Exception raised in user parse action:", err
 if (self.debugActions[2]):
 self.debugActions[2](instring, tokensStart, self, err)
 raise
 else:
 for fn in self.parseAction:
 tokens = fn(instring, tokensStart, retTokens)
 if tokens is not None:
 retTokens = ParseResults(tokens,
 self.resultsName,
 asList=self.saveAsList and isinstance(tokens,(ParseResults,list)),
 modal=self.modalResults)

 if debugging:
 #~ print ("Matched",self,"->",retTokens.asList())
 if (self.debugActions[1]):
 self.debugActions[1](instring, tokensStart, loc, self, retTokens)

 return loc, retTokens

 def tryParse(self, instring, loc):
 try:
 return self._parse(instring, loc, doActions=False)[0]
 except ParseFatalException:
 raise ParseException(instring, loc, self.errmsg, self)

 # this method gets repeatedly called during backtracking with the same arguments -
 # we can cache these arguments and save ourselves the trouble of re-parsing the contained expression
 def _parseCache(self, instring, loc, doActions=True, callPreParse=True):
 lookup = (self,instring,loc,callPreParse,doActions)
 if lookup in ParserElement._exprArgCache:
 value = ParserElement._exprArgCache[lookup]
 if isinstance(value, Exception):
 raise value
 return (value[0],value[1].copy())
 else:
 try:
 value = self._parseNoCache(instring, loc, doActions, callPreParse)
 ParserElement._exprArgCache[lookup] = (value[0],value[1].copy())
 return value
 except ParseBaseException as pe:
 pe.__traceback__ = None
 ParserElement._exprArgCache[lookup] = pe
 raise

 _parse = _parseNoCache

 # argument cache for optimizing repeated calls when backtracking through recursive expressions
 _exprArgCache = {}
 def resetCache():
 ParserElement._exprArgCache.clear()
 resetCache = staticmethod(resetCache)

 _packratEnabled = False
 def enablePackrat():
 """Enables "packrat" parsing, which adds memoizing to the parsing logic.
 Repeated parse attempts at the same string location (which happens
 often in many complex grammars) can immediately return a cached value,
 instead of re-executing parsing/validating code. Memoizing is done of
 both valid results and parsing exceptions.

 This speedup may break existing programs that use parse actions that
 have side-effects. For this reason, packrat parsing is disabled when
 you first import pyparsing. To activate the packrat feature, your
 program must call the class method C{ParserElement.enablePackrat()}. If
 your program uses C{psyco} to "compile as you go", you must call
 C{enablePackrat} before calling C{psyco.full()}. If you do not do this,
 Python will crash. For best results, call C{enablePackrat()} immediately
 after importing pyparsing.
 """
 if not ParserElement._packratEnabled:
 ParserElement._packratEnabled = True
 ParserElement._parse = ParserElement._parseCache
 enablePackrat = staticmethod(enablePackrat)

 def parseString(self, instring, parseAll=False):
 """Execute the parse expression with the given string.
 This is the main interface to the client code, once the complete
 expression has been built.

 If you want the grammar to require that the entire input string be
 successfully parsed, then set C{parseAll} to True (equivalent to ending
 the grammar with C{L{StringEnd()}}).

 Note: C{parseString} implicitly calls C{expandtabs()} on the input string,
 in order to report proper column numbers in parse actions.
 If the input string contains tabs and
 the grammar uses parse actions that use the C{loc} argument to index into the
 string being parsed, you can ensure you have a consistent view of the input
 string by:
 - calling C{parseWithTabs} on your grammar before calling C{parseString}
 (see L{I{parseWithTabs}<parseWithTabs>})
 - define your parse action using the full C{(s,loc,toks)} signature, and
 reference the input string using the parse action's C{s} argument
 - explictly expand the tabs in your input string before calling
 C{parseString}
 """
 ParserElement.resetCache()
 if not self.streamlined:
 self.streamline()
 #~ self.saveAsList = True
 for e in self.ignoreExprs:
 e.streamline()
 if not self.keepTabs:
 instring = instring.expandtabs()
 try:
 loc, tokens = self._parse(instring, 0)
 if parseAll:
 loc = self.preParse(instring, loc)
 se = Empty() + StringEnd()
 se._parse(instring, loc)
 except ParseBaseException as exc:
 if ParserElement.verbose_stacktrace:
 raise
 else:
 # catch and re-raise exception from here, clears out pyparsing internal stack trace
 raise exc
 else:
 return tokens

 def scanString(self, instring, maxMatches=_MAX_INT, overlap=False):
 """Scan the input string for expression matches. Each match will return the
 matching tokens, start location, and end location. May be called with optional
 C{maxMatches} argument, to clip scanning after 'n' matches are found. If
 C{overlap} is specified, then overlapping matches will be reported.

 Note that the start and end locations are reported relative to the string
 being parsed. See L{I{parseString}<parseString>} for more information on parsing
 strings with embedded tabs."""
 if not self.streamlined:
 self.streamline()
 for e in self.ignoreExprs:
 e.streamline()

 if not self.keepTabs:
 instring = _ustr(instring).expandtabs()
 instrlen = len(instring)
 loc = 0
 preparseFn = self.preParse
 parseFn = self._parse
 ParserElement.resetCache()
 matches = 0
 try:
 while loc <= instrlen and matches < maxMatches:
 try:
 preloc = preparseFn(instring, loc)
 nextLoc,tokens = parseFn(instring, preloc, callPreParse=False)
 except ParseException:
 loc = preloc+1
 else:
 if nextLoc > loc:
 matches += 1
 yield tokens, preloc, nextLoc
 if overlap:
 nextloc = preparseFn(instring, loc)
 if nextloc > loc:
 loc = nextLoc
 else:
 loc += 1
 else:
 loc = nextLoc
 else:
 loc = preloc+1
 except ParseBaseException as exc:
 if ParserElement.verbose_stacktrace:
 raise
 else:
 # catch and re-raise exception from here, clears out pyparsing internal stack trace
 raise exc

 def transformString(self, instring):
 """Extension to C{L{scanString}}, to modify matching text with modified tokens that may
 be returned from a parse action. To use C{transformString}, define a grammar and
 attach a parse action to it that modifies the returned token list.
 Invoking C{transformString()} on a target string will then scan for matches,
 and replace the matched text patterns according to the logic in the parse
 action. C{transformString()} returns the resulting transformed string."""
 out = []
 lastE = 0
 # force preservation of <TAB>s, to minimize unwanted transformation of string, and to
 # keep string locs straight between transformString and scanString
 self.keepTabs = True
 try:
 for t,s,e in self.scanString(instring):
 out.append(instring[lastE:s])
 if t:
 if isinstance(t,ParseResults):
 out += t.asList()
 elif isinstance(t,list):
 out += t
 else:
 out.append(t)
 lastE = e
 out.append(instring[lastE:])
 out = [o for o in out if o]
 return "".join(map(_ustr,_flatten(out)))
 except ParseBaseException as exc:
 if ParserElement.verbose_stacktrace:
 raise
 else:
 # catch and re-raise exception from here, clears out pyparsing internal stack trace
 raise exc

 def searchString(self, instring, maxMatches=_MAX_INT):
 """Another extension to C{L{scanString}}, simplifying the access to the tokens found
 to match the given parse expression. May be called with optional
 C{maxMatches} argument, to clip searching after 'n' matches are found.
 """
 try:
 return ParseResults([t for t,s,e in self.scanString(instring, maxMatches)])
 except ParseBaseException as exc:
 if ParserElement.verbose_stacktrace:
 raise
 else:
 # catch and re-raise exception from here, clears out pyparsing internal stack trace
 raise exc

 def __add__(self, other):
 """Implementation of + operator - returns C{L{And}}"""
 if isinstance(other, basestring):
 other = ParserElement.literalStringClass(other)
 if not isinstance(other, ParserElement):
 warnings.warn("Cannot combine element of type %s with ParserElement" % type(other),
 SyntaxWarning, stacklevel=2)
 return None
 return And([self, other])

 def __radd__(self, other):
 """Implementation of + operator when left operand is not a C{L{ParserElement}}"""
 if isinstance(other, basestring):
 other = ParserElement.literalStringClass(other)
 if not isinstance(other, ParserElement):
 warnings.warn("Cannot combine element of type %s with ParserElement" % type(other),
 SyntaxWarning, stacklevel=2)
 return None
 return other + self

 def __sub__(self, other):
 """Implementation of - operator, returns C{L{And}} with error stop"""
 if isinstance(other, basestring):
 other = ParserElement.literalStringClass(other)
 if not isinstance(other, ParserElement):
 warnings.warn("Cannot combine element of type %s with ParserElement" % type(other),
 SyntaxWarning, stacklevel=2)
 return None
 return And([self, And._ErrorStop(), other])

 def __rsub__(self, other):
 """Implementation of - operator when left operand is not a C{L{ParserElement}}"""
 if isinstance(other, basestring):
 other = ParserElement.literalStringClass(other)
 if not isinstance(other, ParserElement):
 warnings.warn("Cannot combine element of type %s with ParserElement" % type(other),
 SyntaxWarning, stacklevel=2)
 return None
 return other - self

 def __mul__(self,other):
 """Implementation of * operator, allows use of C{expr * 3} in place of
 C{expr + expr + expr}. Expressions may also me multiplied by a 2-integer
 tuple, similar to C{{min,max}} multipliers in regular expressions. Tuples
 may also include C{None} as in:
 - C{expr*(n,None)} or C{expr*(n,)} is equivalent
 to C{expr*n + L{ZeroOrMore}(expr)}
 (read as "at least n instances of C{expr}")
 - C{expr*(None,n)} is equivalent to C{expr*(0,n)}
 (read as "0 to n instances of C{expr}")
 - C{expr*(None,None)} is equivalent to C{L{ZeroOrMore}(expr)}
 - C{expr*(1,None)} is equivalent to C{L{OneOrMore}(expr)}

 Note that C{expr*(None,n)} does not raise an exception if
 more than n exprs exist in the input stream; that is,
 C{expr*(None,n)} does not enforce a maximum number of expr
 occurrences. If this behavior is desired, then write
 C{expr*(None,n) + ~expr}

 """
 if isinstance(other,int):
 minElements, optElements = other,0
 elif isinstance(other,tuple):
 other = (other + (None, None))[:2]
 if other[0] is None:
 other = (0, other[1])
 if isinstance(other[0],int) and other[1] is None:
 if other[0] == 0:
 return ZeroOrMore(self)
 if other[0] == 1:
 return OneOrMore(self)
 else:
 return self*other[0] + ZeroOrMore(self)
 elif isinstance(other[0],int) and isinstance(other[1],int):
 minElements, optElements = other
 optElements -= minElements
 else:
 raise TypeError("cannot multiply 'ParserElement' and ('%s','%s') objects", type(other[0]),type(other[1]))
 else:
 raise TypeError("cannot multiply 'ParserElement' and '%s' objects", type(other))

 if minElements < 0:
 raise ValueError("cannot multiply ParserElement by negative value")
 if optElements < 0:
 raise ValueError("second tuple value must be greater or equal to first tuple value")
 if minElements == optElements == 0:
 raise ValueError("cannot multiply ParserElement by 0 or (0,0)")

 if (optElements):
 def makeOptionalList(n):
 if n>1:
 return Optional(self + makeOptionalList(n-1))
 else:
 return Optional(self)
 if minElements:
 if minElements == 1:
 ret = self + makeOptionalList(optElements)
 else:
 ret = And([self]*minElements) + makeOptionalList(optElements)
 else:
 ret = makeOptionalList(optElements)
 else:
 if minElements == 1:
 ret = self
 else:
 ret = And([self]*minElements)
 return ret

 def __rmul__(self, other):
 return self.__mul__(other)

 def __or__(self, other):
 """Implementation of | operator - returns C{L{MatchFirst}}"""
 if isinstance(other, basestring):
 other = ParserElement.literalStringClass(other)
 if not isinstance(other, ParserElement):
 warnings.warn("Cannot combine element of type %s with ParserElement" % type(other),
 SyntaxWarning, stacklevel=2)
 return None
 return MatchFirst([self, other])

 def __ror__(self, other):
 """Implementation of | operator when left operand is not a C{L{ParserElement}}"""
 if isinstance(other, basestring):
 other = ParserElement.literalStringClass(other)
 if not isinstance(other, ParserElement):
 warnings.warn("Cannot combine element of type %s with ParserElement" % type(other),
 SyntaxWarning, stacklevel=2)
 return None
 return other | self

 def __xor__(self, other):
 """Implementation of ^ operator - returns C{L{Or}}"""
 if isinstance(other, basestring):
 other = ParserElement.literalStringClass(other)
 if not isinstance(other, ParserElement):
 warnings.warn("Cannot combine element of type %s with ParserElement" % type(other),
 SyntaxWarning, stacklevel=2)
 return None
 return Or([self, other])

 def __rxor__(self, other):
 """Implementation of ^ operator when left operand is not a C{L{ParserElement}}"""
 if isinstance(other, basestring):
 other = ParserElement.literalStringClass(other)
 if not isinstance(other, ParserElement):
 warnings.warn("Cannot combine element of type %s with ParserElement" % type(other),
 SyntaxWarning, stacklevel=2)
 return None
 return other ^ self

 def __and__(self, other):
 """Implementation of & operator - returns C{L{Each}}"""
 if isinstance(other, basestring):
 other = ParserElement.literalStringClass(other)
 if not isinstance(other, ParserElement):
 warnings.warn("Cannot combine element of type %s with ParserElement" % type(other),
 SyntaxWarning, stacklevel=2)
 return None
 return Each([self, other])

 def __rand__(self, other):
 """Implementation of & operator when left operand is not a C{L{ParserElement}}"""
 if isinstance(other, basestring):
 other = ParserElement.literalStringClass(other)
 if not isinstance(other, ParserElement):
 warnings.warn("Cannot combine element of type %s with ParserElement" % type(other),
 SyntaxWarning, stacklevel=2)
 return None
 return other & self

 def __invert__(self):
 """Implementation of ~ operator - returns C{L{NotAny}}"""
 return NotAny(self)

 def __call__(self, name):
 """Shortcut for C{L{setResultsName}}, with C{listAllMatches=default}::
 userdata = Word(alphas).setResultsName("name") + Word(nums+"-").setResultsName("socsecno")
 could be written as::
 userdata = Word(alphas)("name") + Word(nums+"-")("socsecno")

 If C{name} is given with a trailing C{'*'} character, then C{listAllMatches} will be
 passed as C{True}.
 """
 return self.setResultsName(name)

 def suppress(self):
 """Suppresses the output of this C{ParserElement}; useful to keep punctuation from
 cluttering up returned output.
 """
 return Suppress(self)

 def leaveWhitespace(self):
 """Disables the skipping of whitespace before matching the characters in the
 C{ParserElement}'s defined pattern. This is normally only used internally by
 the pyparsing module, but may be needed in some whitespace-sensitive grammars.
 """
 self.skipWhitespace = False
 return self

 def setWhitespaceChars(self, chars):
 """Overrides the default whitespace chars
 """
 self.skipWhitespace = True
 self.whiteChars = chars
 self.copyDefaultWhiteChars = False
 return self

 def parseWithTabs(self):
 """Overrides default behavior to expand C{<TAB>}s to spaces before parsing the input string.
 Must be called before C{parseString} when the input grammar contains elements that
 match C{<TAB>} characters."""
 self.keepTabs = True
 return self

 def ignore(self, other):
 """Define expression to be ignored (e.g., comments) while doing pattern
 matching; may be called repeatedly, to define multiple comment or other
 ignorable patterns.
 """
 if isinstance(other, Suppress):
 if other not in self.ignoreExprs:
 self.ignoreExprs.append(other.copy())
 else:
 self.ignoreExprs.append(Suppress(other.copy()))
 return self

 def setDebugActions(self, startAction, successAction, exceptionAction):
 """Enable display of debugging messages while doing pattern matching."""
 self.debugActions = (startAction or _defaultStartDebugAction,
 successAction or _defaultSuccessDebugAction,
 exceptionAction or _defaultExceptionDebugAction)
 self.debug = True
 return self

 def setDebug(self, flag=True):
 """Enable display of debugging messages while doing pattern matching.
 Set C{flag} to True to enable, False to disable."""
 if flag:
 self.setDebugActions(_defaultStartDebugAction, _defaultSuccessDebugAction, _defaultExceptionDebugAction)
 else:
 self.debug = False
 return self

 def __str__(self):
 return self.name

 def __repr__(self):
 return _ustr(self)

 def streamline(self):
 self.streamlined = True
 self.strRepr = None
 return self

 def checkRecursion(self, parseElementList):
 pass

 def validate(self, validateTrace=[]):
 """Check defined expressions for valid structure, check for infinite recursive definitions."""
 self.checkRecursion([])

 def parseFile(self, file_or_filename, parseAll=False):
 """Execute the parse expression on the given file or filename.
 If a filename is specified (instead of a file object),
 the entire file is opened, read, and closed before parsing.
 """
 try:
 file_contents = file_or_filename.read()
 except AttributeError:
 f = open(file_or_filename, "r")
 file_contents = f.read()
 f.close()
 try:
 return self.parseString(file_contents, parseAll)
 except ParseBaseException as exc:
 if ParserElement.verbose_stacktrace:
 raise
 else:
 # catch and re-raise exception from here, clears out pyparsing internal stack trace
 raise exc

 def __eq__(self,other):
 if isinstance(other, ParserElement):
 return self is other or self.__dict__ == other.__dict__
 elif isinstance(other, basestring):
 try:
 self.parseString(_ustr(other), parseAll=True)
 return True
 except ParseBaseException:
 return False
 else:
 return super(ParserElement,self)==other

 def __ne__(self,other):
 return not (self == other)

 def __hash__(self):
 return hash(id(self))

 def __req__(self,other):
 return self == other

 def __rne__(self,other):
 return not (self == other)

class Token(ParserElement):
 """Abstract C{ParserElement} subclass, for defining atomic matching patterns."""
 def __init__(self):
 super(Token,self).__init__(savelist=False)

 def setName(self, name):
 s = super(Token,self).setName(name)
 self.errmsg = "Expected " + self.name
 return s

class Empty(Token):
 """An empty token, will always match."""
 def __init__(self):
 super(Empty,self).__init__()
 self.name = "Empty"
 self.mayReturnEmpty = True
 self.mayIndexError = False

class NoMatch(Token):
 """A token that will never match."""
 def __init__(self):
 super(NoMatch,self).__init__()
 self.name = "NoMatch"
 self.mayReturnEmpty = True
 self.mayIndexError = False
 self.errmsg = "Unmatchable token"

 def parseImpl(self, instring, loc, doActions=True):
 raise ParseException(instring, loc, self.errmsg, self)

class Literal(Token):
 """Token to exactly match a specified string."""
 def __init__(self, matchString):
 super(Literal,self).__init__()
 self.match = matchString
 self.matchLen = len(matchString)
 try:
 self.firstMatchChar = matchString[0]
 except IndexError:
 warnings.warn("null string passed to Literal; use Empty() instead",
 SyntaxWarning, stacklevel=2)
 self.__class__ = Empty
 self.name = '"%s"' % _ustr(self.match)
 self.errmsg = "Expected " + self.name
 self.mayReturnEmpty = False
 self.mayIndexError = False

 # Performance tuning: this routine gets called a *lot*
 # if this is a single character match string and the first character matches,
 # short-circuit as quickly as possible, and avoid calling startswith
 #~ @profile
 def parseImpl(self, instring, loc, doActions=True):
 if (instring[loc] == self.firstMatchChar and
 (self.matchLen==1 or instring.startswith(self.match,loc))):
 return loc+self.matchLen, self.match
 raise ParseException(instring, loc, self.errmsg, self)
_L = Literal
ParserElement.literalStringClass = Literal

class Keyword(Token):
 """Token to exactly match a specified string as a keyword, that is, it must be
 immediately followed by a non-keyword character. Compare with C{L{Literal}}::
 Literal("if") will match the leading C{'if'} in C{'ifAndOnlyIf'}.
 Keyword("if") will not; it will only match the leading C{'if'} in C{'if x=1'}, or C{'if(y==2)'}
 Accepts two optional constructor arguments in addition to the keyword string:
 C{identChars} is a string of characters that would be valid identifier characters,
 defaulting to all alphanumerics + "_" and "$"; C{caseless} allows case-insensitive
 matching, default is C{False}.
 """
 DEFAULT_KEYWORD_CHARS = alphanums+"_$"

 def __init__(self, matchString, identChars=DEFAULT_KEYWORD_CHARS, caseless=False):
 super(Keyword,self).__init__()
 self.match = matchString
 self.matchLen = len(matchString)
 try:
 self.firstMatchChar = matchString[0]
 except IndexError:
 warnings.warn("null string passed to Keyword; use Empty() instead",
 SyntaxWarning, stacklevel=2)
 self.name = '"%s"' % self.match
 self.errmsg = "Expected " + self.name
 self.mayReturnEmpty = False
 self.mayIndexError = False
 self.caseless = caseless
 if caseless:
 self.caselessmatch = matchString.upper()
 identChars = identChars.upper()
 self.identChars = set(identChars)

 def parseImpl(self, instring, loc, doActions=True):
 if self.caseless:
 if ((instring[loc:loc+self.matchLen].upper() == self.caselessmatch) and
 (loc >= len(instring)-self.matchLen or instring[loc+self.matchLen].upper() not in self.identChars) and
 (loc == 0 or instring[loc-1].upper() not in self.identChars)):
 return loc+self.matchLen, self.match
 else:
 if (instring[loc] == self.firstMatchChar and
 (self.matchLen==1 or instring.startswith(self.match,loc)) and
 (loc >= len(instring)-self.matchLen or instring[loc+self.matchLen] not in self.identChars) and
 (loc == 0 or instring[loc-1] not in self.identChars)):
 return loc+self.matchLen, self.match
 raise ParseException(instring, loc, self.errmsg, self)

 def copy(self):
 c = super(Keyword,self).copy()
 c.identChars = Keyword.DEFAULT_KEYWORD_CHARS
 return c

 def setDefaultKeywordChars(chars):
 """Overrides the default Keyword chars
 """
 Keyword.DEFAULT_KEYWORD_CHARS = chars
 setDefaultKeywordChars = staticmethod(setDefaultKeywordChars)

class CaselessLiteral(Literal):
 """Token to match a specified string, ignoring case of letters.
 Note: the matched results will always be in the case of the given
 match string, NOT the case of the input text.
 """
 def __init__(self, matchString):
 super(CaselessLiteral,self).__init__(matchString.upper())
 # Preserve the defining literal.
 self.returnString = matchString
 self.name = "'%s'" % self.returnString
 self.errmsg = "Expected " + self.name

 def parseImpl(self, instring, loc, doActions=True):
 if instring[loc:loc+self.matchLen].upper() == self.match:
 return loc+self.matchLen, self.returnString
 raise ParseException(instring, loc, self.errmsg, self)

class CaselessKeyword(Keyword):
 def __init__(self, matchString, identChars=Keyword.DEFAULT_KEYWORD_CHARS):
 super(CaselessKeyword,self).__init__(matchString, identChars, caseless=True)

 def parseImpl(self, instring, loc, doActions=True):
 if ((instring[loc:loc+self.matchLen].upper() == self.caselessmatch) and
 (loc >= len(instring)-self.matchLen or instring[loc+self.matchLen].upper() not in self.identChars)):
 return loc+self.matchLen, self.match
 raise ParseException(instring, loc, self.errmsg, self)

class Word(Token):
 """Token for matching words composed of allowed character sets.
 Defined with string containing all allowed initial characters,
 an optional string containing allowed body characters (if omitted,
 defaults to the initial character set), and an optional minimum,
 maximum, and/or exact length. The default value for C{min} is 1 (a
 minimum value < 1 is not valid); the default values for C{max} and C{exact}
 are 0, meaning no maximum or exact length restriction. An optional
 C{exclude} parameter can list characters that might be found in
 the input C{bodyChars} string; useful to define a word of all printables
 except for one or two characters, for instance.
 """
 def __init__(self, initChars, bodyChars=None, min=1, max=0, exact=0, asKeyword=False, excludeChars=None):
 super(Word,self).__init__()
 if excludeChars:
 initChars = ''.join(c for c in initChars if c not in excludeChars)
 if bodyChars:
 bodyChars = ''.join(c for c in bodyChars if c not in excludeChars)
 self.initCharsOrig = initChars
 self.initChars = set(initChars)
 if bodyChars :
 self.bodyCharsOrig = bodyChars
 self.bodyChars = set(bodyChars)
 else:
 self.bodyCharsOrig = initChars
 self.bodyChars = set(initChars)

 self.maxSpecified = max > 0

 if min < 1:
 raise ValueError("cannot specify a minimum length < 1; use Optional(Word()) if zero-length word is permitted")

 self.minLen = min

 if max > 0:
 self.maxLen = max
 else:
 self.maxLen = _MAX_INT

 if exact > 0:
 self.maxLen = exact
 self.minLen = exact

 self.name = _ustr(self)
 self.errmsg = "Expected " + self.name
 self.mayIndexError = False
 self.asKeyword = asKeyword

 if ' ' not in self.initCharsOrig+self.bodyCharsOrig and (min==1 and max==0 and exact==0):
 if self.bodyCharsOrig == self.initCharsOrig:
 self.reString = "[%s]+" % _escapeRegexRangeChars(self.initCharsOrig)
 elif len(self.bodyCharsOrig) == 1:
 self.reString = "%s[%s]*" % \
 (re.escape(self.initCharsOrig),
 _escapeRegexRangeChars(self.bodyCharsOrig),)
 else:
 self.reString = "[%s][%s]*" % \
 (_escapeRegexRangeChars(self.initCharsOrig),
 _escapeRegexRangeChars(self.bodyCharsOrig),)
 if self.asKeyword:
 self.reString = r"\b"+self.reString+r"\b"
 try:
 self.re = re.compile(self.reString)
 except:
 self.re = None

 def parseImpl(self, instring, loc, doActions=True):
 if self.re:
 result = self.re.match(instring,loc)
 if not result:
 raise ParseException(instring, loc, self.errmsg, self)

 loc = result.end()
 return loc, result.group()

 if not(instring[loc] in self.initChars):
 raise ParseException(instring, loc, self.errmsg, self)

 start = loc
 loc += 1
 instrlen = len(instring)
 bodychars = self.bodyChars
 maxloc = start + self.maxLen
 maxloc = min(maxloc, instrlen)
 while loc < maxloc and instring[loc] in bodychars:
 loc += 1

 throwException = False
 if loc - start < self.minLen:
 throwException = True
 if self.maxSpecified and loc < instrlen and instring[loc] in bodychars:
 throwException = True
 if self.asKeyword:
 if (start>0 and instring[start-1] in bodychars) or (loc<instrlen and instring[loc] in bodychars):
 throwException = True

 if throwException:
 raise ParseException(instring, loc, self.errmsg, self)

 return loc, instring[start:loc]

 def __str__(self):
 try:
 return super(Word,self).__str__()
 except:
 pass

 if self.strRepr is None:

 def charsAsStr(s):
 if len(s)>4:
 return s[:4]+"..."
 else:
 return s

 if (self.initCharsOrig != self.bodyCharsOrig):
 self.strRepr = "W:(%s,%s)" % (charsAsStr(self.initCharsOrig), charsAsStr(self.bodyCharsOrig))
 else:
 self.strRepr = "W:(%s)" % charsAsStr(self.initCharsOrig)

 return self.strRepr

class Regex(Token):
 """Token for matching strings that match a given regular expression.
 Defined with string specifying the regular expression in a form recognized by the inbuilt Python re module.
 """
 compiledREtype = type(re.compile("[A-Z]"))
 def __init__(self, pattern, flags=0):
 """The parameters C{pattern} and C{flags} are passed to the C{re.compile()} function as-is. See the Python C{re} module for an explanation of the acceptable patterns and flags."""
 super(Regex,self).__init__()

 if isinstance(pattern, basestring):
 if len(pattern) == 0:
 warnings.warn("null string passed to Regex; use Empty() instead",
 SyntaxWarning, stacklevel=2)

 self.pattern = pattern
 self.flags = flags

 try:
 self.re = re.compile(self.pattern, self.flags)
 self.reString = self.pattern
 except sre_constants.error:
 warnings.warn("invalid pattern (%s) passed to Regex" % pattern,
 SyntaxWarning, stacklevel=2)
 raise

 elif isinstance(pattern, Regex.compiledREtype):
 self.re = pattern
 self.pattern = \
 self.reString = str(pattern)
 self.flags = flags

 else:
 raise ValueError("Regex may only be constructed with a string or a compiled RE object")

 self.name = _ustr(self)
 self.errmsg = "Expected " + self.name
 self.mayIndexError = False
 self.mayReturnEmpty = True

 def parseImpl(self, instring, loc, doActions=True):
 result = self.re.match(instring,loc)
 if not result:
 raise ParseException(instring, loc, self.errmsg, self)

 loc = result.end()
 d = result.groupdict()
 ret = ParseResults(result.group())
 if d:
 for k in d:
 ret[k] = d[k]
 return loc,ret

 def __str__(self):
 try:
 return super(Regex,self).__str__()
 except:
 pass

 if self.strRepr is None:
 self.strRepr = "Re:(%s)" % repr(self.pattern)

 return self.strRepr

class QuotedString(Token):
 """Token for matching strings that are delimited by quoting characters.
 """
 def __init__(self, quoteChar, escChar=None, escQuote=None, multiline=False, unquoteResults=True, endQuoteChar=None):
 """
 Defined with the following parameters:
 - quoteChar - string of one or more characters defining the quote delimiting string
 - escChar - character to escape quotes, typically backslash (default=None)
 - escQuote - special quote sequence to escape an embedded quote string (such as SQL's "" to escape an embedded ") (default=None)
 - multiline - boolean indicating whether quotes can span multiple lines (default=C{False})
 - unquoteResults - boolean indicating whether the matched text should be unquoted (default=C{True})
 - endQuoteChar - string of one or more characters defining the end of the quote delimited string (default=C{None} => same as quoteChar)
 """
 super(QuotedString,self).__init__()

 # remove white space from quote chars - wont work anyway
 quoteChar = quoteChar.strip()
 if len(quoteChar) == 0:
 warnings.warn("quoteChar cannot be the empty string",SyntaxWarning,stacklevel=2)
 raise SyntaxError()

 if endQuoteChar is None:
 endQuoteChar = quoteChar
 else:
 endQuoteChar = endQuoteChar.strip()
 if len(endQuoteChar) == 0:
 warnings.warn("endQuoteChar cannot be the empty string",SyntaxWarning,stacklevel=2)
 raise SyntaxError()

 self.quoteChar = quoteChar
 self.quoteCharLen = len(quoteChar)
 self.firstQuoteChar = quoteChar[0]
 self.endQuoteChar = endQuoteChar
 self.endQuoteCharLen = len(endQuoteChar)
 self.escChar = escChar
 self.escQuote = escQuote
 self.unquoteResults = unquoteResults

 if multiline:
 self.flags = re.MULTILINE | re.DOTALL
 self.pattern = r'%s(?:[^%s%s]' % \
 (re.escape(self.quoteChar),
 _escapeRegexRangeChars(self.endQuoteChar[0]),
 (escChar is not None and _escapeRegexRangeChars(escChar) or ''))
 else:
 self.flags = 0
 self.pattern = r'%s(?:[^%s\n\r%s]' % \
 (re.escape(self.quoteChar),
 _escapeRegexRangeChars(self.endQuoteChar[0]),
 (escChar is not None and _escapeRegexRangeChars(escChar) or ''))
 if len(self.endQuoteChar) > 1:
 self.pattern += (
 '|(?:' + ')|(?:'.join("%s[^%s]" % (re.escape(self.endQuoteChar[:i]),
 _escapeRegexRangeChars(self.endQuoteChar[i]))
 for i in range(len(self.endQuoteChar)-1,0,-1)) + ')'
)
 if escQuote:
 self.pattern += (r'|(?:%s)' % re.escape(escQuote))
 if escChar:
 self.pattern += (r'|(?:%s.)' % re.escape(escChar))
 charset = ''.join(set(self.quoteChar[0]+self.endQuoteChar[0])).replace('^',r'\^').replace('-',r'\-')
 self.escCharReplacePattern = re.escape(self.escChar)+("([%s])" % charset)
 self.pattern += (r')*%s' % re.escape(self.endQuoteChar))

 try:
 self.re = re.compile(self.pattern, self.flags)
 self.reString = self.pattern
 except sre_constants.error:
 warnings.warn("invalid pattern (%s) passed to Regex" % self.pattern,
 SyntaxWarning, stacklevel=2)
 raise

 self.name = _ustr(self)
 self.errmsg = "Expected " + self.name
 self.mayIndexError = False
 self.mayReturnEmpty = True

 def parseImpl(self, instring, loc, doActions=True):
 result = instring[loc] == self.firstQuoteChar and self.re.match(instring,loc) or None
 if not result:
 raise ParseException(instring, loc, self.errmsg, self)

 loc = result.end()
 ret = result.group()

 if self.unquoteResults:

 # strip off quotes
 ret = ret[self.quoteCharLen:-self.endQuoteCharLen]

 if isinstance(ret,basestring):
 # replace escaped characters
 if self.escChar:
 ret = re.sub(self.escCharReplacePattern,"\g<1>",ret)

 # replace escaped quotes
 if self.escQuote:
 ret = ret.replace(self.escQuote, self.endQuoteChar)

 return loc, ret

 def __str__(self):
 try:
 return super(QuotedString,self).__str__()
 except:
 pass

 if self.strRepr is None:
 self.strRepr = "quoted string, starting with %s ending with %s" % (self.quoteChar, self.endQuoteChar)

 return self.strRepr

class CharsNotIn(Token):
 """Token for matching words composed of characters *not* in a given set.
 Defined with string containing all disallowed characters, and an optional
 minimum, maximum, and/or exact length. The default value for C{min} is 1 (a
 minimum value < 1 is not valid); the default values for C{max} and C{exact}
 are 0, meaning no maximum or exact length restriction.
 """
 def __init__(self, notChars, min=1, max=0, exact=0):
 super(CharsNotIn,self).__init__()
 self.skipWhitespace = False
 self.notChars = notChars

 if min < 1:
 raise ValueError("cannot specify a minimum length < 1; use Optional(CharsNotIn()) if zero-length char group is permitted")

 self.minLen = min

 if max > 0:
 self.maxLen = max
 else:
 self.maxLen = _MAX_INT

 if exact > 0:
 self.maxLen = exact
 self.minLen = exact

 self.name = _ustr(self)
 self.errmsg = "Expected " + self.name
 self.mayReturnEmpty = (self.minLen == 0)
 self.mayIndexError = False

 def parseImpl(self, instring, loc, doActions=True):
 if instring[loc] in self.notChars:
 raise ParseException(instring, loc, self.errmsg, self)

 start = loc
 loc += 1
 notchars = self.notChars
 maxlen = min(start+self.maxLen, len(instring))
 while loc < maxlen and \
 (instring[loc] not in notchars):
 loc += 1

 if loc - start < self.minLen:
 raise ParseException(instring, loc, self.errmsg, self)

 return loc, instring[start:loc]

 def __str__(self):
 try:
 return super(CharsNotIn, self).__str__()
 except:
 pass

 if self.strRepr is None:
 if len(self.notChars) > 4:
 self.strRepr = "!W:(%s...)" % self.notChars[:4]
 else:
 self.strRepr = "!W:(%s)" % self.notChars

 return self.strRepr

class White(Token):
 """Special matching class for matching whitespace. Normally, whitespace is ignored
 by pyparsing grammars. This class is included when some whitespace structures
 are significant. Define with a string containing the whitespace characters to be
 matched; default is C{" \\t\\r\\n"}. Also takes optional C{min}, C{max}, and C{exact} arguments,
 as defined for the C{L{Word}} class."""
 whiteStrs = {
 " " : "<SPC>",
 "\t": "<TAB>",
 "\n": "<LF>",
 "\r": "<CR>",
 "\f": "<FF>",
 }
 def __init__(self, ws=" \t\r\n", min=1, max=0, exact=0):
 super(White,self).__init__()
 self.matchWhite = ws
 self.setWhitespaceChars("".join(c for c in self.whiteChars if c not in self.matchWhite))
 #~ self.leaveWhitespace()
 self.name = ("".join(White.whiteStrs[c] for c in self.matchWhite))
 self.mayReturnEmpty = True
 self.errmsg = "Expected " + self.name

 self.minLen = min

 if max > 0:
 self.maxLen = max
 else:
 self.maxLen = _MAX_INT

 if exact > 0:
 self.maxLen = exact
 self.minLen = exact

 def parseImpl(self, instring, loc, doActions=True):
 if not(instring[loc] in self.matchWhite):
 raise ParseException(instring, loc, self.errmsg, self)
 start = loc
 loc += 1
 maxloc = start + self.maxLen
 maxloc = min(maxloc, len(instring))
 while loc < maxloc and instring[loc] in self.matchWhite:
 loc += 1

 if loc - start < self.minLen:
 raise ParseException(instring, loc, self.errmsg, self)

 return loc, instring[start:loc]

class _PositionToken(Token):
 def __init__(self):
 super(_PositionToken,self).__init__()
 self.name=self.__class__.__name__
 self.mayReturnEmpty = True
 self.mayIndexError = False

class GoToColumn(_PositionToken):
 """Token to advance to a specific column of input text; useful for tabular report scraping."""
 def __init__(self, colno):
 super(GoToColumn,self).__init__()
 self.col = colno

 def preParse(self, instring, loc):
 if col(loc,instring) != self.col:
 instrlen = len(instring)
 if self.ignoreExprs:
 loc = self._skipIgnorables(instring, loc)
 while loc < instrlen and instring[loc].isspace() and col(loc, instring) != self.col :
 loc += 1
 return loc

 def parseImpl(self, instring, loc, doActions=True):
 thiscol = col(loc, instring)
 if thiscol > self.col:
 raise ParseException(instring, loc, "Text not in expected column", self)
 newloc = loc + self.col - thiscol
 ret = instring[loc: newloc]
 return newloc, ret

class LineStart(_PositionToken):
 """Matches if current position is at the beginning of a line within the parse string"""
 def __init__(self):
 super(LineStart,self).__init__()
 self.setWhitespaceChars(ParserElement.DEFAULT_WHITE_CHARS.replace("\n",""))
 self.errmsg = "Expected start of line"

 def preParse(self, instring, loc):
 preloc = super(LineStart,self).preParse(instring,loc)
 if instring[preloc] == "\n":
 loc += 1
 return loc

 def parseImpl(self, instring, loc, doActions=True):
 if not(loc==0 or
 (loc == self.preParse(instring, 0)) or
 (instring[loc-1] == "\n")): #col(loc, instring) != 1:
 raise ParseException(instring, loc, self.errmsg, self)
 return loc, []

class LineEnd(_PositionToken):
 """Matches if current position is at the end of a line within the parse string"""
 def __init__(self):
 super(LineEnd,self).__init__()
 self.setWhitespaceChars(ParserElement.DEFAULT_WHITE_CHARS.replace("\n",""))
 self.errmsg = "Expected end of line"

 def parseImpl(self, instring, loc, doActions=True):
 if loc<len(instring):
 if instring[loc] == "\n":
 return loc+1, "\n"
 else:
 raise ParseException(instring, loc, self.errmsg, self)
 elif loc == len(instring):
 return loc+1, []
 else:
 raise ParseException(instring, loc, self.errmsg, self)

class StringStart(_PositionToken):
 """Matches if current position is at the beginning of the parse string"""
 def __init__(self):
 super(StringStart,self).__init__()
 self.errmsg = "Expected start of text"

 def parseImpl(self, instring, loc, doActions=True):
 if loc != 0:
 # see if entire string up to here is just whitespace and ignoreables
 if loc != self.preParse(instring, 0):
 raise ParseException(instring, loc, self.errmsg, self)
 return loc, []

class StringEnd(_PositionToken):
 """Matches if current position is at the end of the parse string"""
 def __init__(self):
 super(StringEnd,self).__init__()
 self.errmsg = "Expected end of text"

 def parseImpl(self, instring, loc, doActions=True):
 if loc < len(instring):
 raise ParseException(instring, loc, self.errmsg, self)
 elif loc == len(instring):
 return loc+1, []
 elif loc > len(instring):
 return loc, []
 else:
 raise ParseException(instring, loc, self.errmsg, self)

class WordStart(_PositionToken):
 """Matches if the current position is at the beginning of a Word, and
 is not preceded by any character in a given set of C{wordChars}
 (default=C{printables}). To emulate the C{\b} behavior of regular expressions,
 use C{WordStart(alphanums)}. C{WordStart} will also match at the beginning of
 the string being parsed, or at the beginning of a line.
 """
 def __init__(self, wordChars = printables):
 super(WordStart,self).__init__()
 self.wordChars = set(wordChars)
 self.errmsg = "Not at the start of a word"

 def parseImpl(self, instring, loc, doActions=True):
 if loc != 0:
 if (instring[loc-1] in self.wordChars or
 instring[loc] not in self.wordChars):
 raise ParseException(instring, loc, self.errmsg, self)
 return loc, []

class WordEnd(_PositionToken):
 """Matches if the current position is at the end of a Word, and
 is not followed by any character in a given set of C{wordChars}
 (default=C{printables}). To emulate the C{\b} behavior of regular expressions,
 use C{WordEnd(alphanums)}. C{WordEnd} will also match at the end of
 the string being parsed, or at the end of a line.
 """
 def __init__(self, wordChars = printables):
 super(WordEnd,self).__init__()
 self.wordChars = set(wordChars)
 self.skipWhitespace = False
 self.errmsg = "Not at the end of a word"

 def parseImpl(self, instring, loc, doActions=True):
 instrlen = len(instring)
 if instrlen>0 and loc<instrlen:
 if (instring[loc] in self.wordChars or
 instring[loc-1] not in self.wordChars):
 raise ParseException(instring, loc, self.errmsg, self)
 return loc, []

class ParseExpression(ParserElement):
 """Abstract subclass of ParserElement, for combining and post-processing parsed tokens."""
 def __init__(self, exprs, savelist = False):
 super(ParseExpression,self).__init__(savelist)
 if isinstance(exprs, list):
 self.exprs = exprs
 elif isinstance(exprs, basestring):
 self.exprs = [Literal(exprs)]
 else:
 try:
 self.exprs = list(exprs)
 except TypeError:
 self.exprs = [exprs]
 self.callPreparse = False

 def __getitem__(self, i):
 return self.exprs[i]

 def append(self, other):
 self.exprs.append(other)
 self.strRepr = None
 return self

 def leaveWhitespace(self):
 """Extends C{leaveWhitespace} defined in base class, and also invokes C{leaveWhitespace} on
 all contained expressions."""
 self.skipWhitespace = False
 self.exprs = [e.copy() for e in self.exprs]
 for e in self.exprs:
 e.leaveWhitespace()
 return self

 def ignore(self, other):
 if isinstance(other, Suppress):
 if other not in self.ignoreExprs:
 super(ParseExpression, self).ignore(other)
 for e in self.exprs:
 e.ignore(self.ignoreExprs[-1])
 else:
 super(ParseExpression, self).ignore(other)
 for e in self.exprs:
 e.ignore(self.ignoreExprs[-1])
 return self

 def __str__(self):
 try:
 return super(ParseExpression,self).__str__()
 except:
 pass

 if self.strRepr is None:
 self.strRepr = "%s:(%s)" % (self.__class__.__name__, _ustr(self.exprs))
 return self.strRepr

 def streamline(self):
 super(ParseExpression,self).streamline()

 for e in self.exprs:
 e.streamline()

 # collapse nested And's of the form And(And(And(a,b), c), d) to And(a,b,c,d)
 # but only if there are no parse actions or resultsNames on the nested And's
 # (likewise for Or's and MatchFirst's)
 if (len(self.exprs) == 2):
 other = self.exprs[0]
 if (isinstance(other, self.__class__) and
 not(other.parseAction) and
 other.resultsName is None and
 not other.debug):
 self.exprs = other.exprs[:] + [self.exprs[1]]
 self.strRepr = None
 self.mayReturnEmpty |= other.mayReturnEmpty
 self.mayIndexError |= other.mayIndexError

 other = self.exprs[-1]
 if (isinstance(other, self.__class__) and
 not(other.parseAction) and
 other.resultsName is None and
 not other.debug):
 self.exprs = self.exprs[:-1] + other.exprs[:]
 self.strRepr = None
 self.mayReturnEmpty |= other.mayReturnEmpty
 self.mayIndexError |= other.mayIndexError

 return self

 def setResultsName(self, name, listAllMatches=False):
 ret = super(ParseExpression,self).setResultsName(name,listAllMatches)
 return ret

 def validate(self, validateTrace=[]):
 tmp = validateTrace[:]+[self]
 for e in self.exprs:
 e.validate(tmp)
 self.checkRecursion([])

 def copy(self):
 ret = super(ParseExpression,self).copy()
 ret.exprs = [e.copy() for e in self.exprs]
 return ret

class And(ParseExpression):
 """Requires all given C{ParseExpression}s to be found in the given order.
 Expressions may be separated by whitespace.
 May be constructed using the C{'+'} operator.
 """

 class _ErrorStop(Empty):
 def __init__(self, *args, **kwargs):
 super(And._ErrorStop,self).__init__(*args, **kwargs)
 self.name = '-'
 self.leaveWhitespace()

 def __init__(self, exprs, savelist = True):
 super(And,self).__init__(exprs, savelist)
 self.mayReturnEmpty = True
 for e in self.exprs:
 if not e.mayReturnEmpty:
 self.mayReturnEmpty = False
 break
 self.setWhitespaceChars(exprs[0].whiteChars)
 self.skipWhitespace = exprs[0].skipWhitespace
 self.callPreparse = True

 def parseImpl(self, instring, loc, doActions=True):
 # pass False as last arg to _parse for first element, since we already
 # pre-parsed the string as part of our And pre-parsing
 loc, resultlist = self.exprs[0]._parse(instring, loc, doActions, callPreParse=False)
 errorStop = False
 for e in self.exprs[1:]:
 if isinstance(e, And._ErrorStop):
 errorStop = True
 continue
 if errorStop:
 try:
 loc, exprtokens = e._parse(instring, loc, doActions)
 except ParseSyntaxException:
 raise
 except ParseBaseException as pe:
 pe.__traceback__ = None
 raise ParseSyntaxException(pe)
 except IndexError:
 raise ParseSyntaxException(ParseException(instring, len(instring), self.errmsg, self))
 else:
 loc, exprtokens = e._parse(instring, loc, doActions)
 if exprtokens or exprtokens.keys():
 resultlist += exprtokens
 return loc, resultlist

 def __iadd__(self, other):
 if isinstance(other, basestring):
 other = Literal(other)
 return self.append(other) #And([self, other])

 def checkRecursion(self, parseElementList):
 subRecCheckList = parseElementList[:] + [self]
 for e in self.exprs:
 e.checkRecursion(subRecCheckList)
 if not e.mayReturnEmpty:
 break

 def __str__(self):
 if hasattr(self,"name"):
 return self.name

 if self.strRepr is None:
 self.strRepr = "{" + " ".join(_ustr(e) for e in self.exprs) + "}"

 return self.strRepr

class Or(ParseExpression):
 """Requires that at least one C{ParseExpression} is found.
 If two expressions match, the expression that matches the longest string will be used.
 May be constructed using the C{'^'} operator.
 """
 def __init__(self, exprs, savelist = False):
 super(Or,self).__init__(exprs, savelist)
 self.mayReturnEmpty = False
 for e in self.exprs:
 if e.mayReturnEmpty:
 self.mayReturnEmpty = True
 break

 def parseImpl(self, instring, loc, doActions=True):
 maxExcLoc = -1
 maxMatchLoc = -1
 maxException = None
 for e in self.exprs:
 try:
 loc2 = e.tryParse(instring, loc)
 except ParseException as err:
 err.__traceback__ = None
 if err.loc > maxExcLoc:
 maxException = err
 maxExcLoc = err.loc
 except IndexError:
 if len(instring) > maxExcLoc:
 maxException = ParseException(instring,len(instring),e.errmsg,self)
 maxExcLoc = len(instring)
 else:
 if loc2 > maxMatchLoc:
 maxMatchLoc = loc2
 maxMatchExp = e

 if maxMatchLoc < 0:
 if maxException is not None:
 raise maxException
 else:
 raise ParseException(instring, loc, "no defined alternatives to match", self)

 return maxMatchExp._parse(instring, loc, doActions)

 def __ixor__(self, other):
 if isinstance(other, basestring):
 other = ParserElement.literalStringClass(other)
 return self.append(other) #Or([self, other])

 def __str__(self):
 if hasattr(self,"name"):
 return self.name

 if self.strRepr is None:
 self.strRepr = "{" + " ^ ".join(_ustr(e) for e in self.exprs) + "}"

 return self.strRepr

 def checkRecursion(self, parseElementList):
 subRecCheckList = parseElementList[:] + [self]
 for e in self.exprs:
 e.checkRecursion(subRecCheckList)

class MatchFirst(ParseExpression):
 """Requires that at least one C{ParseExpression} is found.
 If two expressions match, the first one listed is the one that will match.
 May be constructed using the C{'|'} operator.
 """
 def __init__(self, exprs, savelist = False):
 super(MatchFirst,self).__init__(exprs, savelist)
 if exprs:
 self.mayReturnEmpty = False
 for e in self.exprs:
 if e.mayReturnEmpty:
 self.mayReturnEmpty = True
 break
 else:
 self.mayReturnEmpty = True

 def parseImpl(self, instring, loc, doActions=True):
 maxExcLoc = -1
 maxException = None
 for e in self.exprs:
 try:
 ret = e._parse(instring, loc, doActions)
 return ret
 except ParseException as err:
 if err.loc > maxExcLoc:
 maxException = err
 maxExcLoc = err.loc
 except IndexError:
 if len(instring) > maxExcLoc:
 maxException = ParseException(instring,len(instring),e.errmsg,self)
 maxExcLoc = len(instring)

 # only got here if no expression matched, raise exception for match that made it the furthest
 else:
 if maxException is not None:
 raise maxException
 else:
 raise ParseException(instring, loc, "no defined alternatives to match", self)

 def __ior__(self, other):
 if isinstance(other, basestring):
 other = ParserElement.literalStringClass(other)
 return self.append(other) #MatchFirst([self, other])

 def __str__(self):
 if hasattr(self,"name"):
 return self.name

 if self.strRepr is None:
 self.strRepr = "{" + " | ".join(_ustr(e) for e in self.exprs) + "}"

 return self.strRepr

 def checkRecursion(self, parseElementList):
 subRecCheckList = parseElementList[:] + [self]
 for e in self.exprs:
 e.checkRecursion(subRecCheckList)

class Each(ParseExpression):
 """Requires all given C{ParseExpression}s to be found, but in any order.
 Expressions may be separated by whitespace.
 May be constructed using the C{'&'} operator.
 """
 def __init__(self, exprs, savelist = True):
 super(Each,self).__init__(exprs, savelist)
 self.mayReturnEmpty = True
 for e in self.exprs:
 if not e.mayReturnEmpty:
 self.mayReturnEmpty = False
 break
 self.skipWhitespace = True
 self.initExprGroups = True

 def parseImpl(self, instring, loc, doActions=True):
 if self.initExprGroups:
 opt1 = [e.expr for e in self.exprs if isinstance(e,Optional)]
 opt2 = [e for e in self.exprs if e.mayReturnEmpty and e not in opt1]
 self.optionals = opt1 + opt2
 self.multioptionals = [e.expr for e in self.exprs if isinstance(e,ZeroOrMore)]
 self.multirequired = [e.expr for e in self.exprs if isinstance(e,OneOrMore)]
 self.required = [e for e in self.exprs if not isinstance(e,(Optional,ZeroOrMore,OneOrMore))]
 self.required += self.multirequired
 self.initExprGroups = False
 tmpLoc = loc
 tmpReqd = self.required[:]
 tmpOpt = self.optionals[:]
 matchOrder = []

 keepMatching = True
 while keepMatching:
 tmpExprs = tmpReqd + tmpOpt + self.multioptionals + self.multirequired
 failed = []
 for e in tmpExprs:
 try:
 tmpLoc = e.tryParse(instring, tmpLoc)
 except ParseException:
 failed.append(e)
 else:
 matchOrder.append(e)
 if e in tmpReqd:
 tmpReqd.remove(e)
 elif e in tmpOpt:
 tmpOpt.remove(e)
 if len(failed) == len(tmpExprs):
 keepMatching = False

 if tmpReqd:
 missing = ", ".join(_ustr(e) for e in tmpReqd)
 raise ParseException(instring,loc,"Missing one or more required elements (%s)" % missing)

 # add any unmatched Optionals, in case they have default values defined
 matchOrder += [e for e in self.exprs if isinstance(e,Optional) and e.expr in tmpOpt]

 resultlist = []
 for e in matchOrder:
 loc,results = e._parse(instring,loc,doActions)
 resultlist.append(results)

 finalResults = ParseResults([])
 for r in resultlist:
 dups = {}
 for k in r.keys():
 if k in finalResults.keys():
 tmp = ParseResults(finalResults[k])
 tmp += ParseResults(r[k])
 dups[k] = tmp
 finalResults += ParseResults(r)
 for k,v in dups.items():
 finalResults[k] = v
 return loc, finalResults

 def __str__(self):
 if hasattr(self,"name"):
 return self.name

 if self.strRepr is None:
 self.strRepr = "{" + " & ".join(_ustr(e) for e in self.exprs) + "}"

 return self.strRepr

 def checkRecursion(self, parseElementList):
 subRecCheckList = parseElementList[:] + [self]
 for e in self.exprs:
 e.checkRecursion(subRecCheckList)

class ParseElementEnhance(ParserElement):
 """Abstract subclass of C{ParserElement}, for combining and post-processing parsed tokens."""
 def __init__(self, expr, savelist=False):
 super(ParseElementEnhance,self).__init__(savelist)
 if isinstance(expr, basestring):
 expr = Literal(expr)
 self.expr = expr
 self.strRepr = None
 if expr is not None:
 self.mayIndexError = expr.mayIndexError
 self.mayReturnEmpty = expr.mayReturnEmpty
 self.setWhitespaceChars(expr.whiteChars)
 self.skipWhitespace = expr.skipWhitespace
 self.saveAsList = expr.saveAsList
 self.callPreparse = expr.callPreparse
 self.ignoreExprs.extend(expr.ignoreExprs)

 def parseImpl(self, instring, loc, doActions=True):
 if self.expr is not None:
 return self.expr._parse(instring, loc, doActions, callPreParse=False)
 else:
 raise ParseException("",loc,self.errmsg,self)

 def leaveWhitespace(self):
 self.skipWhitespace = False
 self.expr = self.expr.copy()
 if self.expr is not None:
 self.expr.leaveWhitespace()
 return self

 def ignore(self, other):
 if isinstance(other, Suppress):
 if other not in self.ignoreExprs:
 super(ParseElementEnhance, self).ignore(other)
 if self.expr is not None:
 self.expr.ignore(self.ignoreExprs[-1])
 else:
 super(ParseElementEnhance, self).ignore(other)
 if self.expr is not None:
 self.expr.ignore(self.ignoreExprs[-1])
 return self

 def streamline(self):
 super(ParseElementEnhance,self).streamline()
 if self.expr is not None:
 self.expr.streamline()
 return self

 def checkRecursion(self, parseElementList):
 if self in parseElementList:
 raise RecursiveGrammarException(parseElementList+[self])
 subRecCheckList = parseElementList[:] + [self]
 if self.expr is not None:
 self.expr.checkRecursion(subRecCheckList)

 def validate(self, validateTrace=[]):
 tmp = validateTrace[:]+[self]
 if self.expr is not None:
 self.expr.validate(tmp)
 self.checkRecursion([])

 def __str__(self):
 try:
 return super(ParseElementEnhance,self).__str__()
 except:
 pass

 if self.strRepr is None and self.expr is not None:
 self.strRepr = "%s:(%s)" % (self.__class__.__name__, _ustr(self.expr))
 return self.strRepr

class FollowedBy(ParseElementEnhance):
 """Lookahead matching of the given parse expression. C{FollowedBy}
 does *not* advance the parsing position within the input string, it only
 verifies that the specified parse expression matches at the current
 position. C{FollowedBy} always returns a null token list."""
 def __init__(self, expr):
 super(FollowedBy,self).__init__(expr)
 self.mayReturnEmpty = True

 def parseImpl(self, instring, loc, doActions=True):
 self.expr.tryParse(instring, loc)
 return loc, []

class NotAny(ParseElementEnhance):
 """Lookahead to disallow matching with the given parse expression. C{NotAny}
 does *not* advance the parsing position within the input string, it only
 verifies that the specified parse expression does *not* match at the current
 position. Also, C{NotAny} does *not* skip over leading whitespace. C{NotAny}
 always returns a null token list. May be constructed using the '~' operator."""
 def __init__(self, expr):
 super(NotAny,self).__init__(expr)
 #~ self.leaveWhitespace()
 self.skipWhitespace = False # do NOT use self.leaveWhitespace(), don't want to propagate to exprs
 self.mayReturnEmpty = True
 self.errmsg = "Found unwanted token, "+_ustr(self.expr)

 def parseImpl(self, instring, loc, doActions=True):
 try:
 self.expr.tryParse(instring, loc)
 except (ParseException,IndexError):
 pass
 else:
 raise ParseException(instring, loc, self.errmsg, self)
 return loc, []

 def __str__(self):
 if hasattr(self,"name"):
 return self.name

 if self.strRepr is None:
 self.strRepr = "~{" + _ustr(self.expr) + "}"

 return self.strRepr

class ZeroOrMore(ParseElementEnhance):
 """Optional repetition of zero or more of the given expression."""
 def __init__(self, expr):
 super(ZeroOrMore,self).__init__(expr)
 self.mayReturnEmpty = True

 def parseImpl(self, instring, loc, doActions=True):
 tokens = []
 try:
 loc, tokens = self.expr._parse(instring, loc, doActions, callPreParse=False)
 hasIgnoreExprs = (len(self.ignoreExprs) > 0)
 while 1:
 if hasIgnoreExprs:
 preloc = self._skipIgnorables(instring, loc)
 else:
 preloc = loc
 loc, tmptokens = self.expr._parse(instring, preloc, doActions)
 if tmptokens or tmptokens.keys():
 tokens += tmptokens
 except (ParseException,IndexError):
 pass

 return loc, tokens

 def __str__(self):
 if hasattr(self,"name"):
 return self.name

 if self.strRepr is None:
 self.strRepr = "[" + _ustr(self.expr) + "]..."

 return self.strRepr

 def setResultsName(self, name, listAllMatches=False):
 ret = super(ZeroOrMore,self).setResultsName(name,listAllMatches)
 ret.saveAsList = True
 return ret

class OneOrMore(ParseElementEnhance):
 """Repetition of one or more of the given expression."""
 def parseImpl(self, instring, loc, doActions=True):
 # must be at least one
 loc, tokens = self.expr._parse(instring, loc, doActions, callPreParse=False)
 try:
 hasIgnoreExprs = (len(self.ignoreExprs) > 0)
 while 1:
 if hasIgnoreExprs:
 preloc = self._skipIgnorables(instring, loc)
 else:
 preloc = loc
 loc, tmptokens = self.expr._parse(instring, preloc, doActions)
 if tmptokens or tmptokens.keys():
 tokens += tmptokens
 except (ParseException,IndexError):
 pass

 return loc, tokens

 def __str__(self):
 if hasattr(self,"name"):
 return self.name

 if self.strRepr is None:
 self.strRepr = "{" + _ustr(self.expr) + "}..."

 return self.strRepr

 def setResultsName(self, name, listAllMatches=False):
 ret = super(OneOrMore,self).setResultsName(name,listAllMatches)
 ret.saveAsList = True
 return ret

class _NullToken(object):
 def __bool__(self):
 return False
 __nonzero__ = __bool__
 def __str__(self):
 return ""

_optionalNotMatched = _NullToken()
class Optional(ParseElementEnhance):
 """Optional matching of the given expression.
 A default return string can also be specified, if the optional expression
 is not found.
 """
 def __init__(self, exprs, default=_optionalNotMatched):
 super(Optional,self).__init__(exprs, savelist=False)
 self.defaultValue = default
 self.mayReturnEmpty = True

 def parseImpl(self, instring, loc, doActions=True):
 try:
 loc, tokens = self.expr._parse(instring, loc, doActions, callPreParse=False)
 except (ParseException,IndexError):
 if self.defaultValue is not _optionalNotMatched:
 if self.expr.resultsName:
 tokens = ParseResults([self.defaultValue])
 tokens[self.expr.resultsName] = self.defaultValue
 else:
 tokens = [self.defaultValue]
 else:
 tokens = []
 return loc, tokens

 def __str__(self):
 if hasattr(self,"name"):
 return self.name

 if self.strRepr is None:
 self.strRepr = "[" + _ustr(self.expr) + "]"

 return self.strRepr

class SkipTo(ParseElementEnhance):
 """Token for skipping over all undefined text until the matched expression is found.
 If C{include} is set to true, the matched expression is also parsed (the skipped text
 and matched expression are returned as a 2-element list). The C{ignore}
 argument is used to define grammars (typically quoted strings and comments) that
 might contain false matches.
 """
 def __init__(self, other, include=False, ignore=None, failOn=None):
 super(SkipTo, self).__init__(other)
 self.ignoreExpr = ignore
 self.mayReturnEmpty = True
 self.mayIndexError = False
 self.includeMatch = include
 self.asList = False
 if failOn is not None and isinstance(failOn, basestring):
 self.failOn = Literal(failOn)
 else:
 self.failOn = failOn
 self.errmsg = "No match found for "+_ustr(self.expr)

 def parseImpl(self, instring, loc, doActions=True):
 startLoc = loc
 instrlen = len(instring)
 expr = self.expr
 failParse = False
 while loc <= instrlen:
 try:
 if self.failOn:
 try:
 self.failOn.tryParse(instring, loc)
 except ParseBaseException:
 pass
 else:
 failParse = True
 raise ParseException(instring, loc, "Found expression " + str(self.failOn))
 failParse = False
 if self.ignoreExpr is not None:
 while 1:
 try:
 loc = self.ignoreExpr.tryParse(instring,loc)
 # print("found ignoreExpr, advance to", loc)
 except ParseBaseException:
 break
 expr._parse(instring, loc, doActions=False, callPreParse=False)
 skipText = instring[startLoc:loc]
 if self.includeMatch:
 loc,mat = expr._parse(instring,loc,doActions,callPreParse=False)
 if mat:
 skipRes = ParseResults(skipText)
 skipRes += mat
 return loc, [skipRes]
 else:
 return loc, [skipText]
 else:
 return loc, [skipText]
 except (ParseException,IndexError):
 if failParse:
 raise
 else:
 loc += 1
 raise ParseException(instring, loc, self.errmsg, self)

class Forward(ParseElementEnhance):
 """Forward declaration of an expression to be defined later -
 used for recursive grammars, such as algebraic infix notation.
 When the expression is known, it is assigned to the C{Forward} variable using the '<<' operator.

 Note: take care when assigning to C{Forward} not to overlook precedence of operators.
 Specifically, '|' has a lower precedence than '<<', so that::
 fwdExpr << a | b | c
 will actually be evaluated as::
 (fwdExpr << a) | b | c
 thereby leaving b and c out as parseable alternatives. It is recommended that you
 explicitly group the values inserted into the C{Forward}::
 fwdExpr << (a | b | c)
 Converting to use the '<<=' operator instead will avoid this problem.
 """
 def __init__(self, other=None):
 super(Forward,self).__init__(other, savelist=False)

 def __ilshift__(self, other):
 if isinstance(other, basestring):
 other = ParserElement.literalStringClass(other)
 self.expr = other
 self.mayReturnEmpty = other.mayReturnEmpty
 self.strRepr = None
 self.mayIndexError = self.expr.mayIndexError
 self.mayReturnEmpty = self.expr.mayReturnEmpty
 self.setWhitespaceChars(self.expr.whiteChars)
 self.skipWhitespace = self.expr.skipWhitespace
 self.saveAsList = self.expr.saveAsList
 self.ignoreExprs.extend(self.expr.ignoreExprs)
 return self

 def __lshift__(self, other):
 warnings.warn("Operator '<<' is deprecated, use '<<=' instead",
 DeprecationWarning,stacklevel=2)
 self <<= other
 return None

 def leaveWhitespace(self):
 self.skipWhitespace = False
 return self

 def streamline(self):
 if not self.streamlined:
 self.streamlined = True
 if self.expr is not None:
 self.expr.streamline()
 return self

 def validate(self, validateTrace=[]):
 if self not in validateTrace:
 tmp = validateTrace[:]+[self]
 if self.expr is not None:
 self.expr.validate(tmp)
 self.checkRecursion([])

 def __str__(self):
 if hasattr(self,"name"):
 return self.name

 self._revertClass = self.__class__
 self.__class__ = _ForwardNoRecurse
 try:
 if self.expr is not None:
 retString = _ustr(self.expr)
 else:
 retString = "None"
 finally:
 self.__class__ = self._revertClass
 return self.__class__.__name__ + ": " + retString

 def copy(self):
 if self.expr is not None:
 return super(Forward,self).copy()
 else:
 ret = Forward()
 ret << self
 return ret

class _ForwardNoRecurse(Forward):
 def __str__(self):
 return "..."

class TokenConverter(ParseElementEnhance):
 """Abstract subclass of C{ParseExpression}, for converting parsed results."""
 def __init__(self, expr, savelist=False):
 super(TokenConverter,self).__init__(expr)#, savelist)
 self.saveAsList = False

class Upcase(TokenConverter):
 """Converter to upper case all matching tokens."""
 def __init__(self, *args):
 super(Upcase,self).__init__(*args)
 warnings.warn("Upcase class is deprecated, use upcaseTokens parse action instead",
 DeprecationWarning,stacklevel=2)

 def postParse(self, instring, loc, tokenlist):
 return list(map(str.upper, tokenlist))

class Combine(TokenConverter):
 """Converter to concatenate all matching tokens to a single string.
 By default, the matching patterns must also be contiguous in the input string;
 this can be disabled by specifying C{'adjacent=False'} in the constructor.
 """
 def __init__(self, expr, joinString="", adjacent=True):
 super(Combine,self).__init__(expr)
 # suppress whitespace-stripping in contained parse expressions, but re-enable it on the Combine itself
 if adjacent:
 self.leaveWhitespace()
 self.adjacent = adjacent
 self.skipWhitespace = True
 self.joinString = joinString
 self.callPreparse = True

 def ignore(self, other):
 if self.adjacent:
 ParserElement.ignore(self, other)
 else:
 super(Combine, self).ignore(other)
 return self

 def postParse(self, instring, loc, tokenlist):
 retToks = tokenlist.copy()
 del retToks[:]
 retToks += ParseResults(["".join(tokenlist._asStringList(self.joinString))], modal=self.modalResults)

 if self.resultsName and len(retToks.keys())>0:
 return [retToks]
 else:
 return retToks

class Group(TokenConverter):
 """Converter to return the matched tokens as a list - useful for returning tokens of C{L{ZeroOrMore}} and C{L{OneOrMore}} expressions."""
 def __init__(self, expr):
 super(Group,self).__init__(expr)
 self.saveAsList = True

 def postParse(self, instring, loc, tokenlist):
 return [tokenlist]

class Dict(TokenConverter):
 """Converter to return a repetitive expression as a list, but also as a dictionary.
 Each element can also be referenced using the first token in the expression as its key.
 Useful for tabular report scraping when the first column can be used as a item key.
 """
 def __init__(self, exprs):
 super(Dict,self).__init__(exprs)
 self.saveAsList = True

 def postParse(self, instring, loc, tokenlist):
 for i,tok in enumerate(tokenlist):
 if len(tok) == 0:
 continue
 ikey = tok[0]
 if isinstance(ikey,int):
 ikey = _ustr(tok[0]).strip()
 if len(tok)==1:
 tokenlist[ikey] = _ParseResultsWithOffset("",i)
 elif len(tok)==2 and not isinstance(tok[1],ParseResults):
 tokenlist[ikey] = _ParseResultsWithOffset(tok[1],i)
 else:
 dictvalue = tok.copy() #ParseResults(i)
 del dictvalue[0]
 if len(dictvalue)!= 1 or (isinstance(dictvalue,ParseResults) and dictvalue.keys()):
 tokenlist[ikey] = _ParseResultsWithOffset(dictvalue,i)
 else:
 tokenlist[ikey] = _ParseResultsWithOffset(dictvalue[0],i)

 if self.resultsName:
 return [tokenlist]
 else:
 return tokenlist

class Suppress(TokenConverter):
 """Converter for ignoring the results of a parsed expression."""
 def postParse(self, instring, loc, tokenlist):
 return []

 def suppress(self):
 return self

class OnlyOnce(object):
 """Wrapper for parse actions, to ensure they are only called once."""
 def __init__(self, methodCall):
 self.callable = _trim_arity(methodCall)
 self.called = False
 def __call__(self,s,l,t):
 if not self.called:
 results = self.callable(s,l,t)
 self.called = True
 return results
 raise ParseException(s,l,"")
 def reset(self):
 self.called = False

def traceParseAction(f):
 """Decorator for debugging parse actions."""
 f = _trim_arity(f)
 def z(*paArgs):
 thisFunc = f.func_name
 s,l,t = paArgs[-3:]
 if len(paArgs)>3:
 thisFunc = paArgs[0].__class__.__name__ + '.' + thisFunc
 sys.stderr.write(">>entering %s(line: '%s', %d, %s)\n" % (thisFunc,line(l,s),l,t))
 try:
 ret = f(*paArgs)
 except Exception as exc:
 sys.stderr.write("<<leaving %s (exception: %s)\n" % (thisFunc,exc))
 raise
 sys.stderr.write("<<leaving %s (ret: %s)\n" % (thisFunc,ret))
 return ret
 try:
 z.__name__ = f.__name__
 except AttributeError:
 pass
 return z

#
global helpers
#
def delimitedList(expr, delim=",", combine=False):
 """Helper to define a delimited list of expressions - the delimiter defaults to ','.
 By default, the list elements and delimiters can have intervening whitespace, and
 comments, but this can be overridden by passing C{combine=True} in the constructor.
 If C{combine} is set to C{True}, the matching tokens are returned as a single token
 string, with the delimiters included; otherwise, the matching tokens are returned
 as a list of tokens, with the delimiters suppressed.
 """
 dlName = _ustr(expr)+" ["+_ustr(delim)+" "+_ustr(expr)+"]..."
 if combine:
 return Combine(expr + ZeroOrMore(delim + expr)).setName(dlName)
 else:
 return (expr + ZeroOrMore(Suppress(delim) + expr)).setName(dlName)

def countedArray(expr, intExpr=None):
 """Helper to define a counted list of expressions.
 This helper defines a pattern of the form::
 integer expr expr expr...
 where the leading integer tells how many expr expressions follow.
 The matched tokens returns the array of expr tokens as a list - the leading count token is suppressed.
 """
 arrayExpr = Forward()
 def countFieldParseAction(s,l,t):
 n = t[0]
 arrayExpr << (n and Group(And([expr]*n)) or Group(empty))
 return []
 if intExpr is None:
 intExpr = Word(nums).setParseAction(lambda t:int(t[0]))
 else:
 intExpr = intExpr.copy()
 intExpr.setName("arrayLen")
 intExpr.addParseAction(countFieldParseAction, callDuringTry=True)
 return (intExpr + arrayExpr)

def _flatten(L):
 ret = []
 for i in L:
 if isinstance(i,list):
 ret.extend(_flatten(i))
 else:
 ret.append(i)
 return ret

def matchPreviousLiteral(expr):
 """Helper to define an expression that is indirectly defined from
 the tokens matched in a previous expression, that is, it looks
 for a 'repeat' of a previous expression. For example::
 first = Word(nums)
 second = matchPreviousLiteral(first)
 matchExpr = first + ":" + second
 will match C{"1:1"}, but not C{"1:2"}. Because this matches a
 previous literal, will also match the leading C{"1:1"} in C{"1:10"}.
 If this is not desired, use C{matchPreviousExpr}.
 Do *not* use with packrat parsing enabled.
 """
 rep = Forward()
 def copyTokenToRepeater(s,l,t):
 if t:
 if len(t) == 1:
 rep << t[0]
 else:
 # flatten t tokens
 tflat = _flatten(t.asList())
 rep << And([Literal(tt) for tt in tflat])
 else:
 rep << Empty()
 expr.addParseAction(copyTokenToRepeater, callDuringTry=True)
 return rep

def matchPreviousExpr(expr):
 """Helper to define an expression that is indirectly defined from
 the tokens matched in a previous expression, that is, it looks
 for a 'repeat' of a previous expression. For example::
 first = Word(nums)
 second = matchPreviousExpr(first)
 matchExpr = first + ":" + second
 will match C{"1:1"}, but not C{"1:2"}. Because this matches by
 expressions, will *not* match the leading C{"1:1"} in C{"1:10"};
 the expressions are evaluated first, and then compared, so
 C{"1"} is compared with C{"10"}.
 Do *not* use with packrat parsing enabled.
 """
 rep = Forward()
 e2 = expr.copy()
 rep << e2
 def copyTokenToRepeater(s,l,t):
 matchTokens = _flatten(t.asList())
 def mustMatchTheseTokens(s,l,t):
 theseTokens = _flatten(t.asList())
 if theseTokens != matchTokens:
 raise ParseException("",0,"")
 rep.setParseAction(mustMatchTheseTokens, callDuringTry=True)
 expr.addParseAction(copyTokenToRepeater, callDuringTry=True)
 return rep

def _escapeRegexRangeChars(s):
 #~ escape these chars: ^-]
 for c in r"\^-]":
 s = s.replace(c,_bslash+c)
 s = s.replace("\n",r"\n")
 s = s.replace("\t",r"\t")
 return _ustr(s)

def oneOf(strs, caseless=False, useRegex=True):
 """Helper to quickly define a set of alternative Literals, and makes sure to do
 longest-first testing when there is a conflict, regardless of the input order,
 but returns a C{L{MatchFirst}} for best performance.

 Parameters:
 - strs - a string of space-delimited literals, or a list of string literals
 - caseless - (default=False) - treat all literals as caseless
 - useRegex - (default=True) - as an optimization, will generate a Regex
 object; otherwise, will generate a C{MatchFirst} object (if C{caseless=True}, or
 if creating a C{Regex} raises an exception)
 """
 if caseless:
 isequal = (lambda a,b: a.upper() == b.upper())
 masks = (lambda a,b: b.upper().startswith(a.upper()))
 parseElementClass = CaselessLiteral
 else:
 isequal = (lambda a,b: a == b)
 masks = (lambda a,b: b.startswith(a))
 parseElementClass = Literal

 if isinstance(strs,(list,tuple)):
 symbols = list(strs[:])
 elif isinstance(strs,basestring):
 symbols = strs.split()
 else:
 warnings.warn("Invalid argument to oneOf, expected string or list",
 SyntaxWarning, stacklevel=2)

 i = 0
 while i < len(symbols)-1:
 cur = symbols[i]
 for j,other in enumerate(symbols[i+1:]):
 if (isequal(other, cur)):
 del symbols[i+j+1]
 break
 elif (masks(cur, other)):
 del symbols[i+j+1]
 symbols.insert(i,other)
 cur = other
 break
 else:
 i += 1

 if not caseless and useRegex:
 #~ print (strs,"->", "|".join([_escapeRegexChars(sym) for sym in symbols]))
 try:
 if len(symbols)==len("".join(symbols)):
 return Regex("[%s]" % "".join(_escapeRegexRangeChars(sym) for sym in symbols))
 else:
 return Regex("|".join(re.escape(sym) for sym in symbols))
 except:
 warnings.warn("Exception creating Regex for oneOf, building MatchFirst",
 SyntaxWarning, stacklevel=2)

 # last resort, just use MatchFirst
 return MatchFirst([parseElementClass(sym) for sym in symbols])

def dictOf(key, value):
 """Helper to easily and clearly define a dictionary by specifying the respective patterns
 for the key and value. Takes care of defining the C{L{Dict}}, C{L{ZeroOrMore}}, and C{L{Group}} tokens
 in the proper order. The key pattern can include delimiting markers or punctuation,
 as long as they are suppressed, thereby leaving the significant key text. The value
 pattern can include named results, so that the C{Dict} results can include named token
 fields.
 """
 return Dict(ZeroOrMore(Group (key + value)))

def originalTextFor(expr, asString=True):
 """Helper to return the original, untokenized text for a given expression. Useful to
 restore the parsed fields of an HTML start tag into the raw tag text itself, or to
 revert separate tokens with intervening whitespace back to the original matching
 input text. Simpler to use than the parse action C{L{keepOriginalText}}, and does not
 require the inspect module to chase up the call stack. By default, returns a
 string containing the original parsed text.

 If the optional C{asString} argument is passed as C{False}, then the return value is a
 C{L{ParseResults}} containing any results names that were originally matched, and a
 single token containing the original matched text from the input string. So if
 the expression passed to C{L{originalTextFor}} contains expressions with defined
 results names, you must set C{asString} to C{False} if you want to preserve those
 results name values."""
 locMarker = Empty().setParseAction(lambda s,loc,t: loc)
 endlocMarker = locMarker.copy()
 endlocMarker.callPreparse = False
 matchExpr = locMarker("_original_start") + expr + endlocMarker("_original_end")
 if asString:
 extractText = lambda s,l,t: s[t._original_start:t._original_end]
 else:
 def extractText(s,l,t):
 del t[:]
 t.insert(0, s[t._original_start:t._original_end])
 del t["_original_start"]
 del t["_original_end"]
 matchExpr.setParseAction(extractText)
 return matchExpr

def ungroup(expr):
 """Helper to undo pyparsing's default grouping of And expressions, even
 if all but one are non-empty."""
 return TokenConverter(expr).setParseAction(lambda t:t[0])

convenience constants for positional expressions
empty = Empty().setName("empty")
lineStart = LineStart().setName("lineStart")
lineEnd = LineEnd().setName("lineEnd")
stringStart = StringStart().setName("stringStart")
stringEnd = StringEnd().setName("stringEnd")

_escapedPunc = Word(_bslash, r"\[]-*.$+^?()~ ", exact=2).setParseAction(lambda s,l,t:t[0][1])
_escapedHexChar = Regex(r"\\0?[xX][0-9a-fA-F]+").setParseAction(lambda s,l,t:unichr(int(t[0].lstrip(r'\0x'),16)))
_escapedOctChar = Regex(r"\\0[0-7]+").setParseAction(lambda s,l,t:unichr(int(t[0][1:],8)))
_singleChar = _escapedPunc | _escapedHexChar | _escapedOctChar | Word(printables, excludeChars=r'\]', exact=1)
_charRange = Group(_singleChar + Suppress("-") + _singleChar)
_reBracketExpr = Literal("[") + Optional("^").setResultsName("negate") + Group(OneOrMore(_charRange | _singleChar)).setResultsName("body") + "]"

_expanded = lambda p: (isinstance(p,ParseResults) and ''.join(unichr(c) for c in range(ord(p[0]),ord(p[1])+1)) or p)

def srange(s):
 r"""Helper to easily define string ranges for use in Word construction. Borrows
 syntax from regexp '[]' string range definitions::
 srange("[0-9]") -> "0123456789"
 srange("[a-z]") -> "abcdefghijklmnopqrstuvwxyz"
 srange("[a-z$_]") -> "abcdefghijklmnopqrstuvwxyz$_"
 The input string must be enclosed in []'s, and the returned string is the expanded
 character set joined into a single string.
 The values enclosed in the []'s may be::
 a single character
 an escaped character with a leading backslash (such as \- or \])
 an escaped hex character with a leading '\x' (\x21, which is a '!' character)
 (\0x## is also supported for backwards compatibility)
 an escaped octal character with a leading '\0' (\041, which is a '!' character)
 a range of any of the above, separated by a dash ('a-z', etc.)
 any combination of the above ('aeiouy', 'a-zA-Z0-9_$', etc.)
 """
 try:
 return "".join(_expanded(part) for part in _reBracketExpr.parseString(s).body)
 except:
 return ""

def matchOnlyAtCol(n):
 """Helper method for defining parse actions that require matching at a specific
 column in the input text.
 """
 def verifyCol(strg,locn,toks):
 if col(locn,strg) != n:
 raise ParseException(strg,locn,"matched token not at column %d" % n)
 return verifyCol

def replaceWith(replStr):
 """Helper method for common parse actions that simply return a literal value. Especially
 useful when used with C{L{transformString<ParserElement.transformString>}()}.
 """
 def _replFunc(*args):
 return [replStr]
 return _replFunc

def removeQuotes(s,l,t):
 """Helper parse action for removing quotation marks from parsed quoted strings.
 To use, add this parse action to quoted string using::
 quotedString.setParseAction(removeQuotes)
 """
 return t[0][1:-1]

def upcaseTokens(s,l,t):
 """Helper parse action to convert tokens to upper case."""
 return [tt.upper() for tt in map(_ustr,t)]

def downcaseTokens(s,l,t):
 """Helper parse action to convert tokens to lower case."""
 return [tt.lower() for tt in map(_ustr,t)]

def keepOriginalText(s,startLoc,t):
 """DEPRECATED - use new helper method C{L{originalTextFor}}.
 Helper parse action to preserve original parsed text,
 overriding any nested parse actions."""
 try:
 endloc = getTokensEndLoc()
 except ParseException:
 raise ParseFatalException("incorrect usage of keepOriginalText - may only be called as a parse action")
 del t[:]
 t += ParseResults(s[startLoc:endloc])
 return t

def getTokensEndLoc():
 """Method to be called from within a parse action to determine the end
 location of the parsed tokens."""
 import inspect
 fstack = inspect.stack()
 try:
 # search up the stack (through intervening argument normalizers) for correct calling routine
 for f in fstack[2:]:
 if f[3] == "_parseNoCache":
 endloc = f[0].f_locals["loc"]
 return endloc
 else:
 raise ParseFatalException("incorrect usage of getTokensEndLoc - may only be called from within a parse action")
 finally:
 del fstack

def _makeTags(tagStr, xml):
 """Internal helper to construct opening and closing tag expressions, given a tag name"""
 if isinstance(tagStr,basestring):
 resname = tagStr
 tagStr = Keyword(tagStr, caseless=not xml)
 else:
 resname = tagStr.name

 tagAttrName = Word(alphas,alphanums+"_-:")
 if (xml):
 tagAttrValue = dblQuotedString.copy().setParseAction(removeQuotes)
 openTag = Suppress("<") + tagStr("tag") + \
 Dict(ZeroOrMore(Group(tagAttrName + Suppress("=") + tagAttrValue))) + \
 Optional("/",default=[False]).setResultsName("empty").setParseAction(lambda s,l,t:t[0]=='/') + Suppress(">")
 else:
 printablesLessRAbrack = "".join(c for c in printables if c not in ">")
 tagAttrValue = quotedString.copy().setParseAction(removeQuotes) | Word(printablesLessRAbrack)
 openTag = Suppress("<") + tagStr("tag") + \
 Dict(ZeroOrMore(Group(tagAttrName.setParseAction(downcaseTokens) + \
 Optional(Suppress("=") + tagAttrValue)))) + \
 Optional("/",default=[False]).setResultsName("empty").setParseAction(lambda s,l,t:t[0]=='/') + Suppress(">")
 closeTag = Combine(_L("</") + tagStr + ">")

 openTag = openTag.setResultsName("start"+"".join(resname.replace(":"," ").title().split())).setName("<%s>" % tagStr)
 closeTag = closeTag.setResultsName("end"+"".join(resname.replace(":"," ").title().split())).setName("</%s>" % tagStr)
 openTag.tag = resname
 closeTag.tag = resname
 return openTag, closeTag

def makeHTMLTags(tagStr):
 """Helper to construct opening and closing tag expressions for HTML, given a tag name"""
 return _makeTags(tagStr, False)

def makeXMLTags(tagStr):
 """Helper to construct opening and closing tag expressions for XML, given a tag name"""
 return _makeTags(tagStr, True)

def withAttribute(*args,**attrDict):
 """Helper to create a validating parse action to be used with start tags created
 with C{L{makeXMLTags}} or C{L{makeHTMLTags}}. Use C{withAttribute} to qualify a starting tag
 with a required attribute value, to avoid false matches on common tags such as
 C{<TD>} or C{<DIV>}.

 Call C{withAttribute} with a series of attribute names and values. Specify the list
 of filter attributes names and values as:
 - keyword arguments, as in C{(align="right")}, or
 - as an explicit dict with C{**} operator, when an attribute name is also a Python
 reserved word, as in C{**{"class":"Customer", "align":"right"}}
 - a list of name-value tuples, as in (("ns1:class", "Customer"), ("ns2:align","right"))
 For attribute names with a namespace prefix, you must use the second form. Attribute
 names are matched insensitive to upper/lower case.

 To verify that the attribute exists, but without specifying a value, pass
 C{withAttribute.ANY_VALUE} as the value.
 """
 if args:
 attrs = args[:]
 else:
 attrs = attrDict.items()
 attrs = [(k,v) for k,v in attrs]
 def pa(s,l,tokens):
 for attrName,attrValue in attrs:
 if attrName not in tokens:
 raise ParseException(s,l,"no matching attribute " + attrName)
 if attrValue != withAttribute.ANY_VALUE and tokens[attrName] != attrValue:
 raise ParseException(s,l,"attribute '%s' has value '%s', must be '%s'" %
 (attrName, tokens[attrName], attrValue))
 return pa
withAttribute.ANY_VALUE = object()

opAssoc = _Constants()
opAssoc.LEFT = object()
opAssoc.RIGHT = object()

def infixNotation(baseExpr, opList, lpar=Suppress('('), rpar=Suppress(')')):
 """Helper method for constructing grammars of expressions made up of
 operators working in a precedence hierarchy. Operators may be unary or
 binary, left- or right-associative. Parse actions can also be attached
 to operator expressions.

 Parameters:
 - baseExpr - expression representing the most basic element for the nested
 - opList - list of tuples, one for each operator precedence level in the
 expression grammar; each tuple is of the form
 (opExpr, numTerms, rightLeftAssoc, parseAction), where:
 - opExpr is the pyparsing expression for the operator;
 may also be a string, which will be converted to a Literal;
 if numTerms is 3, opExpr is a tuple of two expressions, for the
 two operators separating the 3 terms
 - numTerms is the number of terms for this operator (must
 be 1, 2, or 3)
 - rightLeftAssoc is the indicator whether the operator is
 right or left associative, using the pyparsing-defined
 constants C{opAssoc.RIGHT} and C{opAssoc.LEFT}.
 - parseAction is the parse action to be associated with
 expressions matching this operator expression (the
 parse action tuple member may be omitted)
 - lpar - expression for matching left-parentheses (default=Suppress('('))
 - rpar - expression for matching right-parentheses (default=Suppress(')'))
 """
 ret = Forward()
 lastExpr = baseExpr | (lpar + ret + rpar)
 for i,operDef in enumerate(opList):
 opExpr,arity,rightLeftAssoc,pa = (operDef + (None,))[:4]
 if arity == 3:
 if opExpr is None or len(opExpr) != 2:
 raise ValueError("if numterms=3, opExpr must be a tuple or list of two expressions")
 opExpr1, opExpr2 = opExpr
 thisExpr = Forward()#.setName("expr%d" % i)
 if rightLeftAssoc == opAssoc.LEFT:
 if arity == 1:
 matchExpr = FollowedBy(lastExpr + opExpr) + Group(lastExpr + OneOrMore(opExpr))
 elif arity == 2:
 if opExpr is not None:
 matchExpr = FollowedBy(lastExpr + opExpr + lastExpr) + Group(lastExpr + OneOrMore(opExpr + lastExpr))
 else:
 matchExpr = FollowedBy(lastExpr+lastExpr) + Group(lastExpr + OneOrMore(lastExpr))
 elif arity == 3:
 matchExpr = FollowedBy(lastExpr + opExpr1 + lastExpr + opExpr2 + lastExpr) + \
 Group(lastExpr + opExpr1 + lastExpr + opExpr2 + lastExpr)
 else:
 raise ValueError("operator must be unary (1), binary (2), or ternary (3)")
 elif rightLeftAssoc == opAssoc.RIGHT:
 if arity == 1:
 # try to avoid LR with this extra test
 if not isinstance(opExpr, Optional):
 opExpr = Optional(opExpr)
 matchExpr = FollowedBy(opExpr.expr + thisExpr) + Group(opExpr + thisExpr)
 elif arity == 2:
 if opExpr is not None:
 matchExpr = FollowedBy(lastExpr + opExpr + thisExpr) + Group(lastExpr + OneOrMore(opExpr + thisExpr))
 else:
 matchExpr = FollowedBy(lastExpr + thisExpr) + Group(lastExpr + OneOrMore(thisExpr))
 elif arity == 3:
 matchExpr = FollowedBy(lastExpr + opExpr1 + thisExpr + opExpr2 + thisExpr) + \
 Group(lastExpr + opExpr1 + thisExpr + opExpr2 + thisExpr)
 else:
 raise ValueError("operator must be unary (1), binary (2), or ternary (3)")
 else:
 raise ValueError("operator must indicate right or left associativity")
 if pa:
 matchExpr.setParseAction(pa)
 thisExpr << (matchExpr | lastExpr)
 lastExpr = thisExpr
 ret << lastExpr
 return ret
operatorPrecedence = infixNotation

dblQuotedString = Regex(r'"(?:[^"\n\r\\]|(?:"")|(?:\\x[0-9a-fA-F]+)|(?:\\.))*"').setName("string enclosed in double quotes")
sglQuotedString = Regex(r"'(?:[^'\n\r\\]|(?:'')|(?:\\x[0-9a-fA-F]+)|(?:\\.))*'").setName("string enclosed in single quotes")
quotedString = Regex(r'''(?:"(?:[^"\n\r\\]|(?:"")|(?:\\x[0-9a-fA-F]+)|(?:\\.))*")|(?:'(?:[^'\n\r\\]|(?:'')|(?:\\x[0-9a-fA-F]+)|(?:\\.))*')''').setName("quotedString using single or double quotes")
unicodeString = Combine(_L('u') + quotedString.copy())

def nestedExpr(opener="(", closer=")", content=None, ignoreExpr=quotedString.copy()):
 """Helper method for defining nested lists enclosed in opening and closing
 delimiters ("(" and ")" are the default).

 Parameters:
 - opener - opening character for a nested list (default="("); can also be a pyparsing expression
 - closer - closing character for a nested list (default=")"); can also be a pyparsing expression
 - content - expression for items within the nested lists (default=None)
 - ignoreExpr - expression for ignoring opening and closing delimiters (default=quotedString)

 If an expression is not provided for the content argument, the nested
 expression will capture all whitespace-delimited content between delimiters
 as a list of separate values.

 Use the C{ignoreExpr} argument to define expressions that may contain
 opening or closing characters that should not be treated as opening
 or closing characters for nesting, such as quotedString or a comment
 expression. Specify multiple expressions using an C{L{Or}} or C{L{MatchFirst}}.
 The default is L{quotedString}, but if no expressions are to be ignored,
 then pass C{None} for this argument.
 """
 if opener == closer:
 raise ValueError("opening and closing strings cannot be the same")
 if content is None:
 if isinstance(opener,basestring) and isinstance(closer,basestring):
 if len(opener) == 1 and len(closer)==1:
 if ignoreExpr is not None:
 content = (Combine(OneOrMore(~ignoreExpr +
 CharsNotIn(opener+closer+ParserElement.DEFAULT_WHITE_CHARS,exact=1))
).setParseAction(lambda t:t[0].strip()))
 else:
 content = (empty.copy()+CharsNotIn(opener+closer+ParserElement.DEFAULT_WHITE_CHARS
).setParseAction(lambda t:t[0].strip()))
 else:
 if ignoreExpr is not None:
 content = (Combine(OneOrMore(~ignoreExpr +
 ~Literal(opener) + ~Literal(closer) +
 CharsNotIn(ParserElement.DEFAULT_WHITE_CHARS,exact=1))
).setParseAction(lambda t:t[0].strip()))
 else:
 content = (Combine(OneOrMore(~Literal(opener) + ~Literal(closer) +
 CharsNotIn(ParserElement.DEFAULT_WHITE_CHARS,exact=1))
).setParseAction(lambda t:t[0].strip()))
 else:
 raise ValueError("opening and closing arguments must be strings if no content expression is given")
 ret = Forward()
 if ignoreExpr is not None:
 ret << Group(Suppress(opener) + ZeroOrMore(ignoreExpr | ret | content) + Suppress(closer))
 else:
 ret << Group(Suppress(opener) + ZeroOrMore(ret | content) + Suppress(closer))
 return ret

def indentedBlock(blockStatementExpr, indentStack, indent=True):
 """Helper method for defining space-delimited indentation blocks, such as
 those used to define block statements in Python source code.

 Parameters:
 - blockStatementExpr - expression defining syntax of statement that
 is repeated within the indented block
 - indentStack - list created by caller to manage indentation stack
 (multiple statementWithIndentedBlock expressions within a single grammar
 should share a common indentStack)
 - indent - boolean indicating whether block must be indented beyond the
 the current level; set to False for block of left-most statements
 (default=True)

 A valid block must contain at least one C{blockStatement}.
 """
 def checkPeerIndent(s,l,t):
 if l >= len(s): return
 curCol = col(l,s)
 if curCol != indentStack[-1]:
 if curCol > indentStack[-1]:
 raise ParseFatalException(s,l,"illegal nesting")
 raise ParseException(s,l,"not a peer entry")

 def checkSubIndent(s,l,t):
 curCol = col(l,s)
 if curCol > indentStack[-1]:
 indentStack.append(curCol)
 else:
 raise ParseException(s,l,"not a subentry")

 def checkUnindent(s,l,t):
 if l >= len(s): return
 curCol = col(l,s)
 if not(indentStack and curCol < indentStack[-1] and curCol <= indentStack[-2]):
 raise ParseException(s,l,"not an unindent")
 indentStack.pop()

 NL = OneOrMore(LineEnd().setWhitespaceChars("\t ").suppress())
 INDENT = Empty() + Empty().setParseAction(checkSubIndent)
 PEER = Empty().setParseAction(checkPeerIndent)
 UNDENT = Empty().setParseAction(checkUnindent)
 if indent:
 smExpr = Group(Optional(NL) +
 #~ FollowedBy(blockStatementExpr) +
 INDENT + (OneOrMore(PEER + Group(blockStatementExpr) + Optional(NL))) + UNDENT)
 else:
 smExpr = Group(Optional(NL) +
 (OneOrMore(PEER + Group(blockStatementExpr) + Optional(NL))))
 blockStatementExpr.ignore(_bslash + LineEnd())
 return smExpr

alphas8bit = srange(r"[\0xc0-\0xd6\0xd8-\0xf6\0xf8-\0xff]")
punc8bit = srange(r"[\0xa1-\0xbf\0xd7\0xf7]")

anyOpenTag,anyCloseTag = makeHTMLTags(Word(alphas,alphanums+"_:"))
commonHTMLEntity = Combine(_L("&") + oneOf("gt lt amp nbsp quot").setResultsName("entity") +";").streamline()
_htmlEntityMap = dict(zip("gt lt amp nbsp quot".split(),'><& "'))
replaceHTMLEntity = lambda t : t.entity in _htmlEntityMap and _htmlEntityMap[t.entity] or None

it's easy to get these comment structures wrong - they're very common, so may as well make them available
cStyleComment = Regex(r"/*(?:[^*]**+)+?/").setName("C style comment")

htmlComment = Regex(r"<!--[\s\S]*?-->")
restOfLine = Regex(r".*").leaveWhitespace()
dblSlashComment = Regex(r"\/\/(\\\n|.)*").setName("// comment")
cppStyleComment = Regex(r"/(?:*(?:[^*]**+)+?/|/[^\n]*(?:\n[^\n]*)*?(?:(?<!\\)|\Z))").setName("C++ style comment")

javaStyleComment = cppStyleComment
pythonStyleComment = Regex(r"#.*").setName("Python style comment")
_commasepitem = Combine(OneOrMore(Word(printables, excludeChars=',') +
 Optional(Word(" \t") +
 ~Literal(",") + ~LineEnd()))).streamline().setName("commaItem")
commaSeparatedList = delimitedList(Optional(quotedString.copy() | _commasepitem, default="")).setName("commaSeparatedList")

if __name__ == "__main__":

 def test(teststring):
 try:
 tokens = simpleSQL.parseString(teststring)
 tokenlist = tokens.asList()
 print (teststring + "->" + str(tokenlist))
 print ("tokens = " + str(tokens))
 print ("tokens.columns = " + str(tokens.columns))
 print ("tokens.tables = " + str(tokens.tables))
 print (tokens.asXML("SQL",True))
 except ParseBaseException as err:
 print (teststring + "->")
 print (err.line)
 print (" "*(err.column-1) + "^")
 print (err)
 print()

 selectToken = CaselessLiteral("select")
 fromToken = CaselessLiteral("from")

 ident = Word(alphas, alphanums + "_$")
 columnName = delimitedList(ident, ".", combine=True).setParseAction(upcaseTokens)
 columnNameList = Group(delimitedList(columnName))#.setName("columns")
 tableName = delimitedList(ident, ".", combine=True).setParseAction(upcaseTokens)
 tableNameList = Group(delimitedList(tableName))#.setName("tables")
 simpleSQL = (selectToken + \
 ('*' | columnNameList).setResultsName("columns") + \
 fromToken + \
 tableNameList.setResultsName("tables"))

 test("SELECT * from XYZZY, ABC")
 test("select * from SYS.XYZZY")
 test("Select A from Sys.dual")
 test("Select AA,BB,CC from Sys.dual")
 test("Select A, B, C from Sys.dual")
 test("Select A, B, C from Sys.dual")
 test("Xelect A, B, C from Sys.dual")
 test("Select A, B, C frox Sys.dual")
 test("Select")
 test("Select ^^^ frox Sys.dual")
 test("Select A, B, C from Sys.dual, Table2 ")

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/brian2/codegen/generators/cython_generator.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.codegen.generators.cython_generator

import itertools

from brian2.devices.device import all_devices
from brian2.utils.stringtools import word_substitute, deindent, indent
from brian2.parsing.rendering import NodeRenderer
from brian2.parsing.bast import brian_dtype_from_dtype
from brian2.core.functions import DEFAULT_FUNCTIONS, Function
from brian2.core.variables import (Constant, AuxiliaryVariable,
 get_dtype_str, Variable, Subexpression)

from .base import CodeGenerator

__all__ = ['CythonCodeGenerator']

data_type_conversion_table = [
 # canonical C++ Numpy
 ('float32', 'float', 'float32'),
 ('float64', 'double', 'float64'),
 ('int32', 'int32_t', 'int32'),
 ('int64', 'int64_t', 'int64'),
 ('bool', 'bool', 'bool'),
 ('uint8', 'char', 'uint8'),
 ('uint64', 'uint64_t', 'uint64'),
]

cpp_dtype = dict((canonical, cpp) for canonical, cpp, np in data_type_conversion_table)
numpy_dtype = dict((canonical, np) for canonical, cpp, np in data_type_conversion_table)

[docs]def get_cpp_dtype(obj):
 return cpp_dtype[get_dtype_str(obj)]

[docs]def get_numpy_dtype(obj):
 return numpy_dtype[get_dtype_str(obj)]

[docs]class CythonNodeRenderer(NodeRenderer):
[docs] def render_NameConstant(self, node):
 return {True: '1',
 False: '0'}.get(node.value, node.value)

[docs] def render_Name(self, node):
 return {'True': '1',
 'False': '0'}.get(node.id, node.id)

[docs] def render_BinOp(self, node):
 if node.op.__class__.__name__=='Mod':
 return '((({left})%({right}))+({right}))%({right})'.format(left=self.render_node(node.left),
 right=self.render_node(node.right))
 else:
 return super(CythonNodeRenderer, self).render_BinOp(node)

[docs]class CythonCodeGenerator(CodeGenerator):
 '''
 Cython code generator
 '''

 class_name = 'cython'

[docs] def translate_expression(self, expr):
 expr = word_substitute(expr, self.func_name_replacements)
 return CythonNodeRenderer().render_expr(expr, self.variables).strip()

[docs] def translate_statement(self, statement):
 var, op, expr, comment = (statement.var, statement.op,
 statement.expr, statement.comment)
 if op == ':=': # make no distinction in Cython (declaration are done elsewhere)
 op = '='
 # For Cython we replace complex expressions involving boolean variables into a sequence of
 # if/then expressions with simpler expressions. This is provided by the optimise_statements
 # function.
 if (statement.used_boolean_variables is not None and len(statement.used_boolean_variables)
 # todo: improve dtype analysis so that this isn't necessary
 and brian_dtype_from_dtype(statement.dtype)=='float'):
 used_boolvars = statement.used_boolean_variables
 bool_simp = statement.boolean_simplified_expressions
 codelines = []
 firstline = True
 # bool assigns is a sequence of (var, value) pairs giving the conditions under
 # which the simplified expression simp_expr holds
 for bool_assigns, simp_expr in bool_simp.iteritems():
 # generate a boolean expression like ``var1 and var2 and not var3``
 atomics = []
 for boolvar, boolval in bool_assigns:
 if boolval:
 atomics.append(boolvar)
 else:
 atomics.append('not '+boolvar)
 # use if/else/elif correctly
 if firstline:
 line = 'if '+(' and '.join(atomics))+':'
 else:
 if len(used_boolvars)>1:
 line = 'elif '+(' and '.join(atomics))+':'
 else:
 line = 'else:'
 line += '\n '
 line += var + ' ' + op + ' ' + self.translate_expression(simp_expr)
 codelines.append(line)
 firstline = False
 code = '\n'.join(codelines)
 else:
 code = var + ' ' + op + ' ' + self.translate_expression(expr)
 if len(comment):
 code += ' # ' + comment
 return code

[docs] def translate_one_statement_sequence(self, statements, scalar=False):
 variables = self.variables
 variable_indices = self.variable_indices
 read, write, indices, conditional_write_vars = self.arrays_helper(statements)
 lines = []
 # index and read arrays (index arrays first)
 for varname in itertools.chain(indices, read):
 var = variables[varname]
 index = variable_indices[varname]
 line = '{varname} = {arrayname}[{index}]'.format(varname=varname, arrayname=self.get_array_name(var),
 index=index)
 lines.append(line)
 # the actual code
 created_vars = set([])
 for stmt in statements:
 if stmt.op==':=':
 created_vars.add(stmt.var)
 line = self.translate_statement(stmt)
 if stmt.var in conditional_write_vars:
 subs = {}
 condvar = conditional_write_vars[stmt.var]
 lines.append('if %s:' % condvar)
 lines.append(indent(line))
 else:
 lines.append(line)
 # write arrays
 for varname in write:
 index_var = self.variable_indices[varname]
 var = self.variables[varname]
 line = self.get_array_name(var, self.variables) + '[' + index_var + '] = ' + varname
 lines.append(line)

 return lines

 def _add_user_function(self, varname, var):
 user_functions = []
 load_namespace = []
 support_code = []
 impl = var.implementations[self.codeobj_class]
 func_code= impl.get_code(self.owner)
 # Implementation can be None if the function is already
 # available in Cython (possibly under a different name)
 if func_code is not None:
 if isinstance(func_code, basestring):
 # Function is provided as Cython code
 # To make namespace variables available to functions, we
 # create global variables and assign to them in the main
 # code
 user_functions.append((varname, var))
 func_namespace = impl.get_namespace(self.owner) or {}
 for ns_key, ns_value in func_namespace.iteritems():
 load_namespace.append(
 '# namespace for function %s' % varname)
 if hasattr(ns_value, 'dtype'):
 if ns_value.shape == ():
 raise NotImplementedError((
 'Directly replace scalar values in the function '
 'instead of providing them via the namespace'))
 newlines = [
 "global _namespace{var_name}",
 "global _namespace_num{var_name}",
 "cdef _numpy.ndarray[{cpp_dtype}, ndim=1, mode='c'] _buf_{var_name} = _namespace['{var_name}']",
 "_namespace{var_name} = <{cpp_dtype} *> _buf_{var_name}.data",
 "_namespace_num{var_name} = len(_namespace['{var_name}'])"
]
 support_code.append(
 "cdef {cpp_dtype} *_namespace{var_name}".format(
 cpp_dtype=get_cpp_dtype(ns_value.dtype),
 var_name=ns_key))

 else: # e.g. a function
 newlines = [
 "_namespace{var_name} = namespace['{var_name}']"
]
 for line in newlines:
 load_namespace.append(
 line.format(cpp_dtype=get_cpp_dtype(ns_value.dtype),
 numpy_dtype=get_numpy_dtype(
 ns_value.dtype),
 var_name=ns_key))
 support_code.append(deindent(func_code))
 elif callable(func_code):
 self.variables[varname] = func_code
 line = '{0} = _namespace["{1}"]'.format(varname, varname)
 load_namespace.append(line)
 else:
 raise TypeError(('Provided function implementation '
 'for function %s is neither a string '
 'nor callable (is type %s instead)') % (
 varname,
 type(func_code)))

 dep_support_code = []
 dep_load_namespace = []
 dep_user_functions = []
 if impl.dependencies is not None:
 for dep_name, dep in impl.dependencies.iteritems():
 self.variables[dep_name] = dep
 sc, ln, uf = self._add_user_function(dep_name, dep)
 dep_support_code.extend(sc)
 dep_load_namespace.extend(ln)
 dep_user_functions.extend(uf)

 return (support_code + dep_support_code,
 dep_load_namespace + load_namespace,
 dep_user_functions + user_functions)

[docs] def determine_keywords(self):
 from brian2.devices.device import get_device
 device = get_device()
 # load variables from namespace
 load_namespace = []
 support_code = []
 handled_pointers = set()
 user_functions = []
 for varname, var in self.variables.items():
 if isinstance(var, Variable) and not isinstance(var, (Subexpression, AuxiliaryVariable)):
 load_namespace.append('_var_{0} = _namespace["_var_{1}"]'.format(varname, varname))
 if isinstance(var, AuxiliaryVariable):
 line = "cdef {dtype} {varname}".format(
 dtype=get_cpp_dtype(var.dtype),
 varname=varname)
 load_namespace.append(line)
 elif isinstance(var, Subexpression):
 dtype = get_cpp_dtype(var.dtype)
 line = "cdef {dtype} {varname}".format(dtype=dtype,
 varname=varname)
 load_namespace.append(line)
 elif isinstance(var, Constant):
 dtype_name = get_cpp_dtype(var.value)
 line = 'cdef {dtype} {varname} = _namespace["{varname}"]'.format(dtype=dtype_name, varname=varname)
 load_namespace.append(line)
 elif isinstance(var, Variable):
 if var.dynamic:
 load_namespace.append('{0} = _namespace["{1}"]'.format(self.get_array_name(var, False),
 self.get_array_name(var, False)))

 # This is the "true" array name, not the restricted pointer.
 array_name = device.get_array_name(var)
 pointer_name = self.get_array_name(var)
 if pointer_name in handled_pointers:
 continue
 if getattr(var, 'dimensions', 1) > 1:
 continue # multidimensional (dynamic) arrays have to be treated differently
 if get_dtype_str(var.dtype) == 'bool':
 newlines = ["cdef _numpy.ndarray[char, ndim=1, mode='c', cast=True] _buf_{array_name} = _namespace['{array_name}']",
 "cdef {cpp_dtype} * {array_name} = <{cpp_dtype} *> _buf_{array_name}.data"]
 else:
 newlines = ["cdef _numpy.ndarray[{cpp_dtype}, ndim=1, mode='c'] _buf_{array_name} = _namespace['{array_name}']",
 "cdef {cpp_dtype} * {array_name} = <{cpp_dtype} *> _buf_{array_name}.data"]

 if not var.scalar:
 newlines += ["cdef int _num{array_name} = len(_namespace['{array_name}'])"]

 if var.scalar and var.constant:
 newlines += ['cdef {cpp_dtype} {varname} = _namespace["{varname}"]']
 else:
 newlines += ["cdef {cpp_dtype} {varname}"]

 for line in newlines:
 line = line.format(cpp_dtype=get_cpp_dtype(var.dtype),
 numpy_dtype=get_numpy_dtype(var.dtype),
 pointer_name=pointer_name,
 array_name=array_name,
 varname=varname,
)
 load_namespace.append(line)
 handled_pointers.add(pointer_name)

 elif isinstance(var, Function):
 sc, ln, uf = self._add_user_function(varname, var)
 support_code.extend(sc)
 load_namespace.extend(ln)
 user_functions.extend(uf)
 else:
 # fallback to Python object
 load_namespace.append('{0} = _namespace["{1}"]'.format(varname, varname))

 # delete the user-defined functions from the namespace and add the
 # function namespaces (if any)
 for funcname, func in user_functions:
 del self.variables[funcname]
 func_namespace = func.implementations[self.codeobj_class].get_namespace(self.owner)
 if func_namespace is not None:
 self.variables.update(func_namespace)

 return {'load_namespace': '\n'.join(load_namespace),
 'support_code': '\n'.join(support_code)}

###
Implement functions
##
Functions that exist under the same name in C++
for func in ['sin', 'cos', 'tan', 'sinh', 'cosh', 'tanh', 'exp', 'log',
 'log10', 'sqrt', 'ceil', 'floor', 'abs']:
 DEFAULT_FUNCTIONS[func].implementations.add_implementation(CythonCodeGenerator,
 code=None)

Functions that need a name translation
for func, func_cpp in [('arcsin', 'asin'), ('arccos', 'acos'), ('arctan', 'atan'),
 ('int', 'int_') # from stdint_compat.h
]:
 DEFAULT_FUNCTIONS[func].implementations.add_implementation(CythonCodeGenerator,
 code=None,
 name=func_cpp)

_BUFFER_SIZE = 20000

rand_code = '''
cdef double _rand(int _idx):
 cdef double **buffer_pointer = <double**>_namespace_rand_buffer
 cdef double *buffer = buffer_pointer[0]
 cdef _numpy.ndarray _new_rand

 if(_namespace_rand_buffer_index[0] == 0):
 if buffer != NULL:
 free(buffer)
 _new_rand = _numpy.random.rand(_BUFFER_SIZE)
 buffer = <double *>_numpy.PyArray_DATA(_new_rand)
 PyArray_CLEARFLAGS(<_numpy.PyArrayObject*>_new_rand, _numpy.NPY_OWNDATA)
 buffer_pointer[0] = buffer

 cdef double val = buffer[_namespace_rand_buffer_index[0]]
 _namespace_rand_buffer_index[0] += 1
 if _namespace_rand_buffer_index[0] == _BUFFER_SIZE:
 _namespace_rand_buffer_index[0] = 0
 return val
'''.replace('_BUFFER_SIZE', str(_BUFFER_SIZE))

randn_code = rand_code.replace('rand', 'randn').replace('randnom', 'random')

device = all_devices['runtime']
DEFAULT_FUNCTIONS['rand'].implementations.add_implementation(CythonCodeGenerator,
 code=rand_code,
 name='_rand',
 namespace={'_rand_buffer': device.rand_buffer,
 '_rand_buffer_index': device.rand_buffer_index})

DEFAULT_FUNCTIONS['randn'].implementations.add_implementation(CythonCodeGenerator,
 code=randn_code,
 name='_randn',
 namespace={
 '_randn_buffer': device.randn_buffer,
 '_randn_buffer_index': device.randn_buffer_index})

sign_code = '''
ctypedef fused _to_sign:
 char
 short
 int
 float
 double

cdef int _sign(_to_sign x):
 return (0 < x) - (x < 0)
'''
DEFAULT_FUNCTIONS['sign'].implementations.add_implementation(CythonCodeGenerator,
 code=sign_code,
 name='_sign')

clip_code = '''
cdef double clip(double x, double low, double high):
 if x<low:
 return low
 if x>high:
 return high
 return x
'''
DEFAULT_FUNCTIONS['clip'].implementations.add_implementation(CythonCodeGenerator,
 code=clip_code,
 name='clip')

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_images/frompapers.Brette_2012.Fig3AB.1.png
V (mv)

60

40

20

-20

—40

-60

-80

Voltage traces

25

Phase plot

7

'
'
'
i
'
|
'
'
'
i
|
|
l
'
'
[
[

dvydt (V/s)

=
)

20

=
&

20 40 60
Time (ms)

80

100

0
-80 -60 -40 -20
V (mv)

0

20

40

_images/compartmental.bipolar_with_inputs2.1.png
Time (ms)

_modules/brian2/synapses/spikequeue.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.synapses.spikequeue

"""
The spike queue class stores future synaptic events
produced by a given presynaptic neuron group (or postsynaptic for backward
propagation in STDP).
"""
import bisect

import numpy as np

from brian2.utils.logger import get_logger
from brian2.utils.arrays import calc_repeats

__all__=['SpikeQueue']

logger = get_logger(__name__)

INITIAL_MAXSPIKESPER_DT = 1

[docs]class SpikeQueue(object):
 '''
 Data structure saving the spikes and taking care of delays.

 Parameters

 source_start : int
 The start of the source indices (for subgroups)
 source_end : int
 The end of the source indices (for subgroups)
 Notes

 Data structure

 A spike queue is implemented as a 2D array `X` that is circular in the time
 direction (rows) and dynamic in the events direction (columns). The
 row index corresponding to the current timestep is `currentime`.
 Each element contains the target synapse index.

 Offsets

 Offsets are used to solve the problem of inserting multiple synaptic events
 with the same delay. This is difficult to vectorise. If there are n synaptic
 events with the same delay, these events are given an offset between 0 and
 n-1, corresponding to their relative position in the data structure.
 '''
 def __init__(self, source_start, source_end):

 #: The start of the source indices (for subgroups)
 self._source_start = source_start

 #: The end of the source indices (for subgroups)
 self._source_end = source_end

 self.dtype = np.int32 # TODO: Ths is fixed for now
 self.X = np.zeros((1,1), dtype=self.dtype) # target synapses
 self.X_flat = self.X.reshape(1,)
 #: The current time (in time steps)
 self.currenttime = 0
 #: number of events in each time step
 self.n = np.zeros(1, dtype=int)

 #: The dt used for storing the spikes (will be set in `prepare`)
 self._dt = None

[docs] def prepare(self, delays, dt, synapse_sources):
 '''
 Prepare the data structures

 This is called every time the network is run. The size of the
 of the data structure (number of rows) is adjusted to fit the maximum
 delay in `delays`, if necessary. A flag is set if delays are
 homogeneous, in which case insertion will use a faster method
 implemented in `insert_homogeneous`.
 '''
 n_synapses = len(synapse_sources)

 if self._dt is not None:
 # store the current spikes
 spikes = self._extract_spikes()
 # adapt the spikes to the new dt if it changed
 if self._dt != dt:
 spiketimes = spikes[:, 0] * self._dt
 spikes[:, 0] = np.round(spiketimes / dt).astype(np.int)
 else:
 spikes = None

 if len(delays):
 delays = np.array(np.round(delays / dt)).astype(np.int)
 max_delays = max(delays)
 min_delays = min(delays)
 else:
 max_delays = min_delays = 0

 self._delays = delays

 # Prepare the data structure used in propagation
 synapse_sources = synapse_sources[:]
 ss = np.ravel(synapse_sources)
 # mergesort to retain relative order, keeps the output lists in sorted order
 I = np.argsort(ss, kind='mergesort')
 ss_sorted = ss[I]
 splitinds = np.searchsorted(ss_sorted, np.arange(self._source_start, self. _source_end+1))
 self._neurons_to_synapses = [I[splitinds[j]:splitinds[j+1]] for j in xrange(len(splitinds)-1)]
 max_events = max(map(len, self._neurons_to_synapses))

 n_steps = max_delays + 1

 # Adjust the maximum delay and number of events per timestep if necessary
 # Check if delays are homogeneous
 self._homogeneous = (max_delays == min_delays)

 # Resize
 if (n_steps > self.X.shape[0]) or (max_events > self.X.shape[1]): # Resize
 # Choose max_delay if is is larger than the maximum delay
 n_steps = max(n_steps, self.X.shape[0])
 max_events = max(max_events, self.X.shape[1])
 self.X = np.zeros((n_steps, max_events), dtype=self.dtype) # target synapses
 self.X_flat = self.X.reshape(n_steps*max_events,)
 self.n = np.zeros(n_steps, dtype=int) # number of events in each time step

 # Re-insert the spikes into the data structure
 if spikes is not None:
 self._store_spikes(spikes)

 self._dt = dt

 def _extract_spikes(self):
 '''
 Get all the stored spikes

 Returns

 spikes : ndarray
 A 2d array with two columns, where each row describes a spike.
 The first column gives the time (as integer time steps) and the
 second column gives the index of the target synapse.
 '''
 spikes = np.zeros((np.sum(self.n), 2), dtype=int)
 counter = 0
 for idx, n in enumerate(self.n):
 t = (idx - self.currenttime) % len(self.n)
 for target in self.X[idx, :n]:
 spikes[counter, :] = np.array([t, target])
 counter += 1
 return spikes

 def _store_spikes(self, spikes):
 '''
 Store a list of spikes at the given positions after clearing all
 spikes in the queue.

 Parameters

 spikes : ndarray
 A 2d array with two columns, where each row describes a spike.
 The first column gives the time (as integer time steps) and the
 second column gives the index of the target synapse.

 '''
 # Clear all spikes
 self.n[:] = 0
 for t, target in spikes:
 row_idx = (t + self.currenttime) % len(self.n)
 self.X[row_idx, self.n[row_idx]] = target
 self.n[row_idx] += 1

 def _full_state(self):
 return (self._dt, self._extract_spikes(), self.X.shape)

 def _restore_from_full_state(self, state):
 if state is None:
 # It is possible that _full_state was called in `SynapticPathway`,
 # before the `SpikeQueue` was created. In that case, delete all spikes in
 # the queue
 self._store_spikes(np.empty((0, 2), dtype=int))
 self._dt = None
 else:
 self._dt, spikes, X_shape = state
 # Restore the previous shape
 n_steps, max_events = X_shape
 self.X = np.zeros((n_steps, max_events), dtype=self.dtype)
 self.X_flat = self.X.reshape(n_steps*max_events,)
 self.n = np.zeros(n_steps, dtype=int)
 self._store_spikes(spikes)

 ################################ SPIKE QUEUE DATASTRUCTURE ################
[docs] def advance(self):
 '''
 Advances by one timestep
 '''
 self.n[self.currenttime]=0 # erase
 self.currenttime=(self.currenttime+1) % len(self.n)

[docs] def peek(self):
 '''
 Returns the all the synaptic events corresponding to the current time,
 as an array of synapse indexes.
 '''
 return self.X[self.currenttime,:self.n[self.currenttime]]

[docs] def push(self, sources):
 '''
 Push spikes to the queue.

 Parameters

 sources : ndarray of int
 The indices of the neurons that spiked.
 '''
 if len(sources) and len(self._delays):
 start = self._source_start
 stop = self._source_end
 if start > 0:
 start_idx = bisect.bisect_left(sources, start)
 else:
 start_idx = 0
 if stop <= sources[-1]:
 stop_idx = bisect.bisect_left(sources, stop, lo=start_idx)
 else:
 stop_idx = len(sources) + 1
 sources = sources[start_idx:stop_idx]
 if len(sources)==0:
 return
 synapse_indices = self._neurons_to_synapses
 indices = np.concatenate([synapse_indices[source - start]
 for source in sources]).astype(np.int32)
 if self._homogeneous: # homogeneous delays
 self._insert_homogeneous(self._delays[0], indices)
 else: # vectorise over synaptic events
 self._insert(self._delays[indices], indices)

 def _insert(self, delay, target):
 '''
 Vectorised insertion of spike events.

 Parameters

 delay : ndarray
 Delays in timesteps.

 target : ndarray
 Target synaptic indices.
 '''
 delay = np.array(delay, dtype=int)

 offset = calc_repeats(delay)

 # Calculate row indices in the data structure
 timesteps = (self.currenttime + delay) % len(self.n)
 # (Over)estimate the number of events to be stored, to resize the array
 # It's an overestimation for the current time, but I believe a good one
 # for future events
 m = max(self.n) + len(target)
 if (m >= self.X.shape[1]): # overflow
 self._resize(m+1)

 self.X_flat[timesteps*self.X.shape[1]+offset+self.n[timesteps]] = target
 self.n[timesteps] += offset+1 # that's a trick (to update stack size)

 def _insert_homogeneous(self, delay, target):
 '''
 Inserts events at a fixed delay.

 Parameters

 delay : int
 Delay in timesteps.

 target : ndarray
 Target synaptic indices.
 '''
 timestep = (self.currenttime + delay) % len(self.n)
 nevents = len(target)
 m = self.n[timestep]+nevents+1 # If overflow, then at least one self.n is bigger than the size
 if (m >= self.X.shape[1]):
 self._resize(m + 1) # was m previously (not enough)
 k = timestep*self.X.shape[1] + self.n[timestep]
 self.X_flat[k:k+nevents] = target
 self.n[timestep] += nevents

 def _resize(self, maxevents):
 '''
 Resizes the underlying data structure (number of columns = spikes per
 dt).

 Parameters

 maxevents : int
 The new number of columns. It will be rounded to the closest power
 of 2.
 '''
 # old and new sizes
 old_maxevents = self.X.shape[1]
 new_maxevents = int(2**np.ceil(np.log2(maxevents))) # maybe 2 is too large
 # new array
 newX = np.zeros((self.X.shape[0], new_maxevents), dtype=self.X.dtype)
 newX[:, :old_maxevents] = self.X[:, :old_maxevents] # copy old data

 self.X = newX
 self.X_flat = self.X.reshape(self.X.shape[0]*new_maxevents,)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_images/compartmental.cylinder.1.png
v (mV)

—45

—46

-47

—49

=50

=51

50

100

150
x (um)

200

250

300

_modules/brian2/synapses/synapses.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.synapses.synapses

'''
Module providing the `Synapses` class and related helper classes/functions.
'''

import collections
from collections import defaultdict
import weakref
import re
import numbers

import numpy as np

from brian2.core.base import weakproxy_with_fallback
from brian2.core.base import device_override
from brian2.core.namespace import get_local_namespace
from brian2.core.variables import (DynamicArrayVariable, Variables)
from brian2.codegen.codeobject import create_runner_codeobj
from brian2.devices.device import get_device
from brian2.equations.equations import (Equations, SingleEquation,
 DIFFERENTIAL_EQUATION, SUBEXPRESSION,
 PARAMETER, INTEGER,
 check_subexpressions)
from brian2.groups.group import Group, CodeRunner, get_dtype
from brian2.groups.neurongroup import (extract_constant_subexpressions,
 SubexpressionUpdater)
from brian2.stateupdaters.base import StateUpdateMethod
from brian2.stateupdaters.exact import independent
from brian2.units.fundamentalunits import (Unit, Quantity,
 fail_for_dimension_mismatch)
from brian2.units.allunits import second
from brian2.utils.logger import get_logger
from brian2.utils.stringtools import word_substitute, get_identifiers
from brian2.utils.arrays import calc_repeats
from brian2.core.spikesource import SpikeSource
from brian2.synapses.parse_synaptic_generator_syntax import parse_synapse_generator
from brian2.parsing.rendering import NodeRenderer

MAX_SYNAPSES = 2147483647

__all__ = ['Synapses']

logger = get_logger(__name__)

[docs]class StateUpdater(CodeRunner):
 '''
 The `CodeRunner` that updates the state variables of a `Synapses`
 at every timestep.
 '''
 def __init__(self, group, method, clock, order):
 self.method_choice = method
 CodeRunner.__init__(self, group,
 'stateupdate',
 clock=clock,
 when='groups',
 order=order,
 name=group.name + '_stateupdater',
 check_units=False,
 generate_empty_code=False)

[docs] def update_abstract_code(self, run_namespace=None, level=0):
 if len(self.group.equations) > 0:
 self.abstract_code = StateUpdateMethod.apply_stateupdater(self.group.equations,
 self.group.variables,
 self.method_choice,
 group_name=self.group.name)
 else:
 self.abstract_code = ''

[docs]class SummedVariableUpdater(CodeRunner):
 '''
 The `CodeRunner` that updates a value in the target group with the
 sum over values in the `Synapses` object.
 '''
 def __init__(self, expression, target_varname, synapses, target,
 target_size_name, index_var):
 # Handling sumped variables using the standard mechanisms is not
 # possible, we therefore also directly give the names of the arrays
 # to the template.

 code = '''
 _synaptic_var = {expression}
 '''.format(expression=expression,
 target_varname=target_varname)

 template_kwds = {'_target_var': synapses.variables[target_varname],
 '_target_size_name' : target_size_name,
 '_index_var': synapses.variables[index_var]}

 CodeRunner.__init__(self, group=synapses,
 template='summed_variable',
 code=code,
 needed_variables=[target_varname, target_size_name,
 index_var],
 # We want to update the summed variable before
 # the target group gets updated
 clock=target.clock,
 when='groups',
 order=target.order-1,
 name=synapses.name + '_summed_variable_' + target_varname,
 template_kwds=template_kwds)

[docs]class SynapticPathway(CodeRunner, Group):
 '''
 The `CodeRunner` that applies the pre/post statement(s) to the state
 variables of synapses where the pre-/postsynaptic group spiked in this
 time step.

 Parameters

 synapses : `Synapses`
 Reference to the main `Synapses` object
 prepost : {'pre', 'post'}
 Whether this object should react to pre- or postsynaptic spikes
 objname : str, optional
 The name to use for the object, will be appendend to the name of
 `synapses` to create a name in the sense of `Nameable`. If ``None``
 is provided (the default), ``prepost`` will be used.
 delay : `Quantity`, optional
 A scalar delay (same delay for all synapses) for this pathway. If
 not given, delays are expected to vary between synapses.
 '''
 def __init__(self, synapses, code, prepost, objname=None,
 delay=None, event='spike'):
 self.code = code
 self.prepost = prepost
 self.event = event
 if prepost == 'pre':
 self.source = synapses.source
 self.target = synapses.target
 self.synapse_sources = synapses.variables['_synaptic_pre']
 self.synapse_targets = synapses.variables['_synaptic_post']
 order = -1
 elif prepost == 'post':
 self.source = synapses.target
 self.target = synapses.source
 self.synapse_sources = synapses.variables['_synaptic_post']
 self.synapse_targets = synapses.variables['_synaptic_pre']
 order = 1
 else:
 raise ValueError('prepost argument has to be either "pre" or '
 '"post"')
 self.synapses = weakref.proxy(synapses)

 if objname is None:
 objname = prepost

 CodeRunner.__init__(self, synapses,
 'synapses',
 code=code,
 clock=self.source.clock,
 when='synapses',
 order=order,
 name=synapses.name + '_' + objname,
 template_kwds={'pathway': self})

 self._pushspikes_codeobj = None

 self.spikes_start = self.source.start
 self.spikes_stop = self.source.stop
 self.eventspace_name = '_{}space'.format(event)
 self.eventspace = None # will be set in before_run
 # Setting the Synapses object instead of "self" as an owner makes
 # indexing conflicts disappear (e.g. with synapses connecting subgroups)
 self.variables = Variables(synapses)
 self.variables.add_reference(self.eventspace_name, self.source)
 self.variables.add_reference('N', synapses)
 if prepost == 'pre':
 self.variables.add_reference('_n_sources', synapses, 'N_pre')
 self.variables.add_reference('_n_targets', synapses, 'N_post')
 self.variables.add_reference('_source_dt', synapses.source, 'dt')
 else:
 self.variables.add_reference('_n_sources', synapses, 'N_post')
 self.variables.add_reference('_n_targets', synapses, 'N_pre')
 self.variables.add_reference('_source_dt', synapses.target, 'dt')
 if delay is None: # variable delays
 if getattr(synapses, 'N', None) is not None:
 n_synapses = synapses.N
 else:
 n_synapses = 0
 self.variables.add_dynamic_array('delay', unit=second,
 size=n_synapses, constant=True)
 # Register the object with the `SynapticIndex` object so it gets
 # automatically resized
 synapses.register_variable(self.variables['delay'])
 else:
 if not isinstance(delay, Quantity):
 raise TypeError(('Cannot set the delay for pathway "%s": '
 'expected a quantity, got %s instead.') % (objname,
 type(delay)))
 if delay.size != 1:
 raise TypeError(('Cannot set the delay for pathway "%s": '
 'expected a scalar quantity, got a '
 'quantity with shape %s instead.') % str(delay.shape))
 fail_for_dimension_mismatch(delay, second, ('Delay has to be '
 'specified in units '
 'of seconds but got '
 '{value}'),
 value=delay)
 # We use a "dynamic" array of constant size here because it makes
 # the generated code easier, we don't need to deal with a different
 # type for scalar and variable delays
 self.variables.add_dynamic_array('delay', unit=second,
 size=1, constant=True,
 scalar=True)
 # Since this array does not grow with the number of synapses, we
 # have to resize it ourselves
 self.variables['delay'].resize(1)
 self.variables['delay'].set_value(delay)

 self._delays = self.variables['delay']

 # Re-extract the last part of the name from the full name
 self.objname = self.name[len(synapses.name) + 1:]

 #: The `SpikeQueue`
 self.queue = None

 #: The `CodeObject` initalising the `SpikeQueue` at the begin of a run
 self._initialise_queue_codeobj = None

 self.namespace = synapses.namespace

 # Allow the use of string expressions referring to synaptic (including
 # pre-/post-synaptic) variables
 # Only include non-private variables (and their indices)
 synaptic_vars = {varname for varname in synapses.variables.keys()
 if not varname.startswith('_')}
 synaptic_idcs = {varname: synapses.variables.indices[varname]
 for varname in synaptic_vars}
 synaptic_vars |= {index_name for index_name in synaptic_idcs.values()
 if index_name not in ['_idx', '0']}
 self.variables.add_references(synapses, synaptic_vars)
 self.variables.indices.update(synaptic_idcs)
 self._enable_group_attributes()

 @device_override('synaptic_pathway_update_abstract_code')
 def update_abstract_code(self, run_namespace=None, level=0):
 if self.synapses.event_driven is not None:
 event_driven_update = independent(self.synapses.event_driven,
 self.group.variables)
 # TODO: Any way to do this more elegantly?
 event_driven_update = re.sub(r'\bdt\b', '(t - lastupdate)',
 event_driven_update)

 self.abstract_code = event_driven_update + '\n'
 else:
 self.abstract_code = ''

 self.abstract_code += self.code + '\n'
 self.abstract_code += 'lastupdate = t\n'

 @device_override('synaptic_pathway_before_run')
 def before_run(self, run_namespace):
 # execute code to initalize the spike queue
 if self._initialise_queue_codeobj is None:
 self._initialise_queue_codeobj = create_runner_codeobj(self,
 '', # no code,
 'synapses_initialise_queue',
 name=self.name+'_initialise_queue',
 check_units=False,
 additional_variables=self.variables,
 run_namespace=run_namespace)
 self._initialise_queue_codeobj()
 CodeRunner.before_run(self, run_namespace)

 # we insert rather than replace because CodeRunner puts a CodeObject in updaters already
 if self._pushspikes_codeobj is None:
 # Since this now works for general events not only spikes, we have to
 # pass the information about which variable to use to the template,
 # it can not longer simply refer to "_spikespace"
 # Strictly speaking this is only true for the standalone mode at the
 # moment, since in runtime, all the template does is to call
 # SynapticPathway.push_spike
 eventspace_name = '_{}space'.format(self.event)
 template_kwds = {'eventspace_variable': self.source.variables[eventspace_name]}
 needed_variables = [eventspace_name]
 self._pushspikes_codeobj = create_runner_codeobj(self,
 '', # no code
 'synapses_push_spikes',
 name=self.name+'_push_spikes',
 check_units=False,
 additional_variables=self.variables,
 needed_variables=needed_variables,
 template_kwds=template_kwds,
 run_namespace=run_namespace)

 self._code_objects.insert(0, weakref.proxy(self._pushspikes_codeobj))

[docs] def initialise_queue(self):
 self.eventspace = self.source.variables[self.eventspace_name].get_value()
 if not self.synapses._connect_called:
 raise TypeError(("Synapses object '%s' does not do anything, since "
 "it has not created synapses with 'connect'. "
 "Set its active attribute to False if you "
 "intend to do only do this for a subsequent"
 " run.") % self.synapses.name)
 if self.queue is None:
 self.queue = get_device().spike_queue(self.source.start, self.source.stop)

 self.variables.add_object('_queue', self.queue)

 # Update the dt (might have changed between runs)
 self.queue.prepare(self._delays.get_value(), self.source.clock.dt_,
 self.synapse_sources.get_value())

 if len({self.source.clock.dt_, self.synapses.clock.dt_,
 self.target.clock.dt_}) > 1:
 logger.warn(("Note that the synaptic pathway '{pathway}' will run on the "
 "clock of the group '{source}' using a dt of {dt}. Either "
 "the Synapses object '{synapses}' or the target '{target}' "
 "(or both) are using a different dt. This might lead to "
 "unexpected results. In particular, all delays will be rounded to "
 "multiples of {dt}. If in doubt, try to ensure that "
 "'{source}', '{synapses}', and '{target}' use the "
 "same dt.").format(pathway=self.name,
 source=self.source.name,
 target=self.target.name,
 dt=self.source.clock.dt,
 synapses=self.synapses.name),
 'synapses_dt_mismatch', once=True)

 def _full_state(self):
 state = super(SynapticPathway, self)._full_state()
 if self.queue is not None:
 state['_spikequeue'] = self.queue._full_state()
 else:
 state['_spikequeue'] = None
 return state

 def _restore_from_full_state(self, state):
 queue_state = state.pop('_spikequeue', None)
 super(SynapticPathway, self)._restore_from_full_state(state)
 if self.queue is None:
 self.queue = get_device().spike_queue(self.source.start, self.source.stop)
 self.queue._restore_from_full_state(queue_state)

[docs] def push_spikes(self):
 # Push new events (e.g. spikes) into the queue
 events = self.eventspace[:self.eventspace[len(self.eventspace)-1]]

 if len(events):
 self.queue.push(events)

[docs]def slice_to_test(x):
 '''
 Returns a testing function corresponding to whether an index is in slice x.
 x can also be an int.
 '''
 try:
 x = int(x)
 return lambda y: (y == x)
 except TypeError:
 pass

 if isinstance(x, slice):
 if isinstance(x, slice) and x == slice(None):
 # No need for testing
 return lambda y: np.repeat(True, len(y))
 start, stop, step = x.start, x.stop, x.step

 if start is None:
 # No need to test for >= start
 if step is None:
 # Only have a stop value
 return lambda y: (y < stop)
 else:
 # Stop and step
 return lambda y: (y < stop) & ((y % step) == 0)
 else:
 # We need to test for >= start
 if step is None:
 if stop is None:
 # Only a start value
 return lambda y: (y >= start)
 else:
 # Start and stop
 return lambda y: (y >= start) & (y < stop)
 else:
 if stop is None:
 # Start and step value
 return lambda y: (y >= start) & ((y-start)%step == 0)
 else:
 # Start, step and stop
 return lambda y: (y >= start) & ((y-start)%step == 0) & (y < stop)
 else:
 raise TypeError('Expected int or slice, got {} instead'.format(type(x)))

[docs]def find_synapses(index, synaptic_neuron):
 try:
 index = int(index)
 except TypeError:
 pass

 if isinstance(index, (int, slice)):
 test = slice_to_test(index)
 found = test(synaptic_neuron)
 synapses = np.flatnonzero(found)
 else:
 synapses = []
 for neuron in index:
 targets = np.flatnonzero(synaptic_neuron == neuron)
 synapses.extend(targets)

 return synapses

[docs]class SynapticSubgroup(object):
 '''
 A simple subgroup of `Synapses` that can be used for indexing.

 Parameters

 indices : `ndarray` of int
 The synaptic indices represented by this subgroup.
 synaptic_pre : `DynamicArrayVariable`
 References to all pre-synaptic indices. Only used to throw an error
 when new synapses where added after creating this object.
 '''
 def __init__(self, synapses, indices):
 self.synapses = weakproxy_with_fallback(synapses)
 self._stored_indices = indices
 self._synaptic_pre = synapses.variables['_synaptic_pre']
 self._source_N = self._synaptic_pre.size # total number of synapses

 def _indices(self, index_var='_idx'):
 if index_var != '_idx':
 raise AssertionError('Did not expect index %s here.' % index_var)
 if len(self._synaptic_pre.get_value()) != self._source_N:
 raise RuntimeError(('Synapses have been added/removed since this '
 'synaptic subgroup has been created'))
 return self._stored_indices

 def __repr__(self):
 return '<%s, storing %d indices of %s>' % (self.__class__.__name__,
 len(self._stored_indices),
 self.synapses.name)

[docs]class SynapticIndexing(object):

 def __init__(self, synapses):
 self.synapses = weakref.proxy(synapses)
 self.source = weakproxy_with_fallback(self.synapses.source)
 self.target = weakproxy_with_fallback(self.synapses.target)
 self.synaptic_pre = synapses.variables['_synaptic_pre']
 self.synaptic_post = synapses.variables['_synaptic_post']
 if synapses.multisynaptic_index is not None:
 self.synapse_number = synapses.variables[synapses.multisynaptic_index]
 else:
 self.synapse_number = None

[docs] def __call__(self, index=None, index_var='_idx'):
 '''
 Returns synaptic indices for `index`, which can be a tuple of indices
 (including arrays and slices), a single index or a string.

 '''
 if index is None or (isinstance(index, basestring) and index == 'True'):
 index = slice(None)

 if (not isinstance(index, (tuple, basestring)) and
 (isinstance(index, (int, np.ndarray, slice,
 collections.Sequence))
 or hasattr(index, '_indices'))):
 if hasattr(index, '_indices'):
 final_indices = index._indices(index_var=index_var).astype(np.int32)
 elif isinstance(index, slice):
 start, stop, step = index.indices(len(self.synaptic_pre.get_value()))
 final_indices = np.arange(start, stop, step, dtype=np.int32)
 else:
 final_indices = np.asarray(index)
 elif isinstance(index, tuple):
 if len(index) == 2: # two indices (pre- and postsynaptic cell)
 index = (index[0], index[1], slice(None))
 elif len(index) > 3:
 raise IndexError('Need 1, 2 or 3 indices, got %d.' % len(index))

 I, J, K = index
 # Convert to absolute indices (e.g. for subgroups)
 # Allow the indexing to fail, we'll later return an empty array in
 # that case
 try:
 if hasattr(I, '_indices'): # will return absolute indices already
 I = I._indices()
 else:
 I = self.source._indices(I)
 pre_synapses = find_synapses(I, self.synaptic_pre.get_value())
 except IndexError:
 pre_synapses = np.array([], dtype=np.int32)
 try:
 if hasattr(J, '_indices'):
 J = J._indices()
 else:
 J = self.target._indices(J)
 post_synapses = find_synapses(J, self.synaptic_post.get_value())
 except IndexError:
 post_synapses = np.array([], dtype=np.int32)

 matching_synapses = np.intersect1d(pre_synapses, post_synapses,
 assume_unique=True)

 if isinstance(K, slice) and K == slice(None):
 final_indices = matching_synapses
 else:
 if self.synapse_number is None:
 raise IndexError('To index by the third dimension you need '
 'to switch on the calculation of the '
 '"multisynaptic_index" when you create '
 'the Synapses object.')
 if isinstance(K, (int, slice)):
 test_k = slice_to_test(K)
 else:
 raise NotImplementedError(('Indexing synapses with arrays not'
 'implemented yet'))

 # We want to access the raw arrays here, not go through the Variable
 pre_neurons = self.synaptic_pre.get_value()[matching_synapses]
 post_neurons = self.synaptic_post.get_value()[matching_synapses]
 synapse_numbers = self.synapse_number.get_value()[matching_synapses]
 final_indices = np.intersect1d(matching_synapses,
 np.flatnonzero(test_k(synapse_numbers)),
 assume_unique=True)
 else:
 raise IndexError('Unsupported index type {itype}'.format(itype=type(index)))

 if index_var not in ('_idx', '0'):
 return index_var.get_value()[final_indices.astype(np.int32)]
 else:
 return final_indices.astype(np.int32)

[docs]class Synapses(Group):
 '''
 Class representing synaptic connections.

 Creating a new `Synapses` object does by default not create any synapses,
 you have to call the `Synapses.connect` method for that.

 Parameters

 source : `SpikeSource`
 The source of spikes, e.g. a `NeuronGroup`.
 target : `Group`, optional
 The target of the spikes, typically a `NeuronGroup`. If none is given,
 the same as `source`
 model : `str`, `Equations`, optional
 The model equations for the synapses.
 on_pre : str, dict, optional
 The code that will be executed after every pre-synaptic spike. Can be
 either a single (possibly multi-line) string, or a dictionary mapping
 pathway names to code strings. In the first case, the pathway will be
 called ``pre`` and made available as an attribute of the same name.
 In the latter case, the given names will be used as the
 pathway/attribute names. Each pathway has its own code and its own
 delays.
 pre : str, dict, optional
 Deprecated. Use ``on_pre`` instead.
 on_post : str, dict, optional
 The code that will be executed after every post-synaptic spike. Same
 conventions as for `on_pre``, the default name for the pathway is
 ``post``.
 post : str, dict, optional
 Deprecated. Use ``on_post`` instead.
 delay : `Quantity`, dict, optional
 The delay for the "pre" pathway (same for all synapses) or a dictionary
 mapping pathway names to delays. If a delay is specified in this way
 for a pathway, it is stored as a single scalar value. It can still
 be changed afterwards, but only to a single scalar value. If you want
 to have delays that vary across synapses, do not use the keyword
 argument, but instead set the delays via the attribute of the pathway,
 e.g. ``S.pre.delay = ...`` (or ``S.delay = ...`` as an abbreviation),
 ``S.post.delay = ...``, etc.
 on_event : str or dict, optional
 Define the events which trigger the pre and post pathways. By default,
 both pathways are triggered by the ``'spike'`` event, i.e. the event
 that is triggered by the ``threshold`` condition in the connected
 groups.
 multisynaptic_index : str, optional
 The name of a variable (which will be automatically created) that stores
 the "synapse number". This number enumerates all synapses between the
 same source and target so that they can be distinguished. For models
 where each source-target pair has only a single connection, this number
 only wastes memory (it would always default to 0), it is therefore not
 stored by default. Defaults to ``None`` (no variable).
 namespace : dict, optional
 A dictionary mapping identifier names to objects. If not given, the
 namespace will be filled in at the time of the call of `Network.run`,
 with either the values from the ``network`` argument of the
 `Network.run` method or from the local context, if no such argument is
 given.
 dtype : `dtype`, dict, optional
 The `numpy.dtype` that will be used to store the values, or a
 dictionary specifying the type for variable names. If a value is not
 provided for a variable (or no value is provided at all), the preference
 setting `core.default_float_dtype` is used.
 codeobj_class : class, optional
 The `CodeObject` class to use to run code.
 dt : `Quantity`, optional
 The time step to be used for the update of the state variables.
 Cannot be combined with the `clock` argument.
 clock : `Clock`, optional
 The update clock to be used. If neither a clock, nor the `dt` argument
 is specified, the `defaultclock` will be used.
 order : int, optional
 The priority of of this group for operations occurring at the same time
 step and in the same scheduling slot. Defaults to 0.
 method : str, `StateUpdateMethod`, optional
 The numerical integration method to use. If none is given, an
 appropriate one is automatically determined.
 name : str, optional
 The name for this object. If none is given, a unique name of the form
 ``synapses``, ``synapses_1``, etc. will be automatically chosen.
 '''
 add_to_magic_network = True

 def __init__(self, source, target=None, model=None, on_pre=None,
 pre=None, on_post=None, post=None,
 connect=None, delay=None, on_event='spike',
 multisynaptic_index=None,
 namespace=None, dtype=None,
 codeobj_class=None,
 dt=None, clock=None, order=0,
 method=('linear', 'euler', 'heun'),
 name='synapses*'):
 if connect is not None:
 raise TypeError('The connect keyword argument is no longer '
 'supported, call the connect method instead.')

 if pre is not None:
 if on_pre is not None:
 raise TypeError("Cannot specify both 'pre' and 'on_pre'. The "
 "'pre' keyword is deprecated, use the 'on_pre' "
 "keyword instead.")
 logger.warn("The 'pre' keyword is deprecated, use 'on_pre' "
 "instead.", 'deprecated_pre', once=True)
 on_pre = pre

 if post is not None:
 if on_post is not None:
 raise TypeError("Cannot specify both 'post' and 'on_post'. The "
 "'post' keyword is deprecated, use the "
 "'on_post' keyword instead.")
 logger.warn("The 'post' keyword is deprecated, use 'on_post' "
 "instead.", 'deprecated_post', once=True)
 on_post = post

 Group.__init__(self, dt=dt, clock=clock, when='start', order=order,
 name=name)

 #: remember whether connect was called to raise an error if an
 #: assignment to a synaptic variable is attempted without a preceding
 #: connect.
 self._connect_called = False
 self.codeobj_class = codeobj_class

 self.source = source
 self.add_dependency(source)
 if target is None:
 self.target = self.source
 else:
 self.target = target
 self.add_dependency(target)

 ##### Prepare and validate equations
 if model is None:
 model = ''

 if isinstance(model, basestring):
 model = Equations(model)
 if not isinstance(model, Equations):
 raise TypeError(('model has to be a string or an Equations '
 'object, is "%s" instead.') % type(model))

 # Check flags
 model.check_flags({DIFFERENTIAL_EQUATION: ['event-driven', 'clock-driven'],
 SUBEXPRESSION: ['summed', 'shared',
 'constant over dt'],
 PARAMETER: ['constant', 'shared']},
 incompatible_flags=[('event-driven', 'clock-driven'),
 # 'summed' cannot be combined with
 # any other flag
 ('summed', 'shared',
 'constant over dt')])

 # Add the lastupdate variable, needed for event-driven updates
 if 'lastupdate' in model._equations:
 raise SyntaxError('lastupdate is a reserved name.')
 model._equations['lastupdate'] = SingleEquation(PARAMETER,
 'lastupdate',
 second)
 # Add the "multisynaptic index", if desired
 self.multisynaptic_index = multisynaptic_index
 if multisynaptic_index is not None:
 if not isinstance(multisynaptic_index, basestring):
 raise TypeError('multisynaptic_index argument has to be a string')
 model._equations[multisynaptic_index] = SingleEquation(PARAMETER,
 multisynaptic_index,
 unit=Unit(1),
 var_type=INTEGER)

 # Separate subexpressions depending whether they are considered to be
 # constant over a time step or not
 model, constant_over_dt = extract_constant_subexpressions(model)

 self._create_variables(model, user_dtype=dtype)

 # Separate the equations into event-driven equations,
 # continuously updated equations and summed variable updates
 event_driven = []
 continuous = []
 summed_updates = []
 for single_equation in model.itervalues():
 if 'event-driven' in single_equation.flags:
 event_driven.append(single_equation)
 elif 'summed' in single_equation.flags:
 summed_updates.append(single_equation)
 else:
 if (single_equation.type == DIFFERENTIAL_EQUATION and
 'clock-driven' not in single_equation.flags):
 logger.info(('The synaptic equation for the variable {var} '
 'does not specify whether it should be '
 'integrated at every timestep ("clock-driven") '
 'or only at spiking events ("event-driven"). '
 'It will be integrated at every timestep '
 'which can slow down your simulation '
 'unnecessarily if you only need the values of '
 'this variable whenever a spike occurs. '
 'Specify the equation as clock-driven '
 'explicitly to avoid this '
 'warning.').format(var=single_equation.varname),
 'clock_driven',
 once=True)
 continuous.append(single_equation)

 if len(event_driven):
 self.event_driven = Equations(event_driven)
 else:
 self.event_driven = None

 self.equations = Equations(continuous)

 if namespace is None:
 namespace = {}
 #: The group-specific namespace
 self.namespace = namespace

 #: Set of `Variable` objects that should be resized when the
 #: number of synapses changes
 self._registered_variables = set()

 for varname, var in self.variables.iteritems():
 if (isinstance(var, DynamicArrayVariable) and
 self.variables.indices[varname] == '_idx'):
 # Register the array with the `SynapticItemMapping` object so
 # it gets automatically resized
 self.register_variable(var)

 if delay is None:
 delay = {}

 if isinstance(delay, Quantity):
 delay = {'pre': delay}
 elif not isinstance(delay, collections.Mapping):
 raise TypeError('Delay argument has to be a quantity or a '
 'dictionary, is type %s instead.' % type(delay))

 #: List of names of all updaters, e.g. ['pre', 'post']
 self._synaptic_updaters = []
 #: List of all `SynapticPathway` objects
 self._pathways = []

 if isinstance(on_event, basestring):
 events_dict = collections.defaultdict(lambda: on_event)
 else:
 events_dict = collections.defaultdict(lambda: 'spike')
 events_dict.update(on_event)

 #: "Events" for all the pathways
 self.events = events_dict
 for prepost, argument in zip(('pre', 'post'), (on_pre, on_post)):
 if not argument:
 continue
 if isinstance(argument, basestring):
 pathway_delay = delay.get(prepost, None)
 self._add_updater(argument, prepost, delay=pathway_delay,
 event=self.events[prepost])
 elif isinstance(argument, collections.Mapping):
 for key, value in argument.iteritems():
 if not isinstance(key, basestring):
 err_msg = ('Keys for the "on_{}" argument'
 'have to be strings, got '
 '{} instead.').format(prepost, type(key))
 raise TypeError(err_msg)
 pathway_delay = delay.get(key, None)
 self._add_updater(value, prepost, objname=key,
 delay=pathway_delay, event=self.events[key])

 # Check whether any delays were specified for pathways that don't exist
 for pathway in delay:
 if not pathway in self._synaptic_updaters:
 raise ValueError(('Cannot set the delay for pathway '
 '"%s": unknown pathway.') % pathway)

 # If we have a pathway called "pre" (the most common use case), provide
 # direct access to its delay via a delay attribute (instead of having
 # to use pre.delay)
 if 'pre' in self._synaptic_updaters:
 self.variables.add_reference('delay', self.pre)

 #: Performs numerical integration step
 self.state_updater = None

 # We only need a state update if we have differential equations
 if len(self.equations.diff_eq_names):
 self.state_updater = StateUpdater(self, method, clock=self.clock,
 order=order)
 self.contained_objects.append(self.state_updater)

 #: Update the "constant over a time step" subexpressions
 self.subexpression_updater = None
 if len(constant_over_dt) > 0:
 self.subexpression_updater = SubexpressionUpdater(self,
 constant_over_dt)
 self.contained_objects.append(self.subexpression_updater)

 #: "Summed variable" mechanism -- sum over all synapses of a
 #: pre-/postsynaptic target
 self.summed_updaters = {}
 # We want to raise an error if the same variable is updated twice
 # using this mechanism. This could happen if the Synapses object
 # connected a NeuronGroup to itself since then all variables are
 # accessible as var_pre and var_post.
 summed_targets = set()
 for single_equation in summed_updates:
 varname = single_equation.varname
 if not (varname.endswith('_pre') or varname.endswith('_post')):
 raise ValueError(('The summed variable "%s" does not end '
 'in "_pre" or "_post".') % varname)
 if not varname in self.variables:
 raise ValueError(('The summed variable "%s" does not refer'
 'do any known variable in the '
 'target group.') % varname)
 if varname.endswith('_pre'):
 summed_target = self.source
 summed_target_size_name = 'N_pre'
 orig_varname = varname[:-4]
 summed_var_index = '_synaptic_pre'
 else:
 summed_target = self.target
 summed_target_size_name = 'N_post'
 orig_varname = varname[:-5]
 summed_var_index = '_synaptic_post'

 target_eq = getattr(summed_target, 'equations', {}).get(orig_varname, None)
 if target_eq is None or target_eq.type != PARAMETER:
 raise ValueError(('The summed variable "%s" needs a '
 'corresponding parameter "%s" in the '
 'target group.') % (varname,
 orig_varname))

 fail_for_dimension_mismatch(self.variables['_summed_'+varname].unit,
 self.variables[varname].unit,
 ('Summed variables need to have '
 'the same units in Synapses '
 'and the target group'))
 if self.variables[varname] in summed_targets:
 raise ValueError(('The target variable "%s" is already '
 'updated by another summed '
 'variable') % orig_varname)
 summed_targets.add(self.variables[varname])
 updater = SummedVariableUpdater(single_equation.expr,
 varname, self, summed_target,
 summed_target_size_name,
 summed_var_index)
 self.summed_updaters[varname] = updater
 self.contained_objects.append(updater)

 # Support 2d indexing
 self._indices = SynapticIndexing(self)

 # Activate name attribute access
 self._enable_group_attributes()

 def __getitem__(self, item):
 indices = self.indices[item]
 return SynapticSubgroup(self, indices)

 def _add_updater(self, code, prepost, objname=None, delay=None,
 event='spike'):
 '''
 Add a new target updater. Users should call `add_pre` or `add_post`
 instead.

 Parameters

 code : str
 The abstract code that should be executed on pre-/postsynaptic
 spikes.
 prepost : {'pre', 'post'}
 Whether the code is triggered by presynaptic or postsynaptic spikes
 objname : str, optional
 A name for the object, see `SynapticPathway` for more details.
 delay : `Quantity`, optional
 A scalar delay (same delay for all synapses) for this pathway. If
 not given, delays are expected to vary between synapses.

 Returns

 objname : str
 The final name for the object. Equals `objname` if it was explicitly
 given (and did not end in a wildcard character).

 '''
 if prepost == 'pre':
 spike_group, group_name = self.source, 'Source'
 elif prepost == 'post':
 spike_group, group_name = self.target, 'Target'
 else:
 raise AssertionError(('"prepost" argument has to be "pre" or '
 '"post", is "%s".') % prepost)
 if event not in spike_group.events:
 raise ValueError(("%s group does not define an event "
 "'%s'.") % (group_name, event))

 if not isinstance(spike_group, SpikeSource) or not hasattr(spike_group, 'clock'):
 raise TypeError(('%s has to be a SpikeSource with spikes and'
 ' clock attribute. Is type %r instead')
 % (group_name, type(spike_group)))

 updater = SynapticPathway(self, code, prepost, objname,
 delay=delay, event=event)
 objname = updater.objname
 if hasattr(self, objname):
 raise ValueError(('Cannot add updater with name "{name}", synapses '
 'object already has an attribute with this '
 'name.').format(name=objname))

 setattr(self, objname, updater)
 self._synaptic_updaters.append(objname)
 self._pathways.append(updater)
 self.contained_objects.append(updater)
 return objname

 def _create_variables(self, equations, user_dtype=None):
 '''
 Create the variables dictionary for this `Synapses`, containing
 entries for the equation variables and some standard entries.
 '''
 self.variables = Variables(self)

 # Standard variables always present
 self.variables.add_dynamic_array('_synaptic_pre', size=0, unit=Unit(1),
 dtype=np.int32)
 self.variables.add_dynamic_array('_synaptic_post', size=0, unit=Unit(1),
 dtype=np.int32)
 self.variables.add_reference('i', self.source, 'i',
 index='_presynaptic_idx')
 self.variables.add_reference('j', self.target, 'i',
 index='_postsynaptic_idx')
 self.variables.create_clock_variables(self._clock,
 prefix='_clock_')
 if '_offset' in self.target.variables:
 self.variables.add_reference('_target_offset', self.target,
 '_offset')
 else:
 self.variables.add_constant('_target_offset', unit=Unit(1), value=0)
 if '_offset' in self.source.variables:
 self.variables.add_reference('_source_offset', self.source,
 '_offset')
 else:
 self.variables.add_constant('_source_offset', unit=Unit(1), value=0)
 # To cope with connections to/from other synapses, N_incoming/N_outgoing
 # will be resized when synapses are created
 self.variables.add_dynamic_array('N_incoming', size=0,
 unit=Unit(1), dtype=np.int32,
 constant=True, read_only=True,
 index='_postsynaptic_idx')
 self.variables.add_dynamic_array('N_outgoing', size=0,
 unit=Unit(1), dtype=np.int32,
 constant=True, read_only=True,
 index='_presynaptic_idx')

 # We have to make a distinction here between the indices
 # and the arrays (even though they refer to the same object)
 # the synaptic propagation template would otherwise overwrite
 # synaptic_post in its namespace with the value of the
 # postsynaptic index, leading to errors for the next
 # propagation.
 self.variables.add_reference('_presynaptic_idx',
 self,
 '_synaptic_pre')
 self.variables.add_reference('_postsynaptic_idx',
 self,
 '_synaptic_post')

 # Add the standard variables
 self.variables.add_array('N', unit=Unit(1), dtype=np.int32,
 size=1, scalar=True, constant=True,
 read_only=True)

 for eq in equations.itervalues():
 dtype = get_dtype(eq, user_dtype)
 if eq.type in (DIFFERENTIAL_EQUATION, PARAMETER):
 constant = 'constant' in eq.flags
 shared = 'shared' in eq.flags
 if shared:
 self.variables.add_array(eq.varname, size=1,
 unit=eq.unit,
 dtype=dtype,
 constant=constant,
 scalar=True,
 index='0')
 else:
 self.variables.add_dynamic_array(eq.varname, size=0,
 unit=eq.unit,
 dtype=dtype,
 constant=constant)
 elif eq.type == SUBEXPRESSION:
 if 'summed' in eq.flags:
 # Give a special name to the subexpression for summed
 # variables to avoid confusion with the pre/postsynaptic
 # target variable
 varname = '_summed_'+eq.varname
 else:
 varname = eq.varname
 self.variables.add_subexpression(varname, unit=eq.unit,
 expr=str(eq.expr),
 scalar='shared' in eq.flags,
 dtype=dtype)
 else:
 raise AssertionError('Unknown type of equation: ' + eq.eq_type)

 # Stochastic variables
 for xi in equations.stochastic_variables:
 self.variables.add_auxiliary_variable(xi, unit=second**-0.5)

 # Add all the pre and post variables with _pre and _post suffixes
 for name in getattr(self.source, 'variables', {}).iterkeys():
 # Raise an error if a variable name is also used for a synaptic
 # variable (we ignore 'lastupdate' to allow connections from another
 # Synapses object)
 if name in equations.names and name != 'lastupdate':
 error_msg = ('The pre-synaptic variable {name} has the same '
 'name as a synaptic variable, rename the synaptic '
 'variable ').format(name=name)
 if name+'_syn' not in self.variables:
 error_msg += ("(for example to '{name}_syn') ".format(name=name))
 error_msg += 'to avoid confusion'
 raise ValueError(error_msg)
 if name.startswith('_'):
 continue # Do not add internal variables
 var = self.source.variables[name]
 index = '0' if var.scalar else '_presynaptic_idx'
 try:
 self.variables.add_reference(name + '_pre', self.source, name,
 index=index)
 except TypeError:
 logger.diagnostic(('Cannot include a reference to {var} in '
 '{synapses}, {var} uses a non-standard '
 'indexing in the pre-synaptic group '
 '{source}.').format(var=name,
 synapses=self.name,
 source=self.source.name))
 for name in getattr(self.target, 'variables', {}).iterkeys():
 # Raise an error if a variable name is also used for a synaptic
 # variable (we ignore 'lastupdate' to allow connections to another
 # Synapses object)
 if name in equations.names and name != 'lastupdate':
 error_msg = ("The post-synaptic variable '{name}' has the same "
 "name as a synaptic variable, rename the synaptic "
 "variable ").format(name=name)
 if name+'_syn' not in self.variables:
 error_msg += ("(for example to '{name}_syn') ".format(name=name))
 error_msg += 'to avoid confusion'
 raise ValueError(error_msg)
 if name.startswith('_'):
 continue # Do not add internal variables
 var = self.target.variables[name]
 index = '0' if var.scalar else '_postsynaptic_idx'
 try:
 self.variables.add_reference(name + '_post', self.target, name,
 index=index)
 # Also add all the post variables without a suffix, but only if
 # it does not have a post or pre suffix in the target group
 # (which could happen when connecting to synapses)
 if not name.endswith('_post') or name.endswith('pre'):
 self.variables.add_reference(name, self.target, name,
 index=index)
 except TypeError:
 logger.diagnostic(('Cannot include a reference to {var} in '
 '{synapses}, {var} uses a non-standard '
 'indexing in the post-synaptic group '
 '{target}.').format(var=name,
 synapses=self.name,
 target=self.target.name))

 # Check scalar subexpressions
 for eq in equations.itervalues():
 if eq.type == SUBEXPRESSION and 'shared' in eq.flags:
 var = self.variables[eq.varname]
 for identifier in var.identifiers:
 if identifier in self.variables:
 if not self.variables[identifier].scalar:
 raise SyntaxError(('Shared subexpression %s refers '
 'to non-shared variable %s.')
 % (eq.varname, identifier))

[docs] def before_run(self, run_namespace):
 # Check that subexpressions that refer to stateful functions are labeled
 # as "constant over dt"
 check_subexpressions(self, self.equations, run_namespace)

 @device_override('synapses_connect')
 def connect(self, condition=None, i=None, j=None, p=1., n=1,
 skip_if_invalid=False,
 namespace=None, level=0):
 '''
 Add synapses.

 See :doc:`/user/synapses` for details.

 Parameters

 condition : str, bool, optional
 A boolean or string expression that evaluates to a boolean.
 The expression can depend on indices ``i`` and ``j`` and on
 pre- and post-synaptic variables. Can be combined with
 arguments ``n``, and ``p`` but not ``i`` or ``j``.
 i : int, ndarray of int, optional
 The presynaptic neuron indices (in the form of an index or an array
 of indices). Must be combined with ``j`` argument.
 j : int, ndarray of int, str, optional
 The postsynaptic neuron indices. It can be an index or array of
 indices if combined with the ``i`` argument, or it can be a string
 generator expression.
 p : float, str, optional
 The probability to create ``n`` synapses wherever the ``condition``
 evaluates to true. Cannot be used with generator syntax for ``j``.
 n : int, str, optional
 The number of synapses to create per pre/post connection pair.
 Defaults to 1.
 skip_if_invalid : bool, optional
 If set to True, rather than raising an error if you try to
 create an invalid/out of range pair (i, j) it will just
 quietly skip those synapses.
 namespace : dict-like, optional
 A namespace that will be used in addition to the group-specific
 namespaces (if defined). If not specified, the locals
 and globals around the run function will be used.
 level : int, optional
 How deep to go up the stack frame to look for the locals/global
 (see ``namespace`` argument).

 Examples

 >>> from brian2 import *
 >>> import numpy as np
 >>> G = NeuronGroup(10, 'dv/dt = -v / tau : 1', threshold='v>1', reset='v=0')
 >>> S = Synapses(G, G, 'w:1', on_pre='v+=w')
 >>> S.connect(condition='i != j') # all-to-all but no self-connections
 >>> S.connect(i=0, j=0) # connect neuron 0 to itself
 >>> S.connect(i=np.array([1, 2]), j=np.array([2, 1])) # connect 1->2 and 2->1
 >>> S.connect() # connect all-to-all
 >>> S.connect(condition='i != j', p=0.1) # Connect neurons with 10% probability, exclude self-connections
 >>> S.connect(j='i', n=2) # Connect all neurons to themselves with 2 synapses
 >>> S.connect(j='k for k in range(i+1)') # Connect neuron i to all j with 0<=j<=i
 >>> S.connect(j='i+(-1)**k for k in range(2) if i>0 and i<N_pre-1') # connect neuron i to its neighbours if it has both neighbours
 >>> S.connect(j='k for k in sample(N_post, p=i*1.0/(N_pre-1))') # neuron i connects to j with probability i/(N-1)
 '''
 # check types
 if condition is not None and not isinstance(condition, (bool,
 basestring)):
 raise TypeError("condition argument must be bool or string. If you "
 "want to connect based on indices, use "
 "connect(i=..., j=...).")
 if i is not None and (not (isinstance(i, (numbers.Integral,
 np.ndarray,
 collections.Sequence)) or
 hasattr(i, '_indices')) or
 isinstance(i, basestring)):
 raise TypeError("i argument must be int or array")
 if j is not None and not (isinstance(j, (numbers.Integral,
 np.ndarray,
 collections.Sequence)) or
 hasattr(j, '_indices')):
 raise TypeError("j argument must be int, array or string")
 # TODO: eliminate these restrictions
 if not isinstance(p, (int, float, basestring)):
 raise TypeError("p must be float or string")
 if not isinstance(n, (int, basestring)):
 raise TypeError("n must be int or string")
 if isinstance(condition, basestring) and re.search(r'\bfor\b',
 condition):
 raise ValueError("Generator expression given for condition, write "
 "connect(j='{condition}'...) instead of "
 "connect('{condition}'...).".format(condition=condition))
 # TODO: check if string expressions have the right types and return
 # useful error messages

 self._connect_called = True

 # which connection case are we in?
 if condition is None and i is None and j is None:
 condition = True
 try:
 if condition is not None:
 if i is not None or j is not None:
 raise ValueError("Cannot combine condition with i or j "
 "arguments")
 # convert to generator syntax
 if condition is False:
 return
 if condition is True:
 condition = 'True'
 condition = word_substitute(condition, {'j': '_k'})
 if not isinstance(p, basestring) and p == 1:
 j = ('_k for _k in range(N_post) '
 'if {expr}').format(expr=condition)
 else:
 j = None
 if isinstance(p, basestring):
 p_dep = self._expression_index_dependence(p)
 if '_postsynaptic_idx' in p_dep:
 j = ('_k for _k in range(N_post) '
 'if ({expr}) and '
 'rand()<{p}').format(expr=condition, p=p)
 if j is None:
 j = ('_k for _k in sample(N_post, p={p}) '
 'if {expr}').format(expr=condition, p=p)
 # will now call standard generator syntax (see below)
 elif i is not None:
 if j is None:
 raise ValueError("i argument must be combined with j "
 "argument")
 if skip_if_invalid:
 raise ValueError("Can only use skip_if_invalid with string "
 "syntax")
 if hasattr(i, '_indices'):
 i = i._indices()
 i = np.asarray(i)
 if not np.issubdtype(i.dtype, np.int):
 raise TypeError(('Presynaptic indices have to be given as '
 'integers, are type %s '
 'instead.') % i.dtype)

 if hasattr(j, '_indices'):
 j = j._indices()
 j = np.asarray(j)
 if not np.issubdtype(j.dtype, np.int):
 raise TypeError(('Presynaptic indices can only be combined '
 'with postsynaptic integer indices))'))
 if isinstance(n, basestring):
 raise TypeError(('Indices cannot be combined with a string'
 'expression for n. Either use an '
 'array/scalar for n, or a string '
 'expression for the connections'))
 i, j, n = np.broadcast_arrays(i, j, n)
 if i.ndim > 1:
 raise ValueError('Can only use 1-dimensional indices')
 self._add_synapses_from_arrays(i, j, n, p, namespace=namespace)
 return
 elif j is not None:
 if isinstance(p, basestring) or p != 1:
 raise ValueError("Generator syntax cannot be combined with "
 "p argument")
 if not re.search(r'\bfor\b', j):
 j = '{j} for _ in range(1)'.format(j=j)
 # will now call standard generator syntax (see below)
 else:
 raise ValueError("Must specify at least one of condition, i or "
 "j arguments")

 # standard generator syntax
 self._add_synapses_generator(j, n, skip_if_invalid=skip_if_invalid,
 namespace=namespace, level=level+2)
 except IndexError as e:
 raise IndexError("Tried to create synapse indices outside valid "
 "range. Original error message: " + str(e))

[docs] def check_variable_write(self, variable):
 '''
 Checks that `Synapses.connect` has been called before setting a
 synaptic variable.

 Parameters

 variable : `Variable`
 The variable that the user attempts to set.

 Raises

 TypeError
 If `Synapses.connect` has not been called yet.
 '''
 if not self._connect_called:
 raise TypeError(("Cannot write to synaptic variable '%s', you need "
 "to call connect(...) first") % variable.name)

 def _resize(self, number):
 if not isinstance(number, (numbers.Integral, np.integer)):
 raise TypeError(('Expected an integer number got {} '
 'instead').format(type(number)))
 if number < self.N:
 raise ValueError(('Cannot reduce number of synapses, '
 '{} < {}').format(number, len(self)))

 for variable in self._registered_variables:
 variable.resize(number)

 self.variables['N'].set_value(number)

 def _update_synapse_numbers(self, old_num_synapses):
 source_offset = self.variables['_source_offset'].get_value()
 target_offset = self.variables['_target_offset'].get_value()
 # This resizing is only necessary if we are connecting to/from synapses
 post_with_offset = (int(self.variables['N_post'].get_value()) +
 target_offset)
 pre_with_offset = (int(self.variables['N_pre'].get_value()) +
 source_offset)
 self.variables['N_incoming'].resize(post_with_offset)
 self.variables['N_outgoing'].resize(pre_with_offset)
 N_outgoing = self.variables['N_outgoing'].get_value()
 N_incoming = self.variables['N_incoming'].get_value()
 synaptic_pre = self.variables['_synaptic_pre'].get_value()
 synaptic_post = self.variables['_synaptic_post'].get_value()

 # Update the number of total outgoing/incoming synapses per
 # source/target neuron
 N_outgoing[:] += np.bincount(synaptic_pre[old_num_synapses:],
 minlength=len(N_outgoing))
 N_incoming[:] += np.bincount(synaptic_post[old_num_synapses:],
 minlength=len(N_incoming))

 if self.multisynaptic_index is not None:
 synapse_number_var = self.variables[self.multisynaptic_index]
 synapse_number = synapse_number_var.get_value()

 # Update the "synapse number" (number of synapses for the same
 # source-target pair)
 # We wrap pairs of source/target indices into a complex number for
 # convenience
 _source_target_pairs = synaptic_pre + synaptic_post*1j
 synapse_number[:] = calc_repeats(_source_target_pairs)

[docs] def register_variable(self, variable):
 '''
 Register a `DynamicArray` to be automatically resized when the size of
 the indices change. Called automatically when a `SynapticArrayVariable`
 specifier is created.
 '''
 if not hasattr(variable, 'resize'):
 raise TypeError(('Variable of type {} does not have a resize '
 'method, cannot register it with the synaptic '
 'indices.').format(type(variable)))
 self._registered_variables.add(variable)

[docs] def unregister_variable(self, variable):
 '''
 Unregister a `DynamicArray` from the automatic resizing mechanism.
 '''
 self._registered_variables.remove(variable)

 def _get_multisynaptic_indices(self):
 template_kwds = {'multisynaptic_index': self.multisynaptic_index}
 if self.multisynaptic_index is not None:
 needed_variables = [self.multisynaptic_index]
 else:
 needed_variables=[]
 return template_kwds, needed_variables

 def _add_synapses_from_arrays(self, sources, targets, n, p,
 namespace=None):
 template_kwds, needed_variables = self._get_multisynaptic_indices()

 variables = Variables(self)

 sources = np.atleast_1d(sources).astype(np.int32)
 targets = np.atleast_1d(targets).astype(np.int32)

 # Check whether the values in sources/targets make sense
 error_message = ('The given {source_or_target} indices contain '
 'values outside of the range [0, {max_value}] '
 'allowed for the {source_or_target} group '
 '"{group_name}"')
 for indices, source_or_target, group in [(sources, 'source', self.source),
 (targets, 'target', self.target)]:
 if np.max(indices) >= len(group) or np.min(indices) < 0:
 raise IndexError(error_message.format(source_or_target=source_or_target,
 max_value=len(group)-1,
 group_name=group.name))
 n = np.atleast_1d(n)
 p = np.atleast_1d(p)

 if not len(p) == 1 or p != 1:
 use_connections = np.random.rand(len(sources)) < p
 sources = sources[use_connections]
 targets = targets[use_connections]
 n = n[use_connections]
 sources = sources.repeat(n)
 targets = targets.repeat(n)

 variables.add_array('sources', Unit(1), len(sources), dtype=np.int32,
 values=sources)
 variables.add_array('targets', Unit(1), len(targets), dtype=np.int32,
 values=targets)
 # These definitions are important to get the types right in C++
 variables.add_auxiliary_variable('_real_sources', Unit(1),
 dtype=np.int32)
 variables.add_auxiliary_variable('_real_targets', Unit(1),
 dtype=np.int32)
 abstract_code = ''
 if '_offset' in self.source.variables:
 variables.add_reference('_source_offset', self.source, '_offset')
 abstract_code += '_real_sources = sources + _source_offset\n'
 else:
 abstract_code += '_real_sources = sources\n'
 if '_offset' in self.target.variables:
 variables.add_reference('_target_offset', self.target, '_offset')
 abstract_code += '_real_targets = targets + _target_offset\n'
 else:
 abstract_code += '_real_targets = targets'
 logger.debug("Creating synapses from group '%s' to group '%s', "
 "using pre-defined arrays)" % (self.source.name,
 self.target.name))

 codeobj = create_runner_codeobj(self,
 abstract_code,
 'synapses_create_array',
 additional_variables=variables,
 template_kwds=template_kwds,
 needed_variables=needed_variables,
 check_units=False,
 run_namespace={})
 codeobj()

 def _expression_index_dependence(self, expr, additional_indices=None):
 '''
 Returns the set of synaptic indices that expr depends on
 '''
 nr = NodeRenderer(use_vectorisation_idx=True)
 expr = nr.render_expr(expr)
 deps = set()
 if additional_indices is None:
 additional_indices = {}
 for varname in get_identifiers(expr):
 if varname in additional_indices:
 deps.add(additional_indices[varname])
 else:
 deps.add(self.variables.indices[varname])
 if '0' in deps:
 deps.remove('0')
 return deps

 def _add_synapses_generator(self, j, n, skip_if_invalid=False, namespace=None, level=0):
 template_kwds, needed_variables = self._get_multisynaptic_indices()
 parsed = parse_synapse_generator(j)
 template_kwds.update(parsed)
 template_kwds['skip_if_invalid'] = skip_if_invalid

 if (parsed['iterator_func'] == 'sample' and
 parsed['iterator_kwds']['sample_size']=='fixed'):
 raise NotImplementedError("Fixed sample size not implemented yet.")

 abstract_code = {'setup_iterator': '',
 'create_j': '',
 'create_cond': '',
 'update_post': ''}

 additional_indices = {parsed['iteration_variable']: '_iterator_idx'}

 setupiter = ''
 for k, v in parsed['iterator_kwds'].iteritems():
 if v is not None and k!='sample_size':
 deps = self._expression_index_dependence(v, additional_indices)
 if '_postsynaptic_idx' in deps or '_iterator_idx' in deps:
 raise ValueError('Expression "{}" depends on postsynaptic '
 'index or iterator'.format(v))
 setupiter += '_iter_'+k+' = '+v+'\n'

 # rand() in the if condition depends on _vectorisation_idx, but not if
 # its in the range expression (handled above)
 additional_indices['_vectorisation_idx'] = '_iterator_idx'

 postsynaptic_condition = False
 if parsed['if_expression'] is not None:
 deps = self._expression_index_dependence(parsed['if_expression'],
 additional_indices)
 if '_postsynaptic_idx' in deps or '_iterator_idx' in deps:
 postsynaptic_condition = True
 template_kwds['postsynaptic_condition'] = postsynaptic_condition

 abstract_code['setup_iterator'] += setupiter
 abstract_code['create_j'] += '_pre_idx = _raw_pre_idx \n'
 abstract_code['create_j'] += '_j = '+parsed['element']+'\n'
 if postsynaptic_condition:
 abstract_code['create_cond'] += '_post_idx = _raw_post_idx \n'
 if parsed['if_expression'] is not None:
 abstract_code['create_cond'] += ('_cond = ' +
 parsed['if_expression'] + '\n')
 abstract_code['update_post'] += '_post_idx = _raw_post_idx \n'
 abstract_code['update_post'] += '_n = ' + str(n) + '\n'

 # This overwrites 'i' and 'j' in the synapses' variables dictionary
 # This is necessary because in the context of synapse creation, i
 # and j do not correspond to the sources/targets of the existing
 # synapses but to all the possible sources/targets
 variables = Variables(None)
 # Will be set in the template
 variables.add_auxiliary_variable('_i', unit=Unit(1), dtype=np.int32)
 variables.add_auxiliary_variable('_j', unit=Unit(1), dtype=np.int32)
 variables.add_auxiliary_variable('_iter_low', unit=Unit(1),
 dtype=np.int32)
 variables.add_auxiliary_variable('_iter_high', unit=Unit(1),
 dtype=np.int32)
 variables.add_auxiliary_variable('_iter_step', unit=Unit(1),
 dtype=np.int32)
 variables.add_auxiliary_variable('_iter_p', unit=Unit(1))
 variables.add_auxiliary_variable('_iter_size', unit=Unit(1),
 dtype=np.int32)
 variables.add_auxiliary_variable(parsed['iteration_variable'],
 unit=Unit(1), dtype=np.int32)
 # Make sure that variables have the correct type in the code
 variables.add_auxiliary_variable('_pre_idx', unit=Unit(1),
 dtype=np.int32)
 variables.add_auxiliary_variable('_post_idx', unit=Unit(1),
 dtype=np.int32)
 if parsed['if_expression'] is not None:
 variables.add_auxiliary_variable('_cond', unit=Unit(1),
 dtype=np.bool)
 variables.add_auxiliary_variable('_n', unit=Unit(1),
 dtype=np.int32)

 if '_offset' in self.source.variables:
 variables.add_reference('_source_offset', self.source, '_offset')
 else:
 variables.add_constant('_source_offset', unit=Unit(1), value=0)

 if '_offset' in self.target.variables:
 variables.add_reference('_target_offset', self.target, '_offset')
 else:
 variables.add_constant('_target_offset', unit=Unit(1), value=0)

 variables.add_auxiliary_variable('_raw_pre_idx', unit=Unit(1),
 dtype=np.int32)
 variables.add_auxiliary_variable('_raw_post_idx', unit=Unit(1),
 dtype=np.int32)

 variable_indices = defaultdict(lambda: '_idx')
 for varname in self.variables:
 if self.variables.indices[varname] == '_presynaptic_idx':
 variable_indices[varname] = '_raw_pre_idx'
 elif self.variables.indices[varname] == '_postsynaptic_idx':
 variable_indices[varname] = '_raw_post_idx'

 logger.debug(("Creating synapses from group '%s' to group '%s', "
 "using generator '%s'") % (self.source.name,
 self.target.name,
 parsed['original_expression']))
 # Get the local namespace
 if namespace is None:
 namespace = get_local_namespace(level=level+1)
 codeobj = create_runner_codeobj(self,
 abstract_code,
 'synapses_create_generator',
 variable_indices=variable_indices,
 additional_variables=variables,
 template_kwds=template_kwds,
 needed_variables=needed_variables,
 check_units=False,
 run_namespace=namespace)
 codeobj()

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_images/2-intro-to-brian-synapses_image_29_0.png
-0.010

~0.005

0000

0005

0010

=

£

_modules/brian2/codegen/cpp_prefs.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.codegen.cpp_prefs

'''
Preferences related to C++ compilation

Preferences

.. document_brian_prefs:: codegen.cpp

'''
from distutils.ccompiler import get_default_compiler

from cpuinfo import cpuinfo

from brian2.core.preferences import prefs, BrianPreference
from .codeobject import sys_info

__all__ = ['get_compiler_and_args']

Try to get architecture information to get the best compiler setting for
Windows
msvc_arch_flag = ''
res = cpuinfo.get_cpu_info()
Note that this overwrites the arch_flag, i.e. only the best option will
be used
if 'sse' in res['flags']:
 msvc_arch_flag = '/arch:SSE'
if 'sse2' in res['flags']:
 msvc_arch_flag = '/arch:SSE2'
if 'avx' in res['flags']:
 msvc_arch_flag = '/arch:AVX'
if 'avx2' in res['flags']:
 msvc_arch_flag = '/arch:AVX2'

Preferences
prefs.register_preferences(
 'codegen.cpp',
 'C++ compilation preferences',
 compiler = BrianPreference(
 default='',
 docs='''
 Compiler to use (uses default if empty)

 Should be gcc or msvc.
 '''
),
 extra_compile_args=BrianPreference(
 default=None,
 validator=lambda v: True,
 docs='''
 Extra arguments to pass to compiler (if None, use either
 ``extra_compile_args_gcc`` or ``extra_compile_args_msvc``).
 '''
),
 extra_compile_args_gcc=BrianPreference(
 default=['-w', '-O3', '-ffast-math', '-fno-finite-math-only', '-march=native'],
 docs='''
 Extra compile arguments to pass to GCC compiler
 '''
),
 extra_compile_args_msvc=BrianPreference(
 default=['/Ox', '/w', msvc_arch_flag],
 docs='''
 Extra compile arguments to pass to MSVC compiler (the default
 ``/arch:`` flag is determined based on the processor architecture)
 '''
),
 extra_link_args=BrianPreference(
 default=[],
 docs='''
 Any extra platform- and compiler-specific information to use when
 linking object files together.
 '''
),
 include_dirs=BrianPreference(
 default=[],
 docs='''
 Include directories to use. Note that ``$prefix/include`` will be
 appended to the end automatically, where ``$prefix`` is Python's
 site-specific directory prefix as returned by `sys.prefix`.
 '''
),
 library_dirs=BrianPreference(
 default=[],
 docs='''
 List of directories to search for C/C++ libraries at link time.
 '''
),
 runtime_library_dirs=BrianPreference(
 default=[],
 docs='''
 List of directories to search for C/C++ libraries at run time.
 '''
),
 libraries=BrianPreference(
 default=[],
 docs='''
 List of library names (not filenames or paths) to link against.
 '''
),
 headers=BrianPreference(
 default=[],
 docs='''
 A list of strings specifying header files to use when compiling the
 code. The list might look like ["<vector>","'my_header'"]. Note that
 the header strings need to be in a form than can be pasted at the end
 of a #include statement in the C++ code.
 '''
),
 define_macros=BrianPreference(
 default=[],
 docs='''
 List of macros to define; each macro is defined using a 2-tuple,
 where 'value' is either the string to define it to or None to
 define it without a particular value (equivalent of "#define
 FOO" in source or -DFOO on Unix C compiler command line).
 '''
),
 msvc_vars_location=BrianPreference(
 default='',
 docs='''
 Location of the MSVC command line tool (or search for best by default).
 '''),
 msvc_architecture=BrianPreference(
 default='',
 docs='''
 MSVC architecture name (or use system architectue by default).

 Could take values such as x86, amd64, etc.
 '''),
)

[docs]def get_compiler_and_args():
 '''
 Returns the computed compiler and compilation flags
 '''
 compiler = prefs['codegen.cpp.compiler']
 if compiler == '':
 compiler = get_default_compiler()
 extra_compile_args = prefs['codegen.cpp.extra_compile_args']
 if extra_compile_args is None:
 if compiler in ('gcc', 'unix'):
 extra_compile_args = prefs['codegen.cpp.extra_compile_args_gcc']
 if compiler == 'msvc':
 extra_compile_args = prefs['codegen.cpp.extra_compile_args_msvc']
 return compiler, extra_compile_args

[docs]def update_for_cross_compilation(library_dirs, extra_compile_args,
 extra_link_args, logger=None):
 '''
 Update the compiler arguments to allow cross-compilation for 32bit on a
 64bit Linux system. Uses the provided ``logger`` to print an INFO message
 and modifies the provided lists in-place.

 Parameters

 library_dirs : list
 List of library directories (will be modified in-place).
 extra_compile_args : list
 List of extra compile args (will be modified in-place).
 extra_link_args : list
 List of extra link args (will be modified in-place).
 logger : `BrianLogger`, optional
 The logger to use for the INFO message. Defaults to ``None`` (no
 message).
 '''
 if (sys_info['system'] == 'Linux' and
 sys_info['architecture'][0] == '32bit' and
 sys_info['machine'] == 'x86_64'):
 # We are cross-compiling to 32bit on a 64bit platform
 if logger is not None:
 logger.info('Cross-compiling to 32bit on a 64bit platform, a set '
 'of standard compiler options will be appended for '
 'this purpose (note that you need to have a 32bit '
 'version of the standard library for this to work).',
 '64bit_to_32bit',
 once=True)
 library_dirs += ['/lib32', '/usr/lib32']
 extra_compile_args += ['-m32']
 extra_link_args += ['-m32']

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_images/reliability.1.png
25
200

X9pul UoInaN

100 150 200 250 300 350 400 450

50

Time (ms)

_modules/brian2/codegen/codeobject.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.codegen.codeobject

'''
Module providing the base `CodeObject` and related functions.
'''
import copy
import platform
import weakref

from brian2.core.names import Nameable
from brian2.equations.unitcheck import check_units_statements
from brian2.utils.logger import get_logger
from brian2.utils.stringtools import indent, code_representation

from .translation import analyse_identifiers

__all__ = ['CodeObject',
 'CodeObjectUpdater',
 'constant_or_scalar']

logger = get_logger(__name__)

#: Dictionary with basic information about the current system (OS, etc.)
sys_info = {'system': platform.system(),
 'architecture': platform.architecture(),
 'machine': platform.machine()}

[docs]def constant_or_scalar(varname, variable):
 '''
 Convenience function to generate code to access the value of a variable.
 Will return ``'varname'`` if the ``variable`` is a constant, and
 ``array_name[0]`` if it is a scalar array.
 '''
 from brian2.devices.device import get_device # avoid circular import
 if variable.array:
 return '%s[0]' % get_device().get_array_name(variable)
 else:
 return '%s' % varname

[docs]class CodeObject(Nameable):
 '''
 Executable code object.

 The ``code`` can either be a string or a
 `brian2.codegen.templates.MultiTemplate`.

 After initialisation, the code is compiled with the given namespace
 using ``code.compile(namespace)``.

 Calling ``code(key1=val1, key2=val2)`` executes the code with the given
 variables inserted into the namespace.
 '''

 #: The `CodeGenerator` class used by this `CodeObject`
 generator_class = None
 #: A short name for this type of `CodeObject`
 class_name = None

 def __init__(self, owner, code, variables, variable_indices,
 template_name, template_source, name='codeobject*'):
 Nameable.__init__(self, name=name)
 try:
 owner = weakref.proxy(owner)
 except TypeError:
 pass # if owner was already a weakproxy then this will be the error raised
 self.owner = owner
 self.code = code
 self.variables = variables
 self.variable_indices = variable_indices
 self.template_name = template_name
 self.template_source = template_source

 @classmethod
[docs] def is_available(cls):
 '''
 Whether this target for code generation is available. Should use a
 minimal example to check whether code generation works in general.
 '''
 raise NotImplementedError("CodeObject class %s is missing an "
 "'is_available' method." % (cls.__name__))

[docs] def update_namespace(self):
 '''
 Update the namespace for this timestep. Should only deal with variables
 where *the reference* changes every timestep, i.e. where the current
 reference in `namespace` is not correct.
 '''
 pass

[docs] def compile(self):
 pass

[docs] def __call__(self, **kwds):
 self.update_namespace()
 self.namespace.update(**kwds)

 return self.run()

[docs] def run(self):
 '''
 Runs the code in the namespace.

 Returns

 return_value : dict
 A dictionary with the keys corresponding to the `output_variables`
 defined during the call of `CodeGenerator.code_object`.
 '''
 raise NotImplementedError()

def _error_msg(code, name):
 '''
 Little helper function for error messages.
 '''
 error_msg = 'Error generating code for code object %s ' % name
 code_lines = [l for l in code.split('\n') if len(l.strip())]
 # If the abstract code is only one line, display it in full
 if len(code_lines) <= 1:
 error_msg += 'from this abstract code: "%s"\n' % code_lines[0]
 else:
 error_msg += ('from %d lines of abstract code, first line is: '
 '"%s"\n') % (len(code_lines), code_lines[0])
 return error_msg

[docs]def create_runner_codeobj(group, code, template_name,
 run_namespace,
 user_code=None,
 variable_indices=None,
 name=None, check_units=True,
 needed_variables=None,
 additional_variables=None,
 template_kwds=None,
 override_conditional_write=None,
 codeobj_class=None
):
 ''' Create a `CodeObject` for the execution of code in the context of a
 `Group`.

 Parameters

 group : `Group`
 The group where the code is to be run
 code : str or dict of str
 The code to be executed.
 template_name : str
 The name of the template to use for the code.
 run_namespace : dict-like
 An additional namespace that is used for variable lookup (either
 an explicitly defined namespace or one taken from the local
 context).
 user_code : str, optional
 The code that had been specified by the user before other code was
 added automatically. If not specified, will be assumed to be identical
 to ``code``.
 variable_indices : dict-like, optional
 A mapping from `Variable` objects to index names (strings). If none is
 given, uses the corresponding attribute of `group`.
 name : str, optional
 A name for this code object, will use ``group + '_codeobject*'`` if
 none is given.
 check_units : bool, optional
 Whether to check units in the statement. Defaults to ``True``.
 needed_variables: list of str, optional
 A list of variables that are neither present in the abstract code, nor
 in the ``USES_VARIABLES`` statement in the template. This is only
 rarely necessary, an example being a `StateMonitor` where the
 names of the variables are neither known to the template nor included
 in the abstract code statements.
 additional_variables : dict-like, optional
 A mapping of names to `Variable` objects, used in addition to the
 variables saved in `group`.
 template_kwds : dict, optional
 A dictionary of additional information that is passed to the template.
 override_conditional_write: list of str, optional
 A list of variable names which are used as conditions (e.g. for
 refractoriness) which should be ignored.
 codeobj_class : class, optional
 The `CodeObject` class to run code with. If not specified, defaults to
 the `group`'s ``codeobj_class`` attribute.
 '''

 if name is None:
 if group is not None:
 name = '%s_%s_codeobject*' % (group.name, template_name)
 else:
 name = '%s_codeobject*' % template_name

 if user_code is None:
 user_code = code

 if isinstance(code, str):
 code = {None: code}
 user_code = {None: user_code}

 msg = 'Creating code object (group=%s, template name=%s) for abstract code:\n' % (group.name, template_name)
 msg += indent(code_representation(code))
 logger.diagnostic(msg)
 from brian2.devices import get_device
 device = get_device()

 if override_conditional_write is None:
 override_conditional_write = set([])
 else:
 override_conditional_write = set(override_conditional_write)

 if codeobj_class is None:
 codeobj_class = device.code_object_class(group.codeobj_class)
 else:
 codeobj_class = device.code_object_class(codeobj_class)

 template = getattr(codeobj_class.templater, template_name)
 template_variables = getattr(template, 'variables', None)

 all_variables = dict(group.variables)
 if additional_variables is not None:
 all_variables.update(additional_variables)

 # Determine the identifiers that were used
 identifiers = set()
 user_identifiers = set()
 for v, u_v in zip(code.values(), user_code.values()):
 _, uk, u = analyse_identifiers(v, all_variables, recursive=True)
 identifiers |= uk | u
 _, uk, u = analyse_identifiers(u_v, all_variables, recursive=True)
 user_identifiers |= uk | u

 # Add variables that are not in the abstract code, nor specified in the
 # template but nevertheless necessary
 if needed_variables is None:
 needed_variables = []
 # Resolve all variables (variables used in the code and variables needed by
 # the template)
 variables = group.resolve_all(identifiers | set(needed_variables) | set(template_variables),
 # template variables are not known to the user:
 user_identifiers=user_identifiers,
 additional_variables=additional_variables,
 run_namespace=run_namespace)
 # We raise this error only now, because there is some non-obvious code path
 # where Jinja tries to get a Synapse's "name" attribute via syn['name'],
 # which then triggers the use of the `group_get_indices` template which does
 # not exist for standalone. Putting the check for template == None here
 # means we will first raise an error about the unknown identifier which will
 # then make Jinja try syn.name
 if template is None:
 codeobj_class_name = codeobj_class.class_name or codeobj_class.__name__
 raise AttributeError(('"%s" does not provide a code generation '
 'template "%s"') % (codeobj_class_name,
 template_name))

 conditional_write_variables = {}
 # Add all the "conditional write" variables
 for var in variables.itervalues():
 cond_write_var = getattr(var, 'conditional_write', None)
 if cond_write_var in override_conditional_write:
 continue
 if cond_write_var is not None:
 if (cond_write_var.name in variables and
 not variables[cond_write_var.name] is cond_write_var):
 logger.diagnostic(('Variable "%s" is needed for the '
 'conditional write mechanism of variable '
 '"%s". Its name is already used for %r.') % (cond_write_var.name,
 var.name,
 variables[cond_write_var.name]))
 else:
 conditional_write_variables[cond_write_var.name] = cond_write_var

 variables.update(conditional_write_variables)

 if check_units:
 for c in code.values():
 # This is the first time that the code is parsed, catch errors
 try:
 check_units_statements(c, variables)
 except (SyntaxError, ValueError) as ex:
 error_msg = _error_msg(c, name)
 raise ValueError(error_msg + str(ex))

 all_variable_indices = copy.copy(group.variables.indices)
 if additional_variables is not None:
 all_variable_indices.update(additional_variables.indices)
 if variable_indices is not None:
 all_variable_indices.update(variable_indices)

 # Make "conditional write" variables use the same index as the variable
 # that depends on them
 for varname, var in variables.iteritems():
 cond_write_var = getattr(var, 'conditional_write', None)
 if cond_write_var is not None:
 all_variable_indices[cond_write_var.name] = all_variable_indices[varname]

 # Add the indices needed by the variables
 varnames = variables.keys()
 for varname in varnames:
 var_index = all_variable_indices[varname]
 if not var_index in ('_idx', '0'):
 variables[var_index] = all_variables[var_index]

 return device.code_object(owner=group,
 name=name,
 abstract_code=code,
 variables=variables,
 template_name=template_name,
 variable_indices=all_variable_indices,
 template_kwds=template_kwds,
 codeobj_class=codeobj_class,
 override_conditional_write=override_conditional_write,
)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_images/synapses.STDP.1.png
Weight / gmax

s

B OO RO
0OSCBEOOSOS

Weight / gmax
Soooo0000
S ows Lo

200 400 600 800 1000
Synapse index

0 0.2 0.4 0.6 0.8
Weight / gmax

Y o s Sl W o T

20 40 60
Time (s)

o

_modules/brian2/codegen/statements.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.codegen.statements

'''
Module providing the `Statement` class.
'''

[docs]class Statement(object):
 '''
 A single line mathematical statement.

 The structure is ``var op expr``.

 Parameters

 var : str
 The left hand side of the statement, the value being written to.
 op : str
 The operation, can be any of the standard Python operators (including
 ``+=`` etc.) or a special operator ``:=`` which means you are defining
 a new symbol (whereas ``=`` means you are setting the value of an
 existing symbol).
 expr : str, `Expression`
 The right hand side of the statement.
 dtype : `dtype`
 The numpy dtype of the value or array `var`.
 constant : bool, optional
 Set this flag to ``True`` if the value will not change (only applies for
 ``op==':='``.
 subexpression : bool, optional
 Set this flag to ``True`` if the variable is a subexpression. In some
 languages (e.g. Python) you can use this to save a memory copy, because
 you don't need to do ``lhs[:] = rhs`` but a redefinition ``lhs = rhs``.
 scalar : bool, optional
 Set this flag to ``True`` if `var` and `expr` are scalar.

 Notes

 Will compute the following attribute:

 ``inplace``
 True or False depending if the operation is in-place or not.

 Boolean simplification notes:

 Will initially set the attribute ``used_boolean_variables`` to ``None``.
 This is set by `~brian2.codegen.optimisation.optimise_statements` when it
 is called on a sequence of statements to the list of boolean variables
 that are used in this expression. In addition, the attribute
 ``boolean_simplified_expressions`` is set to a dictionary with keys
 consisting of a tuple of pairs ``(var, value)`` where ``var`` is the
 name of the boolean variable (will be in ``used_boolean_variables``)
 and ``var`` is ``True`` or ``False``. The values of the dictionary are
 strings representing the simplified version of the expression if each
 ``var=value`` substitution is made for that key. The keys will range
 over all possible values of the set of boolean variables. The complexity
 of the original statement is set as the attribute ``complexity_std``,
 and the complexity of the simplified versions are in the dictionary
 ``complexities`` (with the same keys).

 This information can be used to generate code that replaces a complex
 expression that varies depending on the value of one or more boolean
 variables with an ``if/then`` sequence where each subexpression is
 simplified. It is optional to use this (e.g. the numpy codegen does
 not, but the weave and cython ones do).
 '''
 def __init__(self, var, op, expr, comment, dtype,
 constant=False, subexpression=False, scalar=False):
 self.var = var.strip()
 self.op = op.strip()
 self.expr = expr
 self.comment = comment
 self.dtype = dtype
 self.constant = constant
 self.subexpression = subexpression
 self.scalar = scalar
 if constant and self.op!=':=':
 raise ValueError("Should not set constant flag for operation "+self.op)
 if op.endswith('=') and op!='=' and op!=':=':
 self.inplace = True
 else:
 self.inplace = False
 self.used_boolean_variables = None
 self.boolean_simplified_expressions = None

 def __str__(self):
 s = self.var+' '+self.op+' '+str(self.expr)
 if self.constant:
 s += ' (constant)'
 if self.subexpression:
 s += ' (subexpression)'
 if self.inplace:
 s += ' (in-place)'
 if len(self.comment):
 s += ' # ' + self.comment
 return s
 __repr__ = __str__

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_images/2-intro-to-brian-synapses_image_20_0.png
0

¥apur vounau B0,

‘ W
‘...‘.... .,.‘..,.‘.
i

fife
it

..i
i
i 3

W \,:

e

Torget

Source

0

xaput uoinay

Source neuron index

_modules/brian2/codegen/templates.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.codegen.templates

'''
Handles loading templates from a directory.
'''
import re
from collections import Mapping

from jinja2 import (Environment, PackageLoader, ChoiceLoader, StrictUndefined,
 TemplateNotFound)

from brian2.utils.stringtools import (indent, strip_empty_lines,
 get_identifiers)

__all__ = ['Templater']

AUTOINDENT_START = '%%START_AUTOINDENT%%'
AUTOINDENT_END = '%%END_AUTOINDENT%%'

[docs]def autoindent(code):
 if isinstance(code, list):
 code = '\n'.join(code)
 if not code.startswith('\n'):
 code = '\n'+code
 if not code.endswith('\n'):
 code = code + '\n'
 return AUTOINDENT_START+code+AUTOINDENT_END

[docs]def autoindent_postfilter(code):
 lines = code.split('\n')
 outlines = []
 addspaces = 0
 for line in lines:
 if AUTOINDENT_START in line:
 if addspaces>0:
 raise SyntaxError("Cannot nest autoindents")
 addspaces = line.find(AUTOINDENT_START)
 line = line.replace(AUTOINDENT_START, '')
 if AUTOINDENT_END in line:
 line = line.replace(AUTOINDENT_END, '')
 addspaces = 0
 outlines.append(' '*addspaces+line)
 return '\n'.join(outlines)

[docs]class LazyTemplateLoader(object):
 '''
 Helper object to load templates only when they are needed.
 '''
 def __init__(self, environment, extension):
 self.env = environment
 self.extension = extension
 self._templates = {}

[docs] def get_template(self, name):
 if name not in self._templates:
 try:
 template = CodeObjectTemplate(self.env.get_template(name+self.extension),
 self.env.loader.get_source(self.env,
 name+self.extension)[0])
 except TemplateNotFound:
 try:
 # Try without extension as well (e.g. for makefiles)
 template = CodeObjectTemplate(self.env.get_template(name),
 self.env.loader.get_source(self.env,
 name)[0])
 except TemplateNotFound:
 raise KeyError('No template with name "%s" found.' % name)
 self._templates[name] = template
 return self._templates[name]

[docs]class Templater(object):
 '''
 Class to load and return all the templates a `CodeObject` defines.

 Parameters

 package_name : str, tuple of str
 The package where the templates are saved. If this is a tuple then each template will be searched in order
 starting from the first package in the tuple until the template is found. This allows for derived templates
 to be used. See also `~Templater.derive`.
 env_globals : dict (optional)
 A dictionary of global values accessible by the templates. Can be used for providing utility functions.
 In all cases, the filter 'autoindent' is available (see existing templates for example usage).

 Notes

 Templates are accessed using ``templater.template_base_name`` (the base name is without the file extension).
 This returns a `CodeObjectTemplate`.
 '''
 def __init__(self, package_name, extension, env_globals=None):
 if isinstance(package_name, basestring):
 package_name = (package_name,)
 loader = ChoiceLoader([PackageLoader(name, 'templates') for name in package_name])
 self.env = Environment(loader=loader, trim_blocks=True,
 lstrip_blocks=True, undefined=StrictUndefined)
 self.env.globals['autoindent'] = autoindent
 self.env.filters['autoindent'] = autoindent
 if env_globals is not None:
 self.env.globals.update(env_globals)
 else:
 env_globals = {}
 self.env_globals = env_globals
 self.package_names = package_name
 self.extension = extension
 self.templates = LazyTemplateLoader(self.env, extension)

 def __getattr__(self, item):
 return self.templates.get_template(item)

[docs] def derive(self, package_name, extension=None, env_globals=None):
 '''
 Return a new Templater derived from this one, where the new package name and globals overwrite the old.
 '''
 if extension is None:
 extension = self.extension
 if isinstance(package_name, basestring):
 package_name = (package_name,)
 if env_globals is None:
 env_globals = {}
 package_name = package_name+self.package_names
 new_env_globals = self.env_globals.copy()
 new_env_globals.update(**env_globals)
 return Templater(package_name, extension=extension,
 env_globals=new_env_globals)

[docs]class CodeObjectTemplate(object):
 '''
 Single template object returned by `Templater` and used for final code generation

 Should not be instantiated by the user, but only directly by `Templater`.

 Notes

 The final code is obtained from this by calling the template (see `~CodeObjectTemplater.__call__`).
 '''
 def __init__(self, template, template_source):
 self.template = template
 self.template_source = template_source
 #: The set of variables in this template
 self.variables = set([])
 #: The indices over which the template iterates completely
 self.iterate_all = set([])
 #: Read-only variables that are changed by this template
 self.writes_read_only = set([])
 # This is the bit inside {} for USES_VARIABLES { list of words }
 specifier_blocks = re.findall(r'\bUSES_VARIABLES\b\s*\{(.*?)\}',
 template_source, re.M|re.S)
 # Same for ITERATE_ALL
 iterate_all_blocks = re.findall(r'\bITERATE_ALL\b\s*\{(.*?)\}',
 template_source, re.M|re.S)
 # And for WRITES_TO_READ_ONLY_VARIABLES
 writes_read_only_blocks = re.findall(r'\bWRITES_TO_READ_ONLY_VARIABLES\b\s*\{(.*?)\}',
 template_source, re.M|re.S)
 #: Does this template allow writing to scalar variables?
 self.allows_scalar_write = 'ALLOWS_SCALAR_WRITE' in template_source

 for block in specifier_blocks:
 self.variables.update(get_identifiers(block))
 for block in iterate_all_blocks:
 self.iterate_all.update(get_identifiers(block))
 for block in writes_read_only_blocks:
 self.writes_read_only.update(get_identifiers(block))

[docs] def __call__(self, scalar_code, vector_code, **kwds):
 '''
 Return a usable code block or blocks from this template.

 Parameters

 scalar_code : dict
 Dictionary of scalar code blocks.
 vector_code : dict
 Dictionary of vector code blocks
 **kwds
 Additional parameters to pass to the template

 Notes

 Returns either a string (if macros were not used in the template), or a `MultiTemplate` (if macros were used).
 '''
 if scalar_code is not None and len(scalar_code)==1 and scalar_code.keys()[0] is None:
 scalar_code = scalar_code[None]
 if vector_code is not None and len(vector_code)==1 and vector_code.keys()[0] is None:
 vector_code = vector_code[None]
 kwds['scalar_code'] = scalar_code
 kwds['vector_code'] = vector_code
 module = self.template.make_module(kwds)
 if len([k for k in module.__dict__.keys() if not k.startswith('_')]):
 return MultiTemplate(module)
 else:
 return autoindent_postfilter(str(module))

[docs]class MultiTemplate(Mapping):
 '''
 Code generated by a `CodeObjectTemplate` with multiple blocks

 Each block is a string stored as an attribute with the block name. The
 object can also be accessed as a dictionary.
 '''
 def __init__(self, module):
 self._templates = {}
 for k, f in module.__dict__.items():
 if not k.startswith('_'):
 s = autoindent_postfilter(str(f()))
 setattr(self, k, s)
 self._templates[k] = s

 def __getitem__(self, item):
 return self._templates[item]

 def __iter__(self):
 return iter(self._templates)

 def __len__(self):
 return len(self._templates)

 def __str__(self):
 s = ''
 for k, v in self._templates.items():
 s += k+':\n'
 s += strip_empty_lines(indent(v))+'\n'
 return s

 __repr__ = __str__

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_images/non_reliability.1.png
25

20

N E)
= B

X9pul UoInaN

500

400

300

200

100

Time (ms)

_modules/brian2/codegen/translation.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.codegen.translation

'''
This module translates a series of statements into a language-specific
syntactically correct code block that can be inserted into a template.

It infers whether or not a variable can be declared as
constant, etc. It should handle common subexpressions, and so forth.

The input information needed:

* The sequence of statements (a multiline string) in standard mathematical form
* The list of known variables, common subexpressions and functions, and for each
 variable whether or not it is a value or an array, and if an array what the
 dtype is.
* The dtype to use for newly created variables
* The language to translate to
'''
import re
import collections

import numpy as np
import sympy

from brian2.core.preferences import prefs
from brian2.core.variables import Variable, Subexpression, AuxiliaryVariable
from brian2.core.functions import Function
from brian2.utils.stringtools import (deindent, strip_empty_lines,
 get_identifiers)
from brian2.utils.topsort import topsort
from brian2.units.fundamentalunits import Unit
from brian2.parsing.statements import parse_statement
from brian2.parsing.sympytools import (str_to_sympy, sympy_to_str,
 check_expression_for_multiple_stateful_functions)

from .statements import Statement
from .optimisation import optimise_statements

__all__ = ['make_statements', 'analyse_identifiers',
 'get_identifiers_recursively']

[docs]class LineInfo(object):
 '''
 A helper class, just used to store attributes.
 '''
 def __init__(self, **kwds):
 for k, v in kwds.iteritems():
 setattr(self, k, v)

 # TODO: This information should go somewhere else, I guess
STANDARD_IDENTIFIERS = {'and', 'or', 'not', 'True', 'False'}

[docs]def analyse_identifiers(code, variables, recursive=False):
 '''
 Analyses a code string (sequence of statements) to find all identifiers by type.

 In a given code block, some variable names (identifiers) must be given as inputs to the code
 block, and some are created by the code block. For example, the line::

 a = b+c

 This could mean to create a new variable a from b and c, or it could mean modify the existing
 value of a from b or c, depending on whether a was previously known.

 Parameters

 code : str
 The code string, a sequence of statements one per line.
 variables : dict of `Variable`, set of names
 Specifiers for the model variables or a set of known names
 recursive : bool, optional
 Whether to recurse down into subexpressions (defaults to ``False``).

 Returns

 newly_defined : set
 A set of variables that are created by the code block.
 used_known : set
 A set of variables that are used and already known, a subset of the
 ``known`` parameter.
 unknown : set
 A set of variables which are used by the code block but not defined by
 it and not previously known. Should correspond to variables in the
 external namespace.
 '''
 if isinstance(variables, collections.Mapping):
 known = set(k for k, v in variables.iteritems()
 if not isinstance(k, AuxiliaryVariable))
 else:
 known = set(variables)
 variables = dict((k, Variable(unit=1, name=k,
 dtype=np.float64))
 for k in known)

 known |= STANDARD_IDENTIFIERS
 scalar_stmts, vector_stmts = make_statements(code, variables, np.float64, optimise=False)
 stmts = scalar_stmts + vector_stmts
 defined = set(stmt.var for stmt in stmts if stmt.op == ':=')
 if len(stmts) == 0:
 allids = set()
 elif recursive:
 if not isinstance(variables, collections.Mapping):
 raise TypeError('Have to specify a variables dictionary.')
 allids = get_identifiers_recursively([stmt.expr for stmt in stmts],
 variables) | set([stmt.var
 for stmt in stmts])
 else:
 allids = set.union(*[get_identifiers(stmt.expr)
 for stmt in stmts]) | set([stmt.var for stmt in stmts])
 dependent = allids.difference(defined, known)
 used_known = allids.intersection(known) - STANDARD_IDENTIFIERS
 return defined, used_known, dependent

[docs]def get_identifiers_recursively(expressions, variables, include_numbers=False):
 '''
 Gets all the identifiers in a list of expressions, recursing down into
 subexpressions.

 Parameters

 expressions : list of str
 List of expressions to check.
 variables : dict-like
 Dictionary of `Variable` objects
 include_numbers : bool, optional
 Whether to include number literals in the output. Defaults to ``False``.
 '''
 if len(expressions):
 identifiers = set.union(*[get_identifiers(expr, include_numbers=include_numbers)
 for expr in expressions])
 else:
 identifiers = set()
 for name in set(identifiers):
 if name in variables and isinstance(variables[name], Subexpression):
 s_identifiers = get_identifiers_recursively([variables[name].expr],
 variables,
 include_numbers=include_numbers)
 identifiers |= s_identifiers
 return identifiers

[docs]def is_scalar_expression(expr, variables):
 '''
 Whether the given expression is scalar.

 Parameters

 expr : str
 The expression to check
 variables : dict-like
 `Variable` and `Function` object for all the identifiers used in `expr`

 Returns

 scalar : bool
 Whether `expr` is a scalar expression
 '''
 # determine whether this is a scalar variable
 identifiers = get_identifiers_recursively([expr], variables)
 # In the following we assume that all unknown identifiers are
 # scalar constants -- this should cover numerical literals and
 # e.g. "True" or "inf".
 return all(name not in variables or
 getattr(variables[name], 'scalar', False) or
 (isinstance(variables[name], Function) and variables[name].stateless)
 for name in identifiers)

[docs]def make_statements(code, variables, dtype, optimise=True, blockname=''):
 '''
 Turn a series of abstract code statements into Statement objects, inferring
 whether each line is a set/declare operation, whether the variables are
 constant or not, and handling the cacheing of subexpressions.

 Parameters

 code : str
 A (multi-line) string of statements.
 variables : dict-like
 A dictionary of with `Variable` and `Function` objects for every
 identifier used in the `code`.
 dtype : `dtype`
 The data type to use for temporary variables
 optimise : bool, optional
 Whether to optimise expressions, including
 pulling out loop invariant expressions and putting them in new
 scalar constants. Defaults to ``False``, since this function is also
 used just to in contexts where we are not interested by this kind of
 optimisation. For the main code generation stage, its value is set by
 the `codegen.loop_invariant_optimisations` preference.
 blockname : str, optional
 A name for the block (used to name intermediate variables to avoid
 name clashes when multiple blocks are used together)
 Returns

 scalar_statements, vector_statements : (list of `Statement`, list of `Statement`)
 Lists with statements that are to be executed once and statements that
 are to be executed once for every neuron/synapse/... (or in a vectorised
 way)

 Notes

 If ``optimise`` is ``True``, then the
 ``scalar_statements`` may include newly introduced scalar constants that
 have been identified as loop-invariant and have therefore been pulled out
 of the vector statements. The resulting statements will also use augmented
 assignments where possible, i.e. a statement such as ``w = w + 1`` will be
 replaced by ``w += 1``. Also, statements involving booleans will have
 additional information added to them (see `Statement` for details)
 describing how the statement can be reformulated as a sequence of if/then
 statements. Calls `~brian2.codegen.optimisation.optimise_statements`.
 '''
 code = strip_empty_lines(deindent(code))
 lines = re.split(r'[;\n]', code)
 lines = [LineInfo(code=line) for line in lines if len(line)]
 # Do a copy so we can add stuff without altering the original dict
 variables = dict(variables)
 # we will do inference to work out which lines are := and which are =
 defined = set(k for k, v in variables.iteritems()
 if not isinstance(v, AuxiliaryVariable))
 for line in lines:
 statement = None
 # parse statement into "var op expr"
 var, op, expr, comment = parse_statement(line.code)
 if op == '=':
 if var not in defined:
 op = ':='
 defined.add(var)
 if var not in variables:
 is_scalar = is_scalar_expression(expr, variables)
 new_var = AuxiliaryVariable(var, Unit(1), # doesn't matter here
 dtype=dtype, scalar=is_scalar)
 variables[var] = new_var
 elif not variables[var].is_boolean:
 sympy_expr = str_to_sympy(expr, variables)
 sympy_var = sympy.Symbol(var, real=True)
 try:
 collected = sympy.collect(sympy_expr, sympy_var,
 exact=True, evaluate=False)
 except AttributeError:
 # If something goes wrong during collection, e.g. collect
 # does not work for logical expressions
 collected = {1: sympy_expr}

 if (len(collected) == 2 and
 set(collected.keys()) == {1, sympy_var} and
 collected[sympy_var] == 1):
 # We can replace this statement by a += assignment
 statement = Statement(var, '+=',
 sympy_to_str(collected[1]),
 comment,
 dtype=variables[var].dtype,
 scalar=variables[var].scalar)
 elif len(collected) == 1 and sympy_var in collected:
 # We can replace this statement by a *= assignment
 statement = Statement(var, '*=',
 sympy_to_str(collected[sympy_var]),
 comment,
 dtype=variables[var].dtype,
 scalar=variables[var].scalar)
 if statement is None:
 statement = Statement(var, op, expr, comment,
 dtype=variables[var].dtype,
 scalar=variables[var].scalar)

 line.statement = statement
 # for each line will give the variable being written to
 line.write = var
 # each line will give a set of variables which are read
 line.read = get_identifiers_recursively([expr], variables)

 # All writes to scalar variables must happen before writes to vector
 # variables
 scalar_write_done = False
 for line in lines:
 stmt = line.statement
 if stmt.op != ':=' and variables[stmt.var].scalar and scalar_write_done:
 raise SyntaxError(('All writes to scalar variables in a code block '
 'have to be made before writes to vector '
 'variables. Illegal write to %s.') % line.write)
 elif not variables[stmt.var].scalar:
 scalar_write_done = True

 # all variables which are written to at some point in the code block
 # used to determine whether they should be const or not
 all_write = set(line.write for line in lines)

 # backwards compute whether or not variables will be read again
 # note that will_read for a line gives the set of variables it will read
 # on the current line or subsequent ones. will_write gives the set of
 # variables that will be written after the current line
 will_read = set()
 will_write = set()
 for line in lines[::-1]:
 will_read = will_read.union(line.read)
 line.will_read = will_read.copy()
 line.will_write = will_write.copy()
 will_write.add(line.write)

 subexpressions = dict((name, val) for name, val in variables.items() if isinstance(val, Subexpression))
 # sort subexpressions into an order so that subexpressions that don't depend
 # on other subexpressions are first
 subexpr_deps = dict((name, [dep for dep in subexpr.identifiers if dep in subexpressions]) for \
 name, subexpr in subexpressions.items())
 sorted_subexpr_vars = topsort(subexpr_deps)

 statements = []

 # none are yet defined (or declared)
 subdefined = dict((name, False) for name in subexpressions.keys())
 for line in lines:
 stmt = line.statement
 read = line.read
 write = line.write
 will_read = line.will_read
 will_write = line.will_write
 # update/define all subexpressions needed by this statement
 for var in sorted_subexpr_vars:
 if var not in read:
 continue

 subexpression = subexpressions[var]
 # if already defined/declared
 if subdefined[var]:
 op = '='
 constant = False
 else:
 op = ':='
 subdefined[var] = True
 # set to constant only if we will not write to it again
 constant = var not in will_write
 # check all subvariables are not written to again as well
 if constant:
 ids = subexpression.identifiers
 constant = all(v not in will_write for v in ids)

 statement = Statement(var, op, subexpression.expr, comment='',
 dtype=variables[var].dtype,
 constant=constant,
 subexpression=True,
 scalar=variables[var].scalar)
 statements.append(statement)

 var, op, expr, comment = stmt.var, stmt.op, stmt.expr, stmt.comment

 # constant only if we are declaring a new variable and we will not
 # write to it again
 constant = op == ':=' and var not in will_write
 statement = Statement(var, op, expr, comment,
 dtype=variables[var].dtype,
 constant=constant,
 scalar=variables[var].scalar)
 statements.append(statement)

 scalar_statements = [s for s in statements if s.scalar]
 vector_statements = [s for s in statements if not s.scalar]

 if optimise and prefs.codegen.loop_invariant_optimisations:
 scalar_statements, vector_statements = optimise_statements(scalar_statements,
 vector_statements,
 variables,
 blockname=blockname)

 return scalar_statements, vector_statements

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_images/2-intro-to-brian-synapses_image_8_0.png
12

10

08

06

04

02

00

Neuron 0
Neuron 1
Neuron 1

o

]

Time (ms)

E]

_modules/brian2/codegen/permutation_analysis.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.codegen.permutation_analysis

'''
Module for analysing synaptic pre and post code for synapse order independence.
'''
from brian2.utils.stringtools import get_identifiers
from brian2.core.functions import Function
from brian2.core.variables import Constant

__all__ = ['OrderDependenceError', 'check_for_order_independence']

[docs]class OrderDependenceError(Exception):
 pass

[docs]def check_for_order_independence(statements, variables, indices):
 '''
 Check that the sequence of statements doesn't depend on the order in which the indices are iterated through.
 '''
 # Remove stateless functions from variables (only bother with ones that are used)
 all_used_vars = set()
 for statement in statements:
 all_used_vars.update(get_identifiers(statement.expr))
 variables = variables.copy()
 for var in set(variables.keys()).intersection(all_used_vars):
 val = variables[var]
 if isinstance(val, Function):
 if val.stateless:
 del variables[var]
 else:
 raise OrderDependenceError("Function %s may have internal state, "
 "which can lead to order dependence." % var)
 all_variables = [v for v in variables if not isinstance(variables[v], Constant)]
 # Main index variables are those whose index corresponds to the main index being iterated through. By
 # assumption/definition, these indices are unique, and any order-dependence cannot come from their values,
 # only from the values of the derived indices. In the most common case of Synapses, the main index would be
 # the synapse index, and the derived indices would be pre and postsynaptic indices (which can be repeated).
 unique_index = lambda v: (indices[v] != '0'
 and getattr(variables[indices[v]],
 'unique',
 False))
 main_index_variables = set([v for v in all_variables
 if indices[v] == '_idx' or unique_index(v)])
 different_index_variables = set(all_variables) - main_index_variables

 # At the start, we assume all the different/derived index variables are permutation independent and we continue
 # to scan through the list of statements checking whether or not permutation-dependence has been introduced
 # until the permutation_independent set has stopped changing.
 permutation_independent = list(different_index_variables)
 permutation_dependent_aux_vars = set()
 changed_permutation_independent = True
 for statement in statements:
 if statement.op == ':=' and statement.var not in all_variables:
 main_index_variables.add(statement.var)
 all_variables.append(statement.var)

 while changed_permutation_independent:
 changed_permutation_independent = False
 for statement in statements:
 vars_in_expr = get_identifiers(statement.expr).intersection(all_variables)
 # any time a statement involves a LHS and RHS which only depend on itself, this doesn't change anything
 if set([statement.var]) == vars_in_expr:
 continue
 nonsyn_vars_in_expr = vars_in_expr.intersection(different_index_variables)
 permdep = any(var not in permutation_independent
 for var in nonsyn_vars_in_expr)
 permdep = permdep or any(var in permutation_dependent_aux_vars
 for var in vars_in_expr)
 if statement.op == ':=': # auxiliary variable created
 if permdep:
 if statement.var not in permutation_dependent_aux_vars:
 permutation_dependent_aux_vars.add(statement.var)
 changed_permutation_independent = True
 continue
 elif statement.var in main_index_variables:
 if permdep:
 raise OrderDependenceError()
 elif statement.var in different_index_variables:
 if statement.op in ('+=', '*=', '-=', '/='):
 if permdep:
 raise OrderDependenceError()
 if statement.var in permutation_independent:
 permutation_independent.remove(statement.var)
 changed_permutation_independent = True
 elif statement.op == '=':
 otheridx = [v for v in variables
 if indices[v] not in (indices[statement.var],
 '_idx', '0')]
 if any(var in otheridx for var in vars_in_expr):
 raise OrderDependenceError()
 if permdep:
 raise OrderDependenceError()
 if any(var in main_index_variables for var in vars_in_expr):
 raise OrderDependenceError()
 else:
 raise OrderDependenceError()
 else:
 raise AssertionError('Should never get here...')

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_images/morphology_random_section_3.png

_modules/brian2/codegen/generators/base.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.codegen.generators.base

'''
Base class for generating code in different programming languages, gives the
methods which should be overridden to implement a new language.
'''
from brian2.core.variables import ArrayVariable
from brian2.core.functions import Function
from brian2.utils.stringtools import get_identifiers
from brian2.utils.logger import get_logger
from brian2.codegen.translation import make_statements
from brian2.codegen.permutation_analysis import (check_for_order_independence,
 OrderDependenceError)

__all__ = ['CodeGenerator']

logger = get_logger(__name__)

[docs]class CodeGenerator(object):
 '''
 Base class for all languages.

 See definition of methods below.

 TODO: more details here
 '''

 # Subclasses should override this
 class_name = ''

 def __init__(self, variables, variable_indices, owner, iterate_all,
 codeobj_class, name, template_name,
 override_conditional_write=None,
 allows_scalar_write=False):
 # We have to do the import here to avoid circular import dependencies.
 from brian2.devices.device import get_device
 self.device = get_device()
 self.variables = variables
 self.variable_indices = variable_indices
 self.func_name_replacements = {}
 for varname, var in variables.iteritems():
 if isinstance(var, Function):
 if codeobj_class in var.implementations:
 impl_name = var.implementations[codeobj_class].name
 if impl_name is not None:
 self.func_name_replacements[varname] = impl_name
 self.iterate_all = iterate_all
 self.codeobj_class = codeobj_class
 self.owner = owner
 if override_conditional_write is None:
 self.override_conditional_write = set()
 else:
 self.override_conditional_write = set(override_conditional_write)
 self.allows_scalar_write = allows_scalar_write
 self.name = name
 self.template_name = template_name

 @staticmethod
[docs] def get_array_name(var, access_data=True):
 '''
 Get a globally unique name for a `ArrayVariable`.

 Parameters

 var : `ArrayVariable`
 The variable for which a name should be found.
 access_data : bool, optional
 For `DynamicArrayVariable` objects, specifying `True` here means the
 name for the underlying data is returned. If specifying `False`,
 the name of object itself is returned (e.g. to allow resizing).
 Returns

 name : str
 A uniqe name for `var`.
 '''
 # We have to do the import here to avoid circular import dependencies.
 from brian2.devices.device import get_device
 device = get_device()
 return device.get_array_name(var, access_data=access_data)

[docs] def translate_expression(self, expr):
 '''
 Translate the given expression string into a string in the target
 language, returns a string.
 '''
 raise NotImplementedError

[docs] def translate_statement(self, statement):
 '''
 Translate a single line `Statement` into the target language, returns
 a string.
 '''
 raise NotImplementedError

[docs] def determine_keywords(self):
 '''
 A dictionary of values that is made available to the templated. This is
 used for example by the `CPPCodeGenerator` to set up all the supporting
 code
 '''
 raise NotImplementedError

[docs] def translate_one_statement_sequence(self, statements, scalar=False):
 raise NotImplementedError

[docs] def translate_statement_sequence(self, scalar_statements, vector_statements):
 '''
 Translate a sequence of `Statement` into the target language, taking
 care to declare variables, etc. if necessary.

 Returns a tuple ``(scalar_code, vector_code, kwds)`` where
 ``scalar_code`` is a list of the lines of code executed before the inner
 loop, ``vector_code`` is a list of the lines of code in the inner
 loop, and ``kwds`` is a dictionary of values that is made available to
 the template.
 '''
 scalar_code = {}
 vector_code = {}
 for name, block in scalar_statements.iteritems():
 scalar_code[name] = self.translate_one_statement_sequence(block, scalar=True)
 for name, block in vector_statements.iteritems():
 vector_code[name] = self.translate_one_statement_sequence(block, scalar=False)

 kwds = self.determine_keywords()

 return scalar_code, vector_code, kwds

[docs] def array_read_write(self, statements):
 '''
 Helper function, gives the set of ArrayVariables that are read from and
 written to in the series of statements. Returns the pair read, write
 of sets of variable names.
 '''
 variables = self.variables
 variable_indices = self.variable_indices
 read = set()
 write = set()
 for stmt in statements:
 ids = get_identifiers(stmt.expr)
 # if the operation is inplace this counts as a read.
 if stmt.inplace:
 ids.add(stmt.var)
 read = read.union(ids)
 if stmt.scalar or variable_indices[stmt.var] == '0':
 if stmt.op != ':=' and not self.allows_scalar_write:
 raise SyntaxError(('Writing to scalar variable %s '
 'not allowed in this context.' % stmt.var))
 for name in ids:
 if (name in variables and isinstance(variables[name], ArrayVariable)
 and not (variables[name].scalar or
 variable_indices[name] == '0')):
 raise SyntaxError(('Cannot write to scalar variable %s '
 'with an expression referring to '
 'vector variable %s') %
 (stmt.var, name))
 write.add(stmt.var)
 read = set(varname for varname, var in variables.items()
 if isinstance(var, ArrayVariable) and varname in read)
 write = set(varname for varname, var in variables.items()
 if isinstance(var, ArrayVariable) and varname in write)
 # Gather the indices stored as arrays (ignore _idx which is special)
 indices = set()
 indices |= set(variable_indices[varname] for varname in read
 if not variable_indices[varname] in ('_idx', '0')
 and isinstance(variables[variable_indices[varname]],
 ArrayVariable))
 indices |= set(variable_indices[varname] for varname in write
 if not variable_indices[varname] in ('_idx', '0')
 and isinstance(variables[variable_indices[varname]],
 ArrayVariable))
 # don't list arrays that are read explicitly and used as indices twice
 read -= indices
 return read, write, indices

[docs] def get_conditional_write_vars(self):
 '''
 Helper function, returns a dict of mappings ``(varname, condition_var_name)`` indicating that
 when ``varname`` is written to, it should only be when ``condition_var_name`` is ``True``.
 '''
 conditional_write_vars = {}
 for varname, var in self.variables.items():
 if getattr(var, 'conditional_write', None) is not None:
 cvar = var.conditional_write
 cname = cvar.name
 if cname not in self.override_conditional_write:
 conditional_write_vars[varname] = cname
 return conditional_write_vars

[docs] def arrays_helper(self, statements):
 '''
 Combines the two helper functions `array_read_write` and `get_conditional_write_vars`, and updates the
 ``read`` set.
 '''
 read, write, indices = self.array_read_write(statements)
 conditional_write_vars = self.get_conditional_write_vars()
 read |= set(var for var in write
 if var in conditional_write_vars)
 read |= set(conditional_write_vars[var] for var in write
 if var in conditional_write_vars)
 return read, write, indices, conditional_write_vars

[docs] def has_repeated_indices(self, statements):
 '''
 Whether any of the statements potentially uses repeated indices (e.g.
 pre- or postsynaptic indices).
 '''
 variables = self.variables
 variable_indices = self.variable_indices
 read, write, indices, conditional_write_vars = self.arrays_helper(statements)
 # Check whether we potentially deal with repeated indices (which will
 # be the case most importantly when we write to pre- or post-synaptic
 # variables in synaptic code)
 used_indices = set(variable_indices[var] for var in write)
 all_unique = all(variables[index].unique for index in used_indices
 if index not in ('_idx', '0'))
 return not all_unique

[docs] def translate(self, code, dtype):
 '''
 Translates an abstract code block into the target language.
 '''
 scalar_statements = {}
 vector_statements = {}
 for ac_name, ac_code in code.iteritems():
 statements = make_statements(ac_code,
 self.variables,
 dtype,
 optimise=True,
 blockname=ac_name)
 scalar_statements[ac_name], vector_statements[ac_name] = statements
 for vs in vector_statements.itervalues():
 # Check that the statements are meaningful independent on the order of
 # execution (e.g. for synapses)
 try:
 if self.has_repeated_indices(vs): # only do order dependence if there are repeated indices
 check_for_order_independence(vs,
 self.variables,
 self.variable_indices)
 except OrderDependenceError:
 # If the abstract code is only one line, display it in full
 if len(vs) <= 1:
 error_msg = 'Abstract code: "%s"\n' % vs[0]
 else:
 error_msg = ('%d lines of abstract code, first line is: '
 '"%s"\n') % (len(vs), vs[0])
 logger.warn(('Came across an abstract code block that may not be '
 'well-defined: the outcome may depend on the '
 'order of execution. You can ignore this warning if '
 'you are sure that the order of operations does not '
 'matter. ' + error_msg))

 return self.translate_statement_sequence(scalar_statements,
 vector_statements)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_modules/brian2/codegen/optimisation.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.codegen.optimisation

'''
Simplify and optimise sequences of statements by rewriting and pulling out loop invariants.
'''
import ast
from collections import OrderedDict
import copy
import itertools

from brian2.core.functions import DEFAULT_FUNCTIONS, DEFAULT_CONSTANTS
from brian2.core.variables import AuxiliaryVariable
from brian2.parsing.bast import (brian_ast, BrianASTRenderer, dtype_hierarchy,
 brian_dtype_from_dtype, brian_dtype_from_value)
from brian2.parsing.rendering import NodeRenderer
from brian2.utils.stringtools import get_identifiers, word_substitute
from brian2.units.fundamentalunits import Unit

from .statements import Statement

Default namespace has all the standard functions and constants in it
defaults_ns = dict((k, v.pyfunc) for k, v in DEFAULT_FUNCTIONS.iteritems())
defaults_ns.update(dict((k, v.value) for k, v in DEFAULT_CONSTANTS.iteritems()))

__all__ = ['optimise_statements', 'ArithmeticSimplifier', 'Simplifier']

[docs]def evaluate_expr(expr, ns):
 '''
 Try to evaluate the expression in the given namespace

 Returns either (value, True) if successful, or (expr, False) otherwise.
 '''
 try:
 val = eval(expr, ns)
 return val, True
 except NameError:
 return expr, False

[docs]def expression_complexity(expr, variables):
 return brian_ast(expr, variables).complexity

[docs]def optimise_statements(scalar_statements, vector_statements, variables, blockname=''):
 '''
 Optimise a sequence of scalar and vector statements

 Performs the following optimisations:

 1. Constant evaluations (e.g. exp(0) to 1). See `evaluate_expr`.
 2. Arithmetic simplifications (e.g. 0*x to 0). See `ArithmeticSimplifier`, `collect`.
 3. Pulling out loop invariants (e.g. v*exp(-dt/tau) to a=exp(-dt/tau) outside the loop and v*a inside).
 See `Simplifier`.
 4. Boolean simplifications (allowing the replacement of expressions with booleans with a sequence of if/thens).
 See `Simplifier`.

 Parameters

 scalar_statements : sequence of Statement
 Statements that only involve scalar values and should be evaluated in the scalar block.
 vector_statements : sequence of Statement
 Statements that involve vector values and should be evaluated in the vector block.
 variables : dict of (str, Variable)
 Definition of the types of the variables.
 blockname : str, optional
 Name of the block (used for LIO constant prefixes to avoid name clashes)

 Returns

 new_scalar_statements : sequence of Statement
 As above but with loop invariants pulled out from vector statements
 new_vector_statements : sequence of Statement
 Simplified/optimised versions of statements
 '''
 boolvars = dict((k, v) for k, v in variables.iteritems()
 if hasattr(v, 'dtype') and brian_dtype_from_dtype(v.dtype)=='boolean')
 # We use the Simplifier class by rendering each expression, which generates new scalar statements
 # stored in the Simplifier object, and these are then added to the scalar statements.
 simplifier = Simplifier(variables, scalar_statements, extra_lio_prefix=blockname)
 new_vector_statements = []
 for stmt in vector_statements:
 # Carry out constant evaluation, arithmetic simplification and loop invariants
 new_expr = simplifier.render_expr(stmt.expr)
 new_stmt = Statement(stmt.var, stmt.op, new_expr, stmt.comment,
 dtype=stmt.dtype,
 constant=stmt.constant,
 subexpression=stmt.subexpression,
 scalar=stmt.scalar)
 # Now check if boolean simplification can be carried out
 complexity_std = expression_complexity(new_expr, simplifier.variables)
 idents = get_identifiers(new_expr)
 used_boolvars = [var for var in boolvars.iterkeys() if var in idents]
 if len(used_boolvars):
 # We want to iterate over all the possible assignments of boolean variables to values in (True, False)
 bool_space = [[False, True] for var in used_boolvars]
 expanded_expressions = {}
 complexities = {}
 for bool_vals in itertools.product(*bool_space):
 # substitute those values into the expr and simplify (including potentially pulling out new
 # loop invariants)
 subs = dict((var, str(val)) for var, val in zip(used_boolvars, bool_vals))
 curexpr = word_substitute(new_expr, subs)
 curexpr = simplifier.render_expr(curexpr)
 key = tuple((var, val) for var, val in zip(used_boolvars, bool_vals))
 expanded_expressions[key] = curexpr
 complexities[key] = expression_complexity(curexpr, simplifier.variables)
 # See Statement for details on these
 new_stmt.used_boolean_variables = used_boolvars
 new_stmt.boolean_simplified_expressions = expanded_expressions
 new_stmt.complexity_std = complexity_std
 new_stmt.complexities = complexities
 new_vector_statements.append(new_stmt)
 # Generate additional scalar statements for the loop invariants
 new_scalar_statements = copy.copy(scalar_statements)
 for expr, name in simplifier.loop_invariants.iteritems():
 dtype_name = simplifier.loop_invariant_dtypes[name]
 if dtype_name=='boolean':
 dtype = bool
 elif dtype_name=='integer':
 dtype = int
 else:
 dtype = float
 new_stmt = Statement(name, ':=', expr, '',
 dtype=dtype,
 constant=True,
 subexpression=False,
 scalar=True)
 new_scalar_statements.append(new_stmt)
 return new_scalar_statements, new_vector_statements

def _replace_with_zero(zero_node, node):
 '''
 Helper function to return a "zero node" of the correct type.

 Parameters

 zero_node : `ast.Num`
 The node to replace
 node : `ast.Node`
 The node that determines the type

 Returns

 zero_node : `ast.Num`
 The original ``zero_node`` with its value replaced by 0 or 0.0.
 '''
 # must not change the dtype of the output,
 # e.g. handle 0/float->0.0 and 0.0/int->0.0
 zero_node.dtype = node.dtype
 if node.dtype == 'integer':
 zero_node.n = 0
 else:
 zero_node.n = 0.0
 return zero_node

[docs]class ArithmeticSimplifier(BrianASTRenderer):
 '''
 Carries out the following arithmetic simplifications:

 1. Constant evaluation (e.g. exp(0)=1) by attempting to evaluate the expression in an "assumptions namespace"
 2. Binary operators, e.g. 0*x=0, 1*x=x, etc. You have to take care that the dtypes match here, e.g.
 if x is an integer, then 1.0*x shouldn't be replaced with x but left as 1.0*x.

 Parameters

 variables : dict of (str, Variable)
 Usual definition of variables.
 assumptions : sequence of str
 Additional assumptions that can be used in simplification, each assumption is a string statement.
 These might be the scalar statements for example.
 '''
 def __init__(self, variables):
 BrianASTRenderer.__init__(self, variables, copy_variables=False)
 self.assumptions = []
 self.assumptions_ns = dict(defaults_ns)
 self.bast_renderer = BrianASTRenderer(variables, copy_variables=False)

[docs] def render_node(self, node):
 '''
 Assumes that the node has already been fully processed by BrianASTRenderer
 '''
 if not hasattr(node, 'simplified'):
 node = super(ArithmeticSimplifier, self).render_node(node)
 node.simplified = True
 # can't evaluate vector expressions, so abandon in this case
 if not node.scalar:
 return node
 # No evaluation necessary for simple names or numbers
 if node.__class__.__name__ in ['Name', 'NameConstant', 'Num']:
 return node
 # Don't evaluate stateful nodes (e.g. those containing a rand() call)
 if not node.stateless:
 return node
 # try fully evaluating using assumptions
 expr = NodeRenderer().render_node(node)
 val, evaluated = evaluate_expr(expr, self.assumptions_ns)
 if evaluated:
 if node.dtype == 'boolean':
 val = bool(val)
 if hasattr(ast, 'NameConstant'):
 newnode = ast.NameConstant(val)
 else:
 # None is the expression context, we don't use it so we just set to None
 newnode = ast.Name(repr(val), None)
 elif node.dtype == 'integer':
 val = int(val)
 else:
 val = float(val)
 if node.dtype != 'boolean':
 newnode = ast.Num(val)
 newnode.dtype = node.dtype
 newnode.scalar = True
 newnode.stateless = node.stateless
 newnode.complexity = 0
 return newnode
 return node

[docs] def render_BinOp(self, node):
 if node.dtype == 'float': # only try to collect float type nodes
 if node.op.__class__.__name__ in ['Mult', 'Div', 'Add', 'Sub'] and not hasattr(node, 'collected'):
 newnode = self.bast_renderer.render_node(collect(node))
 newnode.collected = True
 return self.render_node(newnode)
 left = node.left = self.render_node(node.left)
 right = node.right = self.render_node(node.right)
 node = super(ArithmeticSimplifier, self).render_BinOp(node)
 op = node.op
 # Handle multiplication by 0 or 1
 if op.__class__.__name__ == 'Mult':
 for operand, other in [(left, right),
 (right, left)]:
 if operand.__class__.__name__ == 'Num':
 if operand.n == 0:
 # Do not remove stateful functions
 if node.stateless:
 return _replace_with_zero(operand, node)
 if operand.n==1:
 # only simplify this if the type wouldn't be cast by the operation
 if dtype_hierarchy[operand.dtype] <= dtype_hierarchy[other.dtype]:
 return other
 # Handle division by 1, or 0/x
 elif op.__class__.__name__ == 'Div':
 if left.__class__.__name__ == 'Num' and left.n == 0: # 0/x
 if node.stateless:
 # Do not remove stateful functions
 return _replace_with_zero(left, node)
 if right.__class__.__name__ == 'Num' and right.n == 1: # x/1
 # only simplify this if the type wouldn't be cast by the operation
 if dtype_hierarchy[right.dtype] <= dtype_hierarchy[left.dtype]:
 return left
 # Handle addition of 0
 elif op.__class__.__name__ == 'Add':
 for operand, other in [(left, right),
 (right, left)]:
 if operand.__class__.__name__ == 'Num' and operand.n == 0:
 # only simplify this if the type wouldn't be cast by the operation
 if dtype_hierarchy[operand.dtype]<=dtype_hierarchy[other.dtype]:
 return other
 # Handle subtraction of 0
 elif op.__class__.__name__ == 'Sub':
 if right.__class__.__name__ == 'Num' and right.n == 0:
 # only simplify this if the type wouldn't be cast by the operation
 if dtype_hierarchy[right.dtype]<=dtype_hierarchy[left.dtype]:
 return left

 # simplify e.g. 2*float to 2.0*float to make things more explicit: not strictly necessary
 # but might be useful for some codegen targets
 if node.dtype=='float' and op.__class__.__name__ in ['Mult', 'Add', 'Sub', 'Div']:
 for subnode in [node.left, node.right]:
 if subnode.__class__.__name__ == 'Num':
 subnode.dtype = 'float'
 subnode.n = float(subnode.n)
 return node

[docs]class Simplifier(BrianASTRenderer):
 '''
 Carry out arithmetic simplifications (see `ArithmeticSimplifier`) and loop invariants

 Parameters

 variables : dict of (str, Variable)
 Usual definition of variables.
 scalar_statements : sequence of Statement
 Predefined scalar statements that can be used as part of simplification

 Notes

 After calling `render_expr` on a sequence of expressions (coming from vector statements typically),
 this object will have some new attributes:

 ``loop_invariants`` : OrderedDict of (expression, varname)
 varname will be of the form ``_lio_N`` where ``N`` is some integer, and the expressions will be
 strings that correspond to scalar-only expressions that can be evaluated outside of the vector
 block.
 ``loop_invariant_dtypes`` : dict of (varname, dtypename)
 dtypename will be one of ``'boolean'``, ``'integer'``, ``'float'``.
 '''
 def __init__(self, variables, scalar_statements, extra_lio_prefix=''):
 BrianASTRenderer.__init__(self, variables, copy_variables=False)
 self.loop_invariants = OrderedDict()
 self.loop_invariant_dtypes = {}
 self.n = 0
 self.node_renderer = NodeRenderer(use_vectorisation_idx=False)
 self.arithmetic_simplifier = ArithmeticSimplifier(variables)
 self.scalar_statements = scalar_statements
 if extra_lio_prefix is None:
 extra_lio_prefix = ''
 if len(extra_lio_prefix):
 extra_lio_prefix = extra_lio_prefix+'_'
 self.extra_lio_prefix = extra_lio_prefix

[docs] def render_expr(self, expr):
 node = brian_ast(expr, self.variables)
 node = self.arithmetic_simplifier.render_node(node)
 node = self.render_node(node)
 return self.node_renderer.render_node(node)

[docs] def render_node(self, node):
 '''
 Assumes that the node has already been fully processed by BrianASTRenderer
 '''
 # can we pull this out?
 if node.scalar and node.complexity>0:
 expr = self.node_renderer.render_node(self.arithmetic_simplifier.render_node(node))
 if expr in self.loop_invariants:
 name = self.loop_invariants[expr]
 else:
 self.n += 1
 name = '_lio_'+self.extra_lio_prefix+str(self.n)
 self.loop_invariants[expr] = name
 self.loop_invariant_dtypes[name] = node.dtype
 numpy_dtype = {'boolean': bool,
 'integer': int,
 'float': float}[node.dtype]
 self.variables[name] = AuxiliaryVariable(name, Unit(1), dtype=numpy_dtype, scalar=True)
 # None is the expression context, we don't use it so we just set to None
 newnode = ast.Name(name, None)
 newnode.scalar = True
 newnode.dtype = node.dtype
 newnode.complexity = 0
 newnode.stateless = node.stateless
 return newnode
 # otherwise, render node as usual
 return super(Simplifier, self).render_node(node)

[docs]def reduced_node(terms, op):
 '''
 Reduce a sequence of terms with the given operator

 For examples, if terms were [a, b, c] and op was multiplication then the reduction would be (a*b)*c.

 Parameters

 terms : list
 AST nodes.
 op : AST node
 Could be `ast.Mult` or `ast.Add`.

 Examples

 >>> import ast
 >>> nodes = [ast.Name(id='x'), ast.Num(n=3), ast.Name(id='y')]
 >>> ast.dump(reduced_node(nodes, ast.Mult), annotate_fields=False)
 "BinOp(BinOp(Name('x'), Mult(), Num(3)), Mult(), Name('y'))"
 >>> nodes = [ast.Num(n=17.0)]
 >>> ast.dump(reduced_node(nodes, ast.Add), annotate_fields=False)
 'Num(17.0)'
 '''
 # Remove None terms
 terms = [term for term in terms if term is not None]
 if not len(terms):
 return None
 return reduce(lambda left, right: ast.BinOp(left, op(), right), terms)

[docs]def cancel_identical_terms(primary, inverted):
 '''
 Cancel terms in a collection, e.g. a+b-a should be cancelled to b

 Simply renders the nodes into expressions and removes whenever there is a common expression
 in primary and inverted.

 Parameters

 primary : list of AST nodes
 These are the nodes that are positive with respect to the operator, e.g.
 in x*y/z it would be [x, y].
 inverted : list of AST nodes
 These are the nodes that are inverted with respect to the operator, e.g.
 in x*y/z it would be [z].

 Returns

 primary : list of AST nodes
 Primary nodes after cancellation
 inverted : list of AST nodes
 Inverted nodes after cancellation
 '''
 nr = NodeRenderer(use_vectorisation_idx=False)
 expressions = dict((node, nr.render_node(node)) for node in primary)
 expressions.update(dict((node, nr.render_node(node)) for node in inverted))
 new_primary = []
 inverted_expressions = [expressions[term] for term in inverted]
 for term in primary:
 expr = expressions[term]
 if expr in inverted_expressions and term.stateless:
 new_inverted = []
 for iterm in inverted:
 if expressions[iterm] == expr:
 expr = '' # handled
 else:
 new_inverted.append(iterm)
 inverted = new_inverted
 inverted_expressions = [expressions[term] for term in inverted]
 else:
 new_primary.append(term)
 return new_primary, inverted

[docs]def collect(node):
 '''
 Attempts to collect commutative operations into one and simplifies them.

 For example, if x and y are scalars, and z is a vector, then (x*z)*y should
 be rewritten as (x*y)*z to minimise the number of vector operations. Similarly,
 ((x*2)*3)*4 should be rewritten as x*24.

 Works for either multiplication/division or addition/subtraction nodes.

 The final output is a subexpression of the following maximal form:

 (((numerical_value*(product of scalars))/(product of scalars))*(product of vectors))/(product of vectors)

 Any possible cancellations will have been done.

 Parameters

 node : Brian AST node
 The node to be collected/simplified.

 Returns

 node : Brian AST node
 Simplified node.
 '''
 node.collected = True
 orignode_dtype = node.dtype
 # we only work on */ or +- ops, which are both BinOp
 if node.__class__.__name__ != 'BinOp':
 return node
 # primary would be the * or + nodes, and inverted would be the / or - nodes
 terms_primary = []
 terms_inverted = []
 # we handle both multiplicative and additive nodes in the same way by using these variables
 if node.op.__class__.__name__ in ['Mult', 'Div']:
 op_primary = ast.Mult
 op_inverted = ast.Div
 op_null = 1.0 # the identity for the operator
 op_py_primary = lambda x, y: x*y
 op_py_inverted = lambda x, y: x/y
 elif node.op.__class__.__name__ in ['Add', 'Sub']:
 op_primary = ast.Add
 op_inverted = ast.Sub
 op_null = 0.0
 op_py_primary = lambda x, y: x+y
 op_py_inverted = lambda x, y: x-y
 else:
 return node
 if node.dtype=='integer':
 op_null_with_dtype = int(op_null)
 else:
 op_null_with_dtype = op_null
 # recursively collect terms into the terms_primary and terms_inverted lists
 collect_commutative(node, op_primary, op_inverted,
 terms_primary, terms_inverted)
 x = op_null
 # extract the numerical nodes and fully evaluate
 remaining_terms_primary = []
 remaining_terms_inverted = []
 for term in terms_primary:
 if term.__class__.__name__=='Num':
 x = op_py_primary(x, term.n)
 else:
 remaining_terms_primary.append(term)
 for term in terms_inverted:
 if term.__class__.__name__=='Num':
 x = op_py_inverted(x, term.n)
 else:
 remaining_terms_inverted.append(term)
 # if the fully evaluated node is just the identity/null element then we
 # don't have to make it into an explicit term
 if x != op_null:
 num_node = ast.Num(x)
 else:
 num_node = None
 terms_primary = remaining_terms_primary
 terms_inverted = remaining_terms_inverted
 node = num_node
 for scalar in (True, False):
 primary_terms = [term for term in terms_primary if term.scalar == scalar]
 inverted_terms = [term for term in terms_inverted if term.scalar == scalar]
 primary_terms, inverted_terms = cancel_identical_terms(primary_terms,
 inverted_terms)

 # produce nodes that are the reduction of the operator on these subsets
 prod_primary = reduced_node(primary_terms, op_primary)
 prod_inverted = reduced_node(inverted_terms, op_primary)

 # construct the simplest version of the fully simplified node (only doing operations where necessary)
 node = reduced_node([node, prod_primary], op_primary)
 if prod_inverted is not None:
 if node is None:
 node = ast.Num(op_null_with_dtype)
 node = ast.BinOp(node, op_inverted(), prod_inverted)

 if node is None: # everything cancelled
 node = ast.Num(op_null_with_dtype)
 if hasattr(node, 'dtype') and dtype_hierarchy[node.dtype]<dtype_hierarchy[orignode_dtype]:
 node = ast.BinOp(ast.Num(op_null_with_dtype), op_primary(), node)
 node.collected = True
 return node

[docs]def collect_commutative(node, primary, inverted,
 terms_primary, terms_inverted, add_to_inverted=False):
 # This function is called recursively, so we use add_to_inverted to keep track of whether or not
 # we're working in the numerator/denominator (for multiplicative nodes, equivalent for additive).
 op_primary = node.op.__class__ is primary
 # this should only be called with node a BinOp of type primary or inverted
 # left_exact is the condition that we can collect terms (we can do it with floats or add/sub,
 # but not integer mult/div - the reason being that for C-style division e.g. 3/(4/3)!=(3*3)/4
 left_exact = (node.left.dtype=='float' or
 (hasattr(node.left, 'op') and node.left.op.__class__.__name__ in ['Add', 'Sub']))
 if (node.left.__class__.__name__=='BinOp' and
 node.left.op.__class__ in [primary, inverted] and left_exact):
 collect_commutative(node.left, primary, inverted, terms_primary, terms_inverted,
 add_to_inverted=add_to_inverted)
 else:
 if add_to_inverted:
 terms_inverted.append(node.left)
 else:
 terms_primary.append(node.left)
 right_exact = (node.right.dtype=='float' or
 (hasattr(node.right, 'op') and node.right.op.__class__.__name__ in ['Add', 'Sub']))
 if (node.right.__class__.__name__=='BinOp' and
 node.right.op.__class__ in [primary, inverted] and right_exact):
 if node.op.__class__ is primary:
 collect_commutative(node.right, primary, inverted, terms_primary, terms_inverted,
 add_to_inverted=add_to_inverted)
 else:
 collect_commutative(node.right, primary, inverted, terms_primary, terms_inverted,
 add_to_inverted=not add_to_inverted)
 else:
 if (not add_to_inverted and op_primary) or (add_to_inverted and not op_primary):
 terms_primary.append(node.right)
 else:
 terms_inverted.append(node.right)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_images/frompapers.Sturzl_et_al_2000.1.png
90°

180°

270°

_images/frompapers.Clopath_et_al_2010_homeostasis.1.png
Synaptic Competition

5 10

Time [ms]

15

20

_images/compartmental.infinite_cable.1.png
v (mV

-67.0

-67.5

-68.0

—68.5

-69.0

-69.5

-70.0

-70.5
0

6
Time (ms)

10

12

_images/advanced.stochastic_odes.3.png
Mean absolute error

107

e o milstein
e e heun
10% o °
. .
L] ° °
.
10°
.
.
100
107 10 10"

dt (ms)

10°

_images/frompapers.Vogels_et_al_2011.1.png
9800 9850 9900 9950 10000
time (ms)

_images/1-intro-to-brian-neurons_image_36_0.png
08

07

06

0s

04

03

02

01

00
0

o

£

Time (ms)

E]

_images/1-intro-to-brian-neurons_image_32_0.png
10

— Brian
ga| L= Analytic
05
04
02
00
o g F 0 =

Time (ms)

_images/2-intro-to-brian-synapses_image_25_0.png
Neuron index

0

U
L —]
L SE— 8
— o | ,
e BB .
L SE— H .
e | i: .
e | & .
*——o e 2
— o
— o o

Souree Target P

Source neuron index

e

_images/morphology_random_section_2.png

_images/frompapers.Wang_Buszaki_1996.1.png
40

20

-20

—40

-60

-80

20

40

60

80

100

_images/synapses.state_variables.1.png
-68.5—mr—

—69.0 1
/j Synaptic weight

—69.5 1
-70.0
=70.5¢ 1
-71.01 1

=715} 1

20— |

20 40 60 80 100
Neuron index

_images/frompapers.Clopath_et_al_2010_no_homeostasis.1.png
Pairings

2. 110|| — Pre-Post

©
=

0 10 20 30 40 50
Pairing frequency [Hz]

_images/CUBA.1.png
n
E
o
£
E

X9pul UoInaN

_images/2-intro-to-brian-synapses_image_27_0.png
1600

1400

1200

1000

a0

&0

00

‘Target neuron position (um)

T200 0 20 400 60 @0 1000 1200 1400 1600
Source neuron position (um)

_images/compartmental.bipolar_with_inputs.1.png
Time (ms)

_images/1-intro-to-brian-neurons_image_48_0.png
xaput uoinay

_images/1-intro-to-brian-neurons_image_45_1.png
o £ E] w El
Time (ms)

_images/frompapers.Kremer_et_al_2011_barrel_cortex.1.png
360

320

280

240

200

160

120

80

40

_images/morphology_random_section_compartment_2.png

_images/COBAHH.1.png
v (mv)

60

40

20

-20

—40

-60

-80

-100
0

| ANy T

5

ol |

200

400

600
t(ms)

800

1000

_images/2-intro-to-brian-synapses_image_11_0.png
12

10

08

06

04

02

00

Neuron 0
Neuron 1
Neuron 1

0

]

Time (ms)

E]

_images/1-intro-to-brian-neurons_image_40_0.png
08

07

06

0s

04

03

02

01

00
0

o

£

Time (ms)

E]

_images/morphology_random_section_1.png

_images/frompapers.Brette_Guigon_2003.1.png
10

0.5

0.0

-0.5

-1.0

10

0.8

0.6

0.4

0.2

0.0

shared input

spiking activity

200

400 600
time (ms)

800

1000

_images/IF_curve_Hodgkin_Huxley.1.png
0.7

0.6

0.5

0.4

0.3

0.2

0.1

o o 9 2 2 o o oo
k 8 =n S m & B

(s/ds) a1e1 buny

90
80

1(nA)

_modules/brian2/codegen/generators/cpp_generator.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.codegen.generators.cpp_generator

import itertools

import numpy

from brian2.utils.stringtools import (deindent, stripped_deindented_lines,
 word_substitute)
from brian2.utils.logger import get_logger
from brian2.parsing.rendering import CPPNodeRenderer
from brian2.core.functions import Function, DEFAULT_FUNCTIONS
from brian2.core.preferences import prefs, BrianPreference
from brian2.core.variables import ArrayVariable

from .base import CodeGenerator

logger = get_logger(__name__)

__all__ = ['CPPCodeGenerator',
 'c_data_type'
]

[docs]def c_data_type(dtype):
 '''
 Gives the C language specifier for numpy data types. For example,
 ``numpy.int32`` maps to ``int32_t`` in C.
 '''
 # this handles the case where int is specified, it will be int32 or int64
 # depending on platform
 if dtype is int:
 dtype = numpy.array([1]).dtype.type
 if dtype is float:
 dtype = numpy.array([1.]).dtype.type

 if dtype == numpy.float32:
 dtype = 'float'
 elif dtype == numpy.float64:
 dtype = 'double'
 elif dtype == numpy.int8:
 dtype = 'int8_t'
 elif dtype == numpy.int16:
 dtype = 'int16_t'
 elif dtype == numpy.int32:
 dtype = 'int32_t'
 elif dtype == numpy.int64:
 dtype = 'int64_t'
 elif dtype == numpy.uint16:
 dtype = 'uint16_t'
 elif dtype == numpy.uint32:
 dtype = 'uint32_t'
 elif dtype == numpy.uint64:
 dtype = 'uint64_t'
 elif dtype == numpy.bool_ or dtype is bool:
 dtype = 'bool'
 else:
 raise ValueError("dtype " + str(dtype) + " not known.")
 return dtype

Preferences
prefs.register_preferences(
 'codegen.generators.cpp',
 'C++ codegen preferences',
 restrict_keyword = BrianPreference(
 default='__restrict',
 docs='''
 The keyword used for the given compiler to declare pointers as restricted.

 This keyword is different on different compilers, the default works for
 gcc and MSVS.
 ''',
),
 flush_denormals = BrianPreference(
 default=False,
 docs='''
 Adds code to flush denormals to zero.

 The code is gcc and architecture specific, so may not compile on all
 platforms. The code, for reference is::

 #define CSR_FLUSH_TO_ZERO (1 << 15)
 unsigned csr = __builtin_ia32_stmxcsr();
 csr |= CSR_FLUSH_TO_ZERO;
 __builtin_ia32_ldmxcsr(csr);

 Found at `<http://stackoverflow.com/questions/2487653/avoiding-denormal-values-in-c>`_.
 ''',
),
)

mod_support_code = ''
typestrs = ['unsigned char', 'char', 'unsigned short', 'short', 'unsigned int', 'int', 'unsigned long', 'long',
 'unsigned long long', 'long long', 'float', 'double', 'long double']
floattypestrs = ['float', 'double', 'long double']
for ix, xtype in enumerate(typestrs):
 for iy, ytype in enumerate(typestrs):
 hightype = typestrs[max(ix, iy)]
 if xtype in floattypestrs or ytype in floattypestrs:
 expr = 'fmod(fmod(x, y)+y, y)'
 else:
 expr = '((x%y)+y)%y'
 mod_support_code += '''
 inline {hightype} _brian_mod({xtype} ux, {ytype} uy)
 {{
 const {hightype} x = ({hightype})ux;
 const {hightype} y = ({hightype})uy;
 return {expr};
 }}
 '''.format(hightype=hightype, xtype=xtype, ytype=ytype, expr=expr)

_universal_support_code = deindent(mod_support_code)+'''
#ifdef _MSC_VER
#define _brian_pow(x, y) (pow((double)(x), (y)))
#else
#define _brian_pow(x, y) (pow((x), (y)))
#endif
'''

[docs]class CPPCodeGenerator(CodeGenerator):
 '''
 C++ language

 C++ code templates should provide Jinja2 macros with the following names:

 ``main``
 The main loop.
 ``support_code``
 The support code (function definitions, etc.), compiled in a separate
 file.

 For user-defined functions, there are two keys to provide:

 ``support_code``
 The function definition which will be added to the support code.
 ``hashdefine_code``
 The ``#define`` code added to the main loop.

 See `TimedArray` for an example of these keys.
 '''

 class_name = 'cpp'

 universal_support_code = _universal_support_code

 def __init__(self, *args, **kwds):
 super(CPPCodeGenerator, self).__init__(*args, **kwds)
 self.c_data_type = c_data_type

 @property
 def restrict(self):
 return prefs['codegen.generators.cpp.restrict_keyword'] + ' '

 @property
 def flush_denormals(self):
 return prefs['codegen.generators.cpp.flush_denormals']

 @staticmethod
[docs] def get_array_name(var, access_data=True):
 # We have to do the import here to avoid circular import dependencies.
 from brian2.devices.device import get_device
 device = get_device()
 if access_data:
 return '_ptr' + device.get_array_name(var)
 else:
 return device.get_array_name(var, access_data=False)

[docs] def translate_expression(self, expr):
 expr = word_substitute(expr, self.func_name_replacements)
 return CPPNodeRenderer().render_expr(expr).strip()

[docs] def translate_statement(self, statement):
 var, op, expr, comment = (statement.var, statement.op,
 statement.expr, statement.comment)
 # For C++ we replace complex expressions involving boolean variables into a sequence of
 # if/then expressions with simpler expressions. This is provided by the optimise_statements
 # function.
 if statement.used_boolean_variables is not None and len(statement.used_boolean_variables):
 used_boolvars = statement.used_boolean_variables
 bool_simp = statement.boolean_simplified_expressions
 if op == ':=':
 # we have to declare the variable outside the if/then statement (which
 # unfortunately means we can't make it const but the optimisation is worth
 # it anyway).
 codelines = [self.c_data_type(statement.dtype) + ' ' + var + ';']
 op = '='
 else:
 codelines = []
 firstline = True
 # bool assigns is a sequence of (var, value) pairs giving the conditions under
 # which the simplified expression simp_expr holds
 for bool_assigns, simp_expr in bool_simp.iteritems():
 # generate a boolean expression like ``var1 && var2 && !var3``
 atomics = []
 for boolvar, boolval in bool_assigns:
 if boolval:
 atomics.append(boolvar)
 else:
 atomics.append('!'+boolvar)
 if firstline:
 line = ''
 else:
 line = 'else '
 # only need another if statement when we have more than one boolean variables
 if firstline or len(used_boolvars)>1:
 line += 'if('+(' && '.join(atomics))+')'
 line += '\n '
 line += var + ' ' + op + ' ' + self.translate_expression(simp_expr) + ';'
 codelines.append(line)
 firstline = False
 code = '\n'.join(codelines)
 else:
 if op == ':=':
 decl = self.c_data_type(statement.dtype) + ' '
 op = '='
 if statement.constant:
 decl = 'const ' + decl
 else:
 decl = ''
 code = decl + var + ' ' + op + ' ' + self.translate_expression(expr) + ';'
 if len(comment):
 code += ' // ' + comment
 return code

[docs] def translate_to_read_arrays(self, statements):
 read, write, indices, conditional_write_vars = self.arrays_helper(statements)
 lines = []
 # index and read arrays (index arrays first)
 for varname in itertools.chain(indices, read):
 index_var = self.variable_indices[varname]
 var = self.variables[varname]
 if varname not in write:
 line = 'const '
 else:
 line = ''
 line = line + self.c_data_type(var.dtype) + ' ' + varname + ' = '
 line = line + self.get_array_name(var, self.variables) + '[' + index_var + '];'
 lines.append(line)
 return lines

[docs] def translate_to_declarations(self, statements):
 read, write, indices, conditional_write_vars = self.arrays_helper(statements)
 lines = []
 # simply declare variables that will be written but not read
 for varname in write:
 if varname not in read and varname not in indices:
 var = self.variables[varname]
 line = self.c_data_type(var.dtype) + ' ' + varname + ';'
 lines.append(line)
 return lines

[docs] def translate_to_statements(self, statements):
 read, write, indices, conditional_write_vars = self.arrays_helper(statements)
 lines = []
 # the actual code
 for stmt in statements:
 line = self.translate_statement(stmt)
 if stmt.var in conditional_write_vars:
 subs = {}
 condvar = conditional_write_vars[stmt.var]
 lines.append('if(%s)' % condvar)
 lines.append(' '+line)
 else:
 lines.append(line)
 return lines

[docs] def translate_to_write_arrays(self, statements):
 read, write, indices, conditional_write_vars = self.arrays_helper(statements)
 lines = []
 # write arrays
 for varname in write:
 index_var = self.variable_indices[varname]
 var = self.variables[varname]
 line = self.get_array_name(var, self.variables) + '[' + index_var + '] = ' + varname + ';'
 lines.append(line)
 return lines

[docs] def translate_one_statement_sequence(self, statements, scalar=False):
 # This function is refactored into four functions which perform the
 # four necessary operations. It's done like this so that code
 # deriving from this class can overwrite specific parts.
 lines = []
 # index and read arrays (index arrays first)
 lines += self.translate_to_read_arrays(statements)
 # simply declare variables that will be written but not read
 lines += self.translate_to_declarations(statements)
 # the actual code
 lines += self.translate_to_statements(statements)
 # write arrays
 lines += self.translate_to_write_arrays(statements)
 code = '\n'.join(lines)
 return stripped_deindented_lines(code)

[docs] def denormals_to_zero_code(self):
 if self.flush_denormals:
 return '''
 #define CSR_FLUSH_TO_ZERO (1 << 15)
 unsigned csr = __builtin_ia32_stmxcsr();
 csr |= CSR_FLUSH_TO_ZERO;
 __builtin_ia32_ldmxcsr(csr);
 '''
 else:
 return ''

 def _add_user_function(self, varname, variable):
 impl = variable.implementations[self.codeobj_class]
 support_code = []
 hash_defines = []
 pointers = []
 user_functions = [(varname, variable)]
 funccode = impl.get_code(self.owner)
 if isinstance(funccode, basestring):
 funccode = {'support_code': funccode}
 if funccode is not None:
 # To make namespace variables available to functions, we
 # create global variables and assign to them in the main
 # code
 func_namespace = impl.get_namespace(self.owner) or {}
 for ns_key, ns_value in func_namespace.iteritems():
 if hasattr(ns_value, 'dtype'):
 if ns_value.shape == ():
 raise NotImplementedError((
 'Directly replace scalar values in the function '
 'instead of providing them via the namespace'))
 type_str = self.c_data_type(ns_value.dtype) + '*'
 else: # e.g. a function
 type_str = 'py::object'
 support_code.append('static {0} _namespace{1};'.format(type_str,
 ns_key))
 pointers.append('_namespace{0} = {1};'.format(ns_key, ns_key))
 support_code.append(deindent(funccode.get('support_code', '')))
 hash_defines.append(deindent(funccode.get('hashdefine_code', '')))

 dep_hash_defines = []
 dep_pointers = []
 dep_support_code = []
 if impl.dependencies is not None:
 for dep_name, dep in impl.dependencies.iteritems():
 self.variables[dep_name] = dep
 hd, ps, sc, uf = self._add_user_function(dep_name, dep)
 dep_hash_defines.extend(hd)
 dep_pointers.extend(ps)
 dep_support_code.extend(sc)
 user_functions.extend(uf)

 return (dep_hash_defines + hash_defines,
 dep_pointers + pointers,
 dep_support_code + support_code,
 user_functions)

[docs] def determine_keywords(self):
 # set up the restricted pointers, these are used so that the compiler
 # knows there is no aliasing in the pointers, for optimisation
 pointers = []
 # It is possible that several different variable names refer to the
 # same array. E.g. in gapjunction code, v_pre and v_post refer to the
 # same array if a group is connected to itself
 handled_pointers = set()
 template_kwds = {}
 # Again, do the import here to avoid a circular dependency.
 from brian2.devices.device import get_device
 device = get_device()
 for varname, var in self.variables.iteritems():
 if isinstance(var, ArrayVariable):
 # This is the "true" array name, not the restricted pointer.
 array_name = device.get_array_name(var)
 pointer_name = self.get_array_name(var)
 if pointer_name in handled_pointers:
 continue
 if getattr(var, 'dimensions', 1) > 1:
 continue # multidimensional (dynamic) arrays have to be treated differently
 restrict = self.restrict
 # turn off restricted pointers for scalars for safety
 if var.scalar:
 restrict = ' '
 line = '{0}* {1} {2} = {3};'.format(self.c_data_type(var.dtype),
 restrict,
 pointer_name,
 array_name)
 pointers.append(line)
 handled_pointers.add(pointer_name)

 # set up the functions
 user_functions = []
 support_code = []
 hash_defines = []
 for varname, variable in self.variables.items():
 if isinstance(variable, Function):
 hd, ps, sc, uf = self._add_user_function(varname, variable)
 user_functions.extend(uf)
 support_code.extend(sc)
 pointers.extend(ps)
 hash_defines.extend(hd)

 # delete the user-defined functions from the namespace and add the
 # function namespaces (if any)
 for funcname, func in user_functions:
 del self.variables[funcname]
 func_namespace = func.implementations[self.codeobj_class].get_namespace(self.owner)
 if func_namespace is not None:
 self.variables.update(func_namespace)

 support_code.append(self.universal_support_code)

 keywords = {'pointers_lines': stripped_deindented_lines('\n'.join(pointers)),
 'support_code_lines': stripped_deindented_lines('\n'.join(support_code)),
 'hashdefine_lines': stripped_deindented_lines('\n'.join(hash_defines)),
 'denormals_code_lines': stripped_deindented_lines('\n'.join(self.denormals_to_zero_code())),
 }
 keywords.update(template_kwds)
 return keywords

##
Implement functions
##

Functions that exist under the same name in C++
for func in ['sin', 'cos', 'tan', 'sinh', 'cosh', 'tanh', 'exp', 'log',
 'log10', 'sqrt', 'ceil', 'floor']:
 DEFAULT_FUNCTIONS[func].implementations.add_implementation(CPPCodeGenerator,
 code=None)

Functions that need a name translation
for func, func_cpp in [('arcsin', 'asin'), ('arccos', 'acos'), ('arctan', 'atan'),
 ('int', 'int_') # from stdint_compat.h
]:
 DEFAULT_FUNCTIONS[func].implementations.add_implementation(CPPCodeGenerator,
 code=None,
 name=func_cpp)

abs_code = '''
#define _brian_abs std::abs
'''
DEFAULT_FUNCTIONS['abs'].implementations.add_implementation(CPPCodeGenerator,
 code=abs_code,
 name='_brian_abs')

clip_code = '''
 inline double _clip(const double value, const double a_min, const double a_max)
 {
	 if (value < a_min)
	 return a_min;
	 if (value > a_max)
	 return a_max;
	 return value;
	 }
 '''
DEFAULT_FUNCTIONS['clip'].implementations.add_implementation(CPPCodeGenerator,
 code=clip_code,
 name='_clip')

sign_code = '''
 template <typename T> inline int sign_(T val) {
 return (T(0) < val) - (val < T(0));
 }
 '''
DEFAULT_FUNCTIONS['sign'].implementations.add_implementation(CPPCodeGenerator,
 code=sign_code,
 name='sign_')

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_images/frompapers.Brunel_Hakim_1999.1.png
100

80

60

5000

4000

3000

2000

1000

100

80

60

40

20

_modules/brian2/codegen/generators/numpy_generator.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.codegen.generators.numpy_generator

import itertools

import numpy as np

from brian2.parsing.bast import brian_dtype_from_dtype
from brian2.parsing.rendering import NumpyNodeRenderer
from brian2.core.functions import DEFAULT_FUNCTIONS, Function
from brian2.core.variables import ArrayVariable
from brian2.utils.stringtools import get_identifiers, word_substitute, indent
from brian2.utils.logger import get_logger

from .base import CodeGenerator

__all__ = ['NumpyCodeGenerator']

logger = get_logger(__name__)

[docs]class VectorisationError(Exception):
 pass

[docs]class NumpyCodeGenerator(CodeGenerator):
 '''
 Numpy language

 Essentially Python but vectorised.
 '''

 class_name = 'numpy'

 _use_ufunc_at_vectorisation = True # allow this to be off for testing only

[docs] def translate_expression(self, expr):
 expr = word_substitute(expr, self.func_name_replacements)
 return NumpyNodeRenderer().render_expr(expr, self.variables).strip()

[docs] def translate_statement(self, statement):
 # TODO: optimisation, translate arithmetic to a sequence of inplace
 # operations like a=b+c -> add(b, c, a)
 var, op, expr, comment = (statement.var, statement.op,
 statement.expr, statement.comment)
 origop = op
 if op == ':=':
 op = '='
 # For numpy we replace complex expressions involving a single boolean variable into a
 # where(boolvar, expr_if_true, expr_if_false)
 if (statement.used_boolean_variables is not None and len(statement.used_boolean_variables)==1
 and brian_dtype_from_dtype(statement.dtype)=='float'
 and statement.complexity_std>sum(statement.complexities.values())):
 used_boolvars = statement.used_boolean_variables
 bool_simp = statement.boolean_simplified_expressions
 boolvar = used_boolvars[0]
 for bool_assigns, simp_expr in bool_simp.iteritems():
 _, boolval = bool_assigns[0]
 if boolval:
 expr_true = simp_expr
 else:
 expr_false = simp_expr
 code = '{var} {op} _numpy.where({boolvar}, {expr_true}, {expr_false})'.format(
 var=var, op=op, boolvar=boolvar, expr_true=expr_true, expr_false=expr_false)
 else:
 code = var + ' ' + op + ' ' + self.translate_expression(expr)
 if len(comment):
 code += ' # ' + comment
 return code

[docs] def ufunc_at_vectorisation(self, statement, variables, indices,
 conditional_write_vars, created_vars, used_variables):
 if not self._use_ufunc_at_vectorisation:
 raise VectorisationError()
 # Avoids circular import
 from brian2.devices.device import device

 # See https://github.com/brian-team/brian2/pull/531 for explanation
 used = set(get_identifiers(statement.expr))
 used = used.intersection(k for k in variables.keys() if k in indices and indices[k]!='_idx')
 used_variables.update(used)
 if statement.var in used_variables:
 raise VectorisationError()

 expr = NumpyNodeRenderer().render_expr(statement.expr)

 if statement.op == ':=' or indices[statement.var] == '_idx' or not statement.inplace:
 if statement.op == ':=':
 op = '='
 else:
 op = statement.op
 line = '{var} {op} {expr}'.format(var=statement.var, op=op, expr=expr)
 elif statement.inplace:
 if statement.op == '+=':
 ufunc_name = '_numpy.add'
 elif statement.op == '*=':
 ufunc_name = '_numpy.multiply'
 elif statement.op == '/=':
 ufunc_name = '_numpy.divide'
 elif statement.op == '-=':
 ufunc_name = '_numpy.subtract'
 else:
 raise VectorisationError()

 line = '{ufunc_name}.at({array_name}, {idx}, {expr})'.format(
 ufunc_name=ufunc_name,
 array_name=device.get_array_name(variables[statement.var]),
 idx=indices[statement.var],
 expr=expr)
 line = self.conditional_write(line, statement, variables,
 conditional_write_vars=conditional_write_vars,
 created_vars=created_vars)
 else:
 raise VectorisationError()

 if len(statement.comment):
 line += ' # ' + statement.comment

 return line

[docs] def vectorise_code(self, statements, variables, variable_indices, index='_idx'):
 created_vars = {stmt.var for stmt in statements if stmt.op == ':='}
 try:
 lines = []
 used_variables = set()
 for statement in statements:
 lines.append('# Abstract code: {var} {op} {expr}'.format(var=statement.var,
 op=statement.op,
 expr=statement.expr))
 # We treat every statement individually with its own read and write code
 # to be on the safe side
 read, write, indices, conditional_write_vars = self.arrays_helper([statement])
 # We make sure that we only add code to `lines` after it went
 # through completely
 ufunc_lines = []
 # No need to load a variable if it is only in read because of
 # the in-place operation
 if (statement.inplace and
 variable_indices[statement.var] != '_idx' and
 statement.var not in get_identifiers(statement.expr)):
 read = read - {statement.var}
 ufunc_lines.extend(self.read_arrays(read, write, indices,
 variables, variable_indices))
 ufunc_lines.append(self.ufunc_at_vectorisation(statement,
 variables,
 variable_indices,
 conditional_write_vars,
 created_vars,
 used_variables,
))
 # Do not write back such values, the ufuncs have modified the
 # underlying array already
 if statement.inplace and variable_indices[statement.var] != '_idx':
 write = write - {statement.var}
 ufunc_lines.extend(self.write_arrays([statement], read, write,
 variables,
 variable_indices))
 lines.extend(ufunc_lines)
 except VectorisationError:
 if self._use_ufunc_at_vectorisation:
 logger.info("Failed to vectorise code, falling back on Python loop: note that "
 "this will be very slow! Switch to another code generation target for "
 "best performance (e.g. cython or weave). First line is: "+str(statements[0]),
 once=True)
 lines = []
 lines.extend(['_full_idx = _idx',
 'for _idx in _full_idx:'])
 read, write, indices, conditional_write_vars = self.arrays_helper(statements)
 lines.extend(indent(code) for code in
 self.read_arrays(read, write, indices,
 variables, variable_indices))
 for statement in statements:
 line = self.translate_statement(statement)
 if statement.var in conditional_write_vars:
 lines.append(indent('if {}:'.format(conditional_write_vars[statement.var])))
 lines.append(indent(line, 2))
 else:
 lines.append(indent(line))
 lines.extend(indent(code) for code in
 self.write_arrays(statements, read, write,
 variables, variable_indices))
 return lines

[docs] def read_arrays(self, read, write, indices, variables, variable_indices):
 # index and read arrays (index arrays first)
 lines = []
 for varname in itertools.chain(indices, read):
 var = variables[varname]
 index = variable_indices[varname]
 # if index in iterate_all:
 # line = '{varname} = {array_name}'
 # else:
 # line = '{varname} = {array_name}.take({index})'
 # line = line.format(varname=varname, array_name=self.get_array_name(var), index=index)
 line = varname + ' = ' + self.get_array_name(var)
 if not index in self.iterate_all:
 line += '[' + index + ']'
 elif varname in write:
 # avoid potential issues with aliased variables, see github #259
 line += '.copy()'
 lines.append(line)
 return lines

[docs] def write_arrays(self, statements, read, write, variables, variable_indices):
 # write arrays
 lines = []
 for varname in write:
 var = variables[varname]
 index_var = variable_indices[varname]
 # check if all operations were inplace and we're operating on the
 # whole vector, if so we don't need to write the array back
 if index_var not in self.iterate_all or varname in read:
 all_inplace = False
 else:
 all_inplace = True
 for stmt in statements:
 if stmt.var == varname and not stmt.inplace:
 all_inplace = False
 break
 if not all_inplace:
 line = self.get_array_name(var)
 if index_var in self.iterate_all:
 line = line + '[:]'
 else:
 line = line + '[' + index_var + ']'
 line = line + ' = ' + varname
 lines.append(line)
 return lines

[docs] def conditional_write(self, line, stmt, variables, conditional_write_vars,
 created_vars):
 if stmt.var in conditional_write_vars:
 subs = {}
 index = conditional_write_vars[stmt.var]
 # we replace all var with var[index], but actually we use this repl_string first because
 # we don't want to end up with lines like x[not_refractory[not_refractory]] when
 # multiple substitution passes are invoked
 repl_string = '#$(@#&$@$*U#@)$@(#' # this string shouldn't occur anywhere I hope! :)
 for varname, var in variables.items():
 if isinstance(var, ArrayVariable) and not var.scalar:
 subs[varname] = varname + '[' + repl_string + ']'
 # all newly created vars are arrays and will need indexing
 for varname in created_vars:
 subs[varname] = varname + '[' + repl_string + ']'
 line = word_substitute(line, subs)
 line = line.replace(repl_string, index)
 return line

[docs] def translate_one_statement_sequence(self, statements, scalar=False):
 variables = self.variables
 variable_indices = self.variable_indices
 read, write, indices, conditional_write_vars = self.arrays_helper(statements)
 lines = []

 all_unique = not self.has_repeated_indices(statements)

 if scalar or all_unique:
 # Simple translation
 lines.extend(self.read_arrays(read, write, indices, variables,
 variable_indices))
 created_vars = {stmt.var for stmt in statements if stmt.op == ':='}
 for stmt in statements:

 line = self.translate_statement(stmt)
 line = self.conditional_write(line, stmt, variables,
 conditional_write_vars,
 created_vars)
 lines.append(line)
 lines.extend(self.write_arrays(statements, read, write, variables,
 variable_indices))
 else:
 # More complex translation to deal with repeated indices
 lines.extend(self.vectorise_code(statements, variables,
 variable_indices))

 # Make sure we do not use the __call__ function of Function objects but
 # rather the Python function stored internally. The __call__ function
 # would otherwise return values with units
 for varname, var in variables.iteritems():
 if isinstance(var, Function):
 variables[varname] = var.implementations[self.codeobj_class].get_code(self.owner)

 return lines

[docs] def determine_keywords(self):
 try:
 import scipy
 scipy_available = True
 except ImportError:
 scipy_available = False

 return {'_scipy_available': scipy_available}

##
Implement functions
##
Functions that exist under the same name in numpy
for func_name, func in [('sin', np.sin), ('cos', np.cos), ('tan', np.tan),
 ('sinh', np.sinh), ('cosh', np.cosh), ('tanh', np.tanh),
 ('exp', np.exp), ('log', np.log), ('log10', np.log10),
 ('sqrt', np.sqrt), ('arcsin', np.arcsin),
 ('arccos', np.arccos), ('arctan', np.arctan),
 ('abs', np.abs), ('sign', np.sign)]:
 DEFAULT_FUNCTIONS[func_name].implementations.add_implementation(NumpyCodeGenerator,
 code=func)

Functions that are implemented in a somewhat special way
[docs]def randn_func(vectorisation_idx):
 try:
 N = len(vectorisation_idx)
 except TypeError:
 N = int(vectorisation_idx)

 numbers = np.random.randn(N)
 if N == 1:
 return numbers[0]
 else:
 return numbers

[docs]def rand_func(vectorisation_idx):
 try:
 N = len(vectorisation_idx)
 except TypeError:
 N = int(vectorisation_idx)

 numbers = np.random.rand(N)
 if N == 1:
 return numbers[0]
 else:
 return numbers

DEFAULT_FUNCTIONS['randn'].implementations.add_implementation(NumpyCodeGenerator,
 code=randn_func)
DEFAULT_FUNCTIONS['rand'].implementations.add_implementation(NumpyCodeGenerator,
 code=rand_func)
clip_func = lambda array, a_min, a_max: np.clip(array, a_min, a_max)
DEFAULT_FUNCTIONS['clip'].implementations.add_implementation(NumpyCodeGenerator,
 code=clip_func)
int_func = lambda value: np.int32(value)
DEFAULT_FUNCTIONS['int'].implementations.add_implementation(NumpyCodeGenerator,
 code=int_func)
ceil_func = lambda value: np.int32(np.ceil(value))
DEFAULT_FUNCTIONS['ceil'].implementations.add_implementation(NumpyCodeGenerator,
 code=ceil_func)
floor_func = lambda value: np.int32(np.floor(value))
DEFAULT_FUNCTIONS['floor'].implementations.add_implementation(NumpyCodeGenerator,
 code=floor_func)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_images/1-intro-to-brian-neurons_image_57_0.png
0 &
Time (ms)

_modules/brian2/codegen/runtime/cython_rt/cython_rt.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.codegen.runtime.cython_rt.cython_rt

import os
import sys

import numpy

from brian2.core.variables import (DynamicArrayVariable, ArrayVariable,
 AuxiliaryVariable, Subexpression)
from brian2.core.preferences import prefs, BrianPreference
from brian2.utils.logger import get_logger
from brian2.utils.stringtools import get_identifiers

from ...codeobject import constant_or_scalar
from ..numpy_rt import NumpyCodeObject
from ...templates import Templater
from ...generators.cython_generator import (CythonCodeGenerator, get_cpp_dtype,
 get_numpy_dtype)
from ...targets import codegen_targets
from ...cpp_prefs import get_compiler_and_args
from .extension_manager import cython_extension_manager

__all__ = ['CythonCodeObject']

logger = get_logger(__name__)

Preferences
prefs.register_preferences(
 'codegen.runtime.cython',
 'Cython runtime codegen preferences',
 multiprocess_safe = BrianPreference(
 default=True,
 docs='''
 Whether to use a lock file to prevent simultaneous write access
 to cython .pyx and .so files.
 '''
),
 cache_dir = BrianPreference(
 default=None,
 validator=lambda x: x is None or isinstance(x, basestring),
 docs='''
 Location of the cache directory for Cython files. By default,
 will be stored in a ``brian_extensions`` subdirectory
 where Cython inline stores its temporary files
 (the result of ``get_cython_cache_dir()``).
 '''
),
)

[docs]class CythonCodeObject(NumpyCodeObject):
 '''
 Execute code using Cython.
 '''
 templater = Templater('brian2.codegen.runtime.cython_rt', '.pyx',
 env_globals={'cpp_dtype': get_cpp_dtype,
 'numpy_dtype': get_numpy_dtype,
 'dtype': numpy.dtype,
 'constant_or_scalar': constant_or_scalar})
 generator_class = CythonCodeGenerator
 class_name = 'cython'

 def __init__(self, owner, code, variables, variable_indices,
 template_name, template_source, name='cython_code_object*'):
 super(CythonCodeObject, self).__init__(owner, code, variables,
 variable_indices,
 template_name, template_source,
 name=name)
 self.compiler, self.extra_compile_args = get_compiler_and_args()
 self.extra_link_args = list(prefs['codegen.cpp.extra_link_args'])
 self.include_dirs = list(prefs['codegen.cpp.include_dirs'])
 self.include_dirs += [os.path.join(sys.prefix, 'include')]
 self.library_dirs = list(prefs['codegen.cpp.library_dirs'])
 self.runtime_library_dirs = list(prefs['codegen.cpp.runtime_library_dirs'])
 self.libraries = list(prefs['codegen.cpp.libraries'])

 @classmethod
[docs] def is_available(cls):
 try:
 compiler, extra_compile_args = get_compiler_and_args()
 code = '''
 def main():
 cdef int x
 x = 0'''
 compiled = cython_extension_manager.create_extension(code,
 compiler=compiler,
 extra_compile_args=extra_compile_args,
 extra_link_args=prefs['codegen.cpp.extra_link_args'],
 include_dirs=prefs['codegen.cpp.include_dirs'],
 library_dirs=prefs['codegen.cpp.library_dirs'])
 compiled.main()
 return True
 except Exception as ex:
 logger.warn(('Cannot use Cython, a test compilation '
 'failed: %s (%s)' % (str(ex),
 ex.__class__.__name__)) ,
 'failed_compile_test')
 return False

[docs] def compile(self):
 self.compiled_code = cython_extension_manager.create_extension(
 self.code,
 libraries=self.libraries,
 extra_compile_args=self.extra_compile_args,
 extra_link_args=self.extra_link_args,
 include_dirs=self.include_dirs,
 library_dirs=self.library_dirs,
 compiler=self.compiler,
 owner_name=self.owner.name+'_'+self.template_name,
)

[docs] def run(self):
 return self.compiled_code.main(self.namespace)

 # the following are copied from WeaveCodeObject

[docs] def variables_to_namespace(self):

 # Variables can refer to values that are either constant (e.g. dt)
 # or change every timestep (e.g. t). We add the values of the
 # constant variables here and add the names of non-constant variables
 # to a list

 # A list containing tuples of name and a function giving the value
 self.nonconstant_values = []

 for name, var in self.variables.iteritems():
 if isinstance(var, (AuxiliaryVariable, Subexpression)):
 continue
 try:
 value = var.get_value()
 except (TypeError, AttributeError):
 # A dummy Variable without value or a function
 self.namespace[name] = var
 continue

 if isinstance(var, ArrayVariable):
 self.namespace[self.device.get_array_name(var,
 self.variables)] = value
 self.namespace['_num'+name] = var.get_len()
 if var.scalar and var.constant:
 self.namespace[name] = value.item()
 else:
 self.namespace[name] = value

 if isinstance(var, DynamicArrayVariable):
 dyn_array_name = self.generator_class.get_array_name(var,
 access_data=False)
 self.namespace[dyn_array_name] = self.device.get_value(var,
 access_data=False)

 # Also provide the Variable object itself in the namespace (can be
 # necessary for resize operations, for example)
 self.namespace['_var_'+name] = var

 # Get all identifiers in the code -- note that this is not a smart
 # function, it will get identifiers from strings, comments, etc. This
 # is not a problem here, since we only use this list to filter out
 # things. If we include something incorrectly, this only means that we
 # will pass something into the namespace unnecessarily.
 all_identifiers = get_identifiers(self.code)
 # Filter out all unneeded objects
 self.namespace = {k: v for k, v in self.namespace.iteritems()
 if k in all_identifiers}

 # There is one type of objects that we have to inject into the
 # namespace with their current value at each time step: dynamic
 # arrays that change in size during runs, where the size change is not
 # initiated by the template itself
 for name, var in self.variables.iteritems():
 if (isinstance(var, DynamicArrayVariable) and
 var.needs_reference_update):
 array_name = self.device.get_array_name(var, self.variables)
 if array_name in self.namespace:
 self.nonconstant_values.append((array_name, var.get_value))
 if '_num'+name in self.namespace:
 self.nonconstant_values.append(('_num'+name, var.get_len))

[docs] def update_namespace(self):
 # update the values of the non-constant values in the namespace
 for name, func in self.nonconstant_values:
 self.namespace[name] = func()

codegen_targets.add(CythonCodeObject)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_images/frompapers.Brette_2012.Fig5A.1.png
60

40

20

-20

—40

-80

-100
0

100

200

300

400

500

_modules/brian2/codegen/runtime/cython_rt/extension_manager.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.codegen.runtime.cython_rt.extension_manager

'''
Cython automatic extension builder/manager

Inspired by IPython's Cython cell magics, see:
https://github.com/ipython/ipython/blob/master/IPython/extensions/cythonmagic.py
'''
import imp
import os
import sys
import time

try:
 import msvcrt
except ImportError:
 msvcrt = None
 import fcntl

try:
 import hashlib
except ImportError:
 import md5 as hashlib

from distutils.core import Distribution, Extension
from distutils.command.build_ext import build_ext

try:
 import Cython
 import Cython.Compiler as Cython_Compiler
 import Cython.Build as Cython_Build
 from Cython.Utils import get_cython_cache_dir
except ImportError:
 Cython = None

from brian2.codegen.cpp_prefs import update_for_cross_compilation
from brian2.utils.logger import std_silent, get_logger
from brian2.utils.stringtools import deindent
from brian2.core.preferences import prefs

__all__ = ['cython_extension_manager']

logger = get_logger(__name__)

[docs]class CythonExtensionManager(object):
 def __init__(self):
 self._code_cache = {}

[docs] def create_extension(self, code, force=False, name=None,
 include_dirs=None,
 library_dirs=None,
 runtime_library_dirs=None,
 extra_compile_args=None,
 extra_link_args=None,
 libraries=None,
 compiler=None,
 owner_name='',
):

 self._simplify_paths()

 if Cython is None:
 raise ImportError('Cython is not available')

 code = deindent(code)

 lib_dir = prefs.codegen.runtime.cython.cache_dir
 if lib_dir is None:
 lib_dir = os.path.join(get_cython_cache_dir(), 'brian_extensions')
 if '~' in lib_dir:
 lib_dir = os.path.expanduser(lib_dir)
 try:
 os.makedirs(lib_dir)
 except OSError:
 if not os.path.exists(lib_dir):
 raise IOError("Couldn't create Cython cache directory '%s', try setting the "
 "cache directly with prefs.codegen.runtime.cython.cache_dir." % lib_dir)

 key = code, sys.version_info, sys.executable, Cython.__version__

 if force:
 # Force a new module name by adding the current time to the
 # key which is hashed to determine the module name.
 key += time.time(),

 if key in self._code_cache:
 return self._code_cache[key]

 if name is not None:
 module_name = name#py3compat.unicode_to_str(args.name)
 else:
 module_name = "_cython_magic_" + hashlib.md5(str(key).encode('utf-8')).hexdigest()
 if owner_name:
 logger.diagnostic('"{owner_name}" using Cython module "{module_name}"'.format(owner_name=owner_name,
 module_name=module_name))

 module_path = os.path.join(lib_dir, module_name + self.so_ext)

 if prefs['codegen.runtime.cython.multiprocess_safe']:
 lock_file = os.path.join(lib_dir, module_name + '.lock')
 with open(lock_file, 'w') as f:
 if msvcrt:
 msvcrt.locking(f.fileno(), msvcrt.LK_RLCK,
 os.stat(lock_file).st_size)
 else:
 fcntl.flock(f, fcntl.LOCK_EX)
 return self._load_module(module_path, include_dirs,
 library_dirs,
 extra_compile_args, extra_link_args,
 libraries, code, lib_dir, module_name,
 runtime_library_dirs, compiler, key)
 else:
 return self._load_module(module_path, include_dirs, library_dirs,
 extra_compile_args, extra_link_args,
 libraries, code, lib_dir, module_name,
 runtime_library_dirs, compiler, key)

 @property
 def so_ext(self):
 """The extension suffix for compiled modules."""
 try:
 return self._so_ext
 except AttributeError:
 self._so_ext = self._get_build_extension().get_ext_filename('')
 return self._so_ext

 def _clear_distutils_mkpath_cache(self):
 """clear distutils mkpath cache

 prevents distutils from skipping re-creation of dirs that have been removed
 """
 try:
 from distutils.dir_util import _path_created
 except ImportError:
 pass
 else:
 _path_created.clear()

 def _get_build_extension(self, compiler=None):
 self._clear_distutils_mkpath_cache()
 dist = Distribution()
 config_files = dist.find_config_files()
 try:
 config_files.remove('setup.cfg')
 except ValueError:
 pass
 dist.parse_config_files(config_files)
 build_extension = build_ext(dist)
 if compiler is not None:
 build_extension.compiler = compiler
 build_extension.finalize_options()
 return build_extension

 def _load_module(self, module_path, include_dirs, library_dirs,
 extra_compile_args, extra_link_args, libraries, code,
 lib_dir, module_name, runtime_library_dirs, compiler,
 key):
 have_module = os.path.isfile(module_path)

 if not have_module:
 if include_dirs is None:
 include_dirs = []
 if library_dirs is None:
 library_dirs = []
 if extra_compile_args is None:
 extra_compile_args = []
 if extra_link_args is None:
 extra_link_args = []
 if libraries is None:
 libraries = []

 c_include_dirs = include_dirs
 if 'numpy' in code:
 import numpy
 c_include_dirs.append(numpy.get_include())

 # TODO: We should probably have a special folder just for header
 # files that are shared between different codegen targets
 import brian2.synapses as synapses
 synapses_dir = os.path.dirname(synapses.__file__)
 c_include_dirs.append(synapses_dir)

 pyx_file = os.path.join(lib_dir, module_name + '.pyx')
 # ignore Python 3 unicode stuff for the moment
 #pyx_file = py3compat.cast_bytes_py2(pyx_file, encoding=sys.getfilesystemencoding())
 #with io.open(pyx_file, 'w') as f:#, encoding='utf-8') as f:
 # f.write(code)
 open(pyx_file, 'w').write(code)

 update_for_cross_compilation(library_dirs,
 extra_compile_args,
 extra_link_args, logger=logger)

 extension = Extension(
 name=module_name,
 sources=[pyx_file],
 include_dirs=c_include_dirs,
 library_dirs=library_dirs,
 runtime_library_dirs=runtime_library_dirs,
 extra_compile_args=extra_compile_args,
 extra_link_args=extra_link_args,
 libraries=libraries,
 language='c++',
)
 build_extension = self._get_build_extension(compiler=compiler)
 try:
 opts = dict(
 quiet=True,
 annotate=False,
 force=True,
)
 # suppresses the output on stdout
 with std_silent():
 build_extension.extensions = Cython_Build.cythonize([extension], **opts)

 build_extension.build_temp = os.path.dirname(pyx_file)
 build_extension.build_lib = lib_dir
 build_extension.run()
 except Cython_Compiler.Errors.CompileError:
 return

 module = imp.load_dynamic(module_name, module_path)
 self._code_cache[key] = module
 return module
 #self._import_all(module)

 def _simplify_paths(self):
 if 'lib' in os.environ:
 os.environ['lib'] = simplify_path_env_var(os.environ['lib'])
 if 'include' in os.environ:
 os.environ['include'] = simplify_path_env_var(os.environ['include'])

cython_extension_manager = CythonExtensionManager()

[docs]def simplify_path_env_var(path):
 allpaths = path.split(os.pathsep)
 knownpaths = set()
 uniquepaths = []
 for p in allpaths:
 if p not in knownpaths:
 knownpaths.add(p)
 uniquepaths.append(p)
 return os.pathsep.join(uniquepaths)

if __name__=='__main__':
 code = '''
 def f(double x):
 return x*x
 '''
 man = CythonExtensionManager()
 mod = man.create_extension(code)
 print mod.f(2)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_images/1-intro-to-brian-neurons_image_43_0.png
08

07

06

0s

04

03

02

01

00
0

o

£

Time (ms)

E]

_modules/brian2/codegen/runtime/numpy_rt/numpy_rt.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.codegen.runtime.numpy_rt.numpy_rt

'''
Module providing `NumpyCodeObject`.
'''
import sys

import numpy as np

from brian2.core.base import brian_object_exception
from brian2.core.preferences import prefs, BrianPreference
from brian2.core.variables import (DynamicArrayVariable, ArrayVariable,
 AuxiliaryVariable, Subexpression)

from ...codeobject import CodeObject, constant_or_scalar

from ...templates import Templater
from ...generators.numpy_generator import NumpyCodeGenerator
from ...targets import codegen_targets

__all__ = ['NumpyCodeObject']

Preferences
prefs.register_preferences(
 'codegen.runtime.numpy',
 'Numpy runtime codegen preferences',
 discard_units = BrianPreference(
 default=False,
 docs='''
 Whether to change the namespace of user-specifed functions to remove
 units.
 '''
)
)

[docs]class NumpyCodeObject(CodeObject):
 '''
 Execute code using Numpy

 Default for Brian because it works on all platforms.
 '''
 templater = Templater('brian2.codegen.runtime.numpy_rt', '.py_',
 env_globals={'constant_or_scalar': constant_or_scalar})
 generator_class = NumpyCodeGenerator
 class_name = 'numpy'

 def __init__(self, owner, code, variables, variable_indices,
 template_name, template_source, name='numpy_code_object*'):
 from brian2.devices.device import get_device
 self.device = get_device()
 self.namespace = {'_owner': owner,
 # TODO: This should maybe go somewhere else
 'logical_not': np.logical_not}
 CodeObject.__init__(self, owner, code, variables, variable_indices,
 template_name, template_source, name=name)
 self.variables_to_namespace()

 @classmethod
[docs] def is_available(cls):
 # no test necessary for numpy
 return True

[docs] def variables_to_namespace(self):
 # Variables can refer to values that are either constant (e.g. dt)
 # or change every timestep (e.g. t). We add the values of the
 # constant variables here and add the names of non-constant variables
 # to a list

 # A list containing tuples of name and a function giving the value
 self.nonconstant_values = []

 for name, var in self.variables.iteritems():
 if isinstance(var, (AuxiliaryVariable, Subexpression)):
 continue

 try:
 if not hasattr(var, 'get_value'):
 raise TypeError()
 value = var.get_value()
 except TypeError:
 # A dummy Variable without value or a function
 self.namespace[name] = var
 continue

 if isinstance(var, ArrayVariable):
 self.namespace[self.generator_class.get_array_name(var)] = value
 if var.scalar and var.constant:
 self.namespace[name] = value[0]
 else:
 self.namespace[name] = value

 if isinstance(var, DynamicArrayVariable):
 dyn_array_name = self.generator_class.get_array_name(var,
 access_data=False)
 self.namespace[dyn_array_name] = self.device.get_value(var,
 access_data=False)

 # Also provide the Variable object itself in the namespace (can be
 # necessary for resize operations, for example)
 self.namespace['_var_'+name] = var

 # There is one type of objects that we have to inject into the
 # namespace with their current value at each time step: dynamic
 # arrays that change in size during runs (i.e. not synapses but
 # e.g. the structures used in monitors)
 if (isinstance(var, DynamicArrayVariable) and
 var.needs_reference_update):
 self.nonconstant_values.append((self.generator_class.get_array_name(var,
 self.variables),
 var.get_value))

[docs] def update_namespace(self):
 # update the values of the non-constant values in the namespace
 for name, func in self.nonconstant_values:
 self.namespace[name] = func()

[docs] def compile(self):
 super(NumpyCodeObject, self).compile()
 self.compiled_code = compile(self.code, '(string)', 'exec')

[docs] def run(self):
 try:
 exec self.compiled_code in self.namespace
 except Exception as exc:
 message = ('An exception occured during the execution of code '
 'object {}.\n').format(self.name)
 lines = self.code.split('\n')
 message += 'The error was raised in the following line:\n'
 _, _, tb = sys.exc_info()
 tb = tb.tb_next # Line in the code object's code
 message += lines[tb.tb_lineno - 1] + '\n'
 raise brian_object_exception(message, self.owner, exc)
 # output variables should land in the variable name _return_values
 if '_return_values' in self.namespace:
 return self.namespace['_return_values']

codegen_targets.add(NumpyCodeObject)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_images/1-intro-to-brian-neurons_image_34_0.png
o

£

£
Time (ms)

_modules/brian2/codegen/runtime/numpy_rt/synapse_vectorisation.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.codegen.runtime.numpy_rt.synapse_vectorisation

'''
Module for efficient vectorisation of synapses code
'''
from brian2.utils.logger import get_logger
from brian2.utils.stringtools import get_identifiers, word_substitute

__all__ = ['vectorise_synapses_code', 'SynapseVectorisationError']

logger = get_logger(__name__)

[docs]class SynapseVectorisationError(Exception):
 pass

[docs]def ufunc_at_vectorisation(statements, variables, indices, index):
 '''
 '''
 # We assume that the code has passed the test for synapse order independence

 main_index_variables = [v for v in variables if indices[v] == index]

 lines = []
 need_unique_indices = set()

 for statement in statements:
 vars_in_expr = get_identifiers(statement.expr).intersection(variables)
 subs = {}
 for var in vars_in_expr:
 subs[var] = '{var}[{idx}]'.format(var=var, idx=indices[var])
 expr = word_substitute(statement.expr, subs)
 if statement.var in main_index_variables:
 line = '{var}[{idx}] {op} {expr}'.format(var=statement.var,
 op=statement.op,
 expr=expr,
 idx=index)
 lines.append(line)
 else:
 if statement.inplace:
 if statement.op=='+=':
 ufunc_name = '_numpy.add'
 elif statement.op=='*=':
 ufunc_name = '_numpy.multiply'
 else:
 raise SynapseVectorisationError()
 line = '{ufunc_name}.at({var}, {idx}, {expr})'.format(ufunc_name=ufunc_name,
 var=statement.var,
 idx=indices[statement.var],
 expr=expr)
 lines.append(line)
 else:
 # if statement is not in-place then we assume the expr has no synaptic
 # variables in it otherwise it would have failed the order independence
 # check. In this case, we only need to work with the unique indices
 need_unique_indices.add(indices[statement.var])
 idx = '_unique_' + indices[statement.var]
 expr = word_substitute(expr, {indices[statement.var]: idx})
 line = '{var}[{idx}] = {expr}'.format(var=statement.var,
 idx=idx, expr=expr)
 lines.append(line)

 for unique_idx in need_unique_indices:
 lines.insert(0, '_unique_{idx} = _numpy.unique({idx})'.format(idx=unique_idx))

 return '\n'.join(lines)

 © Copyright 2012, Brian authors.
 Created using Sphinx 1.4.6.

_images/compartmental.bipolar_cell.1.png
10

20

30

40

50

10

30
Time (ms)

40

50

60

_modules/brian2/spatialneuron/morphology.xhtml

 Navigation

 		
 index

 		
 modules |

 		Brian 2 2.0 documentation »

 		Module code »

 Source code for brian2.spatialneuron.morphology

'''
Neuronal morphology module.
This module defines classes to load and build neuronal morphologies.
'''
import abc
import numbers
from abc import abstractmethod
from collections import OrderedDict, defaultdict, namedtuple
import os

from brian2.units.allunits import meter
from brian2.utils.logger import get_logger
from brian2.units.stdunits import um
from brian2.units.fundamentalunits import (have_same_dimensions, Quantity,
 check_units, DimensionMismatchError)
from brian2 import numpy as np

logger = get_logger(__name__)

__all__ = ['Morphology', 'Section', 'Cylinder', 'Soma']

Node = namedtuple('Node',
 field_names='index,comp_name,x,y,z,diameter,parent,children')

def _to_meters(value):
 '''
 Helper function to convert a floating point value (or array) to a `Quantity`
 in units of "meter", but also allow for ``None`` and return it as it is.
 '''
 if value is None:
 return None
 else:
 return Quantity(value, dim=meter.dim)

def _from_morphology(variable, i, j):
 '''
 Helper function to return coordinates from a main morphology (used by
 `SubMorphology`), dealing with ``None``.
 '''
 if variable is None:
 return None
 return variable[i:j]

[docs]class MorphologyIndexWrapper(object):
 '''
 A simpler version of `~brian2.groups.group.IndexWrapper`, not allowing for
 string indexing (`Morphology` is not a `Group`). It allows to use
 ``morphology.indices[...]`` instead of ``morphology[...]._indices()``.
 '''
 def __init__(self, morphology):
 self.morphology = morphology

 def __getitem__(self, item):
 if isinstance(item, basestring):
 raise NotImplementedError(('Morphologies do not support string '
 'indexing'))
 assert isinstance(self.morphology, (SubMorphology, Morphology))
 return self.morphology._indices(item)

def _calc_start_idx(section):
 '''
 Calculate the absolute start index that will be used by a flattened
 representation.
 '''
 # calculate the absolute start index of this section
 # 1. find the root of the tree
 root = section
 while root._parent is not None:
 root = root._parent
 # 2. go down from the root and advance the indices until we find
 # the current section
 start_idx, found = _find_start_index(root, section)
 assert found
 return start_idx

def _find_start_index(current, target_section, index=0):
 if current == target_section:
 return index, True
 index += current.n
 for child in current.children:
 if child == target_section:
 return index, True
 else:
 index, found = _find_start_index(child, target_section, index)
 if found:
 return index, True
 return index, False

[docs]class Topology(object):
 '''
 A representation of the topology of a `Morphology`. Has a useful string
 representation, inspired by NEURON's ``topology`` function.
 '''
 def __init__(self, morphology):
 self.morphology = morphology

 def __str__(self):
 # TODO: Make sure that the shown compartments do not get out of hand
 divisor = 1
 return Topology._str_topology(self.morphology, compartments_divisor=divisor)

 @staticmethod
 def _str_topology(morphology, indent=0, named_path='',
 compartments_divisor=1, parent=None):
 '''
 A simple string-based representation of a morphology. Inspired by
 NEURON's ``topology`` function.
 '''
 description = ' '*indent
 length = max([1, morphology.n//compartments_divisor])
 if parent is not None:
 description += '`'
 if isinstance(morphology, Soma):
 description += '()'
 else:
 description += '-' * length
 description += '|'
 if len(named_path) == 0:
 description += ' [root] \n'
 else:
 description += ' ' + named_path + '\n'
 for child in morphology.children:
 name = morphology.children.name(child)
 description += Topology._str_topology(child,
 indent=indent+2+length,
 named_path=named_path+'.'+name,
 compartments_divisor=compartments_divisor,
 parent=morphology)
 return description

 __repr__ = __str__

def _rotate(vec, axis, angle):
 '''
 Rotate a vector around an arbitrary axis.

 Parameters

 vec : `ndarray`
 The vector to rotate.
 axis : `ndarray`
 The axis around which the vector should be rotated.
 angle : float
 The rotation angle (in radians).

 Returns

 rotated : `ndarray`
 The rotated vector.
 '''
 return (vec*np.cos(angle) -
 np.cross(axis, vec)*np.sin(angle) +
 axis*np.dot(axis, vec)*(1 - np.cos(angle)))

def _perturb(vec, sigma):
 if sigma == 0:
 return vec
 # Get an arbitrary orthogonal vector
 if vec[1] != 0 or vec[0] != 0:
 orthogonal = np.hstack([vec[1], vec[0], 0])
 else: # special case for the [0, 0, 1] vector
 orthogonal = np.array([1, 0, 0])

 # Rotate the orthogonal vector
 orthogonal = _rotate(orthogonal, vec, np.random.rand()*np.pi*2)

 # Use an exponentially distributed angle for the perturbation
 perturbation = np.random.exponential(sigma, 1)
 return _rotate(vec, orthogonal, perturbation)

def _add_coordinates(orig_morphology, root=None, parent=None, name=None,
 section_randomness=0.0, compartment_randomness=0.0,
 n_th_child=0, total_children=0,
 overwrite_existing=False):
 # Note that in the following, all values are without physical units

 # The new direction is based on the direction of the parent section
 if parent is None:
 section_dir = np.array([0, 0, 0])
 else:
 section_dir = np.hstack([np.asarray(parent.end_x[-1] - parent.start_x[0]),
 np.asarray(parent.end_y[-1] - parent.start_y[0]),
 np.asarray(parent.end_z[-1] - parent.start_z[0])])
 parent_dir_norm = np.sqrt(np.sum(section_dir**2))
 if parent_dir_norm != 0:
 section_dir /= parent_dir_norm
 else:
 section_dir = np.array([0, 0, 0])
 if not overwrite_existing and orig_morphology.x is not None:
 section = orig_morphology.copy_section()
 elif isinstance(orig_morphology, Soma):
 # No perturbation for the soma
 section = Soma(diameter=orig_morphology.diameter,
 x=section_dir[0]*meter,
 y=section_dir[1]*meter,
 z=section_dir[2]*meter)
 else:
 if np.sum(section_dir**2) == 0:
 # We don't have any direction to base this section on (most common
 # case is that the root section is a soma)
 # We stay in the x-y plane and distribute all children in a 360 degree
 # circle around (0, 0, 0)
 section_dir = np.array([1, 0, 0])
 rotation_axis = np.array([0, 0, 1])
 angle_increment = 2*np.pi/total_children
 rotation_angle = np.pi/2 + angle_increment * n_th_child
 section_dir = _rotate(section_dir, rotation_axis, rotation_angle)
 else:
 if section_randomness == 0 and section_dir[2] == 0: # If we are in the x-y plane, stay there
 rotation_axis = np.array([0, 0, 1])
 else:
 rotation_axis = np.array([-section_dir[1], section_dir[2], 0])
 if section_randomness == 0:
 angle_increment = np.pi/(total_children + 1)
 rotation_angle = -np.pi/2 + angle_increment * (n_th_child + 1)
 section_dir = _rotate(section_dir, rotation_axis, rotation_angle)
 if section_randomness > 0:
 # Rotate randomly
 section_dir = _perturb(section_dir, section_randomness)

 section_dir_norm = np.sqrt(np.sum(section_dir**2))
 section_dir /= section_dir_norm

 # For a soma, we let child sections begin at the surface of the sphere
 if isinstance(parent, Soma):
 origin = parent.diameter/2*section_dir
 else:
 origin = (0, 0, 0)*um
 coordinates = np.zeros((orig_morphology.n + 1, 3))*meter
 start_coords = origin
 coordinates[0, :] = origin
 # Perturb individual compartments as well
 for idx, length in enumerate(orig_morphology.length):
 compartment_dir = _perturb(section_dir, compartment_randomness)
 compartment_dir_norm = np.sqrt(np.sum(compartment_dir**2))
 compartment_dir /= compartment_dir_norm
 current_coords = start_coords + length*compartment_dir
 coordinates[idx + 1, :] = current_coords
 start_coords = current_coords

 if isinstance(orig_morphology, Cylinder) and compartment_randomness == 0:
 section = Cylinder(n=orig_morphology.n,
 diameter=orig_morphology.diameter[0],
 x=coordinates[[0, -1], 0],
 y=coordinates[[0, -1], 1],
 z=coordinates[[0, -1], 2],
 type=orig_morphology.type)
 elif isinstance(orig_morphology, Section):
 section = Section(n=orig_morphology.n,
 diameter=np.hstack([orig_morphology.start_diameter[0],
 orig_morphology.end_diameter])*meter,
 x=coordinates[:, 0],
 y=coordinates[:, 1],
 z=coordinates[:, 2],
 type=orig_morphology.type)
 else:
 raise NotImplementedError(('Do not know how to deal with section of '
 'type %s.' % type(orig_morphology)))
 if parent is None:
 root = section
 else:
 parent.children.add(name, section)

 for idx, child in enumerate(orig_morphology.children):
 _add_coordinates(child, root=root, parent=section,
 name=orig_morphology.children.name(child),
 n_th_child=idx, total_children=len(orig_morphology.children),
 section_randomness=section_randomness,
 compartment_randomness=compartment_randomness,
 overwrite_existing=overwrite_existing)
 return section

[docs]class Children(object):
 '''
 Helper class to represent the children (sub trees) of a section. Can be
 used like a dictionary (mapping names to `Morphology` objects), but iterates
 over the values (sub trees) instead of over the keys (names).
 '''
 def __init__(self, owner):
 self._owner = owner
 self._counter = 0
 self._children = []
 self._named_children = {}
 self._given_name = defaultdict(lambda: None)

 def __iter__(self):
 return iter(self._children)

 def __len__(self):
 return len(self._children)

 def __contains__(self, item):
 return item in self._named_children

[docs] def name(self, child):
 '''
 Return the given name (i.e. not the automatic name such as ``1``) for a
 child subtree.

 Parameters

 child : `Morphology`

 Returns

 name : str
 The given name for the ``child``.
 '''
 return self._given_name[child]

 def __getitem__(self, item):
 if isinstance(item, basestring):
 return self._named_children[item]
 else:
 raise TypeError('Index has to be an integer or a string.')

[docs] def add(self, name, subtree, automatic_name=False):
 '''
 Add a new child to the morphology.

 Parameters

 name : str
 The name (e.g. ``"axon"``, ``"soma"``) to use for this sub tree.
 subtree : `Morphology`
 The subtree to link as a child.
 automatic_name : bool, optional
 Whether to chose a new name automatically, if a subtree of the same
 name already exists (uses e.g. ``"dend2"`` instead ``"dend"``).
 Defaults to ``False`` and will raise an error instead.
 '''
 if (name in self._named_children and
 self._named_children[name] is not subtree):
 if automatic_name:
 basename = name
 counter = 1
 while name in self._named_children:
 counter += 1
 name = basename + str(counter)
 else:
 raise AttributeError('The name %s is already used for a '
 'subtree.' % name)

 if subtree not in self._children:
 self._counter += 1
 self._children.append(subtree)
 self._named_children[str(self._counter)] = subtree
 self._given_name[subtree] = name

 if name is not None:
 self._named_children[name] = subtree

 subtree._parent = self._owner

[docs] def remove(self, name):
 '''
 Remove a subtree from this morphology.

 Parameters

 name : str
 The name of the sub tree to remove.
 '''
 if name not in self:
 raise AttributeError('The subtree ' + name + ' does not exist')
 subtree = self._named_children[name]
 del self._named_children[name]
 self._children.remove(subtree)
 subtree._parent = None

 def __repr__(self):
 n = len(self._children)
 s = '<%d children' % n
 if n > 0:
 name_dict = {self.name(sec): sec for sec in self._children}
 s += ': %r' % name_dict
 return s + '>'

[docs]class Morphology(object):
 '''
 Neuronal morphology (tree structure).

 The data structure is a tree where each node is an un-branched section
 consisting of a number of connected compartments, each one defined by its
 geometrical properties (length, area, diameter, position).

 Notes

 You cannot create objects of this class, create a `Soma`, a `Section`, or
 a `Cylinder` instead.
 '''
 __metaclass__ = abc.ABCMeta

 @check_units(n=1)
 def __init__(self, n, type=None):
 if isinstance(n, basestring):
 raise TypeError('Need the number of compartments, not a string. '
 'If you want to load a morphology from a file, '
 'use Morphology.from_file instead.')
 self._n = int(n)
 if self._n != n:
 raise TypeError('The number of compartments n has to be an integer '
 'value.')
 if n <= 0:
 raise ValueError('The number of compartments n has to be at least 1.')
 self.type = type
 self._children = Children(self)
 self._parent = None
 self.indices = MorphologyIndexWrapper(self)

 def __getitem__(self, item):
 '''
 Return the subtree with the given name/index.

 Ex.: ```neuron['axon']``` or ```neuron['11213']```
        ```neuron[10*um:20*um]``` returns the subbranch from 10 um to 20 um.
        ```neuron[10*um]``` returns one compartment.
        ```neuron[5]``` returns compartment number 5.
        '''
        if isinstance(item, slice):  # neuron[10*um:20*um] or neuron[1:3]
            using_lengths = all([arg is None or have_same_dimensions(arg, meter)
                                 for arg in [item.start, item.stop]])
            using_ints = all([arg is None or int(arg) == float(arg)
                              for arg in [item.start, item.stop]])
            if not (using_lengths or using_ints):
                raise TypeError('Index slice has to use lengths or integers')

            if using_lengths:
                if item.step is not None:
                    raise TypeError(('Cannot provide a step argument when '
                                     'slicing with lengths'))
                l = np.cumsum(np.asarray(self.length))  # coordinate on the section
                # We use a special handling for values very close to the points
                # between the compartments to avoid non-intuitive rounding
                # effects: a point closer than 1e-12*length of section will be
                # considered to be within the following section (for a start
                # index), respectively within the previous section (for an end
                # index)
                if item.start is None:
                    i = 0
                else:
                    diff = np.abs(float(item.start) - l)
                    if min(diff) < 1e-12 * l[-1]:
                        i = np.argmin(diff) + 1
                    else:
                        i = np.searchsorted(l, item.start)
                if item.stop is None:
                    j = len(l)
                else:
                    diff = np.abs(float(item.stop) - l)
                    if min(diff) < 1e-12 * l[-1]:
                        j = np.argmin(diff) + 1
                    else:
                        j = np.searchsorted(l, item.stop) + 1
            else:  # integers
                i, j, step = item.indices(self.n)
                if step != 1:
                    raise TypeError('Can only slice a contiguous segment')
        elif isinstance(item, Quantity) and have_same_dimensions(item, meter):
            l = np.hstack([0, np.cumsum(np.asarray(self.length))])  # coordinate on the section
            if float(item) < 0 or float(item) > (1 + 1e-12) * l[-1]:
                raise IndexError(('Invalid index %s, has to be in the interval '
                                  '[%s, %s].' % (item, 0*meter, l[-1]*meter)))
            diff = np.abs(float(item) - l)
            if min(diff) < 1e-12 * l[-1]:
                i = np.argmin(diff)
            else:
                i = np.searchsorted(l, item) - 1
            j = i + 1
        elif isinstance(item, numbers.Integral):  # int: returns one compartment
            if item < 0:  # allows e.g. to use -1 to get the last compartment
                item += self.n
            if item >= self.n:
                raise IndexError(('Invalid index %d '
                                  'for %d compartments') % (item, self.n))
            i = item
            j = i + 1
        elif isinstance(item, basestring):
            item = str(item)  # convert int to string
            if (len(item) > 1) and all([c in 'LR123456789' for c in
                                     item]):  # binary string of the form LLLRLR or 1213 (or mixed)
                return self._children[item[0]][item[1:]]
            elif item in self._children:
                return self._children[item]
            else:
                raise AttributeError('The subtree ' + item + ' does not exist')
        else:
            raise TypeError('Index of type %s not understood' % type(item))

        return SubMorphology(self, i, j)

    def __setitem__(self, item, child):
        '''
        Inserts the subtree and name it ``item``.
        Ex.: ``neuron['axon']`` or ``neuron['11213']``
        '''
        item = str(item)  # convert int to string
        if (len(item) > 1) and all([c in 'LR123456789' for c in item]):
            # binary string of the form LLLRLR or 1213 (or mixed)
            self.children[item[0]][item[1:]] = child
        else:
            self.children.add(item, child)

    def __delitem__(self, item):
        '''
        Remove the subtree ``item``.
        '''
        item = str(item)  # convert int to string
        if (len(item) > 1) and all([c in 'LR123456789' for c in item]):
            # binary string of the form LLLRLR or 1213 (or mixed)
            del self._children[item[0]][item[1:]]
        else:
            self._children.remove(item)

    def __getattr__(self, item):
        '''
        Return the subtree named ``item``.

        Ex.: ``axon = neuron.axon``
        '''
        if item.startswith('_'):
            return super(object, self).__getattr__(item)
        else:
            return self[item]

    def __setattr__(self, item, child):
        '''
        Attach a subtree and name it ``item``.

        Ex.: ``neuron.axon = Soma(diameter=10*um)``
        '''
        if isinstance(child, Morphology) and not item.startswith('_'):
            self[item] = child
        else:  # If it is not a subtree, then it's a normal class attribute
            object.__setattr__(self, item, child)

    def __delattr__(self, item):
        '''
        Remove the subtree ``item``.
        '''
        del self[item]

    def _indices(self, item=None, index_var='_idx'):
        '''
        Return compartment indices for the main section, relative to the
        original morphology.
        '''
        if index_var != '_idx':
            raise AssertionError('Unexpected index %s' % index_var)
        if not (item is None or item == slice(None)):
            if isinstance(item, slice):
                # So that this always returns an array of values, even if it is
                # just a single value
                return self[item]._indices(slice(None))
            else:
                return self[item]._indices(None)
        else:
            start_idx = _calc_start_idx(self)
            if self.n == 1 and item is None:
                return start_idx
            else:
                return np.arange(start_idx, start_idx + self.n)

[docs]    def topology(self):
        '''
        Return a representation of the topology

        Returns
        -------
        topology : `Topology`
            An object representing the topology (can be converted to a string
            by using ``str(...)`` or simply by printing it with `print`.)
        '''
        return Topology(self)


[docs]    def generate_coordinates(self,
                             section_randomness=0.0,
                             compartment_randomness=0.0,
                             overwrite_existing=False):
        '''
        Create a new `Morphology`, with coordinates filled in place where the
        previous morphology did not have any. This is mostly useful for
        plotting a morphology, it does not affect its electrical properties.

        Parameters
        ----------
        section_randomness : float, optional
            The randomness when deciding the direction vector for each new
            section. The given number is the :math:`\beta` parameter of an
            exponential distribution (in degrees) which will be used to
            determine the deviation from the direction of the parent section.
            If the given value equals 0 (the default), then a deterministic
            algorithm will be used instead.
        compartment_randomness : float, optional
            The randomness when deciding the direction vector for each
            compartment within a section. The given number is the :math:`\beta`
            parameter of an exponential distribution (in degrees) which will be
            used to determine the deviation from the main direction of the
            current section. If the given value equals 0 (the default), then all
            compartments will be along a straight line.
        overwrite_existing : bool, optional
            Whether to overwrite existing coordinates in the morphology. This
            is by default set to ``False``, meaning that only sections that do
            not currently have any coordinates set will get new coordinates.
            This allows to conveniently generate a morphology that can be
            plotted for a morphology that is based on points but also has
            artificially added sections (the most common case: an axon added
            to a reconstructed morphology). If set to ``True``, all sections
            will get new coordinates. This can be useful to either get a
            schematic representation of the morphology (with
            ``section_randomness`` and ``compartment_randomness`` both 0) or to
            simply generate a new random variation of a morphology (which will
            still be electrically equivalent, of course).

        Returns
        -------
        morpho_with_coordinates : `Morphology`
            The same morphology, but with coordinates
        '''
        # Convert to radians
        section_randomness *= np.pi/180
        compartment_randomness *= np.pi/180
        return _add_coordinates(self, section_randomness=section_randomness,
                                compartment_randomness=compartment_randomness,
                                overwrite_existing=overwrite_existing)


    @abstractmethod
[docs]    def copy_section(self):
        '''
        Create a copy of the current section (attributes of this section only,
        not re-creating the parent/children relation)

        Returns
        -------
        copy : `Morphology`
            A copy of this section (without the links to the parent/children)
        '''
        raise NotImplementedError()


    @property
    def n(self):
        '''
        The number of compartments in this section.
        '''
        return self._n

    def __len__(self):
        '''
        This is not well-defined, use `Morphology.n` or
        `Morphology.total_compartments` instead.
        '''
        raise TypeError('The "length" of a Morphology is ambiguous, use its '
                        '"n" attribute for the number of compartments in this '
                        'section or the "total_compartments" attribute for the '
                        'total number of compartments in the whole sub-tree.')

    @property
    def total_compartments(self):
        '''
        The total number of compartments in this subtree (i.e. the number of
        compartments in this section plus all the compartments in the sections
        deeper in the tree).
        '''
        return self.n + sum(c.total_compartments for c in self.children)

    @property
    def total_sections(self):
        '''
        The total number of sections in this subtree.
        '''
        return 1 + sum(c.total_sections for c in self.children)

    @property
    def parent(self):
        '''
        The parent section of this section.
        '''
        return self._parent

    @property
    def children(self):
        '''
        The children (as a `Children` object) of this section.
        '''
        return self._children

    @abc.abstractproperty
    def end_distance(self):
        '''
        The distance to the root of the morphology at the end of this section.
        '''
        raise NotImplementedError()

    # Per-compartment attributes
    @abc.abstractproperty
    def area(self):
        '''
        The membrane surface area of each compartment in this section.
        '''
        raise NotImplementedError()

    @abc.abstractproperty
    def volume(self):
        '''
        The volume of each compartment in this section.
        '''
        raise NotImplementedError()

    @abc.abstractproperty
    def length(self):
        '''
        The length of each compartment in this section.
        '''
        raise NotImplementedError()

    @abc.abstractproperty
    def r_length_1(self):
        '''
        The geometry-dependent term to calculate the conductance between the
        start and the midpoint of each compartment. Dividing this value by the
        Intracellular resistivity gives the conductance.
        '''
        raise NotImplementedError()

    @abc.abstractproperty
    def r_length_2(self):
        '''
        The geometry-dependent term to calculate the conductance between the
        midpoint and the end of each compartment. Dividing this value by the
        Intracellular resistivity gives the conductance.
        '''
        raise NotImplementedError()

    # At-midpoint attributes
    @abc.abstractproperty
    def diameter(self):
        '''
        The diameter at the middle of each compartment in this section.
        '''
        raise NotImplementedError()

    @abc.abstractproperty
    def distance(self):
        '''
        The total distance between the midpoint of each compartment and the root
        of the morphology.
        '''
        raise NotImplementedError()

    @property
    def start_x(self):
        '''
        The x coordinate at the beginning of each compartment. Returns ``None``
        for morphologies without coordinates.
        '''
        return _to_meters(self.start_x_)

    @property
    def start_y(self):
        '''
        The y coordinate at the beginning of each compartment. Returns ``None``
        for morphologies without coordinates.
        '''
        return _to_meters(self.start_y_)

    @property
    def start_z(self):
        '''
        The z coordinate at the beginning of each compartment. Returns ``None``
        for morphologies without coordinates.
        '''
        return _to_meters(self.start_z_)

    @abc.abstractproperty
    def start_x_(self):
        '''
        The x coordinate (as a unitless floating point number) at the beginning
        of each compartment. Returns ``None`` for morphologies without
        coordinates.
        '''
        raise NotImplementedError()

    @abc.abstractproperty
    def start_y_(self):
        '''
        The y coordinate (as a unitless floating point number) at the beginning
        of each compartment. Returns ``None`` for morphologies without
        coordinates.
        '''
        raise NotImplementedError()

    @abc.abstractproperty
    def start_z_(self):
        '''
        The z coordinate (as a unitless floating point number) at the beginning
        of each compartment. Returns ``None`` for morphologies without
        coordinates.
        '''
        raise NotImplementedError()

    @property
    def x(self):
        '''
        The x coordinate at the midpoint of each compartment. Returns ``None``
        for morphologies without coordinates.
        '''
        return _to_meters(self.x_)

    @property
    def y(self):
        '''
        The y coordinate at the midpoint of each compartment. Returns ``None``
        for morphologies without coordinates.
        '''
        return _to_meters(self.y_)

    @property
    def z(self):
        '''
        The y coordinate at the midpoint of each compartment. Returns ``None``
        for morphologies without coordinates.
        '''
        return _to_meters(self.z_)

    @abc.abstractproperty
    def x_(self):
        '''
        The x coordinate (as a unitless floating point number) at the midpoint
        of each compartment. Returns ``None`` for morphologies without
        coordinates.
        '''
        raise NotImplementedError()

    @abc.abstractproperty
    def y_(self):
        '''
        The y coordinate (as a unitless floating point number) at the midpoint
        of each compartment. Returns ``None`` for morphologies without
        coordinates.
        '''
        raise NotImplementedError()

    @abc.abstractproperty
    def z_(self):
        '''
        The z coordinate (as a unitless floating point number) at the midpoint
        of each compartment. Returns ``None`` for morphologies without
        coordinates.
        '''
        raise NotImplementedError()

    @property
    def end_x(self):
        '''
        The x coordinate at the end of each compartment. Returns ``None``
        for morphologies without coordinates.
        '''
        return _to_meters(self.end_x_)

    @property
    def end_y(self):
        '''
        The y coordinate at the end of each compartment. Returns ``None``
        for morphologies without coordinates.
        '''
        return _to_meters(self.end_y_)

    @property
    def end_z(self):
        '''
        The z coordinate at the end of each compartment. Returns ``None``
        for morphologies without coordinates.
        '''
        return _to_meters(self.end_z_)

    @abc.abstractproperty
    def end_x_(self):
        '''
        The x coordinate (as a unitless floating point number) at the end of
        each compartment. Returns ``None`` for morphologies without coordinates.
        '''
        raise NotImplementedError()

    @abc.abstractproperty
    def end_y_(self):
        '''
        The y coordinate (as a unitless floating point number) at the end of
        each compartment. Returns ``None`` for morphologies without coordinates.
        '''
        raise NotImplementedError()

    @abc.abstractproperty
    def end_z_(self):
        '''
        The z coordinate (as a unitless floating point number) at the end of
        each compartment. Returns ``None`` for morphologies without coordinates.
        '''
        raise NotImplementedError()

    @property
    def coordinates(self):
        r'''
        Array with all coordinates at the start- and end-points of each
        compartment in this section. The array has size :math:`(n+1) \times 3`,
        where :math:`n` is the number of compartments in this section. Each
        row is one point (start point of first compartment, end point of first
        compartment, end point of second compartment, ...), with the columns
        being the x, y, and z coordinates. Returns ``None`` for morphologies
        without coordinates.
        '''
        if self.x_ is None:
            return None
        else:
            return Quantity(self.coordinates_, dim=meter.dim)

    @property
    def coordinates_(self):
        r'''
        Array with all coordinates (as unitless floating point numbers) at the
        start- and end-points of each compartment in this section. The array has
        size :math:`(n+1) \times 3`, where :math:`n` is the number of
        compartments in this section. Each row is one point (start point of
        first compartment, end point of first compartment, end point of second
        compartment, ...), with the columns being the x, y, and z coordinates.
        Returns ``None`` for morphologies without coordinates.
        '''
        if self.x_ is None:
            return None
        else:
            return np.vstack([np.hstack([self.start_x_[0], self.end_x_[:]]),
                              np.hstack([self.start_y_[0], self.end_y_[:]]),
                              np.hstack([self.start_z_[0], self.end_z_[:]])]).T


    @staticmethod
    def _create_section(compartments, name, parent, sections,
                        spherical_soma):

        if (spherical_soma and
                    len(compartments) == 1 and
                    compartments[0].comp_name == 'soma'):
            soma = compartments[0]
            section = Soma(diameter=soma.diameter * um,
                           x=soma.x * um, y=soma.y * um, z=soma.z * um)
        else:
            sec_x, sec_y, sec_z, sec_diameter = zip(*[(c.x, c.y, c.z,
                                                       c.diameter)
                                                      for c in compartments])
            # Add a point for the end of the parent_idx compartment
            if parent is not None:
                n = len(compartments)
                if (parent.comp_name is not None and
                            parent.comp_name.lower() == 'soma'):
                    # For a Soma, we don't use its diameter
                    start_diameter = sec_diameter[0]
                else:
                    start_diameter = parent.diameter
                # Use relative coordinates
                sec_x = np.array(sec_x) - parent.x
                sec_y = np.array(sec_y) - parent.y
                sec_z = np.array(sec_z) - parent.z
                start_x = start_y = start_z = 0.
            else:
                n = len(compartments) - 1
                start_diameter = sec_diameter[0]
                sec_diameter = sec_diameter[1:]
                start_x = sec_x[0]
                start_y = sec_y[0]
                start_z = sec_z[0]
                sec_x = sec_x[1:]
                sec_y = sec_y[1:]
                sec_z = sec_z[1:]

            diameter = np.hstack([start_diameter, sec_diameter])*um
            x = np.hstack([start_x, sec_x])*um
            y = np.hstack([start_y, sec_y])*um
            z = np.hstack([start_z, sec_z])*um
            section = Section(n=n, diameter=diameter, x=x, y=y, z=z,
                              type=name)

        # Add the section as a child to its parent
        if parent is not None:
            parent_sec = sections[parent.index]
            parent_sec.children.add(name, section, automatic_name=True)

        return section

    @staticmethod
    def _compartments_to_sections(compartment, spherical_soma,
                                  current_compartments=None, sections=None):
        # Merge all unbranched compartments of the same type into a single
        # section
        if sections is None:
            sections = OrderedDict()
        if current_compartments is None:
            current_compartments = []

        current_compartments.append(compartment)

        # We have to create a new section, if we are either
        # 1. at a leaf of the tree or at a branching point, or
        # 2. if the compartment type changes
        if (len(compartment.children) != 1 or
                    compartment.comp_name != compartment.children[0].comp_name):
            parent = current_compartments[0].parent
            section = Morphology._create_section(current_compartments,
                                                 compartment.comp_name,
                                                 parent=parent,
                                                 sections=sections,
                                                 spherical_soma=spherical_soma)
            sections[current_compartments[-1].index] = section
            # If we are at a branching point, recurse into all subtrees
            for child in compartment.children:
                Morphology._compartments_to_sections(child,
                                                     spherical_soma=spherical_soma,
                                                     current_compartments=None,
                                                     sections=sections)
        else:
            # A single child of the same type, continue (recursive call)
            Morphology._compartments_to_sections(compartment.children[0],
                                                 spherical_soma=spherical_soma,
                                                 current_compartments=current_compartments,
                                                 sections=sections)

        return sections

    @staticmethod
    def _replace_three_point_soma(compartment, all_compartments):
        # Replace a three-point/two-cylinder soma by a single spherical soma
        # if possible (see http://neuromorpho.org/SomaFormat.html for some
        # details)

        # We are looking for a node with two children of the soma type (and
        # other childen of other types), where the two children don't have any
        # children of their own
        soma_children = [c for c in compartment.children
                         if c.comp_name == 'soma']
        if (compartment.comp_name == 'soma' and len(soma_children) == 2 and
                all(len(c.children) == 0 for c in soma_children)):
            # We've found a 3-point soma to replace
            soma_c = [compartment] + soma_children
            if not all(abs(c.diameter - soma_c[0].diameter) < 1e-15
                       for c in soma_c):
                indices = ', '.join(str(c.index) for c in soma_c)
                raise ValueError('Found a "3-point-soma" (lines: %s), but not '
                                 'all the diameters are '
                                 'identical.' % indices)
            diameter = soma_c[0].diameter
            point_0 = np.array([soma_c[0].x, soma_c[0].y, soma_c[0].z])
            point_1 = np.array([soma_c[1].x, soma_c[1].y, soma_c[1].z])
            point_2 = np.array([soma_c[2].x, soma_c[2].y, soma_c[2].z])
            length_1 = np.sqrt(np.sum((point_1 - point_0) ** 2))
            length_2 = np.sqrt(np.sum((point_2 - point_0) ** 2))
            if (np.abs(length_1 - diameter / 2) > 0.01 or
                        np.abs(length_2 - diameter / 2) > 0.01):
                raise ValueError(('Cannot replace "3-point-soma" by a single '
                                  'point, the second and third points should '
                                  'be positioned one radius away from the '
                                  'first point. Distances are %.3fum and '
                                  '%.3fum, respectively, while the '
                                  'radius is %.3fum.') % (length_1,
                                                          length_2,
                                                          diameter / 2))
            children = [c for c in compartment.children
                        if not c in soma_c]
            compartment = Node(index=compartment.index, comp_name='soma',
                               x=point_0[0], y=point_0[1], z=point_0[2],
                               diameter=diameter, parent=compartment.parent,
                               children=children)
            all_compartments[compartment.index] = compartment
            del all_compartments[soma_children[0].index]
            del all_compartments[soma_children[1].index]

        # Recurse further down the tree
        all_compartments[compartment.index] = compartment
        for child in compartment.children:
            Morphology._replace_three_point_soma(child,
                                                 all_compartments)

    @staticmethod
[docs]    def from_points(points, spherical_soma=True):
        '''
        Create a morphology from a sequence of points (similar to the ``SWC``
        format, see `Morphology.from_swc_file`). Each point has to be
        a 7-tuple: ``(index, name, x, y, z, diameter, parent)``

        Note that the values should not use units, but are instead all taken
        to be in micrometers.

        Parameters
        ----------
        points : sequence of 7-tuples
            The points of the morphology.
        spherical_soma : bool, optional
            Whether to model a soma as a sphere.
        Returns
        -------
        morphology : `Morphology`

        Notes
        -----
        This format closely follows the SWC format (see
        `Morphology.from_swc_file`) with two differences: the ``type`` should
        be a string (e.g. ``'soma'``) instead of an integer and the 6-th element
        should be the diameter and not the radius.
        '''
        # First pass through all points to get the dependency structure
        compartments = OrderedDict()
        for counter, point in enumerate(points):
            if len(point) != 7:
                raise ValueError('Each point needs to be described by 7 '
                                 'values, got %d instead.' % len(point))
            index, name, x, y, z, diameter, parent_idx = point

            if index in compartments:
                raise ValueError('Two compartments with index %d' % index)
            if parent_idx == index:
                raise ValueError('Compartment %d lists itself as the parent '
                                 'compartment.' % index)

            if counter == 0 and parent_idx == -1:
                parent = None  # The first compartment does not have a parent
            elif parent_idx not in compartments:
                raise ValueError(('Did not find the compartment %d (parent '
                                  'compartment of compartment %d). Make sure '
                                  'that parent compartments are listed before '
                                  'their children.') % (parent_idx, index))
            else:
                parent = compartments[parent_idx]
            children = []
            node = Node(index, name, x, y, z, diameter, parent, children)
            compartments[index] = node
            if parent is not None:
                parent.children.append(node)

        if spherical_soma:
            Morphology._replace_three_point_soma(compartments.values()[0],
                                                 compartments)

        sections = Morphology._compartments_to_sections(compartments.values()[0],
                                                        spherical_soma)

        # Go through all the sections again and add standard names for all
        # sections (potentially in addition to the name they already have):
        # "L" + "R" for one or two children, "1", "2", "3", etc. otherwise
        children_counter = defaultdict(int)
        for section in sections.itervalues():
            parent = section.parent
            if parent is not None:
                children_counter[parent] += 1
                children = parent.children
                nth_child = children_counter[parent]
                if len(children) <= 2:
                    name = 'L' if nth_child == 1 else 'R'
                else:
                    name = '%d' % nth_child
                children.add(name, section)

        # There should only be one section without parents
        root = [sec for sec in sections.itervalues() if sec.parent is None]
        assert len(root) == 1
        return root[0]


    @staticmethod
[docs]    def from_swc_file(filename, spherical_soma=True):
        '''
        Load a morphology from a ``SWC`` file. A large database of morphologies
        in this format can be found at http://neuromorpho.org

        The format consists of an optional header of lines starting with ``#``
        (ignored), followed by a sequence of points, each described in a line
        following the format::

            index type x y z radius parent

        ``index`` is an integer label (starting at 1) that identifies the
        current point and increases by one each line. ``type`` is an integer
        representing the type of the neural segment. The only type that changes
        the interpretation by Brian is the type ``1`` which signals a soma.
        Types ``2`` (axon), ``3`` (dendrite), and ``4`` (apical dendrite) are
        used to give corresponding names to the respective sections. All other
        types are ignored. ``x``, ``y``, and ``z`` are the cartesian coordinates
        at each point and ``r`` is its radius. ``parent`` refers to the index
        of the parent point or is ``-1`` for the root point.

        Parameters
        ----------
        filename : str
            The name of the ``SWC`` file.
        spherical_soma : bool, optional
            Whether to model the soma as a sphere.

        Returns
        -------
        morpho : `Morphology`
            The morphology stored in the given file.
        '''
        swc_types = defaultdict(lambda: None)
        # The following names will be translated into names, all other will be
        # ignored
        swc_types.update({'1': 'soma', '2': 'axon', '3': 'dend', '4': 'apic'})

        with open(filename, 'r') as f:
            points = []
            for line_no, line in enumerate(f):
                line = line.strip()
                if line.startswith('#') or len(line) == 0:
                    # Ignore comments or empty lines
                    continue
                splitted = line.split()
                if len(splitted) != 7:
                    raise ValueError('Each line of an SWC file has to contain '
                                     '7 space-separated entries, but line %d '
                                     'contains %d.' % (line_no + 1,
                                                       len(splitted)))
                index, comp_type, x, y, z, radius, parent = splitted
                points.append((int(index),
                               swc_types[comp_type],
                               float(x),
                               float(y),
                               float(z),
                               2*float(radius),
                               int(parent)))

        return Morphology.from_points(points, spherical_soma=spherical_soma)


    @staticmethod
[docs]    def from_file(filename, spherical_soma=True):
        '''
        Convencience method to load a morphology from a given file. At the
        moment, only ``SWC`` files are supported, calling this function is
        therefore equivalent to calling `Morphology.from_swc_file` directly.

        Parameters
        ----------
        filename : str
            The name of a file storing a morphology.
        spherical_soma : bool, optional
            Whether to model the soma as a sphere.
        Returns
        -------
        morphology : `Morphology`
            The morphology stored in the given file.
        '''
        _, ext = os.path.splitext(filename)
        if ext.lower() == '.swc':
            return Morphology.from_swc_file(filename,
                                            spherical_soma=spherical_soma)
        else:
            raise NotImplementedError('Currently, SWC is the only supported '
                                      'file format.')




[docs]class SubMorphology(object):
    '''
    A view on a subset of a section in a morphology.
    '''
    def __init__(self, morphology, i, j):
        self._morphology = morphology
        self.indices = MorphologyIndexWrapper(self)
        self._i = i
        self._j = j

    def _indices(self, item=None):
        if not (item is None or item == slice(None)):
            raise IndexError('Cannot index a view on a subset of a section further')
        # Start index of the main section
        start_idx = _calc_start_idx(self._morphology)
        if item is None and self.n == 1:
            return start_idx + self._i
        else:
            return np.arange(start_idx + self._i, start_idx + self._j)

    @property
    def n(self):
        '''
        The number of compartments in this sub-section.
        '''
        return self._j - self._i

    def __len__(self):
        return self.n

    @property
    def n_sections(self):
        '''
        The number of sections in this sub-section (always 1).
        '''
        return 1

    # Per-compartment attributes
    @property
    def area(self):
        '''
        The membrane surface area of each compartment in this sub-section.
        '''
        return self._morphology.area[self._i:self._j]

    @property
    def volume(self):
        '''
        The volume of each compartment in this sub-section.
        '''
        return self._morphology.volume[self._i:self._j]

    @property
    def length(self):
        '''
        The length of each compartment in this sub-section.
        '''
        return self._morphology.length[self._i:self._j]

    @property
    def r_length_1(self):
        '''
        The geometry-dependent term to calculate the conductance between the
        start and the midpoint of each compartment in this sub-section.
        Dividing this value by the Intracellular resistivity gives the
        conductance.
        '''
        return self._morphology.r_length_1[self._i:self._j]

    @property
    def r_length_2(self):
        '''
        The geometry-dependent term to calculate the conductance between the
        midpoint and the end of each compartment in this sub-section. Dividing
        this value by the Intracellular resistivity gives the conductance.
        '''
        return self._morphology.r_length_2[self._i:self._j]

    # At-midpoint attributes
    @property
    def diameter(self):
        '''
        The diameter at the middle of each compartment in this sub-section.
        '''
        return self._morphology.diameter[self._i:self._j]

    @property
    def distance(self):
        '''
        The total distance between the midpoint of each compartment in this
        sub-section and the root of the morphology.
        '''
        return self._morphology.distance[self._i:self._j]

    @property
    def start_x(self):
        '''
        The x coordinate at the beginning of each compartment in this
        sub-section. Returns ``None`` for morphologies without coordinates.
        '''
        return _to_meters(self.start_x_)

    @property
    def start_y(self):
        '''
        The y coordinate at the beginning of each compartment in this
        sub-section. Returns ``None`` for morphologies without coordinates.
        '''
        return _to_meters(self.start_y_)

    @property
    def start_z(self):
        '''
        The x coordinate at the beginning of each compartment in this
        sub-section. Returns ``None`` for morphologies without coordinates.
        '''
        return _to_meters(self.start_z_)

    @property
    def start_x_(self):
        '''
        The x coordinate (as a unitless floating point number) at the beginning
        of each compartment in this sub-section. Returns ``None`` for
        morphologies without coordinates.
        '''
        return _from_morphology(self._morphology.start_x_, self._i, self._j)

    @property
    def start_y_(self):
        '''
        The y coordinate (as a unitless floating point number) at the beginning
        of each compartment in this sub-section. Returns ``None`` for
        morphologies without coordinates.
        '''
        return _from_morphology(self._morphology.start_y_, self._i, self._j)

    @property
    def start_z_(self):
        '''
        The z coordinate (as a unitless floating point number) at the beginning
        of each compartment in this sub-section. Returns ``None`` for
        morphologies without coordinates.
        '''
        return _from_morphology(self._morphology.start_z_, self._i, self._j)

    @property
    def x(self):
        '''
        The x coordinate at the midpoint of each compartment in this
        sub-section. Returns ``None`` for morphologies without coordinates.
        '''
        return _to_meters(self.x_)

    @property
    def y(self):
        '''
        The y coordinate at the midpoint of each compartment in this
        sub-section. Returns ``None`` for morphologies without coordinates.
        '''
        return _to_meters(self.y_)

    @property
    def z(self):
        '''
        The z coordinate at the midpoint of each compartment in this
        sub-section. Returns ``None`` for morphologies without coordinates.
        '''
        return _to_meters(self.z_)

    @property
    def x_(self):
        '''
        The x coordinate (as a unitless floating point number) at the midpoint
        of each compartment in this sub-section. Returns ``None`` for
        morphologies without coordinates.
        '''
        return _from_morphology(self._morphology.x_, self._i, self._j)

    @property
    def y_(self):
        '''
        The y coordinate (as a unitless floating point number) at the midpoint
        of each compartment in this sub-section. Returns ``None`` for
        morphologies without coordinates.
        '''
        return _from_morphology(self._morphology.y_, self._i, self._j)

    @property
    def z_(self):
        '''
        The z coordinate (as a unitless floating point number) at the midpoint
        of each compartment in this sub-section. Returns ``None`` for
        morphologies without coordinates.
        '''
        return _from_morphology(self._morphology.z_, self._i, self._j)

    @property
    def end_x(self):
        '''
        The x coordinate at the end of each compartment in this sub-section.
        Returns ``None`` for morphologies without coordinates.
        '''
        return _to_meters(self.end_x_)

    @property
    def end_y(self):
        '''
        The y coordinate at the end of each compartment in this sub-section.
        Returns ``None`` for morphologies without coordinates.
        '''
        return _to_meters(self.end_y_)

    @property
    def end_z(self):
        '''
        The z coordinate at the end of each compartment in this sub-section.
        Returns ``None`` for morphologies without coordinates.
        '''
        return _to_meters(self.end_z_)

    @property
    def end_x_(self):
        '''
        The x coordinate (as a unitless floating point number) at the end of
        each compartment in this sub-section. Returns ``None`` for morphologies
        without coordinates.
        '''
        return _from_morphology(self._morphology.end_x_, self._i, self._j)

    @property
    def end_y_(self):
        '''
        The y coordinate (as a unitless floating point number) at the end of
        each compartment in this sub-section. Returns ``None`` for morphologies
        without coordinates.
        '''
        return _from_morphology(self._morphology.end_y_, self._i, self._j)

    @property
    def end_z_(self):
        '''
        The z coordinate (as a unitless floating point number) at the end of
        each compartment in this sub-section. Returns ``None`` for morphologies
        without coordinates.
        '''
        return _from_morphology(self._morphology.end_z_, self._i, self._j)



[docs]class Soma(Morphology):
    '''
    A spherical, iso-potential soma.

    Parameters
    ----------
    diameter : `Quantity`
        Diameter of the sphere.
    x : `Quantity`, optional
        The x coordinate of the position of the soma.
    y : `Quantity`, optional
        The y coordinate of the position of the soma.
    z : `Quantity`, optional
        The z coordinate of the position of the soma.
    type : str, optional
        The ``type`` of this section, defaults to ``'soma'``.
    '''

    @check_units(diameter=meter, x=meter, y=meter, z=meter)
    def __init__(self, diameter, x=None, y=None, z=None, type='soma'):
        Morphology.__init__(self, n=1, type=type)
        if diameter.shape != () and len(diameter) != 1:
            raise TypeError('Diameter has to be a scalar value.')
        for coord in [x, y, z]:
            if coord is not None and coord.shape != () and len(coord) != 1:
                raise TypeError('Coordinates have to be scalar values.')
        self._diameter = np.ones(1) * diameter
        if any(coord is not None for coord in (x, y, z)):
            default_value = np.array([0.0])
        else:
            default_value = None
        self._x = np.atleast_1d(np.asarray(x)) if x is not None else default_value
        self._y = np.atleast_1d(np.asarray(y)) if y is not None else default_value
        self._z = np.atleast_1d(np.asarray(z)) if z is not None else default_value

    def __repr__(self):
        s = '{klass}(diameter={diam!r}'.format(klass=self.__class__.__name__,
                                                 diam=self.diameter[0])
        if self._x is not None:
            s += ', x={x!r}, y={y!r}, z={z!r}'.format(x=self.x[0],
                                                      y=self.y[0],
                                                      z=self.z[0])
        if self.type != 'soma':
            s += ', type={type!r}'.format(type=self.type)
        return s + ')'

[docs]    def copy_section(self):
        return Soma(self.diameter, x=self.x, y=self.y, z=self.z,
                    type=self.type)


    # Note that the per-compartment properties should always return 1D arrays,
    # i.e. for the soma arrays of length 1 instead of scalar values
    @property
    def area(self):
        '''
        The membrane surface area of this section (as an array of length 1).
        '''
        return np.pi * self.diameter ** 2

    @property
    def volume(self):
        '''
        The volume of this section (as an array of length 1).
        '''
        return (np.pi * self.diameter ** 3)/6

    @property
    def length(self):
        '''
        The "length" (equal to `diameter`) of this section (as an array of
        length 1).
        '''
        return self.diameter

    @property
    def r_length_1(self):
        '''
        The geometry-dependent term to calculate the conductance between the
        start and the midpoint of each compartment. Returns a fixed (high)
        value for a `Soma`, corresponding to a section with very low
        intracellular resistance.
        '''
        return [1]*meter

    @property
    def r_length_2(self):
        '''
        The geometry-dependent term to calculate the conductance between the
        midpoint and the end of each compartment. Returns a fixed (high)
        value for a `Soma`, corresponding to a section with very low
        intracellular resistance.
        '''
        return [1]*meter

    @property
    def diameter(self):
        '''
        The diameter of this section (as an array of length 1).
        '''
        return self._diameter

    @property
    def distance(self):
        '''
        The total distance between the midpoint of this section and the root
        of the morphology. The `Soma` is most likely the root of the
        morphology, and therefore the `distance` is 0.
        '''
        dist = self._parent.distance if self._parent else 0*um
        return dist

    @property
    def start_x_(self):
        '''
        The x-coordinate of the current section (as an array of length 1). Note
        that a `Soma` is modelled as a "point" with finite surface/volume,
        equivalent to that of a sphere with the given `diameter`. It's start-,
        midpoint-, and end-coordinates are therefore identical.
        '''
        return self._x

    @property
    def start_y_(self):
        '''
        The y-coordinate of the current section (as an array of length 1). Note
        that a `Soma` is modelled as a "point" with finite surface/volume,
        equivalent to that of a sphere with the given `diameter`. It's start-,
        midpoint-, and end-coordinates are therefore identical.
        '''
        return self._y

    @property
    def start_z_(self):
        '''
        The z-coordinate of the current section (as an array of length 1). Note
        that a `Soma` is modelled as a "point" with finite surface/volume,
        equivalent to that of a sphere with the given `diameter`. It's start-,
        midpoint-, and end-coordinates are therefore identical.
        '''
        return self._z

    @property
    def x_(self):
        '''
        The x-coordinate of the current section (as an array of length 1). Note
        that a `Soma` is modelled as a "point" with finite surface/volume,
        equivalent to that of a sphere with the given `diameter`. It's start-,
        midpoint-, and end-coordinates are therefore identical.
        '''
        return self._x

    @property
    def y_(self):
        '''
        The y-coordinate of the current section (as an array of length 1). Note
        that a `Soma` is modelled as a "point" with finite surface/volume,
        equivalent to that of a sphere with the given `diameter`. It's start-,
        midpoint-, and end-coordinates are therefore identical.
        '''
        return self._y

    @property
    def z_(self):
        '''
        The z-coordinate of the current section (as an array of length 1). Note
        that a `Soma` is modelled as a "point" with finite surface/volume,
        equivalent to that of a sphere with the given `diameter`. It's start-,
        midpoint-, and end-coordinates are therefore identical.
        '''
        return self._z

    @property
    def end_x_(self):
        '''
        The x-coordinate of the current section (as an array of length 1). Note
        that a `Soma` is modelled as a "point" with finite surface/volume,
        equivalent to that of a sphere with the given `diameter`. It's start-,
        midpoint-, and end-coordinates are therefore identical.
        '''
        return self._x

    @property
    def end_y_(self):
        '''
        The y-coordinate of the current section (as an array of length 1). Note
        that a `Soma` is modelled as a "point" with finite surface/volume,
        equivalent to that of a sphere with the given `diameter`. It's start-,
        midpoint-, and end-coordinates are therefore identical.
        '''
        return self._y

    @property
    def end_z_(self):
        '''
        The z-coordinate of the current section (as an array of length 1). Note
        that a `Soma` is modelled as a "point" with finite surface/volume,
        equivalent to that of a sphere with the given `diameter`. It's start-,
        midpoint-, and end-coordinates are therefore identical.
        '''
        return self._z

    @property
    def end_distance(self):
        '''
        The distance to the root of the morphology at the end of this section.
        Note that since a `Soma` is modeled as a point (see docs of `x`, etc.),
        it does not add anything to the total distance, e.g. a section
        connecting to a `Soma` has a `distance` of 0 um at its start.
        '''
        dist = self._parent.end_distance if self._parent is not None else 0 * um
        return dist



[docs]class Section(Morphology):
    '''
    A section (unbranched structure), described as a sequence of truncated
    cones with potentially varying diameters and lengths per compartment.

    Parameters
    ----------
    diameter : `Quantity`
        Either a single value (the constant diameter along the whole section),
        or a value of length ``n+1``. When ``n+1`` values are given, they
        will be interpreted as the diameters at the start of the first
        compartment and the diameters at the end of each compartment (which is
        equivalent to: the diameter at the start of each compartment and the
        diameter at the end of the last compartment.
    n : int, optional
        The number of compartments in this section. Defaults to 1.
    length : `Quantity`, optional
        Either a single value (the total length of the section), or a value of
        length ``n``, the length of each individual compartment. Cannot be
        combined with the specification of coordinates.
    x : `Quantity`, optional
        ``n+1`` values, specifying the x coordinates of the start point of the
        first compartment and the end-points of all compartments (which is
        equivalent to: the start point of all compartments and the end point of
        the last compartment). The coordinates are interpreted as relative to
        the end point of the parent compartment (if any), so in most cases the
        start point should be ``0*um``. The common exception is a cylinder
        connecting to a `Soma`, here the start point can be used to make the
        cylinder start at the surface of the sphere instead of at its center.
        You can specify all of ``x``, ``y``, or ``z`` to specify
        a morphology in 3D, or only one or two out of them to specify a
        morphology in 1D or 2D.
    y : `Quantity`, optional
        See ``x``
    z : `Quantity`, optional
        See ``x``
    type : str, optional
        The type (e.g. ``"axon"``) of this `Section`.
    '''
    @check_units(n=1, length=meter, diameter=meter, start_diameter=meter,
                 x=meter, y=meter, z=meter)
    def __init__(self, diameter, n=1, length=None, x=None, y=None, z=None,
                 start_diameter=None, origin=None, type=None):
        n = int(n)
        Morphology.__init__(self, n=n, type=type)

        if diameter.ndim != 1 or len(diameter) != n+1:
            raise TypeError('The diameter argument has to be a one-dimensional '
                            'array of length %d' % (n + 1))
        self._diameter = Quantity(diameter, copy=True).reshape((n+1, ))

        if ((x is not None or y is not None or z is not None) and
                length is not None):
            raise TypeError('Cannot specify coordinates and length at the same '
                            'time.')

        if length is not None:
            # Length
            if length.ndim != 1 or len(length) != n:
                raise TypeError('The length argument has to be a '
                                'one-dimensional array of length %d' % n)
            self._length = Quantity(length, copy=True).reshape((n, ))
            self._x = self._y = self._z = None
        else:
            # Coordinates
            if x is None and y is None and z is None:
                raise TypeError('No length specified, need to specify at least '
                                'one out of x, y, or z.')
            for name, value in [('x', x), ('y', y), ('z', z)]:
                if value is not None and (value.ndim != 1 or len(value) != n + 1):
                    raise TypeError(('%s needs to be a 1-dimensional array '
                                     'of length %d.') % (name, n + 1))
            self._x = np.asarray(x).reshape((n+1, )) if x is not None else np.zeros(n + 1)
            self._y = np.asarray(y).reshape((n+1, )) if y is not None else np.zeros(n + 1)
            self._z = np.asarray(z).reshape((n+1, )) if z is not None else np.zeros(n + 1)

            length = np.sqrt((self.end_x - self.start_x) ** 2 +
                             (self.end_y - self.start_y) ** 2 +
                             (self.end_z - self.start_z) ** 2)
            self._length = length

    def __repr__(self):
        if all(np.abs(self.end_diameter - self.end_diameter[0]) < self.end_diameter[0]*1e-12):
            # Constant diameter
            diam = self.end_diameter[0]
        else:
            diam = np.hstack([np.asarray(self.start_diameter[0]),
                              np.asarray(self.end_diameter)])*meter
        s = '{klass}(diameter={diam!r}'.format(klass=self.__class__.__name__,
                                               diam=diam)
        if self.n != 1:
            s += ', n={n}'.format(n=self.n)
        if self._x is not None:
            s += ', x={x!r}, y={y!r}, z={z!r}'.format(x=self._x,
                                                      y=self._y,
                                                      z=self._z)
        else:
            s += ', length={length!r}'.format(length=sum(self._length))
        if self.type is not None:
            s += ', type={type!r}'.format(type=self.type)
        return s + ')'

[docs]    def copy_section(self):
        if self.x is None:
            x, y, z = None, None, None
            length = self.length
        else:
            x, y, z = self._x*meter, self._y*meter, self._z*meter
            length = None
        return Section(diameter=self._diameter, n=self.n, x=x, y=y, z=z,
                       length=length, type=self.type)


    @property
    def area(self):
        r'''
        The membrane surface area of each compartment in this section. The
        surface area of each compartment is calculated as
        :math:`\frac{\pi}{2}(d_1 + d_2)\sqrt{\frac{(d_1 - d_2)^2}{4} + l^2)}`,
        where :math:`l` is the length of the compartment, and :math:`d_1` and
        :math:`d_2` are the diameter at the start and end of the compartment,
        respectively. Note that this surface area does not contain the area of
        the two disks at the two sides of the truncated cone.
        '''
        d_1 = self.start_diameter
        d_2 = self.end_diameter
        return np.pi/2*(d_1 + d_2)*np.sqrt(((d_1 - d_2)**2)/4 + self._length**2)

    @property
    def volume(self):
        r'''
        The volume of each compartment in this section. The volume of each
        compartment is calculated as
        :math:`\frac{\pi}{12} l (d_1^2 + d_1 d_2 + d_2^2)`,
        where :math:`l` is the length of the compartment, and :math:`d_1` and
        :math:`d_2` are the diameter at the start and end of the compartment,
        respectively.
        '''
        d_1 = self.start_diameter
        d_2 = self.end_diameter
        return np.pi * self._length * (d_1**2 + d_1*d_2 + d_2**2)/12

    @property
    def length(self):
        '''
        The length of each compartment in this section.
        '''
        return self._length

    @property
    def start_diameter(self):
        '''
        The diameter at the start of each compartment in this section.
        '''
        return Quantity(self._diameter[:-1], copy=True)

    @property
    def end_diameter(self):
        '''
        The diameter at the end of each compartment in this section.
        '''
        return Quantity(self._diameter[1:], copy=True)

    @property
    def diameter(self):
        '''
        The diameter at the middle of each compartment in this section.
        '''
        d_1 = self.start_diameter
        d_2 = self.end_diameter
        # Diameter at the center
        return 0.5*(d_1 + d_2)

    @property
    def distance(self):
        '''
        The total distance between the midpoint of each compartment and the root
        of the morphology.
        '''
        dist = self._parent.end_distance if self._parent is not None else 0 * um
        return dist + np.cumsum(self.length) - 0.5 * self.length

    @property
    def end_distance(self):
        '''
        The distance to the root of the morphology at the end of this section.
        '''
        return self.distance[-1] + 0.5 * self.length[-1]

    @property
    def r_length_1(self):
        '''
        The geometry-dependent term to calculate the conductance between the
        start and the midpoint of each compartment. Dividing this value by the
        Intracellular resistivity gives the conductance.
        '''
        d_1 = self.start_diameter
        d_2 = (self.start_diameter + self.end_diameter)*0.5
        return np.pi/2 * (d_1 * d_2)/self._length

    @property
    def r_length_2(self):
        '''
        The geometry-dependent term to calculate the conductance between the
        midpoint and the end of each compartment. Dividing this value by the
        Intracellular resistivity gives the conductance.
        '''
        d_1 = (self.start_diameter + self.end_diameter)*0.5
        d_2 = self.end_diameter
        return np.pi/2 * (d_1 * d_2)/self._length

    @property
    def start_x_(self):
        '''
        The x coordinate (as a unitless floating point number) at the beginning
        of each compartment. Returns ``None`` for morphologies without
        coordinates.
        '''
        if self._x is None:
            return None
        parent_end_x = self.parent.end_x_ if self.parent is not None else None
        if parent_end_x is not None:
            return parent_end_x[-1] + self._x[:-1]
        else:
            return self._x[:-1]

    @property
    def start_y_(self):
        '''
        The y coordinate (as a unitless floating point number) at the beginning
        of each compartment. Returns ``None`` for morphologies without
        coordinates.
        '''
        if self._y is None:
            return None
        parent_end_y = self.parent.end_y_ if self.parent is not None else None
        if parent_end_y is not None:
            return parent_end_y[-1] + self._y[:-1]
        else:
            return self._y[:-1]

    @property
    def start_z_(self):
        '''
        The z coordinate (as a unitless floating point number) at the beginning
        of each compartment. Returns ``None`` for morphologies without
        coordinates.
        '''
        if self._z is None:
            return None
        parent_end_z = self.parent.end_z_ if self.parent is not None else None
        if parent_end_z is not None:
            return parent_end_z[-1] + self._z[:-1]
        else:
            return self._z[:-1]

    @property
    def x_(self):
        '''
        The x coordinate (as a unitless floating point number) at the midpoint
        of each compartment. Returns ``None`` for morphologies without
        coordinates.
        '''
        if self._x is None:
            return None
        start_x = self.start_x_
        diff_x = (self.end_x_ - start_x)
        return start_x + 0.5*diff_x

    @property
    def y_(self):
        '''
        The y coordinate (as a unitless floating point number) at the midpoint
        of each compartment. Returns ``None`` for morphologies without
        coordinates.
        '''
        if self._y is None:
            return None
        start_y = self.start_y_
        diff_y = (self.end_y_ - start_y)
        return start_y + 0.5*diff_y

    @property
    def z_(self):
        '''
        The z coordinate (as a unitless floating point number) at the midpoint
        of each compartment. Returns ``None`` for morphologies without
        coordinates.
        '''
        if self._z is None:
            return None
        start_z = self.start_z_
        diff_z = (self.end_z_ - start_z)
        return start_z + 0.5*diff_z

    @property
    def end_x_(self):
        '''
        The x coordinate (as a unitless floating point number) at the end of
        each compartment. Returns ``None`` for morphologies without coordinates.
        '''
        if self._x is None:
            return None
        parent_end_x = self.parent.end_x_ if self.parent is not None else None
        if parent_end_x is not None:
            return parent_end_x[-1] + self._x[1:]
        else:
            return self._x[1:]

    @property
    def end_y_(self):
        '''
        The y coordinate (as a unitless floating point number) at the end of
        each compartment. Returns ``None`` for morphologies without coordinates.
        '''
        if self._y is None:
            return None
        parent_end_y = self.parent.end_y_ if self.parent is not None else None
        if parent_end_y is not None:
            return parent_end_y[-1] + self._y[1:]
        else:
            return self._y[1:]

    @property
    def end_z_(self):
        '''
        The z coordinate (as a unitless floating point number) at the end of
        each compartment. Returns ``None`` for morphologies without coordinates.
        '''
        if self._z is None:
            return None
        parent_end_z = self.parent.end_z_ if self.parent is not None else None
        if parent_end_z is not None:
            return parent_end_z[-1] + self._z[1:]
        else:
            return self._z[1:]



[docs]class Cylinder(Section):
    '''
    A cylindrical section. For sections with more complex geometry (varying
    length and/or diameter of each compartment), use the `Section` class.

    Parameters
    ----------
    diameter : `Quantity`
        The diameter of the cylinder.
    n : int, optional
        The number of compartments in this section. Defaults to 1.
    length : `Quantity`, optional
        The length of the cylinder. Cannot be combined with the specification
        of coordinates.
    x : `Quantity`, optional
        A sequence of two values, the start and the end point of the cylinder.
        The coordinates are interpreted as relative to the end point of the
        parent compartment (if any), so in most cases the start point should
        be ``0*um``. The common exception is a cylinder connecting to a `Soma`,
        here the start point can be used to make the cylinder start at the
        surface of the sphere instead of at its center.
        You can specify all of ``x``, ``y``, or ``z`` to specify
        a morphology in 3D, or only one or two out of them to specify a
        morphology in 1D or 2D.
    y : `Quantity`, optional
        See ``x``
    z : `Quantity`, optional
        See ``x``
    type : str, optional
        The type (e.g. ``"axon"``) of this `Cylinder`.
    '''
    @check_units(n=1, length=meter, diameter=meter, x=meter, y=meter, z=meter)
    def __init__(self, diameter, n=1, length=None, x=None, y=None, z=None,
                 type=None):
        n = int(n)
        Morphology.__init__(self, n=n, type=type)

        # Diameter
        if diameter.shape != () and (diameter.ndim > 1 or len(diameter) != 1):
            raise TypeError('The diameter argument has to be a single value.')
        diameter = np.ones(n) * diameter
        self._diameter = diameter

        if ((x is not None or y is not None or z is not None) and
                    length is not None):
            raise TypeError('Cannot specify coordinates and length at the same '
                            'time.')

        if length is not None:
            # Length
            if length.shape != () and (length.ndim > 1 or len(length) != 1):
                raise TypeError('The length argument has to be a single value.')
            self._length = np.ones(n) * (length/n)  # length was total length
            self._x = self._y = self._z = None
        else:
            # Coordinates
            if x is None and y is None and z is None:
                raise TypeError('No length specified, need to specify at least '
                                'one out of x, y, or z.')
            for name, value in [('x', x), ('y', y), ('z', z)]:
                if value is not None and (value.ndim != 1 or len(value) != 2):
                    raise TypeError('%s needs to be a 1-dimensional array of '
                                    'length 2 (start and end point)' % name)
            self._x = np.asarray(np.linspace(x[0], x[1], n+1)) if x is not None else np.zeros(n+1)
            self._y = np.asarray(np.linspace(y[0], y[1], n+1)) if y is not None else np.zeros(n+1)
            self._z = np.asarray(np.linspace(z[0], z[1], n+1)) if z is not None else np.zeros(n+1)
            length = np.sqrt((self.end_x - self.start_x) ** 2 +
                             (self.end_y - self.start_y) ** 2 +
                             (self.end_z - self.start_z) ** 2)
            self._length = length

    def __repr__(self):
        s = '{klass}(diameter={diam!r}'.format(klass=self.__class__.__name__,
                                               diam=self.diameter[0])
        if self.n != 1:
            s += ', n={n}'.format(n=self.n)
        if self._x is not None:
            s += ', x={x!r}, y={y!r}, z={z!r}'.format(x=self._x[[0, -1]],
                                                      y=self._y[[0, -1]],
                                                      z=self._z[[0, -1]])
        else:
            s += ', length={length!r}'.format(length=sum(self._length))
        if self.type is not None:
            s += ', type={type!r}'.format(type=self.type)
        return s + ')'

[docs]    def copy_section(self):
        if self.x is None:
            return Cylinder(self.diameter[0], n=self.n, length=self.length,
                            type=self.type)
        else:
            return Cylinder(self.diameter[0], n=self.n,
                            x=self._x[[0, -1]], y=self._y[[0, -1]], z=self._z[[0, -1]],
                            type=self.type)


    # Overwrite the properties that differ from `Section`
    @property
    def area(self):
        r'''
        The membrane surface area of each compartment in this section. The
        surface area of each compartment is calculated as
        :math:`\pi d l`,
        where :math:`l` is the length of the compartment, and :math:`d` is its
        diameter. Note that this surface area does not contain the area of
        the two disks at the two sides of the cylinder.
        '''
        return np.pi * self._diameter * self.length

    @property
    def start_diameter(self):
        '''
        The diameter at the start of each compartment in this section.
        '''
        return self._diameter

    @property
    def diameter(self):
        '''
        The diameter at the middle of each compartment in this section.
        '''
        return self._diameter

    @property
    def end_diameter(self):
        '''
        The diameter at the end of each compartment in this section.
        '''
        return self._diameter

    @property
    def volume(self):
        r'''
        The volume of each compartment in this section. The volume of each
        compartment is calculated as
        :math:`\pi \frac{d}{2}^2 l` ,
        where :math:`l` is the length of the compartment, and :math:`d` is its
        diameter.
        '''
        return np.pi * (self._diameter/2)**2 * self.length

    @property
    def r_length_1(self):
        '''
        The geometry-dependent term to calculate the conductance between the
        start and the midpoint of each compartment. Dividing this value by the
        Intracellular resistivity gives the conductance.
        '''
        return np.pi/2 * (self._diameter**2)/self.length

    @property
    def r_length_2(self):
        '''
        The geometry-dependent term to calculate the conductance between the
        midpoint and the end of each compartment. Dividing this value by the
        Intracellular resistivity gives the conductance.
        '''
        return np.pi/2 * (self._diameter**2)/self.length






          

      

      

    


    
        © Copyright 2012, Brian authors.
      Created using Sphinx 1.4.6.
    

  

_images/2-intro-to-brian-synapses_image_5_0.png
12

— Neuron 0
10| — Neuron1
08
06
04
02
00
0 ] o Gl

Time (ms)

100





_modules/brian2/codegen/runtime/weave_rt/weave_rt.xhtml


    
      Navigation


      
        		
          index


        		
          modules |


        		Brian 2 2.0 documentation »


          		Module code »

 
      


    


    
      
          
            
  Source code for brian2.codegen.runtime.weave_rt.weave_rt

'''
Module providing `WeaveCodeObject`.
'''
import os
import sys
import numpy

try:
    from scipy import weave
    from scipy.weave.c_spec import num_to_c_types
    from scipy.weave.inline_tools import function_cache
except ImportError:
    try:  # weave as an independent package
        import weave
        from weave.c_spec import num_to_c_types
        from weave.inline_tools import function_cache
    except ImportError:
        # No weave for Python 3
        weave = None

from brian2.core.variables import (DynamicArrayVariable, ArrayVariable,
                                   AuxiliaryVariable, Subexpression)
from brian2.core.preferences import prefs
from brian2.core.functions import DEFAULT_FUNCTIONS, Function
from brian2.devices.device import all_devices
from brian2.utils.logger import std_silent, get_logger
from brian2.utils.stringtools import get_identifiers

from ...codeobject import CodeObject, constant_or_scalar, sys_info
from ...templates import Templater
from ...generators.cpp_generator import CPPCodeGenerator
from ...targets import codegen_targets
from ...cpp_prefs import get_compiler_and_args, update_for_cross_compilation

__all__ = ['WeaveCodeObject', 'WeaveCodeGenerator']


logger = get_logger(__name__)


[docs]def weave_data_type(dtype):
    '''
    Gives the C language specifier for numpy data types using weave. For example,
    ``numpy.int32`` maps to ``long`` in C.
    '''
    # this handles the case where int is specified, it will be int32 or int64
    # depending on platform
    if dtype is int:
        dtype = numpy.array([1]).dtype.type
    if dtype is float:
        dtype = numpy.array([1.]).dtype.type
    try:
        dtype = numpy.empty(0, dtype=dtype).dtype.char
    except TypeError:
        raise TypeError('Illegal dtype %r' % dtype)

    return num_to_c_types[dtype]



[docs]class WeaveCodeGenerator(CPPCodeGenerator):
    def __init__(self, *args, **kwds):
        super(WeaveCodeGenerator, self).__init__(*args, **kwds)
        self.c_data_type = weave_data_type



[docs]class WeaveCodeObject(CodeObject):
    '''
    Weave code object
    
    The ``code`` should be a `~brian2.codegen.templates.MultiTemplate`
    object with two macros defined, ``main`` (for the main loop code) and
    ``support_code`` for any support code (e.g. function definitions).
    '''
    templater = Templater('brian2.codegen.runtime.weave_rt', '.cpp',
                          env_globals={'c_data_type': weave_data_type,
                                       'dtype': numpy.dtype,
                                       'constant_or_scalar': constant_or_scalar})
    generator_class = WeaveCodeGenerator
    class_name = 'weave'

    def __init__(self, owner, code, variables, variable_indices,
                 template_name, template_source, name='weave_code_object*'):
        from brian2.devices.device import get_device
        self.device = get_device()
        self._done_first_run = False
        self.namespace = {'_owner': owner}
        super(WeaveCodeObject, self).__init__(owner, code, variables,
                                              variable_indices,
                                              template_name, template_source,
                                              name=name)
        self.compiler, self.extra_compile_args = get_compiler_and_args()
        self.define_macros = list(prefs['codegen.cpp.define_macros'])
        if self.compiler == 'msvc':
            self.define_macros.extend([
                ('INFINITY', '(std::numeric_limits<double>::infinity())'),
                ('NAN', '(std::numeric_limits<double>::quiet_NaN())'),
                ('M_PI', '3.14159265358979323846')
            ])
        self.extra_link_args = list(prefs['codegen.cpp.extra_link_args'])
        self.include_dirs = list(prefs['codegen.cpp.include_dirs'])
        self.include_dirs += [os.path.join(sys.prefix, 'include')]
        # TODO: We should probably have a special folder just for header
        # files that are shared between different codegen targets
        import brian2.synapses as synapses
        synapses_dir = os.path.dirname(synapses.__file__)
        self.include_dirs.append(synapses_dir)
        self.library_dirs = list(prefs['codegen.cpp.library_dirs'])
        update_for_cross_compilation(self.library_dirs,
                                     self.extra_compile_args,
                                     self.extra_link_args, logger=logger)
        self.runtime_library_dirs = list(prefs['codegen.cpp.runtime_library_dirs'])
        self.libraries = list(prefs['codegen.cpp.libraries'])
        self.headers = ['<algorithm>', '<limits>', '"stdint_compat.h"'] + prefs['codegen.cpp.headers']
        self.annotated_code = self.code.main+'''
/*
The following code is just compiler options for the call to weave.inline.
By including them here, we force a recompile if the compiler options change,
which is a good thing (e.g. switching -ffast-math on and off).

support_code:
{self.code.support_code}

compiler: {self.compiler}
define_macros: {self.define_macros}
extra_compile_args: {self.extra_compile_args}
extra_link_args: {self.extra_link_args}
include_dirs: {self.include_dirs}
library_dirs: {self.library_dirs}
runtime_library_dirs: {self.runtime_library_dirs}
libraries: {self.libraries}
*/
        '''.format(self=self)

        self.python_code_namespace = {'_owner': owner}
        self.variables_to_namespace()

    @classmethod
[docs]    def is_available(cls):
        try:
            with std_silent(False):
                compiler, extra_compile_args = get_compiler_and_args()
                extra_link_args = prefs['codegen.cpp.extra_link_args']
                library_dirs = prefs['codegen.cpp.library_dirs']
                update_for_cross_compilation(library_dirs,
                                             extra_compile_args,
                                             extra_link_args,
                                             logger=logger)
                weave.inline('int x=0;', [],
                             compiler=compiler,
                             headers=['<algorithm>', '<limits>'],
                             extra_compile_args=extra_compile_args,
                             extra_link_args=extra_link_args,
                             library_dirs=library_dirs,
                             include_dirs=prefs['codegen.cpp.include_dirs'],
                             verbose=0)
                return True
        except Exception as ex:
            logger.warn(('Cannot use weave, a test compilation '
                         'failed: %s (%s)' % (str(ex),
                                              ex.__class__.__name__)) ,
                        'failed_compile_test')
            return False


[docs]    def variables_to_namespace(self):

        # Variables can refer to values that are either constant (e.g. dt)
        # or change every timestep (e.g. t). We add the values of the
        # constant variables here and add the names of non-constant variables
        # to a list

        # A list containing tuples of name and a function giving the value
        self.nonconstant_values = []

        for name, var in self.variables.iteritems():
            if isinstance(var, (AuxiliaryVariable, Subexpression, Function)):
                continue
            try:
                value = var.get_value()
            except (TypeError, AttributeError):
                # A dummy Variable without value or a an object that is accessed
                # with Python's C API directly
                self.namespace[name] = var
                continue

            if isinstance(var, ArrayVariable):
                self.namespace[self.device.get_array_name(var,
                                                            self.variables)] = value
                self.namespace['_num'+name] = var.get_len()
                # if var.scalar and var.constant:
                #     self.namespace[name] = value.item()
            else:
                self.namespace[name] = value

            if isinstance(var, DynamicArrayVariable):
                dyn_array_name = self.generator_class.get_array_name(var,
                                                                    access_data=False)
                self.namespace[dyn_array_name] = self.device.get_value(var,
                                                                       access_data=False)

            # Also provide the Variable object itself in the namespace (can be
            # necessary for resize operations, for example)
            self.namespace['_var_'+name] = var

        # Get all identifiers in the code -- note that this is not a smart
        # function, it will get identifiers from strings, comments, etc. This
        # is not a problem here, since we only use this list to filter out
        # things. If we include something incorrectly, this only means that we
        # will pass something into the namespace unnecessarily.
        all_identifiers = reduce(lambda s, c: s | get_identifiers(c),
                                 self.code.values(), set())
        # Filter out all unneeded objects
        self.namespace = {k: v for k, v in self.namespace.iteritems()
                          if k in all_identifiers}

        # There is one type of objects that we have to inject into the
        # namespace with their current value at each time step: dynamic
        # arrays that change in size during runs, where the size change is not
        # initiated by the template itself
        for name, var in self.variables.iteritems():
            if (isinstance(var, DynamicArrayVariable) and
                    var.needs_reference_update):
                array_name = self.device.get_array_name(var, self.variables)
                if array_name in self.namespace:
                    self.nonconstant_values.append((array_name, var.get_value))
                if '_num'+name in self.namespace:
                    self.nonconstant_values.append(('_num'+name, var.get_len))


[docs]    def update_namespace(self):
        # update the values of the non-constant values in the namespace
        for name, func in self.nonconstant_values:
            self.namespace[name] = func()

            
[docs]    def compile(self):
        CodeObject.compile(self)
        if hasattr(self.code, 'python_pre'):
            self.compiled_python_pre = compile(self.code.python_pre, '(string)', 'exec')
        else:
            self.compiled_python_pre = None
        if hasattr(self.code, 'python_post'):
            self.compiled_python_post = compile(self.code.python_post, '(string)', 'exec')
        else:
            self.compiled_python_post = None


[docs]    def run(self):
        if self.compiled_python_pre is not None:
            exec self.compiled_python_pre in self.python_code_namespace
        if self._done_first_run:
            ret_val = self._compiled_func(self.namespace, {})
        else:
            self._inline_args = (self.annotated_code, self.namespace.keys())
            self._inline_kwds = dict(
                local_dict=self.namespace,
                support_code=self.code.support_code,
                compiler=self.compiler,
                headers=self.headers,
                define_macros=self.define_macros,
                libraries=self.libraries,
                extra_compile_args=self.extra_compile_args,
                extra_link_args=self.extra_link_args,
                include_dirs=self.include_dirs,
                library_dirs=self.library_dirs,
                verbose=0)
            with std_silent():
                ret_val = weave.inline(*self._inline_args, **self._inline_kwds)
            self._compiled_func = function_cache[self.annotated_code]
            self._done_first_run = True
        if self.compiled_python_post is not None:
            exec self.compiled_python_post in self.python_code_namespace
        return ret_val



if weave is not None:
    codegen_targets.add(WeaveCodeObject)


# Use a special implementation for the randn function that makes use of numpy's
# randn
# Give those functions access to a common buffer stored in the runtime device
device = all_devices['runtime']

randn_code = {'support_code': '''
        #define BUFFER_SIZE 20000
        // A randn() function that returns a single random number. Internally
        // it asks numpy's randn function for BUFFER_SIZE
        // random numbers at a time and then returns one number from this
        // buffer.
        // It needs a reference to the numpy_randn object (the original numpy
        // function), because this is otherwise only available in
        // compiled_function (where is is automatically handled by weave).
        //
        double _randn(const int _vectorisation_idx) {
            // the _vectorisation_idx argument is unused for now, it could in
            // principle be used to get reproducible random numbers when using
            // OpenMP etc.
            double **buffer_pointer = (double **)_namespace_randn_buffer;
            double* buffer = *buffer_pointer;
            npy_int32* buffer_index = (npy_int32*)_namespace_randn_buffer_index;
            if(*buffer_index == 0)
            {
                if (buffer != 0)
                    free(buffer);
                py::tuple args(1);
                args[0] = BUFFER_SIZE;
                PyArrayObject *new_randn = (PyArrayObject *)PyArray_FromAny(_namespace_numpy_randn.call(args),
                                                                            NULL, 1, 1, 0, NULL);
                buffer = *buffer_pointer = (double *)(new_randn->data);

                // This should garbage collect the array object but leave the buffer
                PyArray_CLEARFLAGS(new_randn, NPY_ARRAY_OWNDATA);
                Py_DECREF(new_randn);
            }
            double number = buffer[*buffer_index];
            (*buffer_index)++;
            if (*buffer_index == BUFFER_SIZE)
                *buffer_index = 0;
            return number;
        }
        '''}
DEFAULT_FUNCTIONS['randn'].implementations.add_implementation(WeaveCodeObject,
                                                              code=randn_code,
                                                              name='_randn',
                                                              namespace={'_numpy_randn': numpy.random.randn,
                                                                         '_randn_buffer': device.randn_buffer,
                                                                         '_randn_buffer_index': device.randn_buffer_index})

# Also use numpy for rand
rand_code = {'support_code': '''
        #define BUFFER_SIZE 20000
        // A rand() function that returns a single random number. Internally
        // it asks numpy's rand function for BUFFER_SIZE
        // random numbers at a time and then returns one number from this
        // buffer.
        // It needs a reference to the numpy_rand object (the original numpy
        // function), because this is otherwise only available in
        // compiled_function (where is is automatically handled by weave).
        //
        double _rand(const int _vectorisation_idx) {
            // the _vectorisation_idx argument is unused for now, it could in
            // principle be used to get reproducible random numbers when using
            // OpenMP etc.
            double **buffer_pointer = (double **)_namespace_rand_buffer;
            double* buffer = *buffer_pointer;
            npy_int32* buffer_index = (npy_int32*)_namespace_rand_buffer_index;
            if(*buffer_index == 0)
            {
                if (buffer != 0)
                    free(buffer);
                py::tuple args(1);
                args[0] = BUFFER_SIZE;
                PyArrayObject *new_rand = (PyArrayObject *)PyArray_FromAny(_namespace_numpy_rand.call(args),
                                                                            NULL, 1, 1, 0, NULL);
                buffer = *buffer_pointer = (double *)(new_rand->data);

                // This should garbage collect the array object but leave the buffer
                PyArray_CLEARFLAGS(new_rand, NPY_ARRAY_OWNDATA);
                Py_DECREF(new_rand);
            }
            double number = buffer[*buffer_index];
            (*buffer_index)++;
            if (*buffer_index == BUFFER_SIZE)
                *buffer_index = 0;
            return number;
        }
        '''}
DEFAULT_FUNCTIONS['rand'].implementations.add_implementation(WeaveCodeObject,
                                                             code=rand_code,
                                                             namespace={'_numpy_rand': numpy.random.rand,
                                                                        '_rand_buffer': device.rand_buffer,
                                                                        '_rand_buffer_index': device.rand_buffer_index},
                                                             name='_rand')





          

      

      

    


    
        © Copyright 2012, Brian authors.
      Created using Sphinx 1.4.6.
    

  

_images/synapses.efficient_gaussian_connectivity.1.png
Time (s)

10*

— Naive
— Limited
— Divided
10°
10"
f—
102

10°

10°

10*

10°





_modules/brian2/spatialneuron/spatialneuron.xhtml


    
      Navigation


      
        		
          index


        		
          modules |


        		Brian 2 2.0 documentation »


          		Module code »

 
      


    


    
      
          
            
  Source code for brian2.spatialneuron.spatialneuron

'''
Compartmental models.
This module defines the SpatialNeuron class, which defines multicompartmental models.
'''
import weakref
import copy

import sympy as sp
import numpy as np

from brian2.core.variables import Variables
from brian2.equations.equations import (Equations, PARAMETER, SUBEXPRESSION,
                                        DIFFERENTIAL_EQUATION, SingleEquation,
                                        extract_constant_subexpressions)
from brian2.groups.group import Group, CodeRunner, create_runner_codeobj
from brian2.units.allunits import ohm, siemens, amp, meter, volt
from brian2.units.fundamentalunits import Quantity, Unit, fail_for_dimension_mismatch, have_same_dimensions, DimensionMismatchError
from brian2.units.stdunits import uF, cm
from brian2.parsing.sympytools import sympy_to_str, str_to_sympy
from brian2.utils.logger import get_logger
from brian2.groups.neurongroup import NeuronGroup, SubexpressionUpdater
from brian2.groups.subgroup import Subgroup
from brian2.equations.codestrings import Expression

__all__ = ['SpatialNeuron']

logger = get_logger(__name__)


[docs]class FlatMorphology(object):
    '''
    Container object to store the flattened representation of a morphology.
    Note that all values are stored as numpy arrays without unit information
    (i.e. in base units).
    '''
    def __init__(self, morphology):
        self.n = n = morphology.total_compartments  # Total number of compartments
        # Per-compartment attributes
        self.length = np.zeros(n)
        self.distance = np.zeros(n)
        self.area = np.zeros(n)
        self.diameter = np.zeros(n)
        self.volume = np.zeros(n)
        self.r_length_1 = np.zeros(n)
        self.r_length_2 = np.zeros(n)
        self.start_x = np.zeros(n)
        self.start_y = np.zeros(n)
        self.start_z = np.zeros(n)
        self.x = np.zeros(n)
        self.y = np.zeros(n)
        self.z = np.zeros(n)
        self.end_x = np.zeros(n)
        self.end_y = np.zeros(n)
        self.end_z = np.zeros(n)
        self.depth = np.zeros(n, dtype=np.int32)
        self.sections = sections = morphology.total_sections
        self.end_distance = np.zeros(sections)
        # Index of the parent for each section (-1 for the root)
        self.morph_parent_i = np.zeros(sections, dtype=np.int32)
        # The children indices for each section (list of lists, will be later
        # transformed into an array representation)
        self.morph_children = []
        # each section is child of exactly one parent, this stores the index in
        # the parents list of children
        self.morph_idxchild = np.zeros(sections, dtype=np.int32)
        self.starts = np.zeros(sections, dtype=np.int32)
        self.ends = np.zeros(sections, dtype=np.int32)

        # recursively fill the data structures
        self._sections_without_coordinates = False
        self.has_coordinates = False
        self._offset = 0
        self._section_counter = 0
        self._insert_data(morphology)
        if self.has_coordinates and self._sections_without_coordinates:
            logger.info('The morphology has a mix of sections with and '
                        'without coordinates. The SpatialNeuron object '
                        'will store NaN values for the coordinates of '
                        'the sections that do not specify coordinates. '
                        'Call generate_coordinates on the morphology '
                        'before creating the SpatialNeuron object to fill '
                        'in the missing coordinates.')
        # Do not store coordinates for morphologies that don't define them
        if not self.has_coordinates:
            self.start_x = self.start_y = self.start_z = None
            self.x = self.y = self.z = None
            self.end_x = self.end_y = self.end_z = None

        # Transform the list of list of children into a 2D array (stored as
        # 1D) -- note that this wastes space if the number of children per
        # section is very different. In practice, this should not be much of a
        # problem since most sections have 0, 1, or 2 children (e.g. SWC files
        # on neuromorpho.org are all binary trees)
        self.morph_children_num = np.array([len(c)
                                            for c in self.morph_children] + [0])
        max_children = max(self.morph_children_num)
        morph_children = np.zeros((sections+1, max_children), dtype=np.int32)
        for idx, section_children in enumerate(self.morph_children):
            morph_children[idx, :len(section_children)] = section_children
        self.morph_children = morph_children.reshape(-1)

    def _insert_data(self, section, parent_idx=-1, depth=0):
        n = section.n
        start = self._offset
        end = self._offset + n
        # Compartment attributes
        self.depth[start:end] = depth
        self.length[start:end] = np.asarray(section.length)
        self.distance[start:end] = np.asarray(section.distance)
        self.area[start:end] = np.asarray(section.area)
        self.diameter[start:end] = np.asarray(section.diameter)
        self.volume[start:end] = np.asarray(section.volume)
        self.r_length_1[start:end] = np.asarray(section.r_length_1)
        self.r_length_2[start:end] = np.asarray(section.r_length_2)
        if section.x is None:
            self._sections_without_coordinates = True
            self.start_x[start:end] = np.ones(n)*np.nan
            self.start_y[start:end] = np.ones(n)*np.nan
            self.start_z[start:end] = np.ones(n)*np.nan
            self.x[start:end] = np.ones(n)*np.nan
            self.y[start:end] = np.ones(n)*np.nan
            self.z[start:end] = np.ones(n)*np.nan
            self.end_x[start:end] = np.ones(n)*np.nan
            self.end_y[start:end] = np.ones(n)*np.nan
            self.end_z[start:end] = np.ones(n)*np.nan
        else:
            self.has_coordinates = True
            self.start_x[start:end] = np.asarray(section.start_x)
            self.start_y[start:end] = np.asarray(section.start_y)
            self.start_z[start:end] = np.asarray(section.start_z)
            self.x[start:end] = np.asarray(section.x)
            self.y[start:end] = np.asarray(section.y)
            self.z[start:end] = np.asarray(section.z)
            self.end_x[start:end] = np.asarray(section.end_x)
            self.end_y[start:end] = np.asarray(section.end_y)
            self.end_z[start:end] = np.asarray(section.end_z)

        # Section attributes
        idx = self._section_counter
        # We start counting from 1 for the parent indices, since the index 0
        # is used for the (virtual) root compartment
        self.morph_parent_i[idx] = parent_idx + 1
        self.morph_children.append([])
        self.starts[idx] = start
        self.ends[idx] = end
        # Append ourselves to the children list of our parent
        self.morph_idxchild[idx] = len(self.morph_children[parent_idx+1])
        self.morph_children[parent_idx + 1].append(idx + 1)
        self.end_distance[idx] = section.end_distance
        # Recurse down the tree
        self._offset += n
        self._section_counter += 1
        for child in section.children:
            self._insert_data(child, parent_idx=idx, depth=depth+1)



[docs]class SpatialNeuron(NeuronGroup):
    '''
    A single neuron with a morphology and possibly many compartments.

    Parameters
    ----------
    morphology : `Morphology`
        The morphology of the neuron.
    model : (str, `Equations`)
        The equations defining the group.
    method : (str, function), optional
        The numerical integration method. Either a string with the name of a
        registered method (e.g. "euler") or a function that receives an
        `Equations` object and returns the corresponding abstract code. If no
        method is specified, a suitable method will be chosen automatically.
    threshold : str, optional
        The condition which produces spikes. Should be a single line boolean
        expression.
    threshold_location : (int, `Morphology`), optional
        Compartment where the threshold condition applies, specified as an
        integer (compartment index) or a `Morphology` object corresponding to
        the compartment (e.g. ``morpho.axon[10*um]``).
        If unspecified, the threshold condition applies at all compartments.
    Cm : `Quantity`, optional
        Specific capacitance in uF/cm**2 (default 0.9). It can be accessed and
        modified later as a state variable. In particular, its value can differ
        in different compartments.
    Ri : `Quantity`, optional
        Intracellular resistivity in ohm.cm (default 150). It can be accessed
        as a shared state variable, but modified only before the first run.
        It is uniform across the neuron.
    reset : str, optional
        The (possibly multi-line) string with the code to execute on reset.
    events : dict, optional
        User-defined events in addition to the "spike" event defined by the
        ``threshold``. Has to be a mapping of strings (the event name) to
        strings (the condition) that will be checked.
    refractory : {str, `Quantity`}, optional
        Either the length of the refractory period (e.g. ``2*ms``), a string
        expression that evaluates to the length of the refractory period
        after each spike (e.g. ``'(1 + rand())*ms'``), or a string expression
        evaluating to a boolean value, given the condition under which the
        neuron stays refractory after a spike (e.g. ``'v > -20*mV'``)
    namespace : dict, optional
        A dictionary mapping variable/function names to the respective objects.
        If no `namespace` is given, the "implicit" namespace, consisting of
        the local and global namespace surrounding the creation of the class,
        is used.
    dtype : (`dtype`, `dict`), optional
        The `numpy.dtype` that will be used to store the values, or a
        dictionary specifying the type for variable names. If a value is not
        provided for a variable (or no value is provided at all), the preference
        setting `core.default_float_dtype` is used.
    dt : `Quantity`, optional
        The time step to be used for the simulation. Cannot be combined with
        the `clock` argument.
    clock : `Clock`, optional
        The update clock to be used. If neither a clock, nor the `dt` argument
        is specified, the `defaultclock` will be used.
    order : int, optional
        The priority of of this group for operations occurring at the same time
        step and in the same scheduling slot. Defaults to 0.
    name : str, optional
        A unique name for the group, otherwise use ``spatialneuron_0``, etc.
    '''

    def __init__(self, morphology=None, model=None, threshold=None,
                 refractory=False, reset=None, events=None,
                 threshold_location=None,
                 dt=None, clock=None, order=0, Cm=0.9 * uF / cm ** 2, Ri=150 * ohm * cm,
                 name='spatialneuron*', dtype=None, namespace=None,
                 method=('linear', 'exponential_euler', 'rk2', 'heun')):

        # #### Prepare and validate equations
        if isinstance(model, basestring):
            model = Equations(model)
        if not isinstance(model, Equations):
            raise TypeError(('model has to be a string or an Equations '
                             'object, is "%s" instead.') % type(model))

        # Insert the threshold mechanism at the specified location
        if threshold_location is not None:
            if hasattr(threshold_location,
                       '_indices'):  # assuming this is a method
                threshold_location = threshold_location._indices()
                # for now, only a single compartment allowed
                if len(threshold_location) == 1:
                    threshold_location = threshold_location[0]
                else:
                    raise AttributeError(('Threshold can only be applied on a '
                                          'single location'))
            threshold = '(' + threshold + ') and (i == ' + str(threshold_location) + ')'

        # Check flags (we have point currents)
        model.check_flags({DIFFERENTIAL_EQUATION: ('point current',),
                           PARAMETER: ('constant', 'shared', 'linked', 'point current'),
                           SUBEXPRESSION: ('shared', 'point current',
                                           'constant over dt')})
        #: The original equations as specified by the user (i.e. before
        #: inserting point-currents into the membrane equation, before adding
        #: all the internally used variables and constants, etc.).
        self.user_equations = model

        # Separate subexpressions depending whether they are considered to be
        # constant over a time step or not (this would also be done by the
        # NeuronGroup initializer later, but this would give incorrect results
        # for the linearity check)
        model, constant_over_dt = extract_constant_subexpressions(model)

        # Extract membrane equation
        if 'Im' in model:
            if len(model['Im'].flags):
                raise TypeError('Cannot specify any flags for the transmembrane '
                                'current Im.')
            membrane_expr = model['Im'].expr  # the membrane equation
        else:
            raise TypeError('The transmembrane current Im must be defined')

        model_equations = []
        # Insert point currents in the membrane equation
        for eq in model.itervalues():
            if eq.varname == 'Im':
                continue  # ignore -- handled separately
            if 'point current' in eq.flags:
                fail_for_dimension_mismatch(eq.unit, amp,
                                            "Point current " + eq.varname + " should be in amp")
                membrane_expr = Expression(
                    str(membrane_expr.code) + '+' + eq.varname + '/area')
                eq = SingleEquation(eq.type, eq.varname, eq.unit, expr=eq.expr,
                                    flags=list(set(eq.flags)-set(['point current'])))
            model_equations.append(eq)

        model_equations.append(SingleEquation(SUBEXPRESSION, 'Im',
                                              unit=amp/meter**2,
                                              expr=membrane_expr))
        model_equations.append(SingleEquation(PARAMETER, 'v', unit=volt))
        model = Equations(model_equations)

        ###### Process model equations (Im) to extract total conductance and the remaining current
        # Check conditional linearity with respect to v
        # Match to _A*v+_B
        var = sp.Symbol('v', real=True)
        wildcard = sp.Wild('_A', exclude=[var])
        constant_wildcard = sp.Wild('_B', exclude=[var])
        pattern = wildcard * var + constant_wildcard

        # Expand expressions in the membrane equation
        for var, expr in model.get_substituted_expressions(include_subexpressions=True):
            if var == 'Im':
                Im_expr = expr
                break
        else:
            raise AssertionError('Model equations did not contain Im!')

        # Factor out the variable
        s_expr = sp.collect(str_to_sympy(Im_expr.code).expand(), var)
        matches = s_expr.match(pattern)

        if matches is None:
            raise TypeError("The membrane current must be linear with respect to v")
        a, b = (matches[wildcard],
                matches[constant_wildcard])

        # Extracts the total conductance from Im, and the remaining current
        minusa_str, b_str = sympy_to_str(-a), sympy_to_str(b)
        # Add correct units if necessary
        if minusa_str == '0':
            minusa_str += '*siemens/meter**2'
        if b_str == '0':
            b_str += '*amp/meter**2'
        gtot_str = "gtot__private=" + minusa_str + ": siemens/meter**2"
        I0_str = "I0__private=" + b_str + ": amp/meter**2"
        model += Equations(gtot_str + "\n" + I0_str)

        # Insert morphology (store a copy)
        self.morphology = copy.deepcopy(morphology)

        # Flatten the morphology
        self.flat_morphology = FlatMorphology(morphology)

        # Equations for morphology
        # TODO: check whether Cm and Ri are already in the equations
        #       no: should be shared instead of constant
        #       yes: should be constant (check)
        eqs_constants = Equations("""
        length : meter (constant)
        distance : meter (constant)
        area : meter**2 (constant)
        volume : meter**3
        diameter : meter (constant)
        Cm : farad/meter**2 (constant)
        Ri : ohm*meter (constant, shared)
        r_length_1 : meter (constant)
        r_length_2 : meter (constant)
        time_constant = Cm/gtot__private : second
        space_constant = (2/pi)**(1.0/3.0) * (area/(1/r_length_1 + 1/r_length_2))**(1.0/6.0) /
                         (2*(Ri*gtot__private)**(1.0/2.0)) : meter
        """)
        if self.flat_morphology.has_coordinates:
            eqs_constants += Equations('''
            x : meter (constant)
            y : meter (constant)
            z : meter (constant)
            ''')

        NeuronGroup.__init__(self, morphology.total_compartments,
                             model=model + eqs_constants,
                             threshold=threshold, refractory=refractory,
                             reset=reset, events=events,
                             method=method, dt=dt, clock=clock, order=order,
                             namespace=namespace, dtype=dtype, name=name)
        # Parameters and intermediate variables for solving the cable equations
        # Note that some of these variables could have meaningful physical
        # units (e.g. _v_star is in volt, _I0_all is in amp/meter**2 etc.) but
        # since these variables should never be used in user code, we don't
        # assign them any units
        self.variables.add_arrays(['_ab_star0', '_ab_star1', '_ab_star2',
                                   '_a_minus0', '_a_minus1', '_a_minus2',
                                   '_a_plus0', '_a_plus1', '_a_plus2',
                                   '_b_plus', '_b_minus',
                                   '_v_star', '_u_plus', '_u_minus',
                                   # The following three are for solving the
                                   # three tridiag systems in parallel
                                   '_c1', '_c2', '_c3',
                                   # The following two are only necessary for
                                   # C code where we cannot deal with scalars
                                   # and arrays interchangeably:
                                   '_I0_all', '_gtot_all'], unit=1,
                                  size=self.N, read_only=True)

        self.Cm = Cm
        self.Ri = Ri
        # These explict assignments will load the morphology values from disk
        # in standalone mode
        self.distance_ = self.flat_morphology.distance
        self.length_ = self.flat_morphology.length
        self.area_ = self.flat_morphology.area
        self.diameter_ = self.flat_morphology.diameter
        self.r_length_1_ = self.flat_morphology.r_length_1
        self.r_length_2_ = self.flat_morphology.r_length_2
        if self.flat_morphology.has_coordinates:
            self.x_ = self.flat_morphology.x
            self.y_ = self.flat_morphology.y
            self.z_ = self.flat_morphology.z

        # Performs numerical integration step
        self.add_attribute('diffusion_state_updater')
        self.diffusion_state_updater = SpatialStateUpdater(self, method,
                                                           clock=self.clock,
                                                           order=order)

        # Creation of contained_objects that do the work
        self.contained_objects.extend([self.diffusion_state_updater])

        if len(constant_over_dt):
            self.subexpression_updater = SubexpressionUpdater(self,
                                                              constant_over_dt)
            self.contained_objects.append(self.subexpression_updater)

    def __getattr__(self, name):
        '''
        Subtrees are accessed by attribute, e.g. neuron.axon.
        '''
        return self.spatialneuron_attribute(self, name)

    def __getitem__(self, item):
        '''
        Selects a segment, where x is a slice of either compartment
        indexes or distances.
        Note a: segment is not a SpatialNeuron, only a Group.
        '''
        return self.spatialneuron_segment(self, item)

    @staticmethod
[docs]    def spatialneuron_attribute(neuron, name):
        '''
        Selects a subtree from `SpatialNeuron` neuron and returns a `SpatialSubgroup`.
        If it does not exist, returns the `Group` attribute.
        '''
        if name == 'main':  # Main section, without the subtrees
            indices = neuron.morphology.indices[:]
            start, stop = indices[0], indices[-1]
            return SpatialSubgroup(neuron, start, stop + 1,
                                   morphology=neuron.morphology)
        elif (name != 'morphology') and ((name in getattr(neuron.morphology, 'children', [])) or
                                      all([c in 'LR123456789' for c in name])):  # subtree
            morpho = neuron.morphology[name]
            indices = morpho.indices[:]
            start, stop = indices[0], indices[-1]
            return SpatialSubgroup(neuron, start, stop + 1,
                                   morphology=morpho)
        else:
            return Group.__getattr__(neuron, name)


    @staticmethod
[docs]    def spatialneuron_segment(neuron, item):
        '''
        Selects a segment from `SpatialNeuron` neuron, where item is a slice of
        either compartment indexes or distances.
        Note a: segment is not a `SpatialNeuron`, only a `Group`.
        '''
        if not isinstance(item, slice):
            raise TypeError(
                'Subgroups can only be constructed using slicing syntax')
        start, stop, step = item.start, item.stop, item.step
        if step is None:
            step = 1
        if step != 1:
            raise IndexError('Subgroups have to be contiguous')

        if isinstance(start, Quantity):
            if not have_same_dimensions(start, meter) or not have_same_dimensions(stop, meter):
                raise DimensionMismatchError('Start and stop should have units of meter', start, stop)
            # Convert to integers (compartment numbers)
            indices = neuron.morphology.indices[item]
            start, stop = indices[0], indices[-1] + 1

        if start >= stop:
            raise IndexError('Illegal start/end values for subgroup, %d>=%d' %
                             (start, stop))

        return Subgroup(neuron, start, stop)




[docs]class SpatialSubgroup(Subgroup):
    '''
    A subgroup of a `SpatialNeuron`.

    Parameters
    ----------
    source : int
        First compartment.
    stop : int
        Ending compartment, not included (as in slices).
    morphology : `Morphology`
        Morphology corresponding to the subgroup (not the full
        morphology).
    name : str, optional
        Name of the subgroup.
    '''

    def __init__(self, source, start, stop, morphology, name=None):
        self.morphology = morphology
        Subgroup.__init__(self, source, start, stop, name)

    def __getattr__(self, name):
        return SpatialNeuron.spatialneuron_attribute(self, name)

    def __getitem__(self, item):
        return SpatialNeuron.spatialneuron_segment(self, item)



[docs]class SpatialStateUpdater(CodeRunner, Group):
    '''
    The `CodeRunner` that updates the state variables of a `SpatialNeuron`
    at every timestep.
    '''

    def __init__(self, group, method, clock, order=0):
        # group is the neuron (a group of compartments)
        self.method_choice = method
        self.group = weakref.proxy(group)

        compartments = group.flat_morphology.n
        sections = group.flat_morphology.sections

        CodeRunner.__init__(self, group,
                            'spatialstateupdate',
                            code='''_gtot = gtot__private
                                    _I0 = I0__private''',
                            clock=clock,
                            when='groups',
                            order=order,
                            name=group.name + '_spatialstateupdater*',
                            check_units=False,
                            template_kwds={'number_sections': sections})

        self.variables = Variables(self, default_index='_section_idx')
        self.variables.add_reference('N', group)
        # One value per compartment
        self.variables.add_arange('_compartment_idx', size=compartments)
        self.variables.add_array('_invr', unit=siemens, size=compartments,
                                 constant=True, index='_compartment_idx')
        # one value per section
        self.variables.add_arange('_section_idx', size=sections)
        self.variables.add_array('_P_parent', unit=Unit(1), size=sections,
                                 constant=True)  # elements below diagonal
        self.variables.add_arrays(['_morph_idxchild', '_morph_parent_i',
                                   '_starts', '_ends'], unit=Unit(1),
                                  size=sections, dtype=np.int32, constant=True)
        self.variables.add_arrays(['_invr0', '_invrn'], unit=siemens,
                                  size=sections, constant=True)
        # one value per section + 1 value for the root
        self.variables.add_arange('_section_root_idx', size=sections+1)
        self.variables.add_array('_P_diag', unit=Unit(1), size=sections+1,
                                 constant=True, index='_section_root_idx')
        self.variables.add_array('_B', unit=Unit(1), size=sections+1,
                                 constant=True, index='_section_root_idx')
        self.variables.add_array('_morph_children_num', unit=Unit(1),
                                 size=sections+1, dtype=np.int32,
                                 constant=True, index='_section_root_idx')
        # 2D matrices of size (sections + 1) x max children per section
        self.variables.add_arange('_morph_children_idx',
                                  size=len(group.flat_morphology.morph_children))
        self.variables.add_array('_P_children', unit=Unit(1),
                                 size=len(group.flat_morphology.morph_children),
                                 index='_morph_children_idx',
                                 constant=True)  # elements above diagonal
        self.variables.add_array('_morph_children', unit=Unit(1),
                                 size=len(group.flat_morphology.morph_children),
                                 dtype=np.int32, constant=True,
                                 index='_morph_children_idx')
        self._enable_group_attributes()

        self._morph_parent_i = group.flat_morphology.morph_parent_i
        self._morph_children_num = group.flat_morphology.morph_children_num
        self._morph_children = group.flat_morphology.morph_children
        self._morph_idxchild = group.flat_morphology.morph_idxchild
        self._starts = group.flat_morphology.starts
        self._ends = group.flat_morphology.ends
        self._prepare_codeobj = None

[docs]    def before_run(self, run_namespace):
        # execute code to initalize the data structures
        if self._prepare_codeobj is None:
            self._prepare_codeobj = create_runner_codeobj(self.group,
                                                          '', # no code,
                                                          'spatialneuron_prepare',
                                                          name=self.name+'_spatialneuron_prepare',
                                                          check_units=False,
                                                          additional_variables=self.variables,
                                                          run_namespace=run_namespace)
        self._prepare_codeobj()
        # Raise a warning if the slow pure numpy version is used
        # For simplicity, we check which CodeObject class the _prepare_codeobj
        # is using, this will be the same as the main state updater
        from brian2.codegen.runtime.numpy_rt.numpy_rt import NumpyCodeObject
        if isinstance(self._prepare_codeobj, NumpyCodeObject):
            # If numpy is used, raise a warning if scipy is not present
            try:
                import scipy
            except ImportError:
                logger.info(('SpatialNeuron will use numpy to do the numerical '
                             'integration -- this will be very slow. Either '
                             'switch to a different code generation target '
                             '(e.g. weave or cython) or install scipy.'),
               