

    
      
          
            
  
Brian 2 documentation

Brian is a simulator for spiking neural networks. It is written in the Python
programming language and is available on almost all platforms. We believe
that a simulator should not only save the time of processors, but also the
time of scientists. Brian is therefore designed to be easy to learn and use,
highly flexible and easily extensible.

To get an idea of what writing a simulation in Brian looks like, take a look
at a simple example, or run our
interactive demo [http://mybinder.org/repo/brian-team/brian2-binder/notebooks/demo.ipynb].

You can actually edit and run the examples in the browser without having to
install Brian, using the Binder service (note: sometimes this service is down
or running slowly):

[image: http://mybinder.org/badge.svg]
 [http://mybinder.org/repo/brian-team/brian2-binder]Once you have a feel for what is involved in using Brian, we recommend you
start by following the
installation instructions, then going
through the tutorials, and finally
reading the User Guide.

While reading the documentation, you will see the names of certain functions
and classes are highlighted links (e.g. PoissonGroup). Clicking on these
will take you to the “reference documentation”. This section is automatically
generated from the code, and includes complete and very detailed information,
so for new users we recommend sticking to the User’s guide. However,
there is one feature that may be useful for all users. If you click on,
for example, PoissonGroup, and scroll down to the bottom, you’ll get a
list of all the example code that uses PoissonGroup. This is available
for each class or method, and can be helpful in understanding how a
feature works.

Finally, if you’re having problems, please do let us know at our
support page.
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Installation

We recommend users to use the Anaconda distribution [https://www.continuum.io/downloads]
by Continuum Analytics. Its use will make the installation of Brian 2 and its
dependencies simpler, since packages are provided in binary form, meaning that
they don’t have to be build from the source code at your machine. Furthermore,
our automatic testing on the continuous integration services travis [https://travis-ci.org/brian-team/brian2] and appveyor [https://ci.appveyor.com/project/brianteam/brian2]
are based on Anaconda, we are therefore confident that it works under this
configuration.

However, Brian 2 can also be installed independent of Anaconda, either with
other Python distributions (Enthought Canopy [https://www.enthought.com/products/canopy/],
Python(x,y) for Windows [https://code.google.com/p/pythonxy/], ...) or simply
based on Python and pip (see Installation from source below).


Installation with Anaconda


Installing Anaconda

Download the Anaconda distribution [https://continuum.io/downloads]
for your Operating System. For Windows users that want to use Python 3.x, we
strongly recommend installing the 32 Bit version even on 64 Bit systems, since
setting the compilation environment (see Requirements for C++ code generation below) is less
complicated in that case. Note that the choice between Python 2.7 and Python 3.x
is not very important at this stage, Anaconda allows you to create a Python 3
environment from Python 2 Anaconda and vice versa.

After the installation, make sure that your environment is configured to use
the Anaconda distribution. You should have access to the conda command in
a terminal and running python (e.g. from your IDE) should show a header like
this, indicating that you are using Anaconda’s Python interpreter:

Python 2.7.10 |Anaconda 2.3.0 (64-bit)| (default, May 28 2015, 17:02:03)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
Anaconda is brought to you by Continuum Analytics.
Please check out: http://continuum.io/thanks and https://binstar.org





Here’s some documentation on how to set up some popular IDEs for Anaconda:
https://docs.continuum.io/anaconda/ide_integration




Installing Brian 2

You can either install Brian 2 in the Anaconda root environment, or create a
new environment for Brian 2 (http://conda.pydata.org/docs/using/envs.html). The
latter has the advantage that you can update (or not update) the dependencies
of Brian 2 independently from the rest of your system.

Since Brian 2 is not part of the main Anaconda distribution, you have to install
it from the brian-team channel [https://conda.anaconda.org/brian-team]. To do
so, use:

conda install -c brian-team brian2





You can also permanently add the channel to your list of channels:

conda config --add channels brian-team





This has only to be done once. After that, you can install and update the brian2
packages as any other Anaconda package:

conda install brian2








Installing other useful packages

There are various packages that are useful but not necessary for working with
Brian. These include: matplotlib [http://matplotlib.org/] (for plotting), nose [https://pypi.python.org/pypi/nose] (for running the test
suite), ipython [http://ipython.org/] and jupyter [http://jupyter.org/]-notebook (for an interactive console). To install
them from anaconda, simply do:

conda install matplotlib nose ipython jupyter-notebook





You should also have a look at the brian2tools [https://brian2tools.readthedocs.io] package, which contains several
useful functions to visualize Brian 2 simulations and recordings. You can
install it with pip or anaconda, in the same way as Brian 2 itself, e.g. with:

conda install -c brian-team brian2tools










Installation from source

If you decide not to use Anaconda, you can install Brian 2 from the Python
package index: https://pypi.python.org/pypi/Brian2

To do so, use the pip utility:

pip install brian2





You might want to add the --user flag, to install Brian 2 for the local user
only, which means that you don’t need administrator privileges for the
installation.

In principle, the above command also install Brian’s dependencies.
Unfortunately, this does not work for numpy, it has to be installed in a
separate step before all other dependencies (pip install numpy), if it is
not already installed.

If you have an older version of pip, first update pip itself:

# On Linux/MacOsX:
pip install -U pip

# On Windows
python -m pip install -U pip





If you don’t have pip but you have the easy_install utility, you can use
it to install pip:

easy_install pip





If you have neither pip nor easy_install, use the approach described
here to install pip: https://pip.pypa.io/en/latest/installing/

Alternatively, you can download the source package directly and uncompress it.
You can then either run python setup.py install or
python setup.py develop to install it, or simply add
the source directory to your PYTHONPATH (this will only work for Python
2.x).




Requirements for C++ code generation

C++ code generation is highly recommended since it can drastically increase the
speed of simulations (see Computational methods and efficiency for details). To use it,
you need a C++ compiler and either Cython [http://cython.org/] or weave [https://github.com/scipy/weave] (only for Python 2.x).
Cython/weave will be automatically installed if you perform the installation via
Anaconda, as recommended. Otherwise you can install them in the usual way, e.g.
using pip install cython or pip install weave.


Linux and OS X

On Linux and Mac OS X, you will most likely already have a working C++ compiler
installed (try calling g++ --version in a terminal). If not, use your
distribution’s package manager to install a g++ package.




Windows

On Windows, the necessary steps to get Runtime code generation (i.e. Cython/weave) to work
depend on the Python version you are using:

Python 2.7


	Download and install the Microsoft Visual C++ Compiler for Python 2.7 [http://www.microsoft.com/en-us/download/details.aspx?id=44266]



This should be all you need.

Python 3.4


	Download and install the Microsoft .NET Framework 4 [https://www.microsoft.com/en-us/download/details.aspx?id=17851]

	Download and install the Microsoft Windows SDK for Windows 7 and .NET Framework 4 [http://www.microsoft.com/en-in/download/details.aspx?id=8279]



For 64 Bit Windows with Python 3.4, you have to additionally set up your
environment correctly every time you run your Brian script (this is why we
recommend against using this combination on Windows). To do this, run the
following commands (assuming the default installation path) at the CMD prompt,
or put them in a batch file:

setlocal EnableDelayedExpansion
CALL "C:\Program Files\Microsoft SDKs\Windows\v7.1\Bin\SetEnv.cmd" /x64 /release
set DISTUTILS_USE_SDK=1





Python 3.5


	Download and install Visual Studio Community 2015 [https://www.visualstudio.com/]. Do not chose the default
install but instead customize it, the only necessary option is “Programming Languages / Visual C++ / Common Tools for
Visual C++ 2015”



For Standalone code generation, you can either use the compiler installed above or any other version of Visual Studio – in this
case, the Python version does not matter.

Try running the test suite (see Testing Brian below) after the
installation to make sure everything is working as expected.






Development version

To run the latest development code, you can install from brian-team’s “dev”
channel with Anaconda. Note that if you previously added the brian-team
channel to your list of channels, you have to first remove it:

conda config --remove channels brian-team -f





Also uninstall any version of Brian 2 that you might have previously installed:

conda remove brian2





Finally, install the brian2 package from the development channel:

conda install -c brian-team/channel/dev brian2





If this fails with an error message about the py-cpuinfo package (a
dependency that we provide in the main brian-team channel), install it
from the main channel:

conda install -c brian-team py-cpuinfo





Then repeat the command to install Brian 2 from the development channel.

You can also directly clone the git repository at github
(https://github.com/brian-team/brian2) and then run python setup.py install
or python setup.py develop or simply add the source directory to your
PYTHONPATH (this will only work for Python 2.x).

Finally, another option is to use pip to directly install from github:

pip install https://github.com/brian-team/brian2/archive/master.zip








Testing Brian

If you have the nose [https://pypi.python.org/pypi/nose] testing utility installed, you can run Brian’s test
suite:

import brian2
brian2.test()





It should end with “OK”, possibly showing a number of skipped tests but no
warnings or errors. For more control about the tests that are run see the
developer documentation on testing.







          

      

      

    

  

    
      
          
            
  
Release notes


Brian 2.0.2


New features


	molar and liter (as well as litre, scaled versions of the former, and a
few useful abbreviations such as mM) have been added as new units (#574).

	A new module brian2.units.constants provides physical constants such as the
Faraday constants or the gas constant (see Constants for details).

	SpatialNeuron now supports non-linear membrane currents (e.g.
Goldman–Hodgkin–Katz equations) by linearizing them with respect to v.

	Multi-compartmental models can access the capacitive current via Ic in
their equations (#677)

	A new function scheduling_summary() that displays information about the
scheduling of all objects (see Scheduling for details).

	Introduce a new preference to pass arguments to the make/nmake command
in C++ standalone mode (devices.cpp_standalone.extra_make_args_unix for
Linux/OS X and devices.cpp_standalone.extra_make_args_windows for Windows).
For Linux/OS X, this enables parallel compilation by default.

	Anaconda packages for Brian 2 are now available for Python 3.6 (but Python 3.4
support has been removed).






Selected improvements and bug fixes


	Work around low performance for certain C++ standalone simulations on Linux,
due to a bug in glibc (see #803). Thanks to Oleg Strikov
(@xj8z [https://github.com/xj8z]) for debugging this
issue and providing the workaround that is now in use.

	Make exact integration of event-driven synaptic variables use the
linear numerical integration algorithm (instead of independent),
fixing rare occasions where integration failed despite the equations being
linear (#801).

	Better error messages for incorrect unit definitions in equations.

	Various fixes for the internal representation of physical units and the
unit registration system.

	Fix a bug in the assignment of state variables in subtrees of SpatialNeuron
(#822)

	Numpy target: fix an indexing error for a SpikeMonitor that records from a
subgroup (#824)

	Summed variables targeting the same post-synaptic variable now raise an error
(previously, only the one executed last was taken into account, see #766).

	Fix bugs in synapse generation affecting Cython (#781) respectively numpy
(#835)

	C++ standalone simulations with many objects no longer fail on Windows (#787)






Backwards-incompatible changes


	celsius has been removed as a unit, because it was ambiguous in its relation
to kelvin and gave wrong results when used as an absolute temperature (and
not a temperature difference). For temperature differences, you can directly
replace celsius by kelvin. To convert an absolute temperature in degree
Celsius to Kelvin, add the zero_celsius constant from
brian2.units.constants (#817).

	State variables are no longer allowed to have names ending in _pre or
_post to avoid confusion with references to pre- and post-synaptic
variables in Synapses (#818)






Changes to default settings


	In C++ standalone mode, the clean argument now defaults to False,
meaning that make clean will not be executed by default before building
the simulation. This avoids recompiling all files for unchanged simulations
that are executed repeatedly. To return to the previous behaviour, specify
clean=True in the device.build call (or in set_device if your
script does not have an explicit device.build).






Contributions

Github code, documentation, and issue contributions (ordered by the number of
contributions):


	Marcel Stimberg (@mstimberg [https://github.com/mstimberg])

	Dan Goodman (@thesamovar [https://github.com/thesamovar])

	Thomas McColgan (@phreeza [https://github.com/phreeza])

	Daan Sprenkels (@dsprenkels [https://github.com/dsprenkels])

	Romain Brette (@romainbrette [https://github.com/romainbrette])

	Oleg Strikov (@xj8z [https://github.com/xj8z])

	Charlee Fletterman (@CharleeSF [https://github.com/CharleeSF])

	Meng Dong (@whenov [https://github.com/whenov])

	Denis Alevi (@denisalevi [https://github.com/denisalevi])

	Mihir Vaidya (@MihirVaidya94 [https://github.com/MihirVaidya94])

	Adam (@ffa [https://github.com/ffa])

	Sourav Singh (@souravsingh [https://github.com/souravsingh])

	Nick Hale (@nik849 [https://github.com/nik849])

	Cody Greer (@Cody-G [https://github.com/Cody-G])

	Jean-Sébastien Dessureault (@jsdessureault [https://github.com/jsdessureault])

	Michele Giugliano (@mgiugliano [https://github.com/mgiugliano])

	Teo Stocco (@zifeo [https://github.com/zifeo])

	Edward Betts (@EdwardBetts [https://github.com/EdwardBetts])



Other contributions outside of github (ordered alphabetically, apologies to
anyone we forgot...):


	Christopher Nolan

	Regimantas Jurkus

	Shailesh Appukuttan








Brian 2.0.1

This is a bug-fix release that fixes a number of important bugs (see below),
but does not introduce any new features. We recommend all users of Brian 2 to
upgrade.

As always, please report bugs or suggestions to the github bug tracker
(https://github.com/brian-team/brian2/issues) or to the brian-development
mailing list (brian-development@googlegroups.com).


Improvements and bug fixes


	Fix PopulationRateMonitor for recordings from subgroups (#772)

	Fix SpikeMonitor for recordings from subgroups (#777)

	Check that string expressions provided as the rates argument for
PoissonGroup have correct units.

	Fix compilation errors when multiple run statements with different report
arguments are used in C++ standalone mode.

	Several documentation updates and fixes






Contributions

Code and documentation contributions (ordered by the number of commits):


	Marcel Stimberg (@mstimberg [https://github.com/mstimberg])

	Dan Goodman (@thesamovar [https://github.com/thesamovar])

	Alex Seeholzer (@flinz [https://github.com/flinz])

	Meng Dong (@whenov [https://github.com/whenov])



Testing, suggestions and bug reports (ordered alphabetically, apologies to
anyone we forgot...):


	Myung Seok Shim

	Pamela Hathway








Brian 2.0 (changes since 1.4)


Major new features


	Much more flexible model definitions. The behaviour of all model elements
can now be defined by arbitrary equations specified in standard
mathematical notation.

	Code generation as standard. Behind the scenes, Brian automatically generates
and compiles C++ code to simulate your model, making it much faster.

	“Standalone mode”. In this mode, Brian generates a complete C++ project tree
that implements your model. This can be then be compiled and run entirely
independently of Brian. This leads to both highly efficient code, as well as
making it much easier to run simulations on non-standard computational
hardware, for example on robotics platforms.

	Multicompartmental modelling.

	Python 2 and 3 support.






New features


	Installation should now be much easier, especially if using the
Anaconda Python distribution. See Installation.

	Many improvements to Synapses which replaces the old Connection
object in Brian 1. This includes:
synapses that are triggered by non-spike events; synapses that target
other synapses; huge speed improvements thanks to using code generation;
new “generator syntax” when creating synapses is much more flexible and
efficient. See Synapses.

	New model definitions allow for much more flexible refractoriness. See
Refractoriness.

	SpikeMonitor and StateMonitor are now much more flexible, and cover a
lot of what used to be covered by things like MultiStateMonitor, etc.
See Recording during a simulation.

	Multiple event types. In addition to the default spike event, you can
create arbitrary events, and have these trigger code blocks (like reset)
or synaptic events. See Custom events.

	New units system allows arrays to have units. This eliminates the need for
a lot of the special casing that was required in Brian 1. See
Physical units.

	Indexing variable by condition, e.g. you might write G.v['x>0'] to
return all values of variable v in NeuronGroup G where the
group’s variable x>0. See State variables.

	Correct numerical integration of stochastic differential equations.
See Numerical integration.

	“Magic” run() system has been greatly simplified and is now much more
transparent. In addition, if there is any ambiguity about what the user
wants to run, an erorr will be raised rather than making a guess. This
makes it much safer. In addition, there is now a store()/restore()
mechanism that simplifies restarting simulations and managing separate
training/testing runs. See Running a simulation.

	Changing an external variable between runs now works as expected, i.e.
something like tau=1*ms; run(100*ms); tau=5*ms; run(100*ms). In
Brian 1 this would have used tau=1*ms for both runs. More generally,
in Brian 2 there is now better control over namespaces. See
Namespaces.

	New “shared” variables with a single value shared between all neurons.
See Shared variables.

	New Group.run_regularly() method for a codegen-compatible way of doing
things that used to be done with network_operation() (which can still
be used). See Regular operations.

	New system for handling externally defined functions. They have to specify
which units they accept in their arguments, and what they return. In
addition, you can easily specify the implementation of user-defined
functions in different languages for code generation. See
Functions.

	State variables can now be defined as integer or boolean values.
See Equations.

	State variables can now be exported directly to Pandas data frame.
See Storing state variables.

	New generalised “flags” system for giving additional information when
defining models. See Flags.

	TimedArray now allows for 2D arrays with arbitrary indexing.
See Timed arrays.

	Better support for using Brian in IPython/Jupyter. See, for example,
start_scope().

	New preferences system. See Preferences.

	Random number generation can now be made reliably reproducible.
See Random numbers.

	New profiling option to see which parts of your simulation are taking
the longest to run. See Profiling.

	New logging system allows for more precise control. See
Logging.

	New ways of importing Brian for advanced Python users. See
Importing Brian.

	Improved control over the order in which objects are updated during
a run. See Custom progress reporting.

	Users can now easily define their own numerical integration methods.
See State update.

	Support for parallel processing using the OpenMP version of
standalone mode. Note that all Brian tests pass with this, but it is
still considered to be experimental. See Multi-threading with OpenMP.






Backwards incompatible changes

See Detailed Brian 1 to Brian 2 conversion notes.




Behind the scenes changes


	All user models are now passed through the code generation system.
This allows us to be much more flexible about introducing new target
languages for generated code to make use of non-standard computational
hardware. See Code generation.

	New standalone/device mode allows generation of a complete project tree
that can be compiled and built independently of Brian and Python. This
allows for even more flexible use of Brian on non-standard hardware.
See Devices.

	All objects now have a unique name, used in code generation. This can
also be used to access the object through the Network object.






Contributions

Full list of all Brian 2 contributors, ordered by the time of their first
contribution:


	Dan Goodman (@thesamovar [https://github.com/thesamovar])

	Marcel Stimberg (@mstimberg [https://github.com/mstimberg])

	Romain Brette (@romainbrette [https://github.com/romainbrette])

	Cyrille Rossant (@rossant [https://github.com/rossant])

	Victor Benichoux (@victorbenichoux [https://github.com/victorbenichoux])

	Pierre Yger (@yger [https://github.com/yger])

	Werner Beroux (@wernight [https://github.com/wernight])

	Konrad Wartke (@Kwartke [https://github.com/Kwartke])

	Daniel Bliss (@dabliss [https://github.com/dabliss])

	Jan-Hendrik Schleimer (@ttxtea [https://github.com/ttxtea])

	Moritz Augustin (@moritzaugustin [https://github.com/moritzaugustin])

	Romain Cazé (@rcaze [https://github.com/rcaze])

	Dominik Krzemiński (@dokato [https://github.com/dokato])

	Martino Sorbaro (@martinosorb [https://github.com/martinosorb])

	Benjamin Evans (@bdevans [https://github.com/bdevans])








Brian 2.0 (changes since 2.0rc3)


New features


	A new flag constant over dt can be applied to subexpressions to have them
only evaluated once per timestep (see Models and neuron groups). This flag is
mandatory for stateful subexpressions, e.g. expressions using rand() or
randn(). (#720, #721)






Improvements and bug fixes


	Fix EventMonitor.values() and SpikeMonitor.spike_trains() to always return
sorted spike/event times (#725).

	Respect the active attribute in C++ standalone mode (#718).

	More consistent check of compatible time and dt values (#730).

	Attempting to set a synaptic variable or to start a simulation with synapses
without any preceding connect call now raises an error (#737).

	Improve the performance of coordinate calculation for Morphology objects,
which previously made plotting very slow for complex morphologies (#741).

	Fix a bug in SpatialNeuron where it did not detect non-linear dependencies
on v, introduced via point currents (#743).






Infrastructure and documentation improvements


	An interactive demo, tutorials, and examples can now be run in an interactive
jupyter notebook on the mybinder [http://mybinder.org/] platform, without
any need for a local Brian installation (#736). Thanks to Ben Evans for the
idea and help with the implementation.

	A new extensive guide for converting Brian 1 simulations to Brian 2 user
coming from Brian 1: Changes for Brian 1 users

	A re-organized User’s guide, with clearer indications which
information is important for new Brian users.






Contributions

Code and documentation contributions (ordered by the number of commits):


	Marcel Stimberg (@mstimberg [https://github.com/mstimberg])

	Dan Goodman (@thesamovar [https://github.com/thesamovar])

	Benjamin Evans (@bdevans [https://github.com/bdevans])



Testing, suggestions and bug reports (ordered alphabetically, apologies to
anyone we forgot...):


	Chaofei Hong

	Daniel Bliss

	Jacopo Bono

	Ruben Tikidji-Hamburyan








Brian 2.0rc3

This is another “release candidate” for Brian 2.0 that fixes a range of bugs and introduces
better support for random numbers (see below). We are getting close to the final Brian 2.0
release, the remaining work will focus on bug fixes, and better error messages and
documentation.

As always, please report bugs or suggestions to the github bug tracker
(https://github.com/brian-team/brian2/issues) or to the brian-development mailing
list (brian-development@googlegroups.com).


New features


	Brian now comes with its own seed() function, allowing to seed the random number generator
and thereby to make simulations reproducible. This function works for all code generation
targets and in runtime and standalone mode. See Random numbers for details.

	Brian can now export/import state variables of a group or a full network to/from a
pandas [http://pandas.pydata.org] DataFrame and comes with a mechanism to extend
this to other formats. Thanks to Dominik Krzemiński for this contribution (see #306).






Improvements and bug fixes


	Use a Mersenne-Twister pseudorandom number generator in C++ standalone mode, replacing the
previously used low-quality random number generator from the C standard library (see #222,
#671 and #706).

	Fix a memory leak in code running with the weave code generation target, and a smaller
memory leak related to units stored repetitively in the UnitRegistry.

	Fix a difference of one timestep in the number of simulated timesteps between
runtime and standalone that could arise for very specific values of dt and t (see #695).

	Fix standalone compilation failures with the most recent gcc version which defaults to
C++14 mode (see #701)

	Fix incorrect summation in synapses when using the (summed) flag and writing to
pre-synaptic variables (see #704)

	Make synaptic pathways work when connecting groups that define nested subexpressions,
instead of failing with a cryptic error message (see #707).






Contributions

Code and documentation contributions (ordered by the number of commits):


	Marcel Stimberg (@mstimberg [https://github.com/mstimberg])

	Dominik Krzemiński (@dokato [https://github.com/dokato])

	Dan Goodman (@thesamovar [https://github.com/thesamovar])

	Martino Sorbaro (@martinosorb [https://github.com/martinosorb])



Testing, suggestions and bug reports (ordered alphabetically, apologies to
anyone we forgot...):


	Craig Henriquez

	Daniel Bliss

	David Higgins

	Gordon Erlebacher

	Max Gillett

	Moritz Augustin

	Sami Abdul-Wahid








Brian 2.0rc1

This is a bug fix release that we release only about two weeks after the previous
release because that release introduced a bug that could lead to wrong integration of
stochastic differential equations. Note that standard neuronal noise models were
not affected by this bug, it only concerned differential equations implementing a
“random walk”. The release also fixes a few other issues reported by users, see below
for more information.


Improvements and bug fixes


	Fix a regression from 2.0b4: stochastic differential equations without any non-stochastic
part (e.g. dx/dt = xi/sqrt(ms)`) were not integrated correctly (see #686).

	Repeatedly calling restore() (or Network.restore()) no longer raises an error (see #681).

	Fix an issue that made PoissonInput refuse to run after a change of dt (see #684).

	If the rates argument of PoissonGroup is a string, it will now be evaluated at
every time step instead of once at construction time. This makes time-dependent rate
expressions work as expected (see #660).






Contributions

Code and documentation contributions (ordered by the number of commits):


	Marcel Stimberg (@mstimberg [https://github.com/mstimberg])



Testing, suggestions and bug reports (ordered alphabetically, apologies to
anyone we forgot...):


	Cian O’Donnell

	Daniel Bliss

	Ibrahim Ozturk

	Olivia Gozel








Brian 2.0rc

This is a release candidate for the final Brian 2.0 release, meaning that from
now on we will focus on bug fixes and documentation, without introducing new
major features or changing the syntax for the user. This release candidate itself
does however change a few important syntax elements, see “Backwards-incompatible
changes” below.

As always, please report bugs or suggestions to the github bug tracker
(https://github.com/brian-team/brian2/issues) or to the brian-development mailing
list (brian-development@googlegroups.com).


Major new features


	New “generator syntax” to efficiently generate synapses (e.g. one-to-one connections), see Creating synapses
for more details.

	For synaptic connections with multiple synapses between a pair of neurons, the number of the synapse can now be
stored in a variable, allowing its use in expressions and statements (see Creating synapses).

	Synapses can now target other Synapses objects, useful for some models of synaptic modulation.

	The Morphology object has been completely re-worked and several issues have been fixed. The new Section object
allows to model a section as a series of truncated cones (see Creating a neuron morphology).

	Scripts with a single run() call, no longer need an explicit device.build() call to run with the C++
standalone device. A set_device() in the beginning is enough and will trigger the build call after the run
(see Standalone code generation).

	All state variables within a Network can now be accessed by Network.get_states() and Network.set_states() and the
store()/restore() mechanism can now store the full state of a simulation to disk.

	Stochastic differential equations with multiplicative noise can now be integrated using the Euler-Heun method
(heun). Thanks to Jan-Hendrik Schleimer for this contribution.

	Error messages have been significantly improved: errors for unit mismatches are now much clearer and error messages
triggered during the intialization phase point back to the line of code where the relevant object (e.g. a
NeuronGroup) was created.

	PopulationRateMonitor now provides a smooth_rate method for a filtered version of the
stored rates.






Improvements and bug fixes


	In addition to the new synapse creation syntax, sparse probabilistic connections are now created much faster.

	The time for the initialization phase at the beginning of a run() has been significantly reduced.

	Multicompartmental simulations with a large number of compartments are now simulated more efficiently and are making
better use of several processor cores when OpenMP is activated in C++ standalone mode. Thanks to Moritz Augustin for
this contribution.

	Simulations will use compiler settings that optimize performance by default.

	Objects that have user-specified names are better supported for complex simulation scenarios (names no longer have to
be unique at all times, but only across a network or across a standalone device).

	Various fixes for compatibility with recent versions of numpy and sympy






Important backwards-incompatible changes


	The argument names in Synapses.connect() have changed and the first argument can no longer be an array of indices. To
connect based on indices, use Synapses.connect(i=source_indices, j=target_indices). See Creating synapses
and the documentation of Synapses.connect() for more details.

	The actions triggered by pre-synaptic and post-synaptic spikes are now described by the on_pre and on_post
keyword arguments (instead of pre and post).

	The Morphology object no longer allows to change attributes such as length and diameter after its creation. Complex
morphologies should instead be created using the Section class, allowing for the specification of all details.

	Morphology objects that are defined with coordinates need to provide the start point (relative to the end point of
the parent compartment) as the first coordinate. See Creating a neuron morphology for more details.

	For simulations using the C++ standalone mode, no longer call Device.build (if using a single run() call), or
use set_device() with build_on_run=False (see Standalone code generation).






Infrastructure improvements


	Our test suite is now also run on Mac OS-X (on the Travis CI [https://travis-ci.org/] platform).






Contributions

Code and documentation contributions (ordered by the number of commits):


	Marcel Stimberg (@mstimberg [https://github.com/mstimberg])

	Dan Goodman (@thesamovar [https://github.com/thesamovar])

	Moritz Augustin (@moritzaugustin [https://github.com/moritzaugustin])

	Jan-Hendrik Schleimer (@ttxtea [https://github.com/ttxtea])

	Romain Cazé (@rcaze [https://github.com/rcaze])

	Konrad Wartke (@Kwartke [https://github.com/Kwartke])

	Romain Brette (@romainbrette [https://github.com/romainbrette])



Testing, suggestions and bug reports (ordered alphabetically, apologies to
anyone we forgot...):


	Chaofei Hong

	Kees de Leeuw

	Luke Y Prince

	Myung Seok Shim

	Owen Mackwood

	Github users: @epaxon, @flinz, @mariomulansky, @martinosorb, @neuralyzer, @oleskiw, @prcastro, @sudoankit








Brian 2.0b4

This is the fourth (and probably last) beta release for Brian 2.0. This release
adds a few important new features and fixes a number of bugs so we recommend all
users of Brian 2 to upgrade. If you are a user new to Brian, we also recommend
to directly start with Brian 2 instead of using the stable release of Brian 1.
Note that the new recommended way to install Brian 2 is to use the Anaconda
distribution and to install the Brian 2 conda package (see Installation).

This is however still a Beta release, please report bugs or suggestions to the
github bug tracker (https://github.com/brian-team/brian2/issues) or to the
brian-development mailing list (brian-development@googlegroups.com).


Major new features


	In addition to the standard threshold/reset, groups can now define “custom
events”. These can be recorded with the new EventMonitor (a generalization
of SpikeMonitor) and Synapses can connect to these events instead of
the standard spike event. See Custom events for more
details.

	SpikeMonitor and EventMonitor can now also record state variable values
at the time of spikes (or custom events), thereby offering the functionality
of StateSpikeMonitor from Brian 1. See
Recording variables at spike time for more details.

	The code generation modes that interact with C++ code (weave, Cython, and C++
standalone) can now be more easily configured to work with external libraries
(compiler and linker options, header files, etc.). See the documentation of
the cpp_prefs module for more details.






Improvemements and bug fixes


	Cython simulations no longer interfere with each other when run in parallel
(thanks to Daniel Bliss for reporting and fixing this).

	The C++ standalone now works with scalar delays and the spike queue
implementation deals more efficiently with them in general.

	Dynamic arrays are now resized more efficiently, leading to faster monitors
in runtime mode.

	The spikes generated by a SpikeGeneratorGroup can now be changed between
runs using the
set_spikes method.

	Multi-step state updaters now work correctly for non-autonomous differential
equations

	PoissonInput now correctly works with multiple clocks (thanks to Daniel
Bliss for reporting and fixing this)

	The get_states method now works for
StateMonitor. This method provides a convenient way to access all the data
stored in the monitor, e.g. in order to store it on disk.

	C++ compilation is now easier to get to work under Windows, see
Installation for details.






Important backwards-incompatible changes


	The custom_operation method has been renamed to
run_regularly and can now be called without the
need for storing its return value.

	StateMonitor will now by default record at the beginning of a time step
instead of at the end. See Recording variables continuously for
details.

	Scalar quantities now behave as python scalars with respect to in-place
modifications (augmented assignments). This means that
x = 3*mV; y = x; y += 1*mV will no longer increase the value of the
variable x as well.






Infrastructure improvements


	We now provide conda packages for Brian 2, making it very easy to install
when using the Anaconda distribution (see Installation).






Contributions

Code and documentation contributions (ordered by the number of commits):


	Marcel Stimberg (@mstimberg [https://github.com/mstimberg])

	Dan Goodman (@thesamovar [https://github.com/thesamovar])

	Daniel Bliss (@dabliss [https://github.com/dabliss])

	Romain Brette (@romainbrette [https://github.com/romainbrette])



Testing, suggestions and bug reports (ordered alphabetically, apologies to
everyone we forgot...):


	Daniel Bliss

	Damien Drix

	Rainer Engelken

	Beatriz Herrera Figueredo

	Owen Mackwood

	Augustine Tan

	Ot de Wiljes








Brian 2.0b3

This is the third beta release for Brian 2.0. This release does not add many new
features but it fixes a number of important bugs so we recommend all users of
Brian 2 to upgrade. If you are a user new to Brian, we also recommend to
directly start with Brian 2 instead of using the stable release of Brian 1.

This is however still a Beta release, please report bugs or suggestions to the
github bug tracker (https://github.com/brian-team/brian2/issues) or to the
brian-development mailing list (brian-development@googlegroups.com).


Major new features


	A new PoissonInput class for efficient simulation of Poisson-distributed
input events.






Improvements


	The order of execution for pre and post statements happending in the
same time step was not well defined (it fell back to the default alphabetical
ordering, executing post before pre). It now explicitly specifies the
order attribute so that pre gets executed before post (as in
Brian 1). See the Synapses documentation for details.

	The default schedule that is used can now be set via a preference
(core.network.default_schedule). New automatically generated scheduling
slots relative to the explicitly defined ones can be used, e.g.
before_resets or after_synapses. See Scheduling for details.

	The scipy [http://scipy.org] package is no longer a dependency (note that weave [https://pypi.python.org/pypi/weave] for
compiled C code under Python 2 is now available in a separate package). Note
that multicompartmental models will still benefit from the scipy [http://scipy.org] package
if they are simulated in pure Python (i.e. with the numpy code generation
target) – otherwise Brian 2 will fall back to a numpy-only solution which is
significantly slower.






Important bug fixes


	Fix SpikeGeneratorGroup which did not emit all the spikes under certain
conditions for some code generation targets (#429)

	Fix an incorrect update of pre-synaptic variables in synaptic statements for
the numpy code generation target (#435).

	Fix the possibility of an incorrect memory access when recording a subgroup
with SpikeMonitor (#454).

	Fix the storing of results on disk for C++ standalone on Windows – variables
that had the same name when ignoring case (e.g. i and I) where
overwriting each other (#455).






Infrastructure improvements


	Brian 2 now has a chat room on gitter [http://gitter.im]: https://gitter.im/brian-team/brian2

	The sphinx documentation can now be built from the release archive file

	After a big cleanup, all files in the repository have now simple LF line
endings (see https://help.github.com/articles/dealing-with-line-endings/ on
how to configure your own machine properly if you want to contribute to
Brian).






Contributions

Code and documentation contributions (ordered by the number of commits):


	Marcel Stimberg (@mstimberg [https://github.com/mstimberg])

	Dan Goodman (@thesamovar [https://github.com/thesamovar])

	Konrad Wartke (@kwartke [https://github.com/Kwartke])



Testing, suggestions and bug reports (ordered alphabetically, apologies to
everyone we forgot...):


	Daniel Bliss

	Owen Mackwood

	Ankur Sinha

	Richard Tomsett








Brian 2.0b2

This is the second beta release for Brian 2.0, we recommend all users of Brian 2
to upgrade. If you are a user new to Brian, we also recommend to directly start
with Brian 2 instead of using the stable release of Brian 1.

This is however still a Beta release, please report bugs or suggestions to the
github bug tracker (https://github.com/brian-team/brian2/issues) or to the
brian-development mailing list (brian-development@googlegroups.com).


Major new features


	Multi-compartmental simulations can now be run using the
Standalone code generation mode (this is not yet well-tested, though).

	The implementation of TimedArray now supports two-dimensional arrays, i.e.
different input per neuron (or synapse, etc.), see Timed arrays for
details.

	Previously, not setting a code generation target (using the codegen.target
preference) would mean that the numpy target was used. Now,
the default target is auto, which means that a compiled language
(weave or cython) will be used if possible. See
Computational methods and efficiency for details.

	The implementation of SpikeGeneratorGroup has been improved and it now
supports a period argument to repeatedly generate a spike pattern.






Improvements


	The selection of a numerical algorithm (if none has been specified by the
user) has been simplified. See Numerical integration for details.

	Expressions that are shared among neurons/synapses are now updated only once
instead of for every neuron/synapse which can lead to performance
improvements.

	On Windows, The Microsoft Visual C compiler is now supported in the
cpp_standalone mode, see the respective notes in the Installation and
Computational methods and efficiency documents.

	Simulation runs (using the standard “runtime” device) now collect profiling
information. See Profiling for details.






Infrastructure and documentation improvements


	Tutorials for beginners in the form of
ipython notebooks (currently only covering the basics of neurons and synapses)
are now available.

	The Examples in the documentation now include the images
they generated. Several examples have been adapted from Brian 1.

	The code is now automatically tested on Windows machines, using the
appveyor [http://ci.appveyor.com] service. This complements the Linux
testing on travis [https://travis-ci.org].

	Using a version of a dependency (e.g. sympy) that we don’t support will now
raise an error when you import brian2 – see Dependency checks for
more details.

	Test coverage for the cpp_standalone mode has been significantly
increased.






Important bug fixes


	The preparation time for complicated equations has been significantly reduced.

	The string representation of small physical quantities has been corrected
(#361)

	Linking variables from a group of size 1 now works correctly (#383)






Contributions

Code and documentation contributions (ordered by the number of commits):


	Marcel Stimberg (@mstimberg [https://github.com/mstimberg])

	Dan Goodman (@thesamovar [https://github.com/thesamovar])

	Romain Brette (@romainbrette [https://github.com/romainbrette])

	Pierre Yger (@yger [https://github.com/yger])



Testing, suggestions and bug reports (ordered alphabetically, apologies to
everyone we forgot...):


	Conor Cox

	Gordon Erlebacher

	Konstantin Mergenthaler








Brian 2.0beta

This is the first beta release for Brian 2.0 and the first version of Brian 2.0
we recommend for general use. From now on, we will try to keep changes that
break existing code to a minimum. If you are a user new to Brian, we’d
recommend to start with the Brian 2 beta instead of using the stable release of
Brian 1.

This is however still a Beta release, please report bugs or suggestions to the
github bug tracker (https://github.com/brian-team/brian2/issues) or to the
brian-development mailing list (brian-development@googlegroups.com).


Major new features


	New classes Morphology and SpatialNeuron for the simulation of
Multicompartment models

	A temporary “bridge” for brian.hears that allows to use its Brian 1
version from Brian 2 (Brian Hears)

	Cython is now a new code generation target, therefore the performance benefits
of compiled code are now also available to users running simulations under
Python 3.x (where scipy.weave is not available)

	Networks can now store their current state and return to it at a later time,
e.g. for simulating multiple trials starting from a fixed network state
(Continuing/repeating simulations)

	C++ standalone mode: multiple processors are now supported via OpenMP
(Multi-threading with OpenMP), although this code has not yet been well tested so may be
inaccurate.

	C++ standalone mode: after a run, state variables and monitored values can
be loaded from disk transparently. Most scripts therefore only need two
additional lines to use standalone mode instead of Brian’s default runtime
mode (Standalone code generation).






Syntax changes


	The syntax and semantics of everything around simulation time steps, clocks,
and multiple runs have been cleaned up, making reinit obsolete and also
making it unnecessary for most users to explicitly generate Clock objects –
instead, a dt keyword can be specified for objects such as NeuronGroup
(Running a simulation)

	The scalar flag for parameters/subexpressions has been renamed to
shared

	The “unit” for boolean variables has been renamed from bool to boolean

	C++ standalone: several keywords of
CPPStandaloneDevice.build
have been renamed

	The preferences are now accessible via prefs instead of brian_prefs

	The runner method has been renamed to custom_operation






Improvements


	Variables can now be linked across NeuronGroups (Linked variables)

	More flexible progress reporting system, progress reporting also works in the
C++ standalone mode (Progress reporting)

	State variables can be declared as integer (Equation strings)






Bug fixes

57 github issues have been closed since the alpha release, of which 26 had been
labeled as bugs. We recommend all users of Brian 2 to upgrade.




Contributions

Code and documentation contributions (ordered by the number of commits):


	Marcel Stimberg (@mstimberg [https://github.com/mstimberg])

	Dan Goodman (@thesamovar [https://github.com/thesamovar])

	Romain Brette (@romainbrette [https://github.com/romainbrette])

	Pierre Yger (@yger [https://github.com/yger])

	Werner Beroux (@wernight [https://github.com/wernight])



Testing, suggestions and bug reports (ordered alphabetically, apologies to
everyone we forgot…):


	Guillaume Bellec

	Victor Benichoux

	Laureline Logiaco

	Konstantin Mergenthaler

	Maurizio De Pitta

	Jan-Hendrick Schleimer

	Douglas Sterling

	Katharina Wilmes











          

      

      

    

  

    
      
          
            
  
Changes for Brian 1 users



	Physical units

	Unported packages

	Removed classes/functions and their replacements





In most cases, Brian 2 works in a very similar way to Brian 1 but there are
some important differences to be aware of. The major distinction is that
in Brian 2 you need to be more explicit about the definition of your
simulation in order to avoid inadvertent errors. In some cases, you will now
get a warning in other even an error – often the error/warning message
describes a way to resolve the issue.

Specific examples how to convert code from Brian 1 can be found in the document
Detailed Brian 1 to Brian 2 conversion notes.


Physical units

The unit system now extends to arrays, e.g. np.arange(5) * mV will retain
the units of volts and not discard them as Brian 1 did. Brian 2 is therefore
also more strict in checking the units. For example, if the state variable
v uses the unit of volt, the statement G.v = np.rand(len(G)) / 1000.
will now raise an error. For consistency, units are returned everywhere, e.g.
in monitors. If mon records a state variable v, mon.t will return a
time in seconds and mon.v the stored values of v in units of volts.

If you need a pure numpy array without units for further processing, there
are several options: if it is a state variable or a recorded variable in a
monitor, appending an underscore will refer to the variable values without
units, e.g. mon.t_ returns pure floating point values. Alternatively, you
can remove units by diving by the unit (e.g. mon.t / second) or by
explicitly converting it (np.asarray(mon.t)).

Here’s an overview showing a few expressions and their respective values in
Brian 1 and Brian 2:








	Expression
	Brian 1
	Brian 2




	1 * mV
	1.0 * mvolt
	1.0 * mvolt


	np.array(1) * mV
	0.001
	1.0 * mvolt


	np.array([1]) * mV
	array([ 0.001])
	array([1.]) * mvolt


	np.mean(np.arange(5) * mV)
	0.002
	2.0 * mvolt


	np.arange(2) * mV
	array([ 0.   ,  0.001])
	array([ 0.,  1.]) * mvolt


	(np.arange(2) * mV) >= 1 * mV
	array([False, True], dtype=bool)
	array([False, True], dtype=bool)


	(np.arange(2) * mV)[0] >= 1 * mV
	False
	False


	(np.arange(2) * mV)[1] >= 1 * mV
	DimensionMismatchError
	True








Unported packages

The following packages have not (yet) been ported to Brian 1. If your simulation
critically depends on them, you should consider staying with Brian 1 for now.


	brian.tools

	brian.hears  (the Brian 1 version can be used via brian2.hears, though,
see Brian Hears)

	brian.library.modelfitting

	brian.library.electrophysilogy






Removed classes/functions and their replacements

In Brian 2, we have tried to keep the number of classes/functions to a minimum, but make
each of them flexible enough to encompass a large number of use cases. A lot of the classes
and functions that existed in Brian 1 have therefore been removed.
The following table lists (most of) the classes that existed in Brian 1 but do no longer
exist in Brian 2. You can consult it when you get a NameError while converting an
existing script from Brian 1. The third column links to a document with further explanation
and the second column gives either:


	the equivalent class in Brian 2 (e.g. StateMonitor can record multiple variables now
and therefore replaces MultiStateMonitor);

	the name of a Brian 2 class in square brackets (e.g. [Synapses] for STDP), this
means that the class can be used as a replacement but needs some additional
code (e.g. explicitly specified STDP equations). The “More details” document should
help you in making the necessary changes;

	“string expression”, if the functionality of a previously existing class can
be expressed using the general string expression framework (e.g.
threshold=VariableThreshold('Vt', 'V') can be replaced by
threshold='V > Vt');

	a link to the relevant github issue if no equivalent class/function does exist so far
in Brian 2;

	a remark such as “obsolete” if the particular class/function is no longer needed.










	Brian 1
	Brian 2
	More details




	AdEx
	[Equations]
	Library models (Brian 1 –> 2 conversion)


	aEIF
	[Equations]
	Library models (Brian 1 –> 2 conversion)


	AERSpikeMonitor
	#298
	Monitors (Brian 1 –> 2 conversion)


	alpha_conductance
	[Equations]
	Library models (Brian 1 –> 2 conversion)


	alpha_current
	[Equations]
	Library models (Brian 1 –> 2 conversion)


	alpha_synapse
	[Equations]
	Library models (Brian 1 –> 2 conversion)


	AutoCorrelogram
	[SpikeMonitor]
	Monitors (Brian 1 –> 2 conversion)


	biexpr_conductance
	[Equations]
	Library models (Brian 1 –> 2 conversion)


	biexpr_current
	[Equations]
	Library models (Brian 1 –> 2 conversion)


	biexpr_synapse
	[Equations]
	Library models (Brian 1 –> 2 conversion)


	Brette_Gerstner
	[Equations]
	Library models (Brian 1 –> 2 conversion)


	CoincidenceCounter
	[SpikeMonitor]
	Monitors (Brian 1 –> 2 conversion)


	CoincidenceMatrixCounter
	[SpikeMonitor]
	Monitors (Brian 1 –> 2 conversion)


	Compartments
	#443
	Multicompartmental models (Brian 1 –> 2 conversion)


	Connection
	Synapses
	Synapses (Brian 1 –> 2 conversion)


	Current
	#443
	Multicompartmental models (Brian 1 –> 2 conversion)


	CustomRefractoriness
	[string expression]
	Neural models (Brian 1 –> 2 conversion)


	DefaultClock
	Clock
	Networks and clocks (Brian 1 –> 2 conversion)


	EmpiricalThreshold
	string  expression
	Neural models (Brian 1 –> 2 conversion)


	EventClock
	Clock
	Networks and clocks (Brian 1 –> 2 conversion)


	exp_conductance
	[Equations]
	Library models (Brian 1 –> 2 conversion)


	exp_current
	[Equations]
	Library models (Brian 1 –> 2 conversion)


	exp_IF
	[Equations]
	Library models (Brian 1 –> 2 conversion)


	exp_synapse
	[Equations]
	Library models (Brian 1 –> 2 conversion)


	FileSpikeMonitor
	#298
	Monitors (Brian 1 –> 2 conversion)


	FloatClock
	Clock
	Networks and clocks (Brian 1 –> 2 conversion)


	FunReset
	[string expression]
	Neural models (Brian 1 –> 2 conversion)


	FunThreshold
	[string     expression]
	Neural models (Brian 1 –> 2 conversion)


	hist_plot
	no equivalent
	–


	HomogeneousPoissonThreshold
	string  expression
	Neural models (Brian 1 –> 2 conversion)


	IdentityConnection
	Synapses
	Synapses (Brian 1 –> 2 conversion)


	IonicCurrent
	#443
	Multicompartmental models (Brian 1 –> 2 conversion)


	ISIHistogramMonitor
	[SpikeMonitor]
	Monitors (Brian 1 –> 2 conversion)


	Izhikevich
	[Equations]
	Library models (Brian 1 –> 2 conversion)


	K_current_HH
	[Equations]
	Library models (Brian 1 –> 2 conversion)


	leak_current
	[Equations]
	Library models (Brian 1 –> 2 conversion)


	leaky_IF
	[Equations]
	Library models (Brian 1 –> 2 conversion)


	MembraneEquation
	#443
	Multicompartmental models (Brian 1 –> 2 conversion)


	MultiStateMonitor
	StateMonitor
	Monitors (Brian 1 –> 2 conversion)


	Na_current_HH
	[Equations]
	Library models (Brian 1 –> 2 conversion)


	NaiveClock
	Clock
	Networks and clocks (Brian 1 –> 2 conversion)


	NoReset
	obsolete
	Neural models (Brian 1 –> 2 conversion)


	NoThreshold
	obsolete
	Neural models (Brian 1 –> 2 conversion)


	OfflinePoissonGroup
	[SpikeGeneratorGroup]
	Inputs (Brian 1 –> 2 conversion)


	OrnsteinUhlenbeck
	[Equations]
	Library models (Brian 1 –> 2 conversion)


	perfect_IF
	[Equations]
	Library models (Brian 1 –> 2 conversion)


	PoissonThreshold
	string expression
	Neural models (Brian 1 –> 2 conversion)


	PopulationSpikeCounter
	SpikeMonitor
	Monitors (Brian 1 –> 2 conversion)


	PulsePacket
	[SpikeGeneratorGroup]
	Inputs (Brian 1 –> 2 conversion)


	quadratic_IF
	[Equations]
	Library models (Brian 1 –> 2 conversion)


	raster_plot
	plot_raster (brian2tools)
	brian2tools documentation [http://brian2tools.readthedocs.io]


	RecentStateMonitor
	no direct equivalent
	Monitors (Brian 1 –> 2 conversion)


	Refractoriness
	string expression
	Neural models (Brian 1 –> 2 conversion)


	RegularClock
	Clock
	Networks and clocks (Brian 1 –> 2 conversion)


	Reset
	string expression
	Neural models (Brian 1 –> 2 conversion)


	SimpleCustomRefractoriness
	[string expression]
	Neural models (Brian 1 –> 2 conversion)


	SimpleFunThreshold
	[string expression]
	Neural models (Brian 1 –> 2 conversion)


	SpikeCounter
	SpikeMonitor
	Monitors (Brian 1 –> 2 conversion)


	StateHistogramMonitor
	[StateMonitor]
	Monitors (Brian 1 –> 2 conversion)


	StateSpikeMonitor
	SpikeMonitor
	Monitors (Brian 1 –> 2 conversion)


	STDP
	[Synapses]
	Synapses (Brian 1 –> 2 conversion)


	STP
	[Synapses]
	Synapses (Brian 1 –> 2 conversion)


	StringReset
	string expression
	Neural models (Brian 1 –> 2 conversion)


	StringThreshold
	string expression
	Neural models (Brian 1 –> 2 conversion)


	Threshold
	string expression
	Neural models (Brian 1 –> 2 conversion)


	VanRossumMetric
	[SpikeMonitor]
	Monitors (Brian 1 –> 2 conversion)


	VariableReset
	string expression
	Neural models (Brian 1 –> 2 conversion)


	VariableThreshold
	string expression
	Neural models (Brian 1 –> 2 conversion)






List of detailed instructions



	Detailed Brian 1 to Brian 2 conversion notes
	Neural models (Brian 1 –> 2 conversion)

	Synapses (Brian 1 –> 2 conversion)

	Inputs (Brian 1 –> 2 conversion)

	Monitors (Brian 1 –> 2 conversion)

	Networks and clocks (Brian 1 –> 2 conversion)

	Multicompartmental models (Brian 1 –> 2 conversion)

	Library models (Brian 1 –> 2 conversion)

	Brian Hears

















          

      

      

    

  

    
      
          
            
  
Detailed Brian 1 to Brian 2 conversion notes

These documents are only relevant for former users of Brian 1. If you do not
have any Brian 1 code to convert, go directly to the main
User’s guide.



	Neural models (Brian 1 –> 2 conversion)

	Synapses (Brian 1 –> 2 conversion)

	Inputs (Brian 1 –> 2 conversion)

	Monitors (Brian 1 –> 2 conversion)

	Networks and clocks (Brian 1 –> 2 conversion)

	Multicompartmental models (Brian 1 –> 2 conversion)

	Library models (Brian 1 –> 2 conversion)

	Brian Hears









          

      

      

    

  

    
      
          
            
  
Neural models (Brian 1 –> 2 conversion)


Brian 2 documentation

For the main documentation about defining neural models, see the document
Models and neuron groups.





	Threshold and Reset

	Refractoriness

	Subgroups

	Linked Variables





The syntax for specifying neuron models in a NeuronGroup changed in several
details. In general, a string-based syntax (that was already optional in Brian 1)
consistently replaces the use of classes (e.g. VariableThreshold) or
guessing (e.g. which variable does threshold=50*mV check).


Threshold and Reset

String-based thresholds are now the only possible option and replace all the
methods of defining threshold/reset in Brian 1:







	Brian 1
	Brian 2




	group = NeuronGroup(N, 'dv/dt = -v / tau : volt',
                    threshold=-50*mV,
                    reset=-70*mV)






	group = NeuronGroup(N, 'dv/dt = -v / tau : volt',
                    threshold='v > -50*mV',
                    reset='v = -70*mV')




















	group = NeuronGroup(N, 'dv/dt = -v / tau : volt',
                    threshold=Threshold(-50*mV, state='v'),
                    reset=Reset(-70*mV, state='w'))






	group = NeuronGroup(N, 'dv/dt = -v / tau : volt',
                    threshold='v > -50*mV',
                    reset='v = -70*mV')




















	group = NeuronGroup(N, '''dv/dt = -v / tau : volt
                          dvt/dt = -vt / tau : volt
                          vr : volt''',
                    threshold=VariableThreshold(state='v',
                                                threshold_state='vt'),
                    reset=VariableThreshold(state='v',
                                            resetvaluestate='vr'))






	group = NeuronGroup(N, '''dv/dt = -v / tau : volt
                          dvt/dt = -vt / tau : volt
                          vr : volt''',
                    threshold='v > vt',
                    reset='v = vr')




























	group = NeuronGroup(N, 'rate : Hz',
                    threshold=PoissonThreshold(state='rate'))






	group = NeuronGroup(N, 'rate : Hz',
                    threshold='rand()<rate*dt')





















There’s no direct equivalent for the “functional threshold/reset” mechanism from
Brian 1. In simple cases, they can be implemented using the general string
expression/statement mechanism (note that in Brian 1, reset=myreset is
equivalent to reset=FunReset(myreset)):







	Brian 1
	Brian 2




	def myreset(P,spikes):
    P.v_[spikes] = -70*mV+rand(len(spikes))*5*mV

group = NeuronGroup(N, 'dv/dt = -v / tau : volt',
                    threshold=-50*mV,
                    reset=myreset)






	group = NeuronGroup(N, 'dv/dt = -v / tau : volt',
                    threshold='v > -50*mV',
                    reset='-70*mV + rand()*5*mV')


























	def mythreshold(v):
    return (v > -50*mV) & (rand(N) > 0.5)

group = NeuronGroup(N, 'dv/dt = -v / tau : volt',
                    threshold=SimpleFunThreshold(mythreshold,
                                                 state='v'),
                    reset=-70*mV)






	group = NeuronGroup(N, 'dv/dt = -v / tau : volt',
                    threshold='v > -50*mV and rand() > 0.5',
                    reset='v = -70*mV')































For more complicated cases, you can use the general mechanism for
User-provided functions that Brian 2 provides. The only caveat is that you’d have
to provide an implementation of the function in the code generation target
language which is by default C++ or Cython. However, in the default
Runtime code generation mode, you can chose different code generation targets for
different parts of your simulation. You can thus switch the code generation
target for the threshold/reset mechanism to numpy while leaving the default
target for the rest of the simulation in place. The details of this process and
the correct definition of the functions (e.g. global_reset needs a “dummy”
return value) are somewhat cumbersome at the moment and we plan to make them
more straightforward in the future. Also note that if you use this kind of
mechanism extensively, you’ll lose all the performance advantage that Brian 2’s
code generation mechanism provides (in addition to not being able to use
Standalone code generation mode at all).







	Brian 1
	Brian 2




	def single_threshold(v):
    # Only let a single neuron spike
    crossed_threshold = np.nonzero(v > -50*mV)[0]
    should_spike = np.zeros(len(P), dtype=np.bool)
    if len(crossed_threshold):
        choose = np.random.randint(len(crossed_threshold))
        should_spike[crossed_threshold[choose]] = True
    return should_spike

def global_reset(P, spikes):
    # Reset everything
    if len(spikes):
        P.v_[:] = -70*mV

neurons = NeuronGroup(N, 'dv/dt = -v / tau : volt',
                      threshold=SimpleFunThreshold(single_threshold,
                                                   state='v'),
                      reset=global_reset)






	@check_units(v=volt, result=bool)
def single_threshold(v):
    pass # ... (identical to Brian 1)

@check_units(spikes=1, result=1)
def global_reset(spikes):
    # Reset everything
    if len(spikes):
         neurons.v_[:] = -0.070

neurons = NeuronGroup(N, 'dv/dt = -v / tau : volt',
                      threshold='single_threshold(v)',
                      reset='dummy = global_reset(i)')
# Set the code generation target for threshold/reset only:
neuron.thresholder['spike'].codeobj_class = NumpyCodeObject
neuron.resetter['spike'].codeobj_class = NumpyCodeObject





















































For an example how to translate EmpiricalThreshold, see the section on
“Refractoriness” below.




Refractoriness

For a detailed description of Brian 2’s refractoriness mechanism see
Refractoriness.

In Brian 1, refractoriness was tightly linked with the reset mechanism and
some combinations of refractoriness and reset were not allowed. The standard
refractory mechanism had two effects during the refractoriness: it prevented the
refractory cell from spiking and it clamped a state variable (normally the
membrane potential of the cell). In Brian 2, refractoriness is independent of
reset and the two effects are specified separately: the refractory keyword
specifies the time (or an expression evaluating to a time) during which the
cell does not spike, and the (unless refractory) flag marks one or more
variables to be clamped during the refractory period. To correctly translate
the standard refractory mechanism from Brian 1, you’ll therefore need to
specify both:







	Brian 1
	Brian 2




	group = NeuronGroup(N, 'dv/dt = (I - v)/tau : volt',
                    threshold=-50*mV,
                    reset=-70*mV,
                    refractory=3*ms)






	group = NeuronGroup(N, 'dv/dt = (I - v)/tau : volt (unless refractory)',
                    threshold='v > -50*mV',
                    reset='v = -70*mV',
                    refractory=3*ms)

























More complex refractoriness mechanisms based on SimpleCustomRefractoriness
and CustomRefractoriness can be translatated using string expressions or
user-defined functions, see the remarks in the preceding section on “Threshold
and Reset”.

Brian 2 no longer has an equivalent to the EmpiricalThreshold class (which
detects at the first threshold crossing but ignores all following threshold
crossings for a certain time after that). However, the standard refractoriness
mechanism can be used to implement the same behaviour, since it does not
reset/clamp any value if not explicitly asked for it (which would be fatal for
Hodgkin-Huxley type models):







	Brian 1
	Brian 2




	group = NeuronGroup(N,'''
                    dv/dt = (I_L - I_Na - I_K + I)/Cm : volt
                    ...''',
                    threshold=EmpiricalThreshold(threshold=20*mV,
                                                 refractory=1*ms,
                                                 state='v'))






	group = NeuronGroup(N,'''
                    dv/dt = (I_L - I_Na - I_K + I)/Cm : volt
                    ...''',
                    threshold='v > -20*mV',
                    refractory=1*ms)
































Subgroups

The class NeuronGroup in Brian 2 does no longer provide a subgroup method,
the only way to construct subgroups is therefore the slicing syntax (that works
in the same way as in Brian 1):







	Brian 1
	Brian 2




	group = NeuronGroup(4000, ...)
group_exc = group.subgroup(3200)
group_inh = group.subgroup(800)






	group = NeuronGroup(4000, ...)
group_exc = group[:3200]
group_inh = group[3200:]


























Linked Variables

For a description of Brian 2’s mechanism to link variables between groups, see
Linked variables.

Linked variables need to be explicitly annotated with the (linked) flag in
Brian 2:







	Brian 1
	Brian 2




	group1 = NeuronGroup(N,
                     'dv/dt = -v / tau : volt')
group2 = NeuronGroup(N,
                     '''dv/dt = (-v + w) / tau : volt
                        w : volt''')
group2.w = linked_var(group1, 'v')






	group1 = NeuronGroup(N,
                     'dv/dt = -v / tau : volt')
group2 = NeuronGroup(N,
                     '''dv/dt = (-v + w) / tau : volt
                        w : volt (linked)''')
group2.w = linked_var(group1, 'v')



































          

      

      

    

  

    
      
          
            
  
Synapses (Brian 1 –> 2 conversion)


Brian 2 documentation

For the main documentation about defining and creating synapses, see the
document Synapses.





	Converting Brian 1’s Connection class

	Converting Brian 1’s Synapses class






Converting Brian 1’s Connection class

In Brian 2, the Synapses class is the only class to model synaptic
connections, you will therefore have to convert all uses of Brian 1’s
Connection class. The Connection class increases a post-synaptic
variable by a certain amount (the “synaptic weight”) each time a pre-synaptic
spike arrives. This has to be explicitly specified when using the Synapses
class, the equivalent to the basic Connection usage is:







	Brian 1
	Brian 2




	conn = Connection(source, target, 'ge')






	conn = Synapses(source, target, 'w : siemens',
                on_pre='ge += w')





















Note that he variable w, which stores the synaptic weight, has to have the
same units as the post-synaptic variable (in this case: ge) that it
increases.


Creating synapses and setting weights

With the Connection class, creating a synapse and setting its weight is a
single process whereas with the Synapses class those two steps are separate.
There is no direct equivalent to the convenience functions connect_full,
connect_random and connect_one_to_one, but you can easily implement
the same functionality with the general mechanism of Synapses.connect():







	Brian 1
	Brian 2




	conn1 = Connection(source, target, 'ge')
conn1[3, 5] = 3*nS






	conn1 = Synapses(source, target, 'w: siemens',
                 on_pre='ge += w')
conn1.connect(i=3, j=5)
conn1.w[3, 5] = 3*nS  # (or conn1.w = 3*nS)






















	conn2 = Connection(source, target, 'ge')
conn2.connect_full(source, target, 5*nS)






	conn2 = ... # see above
conn2.connect()
conn2.w = 5*nS




















	conn3 = Connection(source, target, 'ge')
conn3.connect_random(source, target,
                     sparseness=0.02,
                     weight=2*ns)






	conn3 = ... # see above
conn3.connect(p=0.02)
conn3.w = 2*nS






















	conn4 = Connection(source, target, 'ge')
conn4.connect_one_to_one(source, target,
                         weight=4*nS)






	conn4 = ... # see above
conn4.connect(j='i')
conn4.w = 4*nS




















	conn5 = IdentityConnection(source, target,
                           weight=3*nS)






	conn5 = Synapses(source, target,
                 'w : siemens (shared)')
conn5.w = 3*nS


























Weight matrices

Brian 2’s Synapses class does not support setting the weights of a neuron with
a weight matrix. However, Synapses.connect() creates the synapses in a
predictable order (first all synapses for the first pre-synaptic cell, then all
synapses for the second pre-synaptic cell, etc.), so a reshaped “flat” weight
matrix can be used:







	Brian 1
	Brian 2




	# len(source) == 20, len(target) == 30
conn6 = Connection(source, target, 'ge')
W = rand(20, 30)*nS
conn6.connect(source, target, weight=W)






	# len(source) == 20, len(target) == 30
conn6 = Synapses(source, target, 'w: siemens',
                 on_pre='ge += w')
W = rand(20, 30)*nS
conn6.connect()
conn6.w = W.flatten()





























However note that if your weight matrix can be described mathematically (e.g.
random as in the example above), then you should not create a weight matrix in
the first place but use Brian 2’s mechanism to set variables based on
mathematical expressions (in the above case: conn5.w = 'rand()'). Especially
for big connection matrices this will have better performance, since it will be
executed in generated code. You should only resort to explicit weight matrices
when there is no alternative (e.g. to load weights from previous simulations).

In Brian 1, you can restrict the functions connect, connect_random, etc.
to subgroups. Again, there is no direct equivalent to this in Brian 2, but the
general string syntax allows you to make connections conditional on logical
statements that refer to pre-/post-synaptic indices and can therefore also used
to restrict the connection to a subgroup of cells. When you set the synaptic
weights, you can however use subgroups to restrict the subset of weights you
want to set.







	Brian 1
	Brian 2




	conn7 = Connection(source, target, 'ge')
conn7.connect_full(source[:5], target[5:10], 5*nS)






	conn7 = Synapses(source, target, 'w: siemens',
                 on_pre='ge += w')
conn7.connect('i < 5 and j >=5 and j <10')
# Alternative (more efficient):
# conn7.connect(j='k in range(5, 10) if i < 5')
conn7.w[source[:5], target[5:10]] = 5*nS
































Connections defined by functions

Brian 1 allowed you to pass in a function as the value for the weight
argument in a connect call (and also for the sparseness argument in
connect_random). You should be able to replace such use cases by the the
general, string-expression based method:







	Brian 1
	Brian 2




	conn8 = Connection(source, target, 'ge')
conn8.connect_full(source, target,
                   weight=lambda i,j:(1+cos(i-j))*2*nS)






	conn8 = Synapses(source, target, 'w: siemens',
                 on_pre='ge += w')
conn8.connect()
conn8.w = '(1 + cos(i - j))*2*nS'






















	conn9 = Connection(source, target, 'ge')
conn9.connect_random(source, target,
                     sparseness=0.02,
                     weight=lambda:rand()*nS)






	conn9 = ... # see above
conn9.connect(p=0.02)
conn9.w = 'rand()*nS'






















	conn10 = Connection(source, target, 'ge')
conn10.connect_random(source, target,
                      sparseness=lambda i,j:exp(-abs(i-j)*.1),
                      weight=2*ns)






	conn10 = ... # see above
conn10.connect(p='exp(-abs(i - j)*.1)')
conn10.w = 2*nS




























Delays

The specification of delays changed in several aspects from Brian 1 to Brian 2:
In Brian 1, delays where homogeneous by default, and heterogeneous delays had
to be marked by delay=True, together with the specification of the maximum
delay. In Brian 2, homogeneous delays are the default and you do not have to
state the maximum delay. Brian 1’s syntax of specifying a pair of values to get
randomly distributed delays in that range is no longer supported, instead use
Brian 2’s standard string syntax:







	Brian 1
	Brian 2




	conn11 = Connection(source, target, 'ge', delay=True,
                    max_delay=5*ms)
conn11.connect_full(source, target, weight=3*nS,
                    delay=(0*ms, 5*ms))






	conn11 = Synapses(source, target, 'w : siemens',
                  on_pre='ge += w')
conn11.connect()
conn11.w = 3*nS
conn11.delay = 'rand()*5*ms'






























Modulation

In Brian 2, there’s no need for the modulation keyword that Brian 1 offered,
you can describe the modulation as part of the on_pre action:







	Brian 1
	Brian 2




	conn12 = Connection(source, target, 'ge',
                    modulation='u')






	conn12 = Synapses(source, target, 'w : siemens',
                  on_pre='ge += w * u_pre')
























Structure

There’s no equivalen for Brian 1’s structure keyword in Brian 2, synapses
are always stored in a sparse data structure. There is currently no support for
changing synapses at run time (i.e. the “dynamic” structure of Brian 1).






Converting Brian 1’s Synapses class

Brian 2’s Synapses class works for the most part like the class of the same
name in Brian 1. There are however some differences in details, listed below:


Synaptic models

The basic syntax to define a synaptic model is unchanged, but the keywords
pre and post have been renamed to on_pre and on_post,
respectively.







	Brian 1
	Brian 2




	stdp_syn = Synapses(inputs, neurons, model='''
                    w:1
                    dApre/dt = -Apre/taupre : 1 (event-driven)
                    dApost/dt = -Apost/taupost : 1 (event-driven)''',
                    pre='''ge + =w
                           Apre += delta_Apre
                           w = clip(w + Apost, 0, gmax)''',
                    post='''Apost += delta_Apost
                            w = clip(w + Apre, 0, gmax)''')






	stdp_syn = Synapses(inputs, neurons, model='''
                    w:1
                    dApre/dt = -Apre/taupre : 1 (event-driven)
                    dApost/dt = -Apost/taupost : 1 (event-driven)''',
                    on_pre='''ge + =w
                           Apre += delta_Apre
                           w = clip(w + Apost, 0, gmax)''',
                    on_post='''Apost += delta_Apost
                            w = clip(w + Apre, 0, gmax)''')














Lumped variables (summed variables)

The syntax to define lumped variables (we use the term “summed variables” in
Brian 2) has been changed: instead of assigning the synaptic variable to the
neuronal variable you’ll have to include the summed variable in the synaptic
equations with the flag (summed):







	Brian 1
	Brian 2




	# a non-linear synapse (e.g. NMDA)
neurons = NeuronGroup(1, model='''
                      dv/dt = (gtot - v)/(10*ms) : 1
                      gtot : 1''')
syn = Synapses(inputs, neurons,
               model='''
               dg/dt = -a*g+b*x*(1-g) : 1
               dx/dt = -c*x : 1
               w : 1 # synaptic weight''',
               pre='x += w')
neurons.gtot=S.g






	# a non-linear synapse (e.g. NMDA)
neurons = NeuronGroup(1, model='''
                      dv/dt = (gtot - v)/(10*ms) : 1
                      gtot : 1''')
syn = Synapses(inputs, neurons,
               model='''
               dg/dt = -a*g+b*x*(1-g) : 1
               dx/dt = -c*x : 1
               w : 1 # synaptic weight
               gtot_post = g : 1 (summed)''',
               on_pre='x += w')














Creating synapses

In Brian 1, synapses were created by assigning True or an integer (the
number of synapses) to an indexed Synapses object. In Brian 2, all synapse
creation goes through the Synapses.connect() function. For examples how to
create more complex connection patterns, see the section on translating
Connections objects above.
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	Brian 2




	syn = Synapses(...)
# single synapse
syn[3, 5] = True






	syn = Synapses(...)
# single synapse
syn.connect(i=3, j=5)








	# all-to-all connections
syn[:, :] = True






	# all-to-all connections
syn.connect()








	# all to neuron number 1
syn[:, 1] = True






	# all to neuron number 1
syn.connect(j='1')








	# multiple synapses
syn[4, 7] = 3






	# multiple synapses
syn.connect(i=4, j=7, n=3)








	# connection probability 2%
syn[:, :] = 0.02






	# connection probability 2%
syn.connect(p=0.02)














Multiple pathways

As Brian 1, Brian 2 supports multiple pre- or post-synaptic pathways, with
separate pre-/post-codes and delays. In Brian 1, you have to specify the
pathways as tuples and can then later access them individually by using their
index. In Brian 2, you specify the pathways as a dictionary, i.e. by giving
them individual names which you can then later use to access them (the default
pathways are called pre and post):







	Brian 1
	Brian 2




	S = Synapses(...,
             pre=('ge + =w',
                  '''w = clip(w + Apost, 0, inf)
                     Apre += delta_Apre'''),
             post='''Apost += delta_Apost
                     w = clip(w + Apre, 0, inf)''')

S[:, :] = True
S.delay[1][:, :] = 3*ms # delayed trace






	S = Synapses(...,
             pre={'pre_transmission':
                  'ge += w',
                  'pre_plasticity':
                  '''w = clip(w + Apost, 0, inf)
                     Apre += delta_Apre'''},
             post='''Apost += delta_Apost
                     w = clip(w + Apre, 0, inf)''')

S.connect()
S.pre_plasticity.delay[:, :] = 3*ms # delayed trace














Monitoring synaptic variables

Both in Brian 1 and Brian 2, you can record the values of synaptic variables
with a StateMonitor. You no longer have to call an explicit indexing function,
but you can directly provide an appropriately indexed Synapses object. You
can now also use the same technique to index the StateMonitor object to get
the recorded values, see the respective section in the
Synapses documentation for details.







	Brian 1
	Brian 2




	syn = Synapses(...)
# record all synapse targetting neuron 3
indices = syn.synapse_index((slice(None), 3))
mon = StateMonitor(S, 'w', record=indices)






	syn = Synapses(...)
# record all synapse targetting neuron 3
mon = StateMonitor(S, 'w', record=S[:, 3])



















          

      

      

    

  

    
      
          
            
  
Inputs (Brian 1 –> 2 conversion)


Brian 2 documentation

For the main documentation about adding external stimulation to a network,
see the document Input stimuli.





	Poisson Input

	Spike generation

	Arbitrary time-dependent input (TimedArray)






Poisson Input

Brian 2 provides the same two groups that Brian 1 provided: PoissonGroup and
PoissonInput. The mechanism for inhomogoneous Poisson processes has changed:
instead of providing a Python function of time, you’ll now have to provide a
string expression that is evaluated at every time step. For most use cases, this
should allow a direct translation:







	Brian 1
	Brian 2




	rates = lambda t:(1+cos(2*pi*t*1*Hz))*10*Hz
group = PoissonGroup(100, rates=rates)






	rates = '(1 + cos(2*pi*t*1*Hz)*10*Hz)'
group = PoissonGroup(100, rates=rates)





















For more complex rate modulations, the expression can refer to
User-provided functions and/or you can replace the PoissonGroup by a general
NeuronGroup with a threshold condition rand()<rates*dt (which allows you
to store per-neuron attributes).

There is currently no direct replacement for the more advanced features of
PoissonInput (record, freeze, copies, jitter, and
reliability keywords), but various workarounds are possible, e.g. by
directly using a BinomialFunction in the equations. For example, you can get
the functionality of the freeze keyword (identical Poisson events for all
neurons) by storing the input in a shared variable and then distribute the input
to all neurons:







	Brian 1
	Brian 2




	group = NeuronGroup(10,
                    'dv/dt = -v/(10*ms) : 1')
input = PoissonInput(group, N=1000, rate=1*Hz,
                     weight=0.1, state='v',
                     freeze=True)






	group = NeuronGroup(10, '''dv/dt = -v / (10*ms) : 1
                           shared_input : 1 (shared)''')
poisson_input = BinomialFunction(n=1000, p=1*Hz*group.dt)
group.run_regularly('''shared_input = poisson_input()*0.1
                       v += shared_input''')






























Spike generation

SpikeGeneratorGroup provides mostly the same functionality as in Brian 1. In
contrast to Brian 1, there is only one way to specify which neurons spike and
when – you have to provide the index array and the times array as separate
arguments:







	Brian 1
	Brian 2




	gen1 = SpikeGeneratorGroup(2, [(0, 0*ms), (1, 1*ms)])
gen2 = SpikeGeneratorGroup(2, [(array([0, 1]), 0*ms),
                               (array([0, 1]), 1*ms)]
gen3 = SpikeGeneratorGroup(2, (array([0, 1]),
                               array([0, 1])*ms))
gen4 = SpikeGeneratorGroup(2, array([[0, 0.0],
                                    [1, 0.001]])






	gen1 = SpikeGeneratorGroup(2, [0, 1], [0, 1]*ms)
gen2 = SpikeGeneratorGroup(2, [0, 1, 0, 1],
                           [0, 0, 1, 1]*ms)
gen3 = SpikeGeneratorGroup(2, [0, 1], [0, 1]*ms)

gen4 = SpikeGeneratorGroup(2, [0, 1], [0, 1]*ms)












Note

For large arrays, make sure to provide a Quantity array (e.g.
[0, 1, 2]*ms) and not a list of Quantity values (e.g.
[0*ms, 1*ms, 2*ms]). A list has first to be translated into an array
which can take a considerable amount of time for a list with many elements.



There is no direct equivalent of the Brian 1 option to use a generator that
updates spike times online. The easiest alternative in Brian 2 is to
pre-calculate the spikes and then use a standard SpikeGeneratorGroup. If this
is not possible (e.g. there are two many spikes to fit in memory), then you can
workaround the restriction by using custom code (see User-provided functions and
Arbitrary Python code (network operations)).




Arbitrary time-dependent input (TimedArray)

For a detailed description of the TimedArray mechanism in Brian 2, see
Timed arrays.

In Brian 1, timed arrays where special objects that could be assigned to a
state variable and would then be used to update this state variable at every
time step. In Brian 2, a timed array is implemented using the standard
Functions mechanism which has the advantage that more
complex access patterns can be implemented (e.g. by not using t as an
argument, but something like t - delay). This syntax was possible in Brian 1
as well, but was disadvantageous for performance and had other limits (e.g. no
unit support, no linear integration). In Brian 2, these disadvantages no longer
apply and the function syntax is therefore the only available syntax. You can
convert the old-style Brian 1 syntax to Brian 2 as follows:


Warning

The example below does not correctly translate the changed semantics of
TimedArray related to the time. In Brian 1,
TimedArray([0, 1, 2], dt=10*ms) will return 0 for t<5*ms, 1
for 5*ms<=t<15*ms, and 2 for t>=15*ms. Brian 2 will return 0
for t<10*ms, 1 for 10*ms<=t<20*ms, and 2 for t>=20*ms.









	Brian 1
	Brian 2




	# same input for all neurons
eqs = '''
      dv/dt = (I - v)/tau : volt
      I : volt
      '''
group = NeuronGroup(1, model=eqs,
                    reset=0*mV, threshold=15*mV)
group.I = TimedArray(linspace(0*mV, 20*mV, 100),
                     dt=10*ms)






	# same input for all neurons
I = TimedArray(linspace(0*mV, 20*mV, 100),
               dt=10*ms)
eqs = '''
      dv/dt = (I(t) - v)/tau : volt
      '''
group = NeuronGroup(1, model=eqs,
                    reset='v = 0*mV',
                    threshold='v > 15*mV')








	# neuron-specific input
eqs = '''
      dv/dt = (I - v)/tau : volt
      I : volt
      '''
group = NeuronGroup(5, model=eqs,
                    reset=0*mV, threshold=15*mV)
values = (linspace(0*mV, 20*mV, 100)[:, None] *
          linspace(0, 1, 5))
group.I = TimedArray(values, dt=10*ms)






	# neuron-specific input
values = (linspace(0*mV, 20*mV, 100)[:, None] *
          linspace(0, 1, 5))
I = TimedArray(values, dt=10*ms)
eqs = '''
      dv/dt = (I(t, i) - v)/tau : volt
      '''
group = NeuronGroup(5, model=eqs,
                    reset='v = 0*mV',
                    threshold='v > 15*mV')

















          

      

      

    

  

    
      
          
            
  
Monitors (Brian 1 –> 2 conversion)


Brian 2 documentation

For the main documentation about recording network activity, see the
document Recording during a simulation.





	Monitoring spiking activity

	Monitoring variables






Monitoring spiking activity

The main class to record spiking activity is SpikeMonitor which is created in
the same way as in Brian 1. However, the internal storage and retrieval of
spikes is different. In Brian 1, spikes were stored as a list of pairs
(i, t), the index and time of each spike. In Brian 2, spikes are stored as
two arrays i and t, storing the indices and times. You can access these
arrays as attributes of the monitor, there’s also a convenience attribute it
that returns both at the same time. The following table shows how the spike
indices and times can be retrieved in various forms in Brian 1 and Brian 2:







	Brian 1
	Brian 2




	mon = SpikeMonitor(group)
#... do the run
list_of_pairs = mon.spikes
index_list, time_list = zip(*list_of_pairs)
index_array = array(index_list)
time_array = array(time_list)
# time_array is unitless in Brian 1






	mon = SpikeMonitor(group)
#... do the run
list_of_pairs = zip(*mon.it)
index_list = list(mon.i)
time_list = list(mon.t)
index_array, time_array = mon.i, mon.t
# time_array has units in Brian 2





























You can also access the spike times for individual neurons. In Brian 1, you
could directly index the monitor which is no longer allowed in Brian 2.
Instead, ask for a dictionary of spike times and index the returned dictionary:







	Brian 1
	Brian 2




	# dictionary of spike times for each neuron:
spike_dict = mon.spiketimes
# all spikes for neuron 3:
spikes_3 = spike_dict[3] #  (no units)
spikes_3 = mon[3] #  alternative (no units)






	# dictionary of spike times for each neuron:
spike_dict = mon.spike_trains()
# all spikes for neuron 3:
spikes_3 = spike_dict[3]  # with units



























In Brian 2, SpikeMonitor also provides the functionality of the Brian 1
classes SpikeCounter and PopulationSpikeCounter. If you are only
interested in the counts and not in the individual spike events, use
record=False to save the memory of storing them:







	Brian 1
	Brian 2




	counter = SpikeCounter(group)
pop_counter = PopulationSpikeCounter(group)
#... do the run
# Number of spikes for neuron 3:
count_3 = counter[3]
# Total number of spikes:
total_spikes = pop_counter.nspikes






	counter = SpikeMonitor(group, record=False)

#... do the run
# Number of spikes for neuron 3
count_3 = counter.count[3]
# Total number of spikes:
total_spikes = counter.num_spikes































Currently Brian 2 provides no functionality to calculate statistics such as
correlations or histograms online, there is no equivalent to the following
classes that existed in Brian 1: AutoCorrelogram, CoincidenceCounter,
CoincidenceMatrixCounter, ISIHistogramMonitor, VanRossumMetric.
You will therefore have to be calculate the corresponding statistiacs manually
after the simulation based on the information stored in the SpikeMonitor. If
you use the default Runtime code generation, you can also create a new Python class that
calculates the statistic online
(see this example from a Brian 2 tutorial [https://github.com/brian-team/brian-material/blob/master/2015-CNS-tutorial/04-advanced-brian2/coincidence_counter.ipynb]).




Monitoring variables

Single variables are recorded with a StateMonitor in the same way as in
Brian 1, but the times and variable values are accessed differently:
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	mon = StateMonitor(group, 'v',
                   record=True)
# ... do the run
# plot the trace of neuron 3:
plot(mon.times/ms, mon[3]/mV)
# plot the traces of all neurons:
plot(mon.times/ms, mon.values.T/mV)






	mon = StateMonitor(group, 'v',
                   record=True)
# ... do the run
# plot the trace of neuron 3:
plot(mon.t/ms, mon[3].v/mV)
# plot the traces of all neurons:
plot(mon.t/ms, mon.v.T/mV)































Further differences:


	StateMonitor now records in the 'start' scheduling slot by default. This
leads to a more intuitive correspondence between the recorded times and the
values: in Brian 1 (where StateMonitor recorded in the 'end' slot) the
recorded value at 0ms was not the initial value of the variable but the value
after integrating it for a single time step. The disadvantage of this new
default is that the very last value at the end of the last time step of a
simulation is not recorded anymore. However, this value can be manually added
to the monitor by calling StateMonitor.record_single_timestep().

	To not record every time step, use the dt argument (as for all other
classes) instead of specifying a number of timesteps.

	Using record=False does no longer provide mean and variance of the
recorded variable.



In contrast to Brian 1, StateMonitor can now record multiple variables and
therefore replaces Brian 1’s MultiStateMonitor:
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	mon = MultiStateMonitor(group, ['v', 'w'],
                        record=True)
# ... do the run
# plot the traces of v and w for neuron 3:
plot(mon['v'].times/ms, mon['v'][3]/mV)
plot(mon['w'].times/ms, mon['w'][3]/mV)






	mon = StateMonitor(group, ['v', 'w'],
                   record=True)
# ... do the run
# plot the traces of v and w for neuron 3:
plot(mon.t/ms, mon[3].v/mV)
plot(mon.t/ms, mon[3].w/mV)





























To record variable values at the times of spikes, Brian 2 no longer provides a
separate class as Brian 1 did (StateSpikeMonitor). Instead, you can use
SpikeMonitor to record additional variables (in addition to the neuron index
and the spike time):
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	# We assume that "group" has a varying threshold
mon = StateSpikeMonitor(group, 'v')
# ... do the run
# plot the mean v at spike time for each neuron
mean_values = [mean(mon.values('v', idx))
                for idx in range(len(group))]

plot(mean_values/mV, 'o')






	# We assume that "group" has a varying threshold
mon = SpikeMonitor(group, variables='v')
# ... do the run
# plot the mean v at spike time for each neuron
values = mon.values('v')
mean_values = [mean(values[idx])
               for idx in range(len(group))]
plot(mean_values/mV, 'o')

































Note that there is no equivalent to StateHistogramMonitor, you will have to
calculate the histogram from the recorded values or write your own custom
monitor class.







          

      

      

    

  

    
      
          
            
  
Networks and clocks (Brian 1 –> 2 conversion)


Brian 2 documentation

For the main documentation about running simulations, controling the
simulation timestep, etc., see the document Running a simulation.





	Clocks and timesteps

	Networks






Clocks and timesteps

Brian’s system of handling clocks has substantially changed. For details about
the new system in place see Setting the simulation time step. The main differences to Brian 1
are:


	There is no more “clock guessing” – objects either use the defaultclock or
a dt/clock value that was explicitly specified during their
construction.

	In Brian 2, the time step is allowed to change after the creation of an object
and between runs – the relevant value is the value in place at the point of
the run() call.

	It is rarely necessary to create an explicit Clock object, most of the time
you should use the defaultclock or provide a dt argument during the
construction of the object.

	There’s only one Clock class, the (deprecated) FloatClock,
RegularClock, etc. classes that Brian 1 provided no longer exist.

	It is no longer possible to (re-)set the time of a clock explicitly, there is
no direct equivalent of Clock.reinit and reinit_default_clock. To
start a completely new simulation after you have finished a previous one,
either create a new Network or use the start_scope() mechanism. To “rewind”
a simulation to a previous point, use the new store()/restore() mechanism. For
more details, see below and Running a simulation.






Networks

Both Brian 1 and Brian 2 offer two ways to run a simulation: either by
explicitly creating a Network object, or by using a MagicNetwork, i.e. a
simple run() statement.


Explicit network

The mechanism to create explicit Network objects has not changed significantly
from Brian 1 to Brian 2. However, creating a new Network will now also
automatically reset the clock back to 0s, and stricter checks no longer allow
the inclusion of the same object in multiple networks.
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	group = ...
mon = ...
net = Network(group, mon)
net.run(1*ms)

reinit()
group = ...
mon = ...
net = Network(group, mon)
net.run(1*ms)






	group = ...
mon = ...
net = Network(group, mon)
net.run(1*ms)

# new network starts at 0s
group = ...
mon = ...
net = Network(group, mon)
net.run(1*ms)














“Magic” network

For most simple, “flat”, scripts (see e.g. the Examples),
the run() statement in Brian 2 automatically collects all the Brian objects
(NeuronGroup, etc.) into a “magic” network in the same way as Brian 1 did.
The logic behind this collection has changed, though, with important
consequences for more complex simulation scripts: in Brian 1, the magic network
includes all Brian objects that have been created in the same execution frame
as the run() call. Objects that are created in other functions could be added
using magic_return and magic_register. In Brian 2, the magic network
contains all Brian objects that are visible in the same execution frame as the
run() call. The advantage of the new system is that it is clearer what will be
included in the network and there is no danger of including previously created,
but no longer needed, objects in a simulation. E.g. in the following example,
a common mistake in Brian 1 was to not include the clear(), which meant that
each run not only simulated the current objects, but also all objects from
previous loop iterations. Also, without the reinit_default_clock(),
each run would start at the end time of the previous run. In Brian 2, this loop
does not need any explicit clearing up, each run() will only simulate the
object that it “sees” (group1, group2, syn, and mon) and start
each simulation at 0s:
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	for r in range(100):
    reinit_default_clock()
    clear()
    group1 = NeuronGroup(...)
    group2 = NeuronGroup(...)
    syn = Synapses(group1, group2, ...)
    mon = SpikeMonitor(group2)
    run(1*second)






	for r in range(100):


    group1 = NeuronGroup(...)
    group2 = NeuronGroup(...)
    syn = Synapses(group1, group2, ...)
    mon = SpikeMonitor(group2)
    run(1*second)











There is no replacement for the magic_return and magic_register
functions. If the returned object is stored in a variable at the level of
the run() call, then it is no longer necessary to use magic_return, as the
returned object is “visible” at the level of the run() call:
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	@magic_return
def f():
    return PoissonGroup(100, rates=100*Hz)

pg = f() # needs magic_return
mon = SpikeMonitor(pg)
run(100*ms)






	def f():
    return PoissonGroup(100, rates=100*Hz)

pg = f() # is "visible" and will be included
mon = SpikeMonitor(pg)
run(100*ms)











The general recommendation is however: if your script is complex (multiple
functions/files/classes) and you are not sure whether some objects will be
included in the magic network, use an explicit Network object.

Note that one consequence of the “is visible” approach is that objects stored
in containers (lists, dictionaries, ...) will not be automatically included in
Brian 2. Use an explicit Network object to get around this restriction:
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	groups = {'exc': NeuronGroup(...),
          'inh': NeuronGroup(...)}
...

run(5*ms)






	groups = {'exc': NeuronGroup(...),
          'inh': NeuronGroup(...)}
...
net = Network(groups)
net.run(5*ms)














External constants

In Brian 2, external constants are taken from the surrounding namespace at
the point of the run() call and not when the object is defined (for other ways
to define the namespace, see External variables and functions). This allows to easily
change external constants between runs, in contrast to Brian 1 where the whether
this worked or not depended on details of the model (e.g. whether linear
integration was used):
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	tau = 10*ms
# to be sure that changes between runs are taken into
# account, define "I" as a neuronal parameter
group = NeuronGroup(10, '''dv/dt = (-v + I) / tau : 1
                           I : 1''')
group.v = linspace(0, 1, 10)
group.I = 0.0
mon = StateMonitor(group, 'v', record=True)
run(5*ms)
group.I = 0.5
run(5*ms)
group.I = 0.0
run(5*ms)






	tau = 10*ms

# The value for I will be updated at each run
group = NeuronGroup(10, 'dv/dt = (-v + I) / tau : 1')

group.v = linspace(0, 1, 10)
I = 0.0
mon = StateMonitor(group, 'v', record=True)
run(5*ms)
I = 0.5
run(5*ms)
I = 0.0
run(5*ms)



















          

      

      

    

  

    
      
          
            
  
Multicompartmental models (Brian 1 –> 2 conversion)


Brian 2 documentation

Support for multicompartmental models is now an integral part of Brian 2
(an early version of it was included as an experimental module in Brian 1).
See the document Multicompartment models.



Brian 1 offered support for simple multi-compartmental models in the
compartments module. This module allowed you to combine the equations for
several compartments into a single Equations object. This is only a suitable
solution for simple morphologies (e.g. “ball-and-stick” models) but has the
advantage over using SpatialNeuron that you can have several of such neurons
in a NeuronGroup.

If you already have a definition of a model using Brian 1’s compartments
module, then you can simply print out the equations and use them directly in
Brian 2. For simple models, writing the equations without that help is rather
straightforward anyway:
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	V0 = 10*mV
C = 200*pF
Ra = 150*kohm
R = 50*Mohm
soma_eqs = (MembraneEquation(C) +
            IonicCurrent('I=(vm-V0)/R : amp'))
dend_eqs = MembraneEquation(C)
neuron_eqs = Compartments({'soma': soma_eqs,
                           'dend': dend_eqs})

neuron = NeuronGroup(N, neuron_eqs)






	V0 = 10*mV
C = 200*pF
Ra = 150*kohm
R = 50*Mohm
neuron_eqs = '''
dvm_soma/dt = (I_soma + I_soma_dend)/C : volt
I_soma = (V0 - vm_soma)/R : amp
I_soma_dend = (vm_dend - vm_soma)/Ra : amp
dvm_dend/dt = -I_soma_dend/C : volt'''

neuron = NeuronGroup(N, neuron_eqs)















          

      

      

    

  

    
      
          
            
  
Library models (Brian 1 –> 2 conversion)



	Neuron models

	Ionic currents

	Synapses






Neuron models

The neuron models in Brian 1’s brian.library.IF package are nothing more
than shorthands for equations. The following table shows how the models from
Brian 1 can be converted to explicit equations (and reset statements in the case
of the adaptive exponential integrate-and-fire model) for use in Brian 2. The
examples include a “current” I (depending on the model not necessarily in
units of Ampère) and could e.g. be used to plot the f-I curve of the neuron.


Perfect integrator
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	eqs = (perfect_IF(tau=10*ms) +
       Current('I : volt'))
group = NeuronGroup(N, eqs,
                    threshold='v > -50*mV',
                    reset='v = -70*mV')






	tau = 10*ms
eqs = '''dvm/dt = I/tau : volt
         I : volt'''
group = NeuronGroup(N, eqs,
                    threshold='v > -50*mV',
                    reset='v = -70*mV')
































Leaky integrate-and-fire neuron
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	eqs = (leaky_IF(tau=10*ms, El=-70*mV) +
       Current('I : volt'))
group = ... # see above






	tau = 10*ms; El = -70*mV
eqs = '''dvm/dt = ((El - vm) + I)/tau : volt
         I : volt'''
group = ... # see above




























Exponential integrate-and-fire neuron
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	eqs = (exp_IF(C=1*nF, gL=30*nS, EL=-70*mV,
              VT=-50*mV, DeltaT=2*mV) +
       Current('I : amp'))
group = ... # see above






	C = 1*nF; gL = 30*nS; EL = -70*mV; VT = -50*mV; DeltaT = 2*mV
eqs = '''dvm/dt = (gL*(EL-vm)+gL*DeltaT*exp((vm-VT)/DeltaT) + I)/C : volt
         I : amp'''
group = ... # see above




























Quadratic integrate-and-fire neuron
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	eqs = (quadratic_IF(C=1*nF, a=5*nS/mV,
       EL=-70*mV, VT=-50*mV) +
       Current('I : amp'))
group = ... # see above






	C = 1*nF; a=5*nS/mV; EL=-70*mV; VT = -50*mV
eqs = '''dvm/dt = (a_q*(vm-EL)*(vm-VT) + I)/C : volt
         I : amp'''
group = ... # see above




























Izhikevich neuron
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	eqs = (Izhikevich(a=0.02/ms, b=0.2/ms) +
       Current('I : volt/second'))
group = ... # see above






	a = 0.02/ms; b = 0.2/ms
eqs = '''dvm/dt = (0.04/ms/mV)*vm**2+(5/ms)*vm+140*mV/ms-w + I : volt
         dw/dt = a_I*(b_I*vm-w) : volt/second
         I : volt/second'''
group = ... # see above






























Adaptive exponential integrate-and-fire neuron (“Brette-Gerstner model”)







	Brian 1
	Brian 2




	# AdEx, aEIF, and Brette_Gerstner all refer to the same model
eqs = (aEIF(C=1*nF, gL=30*nS, EL=-70*mV,
            VT=-50*mV, DeltaT=2*mV, tauw=150*ms, a=4*nS) +
       Current('I:amp'))
group = NeuronGroup(N, eqs,
                    threshold='v > -20*mV',
                    reset=AdaptiveReset(Vr=-70*mV, b=0.08*nA))






	C = 1*nF; gL = 30*nS; EL = -70*mV; VT = -50*mV; DeltaT = 2*mV; tauw = 150*ms; a = 4*nS
eqs = '''dvm/dt = (gL*(EL-vm)+gL*DeltaT*exp((vm-VT)/DeltaT) -w + I)/C : volt
         dw/dt=(a_BG*(vm-EL)-w)/tauw : amp
         I : volt/second'''
group = NeuronGroup(N, eqs,
                    threshold='v > -20*mV',
                    reset='vm=-70*mV; w += 0.08*nA')




































Ionic currents

Brian 1’s functions for ionic currents, provided in
brian.library.ionic_currents correspond to the following equations (note
that the currents follow the convention to use a shifted membrane potential,
i.e. the membrane potential at rest is 0mV):
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	from brian.library.ionic_currents import *
defaultclock.dt = 0.01*ms
eqs_leak = leak_current(gl=60*nS, El=10.6*mV, current_name='I_leak')

eqs_K = K_current_HH(gmax=7.2*uS, EK=-12*mV, current_name='I_K')

eqs_Na = Na_current_HH(gmax=24*uS, ENa=115*mV, current_name='I_Na')

eqs = (MembraneEquation(C=200*pF) +
       eqs_leak + eqs_K + eqs+Na +
       Current('I_inj : amp'))






	defaultclock.dt = 0.01*ms
gl = 60*nS; El = 10.6*mV
eqs_leak = Equations('I_leak = gl*(El - vm) : amp')
g_K = 7.2*uS; EK = -12*mV
eqs_K = Equations('''I_K = g_K*n**4*(EK-vm) : amp
                     dn/dt = alphan*(1-n)-betan*n : 1
                     alphan = .01*(10*mV-vm)/(exp(1-.1*vm/mV)-1)/mV/ms : Hz
                     betan = .125*exp(-.0125*vm/mV)/ms : Hz''')
g_Na = 24*uS; ENa = 115*mV
eqs_Na = Equations('''I_Na = g_Na*m**3*h*(ENa-vm) : amp
                      dm/dt=alpham*(1-m)-betam*m : 1
                      dh/dt=alphah*(1-h)-betah*h : 1
                      alpham=.1*(25*mV-vm)/(exp(2.5-.1*vm/mV)-1)/mV/ms : Hz
                      betam=4*exp(-.0556*vm/mV)/ms : Hz
                      alphah=.07*exp(-.05*vm/mV)/ms : Hz
                      betah=1./(1+exp(3.-.1*vm/mV))/ms : Hz''')
C = 200*pF
eqs = Equations('''dvm/dt = (I_leak + I_K + I_Na + I_inj)/C : volt
                   I_inj : amp''') + eqs_leak + eqs_K + eqs_Na


























































Synapses

Brian 1’s synaptic models, provided in brian.library.synpases can be
converted to the equivalent Brian 2 equations as follows:


Current-based synapses
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	syn_eqs = exp_current('s', tau=5*ms, current_name='I_syn')
eqs = (MembraneEquation(C=1*nF) + Current('Im = gl*(El-vm) : amp') +
       syn_eqs)
group = NeuronGroup(N, eqs, threshold='vm>-50*mV', reset='vm=-70*mV')
syn = Synapses(source, group, pre='s += 1*nA')
# ... connect synapses, etc.






	tau = 5*ms
syn_eqs = Equations('dI_syn/dt = -I_syn/tau : amp')
eqs = (Equations('dvm/dt = (gl*(El - vm) + I_syn)/C : volt') +
       syn_eqs)
group = NeuronGroup(N, eqs, threshold='vm>-50*mV', reset='vm=-70*mV')
syn = Synapses(source, group, pre='I_syn += 1*nA')
# ... connect synapses, etc.




























	syn_eqs = alpha_current('s', tau=2.5*ms, current_name='I_syn')
eqs = ... # remaining code as above






	tau = 2.5*ms
syn_eqs = Equations('''dI_syn/dt = (s - I_syn)/tau : amp
                       ds/dt = -s/tau : amp''')
group = NeuronGroup(N, eqs, threshold='vm>-50*mV', reset='vm=-70*mV')
syn = Synapses(source, group, pre='s += 1*nA')
# ... connect synapses, etc.


























	syn_eqs = biexp_current('s', tau1=2.5*ms, tau2=10*ms, current_name='I_syn')
eqs = ... # remaining code as above






	tau1 = 2.5*ms; tau2 = 10*ms; invpeak = (tau2 / tau1) ** (tau1 / (tau2 - tau1))
syn_eqs = Equations('''dI_syn/dt = (invpeak*s - I_syn)/tau1 : amp
                       ds/dt = -s/tau2 : amp''')
eqs = ... # remaining code as above




























Conductance-based synapses
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	syn_eqs = exp_conductance('s', tau=5*ms, E=0*mV, conductance_name='g_syn')
eqs = (MembraneEquation(C=1*nF) + Current('Im = gl*(El-vm) : amp') +
       syn_eqs)
group = NeuronGroup(N, eqs, threshold='vm>-50*mV', reset='vm=-70*mV')
syn = Synapses(source, group, pre='s += 10*nS')
# ... connect synapses, etc.






	tau = 5*ms; E = 0*mV
syn_eqs = Equations('dg_syn/dt = -g_syn/tau : siemens')
eqs = (Equations('dvm/dt = (gl*(El - vm) + g_syn*(E - vm))/C : volt') +
       syn_eqs)
group = NeuronGroup(N, eqs, threshold='vm>-50*mV', reset='vm=-70*mV')
syn = Synapses(source, group, pre='g_syn += 10*nS')
# ... connect synapses, etc.




























	syn_eqs = alpha_conductance('s', tau=2.5*ms, E=0*mV, conductance_name='g_syn')
eqs = ... # remaining code as above






	tau = 2.5*ms; E = 0*mV
syn_eqs = Equations('''dg_syn/dt = (s - g_syn)/tau : siemens
                       ds/dt = -s/tau : siemens''')
group = NeuronGroup(N, eqs, threshold='vm>-50*mV', reset='vm=-70*mV')
syn = Synapses(source, group, pre='s += 10*nS')
# ... connect synapses, etc.


























	syn_eqs = biexp_conductance('s', tau1=2.5*ms, tau2=10*ms, E=0*mV,
                            conductance_name='g_syn')
eqs = ... # remaining code as above






	tau1 = 2.5*ms; tau2 = 10*ms; E = 0*mV
invpeak = (tau2 / tau1) ** (tau1 / (tau2 - tau1))
syn_eqs = Equations('''dg_syn/dt = (invpeak*s - g_syn)/tau1 : siemens
                       ds/dt = -s/tau2 : siemens''')
eqs = ... # remaining code as above



































          

      

      

    

  

    
      
          
            
  
Brian Hears

This module is designed for users of the Brian 1 library “Brian Hears”. It allows you to use Brian Hears with Brian 2
with only a few modifications (although it’s not compatible with the “standalone” mode of Brian 2).
The way it works is by acting as a “bridge” to the version in Brian 1. To
make this work, you must have a copy of Brian 1 installed (preferably the latest version), and import Brian Hears
using:

from brian2.hears import *





Many scripts will run without any changes, but there are a few caveats to be aware of. Mostly, the problems are due
to the fact that the units system in Brian 2 is not 100% compatible with the units system of Brian 1.

FilterbankGroup now follows the rules for NeuronGroup in Brian 2, which means some changes may be
necessary to match the syntax of Brian 2, for example, the following would work in Brian 1 Hears:

# Leaky integrate-and-fire model with noise and refractoriness
eqs = '''
dv/dt = (I-v)/(1*ms)+0.2*xi*(2/(1*ms))**.5 : 1
I : 1
'''
anf = FilterbankGroup(ihc, 'I', eqs, reset=0, threshold=1, refractory=5*ms)





However, in Brian 2 Hears you would need to do:

# Leaky integrate-and-fire model with noise and refractoriness
eqs = '''
dv/dt = (I-v)/(1*ms)+0.2*xi*(2/(1*ms))**.5 : 1 (unless refractory)
I : 1
'''
anf = FilterbankGroup(ihc, 'I', eqs, reset='v=0', threshold='v>1', refractory=5*ms)





Slicing sounds no longer works. Previously you could do, e.g. sound[:20*ms] but with Brian 2 you would need
to do sound.slice(0*ms, 20*ms).

In addition, some functions may not work correctly with Brian 2 units. In most circumstances, Brian 2 units can be
used interchangeably with Brian 1 units in the bridge, but in some cases it may be necessary to convert units from
one format to another, and to do that you can use the functions convert_unit_b1_to_b2 and convert_unit_b2_to_b1.





          

      

      

    

  

    
      
          
            
  
Known issues

In addition to the issues noted below, you can refer to our
bug tracker on GitHub [https://github.com/brian-team/brian2/issues?q=is%3Aopen+is%3Aissue+label%3Abug].


List of known issues


	Cannot find msvcr90d.dll

	“Missing compiler_cxx fix for MSVCCompiler”

	Problems with numerical integration

	Jupyter notebooks and C++ standalone mode progress reporting

	Parallel Brian simulations with the weave code generation target

	Slow standalone simulations






Cannot find msvcr90d.dll

If you see this message coming up, find the file
PythonDir\Lib\site-packages\numpy\distutils\mingw32ccompiler.py
and modify the line msvcr_dbg_success = build_msvcr_library(debug=True) to read
msvcr_dbg_success = False (you can comment out the existing line and add the new line
immediately after).




“Missing compiler_cxx fix for MSVCCompiler”

If you keep seeing this message, do not worry. It’s not possible for us to
hide it, but doesn’t indicate any problems.




Problems with numerical integration

In some cases, the automatic choice of numerical integration method will not be
appropriate, because of a choice of parameters that couldn’t be determined in
advance. In this case, typically you will get nan (not a number) values in the
results, or large oscillations. In this case, Brian will generate a warning to
let you know, but will not raise an error.




Jupyter notebooks and C++ standalone mode progress reporting

When you run simulations in C++ standalone mode and enable progress reporting
(e.g. by using report='text' as a keyword argument), the progress will not
be displayed in the jupyter notebook. If you started the notebook from a
terminal, you will find the output there. Unfortunately, this is a tricky
problem to solve at the moment, due to the details of how the jupyter notebook
handles output.




Parallel Brian simulations with the weave code generation target

When using the weave code generation target (the default runtime target on
Python 2.x, see Runtime code generation for details), you should avoid running multiple
Brian simulations in parallel. The weave package caches compiled files,
but this cache is not prepared for multiple concurrent updates. If two Python
scripts (or two processes started from the same Python script, e.g. via the
multiprocessing [https://docs.python.org/2/library/multiprocessing.html#module-multiprocessing] package) try to store compilation results at the same time,
weave will crash with an error message. The numpy and cython targets
are not affected by this problem.




Slow standalone simulations

Some versions of the GNU standard library (in particular those used by recent
Ubuntu versions) have a bug that can dramatically slow down simulations in
C++ standalone mode on modern hardware (see #803). As a workaround, Brian will
set an environment variable LD_BIND_NOW during the execution of standalone
stimulations which changes the way the library is linked so that it does not
suffer from this problem. If this environment variable leads to unwanted
behaviour on your machine, change the
prefs.devices.cpp_standalone.run_environment_variables preference.







          

      

      

    

  

    
      
          
            
  
Support

If you are stuck with a problem using Brian, please do get in touch at our
email support list [http://groups.google.com/group/briansupport].

You can save time by following this procedure when reporting a problem:



	Do try to solve the problem on your own first. Read the documentation,
including using the search feature, index and reference documentation.

	Search the mailing list archives to see if someone else already had the
same problem.

	Before writing, try to create a minimal example that reproduces the
problem. You’ll get the fastest response if you can send just a handful
of lines of code that show what isn’t working.










          

      

      

    

  

    
      
          
            
  
Tutorials

The tutorial consists of a series of Jupyter Notebooks [http://jupyter-notebook-beginner-guide.readthedocs.org/en/latest/what_is_jupyter.html] [1]. You can quickly
view these using the first links below. To use them interactively - allowing you
to edit and run the code - there are two options. The easiest option is to click
on the “Launch Binder” link, which will open up an interactive version in the
browser without having to install Brian locally. This uses the
Binder service provided by the
Freeman lab [https://www.janelia.org/lab/freeman-lab]. Occasionally, this
service will be down or running slowly. The other option is to download the
notebook file and run it locally, which requires you to have Brian installed.

For more information about how to use Jupyter Notebooks, see the
Jupyter Notebook documentation [http://jupyter.readthedocs.org/].



	Introduction to Brian part 1: Neurons

	Introduction to Brian part 2: Synapses






Interactive notebooks and files


	[image: launchbinder1introtobrianneurons] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/tutorials/1-intro-to-brian-neurons.ipynb] Introduction to Brian part 1: Neurons

	[image: launchbinder2introtobriansynapses] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/tutorials/2-intro-to-brian-synapses.ipynb] Introduction to Brian part 2: Synapses






	[1]	Formerly known as “IPython Notebooks”.










          

      

      

    

  

    
      
          
            
  
Introduction to Brian part 1: Neurons


Note

This tutorial is a static non-editable version. You can launch an
interactive, editable version without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/tutorials/1-intro-to-brian-neurons.ipynb]

Alternatively, you can download a copy of the notebook file
to use locally: 1-intro-to-brian-neurons.ipynb

See the tutorial overview page for more details.



All Brian scripts start with the following. If you’re trying this
notebook out in the Jupyter notebook, you should start by running this
cell.

Later we’ll do some plotting in the notebook, so we activate inline
plotting in the notebook by doing this:

If you are not using the Jupyter notebook to run this example (e.g. you
are using a standard Python terminal, or you copy&paste these example
into an editor and run them as a script), then plots will not
automatically be displayed. In this case, call the show() command
explicitly after the plotting commands.


Units system

Brian has a system for using quantities with physical dimensions:


\[20.0\,\mathrm{V}\]

All of the basic SI units can be used (volt, amp, etc.) along with all
the standard prefixes (m=milli, p=pico, etc.), as well as a few special
abbreviations like mV for millivolt, pF for picofarad, etc.


\[1.0\,\mathrm{k}\,\mathrm{A}\]


\[1.0\,\mathrm{M}\,\mathrm{V}\]


\[1.0\,\mathrm{\mu}\,\mathrm{A}\]

Also note that combinations of units with work as expected:


\[50.0\,\mathrm{m}\,\mathrm{V}\]

And if you try to do something wrong like adding amps and volts, what
happens?

DimensionMismatchErrorTraceback (most recent call last)

<ipython-input-8-ad1fc5691a4b> in <module>()
----> 1 5*amp+10*volt


/home/marcel/programming/brian2/brian2/units/fundamentalunits.pyc in __add__(self, other)
   1422         return self._binary_operation(other, operator.add,
   1423                                       fail_for_mismatch=True,
-> 1424                                       operator_str='+')
   1425
   1426     def __radd__(self, other):


/home/marcel/programming/brian2/brian2/units/fundamentalunits.pyc in _binary_operation(self, other, operation, dim_operation, fail_for_mismatch, operator_str, inplace)
   1362                 _, other_dim = fail_for_dimension_mismatch(self, other, message,
   1363                                                            value1=self,
-> 1364                                                            value2=other)
   1365
   1366         if other_dim is None:


/home/marcel/programming/brian2/brian2/units/fundamentalunits.pyc in fail_for_dimension_mismatch(obj1, obj2, error_message, **error_quantities)
    184             raise DimensionMismatchError(error_message, dim1)
    185         else:
--> 186             raise DimensionMismatchError(error_message, dim1, dim2)
    187     else:
    188         return dim1, dim2


DimensionMismatchError: Cannot calculate 5. A + 10. V, units do not match (units are amp and volt).





If you haven’t see an error message in Python before that can look a bit
overwhelming, but it’s actually quite simple and it’s important to know
how to read these because you’ll probably see them quite often.

You should start at the bottom and work up. The last line gives the
error type DimensionMismatchError along with a more specific message
(in this case, you were trying to add together two quantities with
different SI units, which is impossible).

Working upwards, each of the sections starts with a filename (e.g.
C:\Users\Dan\...) with possibly the name of a function, and then a
few lines surrounding the line where the error occurred (which is
identified with an arrow).

The last of these sections shows the place in the function where the
error actually happened. The section above it shows the function that
called that function, and so on until the first section will be the
script that you actually run. This sequence of sections is called a
traceback, and is helpful in debugging.

If you see a traceback, what you want to do is start at the bottom and
scan up the sections until you find your own file because that’s most
likely where the problem is. (Of course, your code might be correct and
Brian may have a bug in which case, please let us know on the email
support list.)




A simple model

Let’s start by defining a simple neuron model. In Brian, all models are
defined by systems of differential equations. Here’s a simple example of
what that looks like:

In Python, the notation ''' is used to begin and end a multi-line
string. So the equations are just a string with one line per equation.
The equations are formatted with standard mathematical notation, with
one addition. At the end of a line you write : unit where unit
is the SI unit of that variable. Note that this is not the unit of the
two sides of the equation (which would be 1/second), but the unit of
the variable defined by the equation, i.e. in this case \(v\).

Now let’s use this definition to create a neuron.

In Brian, you only create groups of neurons, using the class
NeuronGroup. The first two arguments when you create one of these
objects are the number of neurons (in this case, 1) and the defining
differential equations.

Let’s see what happens if we didn’t put the variable tau in the
equation:

BrianObjectExceptionTraceback (most recent call last)

<ipython-input-11-d086eea0b2de> in <module>()
      3 '''
      4 G = NeuronGroup(1, eqs)
----> 5 run(100*ms)


/home/marcel/programming/brian2/brian2/units/fundamentalunits.pyc in new_f(*args, **kwds)
   2353                                                      get_dimensions(newkeyset[k]))
   2354
-> 2355             result = f(*args, **kwds)
   2356             if 'result' in au:
   2357                 if au['result'] == bool:


/home/marcel/programming/brian2/brian2/core/magic.pyc in run(duration, report, report_period, namespace, profile, level)
    369     '''
    370     return magic_network.run(duration, report=report, report_period=report_period,
--> 371                              namespace=namespace, profile=profile, level=2+level)
    372 run.__module__ = __name__
    373


/home/marcel/programming/brian2/brian2/core/magic.pyc in run(self, duration, report, report_period, namespace, profile, level)
    229         self._update_magic_objects(level=level+1)
    230         Network.run(self, duration, report=report, report_period=report_period,
--> 231                     namespace=namespace, profile=profile, level=level+1)
    232
    233     def store(self, name='default', filename=None, level=0):


/home/marcel/programming/brian2/brian2/core/base.pyc in device_override_decorated_function(*args, **kwds)
    276                 return getattr(curdev, name)(*args, **kwds)
    277             else:
--> 278                 return func(*args, **kwds)
    279
    280         device_override_decorated_function.__doc__ = func.__doc__


/home/marcel/programming/brian2/brian2/units/fundamentalunits.pyc in new_f(*args, **kwds)
   2353                                                      get_dimensions(newkeyset[k]))
   2354
-> 2355             result = f(*args, **kwds)
   2356             if 'result' in au:
   2357                 if au['result'] == bool:


/home/marcel/programming/brian2/brian2/core/network.pyc in run(self, duration, report, report_period, namespace, profile, level)
    943             namespace = get_local_namespace(level=level+3)
    944
--> 945         self.before_run(namespace)
    946
    947         if len(self.objects)==0:


/home/marcel/programming/brian2/brian2/core/base.pyc in device_override_decorated_function(*args, **kwds)
    276                 return getattr(curdev, name)(*args, **kwds)
    277             else:
--> 278                 return func(*args, **kwds)
    279
    280         device_override_decorated_function.__doc__ = func.__doc__


/home/marcel/programming/brian2/brian2/core/network.pyc in before_run(self, run_namespace)
    843                     obj.before_run(run_namespace)
    844                 except Exception as ex:
--> 845                     raise brian_object_exception("An error occurred when preparing an object.", obj, ex)
    846
    847         # Check that no object has been run as part of another network before


BrianObjectException: Original error and traceback:
Traceback (most recent call last):
  File "/home/marcel/programming/brian2/brian2/core/network.py", line 843, in before_run
    obj.before_run(run_namespace)
  File "/home/marcel/programming/brian2/brian2/groups/neurongroup.py", line 790, in before_run
    self.equations.check_units(self, run_namespace=run_namespace)
  File "/home/marcel/programming/brian2/brian2/equations/equations.py", line 913, in check_units
    *ex.dims)
DimensionMismatchError: Inconsistent units in differential equation defining variable v:
Expression 1-v does not have the expected unit hertz (unit is 1).

Error encountered with object named "neurongroup_1".
Object was created here (most recent call only, full details in debug log):
  File "<ipython-input-11-d086eea0b2de>", line 4, in <module>
    G = NeuronGroup(1, eqs)

An error occurred when preparing an object. DimensionMismatchError: Inconsistent units in differential equation defining variable v:
Expression 1-v does not have the expected unit hertz (unit is 1).
(See above for original error message and traceback.)





An error is raised, but why? The reason is that the differential
equation is now dimensionally inconsistent. The left hand side dv/dt
has units of 1/second but the right hand side 1-v is
dimensionless. People often find this behaviour of Brian confusing
because this sort of equation is very common in mathematics. However,
for quantities with physical dimensions it is incorrect because the
results would change depending on the unit you measured it in. For time,
if you measured it in seconds the same equation would behave differently
to how it would if you measured time in milliseconds. To avoid this, we
insist that you always specify dimensionally consistent equations.

Now let’s go back to the good equations and actually run the simulation.

INFO       No numerical integration method specified for group 'neurongroup', using method 'linear' (took 0.05s). [brian2.stateupdaters.base.method_choice]





First off, ignore that start_scope() at the top of the cell. You’ll
see that in each cell in this tutorial where we run a simulation. All it
does is make sure that any Brian objects created before the function is
called aren’t included in the next run of the simulation.

Secondly, you’ll see that there is an “INFO” message about not
specifying the numerical integration method. This is harmless and just
to let you know what method we chose, but we’ll fix it in the next cell
by specifying the method explicitly.

So, what has happened here? Well, the command run(100*ms) runs the
simulation for 100 ms. We can see that this has worked by printing the
value of the variable v before and after the simulation.

Before v = 0.0
After v = 0.99995460007





By default, all variables start with the value 0. Since the differential
equation is dv/dt=(1-v)/tau we would expect after a while that v
would tend towards the value 1, which is just what we see. Specifically,
we’d expect v to have the value 1-exp(-t/tau). Let’s see if
that’s right.

Expected value of v = 0.99995460007





Good news, the simulation gives the value we’d expect!

Now let’s take a look at a graph of how the variable v evolves over
time.

[image: ../../_images/1-intro-to-brian-neurons_image_31_0.png]
This time we only ran the simulation for 30 ms so that we can see the
behaviour better. It looks like it’s behaving as expected, but let’s
just check that analytically by plotting the expected behaviour on top.

[image: ../../_images/1-intro-to-brian-neurons_image_33_0.png]
As you can see, the blue (Brian) and dashed orange (analytic solution)
lines coincide.

In this example, we used the object StateMonitor object. This is
used to record the values of a neuron variable while the simulation
runs. The first two arguments are the group to record from, and the
variable you want to record from. We also specify record=0. This
means that we record all values for neuron 0. We have to specify which
neurons we want to record because in large simulations with many neurons
it usually uses up too much RAM to record the values of all neurons.

Now try modifying the equations and parameters and see what happens in
the cell below.

[image: ../../_images/1-intro-to-brian-neurons_image_35_0.png]



Adding spikes

So far we haven’t done anything neuronal, just played around with
differential equations. Now let’s start adding spiking behaviour.

[image: ../../_images/1-intro-to-brian-neurons_image_37_0.png]
We’ve added two new keywords to the NeuronGroup declaration:
threshold='v>0.8' and reset='v = 0'. What this means is that
when v>0.8 we fire a spike, and immediately reset v = 0 after
the spike. We can put any expression and series of statements as these
strings.

As you can see, at the beginning the behaviour is the same as before
until v crosses the threshold v>0.8 at which point you see it
reset to 0. You can’t see it in this figure, but internally Brian has
registered this event as a spike. Let’s have a look at that.

Spike times: [ 16.   32.1  48.2] ms





The SpikeMonitor object takes the group whose spikes you want to
record as its argument and stores the spike times in the variable t.
Let’s plot those spikes on top of the other figure to see that it’s
getting it right.

[image: ../../_images/1-intro-to-brian-neurons_image_41_0.png]
Here we’ve used the axvline command from matplotlib to draw an
orange, dashed vertical line at the time of each spike recorded by the
SpikeMonitor.

Now try changing the strings for threshold and reset in the cell
above to see what happens.




Refractoriness

A common feature of neuron models is refractoriness. This means that
after the neuron fires a spike it becomes refractory for a certain
duration and cannot fire another spike until this period is over. Here’s
how we do that in Brian.

[image: ../../_images/1-intro-to-brian-neurons_image_44_0.png]
As you can see in this figure, after the first spike, v stays at 0
for around 5 ms before it resumes its normal behaviour. To do this,
we’ve done two things. Firstly, we’ve added the keyword
refractory=5*ms to the NeuronGroup declaration. On its own, this
only means that the neuron cannot spike in this period (see below), but
doesn’t change how v behaves. In order to make v stay constant
during the refractory period, we have to add (unless refractory) to
the end of the definition of v in the differential equations. What
this means is that the differential equation determines the behaviour of
v unless it’s refractory in which case it is switched off.

Here’s what would happen if we didn’t include (unless refractory).
Note that we’ve also decreased the value of tau and increased the
length of the refractory period to make the behaviour clearer.

Spike times: [  8.   23.1  38.2] ms





[image: ../../_images/1-intro-to-brian-neurons_image_46_1.png]
So what’s going on here? The behaviour for the first spike is the same:
v rises to 0.8 and then the neuron fires a spike at time 8 ms before
immediately resetting to 0. Since the refractory period is now 15 ms
this means that the neuron won’t be able to spike again until time 8 +
15 = 23 ms. Immediately after the first spike, the value of v now
instantly starts to rise because we didn’t specify
(unless refractory) in the definition of dv/dt. However, once it
reaches the value 0.8 (the dashed green line) at time roughly 8 ms it
doesn’t fire a spike even though the threshold is v>0.8. This is
because the neuron is still refractory until time 23 ms, at which point
it fires a spike.

Note that you can do more complicated and interesting things with
refractoriness. See the full documentation for more details about how it
works.




Multiple neurons

So far we’ve only been working with a single neuron. Let’s do something
interesting with multiple neurons.

[image: ../../_images/1-intro-to-brian-neurons_image_49_0.png]
This shows a few changes. Firstly, we’ve got a new variable N
determining the number of neurons. Secondly, we added the statement
G.v = 'rand()' before the run. What this does is initialise each
neuron with a different uniform random value between 0 and 1. We’ve done
this just so each neuron will do something a bit different. The other
big change is how we plot the data in the end.

As well as the variable spikemon.t with the times of all the spikes,
we’ve also used the variable spikemon.i which gives the
corresponding neuron index for each spike, and plotted a single black
dot with time on the x-axis and neuron index on the y-value. This is the
standard “raster plot” used in neuroscience.




Parameters

To make these multiple neurons do something more interesting, let’s
introduce per-neuron parameters that don’t have a differential equation
attached to them.

[image: ../../_images/1-intro-to-brian-neurons_image_52_0.png]
The line v0 : 1 declares a new per-neuron parameter v0 with
units 1 (i.e. dimensionless).

The line G.v0 = 'i*v0_max/(N-1)' initialises the value of v0 for
each neuron varying from 0 up to v0_max. The symbol i when it
appears in strings like this refers to the neuron index.

So in this example, we’re driving the neuron towards the value v0
exponentially, but when v crosses v>1, it fires a spike and
resets. The effect is that the rate at which it fires spikes will be
related to the value of v0. For v0<1 it will never fire a spike,
and as v0 gets larger it will fire spikes at a higher rate. The
right hand plot shows the firing rate as a function of the value of
v0. This is the I-f curve of this neuron model.

Note that in the plot we’ve used the count variable of the
SpikeMonitor: this is an array of the number of spikes each neuron
in the group fired. Dividing this by the duration of the run gives the
firing rate.




Stochastic neurons

Often when making models of neurons, we include a random element to
model the effect of various forms of neural noise. In Brian, we can do
this by using the symbol xi in differential equations. Strictly
speaking, this symbol is a “stochastic differential” but you can sort of
thinking of it as just a Gaussian random variable with mean 0 and
standard deviation 1. We do have to take into account the way stochastic
differentials scale with time, which is why we multiply it by
tau**-0.5 in the equations below (see a textbook on stochastic
differential equations for more details). Note that we also changed the
method keyword argument to use 'euler' (which stands for the
Euler-Maruyama
method [https://en.wikipedia.org/wiki/Euler%E2%80%93Maruyama_method]);
the 'linear' method that we used earlier is not applicable to
stochastic differential equations.

[image: ../../_images/1-intro-to-brian-neurons_image_55_0.png]
That’s the same figure as in the previous section but with some noise
added. Note how the curve has changed shape: instead of a sharp jump
from firing at rate 0 to firing at a positive rate, it now increases in
a sigmoidal fashion. This is because no matter how small the driving
force the randomness may cause it to fire a spike.




End of tutorial

That’s the end of this part of the tutorial. The cell below has another
example. See if you can work out what it is doing and why. Try adding a
StateMonitor to record the values of the variables for one of the
neurons to help you understand it.

You could also try out the things you’ve learned in this cell.

Once you’re done with that you can move on to the next tutorial on
Synapses.

[image: ../../_images/1-intro-to-brian-neurons_image_58_0.png]






          

      

      

    

  

    
      
          
            
  
Introduction to Brian part 2: Synapses


Note

This tutorial is a static non-editable version. You can launch an
interactive, editable version without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/tutorials/2-intro-to-brian-synapses.ipynb]

Alternatively, you can download a copy of the notebook file
to use locally: 2-intro-to-brian-synapses.ipynb

See the tutorial overview page for more details.



If you haven’t yet read part 1: Neurons, go read that now.

As before we start by importing the Brian package and setting up
matplotlib for IPython:


The simplest Synapse

Once you have some neurons, the next step is to connect them up via
synapses. We’ll start out with doing the simplest possible type of
synapse that causes an instantaneous change in a variable after a spike.

[image: ../../_images/2-intro-to-brian-synapses_image_5_0.png]
There are a few things going on here. First of all, let’s recap what is
going on with the NeuronGroup. We’ve created two neurons, each of
which has the same differential equation but different values for
parameters I and tau. Neuron 0 has I=2 and tau=10*ms which means
that is driven to repeatedly spike at a fairly high rate. Neuron 1 has
I=0 and tau=100*ms which means that on its own - without the
synapses - it won’t spike at all (the driving current I is 0). You can
prove this to yourself by commenting out the two lines that define the
synapse.

Next we define the synapses: Synapses(source, target, ...) means
that we are defining a synaptic model that goes from source to
target. In this case, the source and target are both the same, the
group G. The syntax on_pre='v_post += 0.2' means that when a
spike occurs in the presynaptic neuron (hence on_pre) it causes an
instantaneous change to happen v_post += 0.2. The _post means
that the value of v referred to is the post-synaptic value, and it
is increased by 0.2. So in total, what this model says is that whenever
two neurons in G are connected by a synapse, when the source neuron
fires a spike the target neuron will have its value of v increased
by 0.2.

However, at this point we have only defined the synapse model, we
haven’t actually created any synapses. The next line
S.connect(i=0, j=1) creates a synapse from neuron 0 to neuron 1.




Adding a weight

In the previous section, we hard coded the weight of the synapse to be
the value 0.2, but often we would to allow this to be different for
different synapses. We do that by introducing synapse equations.

[image: ../../_images/2-intro-to-brian-synapses_image_8_0.png]
This example behaves very similarly to the previous example, but now
there’s a synaptic weight variable w. The string 'w : 1' is an
equation string, precisely the same as for neurons, that defines a
single dimensionless parameter w. We changed the behaviour on a
spike to on_pre='v_post += w' now, so that each synapse can behave
differently depending on the value of w. To illustrate this, we’ve
made a third neuron which behaves precisely the same as the second
neuron, and connected neuron 0 to both neurons 1 and 2. We’ve also set
the weights via S.w = 'j*0.2'. When i and j occur in the
context of synapses, i refers to the source neuron index, and j
to the target neuron index. So this will give a synaptic connection from
0 to 1 with weight 0.2=0.2*1 and from 0 to 2 with weight
0.4=0.2*2.




Introducing a delay

So far, the synapses have been instantaneous, but we can also make them
act with a certain delay.

[image: ../../_images/2-intro-to-brian-synapses_image_11_0.png]
As you can see, that’s as simple as adding a line S.delay = 'j*2*ms'
so that the synapse from 0 to 1 has a delay of 2 ms, and from 0 to 2 has
a delay of 4 ms.




More complex connectivity

So far, we specified the synaptic connectivity explicitly, but for
larger networks this isn’t usually possible. For that, we usually want
to specify some condition.

Here we’ve created a dummy neuron group of N neurons and a dummy
synapses model that doens’t actually do anything just to demonstrate the
connectivity. The line S.connect(condition='i!=j', p=0.2) will
connect all pairs of neurons i and j with probability 0.2 as
long as the condition i!=j holds. So, how can we see that
connectivity? Here’s a little function that will let us visualise it.

[image: ../../_images/2-intro-to-brian-synapses_image_16_0.png]
There are two plots here. On the left hand side, you see a vertical line
of circles indicating source neurons on the left, and a vertical line
indicating target neurons on the right, and a line between two neurons
that have a synapse. On the right hand side is another way of
visualising the same thing. Here each black dot is a synapse, with x
value the source neuron index, and y value the target neuron index.

Let’s see how these figures change as we change the probability of a
connection:

[image: ../../_images/2-intro-to-brian-synapses_image_18_0.png]
[image: ../../_images/2-intro-to-brian-synapses_image_18_1.png]
[image: ../../_images/2-intro-to-brian-synapses_image_18_2.png]
And let’s see what another connectivity condition looks like. This one
will only connect neighbouring neurons.

[image: ../../_images/2-intro-to-brian-synapses_image_20_0.png]
Try using that cell to see how other connectivity conditions look like.

You can also use the generator syntax to create connections like this
more efficiently. In small examples like this, it doesn’t matter, but
for large numbers of neurons it can be much more efficient to specify
directly which neurons should be connected than to specify just a
condition. Note that the following example uses skip_if_invalid to
avoid errors at the boundaries (e.g. do not try to connect the neuron
with index 1 to a neuron with index -2).

[image: ../../_images/2-intro-to-brian-synapses_image_23_0.png]
If each source neuron is connected to precisely one target neuron (which
would be normally used with two separate groups of the same size, not
with identical source and target groups as in this example), there is a
special syntax that is extremely efficient. For example, 1-to-1
connectivity looks like this:

[image: ../../_images/2-intro-to-brian-synapses_image_25_0.png]
You can also do things like specifying the value of weights with a
string. Let’s see an example where we assign each neuron a spatial
location and have a distance-dependent connectivity function. We
visualise the weight of a synapse by the size of the marker.

[image: ../../_images/2-intro-to-brian-synapses_image_27_0.png]
Now try changing that function and seeing how the plot changes.




More complex synapse models: STDP

Brian’s synapse framework is very general and can do things like
short-term plasticity (STP) or spike-timing dependent plasticity (STDP).
Let’s see how that works for STDP.

STDP is normally defined by an equation something like this:


\[\Delta w = \sum_{t_{pre}} \sum_{t_{post}} W(t_{post}-t_{pre})\]

That is, the change in synaptic weight w is the sum over all presynaptic
spike times \(t_{pre}\) and postsynaptic spike times
\(t_{post}\) of some function \(W\) of the difference in these
spike times. A commonly used function \(W\) is:


\[\begin{split}W(\Delta t) = \begin{cases}
A_{pre} e^{-\Delta t/\tau_{pre}} & \Delta t>0 \\
A_{post} e^{\Delta t/\tau_{post}} & \Delta t<0
\end{cases}\end{split}\]

This function looks like this:
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Simulating it directly using this equation though would be very
inefficient, because we would have to sum over all pairs of spikes. That
would also be physiologically unrealistic because the neuron cannot
remember all its previous spike times. It turns out there is a more
efficient and physiologically more plausible way to get the same effect.

We define two new variables \(a_{pre}\) and \(a_{post}\) which
are “traces” of pre- and post-synaptic activity, governed by the
differential equations:


\[\begin{split}\begin{eqnarray}
\tau_{pre}\frac{\mathrm{d}}{\mathrm{d}t} a_{pre} &=& -a_{pre}\\
\tau_{post}\frac{\mathrm{d}}{\mathrm{d}t} a_{post} &=& -a_{post}\\
\end{eqnarray}\end{split}\]

When a presynaptic spike occurs, the presynaptic trace is updated and
the weight is modified according to the rule:


\[\begin{split}\begin{eqnarray}
a_{pre} &\rightarrow& a_{pre}+A_{pre}\\
w &\rightarrow& w+a_{post}
\end{eqnarray}\end{split}\]

When a postsynaptic spike occurs:


\[\begin{split}\begin{eqnarray}
a_{post} &\rightarrow& a_{post}+A_{post}\\
w &\rightarrow& w+a_{pre}
\end{eqnarray}\end{split}\]

To see that this formulation is equivalent, you just have to check that
the equations sum linearly, and consider two cases: what happens if the
presynaptic spike occurs before the postsynaptic spike, and vice versa.
Try drawing a picture of it.

Now that we have a formulation that relies only on differential
equations and spike events, we can turn that into Brian code.

There are a few things to see there. Firstly, when defining the synapses
we’ve given a more complicated multi-line string defining three synaptic
variables (w, apre and apost). We’ve also got a new bit of
syntax there, (event-driven) after the definitions of apre and
apost. What this means is that although these two variables evolve
continuously over time, Brian should only update them at the time of an
event (a spike). This is because we don’t need the values of apre
and apost except at spike times, and it is more efficient to only
update them when needed.

Next we have a on_pre=... argument. The first line is
v_post += w: this is the line that actually applies the synaptic
weight to the target neuron. The second line is apre += Apre which
encodes the rule above. In the third line, we’re also encoding the rule
above but we’ve added one extra feature: we’ve clamped the synaptic
weights between a minimum of 0 and a maximum of wmax so that the
weights can’t get too large or negative. The function
clip(x, low, high) does this.

Finally, we have a on_post=... argument. This gives the statements
to calculate when a post-synaptic neuron fires. Note that we do not
modify v in this case, only the synaptic variables.

Now let’s see how all the variables behave when a presynaptic spike
arrives some time before a postsynaptic spike.
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A couple of things to note here. First of all, we’ve used a trick to
make neuron 0 fire a spike at time 10 ms, and neuron 1 at time 20 ms.
Can you see how that works?

Secondly, we’ve replaced the (event-driven) by (clock-driven) so
you can see how apre and apost evolve over time. Try reverting
this change and see what happens.

Try changing the times of the spikes to see what happens.

Finally, let’s verify that this formulation is equivalent to the
original one.

[image: ../../_images/2-intro-to-brian-synapses_image_35_0.png]
Can you see how this works?




End of tutorial
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Importing Brian

After installation, Brian is available in the brian2 package. By doing a
wildcard import from this package, i.e.:

from brian2 import *





you will not only get access to the brian2 classes and functions, but also
to everything in the pylab package, which includes the plotting functions
from matplotlib [http://matplotlib.org/] and everything included in numpy/scipy (e.g. functions such
as arange, linspace, etc.).


The following topics are not essential for beginners.










Precise control over importing

If you want to use a wildcard import from Brian, but don’t want to import all
the additional symbols provided by pylab, you can use:

from brian2.only import *





Note that whenever you use something different from the most general
from brian2 import * statement, you should be aware that Brian overwrites
some numpy functions with their unit-aware equivalents
(see Units). If you combine multiple wildcard imports, the
Brian import should therefore be the last import. Similarly, you should not
import and call overwritten numpy functions directly, e.g. by using
import numpy as np followed by np.sin since this will not use the
unit-aware versions. To make this easier, Brian provides a brian2.numpy_
package that provides access to everything in numpy but overwrites certain
functions. If you prefer to use prefixed names, the recommended way of doing
the imports is therefore:

import brian2.numpy_ as np
import brian2.only as br2





Note that it is safe to use e.g. np.sin and numpy.sin after a
from brian2 import *.




Dependency checks

Brian will check the dependency versions during import and raise an error for
an outdated dependency. An outdated dependency does not necessarily mean that
Brian cannot be run with it, it only means that Brian is untested on that
version. If you want to force Brian to run despite the outdated dependency, set
the core.outdated_dependency_error preference to False. Note that this
cannot be done in a script, since you do not have access to the preferences
before importing brian2. See Preferences for instructions
how to set preferences in a file.







          

      

      

    

  

    
      
          
            
  
Physical units
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	Removing units
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	Constants

	Importing units
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Brian includes a system for physical units. The base units are defined by their
standard SI unit names: amp/ampere, kilogram/kilogramme,
second, metre/meter, mole/mol, kelvin, and candela.
In addition to these base units, Brian defines a set of derived units:
coulomb, farad, gram/gramme, hertz, joule, liter/
litre, molar, pascal, ohm,  siemens, volt, watt,
together with prefixed versions (e.g. msiemens = 0.001*siemens) using the
prefixes p, n, u, m, k, M, G, T (two exceptions to this rule: kilogram
is not defined with any additional prefixes, and metre and meter are
additionaly defined with the “centi” prefix, i.e. cmetre/cmeter).
For convenience, a couple of additional useful standard abbreviations such as
cm (instead of cmetre/cmeter), nS (instead of nsiemens),
ms (instead of msecond), Hz (instead of hertz), mM
(instead of mmolar) are included. To avoid clashes with common variable
names, no one-letter abbreviations are provided (e.g. you can use mV or
nS, but not V or S).


Using units

You can generate a physical quantity by multiplying a scalar or vector value
with its physical unit:

>>> tau = 20*ms
>>> print(tau)
20. ms
>>> rates = [10, 20, 30]*Hz
>>> print(rates)
[ 10.  20.  30.] Hz





Brian will check the consistency of operations on units and raise an error for
dimensionality mismatches:

>>> tau += 1  # ms? second?  
Traceback (most recent call last):
...
DimensionMismatchError: Cannot calculate ... += 1, units do not match (units are second and 1).
>>> 3*kgram + 3*amp   
Traceback (most recent call last):
...
DimensionMismatchError: Cannot calculate 3. kg + 3. A, units do not match (units are kilogram and amp).





Most Brian functions will also complain about non-specified or incorrect units:

>>> G = NeuronGroup(10, 'dv/dt = -v/tau: volt', dt=0.5)   
Traceback (most recent call last):
...
DimensionMismatchError: Function "__init__" expected a quantitity with unit second for argument "dt" but got 0.5 (unit is 1).





Numpy functions have been overwritten to correctly work with units (see the
developer documentation for more details):

>>> print mean(rates)
20. Hz
>>> print rates.repeat(2)
[ 10.  10.  20.  20.  30.  30.] Hz








Removing units

There are various options to remove the units from a value (e.g. to use it with
analysis functions that do not correctly work with units)


	Divide the value by its unit (most of the time the recommended option
because it is clear about the scale)

	Transform it to a pure numpy array in the base unit by calling asarray()
(no copy) or array (copy)

	Directly get the unitless value of a state variable by appending an underscore
to the name



>>> tau/ms
20.0
>> asarray(rates)
array([ 10.,  20.,  30.])
>>> G = NeuronGroup(5, 'dv/dt = -v/tau: volt')
>>> print G.v_[:]
[ 0.,  0.,  0.,  0.,  0.]








Temperatures

Brian only supports temperatures defined in °K, using the provided kelvin
unit object. Other conventions such as °C, or °F are not compatible with Brian’s
unit system, because they cannot be expressed as a multiplicative scaling of the
SI base unit kelvin (their zero point is different). However, in biological
experiments and modeling, temperatures are typically reported in °C. How to use
such temperatures depends on whether they are used as temperature differences
or as absolute temperatures:


	temperature differences

	Their major use case is the correction of time constants for differences in
temperatures based on the Q10 temperature coefficient [https://en.wikipedia.org/wiki/Q10_(temperature_coefficient)].
In this case, all temperatures can directly use kelvin even though the
temperatures are reported in Celsius, since temperature differences in
Celsius and Kelvin are identical.

	absolute temperatures

	Equations such as the Goldman–Hodgkin–Katz voltage equation [https://en.wikipedia.org/wiki/Goldman_equation]
have a factor that depends on the absolute temperature measured in Kelvin.
To get this temperature from a temperature reported in °C, you can use the
zero_celsius constant from the brian2.units.constants package (see
below):

from brian2.units.constants import zero_celsius

celsius_temp = 27
abs_temp = celsius_temp*kelvin + zero_celsius










Note

Earlier versions of Brian had a celsius unit which was in fact
identical to kelvin. While this gave the correct results for
temperature differences, it did not correctly work for absolute
temperatures. To avoid confusion and possible misinterpretation,
the celsius unit has therefore been removed.






Constants

The brian2.units.constants package provides a range of physical constants that
can be useful for detailed biological models. Brian provides the following
constants:









	Constant
	Symbol(s)
	Brian name
	Value




	Avogadro constant
	\(N_A, L\)
	avogadro_constant
	\(6.022140857\times 10^{23}\,\mathrm{mol}^{-1}\)


	Boltzmann constant
	\(k\)
	boltzmann_constant
	\(1.38064852\times 10^{-23}\,\mathrm{J}\,\mathrm{K}^{-1}\)


	Electric constant
	\(\epsilon_0\)
	electric_constant
	\(8.854187817\times 10^{-12}\,\mathrm{F}\,\mathrm{m}^{-1}\)


	Electron mass
	\(m_e\)
	electron_mass
	\(9.10938356\times 10^{-31}\,\mathrm{kg}\)


	Elementary charge
	\(e\)
	elementary_charge
	\(1.6021766208\times 10^{-19}\,\mathrm{C}\)


	Faraday constant
	\(F\)
	faraday_constant
	\(96485.33289\,\mathrm{C}\,\mathrm{mol}^{-1}\)


	Gas constant
	\(R\)
	gas_constant
	\(8.3144598\,\mathrm{J}\,\mathrm{mol}^{-1}\,\mathrm{K}^{-1}\)


	Magnetic constant
	\(\mu_0\)
	magnetic_constant
	\(12.566370614\times 10^{-7}\,\mathrm{N}\,\mathrm{A}^{-2}\)


	Molar mass constant
	\(M_u\)
	molar_mass_constant
	\(1\times 10^{-3}\,\mathrm{kg}\,\mathrm{mol}^{-1}\)


	0°C
	 
	zero_celsius
	\(273.15\,\mathrm{K}\)





Note that these constants are not imported by default, you will have to
explicitly import them from brian2.units.constants. During the import, you
can also give them shorter names using Python’s from ... import ... as ...
syntax. For example, to calculate the \(\frac{RT}{F}\) factor that appears
in the Goldman–Hodgkin–Katz voltage equation [https://en.wikipedia.org/wiki/Goldman_equation]
you can use:

from brian2 import *
from brian2.units.constants import zero_celsius, gas_constant as R, faraday_constant as F

celsius_temp = 27
T = celsius_temp*kelvin + zero_celsius
factor = R*T/F






The following topics are not essential for beginners.












Importing units

Brian generates standard names for units, combining the unit name (e.g.
“siemens”) with a prefixes (e.g. “m”), and also generates squared and cubed
versions by appending a number. For example, the units “msiemens”, “siemens2”,
“usiemens3” are all predefined. You can import these units from the package
brian2.units.allunits – accordingly, an
from brian2.units.allunits import * will result in everything from
Ylumen3 (cubed yotta lumen) to ymol (yocto mole) being imported.

A better choice is normally to do from brian2.units import * or import
everything from brian2 import * which only imports the units mentioned in
the introductory paragraph (base units, derived units, and some standard
abbreviations).




In-place operations on quantities

In-place operations on quantity arrays change the underlying array, in the
same way as for standard numpy arrays. This means, that any other variables
referencing the same object will be affected as well:

>>> q = [1, 2] * mV
>>> r = q
>>> q += 1*mV
>>> q
array([ 2.,  3.]) * mvolt
>>> r
array([ 2.,  3.]) * mvolt





In contrast, scalar quantities will never change the underlying value but
instead return a new value (in the same way as standard Python scalars):

>>> x = 1*mV
>>> y = x
>>> x *= 2
>>> x
2. * mvolt
>>> y
1. * mvolt











          

      

      

    

  

    
      
          
            
  
Models and neuron groups


For Brian 1 users

See the document Neural models (Brian 1 –> 2 conversion) for details how
to convert Brian 1 code.
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Model equations

The core of every simulation is a NeuronGroup, a group of neurons that share
the same equations defining their properties. The minimum NeuronGroup
specification contains the number of neurons and the model description in the
form of equations:

G = NeuronGroup(10, 'dv/dt = -v/(10*ms) : volt')





This defines a group of 10 leaky integrators. The model description can be
directly given as a (possibly multi-line) string as above, or as an
Equations object. For more details on the form of equations, see
Equations. Note that model descriptions can make reference to physical
units, but also to scalar variables declared outside of the model description
itself:

tau = 10*ms
G = NeuronGroup(10, 'dv/dt = -v/tau : volt')





If a variable should be taken as a parameter of the neurons, i.e. if it
should be possible to vary its value across neurons, it has to be declared
as part of the model description:

G = NeuronGroup(10, '''dv/dt = -v/tau : volt
                       tau : second''')





To make complex model descriptions more readable, named subexpressions can
be used:

G = NeuronGroup(10, '''dv/dt = I_leak / Cm : volt
                       I_leak = g_L*(E_L - v) : amp''')








Noise

In addition to ordinary differential equations, Brian allows you to
introduce random noise by specifying a
stochastic differential equation [https://en.wikipedia.org/wiki/Stochastic_differential_equation].
Brian uses the physicists’ notation used in the
Langevin equation [https://en.wikipedia.org/wiki/Langevin_equation],
representing the “noise” as a term \(\xi(t)\), rather than the
mathematicians’ stochastic differential \(\mathrm{d}W_t\). The
following is an example of the
Ornstein-Uhlenbeck process [http://www.scholarpedia.org/article/Stochastic_dynamical_systems#Ornstein-Uhlenbeck_process]
that is often used to model a leaky integrate-and-fire neuron with
a stochastic current:

G = NeuronGroup(10, 'dv/dt = -v/tau + sigma*xi*tau**-0.5 : volt')





You can start by thinking of xi as just a Gaussian random variable
with mean 0 and standard deviation 1. However, it scales in an
unusual way with time and this gives it units of 1/sqrt(second).
You don’t necessarily need to understand why this is, but it is
possible to get a reasonably simple intuition for it by thinking
about numerical integration: see below.




Threshold and reset

To emit spikes, neurons need a threshold. Threshold and reset are given
as strings in the NeuronGroup constructor:

tau = 10*ms
G = NeuronGroup(10, 'dv/dt = -v/tau : volt', threshold='v > -50*mV',
                reset='v = -70*mV')





Whenever the threshold condition is fulfilled, the reset statements will be
executed. Again, both threshold and reset can refer to physical units,
external variables and parameters, in the same way as model descriptions:

v_r = -70*mV  # reset potential
G = NeuronGroup(10, '''dv/dt = -v/tau : volt
                       v_th : volt  # neuron-specific threshold''',
                threshold='v > v_th', reset='v = v_r')





You can also create non-spike events. See Custom events
for more details.




Refractoriness

To make a neuron non-excitable for a certain time period after a spike, the
refractory keyword can be used:

G = NeuronGroup(10, 'dv/dt = -v/tau : volt', threshold='v > -50*mV',
                reset='v = -70*mV', refractory=5*ms)





This will not allow any threshold crossing for a neuron for 5ms after a spike.
The refractory keyword allows for more flexible refractoriness specifications,
see Refractoriness for details.




State variables

Differential equations and parameters in model descriptions are stored as
state variables of the NeuronGroup. They can be accessed and set as an
attribute of the group. To get the values without physical units (e.g. for
analysing data with external tools), use an underscore after the name:

>>> G = NeuronGroup(10, '''dv/dt = -v/tau : volt
...                        tau : second''')
>>> G.v = -70*mV
>>> G.v
<neurongroup.v: array([-70., -70., -70., -70., -70., -70., -70., -70., -70., -70.]) * mvolt>
>>> G.v_  # values without units
<neurongroup.v_: array([-0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07])>





The value of state variables can also be set using string expressions that can
refer to units and external variables, other state variables, mathematical
functions, and a special variable i, the index of the neuron:

>>> G.tau = '5*ms + (1.0*i/N)*5*ms'
>>> G.tau
<neurongroup.tau: array([ 5. ,  5.5,  6. ,  6.5,  7. ,  7.5,  8. ,  8.5,  9. ,  9.5]) * msecond>





You can also set the value only if a condition holds, for example:

>>> G.v['tau>7.25*ms'] = -60*mV
>>> G.v
<neurongroup.v: array([-70., -70., -70., -70., -70., -60., -60., -60., -60., -60.]) * mvolt>








Subgroups

It is often useful to refer to a subset of neurons, this can be achieved using
Python’s slicing syntax:

G = NeuronGroup(10, '''dv/dt = -v/tau : volt
                       tau : second''',
                threshold='v > -50*mV',
                reset='v = -70*mV')
# Create subgroups
G1 = G[:5]
G2 = G[5:]

# This will set the values in the main group, subgroups are just "views"
G1.tau = 10*ms
G2.tau = 20*ms





Here G1 refers to the first 5 neurons in G, and G2 to the second 5
neurons. In general G[i:j] refers to the neurons with indices from i
to j-1, as in general in Python.
Subgroups can be used in most places where regular groups are used, e.g. their
state variables or spiking activity can be recorded using monitors, they can be
connected via Synapses, etc. In such situations, indices (e.g. the indices of
the neurons to record from in a StateMonitor) are relative to the subgroup,
not to the main group


The following topics are not essential for beginners.












Shared variables

Sometimes it can also be useful to introduce shared variables or subexpressions,
i.e. variables that have a common value for all neurons. In contrast to
external variables (such as Cm above), such variables can change during a
run, e.g. by using run_regularly(). This can be
for example used for an external stimulus that changes in the course of a run:

G = NeuronGroup(10, '''shared_input : volt (shared)
                       dv/dt = (-v + shared_input)/tau : volt
                       tau : second''')





Note that there are several restrictions around the use of shared variables:
they cannot be written to in contexts where statements apply only to a subset
of neurons (e.g. reset statements, see below). If a code block mixes statements
writing to shared and vector variables, then the shared statements have to
come first.

By default, subexpressions are re-evaluated whenever they are used, i.e. using
a subexpression is completely equivalent to substituting it. Sometimes it is
useful to instead only evaluate a subexpression once and then use this value
for the rest of the time step. This can be achieved by using the
(constant over dt) flag. This flag is mandatory for subexpressions that
refer to stateful functions like rand() which notably allows them to be
recorded with a StateMonitor – otherwise the monitor would record a different
instance of the random number than the one that was used in the equations.

For shared variables, setting by string expressions can only refer to shared values:

>>> G.shared_input = '(4.0/N)*mV'
>>> G.shared_input
<neurongroup.shared_input: 0.4 * mvolt>








Storing state variables

Sometimes it can be convenient to access multiple state variables at once, e.g.
to set initial values from a dictionary of values or to store all the values of
a group on disk. This can be done with the
get_states() and
set_states() methods:

>>> group = NeuronGroup(5, '''dv/dt = -v/tau : 1
...                           tau : second''')
>>> initial_values = {'v': [0, 1, 2, 3, 4],
...                   'tau': [10, 20, 10, 20, 10]*ms}
>>> group.set_states(initial_values)
>>> group.v[:]
array([ 0.,  1.,  2.,  3.,  4.])
>>> group.tau[:]
array([ 10.,  20.,  10.,  20.,  10.]) * msecond
>>> states = group.get_states()
>>> states['v']
array([ 0.,  1.,  2.,  3.,  4.])





The data (without physical units) can also be exported/imported to/from
Pandas [http://pandas.pydata.org/] data frames (needs an installation of pandas):

>>> df = group.get_states(units=False, format='pandas')
>>> df
   N      dt  i    t   tau    v
0  5  0.0001  0  0.0  0.01  0.0
1  5  0.0001  1  0.0  0.02  1.0
2  5  0.0001  2  0.0  0.01  2.0
3  5  0.0001  3  0.0  0.02  3.0
4  5  0.0001  4  0.0  0.01  4.0
>>> df['tau']
0    0.01
1    0.02
2    0.01
3    0.02
4    0.01
Name: tau, dtype: float64
>>> df['tau'] *= 2
>>> group.set_states(df[['tau']], units=False, format='pandas')
>>> group.tau
<neurongroup.tau: array([ 20.,  40.,  20.,  40.,  20.]) * msecond>








Linked variables

A NeuronGroup can define parameters that are not stored in this group, but are
instead a reference to a state variable in another group. For this, a group
defines a parameter as linked and then uses linked_var() to
specify the linking. This can for example be useful to model shared noise
between cells:

inp = NeuronGroup(1, 'dnoise/dt = -noise/tau + tau**-0.5*xi : 1')

neurons = NeuronGroup(100, '''noise : 1 (linked)
                              dv/dt = (-v + noise_strength*noise)/tau : volt''')
neurons.noise = linked_var(inp, 'noise')





If the two groups have the same size, the linking will be done in a 1-to-1
fashion. If the source group has the size one (as in the above example) or if
the source parameter is a shared variable, then the linking will be done as
1-to-all. In all other cases, you have to specify the indices to use for the
linking explicitly:

# two inputs with different phases
inp = NeuronGroup(2, '''phase : 1
                        dx/dt = 1*mV/ms*sin(2*pi*100*Hz*t-phase) : volt''')
inp.phase = [0, pi/2]

neurons = NeuronGroup(100, '''inp : volt (linked)
                              dv/dt = (-v + inp) / tau : volt''')
# Half of the cells get the first input, other half gets the second
neurons.inp = linked_var(inp, 'x', index=repeat([0, 1], 50))








Time scaling of noise

Suppose we just
had the differential equation

\(dx/dt=\xi\)

To solve this
numerically, we could compute

\(x(t+\mathrm{d}t)=x(t)+\xi_1\)

where \(\xi_1\) is a normally distributed random number
with mean 0 and standard deviation 1.
However, what happens if we change the time step? Suppose we used
a value of \(\mathrm{d}t/2\) instead of \(\mathrm{d}t\).
Now, we compute

\(x(t+\mathrm{d}t)=x(t+\mathrm{d}t/2)+\xi_1=x(t)+\xi_2+\xi_1\)

The mean value of \(x(t+\mathrm{d}t)\) is 0 in both cases,
but the standard deviations are different. The first method
\(x(t+\mathrm{d}t)=x(t)+\xi_1\) gives \(x(t+\mathrm{d}t)\)
a standard deviation of 1, whereas the second method
\(x(t+\mathrm{d}t)=x(t+\mathrm{d}/2)+\xi_1=x(t)+\xi_2+\xi_1\)
gives \(x(t)\) a variance of 1+1=2 and therefore a
standard deviation of \(\sqrt{2}\).

In order to solve this
problem, we use the rule
\(x(t+\mathrm{d}t)=x(t)+\sqrt{\mathrm{d}t}\xi_1\), which makes
the mean and standard deviation of the value at time \(t\)
independent of \(\mathrm{d}t\).
For this to make sense dimensionally, \(\xi\) must have
units of 1/sqrt(second).

For further details, refer to a textbook on stochastic
differential equations.







          

      

      

    

  

    
      
          
            
  
Numerical integration

By default, Brian
chooses an integration method automatically, trying to solve the equations
exactly first (for linear equations) and then resorting to numerical algorithms.
It will also take care of integrating stochastic differential equations
appropriately.

Note that in some cases, the automatic choice of integration method will not be
appropriate, because of a choice of parameters that couldn’t be determined in
advance. In this case, typically you will get nan (not a number) values in the
results, or large oscillations. In this case, Brian will generate a warning to
let you know, but will not raise an error.


Method choice

You will get an INFO message telling you which integration method Brian decided to use,
together with information about how much time it took to apply the integration method
to your equations. If other methods have been tried but were not applicable, you will
also see the time it took to try out those other methods. In some cases, checking
other methods (in particular the 'linear' method which attempts to solve the
equations analytically) can take a considerable amount of time – to avoid wasting
this time, you can always chose the integration method manually (see below). You
can also suppress the message by raising the log level or by explicitly suppressing
'method_choice' log messages – for details, see Logging.

If you prefer to chose an integration algorithm yourself, you can do so using
the method keyword for NeuronGroup, Synapses, or SpatialNeuron.
The complete list of available methods is the following:


	'linear': exact integration for linear equations

	'independent': exact integration for a system of independent equations,
where all the equations can be analytically solved independently

	'exponential_euler': exponential Euler integration for conditionally
linear equations

	'euler': forward Euler integration (for additive stochastic
differential equations using the Euler-Maruyama method)

	'rk2': second order Runge-Kutta method (midpoint method)

	'rk4': classical Runge-Kutta method (RK4)

	'heun': stochastic Heun method for solving Stratonovich stochastic
differential equations with non-diagonal multiplicative noise.

	'milstein': derivative-free Milstein method for solving stochastic
differential equations with diagonal multiplicative noise




The following topics are not essential for beginners.












Technical notes

Each class defines its own list of algorithms it tries to
apply, NeuronGroup and Synapses will use the first suitable method out of
the methods 'linear', 'euler' and 'heun' while SpatialNeuron
objects will use 'linear', 'exponential_euler', 'rk2' or 'heun'.

You can also define your own numerical integrators, see
State update for details.







          

      

      

    

  

    
      
          
            
  
Equations
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Equation strings

Equations are used both in NeuronGroup and Synapses to:


	define state variables

	define continuous-updates on these variables, through differential equations



Equations are defined by multiline strings.

An Equation is a set of single lines in a string:



	dx/dt = f : unit (differential equation)

	x = f : unit (subexpression)

	x : unit (parameter)






Each equation may be spread out over multiple lines to improve formatting.
Comments using # may also be included. Subunits are not allowed, i.e., one must write volt, not mV. This is
to make it clear that the values are internally always saved in the basic units, so no confusion can arise when getting
the values out of a NeuronGroup and discarding the units. Compound units are of course allowed as well (e.g. farad/meter**2).
There are also three special “units” that can be used: 1 denotes a dimensionless floating point variable,
boolean and integer denote dimensionless variables of the respective kind.


Note

For molar concentration, the base unit that has to be used in the equations is mmolar (or mM), not
molar. This is because 1 molar is 10³ mol/m³ in SI units (i.e., it has a “scale” of 10³), whereas
1 millimolar corresponds to 1 mol/m³.



Some special variables are defined: t, dt (time) and xi (white noise).
Variable names starting with an underscore and a couple of other names that have special meanings under certain
circumstances (e.g. names ending in _pre or _post) are forbidden.

For stochastic equations with several xi values it is necessary to make clear whether they correspond to the same
or different noise instantiations. To make this distinction, an arbitrary suffix can be used, e.g. using xi_1 several times
refers to the same variable, xi_2 (or xi_inh, xi_alpha, etc.) refers to another. An error will be raised if
you use more than one plain xi. Note that noise is always independent across neurons, you can only work around this
restriction by defining your noise variable as a shared parameter and update it using a user-defined function (e.g. with run_regularly),
or create a group that models the noise and link to its variable (see Linked variables).




External variables and functions

Equations defining neuronal or synaptic equations can contain references to
external parameters or functions. These references are looked up at the time
that the simulation is run. If you don’t specify where to look them up, it
will look in the Python local/global namespace (i.e. the block of code where
you call run()). If you want to override this, you can specify an explicit
“namespace”. This is a Python dictionary with keys being variable names as
they appear in the equations, and values being the desired value of that
variable. This namespace can be specified either in the creation of the group
or when you can the run() function using the namespace keyword argument.

The following three examples show the different ways of providing external
variable values, all having the same effect in this case:

# Explicit argument to the NeuronGroup
G = NeuronGroup(1, 'dv/dt = -v / tau : 1', namespace={'tau': 10*ms})
net = Network(G)
net.run(10*ms)

# Explicit argument to the run function
G = NeuronGroup(1, 'dv/dt = -v / tau : 1')
net = Network(G)
net.run(10*ms, namespace={'tau': 10*ms})

# Implicit namespace from the context
G = NeuronGroup(1, 'dv/dt = -v / tau : 1')
net = Network(G)
tau = 10*ms
net.run(10*ms)





See Namespaces for more details.


The following topics are not essential for beginners.












Flags

A flag is a keyword in parentheses at the end of the line, which
qualifies the equations. There are several keywords:


	event-driven

	this is only used in Synapses, and means that the differential equation should be updated
only at the times of events. This implies that the equation is taken out of the continuous
state update, and instead a event-based state update statement is generated and inserted into
event codes (pre and post).
This can only qualify differential equations of synapses. Currently, only one-dimensional
linear equations can be handled (see below).

	unless refractory

	this means the variable is not updated during the refractory period.
This can only qualify differential equations of neuron groups.

	constant

	this means the parameter will not be changed during a run. This allows
optimizations in state updaters. This can only qualify parameters.

	constant over dt

	this means that the subexpression will be only evaluated once at the beginning
of the time step. This can be useful to e.g. approximate a non-linear term as
constant over a time step in order to use the linear numerical integration
algorithm. It is also mandatory for subexpressions that refer to stateful
functions like rand() to make sure that they are only evaluated once
(otherwise e.g. recording the value with a StateMonitor would re-evaluate it
and therefore not record the same values that are used in other places). This
can only qualify subexpressions.

	shared

	this means that a parameter or subexpression is not neuron-/synapse-specific
but rather a single value for the whole NeuronGroup or Synapses. A shared
subexpression can only refer to other shared variables.

	linked

	this means that a parameter refers to a parameter in another NeuronGroup.
See Linked variables for more details.



Multiple flags may be specified as follows:

dx/dt = f : unit (flag1,flag2)








List of special symbols

The following lists all of the special symbols that Brian uses in
equations and code blocks, and their meanings.


	dt

	Time step width

	i

	Index of a neuron (NeuronGroup) or the pre-synaptic neuron
of a synapse (Synapses)

	j

	Index of a post-synaptic neuron of a synapse

	lastspike

	Last time that the neuron spiked (for refractoriness)

	lastupdate

	Time of the last update of synaptic variables in event-driven
equations.

	N

	Number of neurons (NeuronGroup) or synapses (Synapses). Use
N_pre or N_post for the number of presynaptic or
postsynaptic neurons in the context of Synapses.

	not_refractory

	Boolean variable that is normally true, and false if the neuron
is currently in a refractory state

	t

	Current time

	xi, xi_*

	Stochastic differential in equations






Event-driven equations

Equations defined as event-driven are completely ignored in the state update.
They are only defined as variables that can be externally accessed.
There are additional constraints:


	An event-driven variable cannot be used by any other equation that is not
also event-driven.

	An event-driven equation cannot depend on a differential equation that is not
event-driven (directly, or indirectly through subexpressions). It can depend
on a constant parameter.



Currently, automatic event-driven updates are only possible for one-dimensional
linear equations, but this may be extended in the future.




Equation objects

The model definitions for NeuronGroup and Synapses can be simple strings or
Equations objects. Such objects can be combined using the add operator:

eqs = Equations('dx/dt = (y-x)/tau : volt')
eqs += Equations('dy/dt = -y/tau: volt')





Equations allow for the specification of values in the strings, but does this by simple
string replacement, e.g. you can do:

eqs = Equations('dx/dt = x/tau : volt', tau=10*ms)





but this is exactly equivalent to:

eqs = Equations('dx/dt = x/(10*ms) : volt')





The Equations object does some basic syntax checking and will raise an error if two equations defining
the same variable are combined. It does not however do unit checking, checking for unknown identifiers or
incorrect flags – all this will be done during the instantiation of a NeuronGroup or Synapses object.




Examples of Equation objects

Concatenating equations

>>> membrane_eqs = Equations('dv/dt = -(v + I)/ tau : volt')
>>> eqs1 = membrane_eqs + Equations('''I = sin(2*pi*freq*t) : volt
...                                    freq : Hz''')
>>> eqs2 = membrane_eqs + Equations('''I : volt''')
>>> print(eqs1)
I = sin(2*pi*freq*t)  : V
dv/dt = -(v + I)/ tau  : V
freq : Hz
>>> print(eqs2)
dv/dt = -(v + I)/ tau  : V
I : V





Substituting variable names

>>> general_equation = 'dg/dt = -g / tau : siemens'
>>> eqs_exc = Equations(general_equation, g='g_e', tau='tau_e')
>>> eqs_inh = Equations(general_equation, g='g_i', tau='tau_i')
>>> print(eqs_exc)
dg_e/dt = -g_e / tau_e  : S
>>> print(eqs_inh)
dg_i/dt = -g_i / tau_i  : S





Inserting values

>>> eqs = Equations('dv/dt = mu/tau + sigma/tau**.5*xi : volt',
...                  mu=-65*mV, sigma=3*mV, tau=10*ms)
>>> print(eqs)
dv/dt = (-65. * mvolt)/(10. * msecond) + (3. * mvolt)/(10. * msecond)**.5*xi  : V











          

      

      

    

  

    
      
          
            
  
Refractoriness



	Defining the refractory period

	Defining model behaviour during refractoriness

	Arbitrary refractoriness





Brian allows you to model the absolute refractory period of a neuron in a flexible
way. The definition of refractoriness consists of two components: the amount of time
after a spike that a neuron is considered to be refractory, and what changes in the
neuron during the refractoriness.


Defining the refractory period

The refractory period is specified by the refractory keyword in the
NeuronGroup initializer. In the simplest case, this is simply a fixed time,
valid for all neurons:

G = NeuronGroup(N, model='...', threshold='...', reset='...',
                refractory=2*ms)





Alternatively, it can be a string expression that evaluates to a time. This
expression will be evaluated after every spike and allows for a changing
refractory period. For example, the following will set the refractory period
to a random duration between 1ms and 3ms after every spike:

G = NeuronGroup(N, model='...', threshold='...', reset='...',
                refractory='(1 + 2*rand())*ms')





In general, modelling a refractory period that varies across neurons involves
declaring a state variable that stores the refractory period per neuron as a
model parameter. The refractory expression can then refer to this parameter:

G = NeuronGroup(N, model='''...
                            refractory : second''', threshold='...',
                reset='...', refractory='refractory')
# Set the refractory period for each cell
G.refractory = ...





This state variable can also be a dynamic variable itself. For example, it can
serve as an adaptation mechanism by increasing it after every spike and letting
it relax back to a steady-state value between spikes:

refractory_0 = 2*ms
tau_refractory = 50*ms
G = NeuronGroup(N, model='''...
                            drefractory/dt = (refractory_0 - refractory) / tau_refractory : second''',
                threshold='...', refractory='refractory',
                reset='''...
                         refractory += 1*ms''')
G.refractory = refractory_0





In some cases, the condition for leaving the refractory period is not easily
expressed as a certain time span. For example, in a Hodgkin-Huxley type model the
threshold is only used for counting spikes and the refractoriness is used to
prevent to count multiple spikes for a single threshold crossing (the threshold
condition would evaluate to True for several time points). When a neuron
should leave the refractory period is not easily expressed as a time span but
more naturally as a condition that the neuron should remain refractory for as
long as it stays above the threshold. This can be achieved by using a string
expression for the refractory keyword that evaluates to a boolean condition:

G = NeuronGroup(N, model='...', threshold='v > -20*mV',
                refractory='v >= -20*mV')





The refractory keyword should be read as “stay refractory as long as the
condition remains true”. In fact, specifying a time span for the refractoriness
will be automatically transformed into a logical expression using the current
time t and the time of the last spike lastspike. Specifying
refractory=2*ms is equivalent to specifying
refractory='(t - lastspike) <= 2*ms'.




Defining model behaviour during refractoriness

The refractoriness definition as described above only has a single
effect by itself: threshold crossings during the refractory period are ignored.
In the following model, the variable v continues to update during the
refractory period but it does not elicit a spike if it crosses the threshold:

G = NeuronGroup(N, 'dv/dt = -v / tau : 1',
                threshold='v > 1', reset='v=0',
                refractory=2*ms)





There is also a second implementation of refractoriness that is
supported by Brian, one or several state variables can be clamped during the
refractory period. To model this kind of behaviour, variables that should
stop being updated during refractoriness can be marked with the
(unless refractory) flag:

G = NeuronGroup(N, '''dv/dt = -(v + w)/ tau_v : 1 (unless refractory)
                      dw/dt = -w / tau_w : 1''',
                threshold='v > 1', reset='v=0; w+=0.1', refractory=2*ms)





In the above model, the v variable is clamped at 0 for 2ms after a spike but
the adaptation variable w continues to update during this time. In
addition, a variable of a neuron that is in its refractory period is
read-only: incoming synapses or other code will have no effect on the
value of v until it leaves its refractory period.


The following topics are not essential for beginners.












Arbitrary refractoriness

In fact, arbitrary behaviours can be defined using Brian’s refractoriness
mechanism.

Internally, a NeuronGroup with refractoriness has a boolean variable
not_refractory added to the equations, and this is used to implement
the refractoriness behaviour. Specifically, the threshold condition
is replaced by threshold and not_refractory and differential equations
that are marked as (unless refractory) are multiplied by
int(not_refractory) (so that they have the value 0 when the neuron is
refractory).

This not_refractory variable is also available to the user
to define more sophisticated refractoriness behaviour.
For example, the following code updates the
w variable with a different time constant during refractoriness:

G = NeuronGroup(N, '''dv/dt = -(v + w)/ tau_v : 1 (unless refractory)
                      dw/dt = (-w / tau_active)*int(not_refractory) + (-w / tau_ref)*(1 - int(not_refractory)) : 1''',
                threshold='v > 1', reset='v=0; w+=0.1', refractory=2*ms)











          

      

      

    

  

    
      
          
            
  
Synapses


For Brian 1 users

Synapses is now the only class for defining synaptic interactions,
it replaces Connection, STDP, etc. See the document
Synapses (Brian 1 –> 2 conversion) for details how to convert
Brian 1 code.





	Defining synaptic models

	Creating synapses

	Accessing synaptic variables

	Delays

	Monitoring synaptic variables

	Creating synapses with the generator syntax

	Summed variables

	Creating multi-synapses

	Multiple pathways

	Numerical integration

	Technical notes






Defining synaptic models

The most simple synapse (adding a fixed amount to the target membrane potential
on every spike) is described as follows:

w = 1*mV
S = Synapses(P, Q, on_pre='v += w')





This defines a set of synapses between NeuronGroup P and NeuronGroup Q.
If the target group is not specified, it is identical to the source group by default.
The on_pre keyword defines what happens when a presynaptic spike arrives at
a synapse. In this case, the constant w is added to variable v.
Because v is not defined as a synaptic variable, it is assumed by default
that it is a postsynaptic variable, defined in the target NeuronGroup Q.
Note that this does not does create synapses (see Creating Synapses), only the
synaptic models.

To define more complex models, models can be described as string equations,
similar to the models specified in NeuronGroup:

S = Synapses(P, Q, model='w : volt', on_pre='v += w')





The above specifies a parameter w, i.e. a synapse-specific weight.

Synapses can also specify code that should be executed whenever a postsynaptic
spike occurs (keyword on_post) and a fixed (pre-synaptic) delay for all
synapses (keyword delay).

When specifying equations or code for Synapses, there is a possible
ambiguity about what a variable name refers to. For example, if both
the Synapses object and the target NeuronGroup have a variable
w, what would the code w += 1 do? The answer is that it will
modify the synapse’s variable w. In general, it will
first check if there is a synaptic variable of that name, then a
variable of the post-synaptic neurons, and otherwise it will look
for an external constant. To explicitly specify that a variable
should be from a pre- or post-synaptic neuron, append the suffix
_pre or _post, so in the situation above w_post += 1
would increase the post-synaptic neuron’s copy of w by 1,
not the synapse’s variable w.


Model syntax

The model follows exactly the same syntax as for NeuronGroup. There can be parameters
(e.g. synaptic variable w above), but there can also be named
subexpressions and differential equations, describing the dynamics of synaptic
variables. In all cases, synaptic variables are created, one value per synapse.




Event-driven updates

By default, differential equations are integrated in a clock-driven fashion, as for a
NeuronGroup. This is potentially very time consuming, because all synapses are updated at every
timestep and Brian will therefore emit a warning. If you are sure about integrating the equations at
every timestep (e.g. because you want to record the values continuously), then you should specify
the flag (clock-driven). To ask Brian 2 to simulate differential equations in an event-driven fashion
use the flag (event-driven). A typical example is pre- and postsynaptic traces in STDP:

model='''w:1
         dApre/dt=-Apre/taupre : 1 (event-driven)
         dApost/dt=-Apost/taupost : 1 (event-driven)'''





Here, Brian updates the value of Apre for a given synapse only when this synapse receives a spike,
whether it is presynaptic or postsynaptic. More precisely, the variables are updated every time either
the on_pre or on_post code is called for the synapse, so that the values are always up to date when
these codes are executed.

Automatic event-driven updates are only possible for a subset of equations, in particular for
one-dimensional linear equations. These equations must also be independent of the other ones,
that is, a differential equation that is not event-driven cannot
depend on an event-driven equation (since the values are not continuously updated).
In other cases, the user can write event-driven code explicitly in the update codes (see below).




Pre and post codes

The on_pre code is executed at each synapse receiving a presynaptic spike. For example:

on_pre='v+=w'





adds the value of synaptic variable w to postsynaptic variable v.
Any sort of code can be executed. For example, the following code defines
stochastic synapses, with a synaptic weight w and transmission probability p:

S=Synapses(input,neurons,model="""w : 1
                              p : 1""",
                         on_pre="v+=w*(rand()<p)")





The code means that w is added to v with probability p.
The code may also include multiple lines.

Similarly, the on_post code is executed at each synapse where the postsynaptic neuron
has fired a spike.






Creating synapses

Creating a Synapses instance does not create synapses, it only specifies their dynamics.
The following command creates a synapse between neuron 5 in the source group and
neuron 10 in the target group:

S.connect(i=5, j=10)





Multiple synaptic connections can be created in a single statement:

S.connect()
S.connect(i=[1, 2], j=[3, 4])
S.connect(i=numpy.arange(10), j=1)





The first statement connects all neuron pairs.
The second statement creates synapses between neurons 1 and 3, and between neurons 2 and 4.
The third statement creates synapses between the first ten neurons in the source group and neuron 1
in the target group.


Conditional

One can also create synapses by giving (as a string) the condition for a pair
of neurons i and j to be connected by a synapse, e.g. you could
connect neurons that are not very far apart with:

S.connect(condition='abs(i-j)<=5')





The string expressions can also refer to pre- or postsynaptic variables. This
can be useful for example for spatial connectivity: assuming that the pre- and
postsynaptic groups have parameters x and y, storing their location, the
following statement connects all cells in a 250 um radius:

S.connect(condition='sqrt((x_pre-x_post)**2 + (y_pre-y_post)**2) < 250*umeter')








Probabilistic

Synapse creation can also be probabilistic by providing a p argument,
providing the connection probability for each pair of synapses:

S.connect(p=0.1)





This connects all neuron pairs with a probability of 10%. Probabilities can
also be given as expressions, for example to implement a connection probability
that depends on distance:

S.connect(condition='i != j',
          p='p_max*exp(-(x_pre-x_post)**2+(y_pre-y_post)**2) / (2*(125*umeter)**2)')





If this statement is applied to a Synapses object that connects a group to
itself, it prevents self-connections (i != j) and connects cells with a
probability that is modulated according to a 2-dimensional Gaussian of the
distance between the cells.




One-to-one

You can specify a mapping from i to any function f(i), e.g. the
simplest way to give a 1-to-1 connection would be:

S.connect(j='i')










Accessing synaptic variables

Synaptic variables can be accessed in a similar way as NeuronGroup variables. They can be indexed
with two indexes, corresponding to the indexes of pre and postsynaptic neurons, or with string expressions (referring
to i and j as the pre-/post-synaptic indices, or to other state variables of the synapse or the connected neurons).
Note that setting a synaptic variable always refers to the synapses that currently exist, i.e. you have to set them
after the relevant Synapses.connect() call.

Here are a few examples:

S.w[2, 5] = 1*nS
S.w[1, :] = 2*nS
S.w = 1*nS # all synapses assigned
S.w[2, 3] = (1*nS, 2*nS)
S.w[group1, group2] = "(1+cos(i-j))*2*nS"
S.w[:, :] = 'rand()*nS'
S.w['abs(x_pre-x_post) < 250*umetre'] = 1*nS





Note that it is also possible to index synaptic variables with a single index
(integer, slice, or array), but in this case synaptic indices have to be
provided.




Delays

There is a special synaptic variable that is automatically created: delay. It is the propagation delay
from the presynaptic neuron to the synapse, i.e., the presynaptic delay. This
is just a convenience syntax for accessing the delay stored in the presynaptic
pathway: pre.delay. When there is a  postsynaptic code (keyword post),
the delay of the postsynaptic pathway can be accessed as post.delay.

The delay variable(s) can be set and accessed in the same way as other synaptic
variables. The same semantics as for other synaptic variables apply, which means
in particular that the delay is only set for the synapses that have been already
created with Synapses.connect(). If you want to set a global delay for all
synapses of a Synapses object, you can directly specify that delay as part
of the Synapses initializer:

synapses = Synapses(sources, targets, '...', on_pre='...', delay=1*ms)





When you use this syntax, you can still change the delay afterwards by setting
synapses.delay, but you can only set it to another scalar value. If you need
different delays across synapses, do not use this syntax but instead set the
delay variable as any other synaptic variable (see above).




Monitoring synaptic variables

A StateMonitor object can be used to monitor synaptic variables. For example, the following statement
creates a monitor for variable w for the synapses 0 and 1:

M = StateMonitor(S, 'w', record=[0,1])





Note that these are synapse indices, not neuron indices. More convenient is
to directly index the Synapses object, Brian will automatically calculate the
indices for you in this case:

M = StateMonitor(S, 'w', record=S[0, :])  # all synapses originating from neuron 0
M = StateMonitor(S, 'w', record=S['i!=j'])  # all synapses excluding autapses
M = StateMonitor(S, 'w', record=S['w>0'])  # all synapses with non-zero weights (at this time)





You can also record a synaptic variable for all synapses by passing record=True.

The recorded traces can then be accessed in the usual way, again with the
possibility to index the Synapses object:

plot(M.t / ms, M[S[0]].w / nS)  # first synapse
plot(M.t / ms, M[S[0, :]].w / nS)  # all synapses originating from neuron 0
plot(M.t / ms, M[S['w>0*nS']].w / nS)  # all synapses with non-zero weights (at this time)





Note (for users of Brian’s advanced standalone mode only):
the use of the Synapses object for indexing and record=True only
work in the default runtime modes. In standalone mode (see Standalone code generation),
the synapses have not yet been created at this point, so Brian cannot calculate
the indices.


The following topics are not essential for beginners.












Creating synapses with the generator syntax

The most general way of specifying a connection is using the
generator syntax, e.g. to connect neuron i to all neurons j with
0<=j<=i:

S.connect(j='k for k in range(0, i+1)')





There are several parts to this syntax. The general form is:

j='EXPR for VAR in RANGE if COND'





Here EXPR can be any integer-valued expression. VAR is the name
of the iteration variable (any name you like can be specified
here). The if COND part is optional and lets you give an
additional condition that has to be true for the synapse to be
created. Finally, RANGE can be either:


	a Python range, e.g. range(N) is the integers from
0 to N-1, range(A, B) is the integers from A to B-1,
range(low, high, step) is the integers from low to
high-1 with steps of size step, or

	it can be a random sample sample(N, p=0.1) gives a
random sample of integers from 0 to N-1 with 10% probability
of each integer appearing in the sample. This can have extra
arguments like range, e.g. sample(low, high, step, p=0.1)
will give each integer in range(low, high, step) with
probability 10%.



If you try to create an invalid synapse (i.e. connecting
neurons that are outside the correct range) then you will get
an error, e.g. you might like to try to do this to connect
each neuron to its neighbours:

S.connect(j='i+(-1)**k for k in range(2)')





However this won’t work at for i=0 it gives j=-1 which
is invalid. There is an option to just skip any synapses
that are outside the valid range:

S.connect(j='i+(-1)**k for k in range(2)', skip_if_invalid=True)








Summed variables

In many cases, the postsynaptic neuron has a variable that represents a sum of variables over all
its synapses. This is called a “summed variable”. An example is nonlinear synapses (e.g. NMDA):

neurons = NeuronGroup(1, model='''dv/dt=(gtot-v)/(10*ms) : 1
                                  gtot : 1''')
S = Synapses(input, neurons,
             model='''dg/dt=-a*g+b*x*(1-g) : 1
                      gtot_post = g : 1  (summed)
                      dx/dt=-c*x : 1
                      w : 1 # synaptic weight''', on_pre='x+=w')





Here, each synapse has a conductance g with nonlinear dynamics. The neuron’s total conductance
is gtot. The line stating gtot_post = g : 1  (summed) specifies the link
between the two: gtot in the postsynaptic group is the summer over all
variables g of the corresponding synapses. What happens during the
simulation is that at each time step, presynaptic conductances are summed for each neuron and the
result is copied to the variable gtot. Another example is gap junctions:

neurons = NeuronGroup(N, model='''dv/dt=(v0-v+Igap)/tau : 1
                                  Igap : 1''')
S=Synapses(neurons,model='''w:1 # gap junction conductance
                            Igap_post = w*(v_pre-v_post): 1 (summed)''')





Here, Igap is the total gap junction current received by the postsynaptic neuron.

Note that you cannot target the same post-synaptic variable from more than one
Synapses object. To work around this restriction, use multiple post-synaptic
variables that ar then summed up:

neurons = NeuronGroup(1, model='''dv/dt=(gtot-v)/(10*ms) : 1
                                  gtot = gtot1 + gtot2: 1
                                  gtot1 : 1
                                  gtot2 : 1''')
S1 = Synapses(input, neurons,
              model='''dg/dt=-a1*g+b1*x*(1-g) : 1
                       gtot1_post = g : 1  (summed)
                       dx/dt=-c1*x : 1
                       w : 1 # synaptic weight
                    ''', on_pre='x+=w')
S2 = Synapses(input, neurons,
              model='''dg/dt=-a2*g+b2*x*(1-g) : 1
                       gtot2_post = g : 1  (summed)
                       dx/dt=-c2*x : 1
                       w : 1 # synaptic weight
                    ''', on_pre='x+=w')








Creating multi-synapses

It is also possible to create several synapses for a given pair of neurons:

S.connect(i=numpy.arange(10), j=1, n=3)





This is useful for example if one wants to have multiple synapses with different delays. To
distinguish multiple variables connecting the same pair of neurons in synaptic expressions and
statements, you can create a variable storing the synapse index with the multisynaptic_index
keyword:

syn = Synapses(source_group, target_group, model='w : 1', on_pre='v += w',
               multisynaptic_index='synapse_number')
syn.connect(i=numpy.arange(10), j=1, n=3)
syn.delay = '1*ms + synapse_number*2*ms'





This index can then be used to set/get synapse-specific values:

S.delay = '(synapse_number + 1)*ms)'  # Set delays between 1 and 10ms
S.w['synapse_number<5'] = 0.5
S.w['synapse_number>=5'] = 1





It also enables three-dimensional indexing, the following statement has the same effect as the last one above:

S.w[:, :, 5:] = 1








Multiple pathways

It is possible to have multiple pathways with different update codes from the same presynaptic neuron group.
This may be interesting in cases when different operations must be applied at different times for the same
presynaptic spike. To do this, specify a dictionary of pathway names and codes:

on_pre={'pre_transmission': 'ge+=w',
        'pre_plasticity': '''w=clip(w+Apost,0,inf)
                             Apre+=dApre'''}





This creates two pathways with the given names (in fact, specifying on_pre=code
is just a shorter syntax for on_pre={'pre': code}) through which the delay
variables can be accessed.
The following statement, for example, sets the delay of the synapse between the first neurons
of the source and target groups in the pre_plasticity pathway:

S.pre_plasticity.delay[0,0] = 3*ms





As mentioned above, pre pathways are generally executed before post
pathways. The order of execution of several pre (or post) pathways is
however arbitrary, and simply based on the alphabetical ordering of their names
(i.e. pre_plasticity will be executed before pre_transmission). To
explicitly specify the order, set the order attribute of the pathway, e.g.:

S.pre_transmission.order = -2





will make sure that the pre_transmission code is executed before the
pre_plasticity code in each time step.




Numerical integration


Differential equation flags

For the integration of differential equations, one can use the same keywords as
for NeuronGroup.


Note

Declaring a subexpression as (constant over dt) means that it will
be evaluated each timestep for all synapses, potentially a very costly
operation.






Explicit event-driven updates

As mentioned above, it is possible to write event-driven update code for the synaptic variables.
For this, two special variables are provided: t is the current time when the code is executed,
and lastupdate is the last time when the synapse was updated (either through on_pre or on_post
code). An example is short-term plasticity (in fact this could be done automatically with the use
of the (event-driven) keyword mentioned above):

S=Synapses(input,neuron,
           model='''x : 1
                    u : 1
                    w : 1''',
           on_pre='''u=U+(u-U)*exp(-(t-lastupdate)/tauf)
                  x=1+(x-1)*exp(-(t-lastupdate)/taud)
                  i+=w*u*x
                  x*=(1-u)
                  u+=U*(1-u)''')





By default, the pre pathway is executed before the post pathway (both
are executed in the 'synapses' scheduling slot, but the pre pathway has
the order attribute -1, wheras the post pathway has order 1. See
Scheduling for more details).






Technical notes


How connection arguments are interpreted

If conditions for connecting neurons are combined with both the n (number of
synapses to create) and the p (probability of a synapse) keywords, they are
interpreted in the following way:



For every pair i, j:


if condition(i, j) is fulfilled:


Evaluate p(i, j)

If uniform random number between 0 and 1 < p(i, j):


Create n(i, j) synapses for (i, j)












With the generator syntax j='EXPR for VAR in RANGE if COND', the interpretation is:



For every i:


for every VAR in RANGE:


j = EXPR

if COND:


Create n(i, j) synapses for (i, j)












Note that the arguments in RANGE can only depend on i and the values of
presynaptic variables. Similarly, the expression for j, EXPR can depend
on i, presynaptic variables, and on the iteration variable VAR. The
condition COND can depend on anything (presynaptic and postsynaptic variables).

With the 1-to-1 mapping syntax j='EXPR' the interpretation is:



For every i:


j = EXPR

Create n(i, j) synapses for (i, j)











Efficiency considerations

If you are connecting a single pair of neurons, the direct form connect(i=5, j=10)
is the most efficient. However, if you are connecting a number of neurons, it
will usually be more efficient to construct an array of i and j values
and have a single connect(i=i, j=j) call.

For large connections, you
should use one of the string based syntaxes where possible as this will
generate compiled low-level code that will be typically much faster than
equivalent Python code.

If you are expecting a majority of pairs of neurons to be connected, then using the
condition-based syntax is optimal, e.g. connect(condition='i!=j'). However,
if relatively few neurons are being connected then the 1-to-1 mapping or generator syntax
will be better. For 1-to-1, connect(j='i') will always be faster than
connect(condition='i==j') because the latter has to evaluate all N**2 pairs
(i, j) and check if the condition is true, whereas the former only has to do O(N)
operations.

One tricky problem is how to efficiently generate connectivity with a probability
p(i, j) that depends on both i and j, since this requires N*N computations
even if the expected number of synapses is proportional to N. Some tricks for getting
around this are shown in Example: efficient_gaussian_connectivity.









          

      

      

    

  

    
      
          
            
  
Input stimuli


For Brian 1 users

See the document Inputs (Brian 1 –> 2 conversion) for details how
to convert Brian 1 code.





	Poisson inputs

	Spike generation

	Explicit equations

	Timed arrays

	Regular operations

	More on Poisson inputs

	Arbitrary Python code (network operations)





There are various ways of providing “external” input to a network.


Poisson inputs

For generating spikes according to a Poisson point process, PoissonGroup can
be used, e.g.:

P = PoissonGroup(100, np.arange(100)*Hz + 10*Hz)
G = NeuronGroup(100, 'dv/dt = -v / (10*ms) : 1')
S = Synapses(P, G, on_pre='v+=0.1')
S.connect(j='i')





See More on Poisson inputs below for further information.

For simulations where the individually generated spikes are just used as a
source of input to a neuron, the PoissonInput class provides a more efficient
alternative: see Efficient Poisson inputs via PoissonInput below for details.




Spike generation

You can also generate an explicit list of spikes given via arrays using
SpikeGeneratorGroup. This object behaves just like a NeuronGroup in that
you can connect it to other groups via a Synapses object, but you specify
three bits of information: N the number of neurons in the group;
indices an array of the indices of the neurons that will fire; and
times an array of the same length as indices with the times that the
neurons will fire a spike. The indices and times arrays are matching,
so for example indices=[0,2,1] and times=[1*ms,2*ms,3*ms] means that
neuron 0 fires at time 1 ms, neuron 2 fires at 2 ms and neuron 1 fires at 3 ms.
Example use:

indices = array([0, 2, 1])
times = array([1, 2, 3])*ms
G = SpikeGeneratorGroup(3, indices, times)





The spikes that will be generated by SpikeGeneratorGroup can be changed
between runs with the
set_spikes method. This
can be useful if the input to a system should depend on its previous output or
when running multiple trials with different input:

inp = SpikeGeneratorGroup(N, indices, times)
G = NeuronGroup(N, '...')
feedforward = Synapses(inp, G, '...', on_pre='...')
feedforward.connect(j='i')
recurrent = Synapses(G, G, '...', on_pre='...')
recurrent.connect('i!=j')
spike_mon = SpikeMonitor(G)
# ...
run(runtime)
# Replay the previous output of group G as input into the group
inp.set_spikes(spike_mon.i, spike_mon.t + runtime)
run(runtime)








Explicit equations

If the input can be explicitly expressed as a function of time (e.g. a
sinusoidal input current), then its description can be directly included in
the equations of the respective group:

G = NeuronGroup(100, '''dv/dt = (-v + I)/(10*ms) : 1
                        rates : Hz  # each neuron's input has a different rate
                        size : 1  # and a different amplitude
                        I = size*sin(2*pi*rates*t) : 1''')
G.rates = '10*Hz + i*Hz'
G.size = '(100-i)/100. + 0.1'








Timed arrays

If the time dependence of the input cannot be expressed in the equations in the
way shown above, it is possible to create a TimedArray. This acts
as a function of time where the values at given time points are given
explicitly. This can be especially useful to describe non-continuous
stimulation. For example, the following code defines a TimedArray where
stimulus blocks consist of a constant current of random strength for 30ms,
followed by no stimulus for 20ms. Note that in this particular example,
numerical integration can use exact methods, since it can assume that the
TimedArray is a constant function of time during a single integration time
step.


Note

The semantics of TimedArray changed slightly compared
to Brian 1: for TimedArray([x1, x2, ...], dt=my_dt), the value x1 will be
returned for all 0<=t<my_dt, x2 for my_dt<=t<2*my_dt etc., whereas
Brian1 returned x1 for 0<=t<0.5*my_dt,
x2 for 0.5*my_dt<=t<1.5*my_dt, etc.



stimulus = TimedArray(np.hstack([[c, c, c, 0, 0]
                                 for c in np.random.rand(1000)]),
                                dt=10*ms)
G = NeuronGroup(100, 'dv/dt = (-v + stimulus(t))/(10*ms) : 1',
                threshold='v>1', reset='v=0')
G.v = '0.5*rand()'  # different initial values for the neurons





TimedArray can take a one-dimensional value array (as above) and therefore
return the same value for all neurons or it can take a two-dimensional array
with time as the first and (neuron/synapse/...-)index as the second dimension.

In the following, this is used to implement shared noise between neurons, all
the “even neurons” get the first noise instantiation, all the “odd neurons” get
the second:

runtime = 1*second
stimulus = TimedArray(np.random.rand(int(runtime/defaultclock.dt), 2),
                      dt=defaultclock.dt)
G = NeuronGroup(100, 'dv/dt = (-v + stimulus(t, i % 2))/(10*ms) : 1',
                threshold='v>1', reset='v=0')








Regular operations

An alternative to specifying a stimulus in advance is to run explicitly
specified code at certain points during a simulation. This can be
achieved with run_regularly().
One can think of these statements as
equivalent to reset statements but executed unconditionally (i.e. for all
neurons) and possibly on a different clock than the rest of the group. The
following code changes the stimulus strength of half of the neurons (randomly
chosen) to a new random value every 50ms. Note that the statement uses logical
expressions to have the values only updated for the chosen subset of neurons
(where the newly introduced auxiliary variable change equals 1):

G = NeuronGroup(100, '''dv/dt = (-v + I)/(10*ms) : 1
                        I : 1  # one stimulus per neuron''')
G.run_regularly('''change = int(rand() < 0.5)
                   I = change*(rand()*2) + (1-change)*I''',
                dt=50*ms)






The following topics are not essential for beginners.












More on Poisson inputs


Setting rates for Poisson inputs

PoissonGroup takes either a constant rate, an array of rates (one rate per
neuron, as in the example above), or a string expression evaluating to a rate
as an argument.

If the given value for rates is a constant, then using
PoissonGroup(N, rates) is equivalent to:

NeuronGroup(N, 'rates : Hz', threshold='rand()<rates*dt')





and setting the group’s rates attribute.

If rates is a string, then this is equivalent to:

NeuronGroup(N, 'rates = ... : Hz', threshold='rand()<rates*dt')





with the respective expression for the rates. This expression will be evaluated
at every time step and therefore allows the use of time-dependent rates, i.e.
inhomogeneous Poisson processes. For example, the following code
(see also Timed arrays) uses a TimedArray to define the rates of a
PoissonGroup as a function of time, resulting in five 100ms blocks of 100 Hz
stimulation, followed by 100ms of silence:

stimulus = TimedArray(np.tile([100., 0.], 5)*Hz, dt=100.*ms)
P = PoissonGroup(1, rates='stimulus(t)')





Note that, as can be seen in its equivalent NeuronGroup formulation, a
PoissonGroup does not work for high rates where more than one spike might
fall into a single timestep. Use several units with lower rates in this case
(e.g. use PoissonGroup(10, 1000*Hz) instead of
PoissonGroup(1, 10000*Hz)).




Efficient Poisson inputs via PoissonInput

For simulations where the PoissonGroup is just used as a source of input to a
neuron (i.e., the individually generated spikes are not important, just their
impact on the target cell), the PoissonInput class provides a more efficient
alternative: instead of generating spikes, PoissonInput directly updates
a target variable based on the sum of independent Poisson processes:

G = NeuronGroup(100, 'dv/dt = -v / (10*ms) : 1')
P = PoissonInput(G, 'v', 100, 100*Hz, weight=0.1)





The PoissonInput class is however more restrictive than PoissonGroup, it
only allows for a constant rate across all neurons (but you can create
several PoissonInput objects, targeting different subgroups). It internally
uses BinomialFunction which will draw a random number each time step, either
from a binomial distribution or from a normal distribution as an approximation
to the binomial distribution if \(n p > 5 \wedge n (1 - p) > 5\), where
\(n\) is the number of inputs and \(p = dt \cdot rate\) the spiking
probability for a single input.






Arbitrary Python code (network operations)

If none of the above techniques is general enough to fulfill the requirements
of a simulation, Brian allows you to write a NetworkOperation, an arbitrary
Python function that is executed every time step (possible on a different clock
than the rest of the simulation). This function can do arbitrary operations,
use conditional statements etc. and it will be executed as it is (i.e. as pure
Python code even if weave code generation is active). Note that one cannot use
network operations in combination with the C++ standalone mode. Network
operations are particularly useful when some condition or calculation depends
on operations across neurons, which is currently not possible to express in
abstract code. The following code switches input on for a randomly chosen single
neuron every 50 ms:

G = NeuronGroup(10, '''dv/dt = (-v + active*I)/(10*ms) : 1
                       I = sin(2*pi*100*Hz*t) : 1 (shared) #single input
                       active : 1  # will be set in the network operation''')
@network_operation(dt=50*ms)
def update_active():
    index = np.random.randint(10)  # index for the active neuron
    G.active_ = 0  # the underscore switches off unit checking
    G.active_[index] = 1





Note that the network operation (in the above example: update_active) has
to be included in the Network object if one is constructed explicitly.

Only functions with zero or one arguments can be used as a NetworkOperation.
If the function has one argument then it will be passed the current time t:

@network_operation(dt=1*ms)
def update_input(t):
    if t>50*ms and t<100*ms:
        pass # do something





Note that this is preferable to accessing defaultclock.t from within the
function – if the network operation is not running on the defaultclock
itself, then that value is not guaranteed to be correct.

Instance methods can be used as network operations as well, however in this case
they have to be constructed explicitly, the network_operation() decorator
cannot be used:

class Simulation(object):
    def __init__(self, data):
        self.data = data
        self.group = NeuronGroup(...)
        self.network_op = NetworkOperation(self.update_func, dt=10*ms)
        self.network = Network(self.group, self.network_op)

    def update_func(self):
        pass # do something

    def run(self, runtime):
        self.network.run(runtime)











          

      

      

    

  

    
      
          
            
  
Recording during a simulation


For Brian 1 users

See the document Monitors (Brian 1 –> 2 conversion) for details how
to convert Brian 1 code.





	Recording spikes

	Recording variables at spike time

	Recording variables continuously

	Recording population rates

	Getting all data





Recording variables during a simulation is done with “monitor” objects.
Specifically, spikes are recorded with SpikeMonitor, the time evolution of
variables with StateMonitor and the firing rate of a population of neurons
with PopulationRateMonitor.


Recording spikes

To record spikes from a group G simply create a SpikeMonitor via
SpikeMonitor(G). After the simulation, you can access the attributes
i, t, num_spikes and count of the monitor.
The i and t
attributes give the array of neuron indices and times of the spikes. For
example, if M.i==[0, 2, 1] and M.t==[1*ms, 2*ms, 3*ms] it means that
neuron 0 fired a spike at 1 ms, neuron 2 fired a spike at 2 ms, and neuron 1
fired a spike at 3 ms. Alternatively, you can also call the
spike_trains method to get a
dictionary mapping neuron indices to arrays of spike times, i.e. in the above
example, spike_trains = M.spike_trains(); spike_trains[1] would return
array([  3.]) * msecond. The num_spikes attribute gives the total number
of spikes recorded, and count is an array of the length of the recorded
group giving the total number of spikes recorded from each neuron.

Example:

G = NeuronGroup(N, model='...')
M = SpikeMonitor(G)
run(runtime)
plot(M.t/ms, M.i, '.')





If you are only interested in summary statistics but not the individual spikes,
you can set the record argument to False. You will then not have access
to i and t but you can still get the count and the total number of
spikes (num_spikes).




Recording variables at spike time

By default, a SpikeMonitor only records the time of the spike and the index
of the neuron that spiked. Sometimes it can be useful to addtionaly record
other variables, e.g. the membrane potential for models where the threshold is
not at a fixed value. This can be done by providing an extra variables
argument, the recorded variable can then be accessed as an attribute of the
SpikeMonitor, e.g.:

G = NeuronGroup(10, 'v : 1', threshold='rand()<100*Hz*dt')
G.run_regularly('v = rand()')
M = SpikeMonitor(G, variables=['v'])
run(100*ms)
plot(M.t/ms, M.v, '.')





To conveniently access the values of a recorded variable for
a single neuron, the SpikeMonitor.values() method can be used that returns a
dictionary with the values for each neuron.:

G = NeuronGroup(N, '''dv/dt = (1-v)/(10*ms) : 1
                      v_th : 1''',
                threshold='v > v_th',
                # randomly change the threshold after a spike:
                reset='''v=0
                         v_th = clip(v_th + rand()*0.2 - 0.1, 0.1, 0.9)''')
G.v_th = 0.5
spike_mon = SpikeMonitor(G, variables='v')
run(1*second)
v_values = spike_mon.values('v')
print('Threshold crossing values for neuron 0: {}'.format(v_values[0]))
hist(spike_mon.v, np.arange(0, 1, .1))
show()






Note

Spikes are not the only events that can trigger recordings, see
Custom events.






Recording variables continuously

To record how a variable evolves over time, use a StateMonitor, e.g.
to record the variable v at every time step and plot it for
neuron 0:

G = NeuronGroup(...)
M = StateMonitor(G, 'v', record=True)
run(...)
plot(M.t/ms, M.v[0]/mV)





In general,
you specify the group, variables and indices you want to record from. You
specify the variables with a string or list of strings, and the indices
either as an array of indices or True to record all indices (but beware
because this may take a lot of memory).

After the simulation, you can access these variables as attributes of the
monitor. They are 2D arrays with shape (num_indices, num_times). The
special attribute t is an array of length num_times with the
corresponding times at which the values were recorded.

Note that you can also use StateMonitor to record from Synapses where
the indices are the synapse indices rather than neuron indices.

In this example, we record two variables v and u, and record from indices 0,
10 and 100. Afterwards, we plot the recorded values of v and u from neuron 0:

G = NeuronGroup(...)
M = StateMonitor(G, ('v', 'u'), record=[0, 10, 100])
run(...)
plot(M.t/ms, M.v[0]/mV, label='v')
plot(M.t/ms, M.u[0]/mV, label='u')





There are two subtly different ways to get the values for specific neurons: you
can either index the 2D array stored in the attribute with the variable name
(as in the example above) or you can index the monitor itself. The former will
use an index relative to the recorded neurons (e.g. M.v[1] will return the
values for the second recorded neuron which is the neuron with the index 10
whereas M.v[10] would raise an error because only three neurons have been
recorded), whereas the latter will use an absolute index corresponding to the
recorded group (e.g. M[1].v will raise an error because the neuron with the
index 1 has not been recorded and M[10].v will return the values for the
neuron with the index 10). If all neurons have been recorded (e.g. with
record=True) then both forms give the same result.

Note that for plotting all recorded values at once, you have to transpose the
variable values:

plot(M.t/ms, M.v.T/mV)






Note

In contrast to Brian 1, the values are recorded at the
beginning of a time step and not at the end (you can set the when argument
when creating a StateMonitor, details about scheduling can be
found here: Custom progress reporting).






Recording population rates

To record the time-varying firing rate of a population of neurons use
PopulationRateMonitor. After the simulation the monitor will have two
attributes t and rate, the latter giving the firing rate at each
time step corresponding to the time in t. For example:

G = NeuronGroup(...)
M = PopulationRateMonitor(G)
run(...)
plot(M.t/ms, M.rate/Hz)





To get a smoother version of the rate, use PopulationRateMonitor.smooth_rate().


The following topics are not essential for beginners.












Getting all data

Note that all monitors are implement as “groups”, so you can get all the stored
values in a monitor with the Group.get_states() method, which can be useful to
dump all recorded data to disk, for example.







          

      

      

    

  

    
      
          
            
  
Running a simulation


For Brian 1 users

See the document Networks and clocks (Brian 1 –> 2 conversion) for
details how to convert Brian 1 code.





	Networks

	Setting the simulation time step
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	Continuing/repeating simulations

	Multiple magic runs

	Changing the simulation time step

	Profiling

	Scheduling

	Store/restore





To run a simulation, one either constructs a new Network object and calls its
Network.run() method, or uses the “magic” system and a plain run() call,
collecting all the objects in the current namespace.

Note that Brian has several different ways of running the actual computations,
and choosing the right one can make orders of magnitude of difference in
terms of simplicity and efficiency. See Computational methods and efficiency for more details.


Networks

In most straightforward simulations, you do not have to explicitly create a
Network object but instead can simply call run() to run a simulation. This is
what is called the “magic” system, because Brian figures out automatically what
you want to do.

When calling run(), Brian runs the collect() function to gather all the objects
in the current context. It will include all the objects that are “visible”, i.e.
that you could refer to with an explicit name:

G = NeuronGroup(10, 'dv/dt = -v / tau : volt')
S = Synapses(G, G, model='w:1', on_pre='v+=w')
S.connect('i!=j')
mon = SpikeMonitor(G)

run(10*ms)  # will include G, S, mon





Note that it will not automatically include objects that are “hidden” in
containers, e.g. if you store several monitors in a list. Use an explicit
Network object in this case. It might be convenient to use the collect()
function when creating the Network object in that case:

G = NeuronGroup(10, 'dv/dt = -v / tau : volt')
S = Synapses(G, G, model='w:1', on_pre='v+=w')
S.connect('i!=j')
monitors = [SpikeMonitor(G), StateMonitor(G, 'v', record=True)]

# a simple run would not include the monitors
net = Network(collect())  # automatically include G and S
net.add(monitors)  # manually add the monitors

net.run(10*ms)








Setting the simulation time step

To set the simulation time step for every simulated object, set the dt attribute of the defaultclock which is used
by all objects that do not explicitly specify a clock or dt value during construction:

defaultclock.dt = 0.05*ms





If some objects should use a different clock (e.g. to record values with a StateMonitor not at every time step in a
long running simulation), you can provide a dt argument to the respective object:

s_mon = StateMonitor(group, 'v', record=True, dt=1*ms)





To sum up:


	Set defaultclock.dt to the time step that should be used by most (or all) of your objects.

	Set dt explicitly when creating objects that should use a different time step.



Behind the scenes, a new Clock object will be created for each object that defines its own dt value.




Progress reporting

Especially for long simulations it is useful to get some feedback about the
progress of the simulation. Brian offers a few built-in options and an
extensible system to report the progress of the simulation. In the Network.run()
or run() call, two arguments determine the output: report and
report_period. When report is set to 'text' or 'stdout', the
progress will be printed to the standard output, when it is set to 'stderr',
it will be printed to “standard error”. There will be output at the start and
the end of the run, and during the run in report_period intervals. It is
also possible to do custom progress reporting.




Continuing/repeating simulations

To store the current state of the simulation, call
store() (use the Network.store() method for a Network). You
can store more than one snapshot of a system by providing a name for the
snapshot; if store() is called without a specified name,
'default' is used as the name. To restore the state, use
restore().

The following simple example shows how this system can be used to run several
trials of an experiment:

# set up the network
G = NeuronGroup(...)
...
spike_monitor = SpikeMonitor(G)

# Snapshot the state
store()

# Run the trials
spike_counts = []
for trial in range(3):
    restore()  # Restore the initial state
    run(...)
    # store the results
    spike_counts.append(spike_monitor.count)





The following schematic shows how multiple snapshots can be used to run a
network with a separate “train” and “test” phase. After training, the test is
run several times based on the trained network. The whole process of training
and testing is repeated several times as well:

# set up the network
G = NeuronGroup(..., '''...
                     test_input : amp
                     ...''')
S = Synapses(..., '''...
                     plastic : boolean (shared)
                     ...''')
G.v = ...
S.connect(...)
S.w = ...

# First snapshot at t=0
store('initialized')

# Run 3 complete trials
for trial in range(3):
    # Simulate training phase
    restore('initialized')
    S.plastic = True
    run(...)

    # Snapshot after learning
    store('after_learning')

    # Run 5 tests after the training
    for test_number in range(5):
        restore('after_learning')
        S.plastic = False  # switch plasticity off
        G.test_input = test_inputs[test_number]
        # monitor the activity now
        spike_mon = SpikeMonitor(G)
        run(...)
        # Do something with the result
        # ...






The following topics are not essential for beginners.












Multiple magic runs

When you use more than a single run() statement, the magic system tries to
detect which of the following two situations applies:


	You want to continue a previous simulation

	You want to start a new simulation



For this, it uses the following heuristic: if a simulation consists only of
objects that have not been run, it will start a new simulation starting at
time 0 (corresponding to the creation of a new Network object). If a
simulation only consists of objects that have been simulated in the previous
run() call, it will continue that simulation at the previous time.

If neither of these two situations apply, i.e., the network consists of a mix
of previously run objects and new objects, an error will be raised. If this is
not a mistake but intended (e.g. when a new input source and synapses should be
added to a network at a later stage), use an explicit Network object.

In these checks, “non-invalidating” objects (i.e. objects that have
BrianObject.invalidates_magic_network set to False) are ignored, e.g.
creating new monitors is always possible.




Changing the simulation time step

You can change the simulation time step after objects have been created or even after a simulation has been run:

defaultclock.dt = 0.1*ms
# Set the network
# ...
run(initial_time)
defaultclock.dt = 0.01*ms
run(full_time - initial_time)





To change the time step between runs for objects that do not use the defaultclock, you cannot directly change their
dt attribute (which is read-only) but instead you have to change the dt of the clock attribute. If you want
to change the dt value of several objects at the same time (but not for all of them, i.e. when you cannot use
defaultclock.dt) then you might consider creating a Clock object explicitly and then passing this clock to each
object with the clock keyword argument (instead of dt). This way, you can later change the dt for several
objects at once by assigning a new value to Clock.dt.

Note that a change of dt has to be compatible with the internal representation of
clocks as an integer value (the number of elapsed time steps). For example, you
can simulate an object for 100ms with a time step of 0.1ms (i.e. for 1000 steps)
and then switch to a dt of 0.5ms, the time will then be internally
represented as 200 steps. You cannot, however, switch to a dt of 0.3ms, because
100ms are not an integer multiple of 0.3ms.




Profiling

To get an idea which parts of a simulation take the most time, Brian offers a
basic profiling mechanism. If a simulation is run with the profile=True
keyword argument, it will collect information about the total simulation time
for each CodeObject. This information can then be retrieved from
Network.profiling_info, which contains a list of (name, time) tuples or
a string summary can be obtained by calling profiling_summary(). The
following example shows profiling output after running the CUBA example (where
the neuronal state updates take up the most time):

>>> profiling_summary(show=5)  # show the 5 objects that took the longest
Profiling summary
=================
neurongroup_stateupdater    5.54 s    61.32 %
synapses_pre                1.39 s    15.39 %
synapses_1_pre              1.03 s    11.37 %
spikemonitor                0.59 s     6.55 %
neurongroup_thresholder     0.33 s     3.66 %








Scheduling

Every simulated object in Brian has three attributes that can be specified at
object creation time: dt, when, and order. The time step of the
simulation is determined by dt, if it is specified, or otherwise by
defaultclock.dt. Changing this will therefore change the dt of
all objects that don’t specify one. Alternatively, a clock object
can be specified directly, this can be useful if a clock should be shared
between several objects – under most circumstances, however, a user should not
have to deal with the creation of Clock objects and just define dt.

During a single time step, objects are updated in an order according first
to their when
argument’s position in the schedule.  This schedule is determined by
Network.schedule which is a list of strings, determining “execution slots” and
their order. It defaults to: ['start', 'groups', 'thresholds', 'synapses',
'resets', 'end']. In addition to the names provided in the schedule, names
such as before_thresholds or after_synapses can be used that are
understood as slots in the respective positions. The default
for the when attribute is a sensible value for most objects (resets will
happen in the reset slot, etc.) but sometimes it make sense to change it,
e.g. if one would like a StateMonitor, which by default records in the
end slot, to record the membrane potential before a reset is applied
(otherwise no threshold crossings will be observed in the membrane potential
traces).

Finally, if during a time step two objects fall in the same execution
slot, they will be updated in ascending order according to their
order attribute, an integer number defaulting to 0. If two objects have
the same when and order attribute then they will be updated in an
arbitrary but reproducible order (based on the lexicographical order of their
names).

Note that objects that don’t do any computation by themselves but only
act as a container for other objects (e.g. a NeuronGroup which contains a
StateUpdater, a Resetter and a Thresholder), don’t have any value for
when, but pass on the given values for dt and order to their
containing objects.

To see how the objects in a network are scheduled, you can use the
scheduling_summary() function:

>>> group = NeuronGroup(10, 'dv/dt = -v/(10*ms) : 1', threshold='v > 1',
...                     reset='v = 0')
>>> mon = StateMonitor(group, 'v', record=True, dt=1*ms)
>>> scheduling_summary()
                object                  |           part of           |        Clock dt        |    when    | order | active
----------------------------------------+-----------------------------+------------------------+------------+-------+-------
statemonitor (StateMonitor)             | statemonitor (StateMonitor) | 1. ms (every 10 steps) | start      |     0 |  yes
neurongroup_stateupdater (StateUpdater) | neurongroup (NeuronGroup)   | 100. us (every step)   | groups     |     0 |  yes
neurongroup_thresholder (Thresholder)   | neurongroup (NeuronGroup)   | 100. us (every step)   | thresholds |     0 |  yes
neurongroup_resetter (Resetter)         | neurongroup (NeuronGroup)   | 100. us (every step)   | resets     |     0 |  yes





As you can see in the output above, the StateMonitor will only record the
membrane potential every 10 time steps, but when it does, it will do it at the
start of the time step, before the numerical integration, the thresholding, and
the reset operation takes place.

Every new Network starts a simulation at time 0; Network.t is a read-only
attribute, to go back to a previous moment in time (e.g. to do another trial
of a simulation with a new noise instantiation) use the mechanism described
below.




Store/restore

Note that Network.run(), Network.store() and Network.restore() (or run(),
store(), restore()) are the only way of affecting the time of the clocks. In
contrast to Brian1, it is no longer necessary (nor possible) to directly set
the time of the clocks or call a reinit function.

The state of a network can also be stored on disk with the optional filename
argument of Network.store()/store(). This way, you can run the initial part of
a simulation once, store it to disk, and then continue from this state later.
Note that the store()/restore() mechanism does not re-create the network as
such, you still need to construct all the NeuronGroup, Synapses,
StateMonitor, ... objects, restoring will only restore all the state variable
values (membrane potential, conductances, synaptic connections/weights/delays,
...). This restoration does however restore the internal state of the objects
as well, e.g. spikes that have not been delivered yet because of synaptic
delays will be delivered correctly.







          

      

      

    

  

    
      
          
            
  
Multicompartment models


For Brian 1 users

See the document Multicompartmental models (Brian 1 –> 2 conversion) for
details how to convert Brian 1 code.



It is possible to create neuron models with a spatially extended morphology, using
the SpatialNeuron class. A SpatialNeuron is a single neuron with many compartments.
Essentially, it works as a NeuronGroup where elements are compartments instead of neurons.

A SpatialNeuron is specified by a morphology (see Creating a neuron morphology) and a set of equations for
transmembrane currents (see Creating a spatially extended neuron).


Creating a neuron morphology


Schematic morphologies

Morphologies can be created combining geometrical objects:

soma = Soma(diameter=30*um)
cylinder = Cylinder(diameter=1*um, length=100*um, n=10)





The first statement creates a single iso-potential compartment (i.e. with no axial resistance within the compartment),
with its area calculated as the area of a sphere with the given diameter. The second one specifies a cylinder consisting
of 10 compartments with identical diameter and the given total length.

For more precise control over the geometry, you can specify the length and diameter of each individual compartment,
including the diameter at the start of the section (i.e. for n compartments: n length and n+1 diameter
values) in a Section object:

section = Section(diameter=[6, 5, 4, 3, 2, 1]*um, length=[10, 10, 10, 5, 5]*um, n=5)





The individual compartments are modeled as truncated cones, changing the diameter linearly between the given diameters
over the length of the compartment. Note that the diameter argument specifies the values at the nodes between the
compartments, but accessing the diameter attribute of a Morphology object will return the diameter at the center
of the compartment (see the note below).

The following table summarizes the different options to create schematic morphologies (the black compartment before the
start of the section represents the parent compartment with diameter 15
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Computational methods and efficiency



	Runtime code generation

	Standalone code generation

	Compiler settings





Brian has several different methods for running the computations in a
simulation. The default mode is Runtime code generation, which runs the simulation loop
in Python but compiles and executes the modules doing the actual simulation
work (numerical integration, synaptic propagation, etc.) in a defined target
language. Brian will select the best available target language automatically.
On Windows, to ensure that you get the advantages of compiled code, read
the instructions on installing a suitable compiler in
Windows.
Runtime mode has the advantage that you can combine the computations
performed by Brian with arbitrary Python code specified as NetworkOperation.

The fact that the simulation is run in Python means that there is a (potentially
big) overhead for each simulated time step. An alternative is to run Brian in with
Standalone code generation – this is in general faster (for certain types of simulations
much faster) but cannot be used for all kinds of simulations. To enable this
mode, add the following line after your Brian import, but before your simulation
code:

set_device('cpp_standalone')





For detailed control over the compilation process (both for runtime and standalone
code generation), you can change the Compiler settings that are used.


The following topics are not essential for beginners.










Runtime code generation

Code generation means that Brian takes the Python code and strings
in your model and generates code in one of several possible different
languages and actually executes that. The target language for this code
generation process is set in the codegen.target preference. By default, this
preference is set to 'auto', meaning that it will chose a compiled language
target if possible and fall back to Python otherwise (it will also raise a warning
in this case, set codegen.target to 'numpy' explicitly to avoid this warning).
There are two compiled language targets for Python 2.x, 'weave' (needing a
working installation of a C++ compiler) and 'cython' (needing the Cython [http://cython.org/]
package in addition); for Python 3.x, only 'cython' is available. If you want to
chose a code generation target explicitly (e.g. because you want to get rid of the
warning that only the Python fallback is available), set the preference to 'numpy',
'weave' or 'cython' at the beginning of your script:

from brian2 import *
prefs.codegen.target = 'numpy'  # use the Python fallback





See Preferences for different ways of setting preferences.


Warning


Do not use the weave code generation targets when running multiple
simulations in parallel. See Known issues for more
details.




You might find that running simulations in weave or Cython modes won’t work
or is not as efficient as you were expecting. This is probably because you’re
using Python functions which are not compatible with weave or Cython. For
example, if you wrote something like this it would not be efficient:

from brian2 import *
prefs.codegen.target = 'cython'
def f(x):
    return abs(x)
G = NeuronGroup(10000, 'dv/dt = -x*f(x) : 1')





The reason is that the function f(x) is a Python function and so cannot
be called from C++ directly. To solve this problem, you need to provide an
implementation of the function in the target language. See
Functions.




Standalone code generation

Brian supports generating standalone code for multiple devices. In this mode, running a Brian script generates
source code in a project tree for the target device/language. This code can then be compiled and run on the device,
and modified if needed. At the moment, the only “device” supported is standalone C++ code.
In some cases, the speed gains can be impressive, in particular for smaller networks with complicated spike
propagation rules (such as STDP).

To use the C++ standalone mode, you only have to make very small changes to your script. The exact change depends on
whether your script has only a single run() (or Network.run()) call, or several of them:


Single run call

At the beginning of the script, i.e. after the import statements, add:

set_device('cpp_standalone')





The CPPStandaloneDevice.build function will be automatically called with default arguments right after the run()
call. If you need non-standard arguments then you can specify them as part of the set_device() call:

set_device('cpp_standalone', directory='my_directory', debug=True)








Multiple run calls

At the beginning of the script, i.e. after the import statements, add:

set_device('cpp_standalone', build_on_run=False)





After the last run() call, call device.build() explicitly:

device.build(directory='output', compile=True, run=True, debug=False)





The build function has several arguments to specify the output directory, whether or not to
compile and run the project after creating it and whether or not to compile it with debugging support or not.




Multiple builds

To run multiple full simulations (i.e. multiple device.build calls, not just
multiple run() calls as discussed above), you have to reinitialize the device
again:

device.reinit()
device.activate()





Note that the device “forgets” about all previously set build options provided
to set_device() (most importantly the build_on_run option, but also e.g. the
directory), you’ll have to specify them as part of the Device.activate call.
Also, Device.activate will reset the defaultclock, you’ll therefore have to
set its dt after the activate call if you want to use a non-default
value.




Limitations

Not all features of Brian will work with C++ standalone, in particular Python based network operations and
some array based syntax such as S.w[0, :] = ... will not work. If possible, rewrite these using string
based syntax and they should work. Also note that since the Python code actually runs as normal, code that does
something like this may not behave as you would like:

results = []
for val in vals:
    # set up a network
    run()
    results.append(result)





The current C++ standalone code generation only works for a fixed number of run statements, not with loops.
If you need to do loops or other features not supported automatically, you can do so by inspecting the generated
C++ source code and modifying it, or by inserting code directly into the main loop as follows:

device.insert_code('main', '''
cout << "Testing direct insertion of code." << endl;
''')








Variables

After a simulation has been run (after the run() call if set_device() has been called with build_on_run set to
True or after the Device.build call with run set to True), state variables and
monitored variables can be accessed using standard syntax, with a few exceptions (e.g. string expressions for indexing).




Multi-threading with OpenMP


Warning

OpenMP code has not yet been well tested and so may be inaccurate.



When using the C++ standalone mode, you have the opportunity to turn on multi-threading, if your C++ compiler is compatible with
OpenMP. By default, this option is turned off and only one thread is used. However, by changing the preferences of the codegen.cpp_standalone
object, you can turn it on. To do so, just add the following line in your python script:

prefs.devices.cpp_standalone.openmp_threads = XX





XX should be a positive value representing the number of threads that will be
used during the simulation. Note that the speedup will strongly depend on the
network, so there is no guarantee that the speedup will be linear as a function
of the number of threads. However, this is working fine for networks with not
too small timestep (dt > 0.1ms), and results do not depend on the number of
threads used in the simulation.




Customizing the build process

In standalone mode, a standard “make file” is used to orchestrate the
compilation and linking. To provide additional arguments to the make command
(respectively nmake on Windows), you can use the
devices.cpp_standalone.extra_make_args_unix or
devices.cpp_standalone.extra_make_args_windows preference. On Linux,
this preference is by default set to ['-j'] to enable parallel compilation.
Note that you can also use these arguments to overwrite variables in the make
file, e.g. to use clang [https://clang.llvm.org/] instead of the default
gcc [https://gcc.gnu.org/] compiler:

prefs.devices.cpp_standalone.extra_make_args_unix += ['CC=clang++']










Compiler settings

If using C++ code generation (either via weave, cython or standalone), the
compiler settings can make a big difference for the speed of the simulation.
By default, Brian uses a set of compiler settings that switches on various
optimizations and compiles for running on the same architecture where the
code is compiled. This allows the compiler to make use of as many advanced
instructions as possible, but reduces portability of the generated executable
(which is not usually an issue).

If there are any issues with these compiler settings, for example because
you are using an older version of the C++ compiler or because you want to
run the generated code on a different architecture, you can change the
settings by manually specifying the codegen.cpp.extra_compile_args
preference (or by using codegen.cpp.extra_compile_args_gcc or
codegen.cpp.extra_compile_args_msvc if you want to specify the settings
for either compiler only).
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Advanced guide

This section has additional information on details not covered in the
User’s guide.



	Functions
	Default functions

	User-provided functions





	Preferences
	Accessing and setting preferences

	Preference files

	List of preferences





	Logging
	Showing/hiding log messages

	Preferences





	Namespaces

	Custom progress reporting
	Progress reporting





	Random numbers
	Seeding and reproducibility





	Custom events
	Scheduling





	State update
	Explicit state update

	Choice of state updaters

	Implicit state updates





	How Brian works
	Clock-driven versus event-driven

	Code overview

	Syntax layer

	Computational engine





	Interfacing with external code
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Functions

All equations, expressions and statements in Brian can make use of mathematical
functions. However, functions have to be prepared for use with Brian for two
reasons: 1) Brian is strict about checking the consistency of units, therefore
every function has to specify how it deals with units; 2) functions need to
be implemented differently for different code generation targets.

Brian provides a number of default functions that are already prepared for use
with numpy and C++ and also provides a mechanism for preparing new functions
for use (see below).


Default functions

The following functions (stored in the DEFAULT_FUNCTIONS dictionary) are
ready for use:


	Random numbers: rand(), randn() (Note that these functions should be
called without arguments, the code generation process will take care of
generating an array of numbers for numpy).

	Elementary functions: sqrt, exp, log, log10, abs, sign

	Trigonometric functions: sin, cos, tan, sinh, cosh,
tanh, arcsin, arccos, arctan

	General utility functions: clip, floor, ceil



Brian also provides a special purpose function int, which can be used to
convert a an expression or variable into an integer value. This is especially
useful for boolean values (which will be converted into 0 or 1), for example to
have a conditional evaluation as part of an equation or statement which
sometimes allows to circumvent the lack of an if statement. For
example, the following reset statement resets the variable v to either v_r1
or v_r2, depending on the value of w:
'v = v_r1 * int(w <= 0.5) + v_r2 * int(w > 0.5)'




User-provided functions


Python code generation

If a function is only used in contexts that use Python code generation,
preparing a function for use with Brian only means specifying its units. The
simplest way to do this is to use the check_units() decorator:

@check_units(x1=meter, y1=meter, x2=meter, y2=meter, result=meter)
def distance(x1, y1, x2, y2):
    return sqrt((x1 - x2)**2 + (y1 - y2)**2)





Another option is to wrap the function in a Function object:

def distance(x1, y1, x2, y2):
    return sqrt((x1 - x2)**2 + (y1 - y2)**2)
# wrap the distance function
distance = Function(distance, arg_units=[meter, meter, meter, meter],
                    return_unit=meter)





The use of Brian’s unit system has the benefit of checking the consistency of
units for every operation but at the expense of performance.
Consider the following function, for example:

@check_units(I=amp, result=Hz)
def piecewise_linear(I):
    return clip((I-1*nA) * 50*Hz/nA, 0*Hz, 100*Hz)





When Brian runs a simulation, the state variables are stored and passed around
without units for performance reasons. If the above function is used, however,
Brian adds units to its input argument so that the operations inside the
function do not fail with dimension mismatches. Accordingly, units are removed
from the return value so that the function output can be used with the rest
of the code. For better performance, Brian can alter the namespace of the
function when it is executed as part of the simulation and remove all the
units, then pass values without units to the function. In the above example,
this means making the symbol nA refer to 1e-9 and Hz to 1. To
use this mechanism, add the decorator implementation() with the
discard_units keyword:

@implementation('numpy', discard_units=True)
@check_units(I=amp, result=Hz)
def piecewise_linear(I):
    return clip((I-1*nA) * 50*Hz/nA, 0*Hz, 100*Hz)





Note that the use of the function outside of simulation runs is not affected,
i.e. using piecewise_linear still requires a current in Ampere and returns
a rate in Hertz. The discard_units mechanism does not work in all cases,
e.g. it does not work if the function refers to units as brian2.nA instead
of nA, if it uses imports inside the function (e.g.
from brian2 import nA), etc. The discard_units can also be switched on
for all functions without having to use the implementation() decorator by
setting the codegen.runtime.numpy.discard_units preference.




Other code generation targets

To make a function available for other code generation targets (e.g. C++),
implementations for these targets have to be added. This can be achieved using
the implementation() decorator. The form of the code (e.g. a simple string or
a dictionary of strings) necessary is target-dependent, for C++ both options
are allowed, a simple string will be interpreted as filling the
'support_code' block. Note that both 'cpp' and 'weave' can be used
to provide C++ implementations, the first should be used for generic C++
implementations, and the latter if weave-specific code is necessary. An
implementation for the C++ target could look like this:

@implementation('cpp', '''
     double piecewise_linear(double I) {
        if (I < 1e-9)
            return 0;
        if (I > 3e-9)
            return 100;
        return (I/1e-9 - 1) * 50;
     }
     ''')
@check_units(I=amp, result=Hz)
def piecewise_linear(I):
    return clip((I-1*nA) * 50*Hz/nA, 0*Hz, 100*Hz)





Alternatively, FunctionImplementation objects can be added to the Function
object.

The same sort of approach as for C++ works for Cython using the
'cython' target. The example above would look like this:

@implementation('cython', '''
    cdef double piecewise_linear(double I):
        if I<1e-9:
            return 0.0
        elif I>3e-9:
            return 100.0
        return (I/1e-9-1)*50
    ''')
@check_units(I=amp, result=Hz)
def piecewise_linear(I):
    return clip((I-1*nA) * 50*Hz/nA, 0*Hz, 100*Hz)








Arrays vs. scalar values in user-provided functions

Equations, expressions and abstract code statements are always implicitly
referring to all the neurons in a NeuronGroup, all the synapses in a
Synapses object, etc. Therefore, function calls also apply to more than a
single value. The way in which this is handled differs between code generation
targets that support vectorized expressions (e.g. the numpy target) and
targets that don’t (e.g. the weave target or the cpp_standalone mode).
If the code generation target supports vectorized expressions, it will receive
an array of values. For example, in the piecewise_linear example above, the
argument I will be an array of values and the function returns an array of
values. For code generation without support for vectorized expressions, all
code will be executed in a loop (over neurons, over synapses, ...), the function
will therefore be called several times with a single value each time.

In both cases, the function will only receive the “relevant” values, meaning
that if for example a function is evaluated as part of a reset statement, it
will only receive values for the neurons that just spiked.




Additional namespace

Some functions need additional data to compute a result, e.g. a TimedArray
needs access to the underlying array. For the numpy target, a function can
simply use a reference to an object defined outside the function, there is no
need to explicitly pass values in a namespace. For the other code language
targets, values can be passed in the namespace argument of the
implementation() decorator or the
add_implementation method. The namespace
values are then accessible in the function code under the given name, prefixed
with _namespace. Note that this mechanism should only be used for numpy
arrays or general objects (e.g. function references to call Python functions
from weave or Cython code). Scalar values should be directly included in the
function code, by using a “dynamic implemention” (see
add_dynamic_implementation).

See TimedArray and BinomialFunction for examples that use this mechanism.




Data types

By default, functions are assumed to take any type of argument, and return a floating
point value. If you want to put a restriction on the type of an argument, or specify
that the return type should be something other than float, either declare it as a
Function (and see its documentation on specifying types) or use the declare_types()
decorator, e.g.:

@check_units(a=1, b=1, result=1)
@declare_types(a='integer', result='highest')
def f(a, b):
    return a*b





This is potentially important if you have functions that return integer or boolean
values, because Brian’s code generation optimisation step will make some potentially
incorrect simplifications if it assumes that the return type is floating point.
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Preferences

Brian has a system of global preferences that affect how certain objects
behave. These can be set either in scripts by using the prefs object
or in a file. Each preference looks like codegen.c.compiler, i.e. dotted
names.


Accessing and setting preferences

Preferences can be accessed and set either keyword-based or attribute-based.
The following are equivalent:

prefs['codegen.c.compiler'] = 'gcc'
prefs.codegen.c.compiler = 'gcc'





Using the attribute-based form can be particulary useful for interactive
work, e.g. in ipython, as it offers autocompletion and documentation.
In ipython, prefs.codegen.c? would display a docstring with all
the preferences available in the codegen.c category.




Preference files

Preferences are stored in a hierarchy of files, with the following order
(each step overrides the values in the previous step but no error is raised
if one is missing):


	The global defaults are stored in the installation directory.

	The user default are stored in ~/.brian/user_preferences (which works on
Windows as well as Linux). The ~ symbol refers to the user directory.

	The file brian_preferences in the current directory.



The preference files are of the following form:

a.b.c = 1
# Comment line
[a]
b.d = 2
[a.b]
b.e = 3





This would set preferences a.b.c=1, a.b.d=2 and a.b.e=3.




List of preferences

Brian itself defines the following preferences (including their default
values):


codegen

Code generation preferences

codegen.loop_invariant_optimisations = True


Whether to pull out scalar expressions out of the statements, so that
they are only evaluated once instead of once for every neuron/synapse/...
Can be switched off, e.g. because it complicates the code (and the same
optimisation is already performed by the compiler) or because the
code generation target does not deal well with it. Defaults to True.


codegen.string_expression_target = 'numpy'


Default target for the evaluation of string expressions (e.g. when
indexing state variables). Should normally not be changed from the
default numpy target, because the overhead of compiling code is not
worth the speed gain for simple expressions.

Accepts the same arguments as codegen.target, except for 'auto'




codegen.target = 'auto'


Default target for code generation.

Can be a string, in which case it should be one of:


	'auto' the default, automatically chose the best code generation
target available.

	'weave' uses scipy.weave to generate and compile C++ code,
should work anywhere where gcc is installed and available at the
command line.

	'cython', uses the Cython package to generate C++ code. Needs a
working installation of Cython and a C++ compiler.

	'numpy' works on all platforms and doesn’t need a C compiler but
is often less efficient.



Or it can be a CodeObject class.




codegen.cpp

C++ compilation preferences

codegen.cpp.compiler = ''


Compiler to use (uses default if empty)

Should be gcc or msvc.




codegen.cpp.define_macros = []


List of macros to define; each macro is defined using a 2-tuple,
where ‘value’ is either the string to define it to or None to
define it without a particular value (equivalent of “#define
FOO” in source or -DFOO on Unix C compiler command line).


codegen.cpp.extra_compile_args = None


Extra arguments to pass to compiler (if None, use either
extra_compile_args_gcc or extra_compile_args_msvc).


codegen.cpp.extra_compile_args_gcc = ['-w', '-O3', '-ffast-math', '-fno-finite-math-only', '-march=native']


Extra compile arguments to pass to GCC compiler


codegen.cpp.extra_compile_args_msvc = ['/Ox', '/w', '/arch:SSE2', '/MP']


Extra compile arguments to pass to MSVC compiler (the default
/arch: flag is determined based on the processor architecture)


codegen.cpp.extra_link_args = []


Any extra platform- and compiler-specific information to use when
linking object files together.


codegen.cpp.headers = []


A list of strings specifying header files to use when compiling the
code. The list might look like [“<vector>”,“‘my_header’”]. Note that
the header strings need to be in a form than can be pasted at the end
of a #include statement in the C++ code.


codegen.cpp.include_dirs = []


Include directories to use. Note that $prefix/include will be
appended to the end automatically, where $prefix is Python’s
site-specific directory prefix as returned by sys.prefix [https://docs.python.org/2/library/sys.html#sys.prefix].


codegen.cpp.libraries = []


List of library names (not filenames or paths) to link against.


codegen.cpp.library_dirs = []


List of directories to search for C/C++ libraries at link time.
Note that $prefix/lib will be appended to the end automatically,
where $prefix is Python’s site-specific directory prefix as returned
by sys.prefix [https://docs.python.org/2/library/sys.html#sys.prefix].


codegen.cpp.msvc_architecture = ''


MSVC architecture name (or use system architectue by default).

Could take values such as x86, amd64, etc.




codegen.cpp.msvc_vars_location = ''


Location of the MSVC command line tool (or search for best by default).


codegen.cpp.runtime_library_dirs = []


List of directories to search for C/C++ libraries at run time.


codegen.generators

Codegen generator preferences (see subcategories for individual languages)

codegen.generators.cpp

C++ codegen preferences

codegen.generators.cpp.flush_denormals = False


Adds code to flush denormals to zero.

The code is gcc and architecture specific, so may not compile on all
platforms. The code, for reference is:

#define CSR_FLUSH_TO_ZERO         (1 << 15)
unsigned csr = __builtin_ia32_stmxcsr();
csr |= CSR_FLUSH_TO_ZERO;
__builtin_ia32_ldmxcsr(csr);





Found at http://stackoverflow.com/questions/2487653/avoiding-denormal-values-in-c.




codegen.generators.cpp.restrict_keyword = '__restrict'


The keyword used for the given compiler to declare pointers as restricted.

This keyword is different on different compilers, the default works for
gcc and MSVS.




codegen.runtime

Runtime codegen preferences (see subcategories for individual targets)

codegen.runtime.cython

Cython runtime codegen preferences

codegen.runtime.cython.cache_dir = None


Location of the cache directory for Cython files. By default,
will be stored in a brian_extensions subdirectory
where Cython inline stores its temporary files
(the result of get_cython_cache_dir()).


codegen.runtime.cython.multiprocess_safe = True


Whether to use a lock file to prevent simultaneous write access
to cython .pyx and .so files.


codegen.runtime.numpy

Numpy runtime codegen preferences

codegen.runtime.numpy.discard_units = False


Whether to change the namespace of user-specifed functions to remove
units.





core

Core Brian preferences

core.default_float_dtype = float64


Default dtype for all arrays of scalars (state variables, weights, etc.).

Currently, this is not supported (only float64 can be used).




core.default_integer_dtype = int32


Default dtype for all arrays of integer scalars.


core.outdated_dependency_error = True


Whether to raise an error for outdated dependencies (True) or just
a warning (False).


core.network

Network preferences

core.network.default_schedule = ['start', 'groups', 'thresholds', 'synapses', 'resets', 'end']


Default schedule used for networks that
don’t specify a schedule.





devices

Device preferences

devices.cpp_standalone

C++ standalone preferences

devices.cpp_standalone.extra_make_args_unix = ['-j']


Additional flags to pass to the GNU make command on Linux/OS-X.
Defaults to “-j” for parallel compilation.


devices.cpp_standalone.extra_make_args_windows = []


Additional flags to pass to the nmake command on Windows. By default, no
additional flags are passed.


devices.cpp_standalone.openmp_spatialneuron_strategy = None


Which strategy to chose for solving the three tridiagonal systems with
OpenMP: 'branches' means to solve the three systems sequentially, but
for all the branches in parallel, 'systems' means to solve the three
systems in parallel, but all the branches within each system
sequentially. The 'branches' approach is usually better for
morphologies with many branches and a large number of threads, while the
'systems' strategy should be better for morphologies with few
branches (e.g. cables) and/or simulations with no more than three
threads. If not specified (the default), the 'systems' strategy will
be used when using no more than three threads or when the morphology
has less than three branches in total.


devices.cpp_standalone.openmp_threads = 0


The number of threads to use if OpenMP is turned on. By default, this value is set to 0 and the C++ code
is generated without any reference to OpenMP. If greater than 0, then the corresponding number of threads
are used to launch the simulation.


devices.cpp_standalone.run_environment_variables = {'LD_BIND_NOW': '1'}


Dictionary of environment variables and their values that will be set
during the execution of the standalone code.





logging

Logging system preferences

logging.console_log_level = 'INFO'


What log level to use for the log written to the console.

Has to be one of CRITICAL, ERROR, WARNING, INFO, DEBUG or DIAGNOSTIC.




logging.delete_log_on_exit = True


Whether to delete the log and script file on exit.

If set to True (the default), log files (and the copy of the main
script) will be deleted after the brian process has exited, unless an
uncaught exception occured. If set to False, all log files will be kept.




logging.file_log = True


Whether to log to a file or not.

If set to True (the default), logging information will be written
to a file. The log level can be set via the logging.file_log_level
preference.




logging.file_log_level = 'DIAGNOSTIC'


What log level to use for the log written to the log file.

In case file logging is activated (see logging.file_log), which log
level should be used for logging. Has to be one of CRITICAL, ERROR,
WARNING, INFO, DEBUG or DIAGNOSTIC.




logging.save_script = True


Whether to save a copy of the script that is run.

If set to True (the default), a copy of the currently run script
is saved to a temporary location. It is deleted after a successful
run (unless logging.delete_log_on_exit is False) but is kept after
an uncaught exception occured. This can be helpful for debugging,
in particular when several simulations are running in parallel.




logging.std_redirection = True


Whether or not to redirect stdout/stderr to null at certain places.

This silences a lot of annoying compiler output, but will also hide
error messages making it harder to debug problems. You can always
temporarily switch it off when debugging. If
logging.std_redirection_to_file is set to True as well, then the
output is saved to a file and if an error occurs the name of this file
will be printed.




logging.std_redirection_to_file = True


Whether to redirect stdout/stderr to a file.

If both logging.std_redirection and this preference are set to
True, all standard output/error (most importantly output from
the compiler) will be stored in files and if an error occurs the name
of this file will be printed. If logging.std_redirection is True
and this preference is False, then all standard output/error will
be completely suppressed, i.e. neither be displayed nor stored in a
file.

The value of this preference is ignore if logging.std_redirection is
set to False.
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Logging

Brian uses a logging system to display warnings and general information messages
to the user, as well as writing them to a file with more detailed information,
useful for debugging. Each log message has one of the following “log levels”:


	ERROR

	Only used when an exception is raised, i.e. an error occurs and the current
operation is interrupted. Example: You use a variable name in an equation
that Brian does not recognize.

	WARNING

	Brian thinks that something is most likely a bug, but it cannot be sure.
Example: You use a Synapses object without any synapses in your
simulation.

	INFO

	Brian wants to make the user aware of some automatic choice that it did for
the user. Example: You did not specify an integration method for a
NeuronGroup and therefore Brian chose an appropriate method for you.

	DEBUG

	Additional information that might be useful when a simulation is not working
as expected. Example: The integration timestep used during the simulation.

	DIAGNOSTIC

	Additional information useful when tracking down bugs in Brian itself.
Example: The generated code for a CodeObject.



By default, all messages are written to the log file and all messages of level
INFO and above are displayed on the console. To change what messages are
displayed, see below.


Note

By default, the log file is deleted after a successful simulation run,
i.e. when the simulation exited without an error. To keep the log around,
set the logging.delete_log_on_exit preference to False.




Showing/hiding log messages

If you want to change what messages are displayed on the console, you can call a
method of the method of BrianLogger:

BrianLogger.log_level_debug() # now also display debug messages





It is also possible to suppress messages for certain sub-hierarchies by using
BrianLogger.suppress_hierarchy:

# Suppress code generation messages on the console
BrianLogger.suppress_hierarchy('brian2.codegen')
# Suppress preference messages even in the log file
BrianLogger.suppress_hierarchy('brian2.core.preferences',
                               filter_log_file=True)





Similarly, messages ending in a certain name can be suppressed with
BrianLogger.suppress_name:

# Suppress resolution conflict warnings
BrianLogger.suppress_name('resolution_conflict')





These functions should be used with care, as they suppresses messages
independent of the level, i.e. even warning and error messages.




Preferences

You can also change details of the logging system via Brian’s Preferences
system. With this mechanism, you can switch the logging to a file off completely
(by setting logging.file_log to False) or have it log less messages (by
setting logging.file_log_level to a level higher than DIAGNOSTIC) – this
can be important for long-running simulations where the log might otherwise take
up a lot of disk space. For a list of all preferences related to logging, see the
documentation of the brian2.utils.logger module.


Warning

Most of the logging preferences are only taken into account during
the initialization of the logging system which takes place as soon as brian2
is imported. Therefore, if you use e.g. prefs.logging.file_log = False in
your script, this will not have the intended effect! Instead, set these
preferences in a file (see Preferences).
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Namespaces

Equations can contain references to
external parameters or functions. During the initialisation of a NeuronGroup
or a Synapses object, this namespace can be provided as an argument. This
is a group-specific namespace that will only be used for names in the context
of the respective group. Note that units and a set of standard functions are
always provided and should not be given explicitly.
This namespace does not necessarily need to be exhaustive at the time of the
creation of the NeuronGroup/Synapses, entries can be added (or modified)
at a later stage via the namespace attribute (e.g.
G.namespace['tau'] = 10*ms).

At the point of the call to the Network.run() namespace, any group-specific
namespace will be augmented by the “run namespace”. This namespace can be
either given explicitly as an argument to the run method or it will
be taken from the locals and globals surrounding the call. A warning will be
emitted if a name is defined in more than one namespace.

To summarize: an external identifier will be looked up in the context of an
object such as NeuronGroup or Synapses. It will follow the following
resolution hierarchy:


	Default unit and function names.

	Names defined in the explicit group-specific namespace.

	Names in the run namespace which is either explicitly given or the implicit
namespace surrounding the run call.



Note that if you completely specify your namespaces at the Group level, you
should probably pass an empty dictionary as the namespace argument to the
run call – this will completely switch off the “implicit namespace”
mechanism.

The following three examples show the different ways of providing external
variable values, all having the same effect in this case:

# Explicit argument to the NeuronGroup
G = NeuronGroup(1, 'dv/dt = -v / tau : 1', namespace={'tau': 10*ms})
net = Network(G)
net.run(10*ms)

# Explicit argument to the run function
G = NeuronGroup(1, 'dv/dt = -v / tau : 1')
net = Network(G)
net.run(10*ms, namespace={'tau': 10*ms})

# Implicit namespace from the context
G = NeuronGroup(1, 'dv/dt = -v / tau : 1')
net = Network(G)
tau = 10*ms
net.run(10*ms)





External variables are free to change between runs (but not during one run),
the value at the time of the run() call is used in the simulation.
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Custom progress reporting


Progress reporting

For custom progress reporting (e.g. graphical output, writing to a file, etc.),
the report keyword accepts a callable (i.e. a function or an object with a
__call__ method) that will be called with four parameters:


	elapsed: the total (real) time since the start of the run

	completed: the fraction of the total simulation that is completed,
i.e. a value between 0 and 1

	start: The start of the simulation (in biological time)

	duration: the total duration (in biological time) of the simulation



The function will be called every report_period during the simulation, but
also at the beginning and end with completed equal to 0.0 and 1.0,
respectively.

For the C++ standalone mode, the same standard options are available. It is
also possible to implement custom progress reporting by directly passing the
code (as a multi-line string) to the report argument. This code will be
filled into a progress report function template, it should therefore only
contain a function body. The simplest use of this might look like:

net.run(duration, report='std::cout << (int)(completed*100.) << "% completed" << std::endl;')






Examples of custom reporting

Progress printed to a file

from brian2.core.network import TextReport
report_file = open('report.txt', 'w')
file_reporter = TextReport(report_file)
net.run(duration, report=file_reporter)
report_file.close()





“Graphical” output on the console

This needs a “normal” Linux console, i.e. it might not work in an integrated
console in an IDE.

Adapted from http://stackoverflow.com/questions/3160699/python-progress-bar

import sys

class ProgressBar(object):
    def __init__(self, toolbar_width):
        self.toolbar_width = toolbar_width
        self.ticks = 0

    def __call__(self, elapsed, complete, start, duration):
        if complete == 0.0:
            # setup toolbar
            sys.stdout.write("[%s]" % (" " * self.toolbar_width))
            sys.stdout.flush()
            sys.stdout.write("\b" * (self.toolbar_width + 1)) # return to start of line, after '['
        else:
            ticks_needed = int(round(complete * 40))
            if self.ticks < ticks_needed:
                sys.stdout.write("-" * (ticks_needed-self.ticks))
                sys.stdout.flush()
                self.ticks = ticks_needed
        if complete == 1.0:
            sys.stdout.write("\n")

net.run(duration, report=progress_bar, report_period=1*second)
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Random numbers

Brian provides two basic functions to generate random numbers that can be used in model code and equations: rand(),
to generate uniformly generated random numbers between 0 and 1, and randn(), to generate random numbers from a
standard normal distribution (i.e. normally distributed numbers with a mean of 0 and a standard deviation of 1). All
other stochastic elements of a simulation (probabilistic connections, Poisson-distributed input generated by
PoissonGroup or PoissonInput, differential equations using the noise term xi, ...) will internally make use of
these two basic functions.

For Runtime code generation, random numbers are generated by numpy.random.rand [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.rand.html#numpy.random.rand] and numpy.random.randn [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.randn.html#numpy.random.randn] respectively, which
uses a Mersenne-Twister [https://en.wikipedia.org/wiki/Mersenne_Twister] pseudorandom number generator. When the
numpy code generation target is used, these functions are called directly, but for weave and cython, Brian
uses a internal buffers for uniformly and normally distributed random numbers and calls the numpy functions whenever
all numbers from this buffer have been used. This avoids the overhead of switching between C code and Python code for
each random number. For Standalone code generation, the random number generation is based on “randomkit”, the same
Mersenne-Twister implementation that is used by numpy. The source code of this implementation will be included in every
generated standalone project.


Seeding and reproducibility


Runtime mode

As explained above, Runtime code generation makes use of numpy’s random number generator. In principle, using numpy.random.seed [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.seed.html#numpy.random.seed]
therefore permits reproducing a stream of random numbers. However, for weave and cython, Brian’s buffer
complicates the matter a bit: if a simulation sets numpy’s seed, uses 10000 random numbers, and then resets the seed,
the following 10000 random numbers (assuming the current size of the buffer) will come out of the pre-generated buffer
before numpy’s random number generation functions are called again and take into account the seed set by the user.
Instead, users should use the seed() function provided by Brian 2 itself, this will take care of setting numpy’s random
seed and empty Brian’s internal buffers. This function also has the advantage that it will continue to work when the
simulation is switched to standalone code generation (see below). Note that random numbers are not guaranteed to be
reproducible across different code generation targets or different versions of Brian, especially if several sources of
randomness are used in the same CodeObject (e.g. two noise variables in the equations of a NeuronGroup). This is
because Brian does not guarantee the order of certain operations (e.g. should it first generate all random numbers for
the first noise variable for all neurons, followed by the random numbers for the second noise variable for all neurons
or rather first the random numbers for all noice variables of the first neuron, then for the second neuron, etc.) Since
all random numbers are coming from the same stream of random numbers, the order of getting the numbers out of this
stream matter.




Standalone mode

For Standalone code generation, Brian’s seed() function will insert code to set the random number generator seed into the
generated code. The code will be generated at the position where the seed() call was made, allowing detailed control
over the seeding. For example the following code would generate identical initial conditions every time it is run, but
the noise generated by the xi variable would differ:

G = NeuronGroup(10, 'dv/dt = -v/(10*ms) + 0.1*xi/sqrt(ms) : 1')
seed(4321)
G.v = 'rand()'
seed()
run(100*ms)






Note

In standalone mode, seed() will not set numpy’s random number generator. If you use random numbers in the Python
script itself (e.g. to generate a list of synaptic connections that will be passed to the standalone code as a
pre-calculated array), then you have to explicitly call numpy.random.seed [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.seed.html#numpy.random.seed] yourself to make these random numbers
reproducible.




Note

Seeding should lead to reproducible random numbers even when using OpenMP with multiple threads (for repeated
simulations with the same number of threads), but this has not been rigorously tested. Use at your own risk.
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Custom events

In most simulations, a NeuronGroup defines a threshold on its membrane
potential that triggers a spike event. This event can be monitored by a
SpikeMonitor, it is used in synaptic interactions, and in integrate-and-fire
models it also leads to the execution of one or more reset statements.

Sometimes, it can be useful to define additional events, e.g. when an ion
concentration in the cell crosses a certain threshold. This can be done with
the events keyword in the NeuronGroup initializer:

group = NeuronGroup(N, '...', threshold='...', reset='...',
                    events={'custom_event': 'x > x_th'})





In this example, we define an event with the name custom_event that is
triggered when the x variable crosses the threshold x_th. Such events
can be recorded with an EventMonitor:

event_mon = EventMonitor(group, 'custom_event')





Such an EventMonitor can be used in the same way as a SpikeMonitor – in
fact, creating the SpikeMonitor is basically identical to recording the
spike event with an EventMonitor. An EventMonitor is not limited to
record the event time/neuron index, it can also record other variables of the
model:

event_mon = EventMonitor(group, 'custom_event', variables['var1', 'var2'])





If the event should trigger a series of statements (i.e. the equivalent of
reset statements), this can be added by calling run_on_event:

group.run_on_event('custom_event', 'x=0')





When neurons are connected by Synapses, the pre and post pathways
are triggered by spike events by default. It is possible to change this by
providing an on_event keyword that either specifies which event to use for all
pathways, or a specific event for each pathway (where non-specified pathways use
the default spike event):

synapse_1 = Synapses(group, another_group, '...', on_pre='...', on_event='custom_event')
synapse_2 = Synapses(group, another_group, '...', on_pre='...', on_post='...',
                     on_event={'pre': 'custom_event'})






Scheduling

By default, custom events are checked after the spiking threshold (in the
after_thresholds slots) and statements are executed after the reset (in
the after_resets slots). The slot for the execution of custom
event-triggered statements can be changed when it is added with the usual
when and order keyword arguments (see Custom progress reporting for details).
To change the time when the condition is checked, use
NeuronGroup.set_event_schedule().
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State update

In Brian, a state updater transforms a set of equations into an abstract
state update code (and therefore is automatically target-independent). In
general, any function (or callable object) that takes an Equations object
and returns abstract code (as a string) can be used as a state updater and
passed to the NeuronGroup constructor as a method argument.

The more common use case is to specify no state updater at all or chose one by
name, see Choice of state updaters below.


Explicit state update

Explicit state update schemes can be specified in mathematical notation, using
the ExplicitStateUpdater class. A state updater scheme contains a series
of statements, defining temporary variables and a final line (starting with
x_new =), giving the updated value for the state variable. The description
can make reference to t (the current time), dt (the size of the time
step), x (value of the state variable), and f(x, t) (the definition of
the state variable x, assuming dx/dt = f(x, t). In addition, state
updaters supporting stochastic equations additionally make use of dW (a
normal distributed random variable with variance dt) and g(x, t), the
factor multiplied with the noise variable, assuming
dx/dt = f(x, t) + g(x, t) * xi.

Using this notation, simple forward Euler integration is specified as:

x_new = x + dt * f(x, t)





A Runge-Kutta 2 (midpoint) method is specified as:

k = dt * f(x,t)
x_new = x + dt * f(x +  k/2, t + dt/2)





When creating a new state updater using ExplicitStateUpdater, you can
specify the stochastic keyword argument, determining whether this state
updater does not support any stochastic equations (None, the default),
stochastic equations with additive noise only ('additive'), or
arbitrary stochastic equations ('multiplicative'). The provided state
updaters use the Stratonovich interpretation for stochastic equations (which
is the correct interpretation if the white noise source is seen as the limit
of a coloured noise source with a short time constant). As a result of this,
the simple Euler-Maruyama scheme (x_new = x + dt*f(x, t) + dW*g(x, t)) will
only be used for additive noise.

An example for a general state updater that handles arbitrary multiplicative
noise (under Stratonovich interpretation) is the derivative-free Milstein
method:

x_support = x + dt*f(x, t) + dt**.5 * g(x, t)
g_support = g(x_support, t)
k = 1/(2*dt**.5)*(g_support - g(x, t))*(dW**2)
x_new = x + dt*f(x,t) + g(x, t) * dW + k





Note that a single line in these descriptions is only allowed to mention
g(x, t), respectively f(x, t) only once (and you are not allowed to
write, for example, g(f(x, t), t)). You can work around these restrictions
by using intermediate steps, defining temporary variables, as in the above
examples for milstein and rk2.




Choice of state updaters

As mentioned in the beginning, you can pass arbitrary callables to the
method argument of a NeuronGroup, as long as this callable converts an
Equations object into abstract code. The best way to add a new state updater,
however, is to register it with brian and provide a method to determine whether
it is appropriate for a given set of equations. This way, it can be
automatically chosen when no method is specified and it can be referred to with
a name (i.e. you can pass a string like 'euler' to the method argument
instead of importing euler and passing a reference to the object itself).

If you create a new state updater using the ExplicitStateUpdater class, you
have to specify what kind of stochastic equations it supports. The keyword
argument stochastic takes the values None (no stochastic equation
support, the default), 'additive' (support for stochastic equations with
additive noise), 'multiplicative' (support for arbitrary stochastic
equations).

After creating the state updater, it has to be registered with
StateUpdateMethod:

new_state_updater = ExplicitStateUpdater('...', stochastic='additive')
StateUpdateMethod.register('mymethod', new_state_updater)





The preferred way to do write new general state updaters (i.e. state updaters
that cannot be described using the explicit syntax described above) is to
extend the StateUpdateMethod class (but this is not strictly necessary, all
that is needed is an object that implements a __call__ method that
operates on an Equations object and a dictionary of variables). Optionally,
the state updater can be registered with StateUpdateMethod as shown above.




Implicit state updates


Note

All of the following is just here for future reference, it’s not
implemented yet.



Implicit schemes often use Newton-Raphson or fixed point iterations.
These can also be defined by mathematical statements, but the number of iterations
is dynamic and therefore not easily vectorised. However, this might not be
a big issue in C, GPU or even with Numba.


Backward Euler

Backward Euler is defined as follows:

x(t+dt)=x(t)+dt*f(x(t+dt),t+dt)





This is not a executable statement because the RHS depends on the future.
A simple way is to perform fixed point iterations:

x(t+dt)=x(t)
x(t+dt)=x(t)+dt*dx=f(x(t+dt),t+dt)    until increment<tolerance





This includes a loop with a different number of iterations depending on the
neuron.
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How Brian works

In this section we will briefly cover some of the internals of how Brian
works. This is included here to understand the general process that Brian
goes through in running a simulation, but it will not be sufficient to
understand the source code of Brian itself or to extend it to do new things.
For a more detailed view of this, see the documentation in the
Developer’s guide.


Clock-driven versus event-driven

Brian is a clock-driven simulator. This means that the simulation time is
broken into an equally spaced time grid, 0, dt, 2*dt, 3*dt, .... At each
time step t, the differential equations specifying the models are first
integrated giving the values at time t+dt. Spikes are generated when a
condition such as v>vt is satisfied, and spikes can only occur on the
time grid.

The advantage of clock driven simulation is that it is very
flexible (arbitrary differential equations can be used) and
computationally efficient. However, the time grid approximation can lead
to an overestimate of the amount of synchrony that is present in a network.
This is usually not a problem, and can be managed by reducing the time
step dt, but it can be an issue for some models.

Note that the
inaccuracy introduced by the spike time approximation is of order
O(dt), so the total accuracy of the simulation is of order O(dt) per
time step. This means that in many cases, there is no need to use a
higher order numerical integration method than forward Euler, as it
will not improve the order of the error beyond O(dt). See
State update for more details of numerical integration methods.

Some simulators use an event-driven method. With this method, spikes can
occur at arbitrary times instead of just on the grid. This method can be
more accurate than a clock-driven simulation, but it is usually
substantially more computationally expensive (especially for larger
networks). In addition, they are usually more restrictive in terms of
the class of differential equations that can be solved.

For a review of some of the simulation strategies that have been
used, see
Brette et al. 2007 [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2638500/].




Code overview

The user-visible part of Brian consists of a number of objects such as
NeuronGroup, Synapses, Network, etc. These are all written in pure
Python and essentially work to translate the user specified model into the
computational engine. The end state of this translation is a collection of
short blocks of code operating on a namespace, which are called
in a sequence by the Network. Examples of these short blocks of code are the
“state updaters” which perform numerical integration, or the synaptic
propagation step. The namespaces consist of a mapping from names to values,
where the possible values can be scalar values, fixed-length or dynamically
sized arrays, and functions.




Syntax layer

The syntax layer consists of everything that is independent of the way the
final simulation is computed (i.e. the language and device it is running on).
This includes things like NeuronGroup, Synapses, Network, Equations,
etc.

The user-visible part of this is documented fully in the User’s guide
and the Advanced guide. In particular, things such as the analysis
of equations and assignment of numerical integrators. The end result of this
process, which is passed to the computational engine, is a specification of
the simulation consisting of the following data:


	A collection of variables which are scalar values, fixed-length arrays,
dynamically sized arrays, and functions. These are handled by Variable
objects detailed in Variables and indices. Examples:
each state variable of a NeuronGroup is assigned an ArrayVariable;
the list of spike indices stored by a SpikeMonitor is assigned a
DynamicArrayVariable; etc.

	A collection of code blocks specified via an “abstract code block” and a
template name. The “abstract code block” is a sequence of statements such
as v = vr which are to be executed. In the case that say, v and
vr are arrays, then the statement is to be executed for each element of
the array. These abstract code blocks are either given directly by the user
(in the case of neuron threshold and reset, and synaptic pre and post codes),
or generated from differential equations combined with a numerical
integrator. The template name is one of a small set (around 20 total) which
give additional context. For example, the code block a = b when
considered as part of a “state update” means execute that for each neuron
index. In the context of a reset statement, it means execute it for each
neuron index of a neuron that has spiked. Internally, these templates need
to be implemented for each target language/device, but there are relatively
few of them.

	The order of execution of these code blocks, as defined by the Network.






Computational engine

The computational engine covers everything from generating to running code in
a particular language or on a particular device. It starts with the
abstract definition of the simulation resulting from the syntax layer
described above.

The computational engine is described by a Device object. This is used for
allocating memory, generating and running code. There are two types of device,
“runtime” and “standalone”. In runtime mode, everything is managed by Python,
even if individual code blocks are in a different language. Memory is managed
using numpy arrays (which can be passed as pointers to use in other
languages). In standalone mode, the output of the process (after calling
Device.build) is a complete source code project that handles everything,
including memory management, and is independent of Python.

For both types of device, one of the key steps that works in the same way is
code generation, the creation of a compilable and runnable block of code from an
abstract code block and a collection of variables. This happens in two stages:
first of all, the abstract code block is converted into a code snippet,
which is a syntactically correct block of code in the target language, but
not one that can run on its own (it doesn’t handle accessing the variables
from memory, etc.). This code snippet typically represents the inner loop code.
This step is handled by a CodeGenerator object. In some
cases it will involve a syntax translation (e.g. the Python syntax x**y in
C++ should be pow(x, y)). The
next step is to insert this code snippet into a template to form a compilable
code block. This code block is then passed to a runtime CodeObject. In the
case of standalone mode, this doesn’t do anything, but for runtime devices
it handles compiling the code and then running the compiled code block in the
given namespace.
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Interfacing with external code

Some neural simulations benefit from a direct connections to external libraries,
e.g. to support real-time input from a sensor (but note that Brian currently
does not offer facilities to assure real-time processing) or to perform
complex calculations during a simulation run.

If the external library is written in Python (or is a library with Python
bindings), then the connection can be made either using the mechanism for
User-provided functions, or using a network operation.

In case of C/C++ libraries, only the User-provided functions mechanism can be
used. On the other hand, such simulations can use the same user-provided C++
code to run both with the runtime weave target and with the
Standalone code generation mode. In addition to that code, one generally needs to
include additional header files and use compiler/linker options to interface
with the external code. For this, several preferences can be used that will be
taken into account for weave, cython and the cpp_standalone device.
These preferences are mostly equivalent to the respective keyword arguments for
Python’s distutils.core.Extension [https://docs.python.org/2/distutils/apiref.html#distutils.core.Extension] class, see the documentation of the
cpp_prefs module for more details.
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Example: COBAHH



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/COBAHH.ipynb]






This is an implementation of a benchmark described
in the following review paper:

Simulation of networks of spiking neurons: A review of tools and strategies (2006).
Brette, Rudolph, Carnevale, Hines, Beeman, Bower, Diesmann, Goodman, Harris, Zirpe,
Natschläger, Pecevski, Ermentrout, Djurfeldt, Lansner, Rochel, Vibert, Alvarez, Muller,
Davison, El Boustani and Destexhe.
Journal of Computational Neuroscience

Benchmark 3: random network of HH neurons with exponential synaptic conductances

Clock-driven implementation
(no spike time interpolation)


	Brette - Dec 2007



from brian2 import *

# Parameters
area = 20000*umetre**2
Cm = (1*ufarad*cm**-2) * area
gl = (5e-5*siemens*cm**-2) * area

El = -60*mV
EK = -90*mV
ENa = 50*mV
g_na = (100*msiemens*cm**-2) * area
g_kd = (30*msiemens*cm**-2) * area
VT = -63*mV
# Time constants
taue = 5*ms
taui = 10*ms
# Reversal potentials
Ee = 0*mV
Ei = -80*mV
we = 6*nS  # excitatory synaptic weight
wi = 67*nS  # inhibitory synaptic weight

# The model
eqs = Equations('''
dv/dt = (gl*(El-v)+ge*(Ee-v)+gi*(Ei-v)-
         g_na*(m*m*m)*h*(v-ENa)-
         g_kd*(n*n*n*n)*(v-EK))/Cm : volt
dm/dt = alpha_m*(1-m)-beta_m*m : 1
dn/dt = alpha_n*(1-n)-beta_n*n : 1
dh/dt = alpha_h*(1-h)-beta_h*h : 1
dge/dt = -ge*(1./taue) : siemens
dgi/dt = -gi*(1./taui) : siemens
alpha_m = 0.32*(mV**-1)*(13*mV-v+VT)/
         (exp((13*mV-v+VT)/(4*mV))-1.)/ms : Hz
beta_m = 0.28*(mV**-1)*(v-VT-40*mV)/
        (exp((v-VT-40*mV)/(5*mV))-1)/ms : Hz
alpha_h = 0.128*exp((17*mV-v+VT)/(18*mV))/ms : Hz
beta_h = 4./(1+exp((40*mV-v+VT)/(5*mV)))/ms : Hz
alpha_n = 0.032*(mV**-1)*(15*mV-v+VT)/
         (exp((15*mV-v+VT)/(5*mV))-1.)/ms : Hz
beta_n = .5*exp((10*mV-v+VT)/(40*mV))/ms : Hz
''')

P = NeuronGroup(4000, model=eqs, threshold='v>-20*mV', refractory=3*ms,
                method='exponential_euler')
Pe = P[:3200]
Pi = P[3200:]
Ce = Synapses(Pe, P, on_pre='ge+=we')
Ci = Synapses(Pi, P, on_pre='gi+=wi')
Ce.connect(p=0.02)
Ci.connect(p=0.02)

# Initialization
P.v = 'El + (randn() * 5 - 5)*mV'
P.ge = '(randn() * 1.5 + 4) * 10.*nS'
P.gi = '(randn() * 12 + 20) * 10.*nS'

# Record a few traces
trace = StateMonitor(P, 'v', record=[1, 10, 100])
run(1 * second, report='text')
plot(trace.t/ms, trace[1].v/mV)
plot(trace.t/ms, trace[10].v/mV)
plot(trace.t/ms, trace[100].v/mV)
xlabel('t (ms)')
ylabel('v (mV)')
show()





[image: ../_images/COBAHH.1.png]
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Example: CUBA



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/CUBA.ipynb]






This is a Brian script implementing a benchmark described
in the following review paper:

Simulation of networks of spiking neurons: A review of tools and strategies
(2007). Brette, Rudolph, Carnevale, Hines, Beeman, Bower, Diesmann, Goodman,
Harris, Zirpe, Natschlager, Pecevski, Ermentrout, Djurfeldt, Lansner, Rochel,
Vibert, Alvarez, Muller, Davison, El Boustani and Destexhe.
Journal of Computational Neuroscience 23(3):349-98

Benchmark 2: random network of integrate-and-fire neurons with exponential
synaptic currents.

Clock-driven implementation with exact subthreshold integration
(but spike times are aligned to the grid).

from brian2 import *

taum = 20*ms
taue = 5*ms
taui = 10*ms
Vt = -50*mV
Vr = -60*mV
El = -49*mV

eqs = '''
dv/dt  = (ge+gi-(v-El))/taum : volt (unless refractory)
dge/dt = -ge/taue : volt
dgi/dt = -gi/taui : volt
'''

P = NeuronGroup(4000, eqs, threshold='v>Vt', reset='v = Vr', refractory=5*ms,
                method='linear')
P.v = 'Vr + rand() * (Vt - Vr)'
P.ge = 0*mV
P.gi = 0*mV

we = (60*0.27/10)*mV # excitatory synaptic weight (voltage)
wi = (-20*4.5/10)*mV # inhibitory synaptic weight
Ce = Synapses(P, P, on_pre='ge += we')
Ci = Synapses(P, P, on_pre='gi += wi')
Ce.connect('i<3200', p=0.02)
Ci.connect('i>=3200', p=0.02)

s_mon = SpikeMonitor(P)

run(1 * second)

plot(s_mon.t/ms, s_mon.i, ',k')
xlabel('Time (ms)')
ylabel('Neuron index')
show()





[image: ../_images/CUBA.1.png]
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Example: IF_curve_Hodgkin_Huxley



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/IF_curve_Hodgkin_Huxley.ipynb]






Input-Frequency curve of a HH model.
Network: 100 unconnected Hodgin-Huxley neurons with an input current I.
The input is set differently for each neuron.

This simulation should use exponential Euler integration.

from brian2 import *

num_neurons = 100
duration = 2*second

# Parameters
area = 20000*umetre**2
Cm = 1*ufarad*cm**-2 * area
gl = 5e-5*siemens*cm**-2 * area
El = -65*mV
EK = -90*mV
ENa = 50*mV
g_na = 100*msiemens*cm**-2 * area
g_kd = 30*msiemens*cm**-2 * area
VT = -63*mV

# The model
eqs = Equations('''
dv/dt = (gl*(El-v) - g_na*(m*m*m)*h*(v-ENa) - g_kd*(n*n*n*n)*(v-EK) + I)/Cm : volt
dm/dt = 0.32*(mV**-1)*(13.*mV-v+VT)/
    (exp((13.*mV-v+VT)/(4.*mV))-1.)/ms*(1-m)-0.28*(mV**-1)*(v-VT-40.*mV)/
    (exp((v-VT-40.*mV)/(5.*mV))-1.)/ms*m : 1
dn/dt = 0.032*(mV**-1)*(15.*mV-v+VT)/
    (exp((15.*mV-v+VT)/(5.*mV))-1.)/ms*(1.-n)-.5*exp((10.*mV-v+VT)/(40.*mV))/ms*n : 1
dh/dt = 0.128*exp((17.*mV-v+VT)/(18.*mV))/ms*(1.-h)-4./(1+exp((40.*mV-v+VT)/(5.*mV)))/ms*h : 1
I : amp
''')
# Threshold and refractoriness are only used for spike counting
group = NeuronGroup(num_neurons, eqs,
                    threshold='v > -40*mV',
                    refractory='v > -40*mV',
                    method='exponential_euler')
group.v = El
group.I = '0.7*nA * i / num_neurons'

monitor = SpikeMonitor(group)

run(duration)

plot(group.I/nA, monitor.count / duration)
xlabel('I (nA)')
ylabel('Firing rate (sp/s)')
show()





[image: ../_images/IF_curve_Hodgkin_Huxley.1.png]
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Example: IF_curve_LIF



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/IF_curve_LIF.ipynb]






Input-Frequency curve of a IF model.
Network: 1000 unconnected integrate-and-fire neurons (leaky IF)
with an input parameter v0.
The input is set differently for each neuron.

from brian2 import *

n = 1000
duration = 1*second
tau = 10*ms
eqs = '''
dv/dt = (v0 - v) / tau : volt (unless refractory)
v0 : volt
'''
group = NeuronGroup(n, eqs, threshold='v > 10*mV', reset='v = 0*mV',
                    refractory=5*ms, method='linear')
group.v = 0*mV
group.v0 = '20*mV * i / (n-1)'

monitor = SpikeMonitor(group)

run(duration)
plot(group.v0/mV, monitor.count / duration)
xlabel('v0 (mV)')
ylabel('Firing rate (sp/s)')
show()





[image: ../_images/IF_curve_LIF.1.png]
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Example: adaptive_threshold



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/adaptive_threshold.ipynb]






A model with adaptive threshold (increases with each spike)

from brian2 import *

eqs = '''
dv/dt = -v/(10*ms) : volt
dvt/dt = (10*mV-vt)/(15*ms) : volt
'''

reset = '''
v = 0*mV
vt += 3*mV
'''

IF = NeuronGroup(1, model=eqs, reset=reset, threshold='v>vt',
                 method='linear')
IF.vt = 10*mV
PG = PoissonGroup(1, 500 * Hz)

C = Synapses(PG, IF, on_pre='v += 3*mV')
C.connect()

Mv = StateMonitor(IF, 'v', record=True)
Mvt = StateMonitor(IF, 'vt', record=True)
# Record the value of v when the threshold is crossed
M_crossings = SpikeMonitor(IF, variables='v')
run(2*second, report='text')

subplot(1, 2, 1)
plot(Mv.t / ms, Mv[0].v / mV)
plot(Mvt.t / ms, Mvt[0].vt / mV)
ylabel('v (mV)')
xlabel('t (ms)')
# zoom in on the first 100ms
xlim(0, 100)
subplot(1, 2, 2)
hist(M_crossings.v / mV, bins=np.arange(10, 20, 0.5))
xlabel('v at threshold crossing (mV)')
show()





[image: ../_images/adaptive_threshold.1.png]
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Example: non_reliability



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/non_reliability.ipynb]






Reliability of spike timing.
See e.g. Mainen & Sejnowski (1995) for experimental results in vitro.

Here: a constant current is injected in all trials.

from brian2 import *

N = 25
tau = 20*ms
sigma = .015
eqs_neurons = '''
dx/dt = (1.1 - x) / tau + sigma * (2 / tau)**.5 * xi : 1 (unless refractory)
'''
neurons = NeuronGroup(N, model=eqs_neurons, threshold='x > 1', reset='x = 0',
                      refractory=5*ms, method='euler')
spikes = SpikeMonitor(neurons)

run(500*ms)
plot(spikes.t/ms, spikes.i, '.k')
xlabel('Time (ms)')
ylabel('Neuron index')
show()





[image: ../_images/non_reliability.1.png]
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Example: phase_locking



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/phase_locking.ipynb]






Phase locking of IF neurons to a periodic input.

from brian2 import *

tau = 20*ms
n = 100
b = 1.2 # constant current mean, the modulation varies
freq = 10*Hz

eqs = '''
dv/dt = (-v + a * sin(2 * pi * freq * t) + b) / tau : 1
a : 1
'''
neurons = NeuronGroup(n, model=eqs, threshold='v > 1', reset='v = 0',
                      method='euler')
neurons.v = 'rand()'
neurons.a = '0.05 + 0.7*i/n'
S = SpikeMonitor(neurons)
trace = StateMonitor(neurons, 'v', record=50)

run(1000*ms)
subplot(211)
plot(S.t/ms, S.i, '.k')
xlabel('Time (ms)')
ylabel('Neuron index')
subplot(212)
plot(trace.t/ms, trace.v.T)
xlabel('Time (ms)')
ylabel('v')
tight_layout()
show()





[image: ../_images/phase_locking.1.png]
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Example: reliability



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/reliability.ipynb]






Reliability of spike timing.
See e.g. Mainen & Sejnowski (1995) for experimental results in vitro.

from brian2 import *

# The common noisy input
N = 25
tau_input = 5*ms
input = NeuronGroup(1, 'dx/dt = -x / tau_input + (2 /tau_input)**.5 * xi : 1')

# The noisy neurons receiving the same input
tau = 10*ms
sigma = .015
eqs_neurons = '''
dx/dt = (0.9 + .5 * I - x) / tau + sigma * (2 / tau)**.5 * xi : 1
I : 1 (linked)
'''
neurons = NeuronGroup(N, model=eqs_neurons, threshold='x > 1',
                      reset='x = 0', refractory=5*ms, method='euler')
neurons.x = 'rand()'
neurons.I = linked_var(input, 'x') # input.x is continuously fed into neurons.I
spikes = SpikeMonitor(neurons)

run(500*ms)
plt.plot(spikes.t/ms, spikes.i, '.k')
xlabel('Time (ms)')
ylabel('Neuron index')
show()





[image: ../_images/reliability.1.png]
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Example: opencv_movie



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/advanced/opencv_movie.ipynb]






An example that uses a function from external C library (OpenCV in this case).
Works for all C-based code generation targets (i.e. for weave and cpp_standalone
device) and for numpy (using the Python bindings).

This example needs a working installation of OpenCV2 and its Python bindings.
It has been tested on Ubuntu 14.04 with OpenCV 2.4.8 (libopencv-dev and
python-opencv packages).

import os
import urllib2
import cv2  # Import OpenCV2
import cv2.cv as cv  # Import the cv subpackage, needed for some constants

from brian2 import *

defaultclock.dt = 1*ms
prefs.codegen.target = 'weave'
prefs.logging.std_redirection = False
set_device('cpp_standalone')
filename = os.path.abspath('Megamind.avi')

if not os.path.exists(filename):
    print('Downloading the example video file')
    response = urllib2.urlopen('http://docs.opencv.org/2.4/_downloads/Megamind.avi')
    data = response.read()
    with open(filename, 'wb') as f:
        f.write(data)

video = cv2.VideoCapture(filename)
width, height, frame_count = (int(video.get(cv.CV_CAP_PROP_FRAME_WIDTH)),
                              int(video.get(cv.CV_CAP_PROP_FRAME_HEIGHT)),
                              int(video.get(cv.CV_CAP_PROP_FRAME_COUNT)))
fps = 24
time_between_frames = 1*second/fps

# Links the necessary libraries
prefs.codegen.cpp.libraries += ['opencv_core',
                                'opencv_highgui']

# Includes the header files in all generated files
prefs.codegen.cpp.headers += ['<opencv2/core/core.hpp>',
                              '<opencv2/highgui/highgui.hpp>']

# Pass in values as macros
# Note that in general we could also pass in the filename this way, but to get
# the string quoting right is unfortunately quite difficult
prefs.codegen.cpp.define_macros += [('VIDEO_WIDTH', width),
                                    ('VIDEO_HEIGHT', height)]
@implementation('cpp', '''
double* get_frame(bool new_frame)
{
    // The following initializations will only be executed once
    static cv::VideoCapture source("VIDEO_FILENAME");
    static cv::Mat frame;
    static double* grayscale_frame = (double*)malloc(VIDEO_WIDTH*VIDEO_HEIGHT*sizeof(double));
    if (new_frame)
    {
        source >> frame;
        double mean_value = 0;
        for (int row=0; row<VIDEO_HEIGHT; row++)
            for (int col=0; col<VIDEO_WIDTH; col++)
            {
                const double grayscale_value = (frame.at<cv::Vec3b>(row, col)[0] +
                                                frame.at<cv::Vec3b>(row, col)[1] +
                                                frame.at<cv::Vec3b>(row, col)[2])/(3.0*128);
                mean_value += grayscale_value / (VIDEO_WIDTH * VIDEO_HEIGHT);
                grayscale_frame[row*VIDEO_WIDTH + col] = grayscale_value;
            }
        // subtract the mean
        for (int i=0; i<VIDEO_HEIGHT*VIDEO_WIDTH; i++)
            grayscale_frame[i] -= mean_value;
    }
    return grayscale_frame;
}

double video_input(const int x, const int y)
{
    // Get the current frame (or a new frame in case we are asked for the first
    // element
    double *frame = get_frame(x==0 && y==0);
    return frame[y*VIDEO_WIDTH + x];
}
'''.replace('VIDEO_FILENAME', filename))
@check_units(x=1, y=1, result=1)
def video_input(x, y):
    # we assume this will only be called in the custom operation (and not for
    # example in a reset or synaptic statement), so we don't need to do indexing
    # but we can directly return the full result
    _, frame = video.read()
    grayscale = frame.mean(axis=2)
    grayscale /= 128.  # scale everything between 0 and 2
    return grayscale.ravel() - grayscale.ravel().mean()


N = width * height
tau, tau_th = 10*ms, time_between_frames
G = NeuronGroup(N, '''dv/dt = (-v + I)/tau : 1
                      dv_th/dt = -v_th/tau_th : 1
                      row : integer (constant)
                      column : integer (constant)
                      I : 1 # input current''',
                threshold='v>v_th', reset='v=0; v_th = 3*v_th + 1.0',
                method='linear')
G.v_th = 1
G.row = 'i/width'
G.column = 'i%width'

G.run_regularly('I = video_input(column, row)',
                dt=time_between_frames)
mon = SpikeMonitor(G)
runtime = frame_count*time_between_frames
run(runtime, report='text')
device.build(compile=True, run=True)

# Avoid going through the whole Brian2 indexing machinery too much
i, t, row, column = mon.i[:], mon.t[:], G.row[:], G.column[:]

import matplotlib.animation as animation

# TODO: Use overlapping windows
stepsize = 100*ms
def next_spikes():
    step = next_spikes.step
    if step*stepsize > runtime:
        next_spikes.step=0
        raise StopIteration()
    spikes = i[(t>=step*stepsize) & (t<(step+1)*stepsize)]
    next_spikes.step += 1
    yield column[spikes], row[spikes]
next_spikes.step = 0

fig, ax = plt.subplots()
dots, = ax.plot([], [], 'k.', markersize=2, alpha=.25)
ax.set_xlim(0, width)
ax.set_ylim(0, height)
ax.invert_yaxis()
def run(data):
    x, y = data
    dots.set_data(x, y)

ani = animation.FuncAnimation(fig, run, next_spikes, blit=False, repeat=True,
                              repeat_delay=1000)
plt.show()
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Example: stochastic_odes



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/advanced/stochastic_odes.ipynb]






Demonstrate the correctness of the “derivative-free Milstein method” for
multiplicative noise.

from brian2 import *
# We only get exactly the same random numbers for the exact solution and the
# simulation if we use the numpy code generation target
prefs.codegen.target = 'numpy'

# setting a random seed makes all variants use exactly the same Wiener process
seed = 12347

X0 = 1
mu = 0.5/second # drift
sigma = 0.1/second #diffusion

runtime = 1*second


def simulate(method, dt):
    '''
    simulate geometrical Brownian with the given method
    '''
    np.random.seed(seed)
    G = NeuronGroup(1, 'dX/dt = (mu - 0.5*second*sigma**2)*X + X*sigma*xi*second**.5: 1',
                    dt=dt, method=method)
    G.X = X0
    mon = StateMonitor(G, 'X', record=True)
    net = Network(G, mon)
    net.run(runtime)
    return mon.t_[:], mon.X.flatten()


def exact_solution(t, dt):
    '''
    Return the exact solution for geometrical Brownian motion at the given
    time points
    '''
    # Remove units for simplicity
    my_mu = float(mu)
    my_sigma = float(sigma)
    dt = float(dt)
    t = asarray(t)

    np.random.seed(seed)
    # We are calculating the values at the *start* of a time step, as when using
    # a StateMonitor. Therefore the Brownian motion starts with zero
    brownian = np.hstack([0, cumsum(sqrt(dt) * np.random.randn(len(t)-1))])

    return (X0 * exp((my_mu - 0.5*my_sigma**2)*(t+dt) + my_sigma*brownian))

figure(1, figsize=(16, 7))
figure(2, figsize=(16, 7))

methods = ['milstein', 'heun']
dts = [1*ms, 0.5*ms, 0.2*ms, 0.1*ms, 0.05*ms, 0.025*ms, 0.01*ms, 0.005*ms]

rows = floor(sqrt(len(dts)))
cols = ceil(1.0 * len(dts) / rows)
errors = dict([(method, zeros(len(dts))) for method in methods])
for dt_idx, dt in enumerate(dts):
    print('dt: %s' % dt)
    trajectories = {}
    # Test the numerical methods
    for method in methods:
        t, trajectories[method] = simulate(method, dt)
    # Calculate the exact solution
    exact = exact_solution(t, dt)

    for method in methods:
        # plot the trajectories
        figure(1)
        subplot(rows, cols, dt_idx+1)
        plot(t, trajectories[method], label=method, alpha=0.75)

        # determine the mean absolute error
        errors[method][dt_idx] = mean(abs(trajectories[method] - exact))
        # plot the difference to the real trajectory
        figure(2)
        subplot(rows, cols, dt_idx+1)
        plot(t, trajectories[method] - exact, label=method, alpha=0.75)

    figure(1)
    plot(t, exact, color='gray', lw=2, label='exact', alpha=0.75)
    title('dt = %s' % str(dt))
    xticks([])

figure(1)
legend(frameon=False, loc='best')
tight_layout()

figure(2)
legend(frameon=False, loc='best')
tight_layout()

figure(3)
for method in methods:
    plot(array(dts) / ms, errors[method], 'o', label=method)
legend(frameon=False, loc='best')
xscale('log')
yscale('log')
xlabel('dt (ms)')
ylabel('Mean absolute error')
tight_layout()

show()





[image: ../_images/advanced.stochastic_odes.1.png]
[image: ../_images/advanced.stochastic_odes.2.png]
[image: ../_images/advanced.stochastic_odes.3.png]
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Example: bipolar_cell



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/compartmental/bipolar_cell.ipynb]






A pseudo MSO neuron, with two dendrites and one axon (fake geometry).

from brian2 import *

# Morphology
morpho = Soma(30*um)
morpho.axon = Cylinder(diameter=1*um, length=300*um, n=100)
morpho.L = Cylinder(diameter=1*um, length=100*um, n=50)
morpho.R = Cylinder(diameter=1*um, length=150*um, n=50)

# Passive channels
gL = 1e-4*siemens/cm**2
EL = -70*mV
eqs='''
Im = gL * (EL - v) : amp/meter**2
I : amp (point current)
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs,
                       Cm=1*uF/cm**2, Ri=100*ohm*cm, method='exponential_euler')
neuron.v = EL
neuron.I = 0*amp

# Monitors
mon_soma = StateMonitor(neuron, 'v', record=[0])
mon_L = StateMonitor(neuron.L, 'v', record=True)
mon_R = StateMonitor(neuron, 'v', record=morpho.R[75*um])

run(1*ms)
neuron.I[morpho.L[50*um]] = 0.2*nA  # injecting in the left dendrite
run(5*ms)
neuron.I = 0*amp
run(50*ms, report='text')

subplot(211)
plot(mon_L.t/ms, mon_soma[0].v/mV, 'k')
plot(mon_L.t/ms, mon_L[morpho.L[50*um]].v/mV, 'r')
plot(mon_L.t/ms, mon_R[morpho.R[75*um]].v/mV, 'b')
ylabel('v (mV)')
subplot(212)
for x in linspace(0*um, 100*um, 10, endpoint=False):
    plot(mon_L.t/ms, mon_L[morpho.L[x]].v/mV)
xlabel('Time (ms)')
ylabel('v (mV)')
show()





[image: ../_images/compartmental.bipolar_cell.1.png]




          

      

      

    

  

  
    
    
    Example: bipolar_with_inputs
    
    

    

    
 
  
  

    
      
          
            
  
Example: bipolar_with_inputs



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/compartmental/bipolar_with_inputs.ipynb]






A pseudo MSO neuron, with two dendrites (fake geometry).
There are synaptic inputs.

from brian2 import *

# Morphology
morpho = Soma(30*um)
morpho.L = Cylinder(diameter=1*um, length=100*um, n=50)
morpho.R = Cylinder(diameter=1*um, length=100*um, n=50)

# Passive channels
gL = 1e-4*siemens/cm**2
EL = -70*mV
Es = 0*mV
eqs='''
Im = gL*(EL-v) : amp/meter**2
Is = gs*(Es-v) : amp (point current)
gs : siemens
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs,
                       Cm=1*uF/cm**2, Ri=100*ohm*cm, method='exponential_euler')
neuron.v = EL

# Regular inputs
stimulation = NeuronGroup(2, 'dx/dt = 300*Hz : 1', threshold='x>1', reset='x=0',
                          method='euler')
stimulation.x = [0, 0.5]  # Asynchronous

# Synapses
taus = 1*ms
w = 20*nS
S = Synapses(stimulation, neuron, model='''dg/dt = -g/taus : siemens (clock-driven)
                                           gs_post = g : siemens (summed)''',
             on_pre='g += w', method='linear')

S.connect(i=0, j=morpho.L[-1])
S.connect(i=1, j=morpho.R[-1])

# Monitors
mon_soma = StateMonitor(neuron, 'v', record=[0])
mon_L = StateMonitor(neuron.L, 'v', record=True)
mon_R = StateMonitor(neuron.R, 'v',
                     record=morpho.R[-1])

run(50*ms, report='text')

subplot(211)
plot(mon_L.t/ms, mon_soma[0].v/mV, 'k')
plot(mon_L.t/ms, mon_L[morpho.L[-1]].v/mV, 'r')
plot(mon_L.t/ms, mon_R[morpho.R[-1]].v/mV, 'b')
ylabel('v (mV)')
subplot(212)
for x in linspace(0*um, 100*um, 10, endpoint=False):
    plot(mon_L.t/ms, mon_L[morpho.L[x]].v/mV)
xlabel('Time (ms)')
ylabel('v (mV)')
show()





[image: ../_images/compartmental.bipolar_with_inputs.1.png]
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Example: bipolar_with_inputs2



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/compartmental/bipolar_with_inputs2.ipynb]






A pseudo MSO neuron, with two dendrites (fake geometry).
There are synaptic inputs.
Second method.

from brian2 import *

# Morphology
morpho = Soma(30*um)
morpho.L = Cylinder(diameter=1*um, length=100*um, n=50)
morpho.R = Cylinder(diameter=1*um, length=100*um, n=50)

# Passive channels
gL = 1e-4*siemens/cm**2
EL = -70*mV
Es = 0*mV
taus = 1*ms
eqs='''
Im = gL*(EL-v) : amp/meter**2
Is = gs*(Es-v) : amp (point current)
dgs/dt = -gs/taus : siemens
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs,
                       Cm=1*uF/cm**2, Ri=100*ohm*cm, method='exponential_euler')
neuron.v = EL

# Regular inputs
stimulation = NeuronGroup(2, 'dx/dt = 300*Hz : 1', threshold='x>1', reset='x=0',
                          method='euler')
stimulation.x = [0, 0.5] # Asynchronous

# Synapses
w = 20*nS
S = Synapses(stimulation, neuron,on_pre='gs += w')
S.connect(i=0, j=morpho.L[99.9*um])
S.connect(i=1, j=morpho.R[99.9*um])

# Monitors
mon_soma = StateMonitor(neuron, 'v', record=[0])
mon_L = StateMonitor(neuron.L, 'v', record=True)
mon_R = StateMonitor(neuron, 'v', record=morpho.R[99.9*um])

run(50*ms, report='text')

subplot(211)
plot(mon_L.t/ms, mon_soma[0].v/mV, 'k')
plot(mon_L.t/ms, mon_L[morpho.L[99.9*um]].v/mV, 'r')
plot(mon_L.t/ms, mon_R[morpho.R[99.9*um]].v/mV, 'b')
ylabel('v (mV)')
subplot(212)
for i in [0, 5, 10, 15, 20, 25, 30, 35, 40, 45]:
    plot(mon_L.t/ms, mon_L.v[i, :]/mV)
xlabel('Time (ms)')
ylabel('v (mV)')
show()





[image: ../_images/compartmental.bipolar_with_inputs2.1.png]
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Example: cylinder



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/compartmental/cylinder.ipynb]






A short cylinder with constant injection at one end.

from brian2 import *

defaultclock.dt = 0.01*ms

# Morphology
diameter = 1*um
length = 300*um
Cm = 1*uF/cm**2
Ri = 150*ohm*cm
N = 200
morpho = Cylinder(diameter=diameter, length=length, n=N)

# Passive channels
gL = 1e-4*siemens/cm**2
EL = -70*mV
eqs = '''
Im = gL * (EL - v) : amp/meter**2
I : amp (point current)
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=Cm, Ri=Ri,
                       method='exponential_euler')
neuron.v = EL

la = neuron.space_constant[0]
print("Electrotonic length: %s" % la)

neuron.I[0] = 0.02*nA # injecting at the left end
run(100*ms, report='text')

plot(neuron.distance/um, neuron.v/mV, 'kx')
# Theory
x = neuron.distance
ra = la * 4 * Ri / (pi * diameter**2)
theory = EL + ra * neuron.I[0] * cosh((length - x) / la) / sinh(length / la)
plot(x/um, theory/mV, 'r')
xlabel('x (um)')
ylabel('v (mV)')
show()





[image: ../_images/compartmental.cylinder.1.png]
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Example: hh_with_spikes



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/compartmental/hh_with_spikes.ipynb]






Hodgkin-Huxley equations (1952).
Spikes are recorded along the axon, and then velocity is calculated.

from brian2 import *
from scipy import stats

defaultclock.dt = 0.01*ms

morpho = Cylinder(length=10*cm, diameter=2*238*um, n=1000, type='axon')

El = 10.613*mV
ENa = 115*mV
EK = -12*mV
gl = 0.3*msiemens/cm**2
gNa0 = 120*msiemens/cm**2
gK = 36*msiemens/cm**2

# Typical equations
eqs = '''
# The same equations for the whole neuron, but possibly different parameter values
# distributed transmembrane current
Im = gl * (El-v) + gNa * m**3 * h * (ENa-v) + gK * n**4 * (EK-v) : amp/meter**2
I : amp (point current) # applied current
dm/dt = alpham * (1-m) - betam * m : 1
dn/dt = alphan * (1-n) - betan * n : 1
dh/dt = alphah * (1-h) - betah * h : 1
alpham = (0.1/mV) * (-v+25*mV) / (exp((-v+25*mV) / (10*mV)) - 1)/ms : Hz
betam = 4 * exp(-v/(18*mV))/ms : Hz
alphah = 0.07 * exp(-v/(20*mV))/ms : Hz
betah = 1/(exp((-v+30*mV) / (10*mV)) + 1)/ms : Hz
alphan = (0.01/mV) * (-v+10*mV) / (exp((-v+10*mV) / (10*mV)) - 1)/ms : Hz
betan = 0.125*exp(-v/(80*mV))/ms : Hz
gNa : siemens/meter**2
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs, method="exponential_euler",
                       refractory="m > 0.4", threshold="m > 0.5",
                       Cm=1*uF/cm**2, Ri=35.4*ohm*cm)
neuron.v = 0*mV
neuron.h = 1
neuron.m = 0
neuron.n = .5
neuron.I = 0*amp
neuron.gNa = gNa0
M = StateMonitor(neuron, 'v', record=True)
spikes = SpikeMonitor(neuron)

run(50*ms, report='text')
neuron.I[0] = 1*uA # current injection at one end
run(3*ms)
neuron.I = 0*amp
run(50*ms, report='text')

# Calculation of velocity
slope, intercept, r_value, p_value, std_err = stats.linregress(spikes.t/second,
                                                neuron.distance[spikes.i]/meter)
print("Velocity = %.2f m/s" % slope)

subplot(211)
for i in range(10):
    plot(M.t/ms, M.v.T[:, i*100]/mV)
ylabel('v')
subplot(212)
plot(spikes.t/ms, spikes.i*neuron.length[0]/cm, '.k')
plot(spikes.t/ms, (intercept+slope*(spikes.t/second))/cm, 'r')
xlabel('Time (ms)')
ylabel('Position (cm)')
show()





[image: ../_images/compartmental.hh_with_spikes.1.png]
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Example: hodgkin_huxley_1952



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/compartmental/hodgkin_huxley_1952.ipynb]






Hodgkin-Huxley equations (1952).

from brian2 import *

morpho = Cylinder(length=10*cm, diameter=2*238*um, n=1000, type='axon')

El = 10.613*mV
ENa = 115*mV
EK = -12*mV
gl = 0.3*msiemens/cm**2
gNa0 = 120*msiemens/cm**2
gK = 36*msiemens/cm**2

# Typical equations
eqs = '''
# The same equations for the whole neuron, but possibly different parameter values
# distributed transmembrane current
Im = gl * (El-v) + gNa * m**3 * h * (ENa-v) + gK * n**4 * (EK-v) : amp/meter**2
I : amp (point current) # applied current
dm/dt = alpham * (1-m) - betam * m : 1
dn/dt = alphan * (1-n) - betan * n : 1
dh/dt = alphah * (1-h) - betah * h : 1
alpham = (0.1/mV) * (-v+25*mV) / (exp((-v+25*mV) / (10*mV)) - 1)/ms : Hz
betam = 4 * exp(-v/(18*mV))/ms : Hz
alphah = 0.07 * exp(-v/(20*mV))/ms : Hz
betah = 1/(exp((-v+30*mV) / (10*mV)) + 1)/ms : Hz
alphan = (0.01/mV) * (-v+10*mV) / (exp((-v+10*mV) / (10*mV)) - 1)/ms : Hz
betan = 0.125*exp(-v/(80*mV))/ms : Hz
gNa : siemens/meter**2
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=1*uF/cm**2,
                       Ri=35.4*ohm*cm, method="exponential_euler")
neuron.v = 0*mV
neuron.h = 1
neuron.m = 0
neuron.n = .5
neuron.I = 0
neuron.gNa = gNa0
neuron[5*cm:10*cm].gNa = 0*siemens/cm**2
M = StateMonitor(neuron, 'v', record=True)

run(50*ms, report='text')
neuron.I[0] = 1*uA  # current injection at one end
run(3*ms)
neuron.I = 0*amp
run(100*ms, report='text')
for i in range(75, 125, 1):
    plot(cumsum(neuron.length)/cm, i+(1./60)*M.v[:, i*5]/mV, 'k')
yticks([])
ylabel('Time [major] v (mV) [minor]')
xlabel('Position (cm)')
axis('tight')
show()





[image: ../_images/compartmental.hodgkin_huxley_1952.1.png]
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Example: infinite_cable



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/compartmental/infinite_cable.ipynb]






An (almost) infinite cable with pulse injection in the middle.

from brian2 import *

defaultclock.dt = 0.001*ms

# Morphology
diameter = 1*um
Cm = 1*uF/cm**2
Ri = 100*ohm*cm
N = 500
morpho = Cylinder(diameter=diameter, length=3*mm, n=N)

# Passive channels
gL = 1e-4*siemens/cm**2
EL = -70*mV
eqs = '''
Im = gL * (EL-v) : amp/meter**2
I : amp (point current)
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=Cm, Ri=Ri,
                       method = 'exponential_euler')
neuron.v = EL

taum = Cm  /gL  # membrane time constant
print("Time constant: %s" % taum)
la = neuron.space_constant[0]
print("Characteristic length: %s" % la)

# Monitors
mon = StateMonitor(neuron, 'v', record=range(0, N//2, 20))

neuron.I[len(neuron) // 2] = 1*nA  # injecting in the middle
run(0.02*ms)
neuron.I = 0*amp
run(10*ms, report='text')

t = mon.t
plot(t/ms, mon.v.T/mV, 'k')
# Theory (incorrect near cable ends)
for i in range(0, len(neuron)//2, 20):
    x = (len(neuron)/2 - i) * morpho.length[0]
    theory = (1/(la*Cm*pi*diameter) * sqrt(taum / (4*pi*(t + defaultclock.dt))) *
              exp(-(t+defaultclock.dt)/taum -
                  taum / (4*(t+defaultclock.dt))*(x/la)**2))
    theory = EL + theory * 1*nA * 0.02*ms
    plot(t/ms, theory/mV, 'r')
xlabel('Time (ms)')
ylabel('v (mV')
show()





[image: ../_images/compartmental.infinite_cable.1.png]
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Example: lfp



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/compartmental/lfp.ipynb]






Hodgkin-Huxley equations (1952)

We calculate the extracellular field potential at various places.

from brian2 import *
defaultclock.dt = 0.01*ms
morpho = Cylinder(x=[0, 10]*cm, diameter=2*238*um, n=1000, type='axon')

El = 10.613* mV
ENa = 115*mV
EK = -12*mV
gl = 0.3*msiemens/cm**2
gNa0 = 120*msiemens/cm**2
gK = 36*msiemens/cm**2

# Typical equations
eqs = '''
# The same equations for the whole neuron, but possibly different parameter values
# distributed transmembrane current
Im = gl * (El-v) + gNa * m**3 * h * (ENa-v) + gK * n**4 * (EK-v) : amp/meter**2
I : amp (point current) # applied current
dm/dt = alpham * (1-m) - betam * m : 1
dn/dt = alphan * (1-n) - betan * n : 1
dh/dt = alphah * (1-h) - betah * h : 1
alpham = (0.1/mV) * (-v+25*mV) / (exp((-v+25*mV) / (10*mV)) - 1)/ms : Hz
betam = 4 * exp(-v/(18*mV))/ms : Hz
alphah = 0.07 * exp(-v/(20*mV))/ms : Hz
betah = 1/(exp((-v+30*mV) / (10*mV)) + 1)/ms : Hz
alphan = (0.01/mV) * (-v+10*mV) / (exp((-v+10*mV) / (10*mV)) - 1)/ms : Hz
betan = 0.125*exp(-v/(80*mV))/ms : Hz
gNa : siemens/meter**2
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=1*uF/cm**2,
                       Ri=35.4*ohm*cm, method="exponential_euler")
neuron.v = 0*mV
neuron.h = 1
neuron.m = 0
neuron.n = .5
neuron.I = 0
neuron.gNa = gNa0
neuron[5*cm:10*cm].gNa = 0*siemens/cm**2
M = StateMonitor(neuron, 'v', record=True)

# LFP recorder
Ne = 5 # Number of electrodes
sigma = 0.3*siemens/meter # Resistivity of extracellular field (0.3-0.4 S/m)
lfp = NeuronGroup(Ne,model='''v : volt
                              x : meter
                              y : meter
                              z : meter''')
lfp.x = 7*cm # Off center (to be far from stimulating electrode)
lfp.y = [1*mm, 2*mm, 4*mm, 8*mm, 16*mm]
S = Synapses(neuron,lfp,model='''w : ohm*meter**2 (constant) # Weight in the LFP calculation
                                 v_post = w*(Ic_pre-Im_pre) : volt (summed)''')
S.summed_updaters['v_post'].when = 'after_groups'  # otherwise Ic has not yet been updated for the current time step.
S.connect()
S.w = 'area_pre/(4*pi*sigma)/((x_pre-x_post)**2+(y_pre-y_post)**2+(z_pre-z_post)**2)**.5'

Mlfp = StateMonitor(lfp,'v',record=True)

run(50*ms, report='text')
neuron.I[0] = 1*uA  # current injection at one end
run(3*ms)
neuron.I = 0*amp
run(100*ms, report='text')

subplot(211)
for i in range(10):
    plot(M.t/ms,M.v[i*100]/mV)
ylabel('$V_m$ (mV)')
subplot(212)
for i in range(5):
    plot(M.t/ms,Mlfp.v[i]/mV)
ylabel('LFP (mV)')
xlabel('Time (ms)')
show()





[image: ../_images/compartmental.lfp.1.png]
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Example: morphotest



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/compartmental/morphotest.ipynb]






from brian2 import *

# Morphology
morpho = Soma(30*um)
morpho.L = Cylinder(diameter=1*um, length=100*um, n=5)
morpho.LL = Cylinder(diameter=1*um, length=20*um, n=2)
morpho.R = Cylinder(diameter=1*um, length=100*um, n=5)

# Passive channels
gL = 1e-4*siemens/cm**2
EL = -70*mV
eqs = '''
Im = gL * (EL-v) : amp/meter**2
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs,
                       Cm=1*uF/cm**2, Ri=100*ohm*cm, method='exponential_euler')
neuron.v = arange(0, 13)*volt

print(neuron.v)
print(neuron.L.v)
print(neuron.LL.v)
print(neuron.L.main.v)
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Example: rall



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/compartmental/rall.ipynb]






A cylinder plus two branches, with diameters according to Rall’s formula

from brian2 import *

defaultclock.dt = 0.01*ms

# Passive channels
gL = 1e-4*siemens/cm**2
EL = -70*mV

# Morphology
diameter = 1*um
length = 300*um
Cm = 1*uF/cm**2
Ri = 150*ohm*cm
N = 500
rm = 1 / (gL * pi * diameter)  # membrane resistance per unit length
ra = (4 * Ri)/(pi * diameter**2)  # axial resistance per unit length
la = sqrt(rm / ra) # space length
morpho = Cylinder(diameter=diameter, length=length, n=N)
d1 = 0.5*um
L1 = 200*um
rm = 1 / (gL * pi * d1) # membrane resistance per unit length
ra = (4 * Ri) / (pi * d1**2) # axial resistance per unit length
l1 = sqrt(rm / ra) # space length
morpho.L = Cylinder(diameter=d1, length=L1, n=N)
d2 = (diameter**1.5 - d1**1.5)**(1. / 1.5)
rm = 1/(gL * pi * d2) # membrane resistance per unit length
ra = (4 * Ri) / (pi * d2**2) # axial resistance per unit length
l2 = sqrt(rm / ra) # space length
L2 = (L1 / l1) * l2
morpho.R = Cylinder(diameter=d2, length=L2, n=N)

eqs='''
Im = gL * (EL-v) : amp/meter**2
I : amp (point current)
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=Cm, Ri=Ri,
                       method='exponential_euler')
neuron.v = EL

neuron.I[0] = 0.02*nA # injecting at the left end
run(100*ms, report='text')

plot(neuron.main.distance/um, neuron.main.v/mV, 'k')
plot(neuron.L.distance/um, neuron.L.v/mV, 'k')
plot(neuron.R.distance/um, neuron.R.v/mV, 'k')
# Theory
x = neuron.main.distance
ra = la * 4 * Ri/(pi * diameter**2)
l = length/la + L1/l1
theory = EL + ra*neuron.I[0]*cosh(l - x/la)/sinh(l)
plot(x/um, theory/mV, 'r')
x = neuron.L.distance
theory = (EL+ra*neuron.I[0]*cosh(l - neuron.main.distance[-1]/la -
                                 (x - neuron.main.distance[-1])/l1)/sinh(l))
plot(x/um, theory/mV, 'r')
x = neuron.R.distance
theory = (EL+ra*neuron.I[0]*cosh(l - neuron.main.distance[-1]/la -
                                 (x - neuron.main.distance[-1])/l2)/sinh(l))
plot(x/um, theory/mV, 'r')
xlabel('x (um)')
ylabel('v (mV)')
show()





[image: ../_images/compartmental.rall.1.png]
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Example: spike_initiation



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/compartmental/spike_initiation.ipynb]






Ball and stick with Na and K channels

from brian2 import *

defaultclock.dt = 0.025*ms

# Morphology
morpho = Soma(30*um)
morpho.axon = Cylinder(diameter=1*um, length=300*um, n=100)

# Channels
gL = 1e-4*siemens/cm**2
EL = -70*mV
ENa = 50*mV
ka = 6*mV
ki = 6*mV
va = -30*mV
vi = -50*mV
EK = -90*mV
vk = -20*mV
kk = 8*mV
eqs = '''
Im = gL*(EL-v)+gNa*m*h*(ENa-v)+gK*n*(EK-v) : amp/meter**2
dm/dt = (minf-m)/(0.3*ms) : 1 # simplified Na channel
dh/dt = (hinf-h)/(3*ms) : 1 # inactivation
dn/dt = (ninf-n)/(5*ms) : 1 # K+
minf = 1/(1+exp((va-v)/ka)) : 1
hinf = 1/(1+exp((v-vi)/ki)) : 1
ninf = 1/(1+exp((vk-v)/kk)) : 1
I : amp (point current)
gNa : siemens/meter**2
gK : siemens/meter**2
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs,
                       Cm=1*uF/cm**2, Ri=100*ohm*cm, method='exponential_euler')
neuron.v = -65*mV
neuron.I = 0*amp
neuron.axon[30*um:60*um].gNa = 700*gL
neuron.axon[30*um:60*um].gK = 700*gL

# Monitors
mon=StateMonitor(neuron, 'v', record=True)

run(1*ms)
neuron.main.I = 0.15*nA
run(50*ms)
neuron.I = 0*amp
run(95*ms, report='text')

plot(mon.t/ms, mon.v[0]/mV, 'r')
plot(mon.t/ms, mon.v[20]/mV, 'g')
plot(mon.t/ms, mon.v[40]/mV, 'b')
plot(mon.t/ms, mon.v[60]/mV, 'k')
plot(mon.t/ms, mon.v[80]/mV, 'y')
xlabel('Time (ms)')
ylabel('v (mV)')
show()





[image: ../_images/compartmental.spike_initiation.1.png]
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Example: Brette_2004



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/frompapers/Brette_2004.ipynb]







Phase locking in leaky integrate-and-fire model

Fig. 2A from:
Brette R (2004). Dynamics of one-dimensional spiking neuron models.
J Math Biol 48(1): 38-56.

This shows the phase-locking structure of a LIF driven by a sinusoidal
current. When the current crosses the threshold (a<3), the model
almost always phase locks (in a measure-theoretical sense).

from brian2 import *

# defaultclock.dt = 0.01*ms  # for a more precise picture
N = 2000
tau = 100*ms
freq = 1/tau

eqs = '''
dv/dt = (-v + a + 2*sin(2*pi*t/tau))/tau : 1
a : 1
'''

neurons = NeuronGroup(N, eqs, threshold='v>1', reset='v=0', method='euler')
neurons.a = linspace(2, 4, N)

run(5*second, report='text')  # discard the first spikes (wait for convergence)
S = SpikeMonitor(neurons)
run(5*second, report='text')

i, t = S.it
plot((t % tau)/tau, neurons.a[i], ',')
xlabel('Spike phase')
ylabel('Parameter a')
show()





[image: ../_images/frompapers.Brette_2004.1.png]
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Example: Brette_Gerstner_2005



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/frompapers/Brette_Gerstner_2005.ipynb]






Adaptive exponential integrate-and-fire model.
http://www.scholarpedia.org/article/Adaptive_exponential_integrate-and-fire_model

Introduced in Brette R. and Gerstner W. (2005), Adaptive Exponential
Integrate-and-Fire Model as an Effective Description of Neuronal Activity,
J. Neurophysiol. 94: 3637 - 3642.

from brian2 import *

# Parameters
C = 281 * pF
gL = 30 * nS
taum = C / gL
EL = -70.6 * mV
VT = -50.4 * mV
DeltaT = 2 * mV
Vcut = VT + 5 * DeltaT

# Pick an electrophysiological behaviour
tauw, a, b, Vr = 144*ms, 4*nS, 0.0805*nA, -70.6*mV # Regular spiking (as in the paper)
#tauw,a,b,Vr=20*ms,4*nS,0.5*nA,VT+5*mV # Bursting
#tauw,a,b,Vr=144*ms,2*C/(144*ms),0*nA,-70.6*mV # Fast spiking

eqs = """
dvm/dt = (gL*(EL - vm) + gL*DeltaT*exp((vm - VT)/DeltaT) + I - w)/C : volt
dw/dt = (a*(vm - EL) - w)/tauw : amp
I : amp
"""

neuron = NeuronGroup(1, model=eqs, threshold='vm>Vcut',
                     reset="vm=Vr; w+=b", method='euler')
neuron.vm = EL
trace = StateMonitor(neuron, 'vm', record=0)
spikes = SpikeMonitor(neuron)

run(20 * ms)
neuron.I = 1*nA
run(100 * ms)
neuron.I = 0*nA
run(20 * ms)

# We draw nicer spikes
vm = trace[0].vm[:]
for t in spikes.t:
    i = int(t / defaultclock.dt)
    vm[i] = 20*mV

plot(trace.t / ms, vm / mV)
xlabel('time (ms)')
ylabel('membrane potential (mV)')
show()





[image: ../_images/frompapers.Brette_Gerstner_2005.1.png]
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Example: Brette_Guigon_2003



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/frompapers/Brette_Guigon_2003.ipynb]







Reliability of spike timing

Adapted from Fig. 10D,E of
Brette R and E Guigon (2003). Reliability of Spike Timing Is a General Property
of Spiking Model Neurons. Neural Computation 15, 279-308.

This shows that reliability of spike timing is a generic property of spiking
neurons, even those that are not leaky.
This is a non-physiological model which can be leaky or anti-leaky depending
on the sign of the input I.

All neurons receive the same fluctuating input, scaled by a parameter p that
varies across neurons. This shows:


	reproducibility of spike timing

	robustness with respect to deterministic changes (parameter)

	increased reproducibility in the fluctuation-driven regime (input crosses
the threshold)



from brian2 import *

N = 500
tau = 33*ms
taux = 20*ms
sigma = 0.02

eqs_input = '''
dx/dt = -x/taux + (2/taux)**.5*xi : 1
'''

eqs = '''
dv/dt = (v*I + 1)/tau + sigma*(2/tau)**.5*xi : 1
I = 0.5 + 3*p*B : 1
B = 2./(1 + exp(-2*x)) - 1 : 1 (shared)
p : 1
x : 1 (linked)
'''

input = NeuronGroup(1, eqs_input, method='euler')
neurons = NeuronGroup(N, eqs, threshold='v>1', reset='v=0', method='euler')
neurons.p = '1.0*i/N'
neurons.v = 'rand()'
neurons.x = linked_var(input, 'x')

M = StateMonitor(neurons, 'B', record=0)
S = SpikeMonitor(neurons)

run(1000*ms, report='text')

subplot(211)  # The input
plot(M.t/ms, M[0].B)
xticks([])
title('shared input')
subplot(212)
plot(S.t/ms, neurons.p[S.i], ',')
plot([0, 1000], [.5, .5], color='C1')
xlabel('time (ms)')
ylabel('p')
title('spiking activity')
show()





[image: ../_images/frompapers.Brette_Guigon_2003.1.png]
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Example: Brunel_Hakim_1999



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/frompapers/Brunel_Hakim_1999.ipynb]






Dynamics of a network of sparsely connected inhibitory current-based
integrate-and-fire neurons. Individual neurons fire irregularly at
low rate but the network is in an oscillatory global activity regime
where neurons are weakly synchronized.


	Reference:

	“Fast Global Oscillations in Networks of Integrate-and-Fire
Neurons with Low Firing Rates”
Nicolas Brunel & Vincent Hakim
Neural Computation 11, 1621-1671 (1999)



from brian2 import *

N = 5000
Vr = 10*mV
theta = 20*mV
tau = 20*ms
delta = 2*ms
taurefr = 2*ms
duration = .1*second
C = 1000
sparseness = float(C)/N
J = .1*mV
muext = 25*mV
sigmaext = 1*mV

eqs = """
dV/dt = (-V+muext + sigmaext * sqrt(tau) * xi)/tau : volt
"""

group = NeuronGroup(N, eqs, threshold='V>theta',
                    reset='V=Vr', refractory=taurefr, method='euler')
group.V = Vr
conn = Synapses(group, group, on_pre='V += -J', delay=delta)
conn.connect(p=sparseness)
M = SpikeMonitor(group)
LFP = PopulationRateMonitor(group)

run(duration)

subplot(211)
plot(M.t/ms, M.i, '.')
xlim(0, duration/ms)

subplot(212)
plot(LFP.t/ms, LFP.smooth_rate(window='flat', width=0.5*ms)/Hz)
xlim(0, duration/ms)

show()





[image: ../_images/frompapers.Brunel_Hakim_1999.1.png]
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Example: Clopath_et_al_2010_homeostasis



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/frompapers/Clopath_et_al_2010_homeostasis.ipynb]






This code contains an adapted version of the voltage-dependent triplet STDP rule from:
Clopath et al., Connectivity reflects coding: a model of voltage-based STDP with homeostasis, Nature Neuroscience, 2010
(http://dx.doi.org/10.1038/nn.2479)

The plasticity rule is adapted for a leaky integrate & fire model in Brian2.
More specifically, the filters v_lowpass1 and v_lowpass2 are
incremented by a constant at every post-synaptic spike time, to
compensate for the lack of an actual spike in the integrate & fire model.

As an illustration of the rule, we simulate the competition between
inputs projecting on a downstream neuron. We would like to note that the
parameters have been chosen arbitrarily to qualitatively reproduce the
behavior of the original work, but need additional fitting.

We kindly ask to cite the article when using the model presented below.

This code was written by Jacopo Bono, 12/2015

from brian2 import *

################################################################################
# PLASTICITY MODEL
################################################################################

#### Plasticity Parameters

V_rest = -70.*mV        # resting potential
V_thresh = -55.*mV      # spiking threshold
Theta_low = V_rest      # depolarization threshold for plasticity
x_reset = 1.            # spike trace reset value
taux = 15.*ms           # spike trace time constant
A_LTD = 1.5e-4          # depression amplitude
A_LTP = 1.5e-2          # potentiation amplitude
tau_lowpass1 = 40*ms    # timeconstant for low-pass filtered voltage
tau_lowpass2 = 30*ms    # timeconstant for low-pass filtered voltage
tau_homeo = 1000*ms     # homeostatic timeconstant
v_target = 12*mV**2     # target depolarisation

#### Plasticity Equations

# equations executed at every timestepC
Syn_model =   ('''
            w_ampa:1                # synaptic weight (ampa synapse)
            ''')

# equations executed only when a presynaptic spike occurs
Pre_eq = ('''
            g_ampa_post += w_ampa*ampa_max_cond                                                               # increment synaptic conductance
            A_LTD_u = A_LTD*(v_homeo**2/v_target)                                                             # metaplasticity
            w_minus = A_LTD_u*(v_lowpass1_post/mV - Theta_low/mV)*int(v_lowpass1_post/mV - Theta_low/mV > 0)  # synaptic depression
            w_ampa = clip(w_ampa-w_minus, 0, w_max)                                                           # hard bounds
            ''' )

# equations executed only when a postsynaptic spike occurs
Post_eq = ('''
            v_lowpass1 += 10*mV                                                                                        # mimics the depolarisation effect due to a spike
            v_lowpass2 += 10*mV                                                                                        # mimics the depolarisation effect due to a spike
            v_homeo += 0.1*mV                                                                                          # mimics the depolarisation effect due to a spike
            w_plus = A_LTP*x_trace_pre*(v_lowpass2_post/mV - Theta_low/mV)*int(v_lowpass2_post/mV - Theta_low/mV > 0)  # synaptic potentiation
            w_ampa = clip(w_ampa+w_plus, 0, w_max)                                                                     # hard bounds
            ''' )

################################################################################
# I&F Parameters and equations
################################################################################

#### Neuron parameters

gleak = 30.*nS                  # leak conductance
C = 300.*pF                     # membrane capacitance
tau_AMPA = 2.*ms                # AMPA synaptic timeconstant
E_AMPA = 0.*mV                  # reversal potential AMPA

ampa_max_cond = 5.e-8*siemens  # Ampa maximal conductance
w_max = 1.                      # maximal ampa weight

#### Neuron Equations

# We connect 10 presynaptic neurons to 1 downstream neuron

# downstream neuron
eqs_neurons = '''
dv/dt = (gleak*(V_rest-v) + I_ext + I_syn)/C: volt      # voltage
dv_lowpass1/dt = (v-v_lowpass1)/tau_lowpass1 : volt     # low-pass filter of the voltage
dv_lowpass2/dt = (v-v_lowpass2)/tau_lowpass2 : volt     # low-pass filter of the voltage
dv_homeo/dt = (v-V_rest-v_homeo)/tau_homeo : volt       # low-pass filter of the voltage
I_ext : amp                                             # external current
I_syn = g_ampa*(E_AMPA-v): amp                          # synaptic current
dg_ampa/dt = -g_ampa/tau_AMPA : siemens                 # synaptic conductance
dx_trace/dt = -x_trace/taux :1                          # spike trace
'''

# input neurons
eqs_inputs = '''
dv/dt = gleak*(V_rest-v)/C: volt                        # voltage
dx_trace/dt = -x_trace/taux :1                          # spike trace
rates : Hz                                              # input rates
selected_index : integer (shared)                       # active neuron
'''

################################################################################
# Simulation
################################################################################

#### Parameters

defaultclock.dt = 500.*us                        # timestep
Nr_neurons = 1                                   # Number of downstream neurons
Nr_inputs = 5                                    # Number of input neurons
input_rate = 35*Hz                               # Rates
init_weight = 0.5                                # initial synaptic weight
final_t = 20.*second                             # end of simulation
input_time = 100.*ms                             # duration of an input

#### Create neuron objects

Nrn_downstream = NeuronGroup(Nr_neurons, eqs_neurons, threshold='v>V_thresh',
                             reset='v=V_rest;x_trace+=x_reset/(taux/ms)',
                             method='euler')
Nrns_input = NeuronGroup(Nr_inputs, eqs_inputs, threshold='rand()<rates*dt',
                         reset='v=V_rest;x_trace+=x_reset/(taux/ms)',
                         method='linear')

#### create Synapses

Syn = Synapses(Nrns_input, Nrn_downstream,
               model=Syn_model,
               on_pre=Pre_eq,
               on_post=Post_eq
               )

Syn.connect(i=numpy.arange(Nr_inputs), j=0)

#### Monitors and storage
W_evolution = StateMonitor(Syn, 'w_ampa', record=True)

#### Run

# Initial values
Nrn_downstream.v = V_rest
Nrn_downstream.v_lowpass1 = V_rest
Nrn_downstream.v_lowpass2 = V_rest
Nrn_downstream.v_homeo = 0
Nrn_downstream.I_ext = 0.*amp
Nrn_downstream.x_trace = 0.
Nrns_input.v = V_rest
Nrns_input.x_trace = 0.
Syn.w_ampa = init_weight

# Switch on a different input every 100ms
Nrns_input.run_regularly('''
                         selected_index = int(floor(rand()*Nr_inputs))
                         rates = input_rate * int(selected_index == i)  # All rates are zero except for the selected neuron
                         ''', dt=input_time)
run(final_t, report='text')

################################################################################
# Plots
################################################################################
stitle = 'Synaptic Competition'

fig = figure(figsize=(8, 5))
for kk in range(Nr_inputs):
    plt.plot(W_evolution.t, W_evolution.w_ampa[kk], '-', linewidth=2)
xlabel('Time [ms]', fontsize=22)
ylabel('Weight [a.u.]', fontsize=22)
plt.subplots_adjust(bottom=0.2, left=0.15, right=0.95, top=0.85)
title(stitle, fontsize=22)
plt.show()
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Example: Clopath_et_al_2010_no_homeostasis



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/frompapers/Clopath_et_al_2010_no_homeostasis.ipynb]






This code contains an adapted version of the voltage-dependent triplet STDP rule from:
Clopath et al., Connectivity reflects coding: a model of voltage-based STDP with homeostasis, Nature Neuroscience, 2010
(http://dx.doi.org/10.1038/nn.2479)

The plasticity rule is adapted for a leaky integrate & fire model in
Brian2. In particular, the filters v_lowpass1 and v_lowpass2 are
incremented by a constant at every post-synaptic spike time, to
compensate for the lack of an actual spike in the integrate & fire
model. Moreover, this script does not include the homeostatic
metaplasticity.

As an illustration of the Rule, we simulate a plot analogous to figure 2b in the above article, showing the frequency dependence of plasticity as measured in:
Sjöström et al., Rate, timing and cooperativity jointly determine cortical synaptic plasticity. Neuron, 2001.
We would like to note that the parameters have been chosen arbitrarily to qualitatively
reproduce the behavior of the original works, but need additional fitting.

We kindly ask to cite both articles when using the model presented below.

This code was written by Jacopo Bono, 12/2015

from brian2 import *
################################################################################
# PLASTICITY MODEL
################################################################################

#### Plasticity Parameters

V_rest = -70.*mV        # resting potential
V_thresh = -50.*mV      # spiking threshold
Theta_low = V_rest      # depolarization threshold for plasticity
x_reset = 1.            # spike trace reset value
taux = 15.*ms           # spike trace time constant
A_LTD = 1.5e-4          # depression amplitude
A_LTP = 1.5e-2          # potentiation amplitude
tau_lowpass1 = 40*ms    # timeconstant for low-pass filtered voltage
tau_lowpass2 = 30*ms    # timeconstant for low-pass filtered voltage



#### Plasticity Equations


# equations executed at every timestep
Syn_model = '''
            w_ampa:1                # synaptic weight (ampa synapse)
            '''

# equations executed only when a presynaptic spike occurs
Pre_eq = '''
         g_ampa_post += w_ampa*ampa_max_cond                                                             # increment synaptic conductance
         w_minus = A_LTD*(v_lowpass1_post/mV - Theta_low/mV)*int(v_lowpass1_post/mV - Theta_low/mV > 0)  # synaptic depression
         w_ampa = clip(w_ampa-w_minus,0,w_max)                                                           # hard bounds
         '''

# equations executed only when a postsynaptic spike occurs
Post_eq = '''
          v_lowpass1 += 10*mV                                                                                        # mimics the depolarisation by a spike
          v_lowpass2 += 10*mV                                                                                        # mimics the depolarisation by a spike
          w_plus = A_LTP*x_trace_pre*(v_lowpass2_post/mV - Theta_low/mV)*int(v_lowpass2_post/mV - Theta_low/mV > 0)  # synaptic potentiation
          w_ampa = clip(w_ampa+w_plus,0,w_max)                                                                       # hard bounds
          '''

################################################################################
# I&F Parameters and equations
################################################################################

#### Neuron parameters

gleak = 30.*nS                  # leak conductance
C = 300.*pF                     # membrane capacitance
tau_AMPA = 2.*ms                # AMPA synaptic timeconstant
E_AMPA = 0.*mV                  # reversal potential AMPA

ampa_max_cond = 5.e-10*siemens  # Ampa maximal conductance
w_max = 1.                      # maximal ampa weight


#### Neuron Equations

eqs_neurons = '''
dv/dt = (gleak*(V_rest-v) + I_ext + I_syn)/C: volt      # voltage
dv_lowpass1/dt = (v-v_lowpass1)/tau_lowpass1 : volt     # low-pass filter of the voltage
dv_lowpass2/dt = (v-v_lowpass2)/tau_lowpass2 : volt     # low-pass filter of the voltage
I_ext : amp                                             # external current
I_syn = g_ampa*(E_AMPA-v): amp                          # synaptic current
dg_ampa/dt = -g_ampa/tau_AMPA : siemens                 # synaptic conductance
dx_trace/dt = -x_trace/taux :1                          # spike trace
'''



################################################################################
# Simulation
################################################################################

#### Parameters

defaultclock.dt = 100.*us                           # timestep
Nr_neurons = 2                                      # Number of neurons
rate_array = [1., 5., 10., 15., 20., 30., 50.]*Hz   # Rates
init_weight = 0.5                                   # initial synaptic weight
reps = 15                                           # Number of pairings

#### Create neuron objects

Nrns = NeuronGroup(Nr_neurons, eqs_neurons, threshold='v>V_thresh',
                   reset='v=V_rest;x_trace+=x_reset/(taux/ms)', method='euler')#

#### create Synapses

Syn = Synapses(Nrns, Nrns,
               model=Syn_model,
               on_pre=Pre_eq,
               on_post=Post_eq
               )

Syn.connect('i!=j')

#### Monitors and storage
weight_result = np.zeros((2,len(rate_array)))               # to save the final weights

#### Run

# loop over rates
for jj, rate in enumerate(rate_array):

    # Calculate interval between pairs
    pair_interval = 1./rate - 10*ms
    print('Starting simulations for %s' % rate)

    # Initial values
    Nrns.v = V_rest
    Nrns.v_lowpass1 = V_rest
    Nrns.v_lowpass2 = V_rest
    Nrns.I_ext = 0*amp
    Nrns.x_trace = 0.
    Syn.w_ampa = init_weight

    # loop over pairings
    for ii in range(reps):
        # 1st SPIKE
        Nrns.v[0] = V_thresh + 1*mV
        # 2nd SPIKE
        run(10*ms)
        Nrns.v[1] = V_thresh + 1*mV
        # run
        run(pair_interval)
        print('Pair %d out of %d' % (ii+1, reps))

    #store weight changes
    weight_result[0, jj] = 100.*Syn.w_ampa[0]/init_weight
    weight_result[1, jj] = 100.*Syn.w_ampa[1]/init_weight

################################################################################
# Plots
################################################################################

stitle = 'Pairings'
scolor = 'k'

figure(figsize=(8, 5))
plot(rate_array,weight_result[0, :], '-', linewidth=2, color=scolor)
plot(rate_array,weight_result[1, :], ':', linewidth=2, color=scolor)
xlabel('Pairing frequency [Hz]', fontsize=22)
ylabel('Normalised Weight [%]', fontsize=22)
legend(['Pre-Post', 'Post-Pre'], loc='best')
subplots_adjust(bottom=0.2, left=0.15, right=0.95, top=0.85)
title(stitle)
show()
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Example: Destexhe_et_al_1998



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/frompapers/Destexhe_et_al_1998.ipynb]






Reproduces Figure 12 (simplified three-compartment model) from the following
paper:
Dendritic Low-Threshold Calcium Currents in Thalamic Relay Cells
Alain Destexhe, Mike Neubig, Daniel Ulrich, John Huguenard
Journal of Neuroscience 15 May 1998, 18 (10) 3574-3588

The original NEURON code is available on ModelDB: https://senselab.med.yale.edu/modeldb/ShowModel.cshtml?model=279

Reference for the original morphology:
Rat VB neuron (thalamocortical cell), given by J. Huguenard, stained with
biocytin and traced by A. Destexhe, December 1992.  The neuron is described
in: J.R. Huguenard & D.A. Prince, A novel T-type current underlies prolonged
calcium-dependent burst firing in GABAergic neurons of rat thalamic reticular
nucleus.  J. Neurosci. 12: 3804-3817, 1992.

Available at NeuroMorpho.org:
http://neuromorpho.org/neuron_info.jsp?neuron_name=tc200
NeuroMorpho.Org ID :NMO_00881


Notes


	Completely removed the “Fast mechanism for submembranal Ca++ concentration
(cai)” – it did not affect the results presented here

	Time constants for the I_T current are slightly different from the equations
given in the paper – the paper calculation seems to be based on 36 degree
Celsius but the temperature that is used is 34 degrees.

	To reproduce Figure 12C, the “presence of dendritic shunt conductances” meant
setting g_L to 0.15 mS/cm^2 for the whole neuron.

	Other small discrepancies with the paper – values from the NEURON code were
used whenever different from the values stated in the paper



from __future__ import print_function
from brian2 import *
from brian2.units.constants import (zero_celsius, faraday_constant as F,
                                    gas_constant as R)

defaultclock.dt = 0.01*ms

VT = -52*mV
El = -76.5*mV  # from code, text says: -69.85*mV

E_Na = 50*mV
E_K = -100*mV
C_d = 7.954  # dendritic correction factor

T = 34*kelvin + zero_celsius # 34 degC (current-clamp experiments)
tadj_HH = 3.0**((34-36)/10.0)  # temperature adjustment for Na & K (original recordings at 36 degC)
tadj_m_T = 2.5**((34-24)/10.0)
tadj_h_T = 2.5**((34-24)/10.0)

shift_I_T = -1*mV

gamma = F/(R*T)  # R=gas constant, F=Faraday constant
Z_Ca = 2  # Valence of Calcium ions
Ca_i = 240*nM  # intracellular Calcium concentration
Ca_o = 2*mM  # extracellular Calcium concentration

eqs = Equations('''
Im = gl*(El-v) - I_Na - I_K - I_T: amp/meter**2
I_inj : amp (point current)
gl : siemens/meter**2

# HH-type currents for spike initiation
g_Na : siemens/meter**2
g_K : siemens/meter**2
I_Na = g_Na * m**3 * h * (v-E_Na) : amp/meter**2
I_K = g_K * n**4 * (v-E_K) : amp/meter**2
v2 = v - VT : volt  # shifted membrane potential (Traub convention)
dm/dt = (0.32*(mV**-1)*(13.*mV-v2)/
        (exp((13.*mV-v2)/(4.*mV))-1.)*(1-m)-0.28*(mV**-1)*(v2-40.*mV)/
        (exp((v2-40.*mV)/(5.*mV))-1.)*m) / ms * tadj_HH: 1
dn/dt = (0.032*(mV**-1)*(15.*mV-v2)/
        (exp((15.*mV-v2)/(5.*mV))-1.)*(1.-n)-.5*exp((10.*mV-v2)/(40.*mV))*n) / ms * tadj_HH: 1
dh/dt = (0.128*exp((17.*mV-v2)/(18.*mV))*(1.-h)-4./(1+exp((40.*mV-v2)/(5.*mV)))*h) / ms * tadj_HH: 1

# Low-threshold Calcium current (I_T)  -- nonlinear function of voltage
I_T = P_Ca * m_T**2*h_T * G_Ca : amp/meter**2
P_Ca : meter/second  # maximum Permeability to Calcium
G_Ca = Z_Ca**2*F*v*gamma*(Ca_i - Ca_o*exp(-Z_Ca*gamma*v))/(1 - exp(-Z_Ca*gamma*v)) : coulomb/meter**3
dm_T/dt = -(m_T - m_T_inf)/tau_m_T : 1
dh_T/dt = -(h_T - h_T_inf)/tau_h_T : 1
m_T_inf = 1/(1 + exp(-(v/mV + 56)/6.2)) : 1
h_T_inf = 1/(1 + exp((v/mV + 80)/4)) : 1
tau_m_T = (0.612 + 1.0/(exp(-(v/mV + 131)/16.7) + exp((v/mV + 15.8)/18.2))) * ms / tadj_m_T: second
tau_h_T = (int(v<-81*mV) * exp((v/mV + 466)/66.6) +
           int(v>=-81*mV) * (28 + exp(-(v/mV + 21)/10.5))) * ms / tadj_h_T: second
''')

# Simplified three-compartment morphology
morpho = Cylinder(x=[0, 38.42]*um, diameter=26*um)
morpho.dend = Cylinder(x=[0, 12.49]*um, diameter=10.28*um)
morpho.dend.distal = Cylinder(x=[0, 84.67]*um, diameter=8.5*um)
neuron = SpatialNeuron(morpho, eqs, Cm=0.88*uF/cm**2, Ri=173*ohm*cm,
                       method='exponential_euler')

neuron.v = -74*mV
# Only the soma has Na/K channels
neuron.main.g_Na = 100*msiemens/cm**2
neuron.main.g_K = 100*msiemens/cm**2
# Apply the correction factor to the dendrites

neuron.dend.Cm *= C_d
neuron.m_T = 'm_T_inf'
neuron.h_T = 'h_T_inf'

mon = StateMonitor(neuron, ['v'], record=True)

store('initial state')


def do_experiment(currents, somatic_density, dendritic_density,
                  dendritic_conductance=0.0379*msiemens/cm**2,
                  HH_currents=True):
    restore('initial state')
    voltages = []
    neuron.P_Ca = somatic_density
    neuron.dend.distal.P_Ca = dendritic_density * C_d
    # dendritic conductance (shunting conductance used for Fig 12C)
    neuron.gl = dendritic_conductance
    neuron.dend.gl = dendritic_conductance * C_d
    if not HH_currents:
        # Shut off spiking (for Figures 12B and 12C)
        neuron.g_Na = 0*msiemens/cm**2
        neuron.g_K = 0*msiemens/cm**2
    run(180*ms)
    store('before current')
    for current in currents:
        restore('before current')
        neuron.main.I_inj = current
        print('.', end='')
        run(320*ms)
        voltages.append(mon[morpho].v[:])  # somatic voltage
    return voltages


## Run the various variants of the model to reproduce Figure 12
mpl.rcParams['lines.markersize'] = 3.0
fig, axes = plt.subplots(2, 2)
print('Running experiments for Figure A1 ', end='')
voltages = do_experiment([50, 75]*pA, somatic_density=1.7e-5*cm/second,
                         dendritic_density=1.7e-5*cm/second)
print(' done.')
cut_off = 100*ms  # Do not display first part of simulation
axes[0, 0].plot((mon.t - cut_off) / ms, voltages[0] / mV, color='gray')
axes[0, 0].plot((mon.t - cut_off) / ms, voltages[1] / mV, color='black')
axes[0, 0].set(xlim=(0, 400), ylim=(-80, 40), xticks=[],
               title='A1: Uniform T-current density', ylabel='Voltage (mV)')
axes[0, 0].spines['right'].set_visible(False)
axes[0, 0].spines['top'].set_visible(False)
axes[0, 0].spines['bottom'].set_visible(False)

print('Running experiments for Figure A2 ', end='')
voltages = do_experiment([50, 75]*pA, somatic_density=1.7e-5*cm/second,
                         dendritic_density=9.5e-5*cm/second)
print(' done.')
cut_off = 100*ms  # Do not display first part of simulation
axes[1, 0].plot((mon.t - cut_off) / ms, voltages[0] / mV, color='gray')
axes[1, 0].plot((mon.t - cut_off) / ms, voltages[1] / mV, color='black')
axes[1, 0].set(xlim=(0, 400), ylim=(-80, 40),
               title='A2: High T-current density in dendrites',
               xlabel='Time (ms)', ylabel='Voltage (mV)')
axes[1, 0].spines['right'].set_visible(False)
axes[1, 0].spines['top'].set_visible(False)

print('Running experiments for Figure B ', end='')
currents = np.linspace(0, 200, 41)*pA
voltages_somatic = do_experiment(currents, somatic_density=56.36e-5*cm/second,
                                 dendritic_density=0*cm/second,
                                 HH_currents=False)
voltages_somatic_dendritic = do_experiment(currents, somatic_density=1.7e-5*cm/second,
                                           dendritic_density=9.5e-5*cm/second,
                                           HH_currents=False)
print(' done.')
maxima_somatic = Quantity(voltages_somatic).max(axis=1)
maxima_somatic_dendritic = Quantity(voltages_somatic_dendritic).max(axis=1)
axes[0, 1].yaxis.tick_right()
axes[0, 1].plot(currents/pA, maxima_somatic/mV,
                'o-', color='black', label='Somatic only')
axes[0, 1].plot(currents/pA, maxima_somatic_dendritic/mV,
                's-', color='black', label='Somatic & dendritic')
axes[0, 1].set(xlabel='Injected current (pA)', ylabel='Peak LTS (mV)',
               ylim=(-80, 0))
axes[0, 1].legend(loc='best', frameon=False)

print('Running experiments for Figure C ', end='')
currents = np.linspace(200, 400, 41)*pA
voltages_somatic = do_experiment(currents, somatic_density=56.36e-5*cm/second,
                                 dendritic_density=0*cm/second,
                                 dendritic_conductance=0.15*msiemens/cm**2,
                                 HH_currents=False)
voltages_somatic_dendritic = do_experiment(currents, somatic_density=1.7e-5*cm/second,
                                           dendritic_density=9.5e-5*cm/second,
                                           dendritic_conductance=0.15*msiemens/cm**2,
                                           HH_currents=False)
print(' done.')
maxima_somatic = Quantity(voltages_somatic).max(axis=1)
maxima_somatic_dendritic = Quantity(voltages_somatic_dendritic).max(axis=1)
axes[1, 1].yaxis.tick_right()
axes[1, 1].plot(currents/pA, maxima_somatic/mV,
                'o-', color='black', label='Somatic only')
axes[1, 1].plot(currents/pA, maxima_somatic_dendritic/mV,
                's-', color='black', label='Somatic & dendritic')
axes[1, 1].set(xlabel='Injected current (pA)', ylabel='Peak LTS (mV)',
               ylim=(-80, 0))
axes[1, 1].legend(loc='best', frameon=False)

plt.tight_layout()
plt.show()





[image: ../_images/frompapers.Destexhe_et_al_1998.1.png]






          

      

      

    

  

  
    
    
    Example: Diesmann_et_al_1999
    
    

    

    
 
  
  

    
      
          
            
  
Example: Diesmann_et_al_1999



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/frompapers/Diesmann_et_al_1999.ipynb]







Synfire chains

M. Diesmann et al. (1999). Stable propagation of synchronous spiking in cortical
neural networks. Nature 402, 529-533.

from brian2 import *

duration = 100*ms

# Neuron model parameters
Vr = -70*mV
Vt = -55*mV
taum = 10*ms
taupsp = 0.325*ms
weight = 4.86*mV
# Neuron model
eqs = Equations('''
dV/dt = (-(V-Vr)+x)*(1./taum) : volt
dx/dt = (-x+y)*(1./taupsp) : volt
dy/dt = -y*(1./taupsp)+25.27*mV/ms+
        (39.24*mV/ms**0.5)*xi : volt
''')

# Neuron groups
n_groups = 10
group_size = 100
P = NeuronGroup(N=n_groups*group_size, model=eqs,
                threshold='V>Vt', reset='V=Vr', refractory=1*ms,
                method='euler')

Pinput = SpikeGeneratorGroup(85, np.arange(85),
                             np.random.randn(85)*1*ms + 50*ms)
# The network structure
S = Synapses(P, P, on_pre='y+=weight')
S.connect(j='k for k in range((int(i/group_size)+1)*group_size, (int(i/group_size)+2)*group_size) '
            'if i<N_pre-group_size')
Sinput = Synapses(Pinput, P[:group_size], on_pre='y+=weight')
Sinput.connect()

# Record the spikes
Mgp = SpikeMonitor(P)
Minput = SpikeMonitor(Pinput)
# Setup the network, and run it
P.V = 'Vr + rand() * (Vt - Vr)'
run(duration)

plot(Mgp.t/ms, 1.0*Mgp.i/group_size, '.')
plot([0, duration/ms], np.arange(n_groups).repeat(2).reshape(-1, 2).T, 'k-')
ylabel('group number')
yticks(np.arange(n_groups))
xlabel('time (ms)')
show()
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Example: Kremer_et_al_2011_barrel_cortex



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/frompapers/Kremer_et_al_2011_barrel_cortex.ipynb]






Late Emergence of the Whisker Direction Selectivity Map in the Rat Barrel Cortex.
Kremer Y, Leger JF, Goodman DF, Brette R, Bourdieu L (2011).
J Neurosci 31(29):10689-700.

Development of direction maps with pinwheels in the barrel cortex.
Whiskers are deflected with random moving bars.
N.B.: network construction can be long.

from brian2 import *
import time

t1 = time.time()

# PARAMETERS
# Neuron numbers
M4, M23exc, M23inh = 22, 25, 12  # size of each barrel (in neurons)
N4, N23exc, N23inh = M4**2, M23exc**2, M23inh**2  # neurons per barrel
barrelarraysize = 5  # Choose 3 or 4 if memory error
Nbarrels = barrelarraysize**2
# Stimulation
stim_change_time = 5*ms
Fmax = .5/stim_change_time # maximum firing rate in layer 4 (.5 spike / stimulation)
# Neuron parameters
taum, taue, taui = 10*ms, 2*ms, 25*ms
El = -70*mV
Vt, vt_inc, tauvt = -55*mV, 2*mV, 50*ms  # adaptive threshold
# STDP
taup, taud = 5*ms, 25*ms
Ap, Ad= .05, -.04
# EPSPs/IPSPs
EPSP, IPSP = 1*mV, -1*mV
EPSC = EPSP * (taue/taum)**(taum/(taue-taum))
IPSC = IPSP * (taui/taum)**(taum/(taui-taum))
Ap, Ad = Ap*EPSC, Ad*EPSC

# Layer 4, models the input stimulus
eqs_layer4 = '''
rate = int(is_active)*clip(cos(direction - selectivity), 0, inf)*Fmax: Hz
is_active = abs((barrel_x + 0.5 - bar_x) * cos(direction) + (barrel_y + 0.5 - bar_y) * sin(direction)) < 0.5: boolean
barrel_x : integer # The x index of the barrel
barrel_y : integer # The y index of the barrel
selectivity : 1
# Stimulus parameters (same for all neurons)
bar_x = cos(direction)*(t - stim_start_time)/(5*ms) + stim_start_x : 1 (shared)
bar_y = sin(direction)*(t - stim_start_time)/(5*ms) + stim_start_y : 1 (shared)
direction : 1 (shared) # direction of the current stimulus
stim_start_time : second (shared) # start time of the current stimulus
stim_start_x : 1 (shared) # start position of the stimulus
stim_start_y : 1 (shared) # start position of the stimulus
'''
layer4 = NeuronGroup(N4*Nbarrels, eqs_layer4, threshold='rand() < rate*dt',
                     method='euler', name='layer4')
layer4.barrel_x = '(i / N4) % barrelarraysize + 0.5'
layer4.barrel_y = 'i / (barrelarraysize*N4) + 0.5'
layer4.selectivity = '(i%N4)/(1.0*N4)*2*pi'  # for each barrel, selectivity between 0 and 2*pi

stimradius = (11+1)*.5

# Chose a new randomly oriented bar every 60ms
runner_code = '''
direction = rand()*2*pi
stim_start_x = barrelarraysize / 2.0 - cos(direction)*stimradius
stim_start_y = barrelarraysize / 2.0 - sin(direction)*stimradius
stim_start_time = t
'''
layer4.run_regularly(runner_code, dt=60*ms, when='start')

# Layer 2/3
# Model: IF with adaptive threshold
eqs_layer23 = '''
dv/dt=(ge+gi+El-v)/taum : volt
dge/dt=-ge/taue : volt
dgi/dt=-gi/taui : volt
dvt/dt=(Vt-vt)/tauvt : volt # adaptation
barrel_idx : integer
x : 1  # in "barrel width" units
y : 1  # in "barrel width" units
'''
layer23 = NeuronGroup(Nbarrels*(N23exc+N23inh), eqs_layer23,
                      threshold='v>vt', reset='v = El; vt += vt_inc',
                      refractory=2*ms, method='euler', name='layer23')
layer23.v = El
layer23.vt = Vt

# Subgroups for excitatory and inhibitory neurons in layer 2/3
layer23exc = layer23[:Nbarrels*N23exc]
layer23inh = layer23[Nbarrels*N23exc:]

# Layer 2/3 excitatory
# The units for x and y are the width/height of a single barrel
layer23exc.x = '(i % (barrelarraysize*M23exc)) * (1.0/M23exc)'
layer23exc.y = '(i / (barrelarraysize*M23exc)) * (1.0/M23exc)'
layer23exc.barrel_idx = 'floor(x) + floor(y)*barrelarraysize'

# Layer 2/3 inhibitory
layer23inh.x = 'i % (barrelarraysize*M23inh) * (1.0/M23inh)'
layer23inh.y = 'i / (barrelarraysize*M23inh) * (1.0/M23inh)'
layer23inh.barrel_idx = 'floor(x) + floor(y)*barrelarraysize'

print("Building synapses, please wait...")
# Feedforward connections (plastic)
feedforward = Synapses(layer4, layer23exc,
                       model='''w:volt
                                dA_source/dt = -A_source/taup : volt (event-driven)
                                dA_target/dt = -A_target/taud : volt (event-driven)''',
                       on_pre='''ge+=w
                              A_source += Ap
                              w = clip(w+A_target, 0, EPSC)''',
                       on_post='''
                              A_target += Ad
                              w = clip(w+A_source, 0, EPSC)''',
                       name='feedforward')
# Connect neurons in the same barrel with 50% probability
feedforward.connect('(barrel_x_pre + barrelarraysize*barrel_y_pre) == barrel_idx_post',
                    p=0.5)
feedforward.w = EPSC*.5

print('excitatory lateral')
# Excitatory lateral connections
recurrent_exc = Synapses(layer23exc, layer23, model='w:volt', on_pre='ge+=w',
                         name='recurrent_exc')
recurrent_exc.connect(p='.15*exp(-.5*(((x_pre-x_post)/.4)**2+((y_pre-y_post)/.4)**2))')
recurrent_exc.w['j<Nbarrels*N23exc'] = EPSC*.3 # excitatory->excitatory
recurrent_exc.w['j>=Nbarrels*N23exc'] = EPSC # excitatory->inhibitory


# Inhibitory lateral connections
print('inhibitory lateral')
recurrent_inh = Synapses(layer23inh, layer23exc, on_pre='gi+=IPSC',
                         name='recurrent_inh')
recurrent_inh.connect(p='exp(-.5*(((x_pre-x_post)/.2)**2+((y_pre-y_post)/.2)**2))')

if get_device().__class__.__name__=='RuntimeDevice':
    print('Total number of connections')
    print('feedforward: %d' % len(feedforward))
    print('recurrent exc: %d' % len(recurrent_exc))
    print('recurrent inh: %d' % len(recurrent_inh))

    t2 = time.time()
    print("Construction time: %.1fs" % (t2 - t1))

run(5*second, report='text')

# Calculate the preferred direction of each cell in layer23 by doing a
# vector average of the selectivity of the projecting layer4 cells, weighted
# by the synaptic weight.
_r = bincount(feedforward.j,
              weights=feedforward.w * cos(feedforward.selectivity_pre)/feedforward.N_incoming,
              minlength=len(layer23exc))
_i = bincount(feedforward.j,
              weights=feedforward.w * sin(feedforward.selectivity_pre)/feedforward.N_incoming,
              minlength=len(layer23exc))
selectivity_exc = (arctan2(_r, _i) % (2*pi))*180./pi


scatter(layer23.x[:Nbarrels*N23exc], layer23.y[:Nbarrels*N23exc],
        c=selectivity_exc[:Nbarrels*N23exc],
        edgecolors='none', marker='s', cmap='hsv')
vlines(np.arange(barrelarraysize), 0, barrelarraysize, 'k')
hlines(np.arange(barrelarraysize), 0, barrelarraysize, 'k')
clim(0, 360)
colorbar()
show()





[image: ../_images/frompapers.Kremer_et_al_2011_barrel_cortex.1.png]
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Example: Rossant_et_al_2011bis



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/frompapers/Rossant_et_al_2011bis.ipynb]









Distributed synchrony example

Fig. 14 from:


Rossant C, Leijon S, Magnusson AK, Brette R (2011).
“Sensitivity of noisy neurons to coincident inputs”.
Journal of Neuroscience, 31(47).


5000 independent E/I Poisson inputs are injected into a leaky integrate-and-fire neuron.
Synchronous events, following an independent Poisson process at 40 Hz, are considered,
where 15 E Poisson spikes are randomly shifted to be synchronous at those events.
The output firing rate is then significantly higher, showing that the spike timing of
less than 1% of the excitatory synapses have an important impact on the postsynaptic firing.

from brian2 import *

# neuron parameters
theta = -55*mV
El = -65*mV
vmean = -65*mV
taum = 5*ms
taue = 3*ms
taui = 10*ms
eqs = Equations("""
                dv/dt  = (ge+gi-(v-El))/taum : volt
                dge/dt = -ge/taue : volt
                dgi/dt = -gi/taui : volt
                """)

# input parameters
p = 15
ne = 4000
ni = 1000
lambdac = 40*Hz
lambdae = lambdai = 1*Hz

# synapse parameters
we = .5*mV/(taum/taue)**(taum/(taue-taum))
wi = (vmean-El-lambdae*ne*we*taue)/(lambdae*ni*taui)

# NeuronGroup definition
group = NeuronGroup(N=2, model=eqs, reset='v = El',
                    threshold='v>theta',
                    refractory=5*ms, method='linear')
group.v = El
group.ge = group.gi = 0

# independent E/I Poisson inputs
p1 = PoissonInput(group[0:1], 'ge', N=ne, rate=lambdae, weight=we)
p2 = PoissonInput(group[0:1], 'gi', N=ni, rate=lambdai, weight=wi)

# independent E/I Poisson inputs + synchronous E events
p3 = PoissonInput(group[1:], 'ge', N=ne, rate=lambdae-(p*1.0/ne)*lambdac, weight=we)
p4 = PoissonInput(group[1:], 'gi', N=ni, rate=lambdai, weight=wi)
p5 = PoissonInput(group[1:], 'ge', N=1, rate=lambdac, weight=p*we)

# run the simulation
M = SpikeMonitor(group)
SM = StateMonitor(group, 'v', record=True)
BrianLogger.log_level_info()
run(1*second)
# plot trace and spikes
for i in [0, 1]:
    spikes = (M.t[M.i == i] - defaultclock.dt)/ms
    val = SM[i].v
    subplot(2,1,i+1)
    plot(SM.t/ms, val)
    plot(tile(spikes, (2,1)),
         vstack((val[array(spikes, dtype=int)],
                 zeros(len(spikes)))), 'C0')
    title("%s: %d spikes/second" % (["uncorrelated inputs", "correlated inputs"][i],
                                    M.count[i]))
tight_layout()
show()





[image: ../_images/frompapers.Rossant_et_al_2011bis.1.png]
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Example: Rothman_Manis_2003



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/frompapers/Rothman_Manis_2003.ipynb]







Cochlear neuron model of Rothman & Manis

Rothman JS, Manis PB (2003) The roles potassium currents play in
regulating the electrical activity of ventral cochlear nucleus neurons.
J Neurophysiol 89:3097-113.

All model types differ only by the maximal conductances.

Adapted from their Neuron implementation by Romain Brette

from brian2 import *

#defaultclock.dt=0.025*ms # for better precision

'''
Simulation parameters: choose current amplitude and neuron type
(from type1c, type1t, type12, type 21, type2, type2o)
'''
neuron_type = 'type1c'
Ipulse = 250*pA

C = 12*pF
Eh = -43*mV
EK = -70*mV  # -77*mV in mod file
El = -65*mV
ENa = 50*mV
nf = 0.85  # proportion of n vs p kinetics
zss = 0.5  # steady state inactivation of glt
temp = 22.  # temperature in degree celcius
q10 = 3. ** ((temp - 22) / 10.)
# hcno current (octopus cell)
frac = 0.0
qt = 4.5 ** ((temp - 33.) / 10.)

# Maximal conductances of different cell types in nS
maximal_conductances = dict(
type1c=(1000, 150, 0, 0, 0.5, 0, 2),
type1t=(1000, 80, 0, 65, 0.5, 0, 2),
type12=(1000, 150, 20, 0, 2, 0, 2),
type21=(1000, 150, 35, 0, 3.5, 0, 2),
type2=(1000, 150, 200, 0, 20, 0, 2),
type2o=(1000, 150, 600, 0, 0, 40, 2) # octopus cell
)
gnabar, gkhtbar, gkltbar, gkabar, ghbar, gbarno, gl = [x * nS for x in maximal_conductances[neuron_type]]

# Classical Na channel
eqs_na = """
ina = gnabar*m**3*h*(ENa-v) : amp
dm/dt=q10*(minf-m)/mtau : 1
dh/dt=q10*(hinf-h)/htau : 1
minf = 1./(1+exp(-(vu + 38.) / 7.)) : 1
hinf = 1./(1+exp((vu + 65.) / 6.)) : 1
mtau =  ((10. / (5*exp((vu+60.) / 18.) + 36.*exp(-(vu+60.) / 25.))) + 0.04)*ms : second
htau =  ((100. / (7*exp((vu+60.) / 11.) + 10.*exp(-(vu+60.) / 25.))) + 0.6)*ms : second
"""

# KHT channel (delayed-rectifier K+)
eqs_kht = """
ikht = gkhtbar*(nf*n**2 + (1-nf)*p)*(EK-v) : amp
dn/dt=q10*(ninf-n)/ntau : 1
dp/dt=q10*(pinf-p)/ptau : 1
ninf =   (1 + exp(-(vu + 15) / 5.))**-0.5 : 1
pinf =  1. / (1 + exp(-(vu + 23) / 6.)) : 1
ntau =  ((100. / (11*exp((vu+60) / 24.) + 21*exp(-(vu+60) / 23.))) + 0.7)*ms : second
ptau = ((100. / (4*exp((vu+60) / 32.) + 5*exp(-(vu+60) / 22.))) + 5)*ms : second
"""

# Ih channel (subthreshold adaptive, non-inactivating)
eqs_ih = """
ih = ghbar*r*(Eh-v) : amp
dr/dt=q10*(rinf-r)/rtau : 1
rinf = 1. / (1+exp((vu + 76.) / 7.)) : 1
rtau = ((100000. / (237.*exp((vu+60.) / 12.) + 17.*exp(-(vu+60.) / 14.))) + 25.)*ms : second
"""

# KLT channel (low threshold K+)
eqs_klt = """
iklt = gkltbar*w**4*z*(EK-v) : amp
dw/dt=q10*(winf-w)/wtau : 1
dz/dt=q10*(zinf-z)/wtau : 1
winf = (1. / (1 + exp(-(vu + 48.) / 6.)))**0.25 : 1
zinf = zss + ((1.-zss) / (1 + exp((vu + 71.) / 10.))) : 1
wtau = ((100. / (6.*exp((vu+60.) / 6.) + 16.*exp(-(vu+60.) / 45.))) + 1.5)*ms : second
ztau = ((1000. / (exp((vu+60.) / 20.) + exp(-(vu+60.) / 8.))) + 50)*ms : second
"""

# Ka channel (transient K+)
eqs_ka = """
ika = gkabar*a**4*b*c*(EK-v): amp
da/dt=q10*(ainf-a)/atau : 1
db/dt=q10*(binf-b)/btau : 1
dc/dt=q10*(cinf-c)/ctau : 1
ainf = (1. / (1 + exp(-(vu + 31) / 6.)))**0.25 : 1
binf = 1. / (1 + exp((vu + 66) / 7.))**0.5 : 1
cinf = 1. / (1 + exp((vu + 66) / 7.))**0.5 : 1
atau =  ((100. / (7*exp((vu+60) / 14.) + 29*exp(-(vu+60) / 24.))) + 0.1)*ms : second
btau =  ((1000. / (14*exp((vu+60) / 27.) + 29*exp(-(vu+60) / 24.))) + 1)*ms : second
ctau = ((90. / (1 + exp((-66-vu) / 17.))) + 10)*ms : second
"""

# Leak
eqs_leak = """
ileak = gl*(El-v) : amp
"""

# h current for octopus cells
eqs_hcno = """
ihcno = gbarno*(h1*frac + h2*(1-frac))*(Eh-v) : amp
dh1/dt=(hinfno-h1)/tau1 : 1
dh2/dt=(hinfno-h2)/tau2 : 1
hinfno = 1./(1+exp((vu+66.)/7.)) : 1
tau1 = bet1/(qt*0.008*(1+alp1))*ms : second
tau2 = bet2/(qt*0.0029*(1+alp2))*ms : second
alp1 = exp(1e-3*3*(vu+50)*9.648e4/(8.315*(273.16+temp))) : 1
bet1 = exp(1e-3*3*0.3*(vu+50)*9.648e4/(8.315*(273.16+temp))) : 1
alp2 = exp(1e-3*3*(vu+84)*9.648e4/(8.315*(273.16+temp))) : 1
bet2 = exp(1e-3*3*0.6*(vu+84)*9.648e4/(8.315*(273.16+temp))) : 1
"""

eqs = """
dv/dt = (ileak + ina + ikht + iklt + ika + ih + ihcno + I)/C : volt
vu = v/mV : 1  # unitless v
I : amp
"""
eqs += eqs_leak + eqs_ka + eqs_na + eqs_ih + eqs_klt + eqs_kht + eqs_hcno

neuron = NeuronGroup(1, eqs, method='exponential_euler')
neuron.v = El

run(50*ms, report='text')  # Go to rest

M = StateMonitor(neuron, 'v', record=0)
neuron.I = Ipulse

run(100*ms, report='text')

plot(M.t / ms, M[0].v / mV)
xlabel('t (ms)')
ylabel('v (mV)')
show()





[image: ../_images/frompapers.Rothman_Manis_2003.1.png]
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Example: Sturzl_et_al_2000



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/frompapers/Sturzl_et_al_2000.ipynb]






Adapted from
Theory of Arachnid Prey Localization
W. Sturzl, R. Kempter, and J. L. van Hemmen
PRL 2000

Poisson inputs are replaced by integrate-and-fire neurons

Romain Brette

from brian2 import *

# Parameters
degree = 2 * pi / 360.
duration = 500*ms
R = 2.5*cm  # radius of scorpion
vr = 50*meter/second  # Rayleigh wave speed
phi = 144*degree  # angle of prey
A = 250*Hz
deltaI = .7*ms  # inhibitory delay
gamma = (22.5 + 45 * arange(8)) * degree  # leg angle
delay = R / vr * (1 - cos(phi - gamma))   # wave delay

# Wave (vector w)
time = arange(int(duration / defaultclock.dt) + 1) * defaultclock.dt
Dtot = 0.
w = 0.
for f in arange(150, 451)*Hz:
    D = exp(-(f/Hz - 300) ** 2 / (2 * (50 ** 2)))
    rand_angle = 2 * pi * rand()
    w += 100 * D * cos(2 * pi * f * time + rand_angle)
    Dtot += D
w = .01 * w / Dtot

# Rates from the wave
rates = TimedArray(w, dt=defaultclock.dt)

# Leg mechanical receptors
tau_legs = 1 * ms
sigma = .01
eqs_legs = """
dv/dt = (1 + rates(t - d) - v)/tau_legs + sigma*(2./tau_legs)**.5*xi:1
d : second
"""
legs = NeuronGroup(8, model=eqs_legs, threshold='v > 1', reset='v = 0',
                   refractory=1*ms, method='euler')
legs.d = delay
spikes_legs = SpikeMonitor(legs)

# Command neurons
tau = 1 * ms
taus = 1.001 * ms
wex = 7
winh = -2
eqs_neuron = '''
dv/dt = (x - v)/tau : 1
dx/dt = (y - x)/taus : 1 # alpha currents
dy/dt = -y/taus : 1
'''
neurons = NeuronGroup(8, model=eqs_neuron, threshold='v>1', reset='v=0',
                      method='linear')
synapses_ex = Synapses(legs, neurons, on_pre='y+=wex')
synapses_ex.connect(j='i')
synapses_inh = Synapses(legs, neurons, on_pre='y+=winh', delay=deltaI)
synapses_inh.connect('abs(((j - i) % N_post) - N_post/2) <= 1')
spikes = SpikeMonitor(neurons)

run(duration, report='text')

nspikes = spikes.count
phi_est = imag(log(sum(nspikes * exp(gamma * 1j))))
print("True angle (deg): %.2f" % (phi/degree))
print("Estimated angle (deg): %.2f" % (phi_est/degree))
rmax = amax(nspikes)/duration/Hz
polar(concatenate((gamma, [gamma[0] + 2 * pi])),
      concatenate((nspikes, [nspikes[0]])) / duration / Hz,
      c='k')
axvline(phi, ls='-', c='g')
axvline(phi_est, ls='-', c='b')
show()





[image: ../_images/frompapers.Sturzl_et_al_2000.1.png]
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Example: Touboul_Brette_2008



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/frompapers/Touboul_Brette_2008.ipynb]







Chaos in the AdEx model

Fig. 8B from:
Touboul, J. and Brette, R. (2008). Dynamics and bifurcations of the adaptive
exponential integrate-and-fire model. Biological Cybernetics 99(4-5):319-34.

This shows the bifurcation structure when the reset value is varied
(vertical axis shows the values of w at spike times for a given a reset value
Vr).

from brian2 import *

defaultclock.dt = 0.01*ms

C = 281*pF
gL = 30*nS
EL = -70.6*mV
VT = -50.4*mV
DeltaT = 2*mV
tauw = 40*ms
a = 4*nS
b = 0.08*nA
I = .8*nA
Vcut = VT + 5 * DeltaT  # practical threshold condition
N = 200

eqs = """
dvm/dt=(gL*(EL-vm)+gL*DeltaT*exp((vm-VT)/DeltaT)+I-w)/C : volt
dw/dt=(a*(vm-EL)-w)/tauw : amp
Vr:volt
"""

neuron = NeuronGroup(N, model=eqs, threshold='vm > Vcut',
                     reset="vm = Vr; w += b", method='euler')
neuron.vm = EL
neuron.w = a * (neuron.vm - EL)
neuron.Vr = linspace(-48.3 * mV, -47.7 * mV, N)  # bifurcation parameter

init_time = 3*second
run(init_time, report='text')  # we discard the first spikes

states = StateMonitor(neuron, "w", record=True, when='start')
spikes = SpikeMonitor(neuron)
run(1 * second, report='text')

# Get the values of Vr and w for each spike
Vr = neuron.Vr[spikes.i]
w = states.w[spikes.i, int_((spikes.t-init_time)/defaultclock.dt)]

figure()
plot(Vr / mV, w / nA, '.k')
xlabel('Vr (mV)')
ylabel('w (nA)')
show()





[image: ../_images/frompapers.Touboul_Brette_2008.1.png]
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Example: Vogels_et_al_2011



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/frompapers/Vogels_et_al_2011.ipynb]







Inhibitory synaptic plasticity in a recurrent network model

(F. Zenke, 2011) (from the 2012 Brian twister)

Adapted from:
Vogels, T. P., H. Sprekeler, F. Zenke, C. Clopath, and W. Gerstner.
Inhibitory Plasticity Balances Excitation and Inhibition in Sensory Pathways and Memory Networks.
Science (November 10, 2011).

from brian2 import *

# ###########################################
# Defining network model parameters
# ###########################################

NE = 8000          # Number of excitatory cells
NI = NE/4          # Number of inhibitory cells

tau_ampa = 5.0*ms   # Glutamatergic synaptic time constant
tau_gaba = 10.0*ms  # GABAergic synaptic time constant
epsilon = 0.02      # Sparseness of synaptic connections

tau_stdp = 20*ms    # STDP time constant

simtime = 10*second # Simulation time

# ###########################################
# Neuron model
# ###########################################

gl = 10.0*nsiemens   # Leak conductance
el = -60*mV          # Resting potential
er = -80*mV          # Inhibitory reversal potential
vt = -50.*mV         # Spiking threshold
memc = 200.0*pfarad  # Membrane capacitance
bgcurrent = 200*pA   # External current

eqs_neurons='''
dv/dt=(-gl*(v-el)-(g_ampa*v+g_gaba*(v-er))+bgcurrent)/memc : volt (unless refractory)
dg_ampa/dt = -g_ampa/tau_ampa : siemens
dg_gaba/dt = -g_gaba/tau_gaba : siemens
'''

# ###########################################
# Initialize neuron group
# ###########################################

neurons = NeuronGroup(NE+NI, model=eqs_neurons, threshold='v > vt',
                      reset='v=el', refractory=5*ms, method='euler')
Pe = neurons[:NE]
Pi = neurons[NE:]

# ###########################################
# Connecting the network
# ###########################################

con_e = Synapses(Pe, neurons, on_pre='g_ampa += 0.3*nS')
con_e.connect(p=epsilon)
con_ii = Synapses(Pi, Pi, on_pre='g_gaba += 3*nS')
con_ii.connect(p=epsilon)

# ###########################################
# Inhibitory Plasticity
# ###########################################

eqs_stdp_inhib = '''
w : 1
dApre/dt=-Apre/tau_stdp : 1 (event-driven)
dApost/dt=-Apost/tau_stdp : 1 (event-driven)
'''
alpha = 3*Hz*tau_stdp*2  # Target rate parameter
gmax = 100               # Maximum inhibitory weight

con_ie = Synapses(Pi, Pe, model=eqs_stdp_inhib,
                  on_pre='''Apre += 1.
                         w = clip(w+(Apost-alpha)*eta, 0, gmax)
                         g_gaba += w*nS''',
                  on_post='''Apost += 1.
                          w = clip(w+Apre*eta, 0, gmax)
                       ''')
con_ie.connect(p=epsilon)
con_ie.w = 1e-10

# ###########################################
# Setting up monitors
# ###########################################

sm = SpikeMonitor(Pe)

# ###########################################
# Run without plasticity
# ###########################################
eta = 0          # Learning rate
run(1*second)

# ###########################################
# Run with plasticity
# ###########################################
eta = 1e-2          # Learning rate
run(simtime-1*second, report='text')

# ###########################################
# Make plots
# ###########################################

i, t = sm.it
subplot(211)
plot(t/ms, i, 'k.', ms=0.25)
title("Before")
xlabel("")
yticks([])
xlim(0.8*1e3, 1*1e3)
subplot(212)
plot(t/ms, i, 'k.', ms=0.25)
xlabel("time (ms)")
yticks([])
title("After")
xlim((simtime-0.2*second)/ms, simtime/ms)
show()
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Example: Wang_Buszaki_1996



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/frompapers/Wang_Buszaki_1996.ipynb]







Wang-Buszaki model

J Neurosci. 1996 Oct 15;16(20):6402-13.
Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model.
Wang XJ, Buzsaki G.

Note that implicit integration (exponential Euler) cannot be used, and therefore
simulation is rather slow.

from brian2 import *

defaultclock.dt = 0.01*ms

Cm = 1*uF # /cm**2
Iapp = 2*uA
gL = 0.1*msiemens
EL = -65*mV
ENa = 55*mV
EK = -90*mV
gNa = 35*msiemens
gK = 9*msiemens

eqs = '''
dv/dt = (-gNa*m**3*h*(v-ENa)-gK*n**4*(v-EK)-gL*(v-EL)+Iapp)/Cm : volt
m = alpha_m/(alpha_m+beta_m) : 1
alpha_m = -0.1/mV*(v+35*mV)/(exp(-0.1/mV*(v+35*mV))-1)/ms : Hz
beta_m = 4*exp(-(v+60*mV)/(18*mV))/ms : Hz
dh/dt = 5*(alpha_h*(1-h)-beta_h*h) : 1
alpha_h = 0.07*exp(-(v+58*mV)/(20*mV))/ms : Hz
beta_h = 1./(exp(-0.1/mV*(v+28*mV))+1)/ms : Hz
dn/dt = 5*(alpha_n*(1-n)-beta_n*n) : 1
alpha_n = -0.01/mV*(v+34*mV)/(exp(-0.1/mV*(v+34*mV))-1)/ms : Hz
beta_n = 0.125*exp(-(v+44*mV)/(80*mV))/ms : Hz
'''

neuron = NeuronGroup(1, eqs, method='exponential_euler')
neuron.v = -70*mV
neuron.h = 1
M = StateMonitor(neuron, 'v', record=0)

run(100*ms, report='text')

plot(M.t/ms, M[0].v/mV)
show()





[image: ../_images/frompapers.Wang_Buszaki_1996.1.png]
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Example: Fig1



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/frompapers/Brette_2012/Fig1.ipynb]






Brette R (2013). Sharpness of spike initiation in neurons explained by compartmentalization.
PLoS Comp Biol, doi: 10.1371/journal.pcbi.1003338.

Fig 1C-E. Somatic voltage-clamp in a ball-and-stick model with
Na channels at a particular location.

from brian2 import *
from params import *

defaultclock.dt = 0.025*ms

# Morphology
morpho = Soma(50*um)  # chosen for a target Rm
morpho.axon = Cylinder(diameter=1*um, length=300*um, n=300)

location = 40*um # where Na channels are placed
duration = 500*ms

# Channels
eqs='''
Im = gL*(EL - v) + gclamp*(vc - v) + gNa*m*(ENa - v) : amp/meter**2
dm/dt = (minf - m) / taum: 1  # simplified Na channel
minf = 1 / (1 + exp((va - v) / ka)) : 1
gclamp : siemens/meter**2
gNa : siemens/meter**2
vc = EL + 50*mV * t/duration : volt (shared)  # Voltage clamp with a ramping voltage command
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=Cm, Ri=Ri)
compartment = morpho.axon[location]
neuron.v = EL
neuron.gclamp[0] = gL*500
neuron.gNa[compartment] = gNa_0/neuron.area[compartment]

# Monitors
mon = StateMonitor(neuron, ['v', 'vc', 'm'], record=True)

run(duration, report='text')

subplot(221)
plot(mon[0].vc/mV,
     -((mon[0].vc - mon[0].v)*(neuron.gclamp[0]))*neuron.area[0]/nA, 'k')
xlabel('V (mV)')
ylabel('I (nA)')
xlim(-75, -45)
title('I-V curve')

subplot(222)
plot(mon[0].vc/mV, mon[compartment].m, 'k')
xlabel('V (mV)')
ylabel('m')
title('Activation curve (m(V))')

subplot(223)
# Number of simulation time steps for each volt increment in the voltage-clamp
dt_per_volt = len(mon.t)/(50*mV)
for v in [-64*mV, -61*mV, -58*mV, -55*mV]:
    plot(mon.v[:100 ,int(dt_per_volt*(v - EL))]/mV, 'k')
xlabel('Distance from soma (um)')
ylabel('V (mV)')
title('Voltage across axon')

subplot(224)
plot(mon[compartment].v/mV, mon[compartment].v/mV, 'k--')  # Diagonal
plot(mon[0].v/mV, mon[compartment].v/mV, 'k')
xlabel('Vs (mV)')
ylabel('Va (mV)')
tight_layout()
show()
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Example: Fig3AB



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/frompapers/Brette_2012/Fig3AB.ipynb]






Brette R (2013). Sharpness of spike initiation in neurons explained by compartmentalization.
PLoS Comp Biol, doi: 10.1371/journal.pcbi.1003338.

Fig. 3. A, B. Kink with only Nav1.6 channels

from brian2 import *
from params import *

codegen.target='numpy'

defaultclock.dt = 0.025*ms

# Morphology
morpho = Soma(50*um)  # chosen for a target Rm
morpho.axon = Cylinder(diameter=1*um, length=300*um, n=300)

location = 40*um  # where Na channels are placed

# Channels
eqs='''
Im = gL*(EL - v) + gNa*m*(ENa - v) : amp/meter**2
dm/dt = (minf - m) / taum : 1 # simplified Na channel
minf = 1 / (1 + exp((va - v) / ka)) : 1
gNa : siemens/meter**2
Iin : amp (point current)
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=Cm, Ri=Ri,
                       method="exponential_euler")

compartment = morpho.axon[location]
neuron.v = EL
neuron.gNa[compartment] = gNa_0/neuron.area[compartment]
M = StateMonitor(neuron, ['v', 'm'], record=True)

run(20*ms, report='text')
neuron.Iin[0] = gL * 20*mV * neuron.area[0]
run(80*ms, report='text')

subplot(121)
plot(M.t/ms, M[0].v/mV, 'r')
plot(M.t/ms, M[compartment].v/mV, 'k')
plot(M.t/ms, M[compartment].m*(80+60)-80, 'k--')  # open channels
ylim(-80, 60)
xlabel('Time (ms)')
ylabel('V (mV)')
title('Voltage traces')

subplot(122)
dm = diff(M[0].v) / defaultclock.dt
dm40 = diff(M[compartment].v) / defaultclock.dt
plot((M[0].v/mV)[1:], dm/(volt/second), 'r')
plot((M[compartment].v/mV)[1:], dm40/(volt/second), 'k')
xlim(-80, 40)
xlabel('V (mV)')
ylabel('dV/dt (V/s)')
title('Phase plot')
tight_layout()
show()





[image: ../_images/frompapers.Brette_2012.Fig3AB.1.png]
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Example: Fig3CF



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/frompapers/Brette_2012/Fig3CF.ipynb]






Brette R (2013). Sharpness of spike initiation in neurons explained by compartmentalization.
PLoS Comp Biol, doi: 10.1371/journal.pcbi.1003338.

Fig. 3C-F. Kink with Nav1.6 and Nav1.2

from brian2 import *
from params import *

defaultclock.dt = 0.01*ms

# Morphology
morpho = Soma(50*um) # chosen for a target Rm
morpho.axon = Cylinder(diameter=1*um, length=300*um, n=300)

location16 = 40*um  # where Nav1.6 channels are placed
location12 = 15*um  # where Nav1.2 channels are placed

va2 = va + 15*mV  # depolarized Nav1.2

# Channels
duration = 100*ms
eqs='''
Im = gL * (EL - v) + gNa*m*(ENa - v) + gNa2*m2*(ENa - v) : amp/meter**2
dm/dt = (minf - m) / taum : 1  # simplified Na channel
minf = 1 / (1 + exp((va - v) / ka)) : 1
dm2/dt = (minf2 - m2) / taum : 1 # simplified Na channel, Nav1.2
minf2 = 1/(1 + exp((va2 - v) / ka)) : 1
gNa : siemens/meter**2
gNa2 : siemens/meter**2  # Nav1.2
Iin : amp (point current)
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=Cm, Ri=Ri,
                       method="exponential_euler")
compartment16 = morpho.axon[location16]
compartment12 = morpho.axon[location12]
neuron.v = EL
neuron.gNa[compartment16] = gNa_0/neuron.area[compartment16]
neuron.gNa2[compartment12] = 20*gNa_0/neuron.area[compartment12]
# Monitors
M = StateMonitor(neuron, ['v', 'm', 'm2'], record=True)

run(20*ms, report='text')
neuron.Iin[0] = gL * 20*mV * neuron.area[0]
run(80*ms, report='text')

subplot(221)
plot(M.t/ms, M[0].v/mV, 'r')
plot(M.t/ms, M[compartment16].v/mV, 'k')
plot(M.t/ms, M[compartment16].m*(80+60)-80, 'k--')  # open channels
ylim(-80, 60)
xlabel('Time (ms)')
ylabel('V (mV)')
title('Voltage traces')

subplot(222)
plot(M[0].v/mV, M[compartment16].m,'k')
plot(M[0].v/mV, 1 / (1 + exp((va - M[0].v) / ka)), 'k--')
plot(M[0].v/mV, M[compartment12].m2, 'r')
plot(M[0].v/mV, 1 / (1 + exp((va2 - M[0].v) / ka)), 'r--')
xlim(-70, 0)
xlabel('V (mV)')
ylabel('m')
title('Activation curves')

subplot(223)
dm = diff(M[0].v) / defaultclock.dt
dm40 = diff(M[compartment16].v) / defaultclock.dt
plot((M[0].v/mV)[1:], dm/(volt/second), 'r')
plot((M[compartment16].v/mV)[1:], dm40/(volt/second), 'k')
xlim(-80, 40)
xlabel('V (mV)')
ylabel('dV/dt (V/s)')
title('Phase plot')

subplot(224)
plot((M[0].v/mV)[1:], dm/(volt/second), 'r')
plot((M[compartment16].v/mV)[1:], dm40/(volt/second), 'k')
plot((M[0].v/mV)[1:], 10 + 0*dm/(volt/second), 'k--')
xlim(-70, -40)
ylim(0, 20)
xlabel('V (mV)')
ylabel('dV/dt (V/s)')
title('Phase plot(zoom)')
tight_layout()
show()





[image: ../_images/frompapers.Brette_2012.Fig3CF.1.png]
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Example: Fig4



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/frompapers/Brette_2012/Fig4.ipynb]






Brette R (2013). Sharpness of spike initiation in neurons explained by compartmentalization.
PLoS Comp Biol, doi: 10.1371/journal.pcbi.1003338.

Fig. 4E-F. Spatial distribution of Na channels. Tapering axon near soma.

from brian2 import *
from params import *

defaultclock.dt = 0.025*ms

# Morphology
morpho = Soma(50*um) # chosen for a target Rm
# Tapering (change this for the other figure panels)
diameters = hstack([linspace(4, 1, 11), ones(290)])*um
morpho.axon = Section(diameter=diameters, length=ones(300)*um, n=300)

# Na channels
Na_start = (25 + 10)*um
Na_end = (40 + 10)*um
linear_distribution = True  # True is F, False is E

duration = 500*ms

# Channels
eqs='''
Im = gL*(EL - v) + gclamp*(vc - v) + gNa*m*(ENa - v) : amp/meter**2
dm/dt = (minf - m) / taum: 1  # simplified Na channel
minf = 1 / (1 + exp((va - v) / ka)) : 1
gclamp : siemens/meter**2
gNa : siemens/meter**2
vc = EL + 50*mV * t / duration : volt (shared)  # Voltage clamp with a ramping voltage command
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=Cm, Ri=Ri,
                       method="exponential_euler")
compartments = morpho.axon[Na_start:Na_end]
neuron.v = EL
neuron.gclamp[0] = gL*500

if linear_distribution:
    profile = linspace(1, 0, len(compartments))
else:
    profile = ones(len(compartments))
profile = profile / sum(profile)  # normalization

neuron.gNa[compartments] = gNa_0 * profile / neuron.area[compartments]

# Monitors
mon = StateMonitor(neuron, 'v', record=True)

run(duration, report='text')

dt_per_volt = len(mon.t) / (50*mV)
for v in [-64*mV, -61*mV, -58*mV, -55*mV, -52*mV]:
    plot(mon.v[:100, int(dt_per_volt * (v - EL))]/mV, 'k')
xlim(0, 50+10)
ylim(-65, -25)
ylabel('V (mV)')
xlabel('Location (um)')
title('Voltage across axon')
tight_layout()
show()
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Example: Fig5A



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/frompapers/Brette_2012/Fig5A.ipynb]






Brette R (2013). Sharpness of spike initiation in neurons explained by compartmentalization.
PLoS Comp Biol, doi: 10.1371/journal.pcbi.1003338.

Fig. 5A. Voltage trace for current injection, with an additional reset when a spike is produced.

Trick: to reset the entire neuron, we use a set of synapses from the spike initiation compartment where the
threshold condition applies to all compartments, and the reset operation (v = EL) is applied there every time
a spike is produced.

from brian2 import *
from params import *

defaultclock.dt = 0.025*ms
duration = 500*ms

# Morphology
morpho = Soma(50*um)  # chosen for a target Rm
morpho.axon = Cylinder(diameter=1*um, length=300*um, n=300)

# Input
taux = 5*ms
sigmax = 12*mV
xx0 = 7*mV

compartment = 40

# Channels
eqs = '''
Im = gL * (EL - v) + gNa * m * (ENa - v) + gLx * (xx0 + xx) : amp/meter**2
dm/dt = (minf - m) / taum : 1  # simplified Na channel
minf = 1 / (1 + exp((va - v) / ka)) : 1
gNa : siemens/meter**2
gLx : siemens/meter**2
dxx/dt = -xx / taux + sigmax * (2 / taux)**.5 *xi : volt
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=Cm, Ri=Ri,
                       threshold='m>0.5', threshold_location=compartment,
                       refractory=5*ms)
neuron.v = EL
neuron.gLx[0] = gL
neuron.gNa[compartment] = gNa_0 / neuron.area[compartment]

# Reset the entire neuron when there is a spike
reset = Synapses(neuron, neuron, on_pre='v = EL')
reset.connect('i == compartment')  # Connects the spike initiation compartment to all compartments

# Monitors
S = SpikeMonitor(neuron)
M = StateMonitor(neuron, 'v', record=0)
run(duration, report='text')

# Add spikes for display
v = M[0].v
for t in S.t:
    v[int(t / defaultclock.dt)] = 50*mV

plot(M.t/ms, v/mV, 'k')
tight_layout()
show()
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Example: params



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/frompapers/Brette_2012/params.ipynb]






Parameters for spike initiation simulations.

from brian2.units import *

# Passive parameters
EL = -75*mV
S = 7.85e-9*meter**2  # area (sphere of 50 um diameter)
Cm = 0.75*uF/cm**2
gL = 1. / (30000*ohm*cm**2)
Ri = 150*ohm*cm

# Na channels
ENa = 60*mV
ka = 6*mV
va = -40*mV
gNa_0 = gL * 2*S
taum = 0.1*ms
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Example: STDP_standalone



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/standalone/STDP_standalone.ipynb]






Spike-timing dependent plasticity.
Adapted from Song, Miller and Abbott (2000) and Song and Abbott (2001).

This example is modified from synapses_STDP.py and writes a standalone
C++ project in the directory STDP_standalone.

from brian2 import *

set_device('cpp_standalone', directory='STDP_standalone')

N = 1000
taum = 10*ms
taupre = 20*ms
taupost = taupre
Ee = 0*mV
vt = -54*mV
vr = -60*mV
El = -74*mV
taue = 5*ms
F = 15*Hz
gmax = .01
dApre = .01
dApost = -dApre * taupre / taupost * 1.05
dApost *= gmax
dApre *= gmax

eqs_neurons = '''
dv/dt = (ge * (Ee-vr) + El - v) / taum : volt
dge/dt = -ge / taue : 1
'''

input = PoissonGroup(N, rates=F)
neurons = NeuronGroup(1, eqs_neurons, threshold='v>vt', reset='v = vr',
                      method='linear')
S = Synapses(input, neurons,
             '''w : 1
                dApre/dt = -Apre / taupre : 1 (event-driven)
                dApost/dt = -Apost / taupost : 1 (event-driven)''',
             on_pre='''ge += w
                    Apre += dApre
                    w = clip(w + Apost, 0, gmax)''',
             on_post='''Apost += dApost
                     w = clip(w + Apre, 0, gmax)''',
             )
S.connect()
S.w = 'rand() * gmax'
mon = StateMonitor(S, 'w', record=[0, 1])
s_mon = SpikeMonitor(input)

run(100*second, report='text')

subplot(311)
plot(S.w / gmax, '.k')
ylabel('Weight / gmax')
xlabel('Synapse index')
subplot(312)
hist(S.w / gmax, 20)
xlabel('Weight / gmax')
subplot(313)
plot(mon.t/second, mon.w.T/gmax)
xlabel('Time (s)')
ylabel('Weight / gmax')
tight_layout()
show()





[image: ../_images/standalone.STDP_standalone.1.png]
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Example: cuba_openmp



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/standalone/cuba_openmp.ipynb]






Run the cuba.py example with OpenMP threads.

from brian2 import *

set_device('cpp_standalone', directory='CUBA')
prefs.devices.cpp_standalone.openmp_threads = 4

taum = 20*ms
taue = 5*ms
taui = 10*ms
Vt = -50*mV
Vr = -60*mV
El = -49*mV

eqs = '''
dv/dt  = (ge+gi-(v-El))/taum : volt (unless refractory)
dge/dt = -ge/taue : volt (unless refractory)
dgi/dt = -gi/taui : volt (unless refractory)
'''

P = NeuronGroup(4000, eqs, threshold='v>Vt', reset='v = Vr', refractory=5*ms,
                method='linear')
P.v = 'Vr + rand() * (Vt - Vr)'
P.ge = 0*mV
P.gi = 0*mV

we = (60*0.27/10)*mV # excitatory synaptic weight (voltage)
wi = (-20*4.5/10)*mV # inhibitory synaptic weight
Ce = Synapses(P, P, on_pre='ge += we')
Ci = Synapses(P, P, on_pre='gi += wi')
Ce.connect('i<3200', p=0.02)
Ci.connect('i>=3200', p=0.02)

s_mon = SpikeMonitor(P)

run(1 * second)

plot(s_mon.t/ms, s_mon.i, ',k')
xlabel('Time (ms)')
ylabel('Neuron index')
show()





[image: ../_images/standalone.cuba_openmp.1.png]
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Example: STDP



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/synapses/STDP.ipynb]






Spike-timing dependent plasticity
Adapted from Song, Miller and Abbott (2000) and Song and Abbott (2001)

from brian2 import *

N = 1000
taum = 10*ms
taupre = 20*ms
taupost = taupre
Ee = 0*mV
vt = -54*mV
vr = -60*mV
El = -74*mV
taue = 5*ms
F = 15*Hz
gmax = .01
dApre = .01
dApost = -dApre * taupre / taupost * 1.05
dApost *= gmax
dApre *= gmax

eqs_neurons = '''
dv/dt = (ge * (Ee-vr) + El - v) / taum : volt
dge/dt = -ge / taue : 1
'''

input = PoissonGroup(N, rates=F)
neurons = NeuronGroup(1, eqs_neurons, threshold='v>vt', reset='v = vr',
                      method='linear')
S = Synapses(input, neurons,
             '''w : 1
                dApre/dt = -Apre / taupre : 1 (event-driven)
                dApost/dt = -Apost / taupost : 1 (event-driven)''',
             on_pre='''ge += w
                    Apre += dApre
                    w = clip(w + Apost, 0, gmax)''',
             on_post='''Apost += dApost
                     w = clip(w + Apre, 0, gmax)''',
             )
S.connect()
S.w = 'rand() * gmax'
mon = StateMonitor(S, 'w', record=[0, 1])
s_mon = SpikeMonitor(input)

run(100*second, report='text')

subplot(311)
plot(S.w / gmax, '.k')
ylabel('Weight / gmax')
xlabel('Synapse index')
subplot(312)
hist(S.w / gmax, 20)
xlabel('Weight / gmax')
subplot(313)
plot(mon.t/second, mon.w.T/gmax)
xlabel('Time (s)')
ylabel('Weight / gmax')
tight_layout()
show()





[image: ../_images/synapses.STDP.1.png]
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Example: efficient_gaussian_connectivity



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/synapses/efficient_gaussian_connectivity.ipynb]






An example of turning an expensive Synapses.connect() operation into
three cheap ones using a mathematical trick.

Consider the connection probability between neurons i and j given by
the Gaussian function \(p=e^{-\alpha(i-j)^2}\) (for some constant
\(\alpha\)). If we want to connect neurons with this probability,
we can very simply do:

S.connect(p='exp(-alpha*(i-j)**2)')





However, this has a problem. Although we know that this will create
\(O(N)\) synapses if N is the number of neurons, because we
have specified p as a function of i and j, we have to evaluate
p(i, j) for every pair (i, j), and therefore it takes
\(O(N^2)\) operations.

Our first option is to take a cutoff, and say that if \(p<q\) for some
small \(q\), then we assume that \(p\approx 0\). We can work out
which j values are compatible with a given value of i by solving
\(e^{-\alpha(i-j)^2}<q\) which gives
\(|i-j|<\sqrt{-\log(q)/\alpha)}=w\). Now we implement the rule
using the generator syntax to only search for values between i-w
and i+w, except that some of these values will be outside the
valid range of values for j so we set skip_if_invalid=True.
The connection code is then:

S.connect(j='k for k in range(i-w, i+w) if rand()<exp(-alpha*(i-j)**2)',
          skip_if_invalid=True)





This is a lot faster (see graph labelled “Limited” for this algorithm).

However, it may be a problem that we have to specify a cutoff and so
we will lose some synapses doing this: it won’t be mathematically exact.
This isn’t a problem for the Gaussian because w grows very slowly with
the cutoff probability q, but for other probability distributions with
more weight in the tails, it could be an issue.

If we want to be exact, we can still do a big improvement. For the
case \(i-w\leq j\leq i+w\) we use the same connection code, but
we also handle the case \(|i-j|>w\). This time, we note that we
want to create a synapse with probability \(p(i-j)\) and we can
rewrite this as \(p(i-j)/p(w)\cdot p(w)\). If \(|i-j|>w\)
then this is a product of two probabilities \(p(i-j)/p(w)\)
and \(p(w)\). So in the region \(|i-j|>w\) a synapse
will be created if two random events both occur, with these
two probabilities. This might seem a little strange until you
notice that one of the two probabilities \(p(w)\) doesn’t
depend on i or j. This lets us use the much more efficient
sample algorithm to generate a set of candidate j values,
and then add the additional test rand()<p(i-j)/p(w). Here’s the
code for that:

w = int(ceil(sqrt(log(q)/-0.1)))
S.connect(j='k for k in range(i-w, i+w) if rand()<exp(-alpha*(i-j)**2)',
          skip_if_invalid=True)
pmax = exp(-0.1*w**2)
S.connect(j='k for k in sample(0, i-w, p=pmax) if rand()<exp(-alpha*(i-j)**2)/pmax',
          skip_if_invalid=True)
S.connect(j='k for k in sample(i+w, N_post, p=pmax) if rand()<exp(-alpha*(i-j)**2)/pmax',
          skip_if_invalid=True)





This “Divided” method is also much faster than the naive method,
and is mathematically correct. Note though that this method is still
\(O(N^2)\) but the constants are much, much smaller and this
will usually be sufficient. It is possible to take the ideas
developed here even further and get even better scaling, but in
most cases it’s unlikely to be worth the effort.

The code below shows these examples written out, along with
some timing code and plots for different values of N.

from brian2 import *
import time

def naive(N):
    G = NeuronGroup(N, 'v:1', threshold='v>1', name='G')
    S = Synapses(G, G, on_pre='v += 1', name='S')
    S.connect(p='exp(-0.1*(i-j)**2)')

def limited(N, q=0.001):
    G = NeuronGroup(N, 'v:1', threshold='v>1', name='G')
    S = Synapses(G, G, on_pre='v += 1', name='S')
    w = int(ceil(sqrt(log(q)/-0.1)))
    S.connect(j='k for k in range(i-w, i+w) if rand()<exp(-0.1*(i-j)**2)', skip_if_invalid=True)

def divided(N, q=0.001):
    G = NeuronGroup(N, 'v:1', threshold='v>1', name='G')
    S = Synapses(G, G, on_pre='v += 1', name='S')
    w = int(ceil(sqrt(log(q)/-0.1)))
    S.connect(j='k for k in range(i-w, i+w) if rand()<exp(-0.1*(i-j)**2)', skip_if_invalid=True)
    pmax = exp(-0.1*w**2)
    S.connect(j='k for k in sample(0, i-w, p=pmax) if rand()<exp(-0.1*(i-j)**2)/pmax', skip_if_invalid=True)
    S.connect(j='k for k in sample(i+w, N_post, p=pmax) if rand()<exp(-0.1*(i-j)**2)/pmax', skip_if_invalid=True)

def repeated_run(f, N, repeats):
    start_time = time.time()
    for _ in range(repeats):
        f(N)
    end_time = time.time()
    return (end_time-start_time)/repeats

N = array([100, 500, 1000, 5000, 10000, 20000])
repeats = array([100, 10, 10, 1, 1, 1])*3
naive(10)
limited(10)
divided(10)
print 'Starting naive'
loglog(N, [repeated_run(naive, n, r) for n, r in zip(N, repeats)],
       label='Naive', lw=2)
print 'Starting limit'
loglog(N, [repeated_run(limited, n, r) for n, r in zip(N, repeats)],
       label='Limited', lw=2)
print 'Starting divided'
loglog(N, [repeated_run(divided, n, r) for n, r in zip(N, repeats)],
       label='Divided', lw=2)
xlabel('N')
ylabel('Time (s)')
legend(loc='best', frameon=False)
show()





[image: ../_images/synapses.efficient_gaussian_connectivity.1.png]
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Example: gapjunctions



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/synapses/gapjunctions.ipynb]






Neurons with gap junctions.

from brian2 import *

n = 10
v0 = 1.05
tau = 10*ms

eqs = '''
dv/dt = (v0 - v + Igap) / tau : 1
Igap : 1 # gap junction current
'''

neurons = NeuronGroup(n, eqs, threshold='v > 1', reset='v = 0',
                      method='linear')
neurons.v = 'i * 1.0 / (n-1)'
trace = StateMonitor(neurons, 'v', record=[0, 5])

S = Synapses(neurons, neurons, '''
             w : 1 # gap junction conductance
             Igap_post = w * (v_pre - v_post) : 1 (summed)
             ''')
S.connect()
S.w = .02

run(500*ms)

plot(trace.t/ms, trace[0].v)
plot(trace.t/ms, trace[5].v)
xlabel('Time (ms)')
ylabel('v')
show()





[image: ../_images/synapses.gapjunctions.1.png]
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Example: jeffress



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/synapses/jeffress.ipynb]






Jeffress model, adapted with spiking neuron models.
A sound source (white noise) is moving around the head.
Delay differences between the two ears are used to determine the azimuth of the
source. Delays are mapped to a neural place code using delay lines (each neuron
receives input from both ears, with different delays).

from brian2 import *

defaultclock.dt = .02*ms

# Sound
sound = TimedArray(10 * randn(50000), dt=defaultclock.dt) # white noise

# Ears and sound motion around the head (constant angular speed)
sound_speed = 300*metre/second
interaural_distance = 20*cm # big head!
max_delay = interaural_distance / sound_speed
print("Maximum interaural delay: %s" % max_delay)
angular_speed = 2 * pi / second # 1 turn/second
tau_ear = 1*ms
sigma_ear = .1
eqs_ears = '''
dx/dt = (sound(t-delay)-x)/tau_ear+sigma_ear*(2./tau_ear)**.5*xi : 1 (unless refractory)
delay = distance*sin(theta) : second
distance : second # distance to the centre of the head in time units
dtheta/dt = angular_speed : radian
'''
ears = NeuronGroup(2, eqs_ears, threshold='x>1', reset='x = 0',
                   refractory=2.5*ms, name='ears', method='euler')
ears.distance = [-.5 * max_delay, .5 * max_delay]
traces = StateMonitor(ears, 'delay', record=True)
# Coincidence detectors
num_neurons = 30
tau = 1*ms
sigma = .1
eqs_neurons = '''
dv/dt = -v / tau + sigma * (2 / tau)**.5 * xi : 1
'''
neurons = NeuronGroup(num_neurons, eqs_neurons, threshold='v>1',
                      reset='v = 0', name='neurons', method='euler')

synapses = Synapses(ears, neurons, on_pre='v += .5')
synapses.connect()

synapses.delay['i==0'] = '(1.0*j)/(num_neurons-1)*1.1*max_delay'
synapses.delay['i==1'] = '(1.0*(num_neurons-j-1))/(num_neurons-1)*1.1*max_delay'

spikes = SpikeMonitor(neurons)

run(1000*ms)

# Plot the results
i, t = spikes.it
subplot(2, 1, 1)
plot(t/ms, i, '.')
xlabel('Time (ms)')
ylabel('Neuron index')
xlim(0, 1000)
subplot(2, 1, 2)
plot(traces.t/ms, traces.delay.T/ms)
xlabel('Time (ms)')
ylabel('Input delay (ms)')
xlim(0, 1000)
tight_layout()
show()





[image: ../_images/synapses.jeffress.1.png]
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Example: licklider



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/synapses/licklider.ipynb]






Spike-based adaptation of Licklider’s model of pitch processing (autocorrelation with
delay lines) with phase locking.

from brian2 import *

defaultclock.dt = .02 * ms

# Ear and sound
max_delay = 20*ms # 50 Hz
tau_ear = 1*ms
sigma_ear = 0.0
eqs_ear = '''
dx/dt = (sound-x)/tau_ear+0.1*(2./tau_ear)**.5*xi : 1 (unless refractory)
sound = 5*sin(2*pi*frequency*t)**3 : 1 # nonlinear distortion
#sound = 5*(sin(4*pi*frequency*t)+.5*sin(6*pi*frequency*t)) : 1 # missing fundamental
frequency = (200+200*t*Hz)*Hz : Hz # increasing pitch
'''
receptors = NeuronGroup(2, eqs_ear, threshold='x>1', reset='x=0',
                        refractory=2*ms, method='euler')
# Coincidence detectors
min_freq = 50*Hz
max_freq = 1000*Hz
num_neurons = 300
tau = 1*ms
sigma = .1
eqs_neurons = '''
dv/dt = -v/tau+sigma*(2./tau)**.5*xi : 1
'''

neurons = NeuronGroup(num_neurons, eqs_neurons, threshold='v>1', reset='v=0',
                      method='euler')

synapses = Synapses(receptors, neurons, on_pre='v += 0.5')
synapses.connect()
synapses.delay = 'i*1.0/exp(log(min_freq/Hz)+(j*1.0/(num_neurons-1))*log(max_freq/min_freq))*second'

spikes = SpikeMonitor(neurons)

run(500*ms)
plot(spikes.t/ms, spikes.i, '.k')
xlabel('Time (ms)')
ylabel('Frequency')
yticks([0, 99, 199, 299],
       array(1. / synapses.delay[1, [0, 99, 199, 299]], dtype=int))
show()





[image: ../_images/synapses.licklider.1.png]




          

      

      

    

  

  
    
    
    Example: nonlinear
    
    

    

    
 
  
  

    
      
          
            
  
Example: nonlinear



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/synapses/nonlinear.ipynb]






NMDA synapses.

from brian2 import *

a = 1 / (10*ms)
b = 1 / (10*ms)
c = 1 / (10*ms)

input = NeuronGroup(2, 'dv/dt = 1/(10*ms) : 1', threshold='v>1', reset='v = 0',
                    method='euler')
neurons = NeuronGroup(1, """dv/dt = (g-v)/(10*ms) : 1
                            g : 1""", method='linear')
S = Synapses(input, neurons,'''
                dg_syn/dt = -a*g_syn+b*x*(1-g_syn) : 1 (clock-driven)
                g_post = g_syn : 1 (summed)
                dx/dt=-c*x : 1 (clock-driven)
                w : 1 # synaptic weight
             ''', on_pre='x += w') # NMDA synapses

S.connect()
S.w = [1., 10.]
input.v = [0., 0.5]

M = StateMonitor(S, 'g',
                 # If not using standalone mode, this could also simply be
                 # record=True
                 record=np.arange(len(input)*len(neurons)))
Mn = StateMonitor(neurons, 'g', record=0)

run(1000*ms)

subplot(2, 1, 1)
plot(M.t/ms, M.g.T)
xlabel('Time (ms)')
ylabel('g_syn')
subplot(2, 1, 2)
plot(Mn.t/ms, Mn[0].g)
ylabel('Time (ms)')
ylabel('g')
tight_layout()
show()





[image: ../_images/synapses.nonlinear.1.png]




          

      

      

    

  

  
    
    
    Example: spatial_connections
    
    

    

    
 
  
  

    
      
          
            
  
Example: spatial_connections



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/synapses/spatial_connections.ipynb]






A simple example showing how string expressions can be used to implement
spatial (deterministic or stochastic) connection patterns.

from brian2 import *

rows, cols = 20, 20
G = NeuronGroup(rows * cols, '''x : meter
                                y : meter''')
# initialize the grid positions
grid_dist = 25*umeter
G.x = '(i / rows) * grid_dist - rows/2.0 * grid_dist'
G.y = '(i % rows) * grid_dist - cols/2.0 * grid_dist'

# Deterministic connections
distance = 120*umeter
S_deterministic = Synapses(G, G)
S_deterministic.connect('sqrt((x_pre - x_post)**2 + (y_pre - y_post)**2) < distance')

# Random connections (no self-connections)
S_stochastic = Synapses(G, G)
S_stochastic.connect('i != j',
                     p='1.5 * exp(-((x_pre-x_post)**2 + (y_pre-y_post)**2)/(2*(60*umeter)**2))')

figure(figsize=(12, 6))

# Show the connections for some neurons in different colors
for color in ['g', 'b', 'm']:
    subplot(1, 2, 1)
    neuron_idx = np.random.randint(0, rows*cols)
    plot(G.x[neuron_idx] / umeter, G.y[neuron_idx] / umeter, 'o', mec=color,
             mfc='none')
    plot(G.x[S_deterministic.j[neuron_idx, :]] / umeter,
             G.y[S_deterministic.j[neuron_idx, :]] / umeter, color + '.')
    subplot(1, 2, 2)
    plot(G.x[neuron_idx] / umeter, G.y[neuron_idx] / umeter, 'o', mec=color,
             mfc='none')
    plot(G.x[S_stochastic.j[neuron_idx, :]] / umeter,
             G.y[S_stochastic.j[neuron_idx, :]] / umeter, color + '.')

for idx, t in enumerate(['determininstic connections',
                         'random connections']):
    subplot(1, 2, idx + 1)
    xlim((-rows/2.0 * grid_dist) / umeter, (rows/2.0 * grid_dist) / umeter)
    ylim((-cols/2.0 * grid_dist) / umeter, (cols/2.0 * grid_dist) / umeter)
    title(t)
    xlabel('x')
    ylabel('y', rotation='horizontal')
    axis('equal')

tight_layout()
show()





[image: ../_images/synapses.spatial_connections.1.png]
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Example: state_variables



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/synapses/state_variables.ipynb]






Set state variable values with a string (using code generation).

from brian2 import *

G = NeuronGroup(100, 'v:volt', threshold='v>-50*mV')
G.v = '(sin(2*pi*i/N) - 70 + 0.25*randn()) * mV'
S = Synapses(G, G, 'w : volt', on_pre='v += w')
S.connect()

space_constant = 200.0
S.w['i > j'] = 'exp(-(i - j)**2/space_constant) * mV'

# Generate a matrix for display
w_matrix = np.zeros((len(G), len(G)))
w_matrix[S.i[:], S.j[:]] = S.w[:]

subplot(1, 2, 1)
plot(G.v[:] / mV)
xlabel('Neuron index')
ylabel('v')
subplot(1, 2, 2)
imshow(w_matrix)
xlabel('i')
ylabel('j')
title('Synaptic weight')
tight_layout()
show()





[image: ../_images/synapses.state_variables.1.png]
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Example: synapses



Note

You can launch an interactive, editable version of this
example without installing any local files
using the Binder service (although note that at some times this
may be slow or fail to open): [image: launchbinder] [http://mybinder.org:/repo/brian-team/brian2-binder/notebooks/examples/synapses/synapses.ipynb]






A simple example of using Synapses.

from brian2 import *

G1 = NeuronGroup(10, 'dv/dt = -v / (10*ms) : 1',
                 threshold='v > 1', reset='v=0.', method='linear')
G1.v = 1.2
G2 = NeuronGroup(10, 'dv/dt = -v / (10*ms) : 1',
                 threshold='v > 1', reset='v=0', method='linear')

syn = Synapses(G1, G2, 'dw/dt = -w / (50*ms): 1 (event-driven)', on_pre='v += w')

syn.connect('i == j', p=0.75)

# Set the delays
syn.delay = '1*ms + i*ms + 0.25*ms * randn()'
# Set the initial values of the synaptic variable
syn.w = 1

mon = StateMonitor(G2, 'v', record=True)
run(20*ms)
plot(mon.t/ms, mon.v.T)
xlabel('Time (ms)')
ylabel('v')
show()





[image: ../_images/synapses.synapses.1.png]
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brian2 package

Brian 2.0


hears module

This is only a bridge for using Brian 1 hears with Brian 2.

NOTES:


	Slicing sounds with Brian 2 units doesn’t work, you need to either use Brian 1 units or replace calls to
sound[:20*ms] with sound.slice(None, 20*ms), etc.



TODO: handle properties (e.g. sound.duration)

Not working examples:


	time_varying_filter1 (care with units)



Exported members: 
convert_unit_b1_to_b2, convert_unit_b2_to_b1

Classes







	BridgeSound
	We add a new method slice because slicing with units can’t work with Brian 2 units.











	FilterbankGroup(filterbank,
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BridgeSound class

(Shortest import: from brian2.hears import BridgeSound)


	
class brian2.hears.BridgeSound

	Bases: brian2.hears.new_class

We add a new method slice because slicing with units can’t work with Brian 2 units.

Methods







	slice(*args)
	





Details


	
slice(*args)
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FilterbankGroup class

(Shortest import: from brian2.hears import FilterbankGroup)


	
class brian2.hears.FilterbankGroup(filterbank, targetvar, *args, **kwds)

	Bases: brian2.groups.neurongroup.NeuronGroup

Methods







	reinit()
	





Details


	
reinit()
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Sound class

(Shortest import: from brian2.hears import Sound)


	
brian2.hears.Sound

	alias of BridgeSound
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WrappedSound class

(Shortest import: from brian2.hears import WrappedSound)


	
brian2.hears.WrappedSound

	alias of new_class
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convert_unit_b1_to_b2 function

(Shortest import: from brian2.hears import convert_unit_b1_to_b2)


	
brian2.hears.convert_unit_b1_to_b2(val)

	







          

      

      

    

  

  
    
    
    convert_unit_b2_to_b1 function
    
    

    

    
 
  
  

    
      
          
            
  
convert_unit_b2_to_b1 function

(Shortest import: from brian2.hears import convert_unit_b2_to_b1)


	
brian2.hears.convert_unit_b2_to_b1(val)
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modify_arg function

(Shortest import: from brian2.hears import modify_arg)


	
brian2.hears.modify_arg(arg)

	Modify arguments to make them compatible with Brian 1.


	Arrays of units are replaced with straight arrays

	Single values are replaced with Brian 1 equivalents

	Slices are handled so we can use e.g. sound[:20*ms]



The second part was necessary because some functions/classes test if an object is an array or not to see if it
is a sequence, but because brian2.Quantity derives from ndarray this was causing problems.
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wrap_units function

(Shortest import: from brian2.hears import wrap_units)


	
brian2.hears.wrap_units(f)

	Wrap a function to convert units into a form that Brian 1 can handle. Also, check the output argument, if it is
a b1h.Sound wrap it.
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wrap_units_class function

(Shortest import: from brian2.hears import wrap_units_class)


	
brian2.hears.wrap_units_class(_C)

	Wrap a class to convert units into a form that Brian 1 can handle in all methods
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wrap_units_property function

(Shortest import: from brian2.hears import wrap_units_property)


	
brian2.hears.wrap_units_property(p)
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restore_initial_state function

(Shortest import: from brian2 import restore_initial_state)


	
brian2.only.restore_initial_state()

	Restores internal Brian variables to the state they are in when Brian is imported

Resets defaultclock.dt = 0.1*ms, 
BrianGlobalPreferences._restore preferences, and set
BrianObject._scope_current_key back to 0.
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codegen package

Package providing the code generation framework.


_prefs module

Module declaring general code generation preferences.


Preferences

Code generation preferences

codegen.loop_invariant_optimisations = True


Whether to pull out scalar expressions out of the statements, so that
they are only evaluated once instead of once for every neuron/synapse/...
Can be switched off, e.g. because it complicates the code (and the same
optimisation is already performed by the compiler) or because the
code generation target does not deal well with it. Defaults to True.


codegen.string_expression_target = 'numpy'


Default target for the evaluation of string expressions (e.g. when
indexing state variables). Should normally not be changed from the
default numpy target, because the overhead of compiling code is not
worth the speed gain for simple expressions.

Accepts the same arguments as codegen.target, except for 'auto'




codegen.target = 'auto'


Default target for code generation.

Can be a string, in which case it should be one of:


	'auto' the default, automatically chose the best code generation
target available.

	'weave' uses scipy.weave to generate and compile C++ code,
should work anywhere where gcc is installed and available at the
command line.

	'cython', uses the Cython package to generate C++ code. Needs a
working installation of Cython and a C++ compiler.

	'numpy' works on all platforms and doesn’t need a C compiler but
is often less efficient.



Or it can be a CodeObject class.









codeobject module

Module providing the base CodeObject and related functions.

Exported members: 
CodeObject, CodeObjectUpdater, constant_or_scalar

Classes







	CodeObject(owner,
  
    
    
    CodeObject class
    
    

    

    
 
  
  

    
      
          
            
  
CodeObject class

(Shortest import: from brian2 import CodeObject)


	
class brian2.codegen.codeobject.CodeObject(owner, code, variables, variable_indices, template_name, template_source, name='codeobject*')

	Bases: brian2.core.names.Nameable

Executable code object.

The code can either be a string or a
brian2.codegen.templates.MultiTemplate.

After initialisation, the code is compiled with the given namespace
using code.compile(namespace).

Calling code(key1=val1, key2=val2) executes the code with the given
variables inserted into the namespace.

Attributes







	class_name
	A short name for this type of CodeObject


	generator_class
	The CodeGenerator class used by this CodeObject





Methods







	__call__(**kwds)
	


	compile()
	


	is_available()
	Whether this target for code generation is available.


	run()
	Runs the code in the namespace.


	update_namespace()
	Update the namespace for this timestep.





Details


	
class_name

	A short name for this type of CodeObject






	
generator_class

	The CodeGenerator class used by this CodeObject






	
__call__(**kwds)

	




	
compile()

	




	
classmethod is_available()

	Whether this target for code generation is available. Should use a
minimal example to check whether code generation works in general.






	
run()

	Runs the code in the namespace.





	Returns:	return_value : dict


A dictionary with the keys corresponding to the output_variables
defined during the call of CodeGenerator.code_object.















	
update_namespace()

	Update the namespace for this timestep. Should only deal with variables
where the reference changes every timestep, i.e. where the current
reference in namespace is not correct.













          

      

      

    

  

  
    
    
    constant_or_scalar function
    
    

    

    
 
  
  

    
      
          
            
  
constant_or_scalar function

(Shortest import: from brian2.codegen.codeobject import constant_or_scalar)


	
brian2.codegen.codeobject.constant_or_scalar(varname, variable)

	Convenience function to generate code to access the value of a variable.
Will return 'varname' if the variable is a constant, and
array_name[0] if it is a scalar array.









          

      

      

    

  

  
    
    
    create_runner_codeobj function
    
    

    

    
 
  
  

    
      
          
            
  
create_runner_codeobj function

(Shortest import: from brian2.codegen.codeobject import create_runner_codeobj)


	
brian2.codegen.codeobject.create_runner_codeobj(group, code, template_name, run_namespace, user_code=None, variable_indices=None, name=None, check_units=True, needed_variables=None, additional_variables=None, template_kwds=None, override_conditional_write=None, codeobj_class=None)

	Create a CodeObject for the execution of code in the context of a
Group.





	Parameters:	group : Group


The group where the code is to be run




code : str or dict of str


The code to be executed.




template_name : str


The name of the template to use for the code.




run_namespace : dict-like


An additional namespace that is used for variable lookup (either
an explicitly defined namespace or one taken from the local
context).




user_code : str, optional


The code that had been specified by the user before other code was
added automatically. If not specified, will be assumed to be identical
to code.




variable_indices : dict-like, optional


A mapping from Variable objects to index names (strings).  If none is
given, uses the corresponding attribute of group.




name : str, optional


A name for this code object, will use group + '_codeobject*' if
none is given.




check_units : bool, optional


Whether to check units in the statement. Defaults to True.




needed_variables: list of str, optional :


A list of variables that are neither present in the abstract code, nor
in the USES_VARIABLES statement in the template. This is only
rarely necessary, an example being a StateMonitor where the
names of the variables are neither known to the template nor included
in the abstract code statements.




additional_variables : dict-like, optional


A mapping of names to Variable objects, used in addition to the
variables saved in group.




template_kwds : dict, optional


A dictionary of additional information that is passed to the template.




override_conditional_write: list of str, optional :


A list of variable names which are used as conditions (e.g. for
refractoriness) which should be ignored.




codeobj_class : class, optional


The CodeObject class to run code with. If not specified, defaults to
the group‘s codeobj_class attribute.


















          

      

      

    

  

  
    
    
    get_compiler_and_args function
    
    

    

    
 
  
  

    
      
          
            
  
get_compiler_and_args function

(Shortest import: from brian2.codegen.cpp_prefs import get_compiler_and_args)


	
brian2.codegen.cpp_prefs.get_compiler_and_args()

	Returns the computed compiler and compilation flags









          

      

      

    

  

  
    
    
    update_for_cross_compilation function
    
    

    

    
 
  
  

    
      
          
            
  
update_for_cross_compilation function

(Shortest import: from brian2.codegen.cpp_prefs import update_for_cross_compilation)


	
brian2.codegen.cpp_prefs.update_for_cross_compilation(library_dirs, extra_compile_args, extra_link_args, logger=None)

	Update the compiler arguments to allow cross-compilation for 32bit on a
64bit Linux system. Uses the provided logger to print an INFO message
and modifies the provided lists in-place.





	Parameters:	library_dirs : list


List of library directories (will be modified in-place).




extra_compile_args : list


List of extra compile args (will be modified in-place).




extra_link_args : list


List of extra link args (will be modified in-place).




logger : BrianLogger, optional


The logger to use for the INFO message. Defaults to None (no
message).


















          

      

      

    

  

  
    
    
    ArithmeticSimplifier class
    
    

    

    
 
  
  

    
      
          
            
  
ArithmeticSimplifier class

(Shortest import: from brian2.codegen.optimisation import ArithmeticSimplifier)


	
class brian2.codegen.optimisation.ArithmeticSimplifier(variables)

	Bases: brian2.parsing.bast.BrianASTRenderer

Carries out the following arithmetic simplifications:


	Constant evaluation (e.g. exp(0)=1) by attempting to evaluate the expression in an “assumptions namespace”

	Binary operators, e.g. 0*x=0, 1*x=x, etc. You have to take care that the dtypes match here, e.g.
if x is an integer, then 1.0*x shouldn’t be replaced with x but left as 1.0*x.







	Parameters:	variables : dict of (str, Variable)


Usual definition of variables.




assumptions : sequence of str


Additional assumptions that can be used in simplification, each assumption is a string statement.
These might be the scalar statements for example.










Methods







	render_BinOp(node)
	


	render_node(node)
	Assumes that the node has already been fully processed by BrianASTRenderer





Details


	
render_BinOp(node)

	




	
render_node(node)

	Assumes that the node has already been fully processed by BrianASTRenderer













          

      

      

    

  

  
    
    
    Simplifier class
    
    

    

    
 
  
  

    
      
          
            
  
Simplifier class

(Shortest import: from brian2.codegen.optimisation import Simplifier)


	
class brian2.codegen.optimisation.Simplifier(variables, scalar_statements, extra_lio_prefix='')

	Bases: brian2.parsing.bast.BrianASTRenderer

Carry out arithmetic simplifications (see ArithmeticSimplifier) and loop invariants





	Parameters:	variables : dict of (str, Variable)


Usual definition of variables.




scalar_statements : sequence of Statement


Predefined scalar statements that can be used as part of simplification










Notes

After calling render_expr on a sequence of expressions (coming from vector statements typically),
this object will have some new attributes:


	loop_invariants : OrderedDict of (expression, varname)

	varname will be of the form _lio_N where N is some integer, and the expressions will be
strings that correspond to scalar-only expressions that can be evaluated outside of the vector
block.

	loop_invariant_dtypes : dict of (varname, dtypename)

	dtypename will be one of 'boolean', 'integer', 'float'.



Methods







	render_expr(expr)
	


	render_node(node)
	Assumes that the node has already been fully processed by BrianASTRenderer





Details


	
render_expr(expr)

	




	
render_node(node)

	Assumes that the node has already been fully processed by BrianASTRenderer













          

      

      

    

  

  
    
    
    cancel_identical_terms function
    
    

    

    
 
  
  

    
      
          
            
  
cancel_identical_terms function

(Shortest import: from brian2.codegen.optimisation import cancel_identical_terms)


	
brian2.codegen.optimisation.cancel_identical_terms(primary, inverted)

	Cancel terms in a collection, e.g. a+b-a should be cancelled to b

Simply renders the nodes into expressions and removes whenever there is a common expression
in primary and inverted.





	Parameters:	primary : list of AST nodes


These are the nodes that are positive with respect to the operator, e.g.
in x*y/z it would be [x, y].




inverted : list of AST nodes


These are the nodes that are inverted with respect to the operator, e.g.
in x*y/z it would be [z].







	Returns:	primary : list of AST nodes


Primary nodes after cancellation




inverted : list of AST nodes


Inverted nodes after cancellation


















          

      

      

    

  

  
    
    
    collect function
    
    

    

    
 
  
  

    
      
          
            
  
collect function

(Shortest import: from brian2.codegen.optimisation import collect)


	
brian2.codegen.optimisation.collect(node)

	Attempts to collect commutative operations into one and simplifies them.

For example, if x and y are scalars, and z is a vector, then (x*z)*y should
be rewritten as (x*y)*z to minimise the number of vector operations. Similarly,
((x*2)*3)*4 should be rewritten as x*24.

Works for either multiplication/division or addition/subtraction nodes.

The final output is a subexpression of the following maximal form:


(((numerical_value*(product of scalars))/(product of scalars))*(product of vectors))/(product of vectors)


Any possible cancellations will have been done.





	Parameters:	node : Brian AST node


The node to be collected/simplified.







	Returns:	node : Brian AST node


Simplified node.


















          

      

      

    

  

  
    
    
    collect_commutative function
    
    

    

    
 
  
  

    
      
          
            
  
collect_commutative function

(Shortest import: from brian2.codegen.optimisation import collect_commutative)


	
brian2.codegen.optimisation.collect_commutative(node, primary, inverted, terms_primary, terms_inverted, add_to_inverted=False)

	







          

      

      

    

  

  
    
    
    evaluate_expr function
    
    

    

    
 
  
  

    
      
          
            
  
evaluate_expr function

(Shortest import: from brian2.codegen.optimisation import evaluate_expr)


	
brian2.codegen.optimisation.evaluate_expr(expr, ns)

	Try to evaluate the expression in the given namespace

Returns either (value, True) if successful, or (expr, False) otherwise.









          

      

      

    

  

  
    
    
    expression_complexity function
    
    

    

    
 
  
  

    
      
          
            
  
expression_complexity function

(Shortest import: from brian2.codegen.optimisation import expression_complexity)


	
brian2.codegen.optimisation.expression_complexity(expr, variables)

	







          

      

      

    

  

  
    
    
    optimise_statements function
    
    

    

    
 
  
  

    
      
          
            
  
optimise_statements function

(Shortest import: from brian2.codegen.optimisation import optimise_statements)


	
brian2.codegen.optimisation.optimise_statements(scalar_statements, vector_statements, variables, blockname='')

	Optimise a sequence of scalar and vector statements

Performs the following optimisations:


	Constant evaluations (e.g. exp(0) to 1). See evaluate_expr.

	Arithmetic simplifications (e.g. 0*x to 0). See ArithmeticSimplifier, collect().

	Pulling out loop invariants (e.g. v*exp(-dt/tau) to a=exp(-dt/tau) outside the loop and v*a inside).
See Simplifier.

	Boolean simplifications (allowing the replacement of expressions with booleans with a sequence of if/thens).
See Simplifier.







	Parameters:	scalar_statements : sequence of Statement


Statements that only involve scalar values and should be evaluated in the scalar block.




vector_statements : sequence of Statement


Statements that involve vector values and should be evaluated in the vector block.




variables : dict of (str, Variable)


Definition of the types of the variables.




blockname : str, optional


Name of the block (used for LIO constant prefixes to avoid name clashes)







	Returns:	new_scalar_statements : sequence of Statement


As above but with loop invariants pulled out from vector statements




new_vector_statements : sequence of Statement


Simplified/optimised versions of statements


















          

      

      

    

  

  
    
    
    reduced_node function
    
    

    

    
 
  
  

    
      
          
            
  
reduced_node function

(Shortest import: from brian2.codegen.optimisation import reduced_node)


	
brian2.codegen.optimisation.reduced_node(terms, op)

	Reduce a sequence of terms with the given operator

For examples, if terms were [a, b, c] and op was multiplication then the reduction would be (a*b)*c.





	Parameters:	terms : list


AST nodes.




op : AST node


Could be ast.Mult or ast.Add.










Examples

>>> import ast
>>> nodes = [ast.Name(id='x'), ast.Num(n=3), ast.Name(id='y')]
>>> ast.dump(reduced_node(nodes, ast.Mult), annotate_fields=False)
"BinOp(BinOp(Name('x'), Mult(), Num(3)), Mult(), Name('y'))"
>>> nodes = [ast.Num(n=17.0)]
>>> ast.dump(reduced_node(nodes, ast.Add), annotate_fields=False)
'Num(17.0)'













          

      

      

    

  

  
    
    
    OrderDependenceError class
    
    

    

    
 
  
  

    
      
          
            
  
OrderDependenceError class

(Shortest import: from brian2.codegen.permutation_analysis import OrderDependenceError)


	
class brian2.codegen.permutation_analysis.OrderDependenceError

	Bases: exceptions.Exception [https://docs.python.org/2/library/exceptions.html#exceptions.Exception]









          

      

      

    

  

  
    
    
    check_for_order_independence function
    
    

    

    
 
  
  

    
      
          
            
  
check_for_order_independence function

(Shortest import: from brian2.codegen.permutation_analysis import check_for_order_independence)


	
brian2.codegen.permutation_analysis.check_for_order_independence(statements, variables, indices)

	Check that the sequence of statements doesn’t depend on the order in which the indices are iterated through.









          

      

      

    

  

  
    
    
    Statement class
    
    

    

    
 
  
  

    
      
          
            
  
Statement class

(Shortest import: from brian2 import Statement)


	
class brian2.codegen.statements.Statement(var, op, expr, comment, dtype, constant=False, subexpression=False, scalar=False)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

A single line mathematical statement.

The structure is var op expr.





	Parameters:	var : str


The left hand side of the statement, the value being written to.




op : str


The operation, can be any of the standard Python operators (including
+= etc.) or a special operator := which means you are defining
a new symbol (whereas = means you are setting the value of an
existing symbol).




expr : str, Expression


The right hand side of the statement.




dtype : dtype [https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype]


The numpy dtype of the value or array var().




constant : bool, optional


Set this flag to True if the value will not change (only applies for
op==':='.




subexpression : bool, optional


Set this flag to True if the variable is a subexpression. In some
languages (e.g. Python) you can use this to save a memory copy, because
you don’t need to do lhs[:] = rhs but a redefinition lhs = rhs.




scalar : bool, optional


Set this flag to True if var() and expr are scalar.










Notes

Will compute the following attribute:


	inplace

	True or False depending if the operation is in-place or not.



Boolean simplification notes:

Will initially set the attribute used_boolean_variables to None.
This is set by optimise_statements when it
is called on a sequence of statements to the list of boolean variables
that are used in this expression. In addition, the attribute
boolean_simplified_expressions is set to a dictionary with keys
consisting of a tuple of pairs (var, value) where var is the
name of the boolean variable (will be in used_boolean_variables)
and var is True or False. The values of the dictionary are
strings representing the simplified version of the expression if each
var=value substitution is made for that key. The keys will range
over all possible values of the set of boolean variables. The complexity
of the original statement is set as the attribute complexity_std,
and the complexity of the simplified versions are in the dictionary
complexities (with the same keys).

This information can be used to generate code that replaces a complex
expression that varies depending on the value of one or more boolean
variables with an if/then sequence where each subexpression is
simplified. It is optional to use this (e.g. the numpy codegen does
not, but the weave and cython ones do).
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CodeObjectTemplate class

(Shortest import: from brian2.codegen.templates import CodeObjectTemplate)


	
class brian2.codegen.templates.CodeObjectTemplate(template, template_source)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Single template object returned by Templater and used for final code generation

Should not be instantiated by the user, but only directly by Templater.

Notes

The final code is obtained from this by calling the template (see __call__).

Attributes







	allows_scalar_write
	Does this template allow writing to scalar variables?


	iterate_all
	The indices over which the template iterates completely


	variables
	The set of variables in this template


	writes_read_only
	Read-only variables that are changed by this template





Methods







	__call__(scalar_code,
  
    
    
    LazyTemplateLoader class
    
    

    

    
 
  
  

    
      
          
            
  
LazyTemplateLoader class

(Shortest import: from brian2.codegen.templates import LazyTemplateLoader)


	
class brian2.codegen.templates.LazyTemplateLoader(environment, extension)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Helper object to load templates only when they are needed.

Methods







	get_template(name)
	





Details


	
get_template(name)

	











          

      

      

    

  

  
    
    
    MultiTemplate class
    
    

    

    
 
  
  

    
      
          
            
  
MultiTemplate class

(Shortest import: from brian2.codegen.templates import MultiTemplate)


	
class brian2.codegen.templates.MultiTemplate(module)

	Bases: _abcoll.Mapping

Code generated by a CodeObjectTemplate with multiple blocks

Each block is a string stored as an attribute with the block name. The
object can also be accessed as a dictionary.









          

      

      

    

  

  
    
    
    Templater class
    
    

    

    
 
  
  

    
      
          
            
  
Templater class

(Shortest import: from brian2.codegen.templates import Templater)


	
class brian2.codegen.templates.Templater(package_name, extension, env_globals=None)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Class to load and return all the templates a CodeObject defines.





	Parameters:	package_name : str, tuple of str


The package where the templates are saved. If this is a tuple then each template will be searched in order
starting from the first package in the tuple until the template is found. This allows for derived templates
to be used. See also derive.




env_globals : dict (optional)


A dictionary of global values accessible by the templates. Can be used for providing utility functions.
In all cases, the filter ‘autoindent’ is available (see existing templates for example usage).










Notes

Templates are accessed using templater.template_base_name (the base name is without the file extension).
This returns a CodeObjectTemplate.

Methods







	derive(package_name[,
  
    
    
    autoindent function
    
    

    

    
 
  
  

    
      
          
            
  
autoindent function

(Shortest import: from brian2.codegen.templates import autoindent)


	
brian2.codegen.templates.autoindent(code)

	







          

      

      

    

  

  
    
    
    autoindent_postfilter function
    
    

    

    
 
  
  

    
      
          
            
  
autoindent_postfilter function

(Shortest import: from brian2.codegen.templates import autoindent_postfilter)


	
brian2.codegen.templates.autoindent_postfilter(code)
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variables_to_array_names function

(Shortest import: from brian2.codegen.templates import variables_to_array_names)


	
brian2.codegen.templates.variables_to_array_names(variables, access_data=True)
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LineInfo class

(Shortest import: from brian2.codegen.translation import LineInfo)


	
class brian2.codegen.translation.LineInfo(**kwds)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

A helper class, just used to store attributes.
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analyse_identifiers function

(Shortest import: from brian2 import analyse_identifiers)


	
brian2.codegen.translation.analyse_identifiers(code, variables, recursive=False)

	Analyses a code string (sequence of statements) to find all identifiers by type.

In a given code block, some variable names (identifiers) must be given as inputs to the code
block, and some are created by the code block. For example, the line:

a = b+c





This could mean to create a new variable a from b and c, or it could mean modify the existing
value of a from b or c, depending on whether a was previously known.





	Parameters:	code : str


The code string, a sequence of statements one per line.




variables : dict of Variable, set of names


Specifiers for the model variables or a set of known names




recursive : bool, optional


Whether to recurse down into subexpressions (defaults to False).







	Returns:	newly_defined : set


A set of variables that are created by the code block.




used_known : set


A set of variables that are used and already known, a subset of the
known parameter.




unknown : set


A set of variables which are used by the code block but not defined by
it and not previously known. Should correspond to variables in the
external namespace.


















          

      

      

    

  

  
    
    
    get_identifiers_recursively function
    
    

    

    
 
  
  

    
      
          
            
  
get_identifiers_recursively function

(Shortest import: from brian2 import get_identifiers_recursively)


	
brian2.codegen.translation.get_identifiers_recursively(expressions, variables, include_numbers=False)

	Gets all the identifiers in a list of expressions, recursing down into
subexpressions.





	Parameters:	expressions : list of str


List of expressions to check.




variables : dict-like


Dictionary of Variable objects




include_numbers : bool, optional


Whether to include number literals in the output. Defaults to False.


















          

      

      

    

  

  
    
    
    is_scalar_expression function
    
    

    

    
 
  
  

    
      
          
            
  
is_scalar_expression function

(Shortest import: from brian2.codegen.translation import is_scalar_expression)


	
brian2.codegen.translation.is_scalar_expression(expr, variables)

	Whether the given expression is scalar.





	Parameters:	expr : str


The expression to check




variables : dict-like


Variable and Function object for all the identifiers used in expr







	Returns:	scalar : bool


Whether expr is a scalar expression
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make_statements function

(Shortest import: from brian2 import make_statements)


	
brian2.codegen.translation.make_statements(code, variables, dtype, optimise=True, blockname='')

	Turn a series of abstract code statements into Statement objects, inferring
whether each line is a set/declare operation, whether the variables are
constant or not, and handling the cacheing of subexpressions.





	Parameters:	code : str


A (multi-line) string of statements.




variables : dict-like


A dictionary of with Variable and Function objects for every
identifier used in the code [https://docs.python.org/2/library/code.html#module-code].




dtype : dtype [https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype]


The data type to use for temporary variables




optimise : bool, optional


Whether to optimise expressions, including
pulling out loop invariant expressions and putting them in new
scalar constants. Defaults to False, since this function is also
used just to in contexts where we are not interested by this kind of
optimisation. For the main code generation stage, its value is set by
the codegen.loop_invariant_optimisations preference.




blockname : str, optional


A name for the block (used to name intermediate variables to avoid
name clashes when multiple blocks are used together)




Returns :

——- :

scalar_statements, vector_statements : (list of Statement, list of Statement)


Lists with statements that are to be executed once and statements that
are to be executed once for every neuron/synapse/... (or in a vectorised
way)










Notes

If optimise is True, then the
scalar_statements may include newly introduced scalar constants that
have been identified as loop-invariant and have therefore been pulled out
of the vector statements. The resulting statements will also use augmented
assignments where possible, i.e. a statement such as w = w + 1 will be
replaced by w += 1. Also, statements involving booleans will have
additional information added to them (see Statement for details)
describing how the statement can be reformulated as a sequence of if/then
statements. Calls optimise_statements.
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generators package


base module

Base class for generating code in different programming languages, gives the
methods which should be overridden to implement a new language.

Exported members: 
CodeGenerator

Classes







	CodeGenerator(variables,
  
    
    
    CodeGenerator class
    
    

    

    
 
  
  

    
      
          
            
  
CodeGenerator class

(Shortest import: from brian2 import CodeGenerator)


	
class brian2.codegen.generators.base.CodeGenerator(variables, variable_indices, owner, iterate_all, codeobj_class, name, template_name, override_conditional_write=None, allows_scalar_write=False)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Base class for all languages.

See definition of methods below.

TODO: more details here

Methods







	array_read_write(statements)
	Helper function, gives the set of ArrayVariables that are read from and written to in the series of statements.


	arrays_helper(statements)
	Combines the two helper functions array_read_write and get_conditional_write_vars, and updates the read set.


	determine_keywords()
	A dictionary of values that is made available to the templated.


	get_array_name(var[,
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CPPCodeGenerator class

(Shortest import: from brian2 import CPPCodeGenerator)


	
class brian2.codegen.generators.cpp_generator.CPPCodeGenerator(*args, **kwds)

	Bases: brian2.codegen.generators.base.CodeGenerator

C++ language

C++ code templates should provide Jinja2 macros with the following names:


	main

	The main loop.

	support_code

	The support code (function definitions, etc.), compiled in a separate
file.



For user-defined functions, there are two keys to provide:


	support_code

	The function definition which will be added to the support code.

	hashdefine_code

	The #define code added to the main loop.



See TimedArray for an example of these keys.

Attributes







	flush_denormals
	


	restrict
	





Methods







	denormals_to_zero_code()
	


	determine_keywords()
	


	get_array_name(var[,
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c_data_type function

(Shortest import: from brian2 import c_data_type)


	
brian2.codegen.generators.cpp_generator.c_data_type(dtype)

	Gives the C langu