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Brian is a simulator for spiking neural networks. It is written in the Python programming language and is available on
almost all platforms. We believe that a simulator should not only save the time of processors, but also the time of scientists.
Brian is therefore designed to be easy to learn and use, highly flexible and easily extensible.

To get an idea of what writing a simulation in Brian looks like, take a look at a simple example, or run our interactive
demo.

Once you have a feel for what is involved in using Brian, we recommend you start by following the installation instructions,
and in case you are new to the Python programming language, having a look at Running Brian scripts. Then, go through
the rutorials, and finally read the User Guide.

While reading the documentation, you will see the names of certain functions and classes are highlighted links (e.g.
PoissonGroup). Clicking on these will take you to the “reference documentation”. This section is automatically
generated from the code, and includes complete and very detailed information, so for new users we recommend sticking
to the User’s guide. However, there is one feature that may be useful for all users. If you click on, for example, Pois—
sonGroup, and scroll down to the bottom, you’ll get a list of all the example code that uses PoissonGroup. This is
available for each class or method, and can be helpful in understanding how a feature works.

Finally, if you’re having problems, please do let us know at our support page.
Please note that all interactions (e.g. via the mailing list or on github) should adhere to our Code of Conduct.

Contents:
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CHAPTER
ONE

INTRODUCTION

1.1 Installation

e Standard install

* Updating an existing installation

* Requirements for C++ code generation
* Development install

e [nstalling other useful packages

e Testing Brian

There are various ways to install Brian, and we recommend that you chose the installation method that they are most
familiar with and use for other Python packages. If you do not yet have Python installed on your system (in particular on
Windows machines), you can install Python and all of Brian’s dependencies via the Anaconda distribution. You can then
install Brian with the conda package manager as detailed below.

Note: You need to have access to Python >=3.7 (see Brian’s support policy). In particular, Brian no longer supports
Python 2 (the last version to support Python 2 was Brian 2.3). All provided Python packages also require a 64 bit system,
but every desktop or laptop machine built in the last 10 years (and even most older machines) is 64 bit compatible.

If you are relying on Python packages for several, independent projects, we recommend that you make use of separate
environments for each project. In this way, you can safely update and install packages for one of your projects without
affecting the others. Both, conda and pip support installation in environments — for more explanations see the respective
instructions below.

1.1.1 Standard install

conda package

PyPI package (pip)
Ubuntu/Debian package
Fedora package

Spack package



https://www.anaconda.com/distribution/#download-section
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We recommend installing Brian into a separate environment, see conda’s documentation for more details. Brian 2 is not
part of the main Anaconda distribution, but built using the community-maintained conda-forge project. You will therefore
have to to install it from the conda-forge channel. To do so, use:

’conda install -c¢ conda-forge brian2 ‘

You can also permanently add the channel to your list of channels:

’conda config —--add channels conda-forge ‘

This has only to be done once. After that, you can install and update the brian2 packages as any other Anaconda package:

’conda install brian2 ‘

We recommend installing Brian into a separate “virtual environment”, see the Python Packaging User Guide for more
information. Brian is included in the PyPI package index: https://pypi.python.org/pypi/Brian2 You can therefore install
it with the pip utility:

’python -m pip install brian2 ‘

In rare cases where your current environment does not have access to the pip utility, you first have to install pip via:

’python -m ensurepip ‘

If you are using a recent Debian-based Linux distribution (Debian itself, or one if its derivatives like Ubuntu or Linux
Mint), you can install Brian using its built-in package manager:

’sudo apt install python3-brian ‘

Brian releases get packaged by the Debian Med team, but note that it might take a while until the most recent version
shows up in the repository.

If you are using Fedora Linux, you can install Brian using its built-in package manager:

sudo dnf install python-brian2

Brian releases get packaged by the NeuroFedora team, but note that it might take a while until the most recent version
shows up in the repository.

Spack is a flexible package manager supporting multiple versions, configurations, platforms, and compilers.

After setting up Spack you can install Brian with the following command:

spack install py-brian2

1.1.2 Updating an existing installation

How to update Brian to a new version depends on the installation method you used previously. Typically, you can run the
same command that you used for installation (sometimes with an additional option to enforce an upgrade, if available):
conda package

PyPI package (pip)

Ubuntu/Debian package

Fedora package
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Depending on whether you added the conda—-forge channel to the list of channels or not (see above), you either have
to include it in the update command again or can leave it away. L.e. use:

’conda update -c¢ conda-forge brian2

if you did not add the channel, or:

’conda update brian2

if you did.

Use the install command together with the ——upgrade or —U option:

’python -m pip install -U brian2

Update the package repository and ask for an install. Note that the package will also be updated automatically with
commands like sudo apt full-upgrade:

sudo apt update
sudo apt install python3-brian

Update the package repository (not necessary in general, since it will be updated regularly without asking for it), and ask
for an update. Note that the package will also be updated automatically with commands like sudo dnf upgrade:

sudo dnf check-update python-brian2
sudo dnf upgrade python-brian2

1.1.3 Requirements for C++ code generation

C++ code generation is highly recommended since it can drastically increase the speed of simulations (see Computational
methods and efficiency for details). To use it, you need a C++ compiler and Cython (automatically installed as a dependency
of Brian).

Linux and OS X
‘Windows

On Linux and Mac OS X, the conda package will automatically install a C++ compiler. But even if you install Brian
in a different way, you will most likely already have a working C++ compiler installed on your system (try calling g++
——version in a terminal). If not, use your distribution’s package manager to install a g++ package.

On Windows, Runtime code generation (i.e. Cython) requires the Visual Studio compiler, but you do not need a full Visual
Studio installation, installing the much smaller “Build Tools” package is sufficient:

¢ Install the Microsoft Build Tools for Visual Studio.

¢ In Build tools, install C++ build tools and ensure the latest versions of MSVCyv... build tools and Windows 10 SDK
are checked.

e Make sure that your setuptools package has at least version 34.4.0 (use conda update setuptools
when using Anaconda, or python -m pip install —--upgrade setuptools when using pip).

For Standalone code generation, you can either use the compiler installed above or any other version of Visual Studio.

Try running the test suite (see Installing other useful packages below) after the installation to make sure everything is
working as expected.

1.1. Installation 5
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1.1.4 Development install

When you encounter a problem in Brian, we will sometimes ask you to install Brian’s latest development version, which
includes changes that were included after its last release.

We regularly upload the latest development version of Brian to PyPI’s test server. You can install it via:

’python -m pip install --upgrade —--pre -i https://test.pypil.org/simple/ Brian2

Note that this requires that you already have all of Brian’s dependencies installed.

If you have git installed, you can also install directly from github:

’python -m pip install git+https://github.com/brian-team/brian2.git

Finally, in particular if you want to either contribute to Brian’s development or regularly test its latest development version,
you can directly clone the git repository at github (https://github.com/brian-team/brian2) and then run pip install
—-e ., toinstall Brian in “development mode”. With this installation, updating the git repository is in general enough to
keep up with changes in the code, i.e. it is not necessary to install it again.

1.1.5 Installing other useful packages

There are various packages that are useful but not necessary for working with Brian. These include: matplotlib (for
plotting), pytest (for running the test suite), ipython and jupyter-notebook (for an interactive console).

conda package

PyPI package (pip)

conda install matplotlib pytest ipython notebook

’python -m pip install matplotlib pytest ipython notebook

You should also have a look at the brian2tools package, which contains several useful functions to visualize Brian 2
simulations and recordings.

conda package
PyPI package (pip)

As of now, brian2tools is not yet included in the conda—-forge channel, you therefore have to install it from our
own brian—-team channel:

conda install -c brian-team brian2tools

’python -m pip install brian2tools
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1.1.6 Testing Brian

If you have the pytest testing utility installed, you can run Brian’s test suite:

import brian2
brian2.test ()

It should end with “OK”, showing a number of skipped tests but no errors or failures. For more control about the tests
that are run see the developer documentation on testing.

1.2 Running Brian scripts

Brian scripts are standard Python scripts, and can therefore be run in the same way. For interactive, explorative work, you
might want to run code in a jupyter notebook or in an ipython shell; for running finished code, you might want to execute
scripts through the standard Python interpreter; finally, for working on big projects spanning multiple files, a dedicated
integrated development environment for Python could be a good choice. We will briefly describe all these approaches and
how they relate to Brian’s examples and tutorial that are part of this documentation. Note that none of these approaches
are specific to Brian, so you can also search for more information in any of the resources listed on the Python website.

* Jupyter notebook

IPython shell

 Python interpreter

* Integrated development environment (IDE)

1.2.1 Jupyter notebook

The Jupyter Notebook is an open-source web application that allows you to create and share documents that
contain live code, equations, visualizations and narrative text.

(from jupyter.org)

Jupyter notebooks are a great tool to run Brian code interactively, and include the results of the simulations, as well as
additional explanatory text in a common document. Such documents have the file ending . ipynb, and in Brian we use
this format to store the Tuzorials. These files can be displayed by github (see e.g. the first Brian tutorial), but in this case
you can only see them as a static website, not edit or execute any of the code.

To make the full use of such notebooks, you have to run them using the jupyter infrastructure. The easiest option is to use
the free mybinder.org web service, which allows you to try out Brian without installing it on your own machine. Links to
run the tutorials on this infrastructure are provided as ‘launch binder” buttons on the Tutorials page, and also for each of
the Examples at the top of the respective page (e.g. Example: COBAHH). To run notebooks on your own machine, you
need an installation of the jupyter notebook software on your own machine, as well as Brian itself (see the Installation
instructions for details). To open an existing notebook, you have to download it to your machine. For the Brian tutorials,
you find the necessary links on the Turorials page. When you have downloaded/installed everything necessary, you can
start the jupyter notebook from the command line (using Terminal on OS X/Linux, Command Prompt on Windows):

jupyter notebook

this will open the “Notebook Dashboard” in your default browser, from which you can either open an existing notebook
or create a new one. In the notebook, you can then execute individual “code cells” by pressing SHIFT+ENTER on your
keyboard, or by pressing the play button in the toolbar.
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For more information, see the jupyter notebook documentation.

1.2.2 IPython shell

An alternative to using the jupyter notebook is to use the interactive Python shell IPython, which runs in the Termi-
nal/Command Prompt. You can use it to directly type Python code interactively (each line will be executed as soon as
you press ENTER), or to run Python code stored in a file. Such files typically have the file ending . py. You can either
create it yourself in a text editor of your choice (e.g. by copying&pasting code from one of the Examples), or by down-
loading such files from places such as github (e.g. the Brian examples), or ModelDB. You can then run them from within
IPython via:

$run filename.py

1.2.3 Python interpreter

The most basic way to run Python code is to run it through the standard Python interpreter. While you can also use this
interpreter interactively, it is much less convenient to use than the IPython shell or the jupyter notebook described above.
However, if all you want to do is to run an existing Python script (e.g. one of the Brian Examples), then you can do this
by calling:

python filename.py

in a Terminal/Command Prompt.

1.2.4 Integrated development environment (IDE)

Python is a widely used programming language, and is therefore support by a wide range of integrated development
environments (IDE). Such IDEs provide features that are very convenient for developing complex projects, e.g. they
integrate text editor and interactive Python console, graphical debugging tools, etc. Popular environments include Spyder,
PyCharm, and Visual Studio Code, for an extensive list see the Python wiki.

1.3 Release notes

1.3.1 Brian 2.5.1

This new minor release contains a large number of bug fixes and improvements, in particular for the C++ standalone mode,
as well as many new contributed examples. For users of Visual Studio Code, getting involved with Brian development is
now easier than ever, thanks to a new “development container” that automatically provides an environment with all the
necessary dependencies.
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New features

Ben Evans added a Docker container for development with Visual Studio Code (#1387).

Synaptic indices of synapses created with manually provided indices can now be accessed in standalone mode even
before the situation has been run. This makes certain complex situations (e.g. synapses modulating other synapses)
easier to write and also makes more detailed error checking possible (#1403).

Additional “code slots”, as well as more detailed profiling information about compilation times are avaiable for C++
standalone mode (#1390, #1391). Thanks to Denis Alevi for contributing this feature.

LaTeX output for quantity arrays (which is automatically used for the “rich representation” in jupyter notebooks),
is now limited to reasonable size and no longer tries to display all values for large arrays. It now also observes most
of numpy’s print options (#1426)

Selected improvements and bug fixes

Internally, Brian objects now have more consistent names (used in the generated code), and variables declarations
are generated in deterministic order. This should make repeated runs of models faster, since less code has to be
recompiled (#1384, #1417).

Running several simulations in parallel with Python’s mult iprocessing meant that all processes accessed the
same log file which led to redundant information and could lead to crashes when several processes tried to rotate
the same file. Brian now switches off logging in subprocesses, but users can enable also enable individual logs for
each process, see Logging and multiprocessing. The default log level for the file log has also been raised to DEBUG
(#1419).

Some common plotting idioms (e.g. plt .plot (spike_mon.t/ms, spike_mon.i, '.'))were broken
with the most recent matplotlib version and are now working again (#1412)

Very long runs (with more then 2e9 simulation time steps) failed to run in C++ standalone mode (#1394). Thanks
to Kai Chen for making us aware of the issue.

Infrastructure and documentation improvements

Sebastian Schmitt has contributed several new Examples, reproducing results from several papers (e.g. Example:
Maass_Natschlaeger_Markram_2002 and Example: Naud_et_al_2008_adex_firing_patterns)

Akif Erdem Sagtekin and Sebastian Schmitt contributed the example Example: Izhikevich_2003.

A number of fixes to the documentation have been contributed by Sebastian Schmitt.

Contributions

Github code, documentation, and issue contributions (ordered by the number of contributions):

Marcel Stimberg (@mstimberg)
Ben Evans (@bdevans)

Sebastian Schmitt (@schmitts)
Denis Alevi (@denisalevi)

Akif Erdem Sagtekin (@aesagtekin)
@MunozatABI

Dan Goodman (@thesamovar)
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e @ivapl

* @dokato

¢ Davide Schiavone (@davideschiavone)
¢ Kai Chen (@NeoNeuron)

* Yahya Ashrafi (@yahya-ashrafi)

¢ Ariel Martinez Silberstein (@ariel-m-s)

¢ Adam Willats (@awillats)

1.3.2 Brian 2.5.0.3

Another patch-level release that fixes incorrectly built Python wheels (the binary package used to install packages with
pip). The wheels where mistakenly built against the most recent version of numpy (1.22), which made them incompat-
ible with earlier versions of numpy. This release also fixes a few minor mistakes in the string representation of monitors,
contributed by Felix Benjamin Kern.

1.3.3 Brian 2.5.0.2

A new patch-level release that fixes a missing #include in the synapse generation code for C++ standalone code. This
does not matter for most compilers (in particular, it does not matter for the gcc, clang, and Visual Studio compilers that
we use for testing on Linux, OS X, and Windows), but it can matter for projects like Brian2GeNN that build on top of
Brian2 and use Nvidia’s nvcc compiler. The release also fixes a minor string-formatting error (#1377), which led to
quantities that were displayed without their units.

1.3.4 Brian 2.5.0.1

A new build to provide binary wheels for Python 3.10.

1.3.5 Brian 2.5

This new major release contains a large number of bug fixes and improvements, as well as important new features for
synapse generation: the Creating synapses with the generator syntax can now create synapses “in both directions”, and also
supports random samples of fixed size. In addition, several contributors have helped to improve the documentation, in
particular by adding several new Examples. We have also updated our test infrastructure and removed workarounds and
warnings related to older, now unsupported, versions of Python. Our policy for supported Python and numpy versions
now follows the NEP 29 policy adopted by most packages in the scientific Python ecosystem. This and other policies
related to compatibility have been documented in Compatibility and reproducibility. As always, we recommend all users
of Brian 2 to upgrade.
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New features

Creating synapses with the generator syntax has become more powerful: it is now possible to express pre-synaptic
indices as a function of post-synaptic indices — previously, only the other direction was supported (#1294).

Synapse generation can now make use of fixed-size random sampling (#1280). Together with the more powerful
generator syntax, this finally makes it possible to have networks where each cell receives a fixed number of random
inputs: syn.connect (i='k for k in sample (N_pre, size=number_of_inputs)').

Selected improvements and bug fixes

Fair default build flags on several architectures (#1277). Thanks to Etienne Mollier for contributing this feature.

Better C++ compiler detection on UNIX systems, e.g. with Anaconda installations (#1304). Thanks to Jan Marker
for this contribution.

Fixed LaTeX output for newer sympy versions (#1299). Thanks to Sebastian Schmitt for reporting this issue. The
problem and its fix is described in detail in this blog post.

Fixed string representation for units (#1291). Recreating a unit from its string representation gave wrong results in
some corner cases.

Fix an error during the determination of appropriate C++ compiler flags on Windows with Python 3.9 (#1286),
and fix the detection of a C99-compatible compiler on Windows (#1257). Thanks to Kyle Johnsen for reporting
the errors and providing both fixes.

More robust usage of external constants in C++ standalone code, avoiding clashes when the user defines constants
with common names like x (#1279). Thanks to user @wxie2013 for making us aware of this issue.

Raise an error if summed variables refer to event-based variables (#1274) and a general rework of the dependency
checks (#1328). Thanks to Rohith Varma Buddaraju for fixing this issue.

Fix an error for deactivated spike-emitting objects (e.g. NeuronGroup, PoissonGroup). They continued to
emit spikes despite act ive=False if they had spiked in the last time step of a previous run (#1319). Thanks to
forum user Shencong for making us aware of the issue.

Avoid warnings about deprecated numpy aliases (#1273).
Avoid a warning about an “ignored attribute shape” in some interactive Python consoles (#1372).
Check units for summed variables (#1361). Thanks to Jan-Hendrik Schleimer for reporting this issue.

Do not raise an error if synapses use restore instead of Synapses.connect (#1359). Thanks to forum user SIbanez
for reporting this issue.

Fix indexing for sections in SpatialNeuron (#1358). Thanks to Sebastian Schmitt for reporting this issue
Better error messages for missing threshold definition (#1363).

Raise a useful error for name space entries that start with an underscore instead of failing during compilation if
the name clashes with built-in functions (#1362). Thanks to Denis Alevi for reporting this issue.

Consistently use include/library directory preferences (#1353). The preferences can now be used to override the
list of include/library directories, replacing the inconsistent behavior where they were either prepended (C++ stan-
dalone mode) or appended (Cython runtime mode) to the default list. Thanks to Denis Alevi for opening the
discussion on this issue.

Remove a warning about the difference between Python 2 and Python 3 semantics related to division (#1351).

Do not generate spurious — . o files when checking compiler compatibility (#1348). For more details, see this blog
post.

1.3.
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e Make reset_to_defaults work again, which was inadvertently broken in the Python 2 — 3 transition

(#1342). Thanks to Denis Alevi for reporting and fixing this issue.

* The commands to run and compile the code in C++ standalone mode can now be changed via a preference (#1338).

This can be useful to run/compile on clusters where jobs have to submitted with special commands. Thanks to Denis
Alevi for contributing this feature.

Backward-incompatible changes

e The default_preferences file that was part of the Brian installation has been removed, since it could lead

to problems when working with development versions of Brian, and was overwritten with each update (#1354).
Users can still use a system-wide or per-directory preference file (see Preferences).

 The preferences codegen.cpp.include_dirs, codegen.cpp.library_dirs, and codegen.cpp.runtime_library_dirs now all

replace the respective default values. Previously they where prepended (C++ standalone mode) or appended
(Cython runtime mode). Users relying on a combination of the default values and their manually set values need
to include the default value (e.g. os.path.join (sys.prefix, 'include')) manually.

Infrastructure and documentation improvements

Tagging a release will now automatically upload the release to PyPI via a GitHub Action. Versions are automatically
determined with versioneer (#1267) and include more detailed information when using a development version of
Brian. See Which version of Brian am I using? for more details.

The test suite has been moved to GitHub Actions for all operating systems (#1298). Thanks to Rohith Varma
Buddaraju for working on this.

New Example: Jansen_Rit_1995_single_column (#1347), contributed by Ruben Tikidji-Hamburyan.
New Example: spike_based_homeostasis (#1331), contributed by Sebastian Schmitt.
New Example: COBAHH _approximated (#1309), contributed by Sebastian Schmitt.

Several new examples covering several Brian usage pattern, e.g. a minimal C++ standalone script, or demonstrations
of running multiple simulations in parallel with Cython or C++ standalone, contributed by A. Ziaeemehr.

Corrected units in Example: Kremer_et_al_2011_barrel_cortex (#1355). Thanks to Adam Willats for contributing
this fix.

Most of Brian’s code base should now use a consistent string formatting style (#1364), documented in the Coding
conventions.

Test reports will now show the project directory path for C++ standalone projects (#1336). Thanks to Denis Alevi
for contributing this feature.

Fix the documentation for C++ compiler references (#1323, #1321). Thanks to Denis Alevi for fixing these issues.

Examples are now listed in a deterministic order in the documentation (#1312), and their title is now correctly
formatted in the restructured text source (#1311). Thanks to Felix C. Stegermann for contributing these fixes.

Document how to plot model functions (e.g. time constants) in complex neuron models (#1308). Contributed by
Sebastian Schmitt.
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Contributions

Github code, documentation, and issue contributions (ordered by the number of contributions):

Marcel Stimberg (@mstimberg)
Dan Goodman (@thesamovar)
Rohith Varma Buddaraju (@rohithvarma3000)
Denis Alevi (@denisalevi)
Dingkun.Liu (@DingkunLiu)
Ruben Tikidji-Hamburyan (@rat-h)
Sebastian Schmitt (@schmitts)
@ramapatil 66

Jan Marker (@ jangmarker)

Kyle Johnsen (@kjohnsen)
Abolfazl Ziacemehr (@Ziacemehr)
Felix Benjamin Kern (@kernfel)
Yann Zerlaut (@yzerlaut)

Adam (@Adam-Antios)
@ShangMa

Ljubica Cimesa (@LjubicaCimesa)
@adididi

VigneswaranC (@ Vigneswaran-Chandrasekaran)
Nunna Lakshmi Saranya (@ 18sarru)
Friedemann Zenke (@fzenke)

@ Alexis-Melot

Adam Willats (@awillats)

Felix C. Stegerman (@obfusk)
Eugen Skrebenkov (@shcecter)
Maurizio DE PITTA (@mdepitta)
Simo (@sivanni)

Peter Quitta (@peschn)

Etienne Mollier (@emollier)
chaddy (@chaddy1004)
@DePasquale99

@albertalbesa

Christian Behrens (@chbehrens)

Other contributions outside of github (ordered alphabetically, apologies to anyone we forgot...):

forum user Shencong

1.3. Release notes
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e forum user Slbanez

1.3.6 Brian 2.4.1

This is a bugfix release with a number of small fixes and updates to the continuous integration testing.

Selected improvements and bug fixes

e The check_units () decorator can now express that some arguments need to have the same units. This mech-
anism is now used to check the units of the c1ip () function (#1234). Thanks to Felix Kern for notifying us of
this issue.

e Using SpatialNeuron with Cython no longer raises an unnecessary warning when the scipy library is not
installed (#1230).

* Raise an error for references to N_incoming or N_outgoingin callsto Synapses.connect. This use is
ill-defined and led to compilation errors in previous versions (#1227). Thanks to Denis Alevi for making us aware
of this issue.

Infrastructure and documentation improvements
* Brian no longer officially supports installation on 32bit operating systems. Installation via pip will probably still
work, but we are no longer testing this configuration (#1232).

* Automatic continuous integration tests for Windows now use the Microsoft Azure Pipeline infrastructure instead
of Appveyor. This should speed up tests by running different configurations in parallel (#1233).

* Fix an issue in the test suite that did not handle Not ImplementedError correctly anymore after the changes
introduced with #1196.

Contributions

Github code, documentation, and issue contributions (ordered by the number of contributions):
¢ Marcel Stimberg (@mstimberg)
¢ Dan Goodman (@thesamovar)
¢ Denis Alevi (@denisalevi)
¢ SK (@akatav)
Other contributions outside of github (ordered alphabetically, apologies to anyone we forgot...):

¢ Felix B. Kern
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1.3.7 Brian 2.4

This new release contains a large number of small improvements and bug fixes. We recommend all users of Brian 2 to
upgrade. The biggest code change of this new version is that Brian is now Python-3 only (thanks to Ben Evans for working
on this).

Selected improvements and bug fixes

Removing objects from networks no longer fails (#1151). Thanks to Wilhelm Braun for reporting the issue.

Point currents marked as constant over dt are now correctly handled (#1160). Thanks to Andrew Brughera
for reporting the issue.

Elapsed and estimated remaining time are now formatted as hours/minutes/etc. in standalone mode as well (#1162).
Thanks to Rahul Kumar Gupta, Syed Osama Hussain, Bhuwan Chandra, and Vigneswaran Chandrasekaran for
working on this issue as part of the GSoC 2020 application process.

To prevent log files filling up the disk (#1188), their file size is now limited to 10MB (configurable via the log-
ging.file_log_max_size preference). Thanks to Rike-Benjamin Schuppner for contributing this feature.

Add more complete support for operations on VariableView attributes. Previously, operations like group.
v**2 failed and required the workaround group.v[:]**2 (#1195)

Fix a number of compatibility issues with newer versions of numpy and sympy, and document our policy on Com-
patibility and reproducibility.

File locking (used to avoid problems when running multiple simulations in parallel) is now based on Benedikt
Schmitt’s py-filelock package, which should hopefully make it more robust.

String expressions in Synapses . connect are now checked for syntactic correctness before handing them over
to the code generation process, improving error messages. Thanks to Denis Alevi for making us aware of this issue.
(#1224)

Avoid duplicate messages in “chained” exceptions. Also introduces a new preference log-
ging.display_brian_error_message to switch off the “Brian 2 encountered an unexpected error” message
(#1196).

Brian’s unit system now correctly deals with matrix multiplication, including the @ operator (#1216). Thanks to
@kjohnsen for reporting this issue.

Avoid turning all integer numbers in equations into floating point values (#1202). Thanks to Marco K. for making
us aware of this issue.

New attributes Synapses.N_outgoing preand Synapses.N_incoming_post toaccess the number
of synapses per pre-/post-synaptic cell (see Accessing synaptic variables for details; #1225)

Contributions

Github code, documentation, and issue contributions (ordered by the number of contributions):

Marcel Stimberg (@mstimberg)

Ben Evans (@bdevans)

Dan Goodman (@thesamovar)

Denis Alevi (@denisalevi)

Rike-Benjamin Schuppner (@Debilski)

Syed Osama Hussain (@Syed-Osama-Hussain)
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* VigneswaranC (@ Vigneswaran-Chandrasekaran)
¢ Tushar (@smalltimer)
¢ Felix Hoffmann (@felix11h)
¢ Rahul Kumar Gupta (@rahuliitg)
* Dominik Spicher (@dspicher)
¢ @nfzd
e @Snow-Crash
¢ @cnjackhu
e @neurologic
* @kjohnsen
¢ Ashwin Viswanathan Kannan (@ashwin4ever)
¢ Bhuwan Chandra (@zephlyr)
¢ Wilhelm Braun (@wilhelmbraun)
e @cortical-iv
* Eugen Skrebenkov (@shcecter)
* @Aman-A
¢ Felix Benjamin Kern (@kernfel)
¢ Francesco Battaglia (@fpbattaglia)
¢ Shivam Chitnis (@shivChitinous)
* Marco K. (@spokli)
* @jcmbharry
¢ Friedemann Zenke (@fzenke)
¢ @Adam-Antios
Other contributions outside of github (ordered alphabetically, apologies to anyone we forgot...):
¢ Andrew Brughera

e William Xavier

1.3.8 Brian 2.3

This release contains the usual mix of bug fixes and new features (see below), but also makes some important changes to
the Brian 2 code base to pave the way for the full Python 2 -> 3 transition (the source code is now directly compatible
with Python 2 and Python 3, without the need for any translation at install time). Please note that this release will be the
last release that supports Python 2, given that Python 2 reaches end-of-life in January 2020. Brian now also uses pytest as
its testing framework, since the previously used nose package is not maintained anymore. Since brian2hears has been
released as an independent package, using brianZ2.hears as a “bridge” to Brian I’s brian.hears package is now
deprecated.

Finally, the Brian project has adopted the “Contributor Covenant” Contributor Covenant Code of Conduct, pledging “to
make participation in our community a harassment-free experience for everyone”.
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New features
e The restore () function can now also restore the state of the random number generator, allowing for exact
reproducibility of stochastic simulations (#1134)
¢ The functions expm1 (), loglp (), and exprel () can now be used (#1133)

e The system for calling random number generating functions has been generalized (see Functions with context-
dependent return values), and a new poisson function for Poisson-distrubted random numbers has been added
#1111)

¢ New versions of Visual Studio are now supported for standalone mode on Windows (#1135)

Selected improvements and bug fixes
e run_regularly operations are now included in the network, even if they are created after the parent object
was added to the network (#1009). Contributed by Vigneswaran Chandrasekaran.

* No longer incorrectly classify some equations as having “multiplicative noise” (#968). Contributed by Vigneswaran
Chandrasekaran.

* Brian is now compatible with Python 3.8 (#1130), and doctests are compatible with numpy 1.17 (#1120)
 Progress reports for repeated runs have been fixed (#1116), thanks to Ronaldo Nunes for reporting the issue.

e SpikeGeneratorGroup now correctly works with restore () (#1084), thanks to Tom Achache for report-
ing the issue.

* An indexing problem in PopulationRateMonitor has been fixed (#1119).
¢ Handling of equations referring to —inf has been fixed (#1061).

* Long simulations recording more than ~2 billion data points no longer crash with a segmentation fault (#1130),
thanks to Rike-Benjamin Schuppner for reporting the issue.

Backward-incompatible changes

e The fix for run_regularly operations (#1009, see above) entails a change in how objects are stored within
Network objects. Previously, Network.object s stored a complete list of all objects, including objects such
as StateUpdater that — often invisible to the user — are a part of major objects such as NeuronGroup.
Now, Network.objects only stores the objects directly provided by the user (NeuronGroup, Synapses,
StateMonitor, ...), the dependent objects (StateUpdater, Thresholder, ...) are taken into account at
the time of the run. This might break code in some corner cases, e.g. when removing a StateUpdater from
Network.objects via Network.remove.

e The brian2. hears interface to Brian 1I’'s brian.hears package has been deprecated.

Infrastructure and documentation improvements

» The same code base is used on Python 2 and Python 3 (#1073).
* The test framework uses pytest (#1127).

* We have adapoted a Code of Conduct (#1113), thanks to Tapasweni Pathak for the suggestion.
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Contributions

Github code, documentation, and issue contributions (ordered by the number of contributions):

Marcel Stimberg (@mstimberg)

Dan Goodman (@thesamovar)

Vigneswaran Chandrasekaran (@ Vigneswaran-Chandrasekaran)

Moritz Orth (@morth)

Tristan Stober (@tristanstoeber)
@ulyssek

Wilhelm Braun (@wilhelmbraun)
@flomlo

Rike-Benjamin Schuppner (@ Debilski)
@sdeiss

Ben Evans (@bdevans)

Tapasweni Pathak (@tapaswenipathak)
@jonathanoesterle

Richard C Gerkin (@rgerkin)
Christian Behrens (@chbehrens)
Romain Brette (@romainbrette)
XiaoquinNUDT (@XiaoquinNUDT)
Dylan Muir (@DylanMuir)
Aleksandra Teska (@alTeska)

Felix Z. Hoffmann (@felix 1 1h)
@baixiaotian63648995

Carlos de la Torre (@c-torre)

Sam Mathias (@sammosummo)
@Marghepano

Simon Brodeur (@sbrodeur)

Alex Dimitrov (@adimitr)

Other contributions outside of github (ordered alphabetically, apologies to anyone we forgot...):

Ronaldo Nunes

Tom Achache
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1.3.9 Brian 2.2.2.1

This is a bug-fix release that fixes several bugs and adds a few minor new features. We recommend all users of Brian 2 to
upgrade.

As always, please report bugs or suggestions to the github bug tracker (https://github.com/brian-team/brian2/issues) or
to the brian-development mailing list (brian-development@ googlegroups.com).

[Note that the original upload of this release was version 2.2.2, but due to a mistake in the released archive, it has been
uploaded again as version 2.2.2.1]

Selected improvements and bug fixes

 Fix an issue with the synapses generator syntax (#1037).

* Fix an incorrect error when using a SpikeGeneratorGroup with a long period (#1041). Thanks to Kévin
Cuallado-Keltsch for reporting this issue.

 Improve the performance of SpikeGeneratorGroup by avoiding a conversion from time to integer time step
(#1043). This time step is now also available to user code as t_in_timesteps.

* Function definitions for weave/Cython/C++ standalone can now declare additional header files and libraries. They
also support a new sources argument to use a function definition from an external file. See the Functions docu-
mentation for details.

» For convenience, single-neuron subgroups can now be created with a single index instead of with a slice (e.g.
neurongroup [ 3] instead of neurongroup[3:41]).

 Fix an issue when —inf is used in an equation (#1061).

Contributions

Github code, documentation, and issue contributions (ordered by the number of contributions):
¢ Marcel Stimberg (@mstimberg)
¢ Dan Goodman (@thesamovar)
¢ Felix Z. Hoffmann (@Felix11H)
e @wjx0914
¢ Kévin Cuallado-Keltsch (@kevincuallado)
¢ Romain Cazé (@rcaze)
* Daphne (@daphn3cor)
* Erik (@parenthetical-e)
¢ @RahulMaram
» Eghbal Hosseini (@eghbalhosseini)
e Martino Sorbaro (@martinosorb)
¢ Mihir Vaidya (@MihirVaidya94)
* @hellolingling
* Volodimir Slobodyanyuk (@vslobody)
 Peter Duggins (@psipeter)
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1.3.10 Brian 2.2.1

This is a bug-fix release that fixes a few minor bugs and incompatibilites with recent versions of the dependencies. We
recommend all users of Brian 2 to upgrade.

As always, please report bugs or suggestions to the github bug tracker (https://github.com/brian-team/brian2/issues) or
to the brian-development mailing list (brian-development@ googlegroups.com).

Selected improvements and bug fixes
¢ Work around problems with the latest version of py—cpuinfo on Windows (#990, #1020) and no longer require
it for Linux and OS X.

* Avoid warnings with newer versions of Cython (#1030) and correctly build the Cython spike queue for Python 3.7
(#1026), thanks to Fleur Zeldenrust and Ankur Sinha for reporting these issues.

* Fix error messages for SyntaxError exceptions in jupyter notebooks (##964).

Dependency and packaging changes

* Conda packages in conda-forge are now avaible for Python 3.7 (but no longer for Python 3.5).
¢ Linux and OS X no longer depend on the py—cpuinfo package.

 Source packages on pypi now require a recent Cython version for installation.

Contributions

Github code, documentation, and issue contributions (ordered by the number of contributions):
* Marcel Stimberg (@mstimberg)
¢ Dan Goodman (@thesamovar)
¢ Christopher (@Chris-Currin)
 Peter Duggins (@psipeter)
* Paola Sudrez (@psrmx)
* Ankur Sinha (@sanjayankur31)
* @JingjinW
* Denis Alevi (@denisalevi)
* @lemonadel 17
« @wjx0914
¢ Sven Leach (@SvennoNito)
¢ svadams (@svadams)
* @ghaessig
¢ Varshith Sreeramdass (@varshiths)
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1.3.11 Brian 2.2

This releases fixes a number of important bugs and comes with a number of performance improvements. It also makes
sure that simulation no longer give platform-dependent results for certain corner cases that involve the division of integers.
These changes can break backwards-compatiblity in certain cases, see below. We recommend all users of Brian 2 to
upgrade.

As always, please report bugs or suggestions to the github bug tracker (https://github.com/brian-team/brian2/issues) or
to the brian-development mailing list (brian-development@ googlegroups.com).

Selected improvements and bug fixes

* Divisions involving integers now use floating point division, independent of Python version and code generation
target. The // operator can now used in equations and expressions to denote flooring division (#984).

» Simulations can now use single precision instead of double precision floats in simulations (#981, #1004). This is
mostly intended for use with GPU code generation targets.

e The timestep, introduced in version 2.1.3, was further optimized for performance, making the refractoriness
calculation faster (#996).

* The lastupdate variable is only automatically added to synaptic models when event-driven equations are used,
reducing the memory and performance footprint of simple synaptic models (#1003). Thanks to Denis Alevi for
bringing this up.

e A from brian2 import * imported names unrelated to Brian, and overwrote some Python builtins such as
dir (#969). Now, fewer names are imported (but note that this still includes numpy and plotting tools: Importing
Brian).

e The exponential_euler state updater is no longer failing for systems of equations with differential equations
that have trivial, constant right-hand-sides (#1010). Thanks to Peter Duggins for making us aware of this issue.

Backward-incompatible changes

¢ Code that divided integers (e.g. N/ 10) with a C-based code generation target, or with the numpy target on Python
2, will now use floating point division instead of flooring division (i.e., Python 3 semantics). A warning will notify
the user of this change, use either the flooring division operator (N//10), or the int function (int (N/10)) to
make the expression unambiguous.

* Code that directly referred to the lastupdate variable in synaptic statements, without using any event-driven
variables, now has to manually add lastupdate : second to the equations and update the variable at the
end of on_pre and/or on_post with lastupdate = t.

e Code that relied on from brian2 import * also importing unrelated names such as sympy, now has to
import such names explicitly.
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Documentation improvements

 Various small fixes and additions (e.g. installation instructions, available functions, fixes in examples)

* A new example, Izhikevich 2007, provided by Guillaume Dumas.

Contributions

Github code, documentation, and issue contributions (ordered by the number of contributions):
¢ Marcel Stimberg (@mstimberg)
¢ Dan Goodman (@thesamovar)
* Denis Alevi (@denisalevi)
* Thomas Nowotny (@tnowotny)
e @neworderofjamie
 Paul Brodersen (@paulbrodersen)
* @matrec4
¢ svadams (@svadams)
¢ XiaoquinNUDT (@ XiaoquinNUDT)
* Peter Duggins (@psipeter)
¢ @nhl17937
* Patrick Nave (@pnave95)
e @AI-pha
* Guillaume Dumas (@deep-introspection)
e @godelicbach
e @galharth

1.3.12 Brian 2.1.3.1

This is a bug-fix release that fixes two bugs in the recent 2.1.3 release:
* Fix an inefficiency in the newly introduced t imestep function when using the numpy target (#965)

* Fix inefficiencies in the unit system that could lead to slow operations and high memory use (#967). Thanks to
Kaustab Pal for making us aware of the issue.

1.3.13 Brian 2.1.3

This is a bug-fix release that fixes a number of important bugs (see below), but does not introduce any new features. We
recommend all users of Brian 2 to upgrade.

As always, please report bugs or suggestions to the github bug tracker (https://github.com/brian-team/brian2/issues) or
to the brian-development mailing list (brian-development@ googlegroups.com).
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Selected improvements and bug fixes

* The Cython cache on disk now uses significantly less space by deleting unnecessary source files (set the code-
gen.runtime.cython.delete_source_files preference to False if you want to keep these files for debugging).
In addition, a warning will be given when the Cython or weave cache exceeds a configurable size (code-
gen.max_cache_dir_size). The clear_cache function is provided to delete files from the cache (#914).

¢ The C++ standalone mode now respects the profile option and therefore no longer collects profiling information
by default. This can speed up simulations in certain cases (#935).

» The exact number of time steps that a neuron stays in the state of refractoriness after a spike could vary by up to one
time step when the requested refractory time was a multiple of the simulation time step. With this fix, the number
of time steps is ensured to be as expected by making use of a new t imestep function that avoids floating point
rounding issues (#949, first reported by @zhouyanasd in issue #943).

* When restore () was called twice for a network, spikes that were not yet delivered to their target were not
restored correctly (#938, reported by @zhouyanasd).

e SpikeGeneratorGroup now uses a more efficient method for sorting spike indices and times, leading to a
much faster preparation time for groups that store many spikes (#948).

* Fix a memory leak in TimedArray (#923, reported by Wilhelm Braun).
* Fix an issue with summed variables targetting subgroups (#925, reported by @Al-pha).
¢ Fix the use of run_regularly on subgroups (#922, reported by @Al-pha).

* Improve performance for SpatialNeuron by removing redundant computations (#910, thanks to Moritz Au-
gustin for making us aware of the issue).

¢ Fix linked variables that link to scalar variables (#916)
¢ Fix warnings for numpy 1.14 and avoid compilation issues when switching between versions of numpy (#913)

* Fix problems when using logical operators in code generated for the numpy target which could lead to issues such
as wrongly connected synapses (#901, #900).

Backward-incompatible changes

* No longer allow delay as a variable name in a synaptic model to avoid ambiguity with respect to the synaptic
delay. Also no longer allow access to the delay variable in synaptic code since there is no way to distinguish
between pre- and post-synaptic delay (#927, reported by Denis Alevi).

¢ Due to the changed handling of refractoriness (see bug fixes above), simulations that make use of refractoriness
will possibly no longer give exactly the same results. The preference legacy.refractory_timing can be set to True
to reinstate the previous behaviour.

Infrastructure and documentation improvements
* From this version on, conda packages will be available on conda-forge. For a limited time, we will copy over
packages to the brian—team channel as well.
» Conda packages are no longer tied to a specific numpy version (PR #954)

e New example (Brunel & Wang, 2001) contributed by Teo Stocco and Alex Seeholzer.
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Contributions

Github code, documentation, and issue contributions (ordered by the number of contributions):

Marcel Stimberg (@mstimberg)
Dan Goodman (@thesamovar)
Teo Stocco (@zifeo)

Dylan Muir (@DylanMuir)
scarecrow (@zhouyanasd)
@fuadfukhasyi

Aditya Addepalli (@Dyex719)
Kapil kumar (@kapilkd13)
svadams (@svadams)

Vafa Andalibi (@ Vafa-Andalibi)
Sven Leach (@SvennoNito)
@matrec4

@jarishna

@AlI-pha

@xdzhangxuejun

Denis Alevi (@denisalevi)

Paul Pfeiffer (@pfeffer90)
Romain Brette (@romainbrette)
@hustyanghui

Adrien F. Vincent (@afvincent)
@ckemere

@evearmstrong

Pawel Kopec (@pawelkopec)

Moritz Augustin (@moritzaugustin)

Bart (@louwers)

@amarsdd

@ttxtea

Maria Cervera (@MariaCervera)

ouyangxinrong (@longzhixin)

Other contributions outside of github (ordered alphabetically, apologies to anyone we forgot...):

Wilhelm Braun
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1.3.14 Brian 2.1.2

This is another bug fix release that fixes a major bug in Equat ions’ substitution mechanism (#896). Thanks to Teo
Stocco for reporting this issue.

1.3.15 Brian 2.1.1

This is a bug fix release that re-activates parts of the caching mechanism for code generation that had been erroneously
deactivated in the previous release.

1.3.16 Brian 2.1

This release introduces two main new features: a new “GSL integration” mode for differential equation that offers to
integrate equations with variable-timestep methods provided by the GNU Scientific Library, and caching for the run
preparation phase that can significantly speed up simulations. It also comes with a newly written tutorial, as well as
additional documentation and examples.

As always, please report bugs or suggestions to the github bug tracker (https://github.com/brian-team/brian2/issues) or
to the brian-development mailing list (brian-development@ googlegroups.com).

New features
» New numerical integration methods with variable time-step integration, based on the GNU Scientific Library (see
Numerical integration). Contributed by Charlee Fletterman, supported by 2017’s Google Summer of Code program.

» New caching mechanism for the code generation stage (application of numerical integration algorithms, analysis of
equations and statements, etc.), reducing the preparation time before the actual run, in particular for simulations
with multiple run () statements.

Selected improvements and bug fixes

* Fix a rare problem in Cython code generation caused by missing type information (#893)

* Fix warnings about improperly closed files on Python 3.6 (#892; reported and fixed by Teo Stocco)

¢ Fix an error when using numpy integer types for synaptic indexing (#888)

* Fix an error in numpy codegen target, triggered when assigning to a variable with an unfulfilled condition (#887)
* Fix an error when repeatedly referring to subexpressions in multiline statements (#880)

 Shorten long arrays in warning messages (#874)

* Enable the use of if in the shorthand generator syntax for Synapses. connect (#873)

* Fix the meaning of i and j in synapses connecting to/from other synapses (#854)
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Backward-incompatible changes and deprecations
¢ In C++ standalone mode, information about the number of synapses and spikes will now only be displayed when
built with debug=True (#882).

e The 1inear state updater has been renamed to exact to avoid confusion (#877). Users are encouraged to use
exact, but the name 1inear is still available and does not raise any warning or error for now.

¢ The independent state updater has been marked as deprecated and might be removed in future versions.

Infrastructure and documentation improvements
* A new, more advanced, uforial “about managing the slightly more complicated tasks that crop up in research
problems, rather than the toy examples we’ve been looking at so far.”

* Additional documentation on Custom events and Converting from integrated form to ODEs (including example code
for typical synapse models).

* New example code reproducing published findings (Platkiewicz and Brette, 201 1; Stimberg et al., 2018)

* Fixes to the sphinx documentation creation process, the documentation can be downloaded as a PDF once again
(705 pages!)

¢ Conda packages now have support for numpy 1.13 (but support for numpy 1.10 and 1.11 has been removed)

Contributions

Github code, documentation, and issue contributions (ordered by the number of contributions):
¢ Marcel Stimberg (@mstimberg)
¢ Charlee Fletterman (@CharleeSF)
¢ Dan Goodman (@thesamovar)
¢ Teo Stocco (@zifeo)
* @k47h4

Other contributions outside of github (ordered alphabetically, apologies to anyone we forgot...):
* Chaofei Hong

¢ Lucas (“lucascdst”)

1.3.17 Brian 2.0.2.1

Fixes a bug in the tutorials’ HMTL rendering on readthedocs.org (code blocks were not displayed). Thanks to Flora
Bouchacourt for making us aware of this problem.
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1.3.18 Brian 2.0.2

New features
e molarand liter (as well as 1itre, scaled versions of the former, and a few useful abbreviations such as mM)
have been added as new units (#574).

e Anewmodule brian2.units.constants provides physical constants such as the Faraday constants or the
gas constant (see Constants for details).

e SpatialNeuron now supports non-linear membrane currents (e.g. Goldman—Hodgkin—Katz equations) by lin-
earizing them with respect to v.

* Multi-compartmental models can access the capacitive current via I c in their equations (#677)

* A new function scheduling summary () that displays information about the scheduling of all objects (see
Scheduling for details).

e Introduce a new preference to pass arguments to the make/nmake command in C++
standalone = mode  (devices.cpp_standalone.extra_make_args_unix ~ for ~ Linux/OS X and  de-
vices.cpp_standalone.extra_make_args_windows for Windows). For Linux/OS X, this enables parallel compilation
by default.

¢ Anaconda packages for Brian 2 are now available for Python 3.6 (but Python 3.4 support has been removed).

Selected improvements and bug fixes
¢ Work around low performance for certain C++ standalone simulations on Linux, due to a bug in glibc (see #803).
Thanks to Oleg Strikov (@xj8z) for debugging this issue and providing the workaround that is now in use.

* Make exact integration of event—driven synaptic variables use the 1 inear numerical integration algorithm
(instead of independent), fixing rare occasions where integration failed despite the equations being linear
(#801).

* Better error messages for incorrect unit definitions in equations.

* Various fixes for the internal representation of physical units and the unit registration system.

* Fix a bug in the assignment of state variables in subtrees of SpatialNeuron (#822)

¢ Numpy target: fix an indexing error for a SpikeMonitor that records from a subgroup (#824)

¢ Summed variables targeting the same post-synaptic variable now raise an error (previously, only the one executed
last was taken into account, see #760).

* Fix bugs in synapse generation affecting Cython (#781) respectively numpy (#835)

¢ C++ standalone simulations with many objects no longer fail on Windows (#787)

Backwards-incompatible changes

* celsius has been removed as a unit, because it was ambiguous in its relation to ke 1vin and gave wrong results
when used as an absolute temperature (and not a temperature difference). For temperature differences, you can
directly replace celsius by kelvin. To convert an absolute temperature in degree Celsius to Kelvin, add the
zero_celsius constant from brian2.units.constants (#817).

* State variables are no longer allowed to have names ending in _pre or _post to avoid confusion with references
to pre- and post-synaptic variables in Synapses (#818)

1.3. Release notes 27


https://github.com/brian-team/brian2/issues/574
https://github.com/brian-team/brian2/issues/677
https://github.com/brian-team/brian2/issues/803
https://github.com/xj8z
https://github.com/brian-team/brian2/issues/801
https://github.com/brian-team/brian2/issues/822
https://github.com/brian-team/brian2/issues/824
https://github.com/brian-team/brian2/issues/766
https://github.com/brian-team/brian2/issues/781
https://github.com/brian-team/brian2/issues/835
https://github.com/brian-team/brian2/issues/787
https://github.com/brian-team/brian2/issues/817
https://github.com/brian-team/brian2/issues/818

Brian 2 Documentation, Release 2.5.1

Changes to default settings

* In C++ standalone mode, the c1ean argument now defaults to False, meaning that make clean will not be
executed by default before building the simulation. This avoids recompiling all files for unchanged simulations that
are executed repeatedly. To return to the previous behaviour, specify clean=True in the device.build call
(or in set_device if your script does not have an explicit device .build).

Contributions

Github code, documentation, and issue contributions (ordered by the number of contributions):
¢ Marcel Stimberg (@mstimberg)
¢ Dan Goodman (@thesamovar)
* Thomas McColgan (@phreeza)
¢ Daan Sprenkels (@dsprenkels)
¢ Romain Brette (@romainbrette)
¢ Oleg Strikov (@xj8z)
¢ Charlee Fletterman (@CharleeSF)
* Meng Dong (@whenov)
* Denis Alevi (@denisalevi)
* Mihir Vaidya (@MihirVaidya94)
¢ Adam (@fTa)
* Sourav Singh (@souravsingh)
* Nick Hale (@nik849)
* Cody Greer (@Cody-G)
* Jean-Sébastien Dessureault (@ jsdessureault)
¢ Michele Giugliano (@mgiugliano)
¢ Teo Stocco (@zifeo)
¢ Edward Betts (@EdwardBetts)
Other contributions outside of github (ordered alphabetically, apologies to anyone we forgot...):
¢ Christopher Nolan
* Regimantas Jurkus

¢ Shailesh Appukuttan
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1.3.19 Brian 2.0.1

This is a bug-fix release that fixes a number of important bugs (see below), but does not introduce any new features. We
recommend all users of Brian 2 to upgrade.

As always, please report bugs or suggestions to the github bug tracker (https://github.com/brian-team/brian2/issues) or
to the brian-development mailing list (brian-development@ googlegroups.com).

Improvements and bug fixes

e Fix PopulationRateMonitor for recordings from subgroups (#772)
e Fix SpikeMonitor for recordings from subgroups (#777)
* Check that string expressions provided as the rates argument for PoissonGroup have correct units.

* Fix compilation errors when multiple run statements with different report arguments are used in C++ standalone
mode.

* Several documentation updates and fixes

Contributions

Code and documentation contributions (ordered by the number of commits):
* Marcel Stimberg (@mstimberg)
¢ Dan Goodman (@thesamovar)
¢ Alex Seeholzer (@flinz)
* Meng Dong (@whenov)
Testing, suggestions and bug reports (ordered alphabetically, apologies to anyone we forgot...):
* Myung Seok Shim

¢ Pamela Hathway

1.3.20 Brian 2.0 (changes since 1.4)

Major new features

Much more flexible model definitions. The behaviour of all model elements can now be defined by arbitrary
equations specified in standard mathematical notation.

Code generation as standard. Behind the scenes, Brian automatically generates and compiles C++ code to simulate
your model, making it much faster.

“Standalone mode”. In this mode, Brian generates a complete C++ project tree that implements your model. This
can be then be compiled and run entirely independently of Brian. This leads to both highly efficient code, as well
as making it much easier to run simulations on non-standard computational hardware, for example on robotics
platforms.

Multicompartmental modelling.

Python 2 and 3 support.
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New features

Installation should now be much easier, especially if using the Anaconda Python distribution. See Installation.

Many improvements to Synapses which replaces the old Connection object in Brian 1. This includes:
synapses that are triggered by non-spike events; synapses that target other synapses; huge speed improvements
thanks to using code generation; new “generator syntax” when creating synapses is much more flexible and effi-
cient. See Synapses.

New model definitions allow for much more flexible refractoriness. See Refractoriness.

SpikeMonitor and StateMonitor are now much more flexible, and cover a lot of what used to be covered
by things like MultiStateMonitor, etc. See Recording during a simulation.

Multiple event types. In addition to the default spike event, you can create arbitrary events, and have these trigger
code blocks (like reset) or synaptic events. See Custom events.

New units system allows arrays to have units. This eliminates the need for a lot of the special casing that was
required in Brian 1. See Physical units.

Indexing variable by condition, e.g. you might write G.v [ 'x>0"] to return all values of variable v in Neuron—
Group G where the group’s variable x>0. See State variables.

Correct numerical integration of stochastic differential equations. See Numerical integration.

“Magic” run () system has been greatly simplified and is now much more transparent. In addition, if there is any
ambiguity about what the user wants to run, an erorr will be raised rather than making a guess. This makes it much
safer. In addition, there is now a store ()/restore () mechanism that simplifies restarting simulations and
managing separate training/testing runs. See Running a simulation.

Changing an external variable between runs now works as expected, i.e. something like tau=1*ms;
run (100*ms); tau=5*ms; run(100*ms). In Brian 1 this would have used t au=1*ms for both runs.
More generally, in Brian 2 there is now better control over namespaces. See Namespaces.

New “shared” variables with a single value shared between all neurons. See Shared variables.

New Group. run_regularly method for a codegen-compatible way of doing things that used to be done with
network_operation () (which can still be used). See Regular operations.

New system for handling externally defined functions. They have to specify which units they accept in their argu-
ments, and what they return. In addition, you can easily specify the implementation of user-defined functions in
different languages for code generation. See Functions.

State variables can now be defined as integer or boolean values. See Equations.

State variables can now be exported directly to Pandas data frame. See Storing state variables.

New generalised “flags” system for giving additional information when defining models. See Flags.
TimedArray now allows for 2D arrays with arbitrary indexing. See Timed arrays.

Better support for using Brian in IPython/Jupyter. See, for example, start_scope ().

New preferences system. See Preferences.

Random number generation can now be made reliably reproducible. See Random numbers.

New profiling option to see which parts of your simulation are taking the longest to run. See Profiling.
New logging system allows for more precise control. See Logging.

New ways of importing Brian for advanced Python users. See Importing Brian.

Improved control over the order in which objects are updated during a run. See Custom progress reporting.

Users can now easily define their own numerical integration methods. See State update.
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* Support for parallel processing using the OpenMP version of standalone mode. Note that all Brian tests pass with
this, but it is still considered to be experimental. See Multi-threading with OpenMP.

Backwards incompatible changes

See Detailed Brian 1 to Brian 2 conversion notes.

Behind the scenes changes

* All user models are now passed through the code generation system. This allows us to be much more flexible about
introducing new target languages for generated code to make use of non-standard computational hardware. See
Code generation.

» New standalone/device mode allows generation of a complete project tree that can be compiled and built inde-
pendently of Brian and Python. This allows for even more flexible use of Brian on non-standard hardware. See
Devices.

 All objects now have a unique name, used in code generation. This can also be used to access the object through
the Network object.

Contributions

Full list of all Brian 2 contributors, ordered by the time of their first contribution:
¢ Dan Goodman (@thesamovar)
¢ Marcel Stimberg (@mstimberg)
¢ Romain Brette (@romainbrette)
¢ Cyrille Rossant (@rossant)
¢ Victor Benichoux (@victorbenichoux)
¢ Pierre Yger (@yger)
* Werner Beroux (@wernight)
¢ Konrad Wartke (@Kwartke)
¢ Daniel Bliss (@dabliss)
¢ Jan-Hendrik Schleimer (@ttxtea)
e Moritz Augustin (@moritzaugustin)
¢ Romain Cazé (@rcaze)
¢ Dominik Krzeminski (@dokato)
¢ Martino Sorbaro (@martinosorb)

* Benjamin Evans (@bdevans)

1.3. Release notes 31


https://github.com/thesamovar
https://github.com/mstimberg
https://github.com/romainbrette
https://github.com/rossant
https://github.com/victorbenichoux
https://github.com/yger
https://github.com/wernight
https://github.com/Kwartke
https://github.com/dabliss
https://github.com/ttxtea
https://github.com/moritzaugustin
https://github.com/rcaze
https://github.com/dokato
https://github.com/martinosorb
https://github.com/bdevans

Brian 2 Documentation, Release 2.5.1

1.3.21 Brian 2.0 (changes since 2.0rc3)

New features

e Anewflag constant over dt canbe applied to subexpressions to have them only evaluated once per timestep
(see Models and neuron groups). This flag is mandatory for stateful subexpressions, e.g. expressions using rand ()
or randn (). (#720, #721)

Improvements and bug fixes
e Fix EventMonitor.values and SpikeMonitor.spike_trains to always return sorted spike/event
times (#725).
* Respect the act ive attribute in C++ standalone mode (#718).
* More consistent check of compatible time and dt values (#730).

* Attempting to set a synaptic variable or to start a simulation with synapses without any preceding connect call now
raises an error (#737).

* Improve the performance of coordinate calculation for Morphology objects, which previously made plotting
very slow for complex morphologies (#741).

* Fixabugin SpatialNeuron where it did not detect non-linear dependencies on v, introduced via point currents
(#743).

Infrastructure and documentation improvements

* An interactive demo, tutorials, and examples can now be run in an interactive jupyter notebook on the mybinder
platform, without any need for a local Brian installation (#736). Thanks to Ben Evans for the idea and help with
the implementation.

¢ A new extensive guide for converting Brian 1 simulations to Brian 2 user coming from Brian 1: Changes for Brian
I users

* A re-organized User's guide, with clearer indications which information is important for new Brian users.

Contributions

Code and documentation contributions (ordered by the number of commits):
* Marcel Stimberg (@mstimberg)
¢ Dan Goodman (@thesamovar)
¢ Benjamin Evans (@bdevans)
Testing, suggestions and bug reports (ordered alphabetically, apologies to anyone we forgot...):
* Chaofei Hong
¢ Daniel Bliss
* Jacopo Bono

* Ruben Tikidji-Hamburyan

32 Chapter 1. Introduction


https://github.com/brian-team/brian2/issues/720
https://github.com/brian-team/brian2/issues/721
https://github.com/brian-team/brian2/issues/725
https://github.com/brian-team/brian2/issues/718
https://github.com/brian-team/brian2/issues/730
https://github.com/brian-team/brian2/issues/737
https://github.com/brian-team/brian2/issues/741
https://github.com/brian-team/brian2/issues/743
http://mybinder.org/
https://github.com/brian-team/brian2/issues/736
https://github.com/mstimberg
https://github.com/thesamovar
https://github.com/bdevans

Brian 2 Documentation, Release 2.5.1

1.3.22 Brian 2.0rc3

This is another “release candidate” for Brian 2.0 that fixes a range of bugs and introduces better support for random
numbers (see below). We are getting close to the final Brian 2.0 release, the remaining work will focus on bug fixes, and
better error messages and documentation.

As always, please report bugs or suggestions to the github bug tracker (https://github.com/brian-team/brian2/issues) or
to the brian-development mailing list (brian-development@ googlegroups.com).

New features

* Brian now comes with its own seed () function, allowing to seed the random number generator and thereby to
make simulations reproducible. This function works for all code generation targets and in runtime and standalone
mode. See Random numbers for details.

* Brian can now export/import state variables of a group or a full network to/from a pandas Dat aF rame and comes
with a mechanism to extend this to other formats. Thanks to Dominik Krzemiriski for this contribution (see #3006).

Improvements and bug fixes
» Use a Mersenne-Twister pseudorandom number generator in C++ standalone mode, replacing the previously used
low-quality random number generator from the C standard library (see #222, #671 and #7006).

* Fix a memory leak in code running with the weave code generation target, and a smaller memory leak related to
units stored repetitively in the UnitRegistry.

* Fix a difference of one timestep in the number of simulated timesteps between runtime and standalone that could
arise for very specific values of dt and t (see #695).

* Fix standalone compilation failures with the most recent gcc version which defaults to C++14 mode (see #701)

* Fix incorrect summation in synapses when using the (summed) flag and writing to pre-synaptic variables (see
#704)

¢ Make synaptic pathways work when connecting groups that define nested subexpressions, instead of failing with a
cryptic error message (see #707).

Contributions

Code and documentation contributions (ordered by the number of commits):
* Marcel Stimberg (@mstimberg)
¢ Dominik Krzeminski (@dokato)
¢ Dan Goodman (@thesamovar)
¢ Martino Sorbaro (@martinosorb)
Testing, suggestions and bug reports (ordered alphabetically, apologies to anyone we forgot...):
* Craig Henriquez
¢ Daniel Bliss
 David Higgins
* Gordon Erlebacher
* Max Gillett
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* Moritz Augustin
* Sami Abdul-Wahid

1.3.23 Brian 2.0rc1

This is a bug fix release that we release only about two weeks after the previous release because that release introduced
a bug that could lead to wrong integration of stochastic differential equations. Note that standard neuronal noise models
were not affected by this bug, it only concerned differential equations implementing a “random walk”. The release also
fixes a few other issues reported by users, see below for more information.

Improvements and bug fixes
* Fix a regression from 2.0b4: stochastic differential equations without any non-stochastic part (e.g. dx/dt =
x1/sqgrt (ms) ) were not integrated correctly (see #686).
» Repeatedly calling restore () (or Network.restore) no longer raises an error (see #681).
* Fix an issue that made PoissonInput refuse to run after a change of dt (see #684).

* If the rates argument of PoissonGroup is a string, it will now be evaluated at every time step instead of once
at construction time. This makes time-dependent rate expressions work as expected (see #660).

Contributions

Code and documentation contributions (ordered by the number of commits):
* Marcel Stimberg (@mstimberg)
Testing, suggestions and bug reports (ordered alphabetically, apologies to anyone we forgot...):
¢ Cian O’'Donnell
¢ Daniel Bliss
e Ibrahim Ozturk

¢ Olivia Gozel

1.3.24 Brian 2.0rc

This is a release candidate for the final Brian 2.0 release, meaning that from now on we will focus on bug fixes and
documentation, without introducing new major features or changing the syntax for the user. This release candidate itself
does however change a few important syntax elements, see “Backwards-incompatible changes” below.

As always, please report bugs or suggestions to the github bug tracker (https://github.com/brian-team/brian2/issues) or
to the brian-development mailing list (brian-development@ googlegroups.com).
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Major new features
* New “generator syntax” to efficiently generate synapses (e.g. one-to-one connections), see Creating synapses for
more details.

* For synaptic connections with multiple synapses between a pair of neurons, the number of the synapse can now be
stored in a variable, allowing its use in expressions and statements (see Creating synapses).

* Synapses can now target other Synapses objects, useful for some models of synaptic modulation.

* The Morphology object has been completely re-worked and several issues have been fixed. The new Section
object allows to model a section as a series of truncated cones (see Creating a neuron morphology).

* Scripts with a single run () call, no longer need an explicit device.build () call to run with the C++ stan-
dalone device. A set_device () in the beginning is enough and will trigger the bui 1d call after the run (see
Standalone code generation).

» All state variables within a Network can now be accessed by Network.get_states and Network.
set_statesandthe store ()/restore () mechanism can now store the full state of a simulation to disk.

* Stochastic differential equations with multiplicative noise can now be integrated using the Euler-Heun method
(heun). Thanks to Jan-Hendrik Schleimer for this contribution.

» Error messages have been significantly improved: errors for unit mismatches are now much clearer and error
messages triggered during the intialization phase point back to the line of code where the relevant object (e.g. a
NeuronGroup) was created.

* PopulationRateMonitor now provides a smooth_rate method for a filtered version of the stored rates.

Improvements and bug fixes

* In addition to the new synapse creation syntax, sparse probabilistic connections are now created much faster.
 The time for the initialization phase at the beginning of a run () has been significantly reduced.

* Multicompartmental simulations with a large number of compartments are now simulated more efficiently and are
making better use of several processor cores when OpenMP is activated in C++ standalone mode. Thanks to Moritz
Augustin for this contribution.

» Simulations will use compiler settings that optimize performance by default.

* Objects that have user-specified names are better supported for complex simulation scenarios (names no longer
have to be unique at all times, but only across a network or across a standalone device).

* Various fixes for compatibility with recent versions of numpy and sympy

Important backwards-incompatible changes

e The argument names in Synapses.connect have changed and the first argument can no longer be
an array of indices. To connect based on indices, use Synapses.connect (i=source_indices,
j=target_indices). See Creating synapses and the documentation of Synapses.connect for more
details.

* The actions triggered by pre-synaptic and post-synaptic spikes are now described by the on_pre and on_post
keyword arguments (instead of pre and post).

e The Morphology object no longer allows to change attributes such as length and diameter after its creation.
Complex morphologies should instead be created using the Sect ion class, allowing for the specification of all
details.
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Morphology objects that are defined with coordinates need to provide the start point (relative to the end point
of the parent compartment) as the first coordinate. See Creating a neuron morphology for more details.

For simulations using the C++ standalone mode, no longer call Device.build (if using a single run () call),
oruse set_device () withbuild_on_run=False (see Standalone code generation).

Infrastructure improvements

Our test suite is now also run on Mac OS-X (on the Travis CI platform).

Contributions

Code and documentation contributions (ordered by the number of commits):

Marcel Stimberg (@mstimberg)
Dan Goodman (@thesamovar)
Moritz Augustin (@moritzaugustin)
Jan-Hendrik Schleimer (@ttxtea)
Romain Cazé (@rcaze)

Konrad Wartke (@Kwartke)

Romain Brette (@romainbrette)

Testing, suggestions and bug reports (ordered alphabetically, apologies to anyone we forgot...):

Chaofei Hong
Kees de Leeuw
Luke Y Prince
Myung Seok Shim
Owen Mackwood

Github users: @epaxon, @flinz, @mariomulansky, @martinosorb, @neuralyzer, @oleskiw, @prcastro, @su-
doankit

1.3.25 Brian 2.0b4

This is the fourth (and probably last) beta release for Brian 2.0. This release adds a few important new features and fixes
a number of bugs so we recommend all users of Brian 2 to upgrade. If you are a user new to Brian, we also recommend
to directly start with Brian 2 instead of using the stable release of Brian 1. Note that the new recommended way to install
Brian 2 is to use the Anaconda distribution and to install the Brian 2 conda package (see Installation).

This is however still a Beta release, please report bugs or suggestions to the github bug tracker (https://github.com/
brian-team/brian2/issues) or to the brian-development mailing list (brian-development@googlegroups.com).
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Major new features

¢ In addition to the standard threshold/reset, groups can now define “custom events”. These can be recorded with
the new EventMonitor (a generalization of SpikeMonitor)and Synapses can connect to these events
instead of the standard spike event. See Custom events for more details.

e SpikeMonitorand EventMonitor cannow also record state variable values at the time of spikes (or custom
events), thereby offering the functionality of StateSpikeMonitor from Brian 1. See Recording variables at
spike time for more details.

* The code generation modes that interact with C++ code (weave, Cython, and C++ standalone) can now be more
easily configured to work with external libraries (compiler and linker options, header files, etc.). See the documen-
tation of the cpp_ pre s module for more details.

Improvemements and bug fixes
¢ Cython simulations no longer interfere with each other when run in parallel (thanks to Daniel Bliss for reporting
and fixing this).

* The C++ standalone now works with scalar delays and the spike queue implementation deals more efficiently with
them in general.

¢ Dynamic arrays are now resized more efficiently, leading to faster monitors in runtime mode.

* The spikes generated by a Spi keGeneratorGroup can now be changed between runs using the set__spikes
method.

* Multi-step state updaters now work correctly for non-autonomous differential equations
e PoissonInput now correctly works with multiple clocks (thanks to Daniel Bliss for reporting and fixing this)

e The get_states method now works for StateMonitor. This method provides a convenient way to access
all the data stored in the monitor, e.g. in order to store it on disk.

* C++ compilation is now easier to get to work under Windows, see Installation for details.

Important backwards-incompatible changes
¢ The custom_operation method has been renamed to run_regularly and can now be called without the
need for storing its return value.

e StateMonitor will now by default record at the beginning of a time step instead of at the end. See Recording
variables continuously for details.

¢ Scalar quantities now behave as python scalars with respect to in-place modifications (augmented assignments).
This means that x = 3*mV; y = x; y += 1*mV will no longer increase the value of the variable x as well.

Infrastructure improvements

* We now provide conda packages for Brian 2, making it very easy to install when using the Anaconda distribution
(see Installation).
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Contributions

Code and documentation contributions (ordered by the number of commits):

Marcel Stimberg (@mstimberg)
Dan Goodman (@thesamovar)
Daniel Bliss (@dabliss)

Romain Brette (@romainbrette)

Testing, suggestions and bug reports (ordered alphabetically, apologies to everyone we forgot...):

Daniel Bliss

Damien Drix

Rainer Engelken

Beatriz Herrera Figueredo
Owen Mackwood
Augustine Tan

Ot de Wiljes

1.3.26 Brian 2.0b3

This is the third beta release for Brian 2.0. This release does not add many new features but it fixes a number of important
bugs so we recommend all users of Brian 2 to upgrade. If you are a user new to Brian, we also recommend to directly
start with Brian 2 instead of using the stable release of Brian 1.

This is however still a Beta release, please report bugs or suggestions to the github bug tracker (https://github.com/
brian-team/brian2/issues) or to the brian-development mailing list (brian-development@googlegroups.com).

Major new features

A new PoissonInput class for efficient simulation of Poisson-distributed input events.

Improvements

The order of execution for pre and post statements happending in the same time step was not well defined (it
fell back to the default alphabetical ordering, executing post before pre). It now explicitly specifies the order
attribute so that pre gets executed before post (as in Brian 1). See the Synapses documentation for details.

The default schedule that is used can now be set via a preference (core.network.default_schedule). New automat-
ically generated scheduling slots relative to the explicitly defined ones can be used, e.g. before_resets or
after_synapses. See Scheduling for details.

The scipy package is no longer a dependency (note that weave for compiled C code under Python 2 is now available
in a separate package). Note that multicompartmental models will still benefit from the scipy package if they are
simulated in pure Python (i.e. with the numpy code generation target) — otherwise Brian 2 will fall back to a
numpy-only solution which is significantly slower.
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Important bug fixes
* Fix SpikeGeneratorGroup which did not emit all the spikes under certain conditions for some code generation
targets (#429)

¢ Fix an incorrect update of pre-synaptic variables in synaptic statements for the numpy code generation target
(#435).

* Fix the possibility of an incorrect memory access when recording a subgroup with SpikeMonitor (#454).

* Fix the storing of results on disk for C++ standalone on Windows — variables that had the same name when ignoring
case (e.g. 1 and I) where overwriting each other (#455).

Infrastructure improvements

* Brian 2 now has a chat room on gitter: https://gitter.im/brian-team/brian2
¢ The sphinx documentation can now be built from the release archive file

 After a big cleanup, all files in the repository have now simple LF line endings (see https://help.github.com/articles/
dealing-with-line-endings/ on how to configure your own machine properly if you want to contribute to Brian).

Contributions

Code and documentation contributions (ordered by the number of commits):
* Marcel Stimberg (@mstimberg)
¢ Dan Goodman (@thesamovar)
¢ Konrad Wartke (@kwartke)
Testing, suggestions and bug reports (ordered alphabetically, apologies to everyone we forgot...):
* Daniel Bliss
¢ Owen Mackwood
¢ Ankur Sinha

¢ Richard Tomsett

1.3.27 Brian 2.0b2

This is the second beta release for Brian 2.0, we recommend all users of Brian 2 to upgrade. If you are a user new to
Brian, we also recommend to directly start with Brian 2 instead of using the stable release of Brian 1.

This is however still a Beta release, please report bugs or suggestions to the github bug tracker (https://github.com/
brian-team/brian2/issues) or to the brian-development mailing list (brian-development@googlegroups.com).
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Major new features

Multi-compartmental simulations can now be run using the Standalone code generation mode (this is not yet well-
tested, though).

The implementation of TimedArray now supports two-dimensional arrays, i.e. different input per neuron (or
synapse, etc.), see Timed arrays for details.

Previously, not setting a code generation target (using the codegen.target preference) would mean that the numpy
target was used. Now, the default target is aut o, which means that a compiled language (weave or cython)
will be used if possible. See Computational methods and efficiency for details.

The implementation of SpikeGeneratorGroup has been improved and it now supports a period argument
to repeatedly generate a spike pattern.

Improvements

The selection of a numerical algorithm (if none has been specified by the user) has been simplified. See Numerical
integration for details.

Expressions that are shared among neurons/synapses are now updated only once instead of for every neuron/synapse
which can lead to performance improvements.

On Windows, The Microsoft Visual C compiler is now supported in the cpp_standalone mode, see the re-
spective notes in the /nstallation and Computational methods and efficiency documents.

Simulation runs (using the standard “runtime” device) now collect profiling information. See Profiling for details.

Infrastructure and documentation improvements

Tutorials for beginners in the form of ipython notebooks (currently only covering the basics of neurons and synapses)
are now available.

The Examples in the documentation now include the images they generated. Several examples have been adapted
from Brian 1.

The code is now automatically tested on Windows machines, using the appveyor service. This complements the
Linux testing on travis.

Using a version of a dependency (e.g. sympy) that we don’t support will now raise an error when you import
brian2 —see Dependency checks for more details.

Test coverage for the cpp_standalone mode has been significantly increased.

Important bug fixes

¢ The preparation time for complicated equations has been significantly reduced.
 The string representation of small physical quantities has been corrected (#361)

* Linking variables from a group of size 1 now works correctly (#383)
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Contributions

Code and documentation contributions (ordered by the number of commits):
* Marcel Stimberg (@mstimberg)
¢ Dan Goodman (@thesamovar)
¢ Romain Brette (@romainbrette)
* Pierre Yger (@yger)
Testing, suggestions and bug reports (ordered alphabetically, apologies to everyone we forgot...):
* Conor Cox
* Gordon Erlebacher

» Konstantin Mergenthaler

1.3.28 Brian 2.0beta

This is the first beta release for Brian 2.0 and the first version of Brian 2.0 we recommend for general use. From now on,
we will try to keep changes that break existing code to a minimum. If you are a user new to Brian, we’d recommend to
start with the Brian 2 beta instead of using the stable release of Brian 1.

This is however still a Beta release, please report bugs or suggestions to the github bug tracker (https://github.com/
brian-team/brian2/issues) or to the brian-development mailing list (brian-development@googlegroups.com).

Major new features

¢ New classes Morphology and Spat ialNeuron for the simulation of Multicompartment models
* A temporary “bridge” for brian.hears that allows to use its Brian 1 version from Brian 2 (Brian Hears)

* Cython is now a new code generation target, therefore the performance benefits of compiled code are now also
available to users running simulations under Python 3.x (where scipy .weave is not available)

¢ Networks can now store their current state and return to it at a later time, e.g. for simulating multiple trials starting
from a fixed network state (Continuing/repeating simulations)

¢ C++ standalone mode: multiple processors are now supported via OpenMP (Multi-threading with OpenMP), al-
though this code has not yet been well tested so may be inaccurate.

¢ C++ standalone mode: after a run, state variables and monitored values can be loaded from disk transparently.
Most scripts therefore only need two additional lines to use standalone mode instead of Brian’s default runtime
mode (Standalone code generation).

Syntax changes

¢ The syntax and semantics of everything around simulation time steps, clocks, and multiple runs have been cleaned
up, making reinit obsolete and also making it unnecessary for most users to explicitly generate C1ock objects
—instead, a dt keyword can be specified for objects such as NeuronGroup (Running a simulation)

* The scalar flag for parameters/subexpressions has been renamed to shared
¢ The “unit” for boolean variables has been renamed from bool to boolean

e C++ standalone: several keywords of CPPStandaloneDevice.build have been renamed
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* The preferences are now accessible via prefs instead of brian_prefs

¢ The runner method has been renamed to custom_operation

Improvements

¢ Variables can now be linked across NeuronGroups (Linked variables)

* More flexible progress reporting system, progress reporting also works in the C++ standalone mode (Progress
reporting)

« State variables can be declared as i nteger (Equation strings)

Bug fixes

57 github issues have been closed since the alpha release, of which 26 had been labeled as bugs. We recommend all users
of Brian 2 to upgrade.

Contributions

Code and documentation contributions (ordered by the number of commits):
¢ Marcel Stimberg (@mstimberg)
¢ Dan Goodman (@thesamovar)
¢ Romain Brette (@romainbrette)
¢ Pierre Yger (@yger)
* Werner Beroux (@wernight)
Testing, suggestions and bug reports (ordered alphabetically, apologies to everyone we forgot...):
¢ Guillaume Bellec
¢ Victor Benichoux
¢ Laureline Logiaco
» Konstantin Mergenthaler
¢ Maurizio De Pitta
* Jan-Hendrick Schleimer
* Douglas Sterling

¢ Katharina Wilmes

42 Chapter 1. Introduction


https://github.com/mstimberg
https://github.com/thesamovar
https://github.com/romainbrette
https://github.com/yger
https://github.com/wernight

Brian 2 Documentation, Release 2.5.1

1.4 Changes for Brian 1 users

* Physical units
* Unported packages

* Replacement packages

* Removed classes/functions and their replacements

In most cases, Brian 2 works in a very similar way to Brian 1 but there are some important differences to be aware of. The
major distinction is that in Brian 2 you need to be more explicit about the definition of your simulation in order to avoid
inadvertent errors. In some cases, you will now get a warning in other even an error — often the error/warning message
describes a way to resolve the issue.

Specific examples how to convert code from Brian 1 can be found in the document Detailed Brian 1 to Brian 2 conversion
notes.

1.4.1 Physical units

The unit system now extends to arrays, e.g. np.arange (5) * mV will retain the units of volts and not discard them
as Brian 1 did. Brian 2 is therefore also more strict in checking the units. For example, if the state variable v uses the
unit of volt, the statement G.v = np.rand(len(G)) / 1000. will now raise an error. For consistency, units
are returned everywhere, e.g. in monitors. If mon records a state variable v, mon . t will return a time in seconds and
mon . v the stored values of v in units of volts.

If you need a pure numpy array without units for further processing, there are several options: if it is a state variable or
a recorded variable in a monitor, appending an underscore will refer to the variable values without units, e.g. mon.t_
returns pure floating point values. Alternatively, you can remove units by diving by the unit (e.g. mon.t / second)
or by explicitly converting it (np.asarray (mon.t)).

Here’s an overview showing a few expressions and their respective values in Brian 1 and Brian 2:

Expression Brian 1 Brian 2

1*mV 1.0 * mvolt 1.0 * mvolt

np.array(l) * mV 0.001 1.0 * mvolt

np.array([1]) * mV array([ 0.001]) array([1.]) * mvolt
np.mean(np.arange(5) * mV) 0.002 2.0 * mvolt

np.arange(2) * mV array([ 0. , 0.001]) array([ 0., 1.]) * mvolt
(np.arange(2) * mV) >=1 * mV array([False, True], dtype=bool) | array([False, True], dtype=bool)
(np.arange(2) * mV)[0] >= 1 * mV | False False

(np.arange(2) * mV)[1] >=1 * mV | DimensionMismatchError True
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1.4.2 Unported packages
The following packages have not (yet) been ported to Brian 2. If your simulation critically depends on them, you should
consider staying with Brian 1 for now.

e brian.tools

* brian.library.modelfitting

* brian.library.electrophysiology

1.4.3 Replacement packages

The following packages that were included in Brian 1 have now been split into separate packages.

* brian.hears has been updated to brian2hears. Note that there is a legacy package brian?2 .hears included
in brian2, but this is now deprecated and will be removed in a future release. For now, see Brian Hears for
details.

1.4.4 Removed classes/functions and their replacements

In Brian 2, we have tried to keep the number of classes/functions to a minimum, but make each of them flexible enough
to encompass a large number of use cases. A lot of the classes and functions that existed in Brian 1 have therefore been
removed. The following table lists (most of) the classes that existed in Brian 1 but do no longer exist in Brian 2. You
can consult it when you get a NameError while converting an existing script from Brian 1. The third column links to a
document with further explanation and the second column gives either:

1. the equivalent class in Brian 2 (e.g. StateMonitor can record multiple variables now and therefore replaces
MultiStateMonitor);

2. the name of a Brian 2 class in square brackets (e.g. [Synapses] for STDP), this means that the class can be used
as a replacement but needs some additional code (e.g. explicitly specified STDP equations). The “More details”
document should help you in making the necessary changes;

3. “string expression”, if the functionality of a previously existing class can be expressed using the general string ex-
pression framework (e.g. threshold=VariableThreshold('Vt', 'V') canbereplaced by thresh-
old='Vv > Vt');

4. alink to the relevant github issue if no equivalent class/function does exist so far in Brian 2;

5. aremark such as “obsolete” if the particular class/function is no longer needed.

Brian 1 Brian 2 More details

AdEx [Equations] Library models (Brian 1 —> 2 conversion)
aEIF [Equations] Library models (Brian 1 —> 2 conversion)
AERSpikeMonitor #2908 Monitors (Brian I —> 2 conversion)
alpha_conductance [Equations] Library models (Brian 1 —> 2 conversion)
alpha_current [Equations] Library models (Brian 1 —> 2 conversion)
alpha_synapse [Equations] Library models (Brian 1 —> 2 conversion)
AutoCorrelogram [SpikeMonitor] Monitors (Brian I —> 2 conversion)
biexpr_conductance [Equations] Library models (Brian 1 —> 2 conversion)
biexpr_current [Equations] Library models (Brian 1 —> 2 conversion)
biexpr_synapse [Equations] Library models (Brian 1 —> 2 conversion)
Brette_Gerstner [Equations] Library models (Brian 1 —> 2 conversion)
CoincidenceCounter [SpikeMonitor] Monitors (Brian 1 —> 2 conversion)

continues on next pag
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Table 1 - continued from previous page

Brian 1 Brian 2 More details

CoincidenceMatrixCounter [SpikeMonitor] Monitors (Brian 1 —> 2 conversion)
Compartments #443 Multicompartmental models (Brian 1 —> 2 conversion
Connection Synapses Synapses (Brian 1 —> 2 conversion)

Current #443 Multicompartmental models (Brian 1 —> 2 conversion
CustomRefractoriness [string expression] Neural models (Brian 1 —> 2 conversion)
DefaultClock Clock Networks and clocks (Brian 1 —> 2 conversion)
EmpiricalThreshold string expression Neural models (Brian 1 —> 2 conversion)
EventClock Clock Networks and clocks (Brian 1 —> 2 conversion)
exp_conductance [Equations] Library models (Brian 1 —> 2 conversion)
exp_current [Equations] Library models (Brian 1 —> 2 conversion)

exp_1IF [Equations] Library models (Brian 1 —> 2 conversion)
exp_synapse [Equations] Library models (Brian 1 —> 2 conversion)
FileSpikeMonitor #298 Monitors (Brian 1 —> 2 conversion)

FloatClock Clock Networks and clocks (Brian 1 —> 2 conversion)
FunReset [string expression] Neural models (Brian 1 —> 2 conversion)
FunThreshold [string expression] Neural models (Brian 1 —> 2 conversion)
hist_plot no equivalent -

HomogeneousPoissonThreshold

string expression

Neural models (Brian 1 —> 2 conversion)

IdentityConnection Synapses Synapses (Brian 1 —> 2 conversion)
TonicCurrent #443 Multicompartmental models (Brian 1 —> 2 conversion
ISIHistogramMonitor [SpikeMonitor] Monitors (Brian 1 —> 2 conversion)

Izhikevich [Equations] Library models (Brian 1 —> 2 conversion)
K_current_HH [Equations] Library models (Brian 1 —> 2 conversion)
leak_current [Equations] Library models (Brian 1 —> 2 conversion)

leaky_ IF [Equations] Library models (Brian 1 —> 2 conversion)
MembraneEquation #443 Multicompartmental models (Brian 1 —> 2 conversion
MultiStateMonitor StateMonitor Monitors (Brian 1 —> 2 conversion)
Na_current_HH [Equations] Library models (Brian 1 —> 2 conversion)
NaiveClock Clock Networks and clocks (Brian 1 —> 2 conversion)
NoReset obsolete Neural models (Brian 1 —> 2 conversion)
NoThreshold obsolete Neural models (Brian 1 —> 2 conversion)
OfflinePoissonGroup [SpikeGeneratorGroup] Inputs (Brian 1 —> 2 conversion)
OrnsteinUhlenbeck [Equations] Library models (Brian 1 —> 2 conversion)
perfect_IF [Equations] Library models (Brian 1 —> 2 conversion)
PoissonThreshold string expression Neural models (Brian 1 —> 2 conversion)
PopulationSpikeCounter SpikeMonitor Monitors (Brian 1 —> 2 conversion)

PulsePacket

[SpikeGeneratorGroup]

Inputs (Brian 1 —> 2 conversion)

quadratic_IF

[Equations]

Library models (Brian 1 —> 2 conversion)

raster_plot

plot_raster (brian2tools)

brian2tools documentation

RecentStateMonitor

no direct equivalent

Monitors (Brian 1 —> 2 conversion)

Refractoriness string expression Neural models (Brian 1 —> 2 conversion)
RegularClock Clock Networks and clocks (Brian 1 —> 2 conversion)
Reset string expression Neural models (Brian 1 —> 2 conversion)
SimpleCustomRefractoriness [string expression] Neural models (Brian 1 —> 2 conversion)
SimpleFunThreshold [string expression] Neural models (Brian 1 —> 2 conversion)
SpikeCounter SpikeMonitor Monitors (Brian I —> 2 conversion)
StateHistogramMonitor [StateMonitor] Monitors (Brian 1 —> 2 conversion)
StateSpikeMonitor SpikeMonitor Monitors (Brian I —> 2 conversion)

STDP [Synapses] Synapses (Brian 1 —> 2 conversion)

continues on next page
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Table 1 - continued from previous page

Brian 1 Brian 2 More details

STP [Synapses] Synapses (Brian 1 —> 2 conversion)
StringReset string expression Neural models (Brian 1 —> 2 conversion)
StringThreshold string expression Neural models (Brian 1 —> 2 conversion)
Threshold string expression Neural models (Brian 1 —> 2 conversion)
VanRossumMetric [SpikeMonitor] Monitors (Brian 1 —> 2 conversion)
VariableReset string expression Neural models (Brian 1 —> 2 conversion)
VariableThreshold string expression Neural models (Brian 1 —> 2 conversion)

List of detailed instructions

Detailed Brian 1 to Brian 2 conversion notes

These documents are only relevant for former users of Brian 1. If you do not have any Brian 1 code to convert, go directly
to the main User’s guide.

Neural models (Brian 1 —> 2 conversion)

Brian 2 documentation

For the main documentation about defining neural models, see the document Models and neuron groups.

Threshold and Reset

* Refractoriness

o Subgroups

e Linked Variables

The syntax for specifying neuron models in a NeuronGroup changed in several details. In general, a string-based syntax
(that was already optional in Brian 1) consistently replaces the use of classes (e.g. VariableThreshold) or guessing
(e.g. which variable does threshold=50*mV check).

Threshold and Reset

String-based thresholds are now the only possible option and replace all the methods of defining threshold/reset in Brian
1:

Brian 1 Brian 2
group = NeuronGroup (N, 'dv/dt = -v / tau. | group = NeuronGroup (N, 'dv/dt = -v / tau.
—: volt', —: volt',
threshold=-50*mV, threshold='v > -50*mV
reset=-70*nV) ',
reset='v = -70*mVvV")

continues on next page
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1

Table 2 - continued from previous page

Brian 1

Brian 2

group = NeuronGroup (N, 'dv/dt = -v / tau.

—: volt',
threshold=Threshold (-

group = NeuronGroup (N, 'dv/dt = -v / tau.

—: volt',
threshold='v > —-50*mV

—50*mV, state='v'), ',
reset=Reset (-70*mV, _ reset='v = -70*mV")
—~state="w'))
group = NeuronGroup (N, '''dv/dt = -v /. group = NeuronGroup (N, '''dv/dt = -v /.
—tau volt —tau volt
dvt/dt = -vt /o dvt/dt = -vt /.
—tau volt —tau volt
vr volt''', vr volt''"',
- threshold='v > vt',
—threshold=VariableThreshold(state="'v", reset='v = vr'")
— threshold_state='vt'"),
—reset=VariableThreshold(state='v"',
< resetvaluestate='vr'))
group = NeuronGroup (N, 'rate Hz', group = NeuronGroup (N, 'rate Hz',
- threshold="rand()
—threshold=PoissonThreshold(state="rate —<rate*dt')

="))

There’s no direct equivalent for the “functional threshold/reset” mechanism from Brian 1. In simple cases, they can
be implemented using the general string expression/statement mechanism (note that in Brian 1, reset=myreset is

equivalent to reset=FunReset (myreset)):

1.4. Changes for Brian 1 users
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Brian 1

Brian 2

def myreset (P, spikes):
P.v_[spikes] = -
—70*mV+rand (len (spikes) ) *5*mV
group = NeuronGroup (N, 'dv/dt = -v / tau.
—: volt',
threshold=-50*mvV,
reset=myreset)

group = NeuronGroup (N, 'dv/dt = -v / tau.
—: volt',

threshold='v > -50*mV

reset="-70*mV +._
—rand () *5*mV")

def mythreshold(v):

return (v > -50*mV) & (rand(N) > 0.5)

group = NeuronGroup (N, 'dv/dt = -v / tau.
—: volt',

—~threshold=SimpleFunThreshold (mythreshold

—

— state='v"),
reset=-70*mV)

group = NeuronGroup (N, 'dv/dt = -v / tau.
—: volt',

threshold='v > -

> 0.5',

reset="'v =

—50*mV and rand()
77O*mvl)

For more complicated cases, you can use the general mechanism for User-provided functions that Brian 2 provides.
The only caveat is that you'd have to provide an implementation of the function in the code generation target language
which is by default C++ or Cython. However, in the default Runtime code generation mode, you can chose different
code generation targets for different parts of your simulation. You can thus switch the code generation target for the
threshold/reset mechanism to numpy while leaving the default target for the rest of the simulation in place. The details
of this process and the correct definition of the functions (e.g. global_reset needs a “dummy” return value) are
somewhat cumbersome at the moment and we plan to make them more straightforward in the future. Also note that
if you use this kind of mechanism extensively, you'll lose all the performance advantage that Brian 2’s code generation
mechanism provides (in addition to not being able to use Standalone code generation mode at all).
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Brian 1

Brian 2

def single_threshold(v) :
# Only let a single neuron spike
crossed_threshold = np.nonzero (v > -
—50*mV) [0]
should_spike = np.zeros(len(P),.
—dtype=np.bool)
if len(crossed_threshold):
choose = np.random.
—randint (len (crossed_threshold))
should_spike[crossed_
—threshold[choose]] = True
return should_spike

def global_reset (P, spikes):
# Reset everything
if len(spikes):

P.v_[:] = -70*mV
neurons = NeuronGroup (N, 'dv/dt = -v /o
—tau volt',

—threshold=SimpleFunThreshold(single_
—threshold,

— state="'v"),
reset=global_reset)

@check_units (v=volt, result=bool)
def single_threshold(v):
pass # (identical to Brian 1)

@check_units (spikes=1, result=1)
def global_reset (spikes):
# Reset everything
if len(spikes):
neurons.v_J[:] = -0.070
neurons = NeuronGroup (N, 'dv/dt = -v /.
—tau volt',
threshold="'single_
—threshold(v) ',
reset="dummy =_
—global_reset (i) ")
# Set the code generation target for.
—threshold/reset only:
neuron.thresholder(['spike'].codeobj_
—~class = NumpyCodeObject
neuron.resetter['spike'].codeobj_class =.
—NumpyCodeObject

For an example how to translate Empirical Threshold, see the section on “Refractoriness” below.

Refractoriness

For a detailed description of Brian 2’s refractoriness mechanism see Refractoriness.

In Brian 1, refractoriness was tightly linked with the reset mechanism and some combinations of refractoriness and reset
were not allowed. The standard refractory mechanism had two effects during the refractoriness: it prevented the refractory
cell from spiking and it clamped a state variable (normally the membrane potential of the cell). In Brian 2, refractoriness
is independent of reset and the two effects are specified separately: the refractory keyword specifies the time (or an
expression evaluating to a time) during which the cell does not spike, and the (unless refractory) flag marks one
or more variables to be clamped during the refractory period. To correctly translate the standard refractory mechanism

from Brian 1, you'll therefore need to specify both:

Brian 1

Brian 2

group = NeuronGroup (N, 'dv/dt = (I - v)/

—tau volt',
threshold=-50*mV,
reset=-70*mV,

refractory=3*ms)

group = NeuronGroup (N, 'dv/dt = (I - v)/
volt (unless refractory)',
threshold='v > -50*mV

—tau

reset='v = -70*mV"',
refractory=3*ms)

1.4. Changes for Brian 1 users
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More complex refractoriness mechanisms based on SimpleCustomRefractoriness and CustomRefrac-—
toriness can be translatated using string expressions or user-defined functions, see the remarks in the preceding

section on “Threshold and Reset”.

Brian 2 no longer has an equivalent to the EmpiricalThreshold class (which detects at the first threshold crossing
but ignores all following threshold crossings for a certain time after that). However, the standard refractoriness mechanism
can be used to implement the same behaviour, since it does not reset/clamp any value if not explicitly asked for it (which

would be fatal for Hodgkin-Huxley type models):

—threshold=EmpiricalThreshold(threshold=2
—

refractory=1*ms,

state="v"'

))

D .

Brian 1 Brian 2
group = NeuronGroup (N, ''' group = NeuronGroup (N, '"''

dv/dt = (I_L - I_Na - dv/dt = (I_L - I_Na -
< I_K + I)/Cm volt - I_K 4+ I)/Cm volt

T
’

threshold='v > —-20*mV

refractory=1*ms)

Subgroups

The class NeuronGroup in Brian 2 does no longer provide a subgroup method, the only way to construct subgroups
is therefore the slicing syntax (that works in the same way as in Brian 1):

Brian 1

Brian 2

NeuronGroup (4000, ...)
= group.subgroup (3200)
group.subgroup (800)

group
group_exc
group_inh

NeuronGroup (4000, ...)
= group[:3200]
group[3200:]

group
group_exc
group_inh
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Linked Variables

For a description of Brian 2’s mechanism to link variables between groups, see Linked variables.

Linked variables need to be explicitly annotated with the (1inked) flag in Brian 2:

Brian 1 Brian 2
groupl = NeuronGroup (N, groupl = NeuronGroup (N,

'dv/dt = -v / tau :._ 'dv/dt = -v / tau :.
—volt'") —volt')
group2 = NeuronGroup (N, group2 = NeuronGroup (N,

rrrdv/de = (-v o+ w)o rrrdv/dt = (v o+ w)o
-/ tau : volt -/ tau : volt

w : volt''") w : volt (linked)
group2.w = linked_var (groupl, 'v') e 1T
group2.w = linked_var (groupl, 'v')

Synapses (Brian 1 —> 2 conversion)

Brian 2 documentation

For the main documentation about defining and creating synapses, see the document Synapses.

* Converting Brian 1'’s Connect ion class

» Converting Brian 1'’s Synapses class

Converting Brian 1’s Connection class

In Brian 2, the Synapses class is the only class to model synaptic connections, you will therefore have to convert all uses
of Brian 1’s Connection class. The Connection class increases a post-synaptic variable by a certain amount (the
“synaptic weight”) each time a pre-synaptic spike arrives. This has to be explicitly specified when using the Synapses
class, the equivalent to the basic Connect ion usage is:

Brian 1 Brian 2

conn = Connection(source, target, 'ge') conn = Synapses (source, target, 'w :.
—~siemens',
on_pre='ge += w')

Note that he variable w, which stores the synaptic weight, has to have the same units as the post-synaptic variable (in this
case: ge) that it increases.
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Creating synapses and setting weights

With the Connection class, creating a synapse and setting its weight is a single process whereas with the Synapses
class those two steps are separate. There is no direct equivalent to the convenience functions connect_full, con-
nect_random and connect_one_to_one, but you can easily implement the same functionality with the general
mechanism of Synapses.connect:

Brian 1 Brian 2
connl = Connection(source, target, 'ge') connl = Synapses (source, target, 'w:.
connl[3, 5] = 3*nS —siemens',
on_pre='ge += w')
connl.connect (i=3, j=5)
connl.w[3, 5] = 3*nS # (or connl.w =_
—3*nS)
conn2 = Connection(source, target, 'ge') conn2 = ... # see above
conn2.connect_full (source, target, 5*nS) conn2.connect ()
conn2.w = 5*nS
conn3 = Connection (source, target, 'ge') conn3 = ... # see above
conn3.connect_random(source, target, conn3.connect (p=0.02)
sparseness=0.02, conn3.w = 2*nS
weight=2%*ns)
conn4 = Connection(source, target, 'ge') connd = ... # see above
conné4.connect_one_to_one (source, target, connéd.connect (j="'1")
weight=4*nS3) connd.w = 4*nS
conn5 = IdentityConnection (source, . connb = Synapses (source, target,
—target, 'w : siemens (shared)')
weight=3*nS3) connb.w = 3*nS
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Weight matrices

Brian 2’s Synapses class does not support setting the weights of a neuron with a weight matrix. However, Synapses.
connect creates the synapses in a predictable order (first all synapses for the first pre-synaptic cell, then all synapses for
the second pre-synaptic cell, etc.), so a reshaped “flat” weight matrix can be used:

Brian 1 Brian 2
# len (source) == 20, len(target) == 30 # len (source) == 20, len(target) == 30
conn6 = Connection(source, target, 'ge') conn6 = Synapses (source, target, 'w:._
W = rand (20, 30)*nS —~siemens',
connb6.connect (source, target, weight=W) on_pre='ge += w')

W rand (20, 30)*nS

conn6.connect ()
conn6.w = W.flatten ()

However note that if your weight matrix can be described mathematically (e.g. random as in the example above), then
you should not create a weight matrix in the first place but use Brian 2’s mechanism to set variables based on mathematical
expressions (in the above case: conn5.w = 'rand () "). Especially for big connection matrices this will have better
performance, since it will be executed in generated code. You should only resort to explicit weight matrices when there
is no alternative (e.g. to load weights from previous simulations).

In Brian 1, you can restrict the functions connect, connect_random, etc. to subgroups. Again, there is no direct
equivalent to this in Brian 2, but the general string syntax allows you to make connections conditional on logical statements
that refer to pre-/post-synaptic indices and can therefore also used to restrict the connection to a subgroup of cells. When
you set the synaptic weights, you can however use subgroups to restrict the subset of weights you want to set.

Brian 1 Brian 2

conn?7 = Connection (source, target, 'ge') conn’7 = Synapses (source, target, 'w:.
conn7.connect_full (source[:5], . —~Siemens',

—target[5:10], 5*nS) on_pre='ge += w')

conn7.connect ('i < 5 and j >=5 and j <10
=")

# Alternative (more efficient):

# conn7.connect (j='k in range (5, 10) 1if.
—i < 57)

conn7.w[source[:5], target[5:10]] = 5*nS

Connections defined by functions

Brian 1 allowed you to pass in a function as the value for the weight argument in a connect call (and also for the
sparseness argument in connect_random). You should be able to replace such use cases by the the general, string-
expression based method:
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Brian 1 Brian 2
conn8 = Connection(source, target, 'ge') conn8 = Synapses (source, target, 'w:.
conn8.connect_full (source, target, —~siemens',

weight=lambda i,
—J:(l+cos(i—7)) *2*nSs)

on_pre='ge += w')
conn8.connect ()

conn8.w = '"(1 + cos(i — J))*2*nS'
conn9 = Connection(source, target, 'ge') conn9 = # see above
conn9.connect_random (source, target, conn9.connect (p=0.02)
sparseness=0.02, conn9.w = 'rand () *nS'
—weight=lambda:rand () *nS)
connl0 = Connection (source, target, 'ge') connl0 = # see above

connl0.connect_random(source, target,
sparseness=lambda..
—~1i,Jjrexp(-abs(i-j)*.1),
weight=2*ns)

connl0.connect (p='exp (-abs (i - J)*.1)")
connl0.w = 2*nS

Delays

The specification of delays changed in several aspects from Brian 1 to Brian 2: In Brian 1, delays where homogeneous by
default, and heterogeneous delays had to be marked by delay=True, together with the specification of the maximum
delay. In Brian 2, heterogeneous delays are the default and you do not have to state the maximum delay. Brian 1’s syntax
of specifying a pair of values to get randomly distributed delays in that range is no longer supported, instead use Brian 2’s

standard string syntax:

Brian 1 Brian 2
connll = Connection(source, target, 'ge', connll = Synapses (source, target, 'w :.
— delay=True, —siemens',

max_delay=5*ms) on_pre='ge += w')
connll.connect_full (source, target,. connll.connect ()
—weight=3*nS, connll.w = 3*nS

delay=(0*ms, 5*ms)) connll.delay = 'rand()*5*ms'
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Modulation

In Brian 2, there’s no need for the modulat ion keyword that Brian 1 offered, you can describe the modulation as part

of the on_pre action:

Brian 1 Brian 2
connl2 = Connection(source, target, 'ge', connl2 = Synapses (source, target, 'w :.
modulation="u"'") —siemens',
on_pre='ge += w * u_pre
o)
Structure

There’s no equivalen for Brian 1’s st ructure keyword in Brian 2, synapses are always stored in a sparse data structure.
There is currently no support for changing synapses at run time (i.e. the “dynamic” structure of Brian 1).

Converting Brian 1’s Synapses class

Brian 2’s Synapses class works for the most part like the class of the same name in Brian 1. There are however some

differences in details, listed below:

Synaptic models

The basic syntax to define a synaptic model is unchanged, but the keywords pre and post have been renamed to

on_pre and on_post, respectively.

Brian 1 Brian 2
stdp_syn = Synapses (inputs, neurons,. stdp_syn = Synapses (inputs, neurons, .
—model=""" —model="""
w:l w:l
dApre/dt = —-Apre/ dApre/dt = -Apre/
—taupre : 1 (event-driven) —taupre 1 (event—-driven)
dApost/dt = -Apost/ dApost/dt = —-Apost/
—taupost : 1 (event-driven)''', —taupost 1 (event-driven)''',
pre="'"''ge + =w on_pre='"""'ge + =w
Apre += delta_ Apre += delta_
—Apre —Apre
w = clip(w +o w = clip(w +o
—Apost, 0, gmax)''', —Apost, 0, gmax)''',
post="'"''Apost +=_ on_post="""Apost +=_
—~delta_Apost —delta_Apost
w = clip(w +o w = clip(w +o
—Apre, 0, gmax)''") —Apre, 0, gmax)''")
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Lumped variables (summed variables)

The syntax to define lumped variables (we use the term “summed variables” in Brian 2) has been changed: instead of
assigning the synaptic variable to the neuronal variable you’ll have to include the summed variable in the synaptic equations

with the flag (summed) :

Brian 1

Brian 2

# a non-linear synapse (e.g. NMDA)

neurons = NeuronGroup (l, model="""
dv/dt = (gtot - wv)/
— (10*ms) : 1
gtot )
syn = Synapses (inputs, neurons,
model="""
dg/dt = —a*gt+b*x* (1-g) : 1
dx/dt -c*x @ 1

w : 1 # synaptic weight''

pre='x += w'")
neurons.gtot=S.qg

# a non-linear synapse (e.g. NMDA)

neurons = NeuronGroup (l, model='"""
dv/dt = (gtot - wv)/
—~(10*ms) : 1
gtot ')
syn = Synapses (inputs, neurons,
model="""
dg/dt = —a*g+b*x* (1-g) : 1
dx/dt = -c*x : 1

w : 1 # synaptic weight
gtot_post = g : 1 (summed)

on_pre='x += w')

Creating synapses

In Brian 1, synapses were created by assigning True or an integer (the number of synapses) to an indexed Synapses
object. In Brian 2, all synapse creation goes through the Synapses. connect function. For examples how to create
more complex connection patterns, see the section on translating Connections objects above.

Brian 1

Brian 2

syn = Synapses(...)
# single synapse
syn[3, 5] = True

syn = Synapses(...)
# single synapse

syn.connect (i=3, j=5)

# all-to-all connections
syn[:, :] = True

# all-to—-all connections
syn.connect ()

# all to neuron number 1
syn[:, 1] = True

# all to neuron number 1
syn.connect (j="1")

# multiple synapses
syn[4, 7] = 3

# multiple synapses

syn.connect (i=4, j=7, n=3)

# connection probability 2%
syn[:, :] = 0.02

# connection probability 2%
syn.connect (p=0.02)
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Multiple pathways

As Brian 1, Brian 2 supports multiple pre- or post-synaptic pathways, with separate pre-/post-codes and delays. In Brian
1, you have to specify the pathways as tuples and can then later access them individually by using their index. In Brian
2, you specify the pathways as a dictionary, i.e. by giving them individual names which you can then later use to access
them (the default pathways are called pre and post):

Brian 1 Brian 2
S = Synapses (..., S = Synapses (...,
pre=('ge + =w', pre={'pre_transmission':
"'"'w = clip(w + Apost,. 'ge += w',
—0, 1inf) 'pre_plasticity':
Apre += delta_Apre'’ '"'"'w = clip(w + Apost,.
—~ "), —~0, 1inf)
post="'"''"'Apost += delta_Apost Apre += delta_Apre''
w = clip(w + Apre,. - "},
—~0, inf)''") post="'"'"'Apost += delta_Apost
w = clip(w + Apre,.
S[:, :] = True -0, inf)'"'")
S.delay[1][:, :] = 3*ms # delayed trace
S.connect ()
S.pre_plasticity.delay([:, :] = 3*ms #_
—delayed trace

Monitoring synaptic variables

Both in Brian 1 and Brian 2, you can record the values of synaptic variables with a StateMonitor. You no longer
have to call an explicit indexing function, but you can directly provide an appropriately indexed Synapses object. You
can now also use the same technique to index the StateMonitor object to get the recorded values, see the respective
section in the Synapses documentation for details.

Brian 1 Brian 2

syn = Synapses(...) syn = Synapses(...)

# record all synapse targetting neuron 3 # record all synapse targetting neuron 3
indices = syn.synapse_index((slice (None), mon = StateMonitor (S, 'w', record=S[:,.
= 3)) —31)

mon = StateMonitor (S, 'w',.

—record=indices)

Inputs (Brian 1 —> 2 conversion)

Brian 2 documentation

For the main documentation about adding external stimulation to a network, see the document Input stimuli.
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* Poisson Input

* Spike generation

o Arbitrary time-dependent input (TimedArray)

Poisson Input

Brian 2 provides the same two groups that Brian 1 provided: PoissonGroup and PoissonInput. The mechanism
for inhomogoneous Poisson processes has changed: instead of providing a Python function of time, you’ll now have to
provide a string expression that is evaluated at every time step. For most use cases, this should allow a direct translation:

Brian 1 Brian 2

rates = lambda.. rates = '(1 + cos(2*pi*t*1*Hz)*10*Hz)'
—t:(l+tcos (2*pi*t*1*Hz)) *10*Hz group = PoissonGroup (100, rates=rates)
group = PoissonGroup (100, rates=rates)

For more complex rate modulations, the expression can refer to User-provided functions and/or you can replace the
PoissonGroup by a general NeuronGroup with a threshold condition rand () <rates*dt (which allows you to
store per-neuron attributes).

There is currently no direct replacement for the more advanced features of PoissonInput (record, freeze,
copies, jitter,and reliability keywords), but various workarounds are possible, e.g. by directly using a B1 -
nomialFunction in the equations. For example, you can get the functionality of the freeze keyword (identical
Poisson events for all neurons) by storing the input in a shared variable and then distribute the input to all neurons:

Brian 1 Brian 2

group = NeuronGroup (10, group = NeuronGroup (10, '''dv/dt = -v /_
'dv/dt = -v/ (10*ms) _ —(10*ms) : 1

—: 1) shared_input.

input = PoissonInput (group, N=1000, . «: 1 (shared)''"'")

—rate=1*Hz, poisson_input = BinomialFunction(n=1000, .
weight=0.1, state='v —p=1*Hz*group.dt)

'y, group.run_regularly ('''shared_input =_
freeze=True) —poisson_input () *0.1

v += shared_input'
—)

58 Chapter 1. Introduction



Brian 2 Documentation, Release 2.5.1

Spike generation

SpikeGeneratorGroup provides mostly the same functionality as in Brian 1. In contrast to Brian 1, there is only
one way to specify which neurons spike and when — you have to provide the index array and the times array as separate
arguments:

Brian 1 Brian 2
genl = SpikeGeneratorGroup (2, [(0, O*ms), genl = SpikeGeneratorGroup (2, [0, 1], [0,
— (1, 1*ms)]) — 1]*ms)
gen2 = SpikeGeneratorGroup (2, [(array ([0, gen2 = SpikeGeneratorGroup (2, [0, 1, 0,-
— 11), O*ms), —17,

(array ([0, [0, O, 1,-
— 11), 1*ms)] —1]*ms)
gen3 = SpikeGeneratorGroup (2, (array([0,. | gen3 = SpikeGeneratorGroup(2, [0, 1], [0,
—11), — 1]1*ms)

array ([0, o
—1]) *ms)) gend4 = SpikeGeneratorGroup(2, [0, 11, [0,
gen4 = SpikeGeneratorGroup (2, array([[0,. — 1] *ms)
—0.01,

[1,.

—0.00111)

Note: For large arrays, make sure to provide a Quantity array (e.g. [0, 1, 2]*ms)andnotalistof Quantity
values (e.g. [0*ms, 1*ms, 2*ms]). A list has first to be translated into an array which can take a considerable
amount of time for a list with many elements.

There is no direct equivalent of the Brian 1 option to use a generator that updates spike times online. The easiest alternative
in Brian 2 is to pre-calculate the spikes and then use a standard SpikeGeneratorGroup. If this is not possible (e.g.
there are two many spikes to fit in memory), then you can workaround the restriction by using custom code (see User-
provided functions and Arbitrary Python code (network operations)).

Arbitrary time-dependent input (TimedArray)

For a detailed description of the TimedArray mechanism in Brian 2, see Timed arrays.

In Brian 1, timed arrays where special objects that could be assigned to a state variable and would then be used to update
this state variable at every time step. In Brian 2, a timed array is implemented using the standard Functions mechanism
which has the advantage that more complex access patterns can be implemented (e.g. by not using t as an argument, but
something like t - delay). This syntax was possible in Brian 1 as well, but was disadvantageous for performance
and had other limits (e.g. no unit support, no linear integration). In Brian 2, these disadvantages no longer apply and the
function syntax is therefore the only available syntax. You can convert the old-style Brian 1 syntax to Brian 2 as follows:

Warning: The example below does not correctly translate the changed semantics of TimedArray related to the
time. InBrian 1, TimedArray ([0, 1, 2], dt=10*ms) willreturn O for t <5*ms, 1 for 5*ms<=t<15*ms,
and 2 for t >=15*ms. Brian 2 will return 0 for t<10*ms, 1 for 10*ms<=t<20*ms, and 2 for t>=20*ms.
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reset=0*mV, ..
—threshold=15*mV)
group.I = TimedArray (linspace (0*mV,
—20*mv, 100),
dt=10*ms)

Brian 1 Brian 2

# same input for all neurons # same input for all neurons

egqs = ''"' I = TimedArray (linspace (0*mV, 20*mV, .
dv/dt = (I - v)/tau : volt ~100),
I : volt dt=10*ms)
IBE eqs = '

group = NeuronGroup (1, model=egs, dv/dt = (I(t) - v)/tau : volt

T
group = NeuronGroup (1, model=egs,
reset="'v = 0*mV"',
threshold='v > 15*mV

<)

# neuron-specific input

# neuron-specific input

egqs = "' values = (linspace(0*mv, 20*mV, 100)[:,_

dv/dt = (I - v)/tau : volt —None] *

I : volt linspace (0, 1, 5))

ree I = TimedArray(values, dt=10*ms)
group = NeuronGroup (5, model=egs, egqs = '"!'

reset=0*mv, _ dv/dt = (I(t, i) - v)/tau : volt
—threshold=15*mV) ree
values = (linspace(0*mv, 20*mV, 100)[:,_ group = NeuronGroup (5, model=egs,
—None] * reset="'v = 0*mV"',
linspace (0, 1, 5)) threshold="v > 15*mV

group.I = TimedArray (values, dt=10*ms) ")

Monitors (Brian 1 —> 2 conversion)

Brian 2 documentation

For the main documentation about recording network activity, see the document Recording during a simulation.

e Monitoring spiking activity

* Monitoring variables

Monitoring spiking activity

The main class to record spiking activity is SpikeMonitor which is created in the same way as in Brian 1. However,
the internal storage and retrieval of spikes is different. In Brian 1, spikes were stored as a list of pairs (i, t), the index
and time of each spike. In Brian 2, spikes are stored as two arrays i and t, storing the indices and times. You can access
these arrays as attributes of the monitor, there’s also a convenience attribute it that returns both at the same time. The
following table shows how the spike indices and times can be retrieved in various forms in Brian 1 and Brian 2:
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# time_array is unitless in Brian 1

Brian 1 Brian 2

mon = SpikeMonitor (group) mon = SpikeMonitor (group)

#... do the run #... do the run

list_of_pairs = mon.spikes list_of_pairs zip (*mon.it)
index_list, time_list = zip(*list_of_ index_list = list (mon.i)

—pairs) time_list = list (mon.t)

index_array = array(index_list) index_array, time_array = mon.i, mon.t
time_array = array(time_list) # time_array has units in Brian 2

You can also access the spike times for individual neurons. In Brian 1, you could directly index the monitor which is no
longer allowed in Brian 2. Instead, ask for a dictionary of spike times and index the returned dictionary:

Brian 1

Brian 2

# dictionary of spike times for each.
—neuron:
spike_dict = mon.spiketimes

-

# all spikes for neuron 3:

spikes_3 spike_dict[3] # (no units)
spikes_3 = mon[3] # alternative (no.
—units)

# dictionary of spike times for each.
—neuron:

spike_dict = mon.spike_trains()

# all spikes for neuron 3:

spikes_3 = spike_dict[3] # with units

In Brian 2, SpikeMonitor also provides the functionality of the Brian 1 classes SpikeCounter and Pop-
ulationSpikeCounter. If you are only interested in the counts and not in the individual spike events, use

record=False to save the memory of storing them:

Brian 1

Brian 2

counter = SpikeCounter (group)
pop_counter =.
—PopulationSpikeCounter (group)

#... do the run
# Number of spikes for neuron 3:
count_3 = counter[3]

# Total number of spikes:
total_spikes = pop_counter.nspikes

counter = SpikeMonitor (group, .
—~record=False)

#... do the run
# Number of spikes for neuron 3
count_3 = counter.count[3]

# Total number of spikes:
total_spikes = counter.num_spikes

Currently Brian 2 provides no functionality to calculate statistics such as correlations or histograms online, there is no
equivalent to the following classes that existed in Brian 1: AutoCorrelogram, CoincidenceCounter, Co—
incidenceMatrixCounter, ISIHistogramMonitor, VanRossumMetric. You will therefore have to be
calculate the corresponding statistiacs manually after the simulation based on the information stored in the SpikeMon—
itor. If you use the default Runtime code generation, you can also create a new Python class that calculates the statistic

online (see this example from a Brian 2 tutorial).
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Monitoring variables

Single variables are recorded with a StateMonitor in the same way as in Brian 1, but the times and variable values
are accessed differently:

Brian 1 Brian 2

mon = StateMonitor (group, 'v', mon = StateMonitor (group, 'v',
record=True) record=True)

# ... do the run # ... do the run

# plot the trace of neuron 3: # plot the trace of neuron 3:

plot (mon.times/ms, mon[3]/mV) plot (mon.t/ms, mon[3].v/mV)

# plot the traces of all neurons: # plot the traces of all neurons:

plot (mon.times/ms, mon.values.T/mV) plot (mon.t/ms, mon.v.T/mV)

Further differences:

e StateMonitor now records in the 'start' scheduling slot by default. This leads to a more intuitive cor-
respondence between the recorded times and the values: in Brian 1 (where StateMonitor recorded in the
"end' slot) the recorded value at Oms was not the initial value of the variable but the value after integrating it
for a single time step. The disadvantage of this new default is that the very last value at the end of the last time
step of a simulation is not recorded anymore. However, this value can be manually added to the monitor by calling
StateMonitor.record_single_timestep.

 To not record every time step, use the dt argument (as for all other classes) instead of specifying a number of
timesteps.

» Using record=False does no longer provide mean and variance of the recorded variable.

In contrast to Brian 1, StateMonitor can now record multiple variables and therefore replaces Brian 1’'s Multi-
StateMonitor:

Brian 1 Brian 2

mon = MultiStateMonitor (group, ['Vv', 'w mon = StateMonitor (group, ['Vv', 'w'],

'], record=True)
record=True) # ... do the run

# ... do the run # plot the traces of v and w for neuron.

# plot the traces of v and w for neuron. —3:

3= plot (mon.t/ms, mon[3].v/mV)

plot (mon['v'].times/ms, mon['v'][3]/mV) plot (mon.t/ms, mon[3].w/mV)

plot (mon['w'].times/ms, mon['w'][3]/mV)

To record variable values at the times of spikes, Brian 2 no longer provides a separate class as Brian 1 did
(StateSpikeMonitor). Instead, you can use SpikeMonitor to record additional variables (in addition to the
neuron index and the spike time):
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—neuron
[mean (mon.values ('v', idx))

for idx in.

mean_values =
—range (len (group)) ]

plot (mean_values/mv, 'o')

Brian 1 Brian 2

# We assume that "group" has a varying. # We assume that "group" has a varying.
—~threshold —threshold

mon = StateSpikeMonitor (group, 'v') mon = SpikeMonitor (group, variables='v')
# ... do the run # ... do the run

# plot the mean v at spike time for each. # plot the mean v at spike time for each.

—neuron

values = mon.values('v')

mean_values = [mean (values[idx])
for idx in..

—range (len (group)) ]

plot (mean_values/mV, 'o')

Note that there is no equivalent to StateHistogramMonitor, you will have to calculate the histogram from the

recorded values or write your own custom monitor class.

Networks and clocks (Brian 1 —> 2 conversion)

Brian 2 documentation

For the main documentation about running simulations, controling the simulation timestep, etc., see the document
Running a simulation.

* Clocks and timesteps

e Networks

Clocks and timesteps

Brian’s system of handling clocks has substantially changed. For details about the new system in place see Setting the

simulation time step. The main differences to Brian 1 are:

e There is no more “clock guessing” — objects either use the defaultclock or a dt/clock value that was

explicitly specified during their construction.

¢ In Brian 2, the time step is allowed to change after the creation of an object and between runs — the relevant value

is the value in place at the point of the run () call.

« It is rarely necessary to create an explicit C1ock object, most of the time you should use the defaultclock or
provide a dt argument during the construction of the object.

» There’s only one C1ock class, the (deprecated) FloatClock, RegularClock, etc. classes that Brian 1 pro-

vided no longer exist.

* It is no longer possible to (re-)set the time of a clock explicitly, there is no direct equivalent of Clock.reinit
and reinit_default_clock. To start a completely new simulation after you have finished a previous one,
either create a new Network or use the start_scope () mechanism. To “rewind” a simulation to a previous
point, use the new store ()/restore () mechanism. For more details, see below and Running a simulation.
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Networks

Both Brian 1 and Brian 2 offer two ways to run a simulation: either by explicitly creating a Net work object, or by using

a MagicNetwork,i.e. asimple run () statement.

Explicit network

The mechanism to create explicit Net work objects has not changed significantly from Brian 1 to Brian 2. However,
creating a new Net work will now also automatically reset the clock back to Os, and stricter checks no longer allow the

inclusion of the same object in multiple networks.

net = Network (group, mon)
net.run (1*ms)

reinit ()

group =

mon = ...

net = Network (group, mon)
net.run (1*ms)

Brian 1 Brian 2
group = group =
mon = mon =

net = Network (group, mon)
net.run (1*ms)

# new network starts at 0s
group =

mon = ...

net = Network (group, mon)
net.run (1*ms)

“Magic” network

For most simple, “flat”, scripts (see e.g. the Examples), the run () statement in Brian 2 automatically collects all the
Brian objects (NeuronGroup, etc.) into a “magic” network in the same way as Brian 1 did. The logic behind this
collection has changed, though, with important consequences for more complex simulation scripts: in Brian 1, the magic
network includes all Brian objects that have been created in the same execution frame as the run () call. Objects that
are created in other functions could be added using magic_return and magic_register. In Brian 2, the magic
network contains all Brian objects that are visible in the same execution frame as the run () call. The advantage of the
new system is that it is clearer what will be included in the network and there is no danger of including previously created,
but no longer needed, objects in a simulation. E.g. in the following example, a common mistake in Brian 1 was to not
include the clear (), which meant that each run not only simulated the current objects, but also all objects from previous
loop iterations. Also, without the reinit_default_clock (), each run would start at the end time of the previous
run. In Brian 2, this loop does not need any explicit clearing up, each run () will only simulate the object that it “sees”
(groupl, group2, syn, and mon) and start each simulation at Os:

Brian 1

Brian 2

for r in range(100):
reinit_default_clock ()
clear ()
groupl = NeuronGroup(...)
group2 = NeuronGroup(...)
syn = Synapses (groupl, group2,
mon = SpikeMonitor (group2)
run (1*second)

for r in range(100) :

groupl = NeuronGroup(...)

group2 = NeuronGroup(...)
syn = Synapses (groupl, group2, ...)
mon = SpikeMonitor (group2)

run (1*second)
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There is no replacement for the magic_return and magic_register functions. If the returned object is stored
in a variable at the level of the run () call, then it is no longer necessary to use magic_return, as the returned object

is “visible” at the level of the run () call:

Brian 1

Brian 2

@magic_return
def f£():

return PoissonGroup (100,
—rates=100*Hz)

pg = f£() # needs magic_return
mon = SpikeMonitor (pg)
run (100*ms)

def f():
return PoissonGroup (100, .
—~rates=100*Hz)

pg = £() # is "visible" and will be.
—included

mon = SpikeMonitor (pg)

run (100*ms)

The general recommendation is however: if your script is complex (multiple functions/files/classes) and you are not sure
whether some objects will be included in the magic network, use an explicit Net work object.

Note that one consequence of the “is visible” approach is that objects stored in containers (lists, dictionaries, ...) will not
be automatically included in Brian 2. Use an explicit Net work object to get around this restriction:

Brian 1

Brian 2

run (5*ms)

groups = {'exc': NeuronGroup (..
'inh': NeuronGroup(. .

)
)}

groups = {'exc': NeuronGroup(...)
'inh': NeuronGroup(...)

-~

net = Network (groups)
net.run (5*ms)

External constants

In Brian 2, external constants are taken from the surrounding namespace at the point of the run () call and not when the
object is defined (for other ways to define the namespace, see External variables). This allows to easily change external
constants between runs, in contrast to Brian 1 where the whether this worked or not depended on details of the model

(e.g. whether linear integration was used):
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Brian 1 Brian 2
tau = 10*ms tau = 10*ms
# to be sure that changes between runs.
—are taken into # The value for I will be updated at.
# account, define "I" as a neuronal. —~each run
—parameter group = NeuronGroup (10, 'dv/dt = (-v +_
group = NeuronGroup (10, '''dv/dt = (-v +. —I) / tau : 1")
—I) / tau : 1
T = 1'"") group.v = linspace (0, 1, 10)
group.v = linspace (0, 1, 10) I =20.0
group.I = 0.0 mon = StateMonitor (group, 'v',._
mon = StateMonitor (group, 'v',_ —record=True)
—record=True) run (5*ms)
run (5*ms) I =20.5
group.I = 0.5 run (5*ms)
run (5*ms) I =20.0
group.I = 0.0 run (5*ms)

run (5*ms)

Preferences (Brian 1 —> 2 conversion)

Brian 2 documentation

For the main documentation about preferences, see the document Preferences.

In Brian 1, preferences were set either with the function set _global_preferences or by creating a module some-
where on the Python path called brian_global_config.py.

Setting preferences

The function set_global preferences no longer exists in Brian 2. Instead, importing from brian?2 gives you
a variable pre f's that can be used to set preferences. For example, in Brian 1 you would write:

set_global_preferences (weavecompiler="gcc')

In Brian 2 you would write:

’prefs.codegen.cpp.compiler = 'gcc' ‘
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Configuration file

The module brian_global_config.py is not used by Brian 2, instead we search for configuration files in the
current directory, user directory or installation directory. In Brian you would have a configuration file that looks like this:

from brian.globalprefs import *
set_global_preferences (weavecompiler="gcc')

In Brian 2 you would have a file like this:

codegen.cpp.compiler = 'gcc'

Preference name changes

* defaultclock: removed because it led to unclear behaviour of scripts.
* useweave_linear_diffeq: removed because it was no longer relevant.

* useweave: now replaced by codegen.target (but note that weave is no longer supported in Brian 2, use Cython
instead).

* weavecompiler: now replaced by codegen.cpp.compiler.

* gcc_options: now replaced by codegen.cpp.extra_compile_args_gcc.

e openmp: now replaced by devices.cpp_standalone.openmp_threads.

* usecodegen*: removed because it was no longer relevant.

* usenewpropagate: removed because it was no longer relevant.

* usecstdp: removed because it was no longer relevant.

e brianhears_usegpu: removed because Brian Hears doesn’t exist in Brian 2.

* magic_useframes: removed because it was no longer relevant.

Multicompartmental models (Brian 1 —> 2 conversion)

Brian 2 documentation

Support for multicompartmental models is now an integral part of Brian 2 (an early version of it was included as an
experimental module in Brian 1). See the document Multicompartment models.

Brian 1 offered support for simple multi-compartmental models in the compartments module. This module allowed
you to combine the equations for several compartments into a single Equat ions object. This is only a suitable solution
for simple morphologies (e.g. “ball-and-stick” models) but has the advantage over using Spat ialNeuron that you can
have several of such neurons in a NeuronGroup.

If you already have a definition of a model using Brian 1’s compartments module, then you can simply print out
the equations and use them directly in Brian 2. For simple models, writing the equations without that help is rather
straightforward anyway:
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Brian 1 Brian 2
V0 = 10*mvV V0 = 10*mV
C = 200*pF C = 200*pF
Ra = 150*kohm Ra = 150*kohm
R = 50*Mohm R = 50*Mohm
soma_eqgs = (MembraneEquation(C) + neuron_eqgs = "''
IonicCurrent ('I=(vm-V0) /R :._ dvm_soma/dt = (I_soma + I_soma_dend)/C :._
—amp')) —volt
dend_egs = MembraneEquation (C) I_soma = (VO - vm_soma) /R : amp
neuron_eqs = Compartments ({'soma': soma_ I_soma_dend = (vm_dend - vm_soma)/Ra :._
—eqgs, —amp
'dend': dend_ dvm_dend/dt = -I_soma_dend/C : volt'''
—edqs})
neuron = NeuronGroup (N, neuron_egs)
neuron = NeuronGroup (N, neuron_eds)

Library models (Brian 1 —> 2 conversion)

e Neuron models

e Jonic currents

* Synapses

Neuron models

The neuron models in Brian 1I’s brian.library. IF package are nothing more than shorthands for equations. The
following table shows how the models from Brian 1 can be converted to explicit equations (and reset statements in the case
of the adaptive exponential integrate-and-fire model) for use in Brian 2. The examples include a “current” I (depending
on the model not necessarily in units of Ampere) and could e.g. be used to plot the f-I curve of the neuron.

Perfect integrator

Brian 1 Brian 2
eqgs = (perfect_IF (tau=10*ms) + tau = 10*ms
Current ('I : volt')) egs = '''dvm/dt = I/tau : volt
group = NeuronGroup (N, egs, I : volt'"!'
threshold='v > -50*mV | group = NeuronGroup (N, egs,
"', threshold='v > -50*mV
reset="'v = -70*mV") ',
reset="'v = -70*mV")
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Leaky integrate-and-fire neuron

Brian 1 Brian 2
egs = (leaky_IF (tau=10*ms, El=-70*mV) + tau = 10*ms; E1 = -70*mV
Current ('I volt')) eqgs = '"''dvm/dt = ((E1 - vm) + I)/tau :o
group = # see above —volt
I : volt'"!'
group = ... # see above
Exponential integrate-and-fire neuron
Brian 1 Brian 2
egs = (exp_IF(C=1*nF, gL=30*nS, EL=- C = 1*nF; gL = 30*nS; EL = —-70*mV; VT = —
—70*mV, —50*mV; DeltaT = 2*mV
VI=-50*mV, DeltaT=2*mV) + eqs = '"''dvm/dt = (gL* (EL-
Current ('I amp')) —vm) +gL*DeltaT*exp ( (vm-VT) /DeltaT) + I)/
group = # see above —C volt
I : amp'"''
group = ... # see above
Quadratic integrate-and-fire neuron
Brian 1 Brian 2
eqgs = (quadratic_IF(C=1*nF, a=5*nS/mv, C = 1*nF; a=5*nS/mV; EL=-70*mV; VT = -
EL=-70*mV, VT=-50*mV) + —50*mV
Current ('I amp')) eqs = '''dvm/dt = (a* (vm—-EL) * (vim-VT) +._
group = # see above —~I)/C volt
I : amp'"''
group = ... # see above
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Izhikevich neuron

Brian 1 Brian 2
eqgqs = (Izhikevich(a=0.02/ms, b=0.2/ms) + a=0.02/ms; b= 0.2/ms
Current ('I volt/second')) egs = '"''dvm/dt = (0.04/ms/mV) *vm**2+ (5/
group = # see above —ms) *vm+140*mV/ms-w + I volt
dw/dt = a* (b*vm—-w) volt/second
I : volt/second'''
group = # see above

Adaptive exponential integrate-and-fire neuron (“Brette-Gerstner model”)

—reset=AdaptiveReset (Vr=-70*mV, b=0.
—08*nA))

Brian 1 Brian 2
# AdEx, aEIF, and Brette_Gerstner all. C = 1*nF; gL = 30*nS; EL = —-70*mV; VT = -
—refer to the same model —~50*mV; DeltaT = 2*mV; tauw = 150*ms; a.
egs = (aEIF(C=1*nF, gL=30*nS, EL=-70*mV, —= 4*nS
VI=-50*mV, DeltaT=2*mV, . egs = '''dvm/dt = (gL* (EL-
—tauw=150*ms, a=4*nS) + —vm) +gL*DeltaT*exp ( (vm-VT) /DeltaT) -w +o
Current ('I:amp')) ~I)/C volt
group = NeuronGroup (N, egs, dw/dt=(a* (vim—EL) —w) /tauw amp
threshold='v > -20*mV I : amp'''

group = NeuronGroup (N, edgs,
threshold="'vm > -
—20*mv"',
reset="vm=-70*mV; w.
—+= 0.08*nA")

lonic currents

Brian I’s functions for ionic currents, provided in brian.library.ionic_currents correspond to the following
equations (note that the currents follow the convention to use a shifted membrane potential, i.e. the membrane potential

at rest is OmV):
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Brian 1 Brian 2
from brian.library.ionic_currents import. | defaultclock.dt = 0.01*ms
. gl = 60*nS; E1 = 10.6*mV
defaultclock.dt = 0.01*ms egs_leak = Equations('I_leak = gl*(El —_
egs_leak = leak_current (gl=60*nS, E1=10. —vm) amp')
—6*mV, current_name='I_leak') g_K = 7.2*%uS; EK = -12*mV
egs_K = Equations('''I_K = g K*n**4* (EK-
eqgs_K = K_current_HH (gmax=7.2*uS, EK=- —vm) amp
—12*mV, current_name='I_K'") dn/dt = alphan* (1-
—n)-betan*n : 1
egs_Na = Na_current_HH (gmax=24*uS, . alphan = .01* (10*mV-
—ENa=115*mV, current_name='I_Na') —vm) / (exp (1-.1*vm/mV) -1) /mV/ms : Hz
betan = .125%exp (-.
eqs = (MembraneEquation (C=200*pF) + —0125*vm/mV) /ms Hz''")
egs_leak + egs_K + egs+Na + g_Na = 24*uS; ENa = 115*mV
Current ('I_inj amp')) egs_Na = Equations('''I_Na = g_
—Na*m**3*h* (ENa—-vm) amp
dm/dt=alpham* (1-m) -
—betam*m : 1
dh/dt=alphah* (1-h) -
—pbetah*h : 1
alpham=.1* (25*mV—
—vm) / (exp (2.5-.1*vm/mV) -1) /mV/ms : Hz
betam=4*exp (—.
- 0556*vm/mV) /ms : Hz
alphah=.07*exp (-.
—05*vm/mV) /ms : Hz
betah=1./ (1+exp (3.-
—.1l*vm/mV) ) /ms Hz''")
C = 200*pF
eqgs = Equations('''dvm/dt = (I_leak + I_
—K + I_Na + I_in7j)/C volt
I_inj amp''') + egs_
—leak + egs_K + egs_Na
Synapses

Brian 1I’s synaptic models, providedinbrian.library.synpases can be converted to the equivalent Brian 2 equa-

tions as follows:
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Current-based synapses

Brian 1 Brian 2

syn_eqgs = exp_current ('s', tau=5*ms, . tau = 5*ms

—current_name='"'I_syn') syn_eqgs = Equations ('dI_syn/dt = -I_syn/

egs = (MembraneEquation (C=1*nF) +._ —~tau amp')

—Current ('Im = gl* (El-vm) amp') + eqgs = (Equations('dvm/dt = (gl*(El - vm).
syn_eqgs) —+ I_syn)/C volt') +

group = NeuronGroup (N, egs, threshold= syn_edqgs)

—'vm>-50*mV"', reset='vm=-70*mV")
syn = Synapses (source, group, pre='s +=._

group = NeuronGroup (N,
—'vm>-50*mV"',

egs, threshold=
reset="vm=-70*mV")

—1*nA'") syn = Synapses (source, group, on_pre='TIl__
# ... connect synapses, etc. —syn += 1*nA'")

# ... connect synapses, etc.
syn_eqgs = alpha_current ('s', tau=2.5*ms, . tau = 2.5*ms

—current_name="I_syn')
eqgs = # remaining code as above

syn_eqgs = Equations('''dI_syn/dt = (s —-_

—I_syn)/tau amp

ds/dt = -s/tau :_
—amp''")
group = NeuronGroup (N, egs, threshold=

—'vm>-50*mV', reset='vm=-70*mV"')

syn = Synapses (source, group, on_pre='s.
—+= 1*nA'")
# ... connect synapses, etc.
syn_eqgs = biexp_current ('s', taul=2.5*ms, taul = 2.5*ms; tau2 = 10*ms; invpeak =_
— tau2=10*ms, current_name='I_syn') < (tau2 / taul) ** (taul / (tau2 - taul))
eqgs = # remaining code as above syn_eqgs = Equations('''dI_syn/dt =_
— (invpeak*s - I_syn)/taul amp
ds/dt = -s/tau2 :.
—amp''")
eqgs = # remaining code as above
Conductance-based synapses
Brian 1 Brian 2
syn_eqgs = exp_conductance('s', tau=5*ms, . tau = 5*ms; E = 0*mV
—~E=0*mV, conductance_name="'g_syn') syn_eqgs = Equations ('dg_syn/dt = —-g_syn/
egs = (MembraneEquation (C=1*nF) +._ —~tau siemens')
—Current ('Im = gl* (El-vm) amp') + eqgqs = (Equations('dvm/dt = (gl* (El - vm).
syn_eqgs) —+ g_syn*(E - vm))/C volt') +
group = NeuronGroup (N, egs, threshold= syn_edgs)
—'vm>-50*mV"', reset='vm=-70*mV") group = NeuronGroup (N, egs, threshold=

syn = Synapses (source, group, pre='s +=.

—'vm>-50*mV', reset='vm=-70*mV")

—10*nsS") syn = Synapses (source, group, on_pre='g__
# ... connect synapses, etc. —syn += 10*nS")
# ... connect synapses, etc.
continues on next page
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Table 4 - continued from previous page

Brian 1 Brian 2

syn_eqs = alpha_conductance('s', tau=2. tau = 2.5*ms; E = 0*mV

—5*ms, E=0*mV, conductance_name='g_syn') syn_eqs = Equations('''dg_syn/dt = (s —_
egs = ... # remaining code as above —g_syn)/tau : siemens

ds/dt = -s/tau :o
—~siemens'''")
group = NeuronGroup (N, egs, threshold=
—'vm>-50*mV', reset='vm=-70*mV")

syn = Synapses (source, group, on_pre='s.
—+= 10*nS")
# ... connect synapses, etc.
syn_edgs = biexp_conductance('s', taul=2. taul = 2.5*ms; tau2 = 10*ms; E = 0*mV
—5*ms, tau2=10*ms, E=0*mV, invpeak = (tau2 / taul) ** (taul / (tau2.
conductance_ —— taul))
—name="g_syn') syn_edgs = Equations('''dg_syn/dt =._
egs = ... # remaining code as above — (invpeak*s - g_syn)/taul : siemens
ds/dt = -s/tau2 :_

—~siemens'''")
eqgs = ... # remaining code as above

Brian Hears

Deprecated since version 2.2.2.2: Use the brian2hears package instead.

This module is designed for users of the Brian 1 library “Brian Hears”. It allows you to use Brian Hears with Brian 2 with
only a few modifications (although it’s not compatible with the “standalone” mode of Brian 2). The way it works is by
acting as a “bridge” to the version in Brian 1. To make this work, you must have a copy of Brian 1 installed (preferably
the latest version), and import Brian Hears using:

from brian2.hears import *

Many scripts will run without any changes, but there are a few caveats to be aware of. Mostly, the problems are due to
the fact that the units system in Brian 2 is not 100% compatible with the units system of Brian 1.

FilterbankGroupnow follows the rules for NeuronGroup in Brian 2, which means some changes may be necessary
to match the syntax of Brian 2, for example, the following would work in Brian 1 Hears:

# Leaky integrate—-and-fire model with noise and refractoriness
eqgs = T

dv/dt (I-v)/ (1*ms)+0.2*xi*(2/(1*ms))**.5 : 1

I :1

anf = FilterbankGroup (ihc, 'I', egs, reset=0, threshold=1, refractory=5*ms)

However, in Brian 2 Hears you would need to do:

# Leaky integrate-—-and-fire model with noise and refractoriness

eqgs = T

dv/dt (I-v)/ (1*ms)+0.2*xi*(2/(1*ms))**.5 : 1 (unless refractory)

I :1

anf = FilterbankGroup (ihc, 'I', egs, reset='v=0', threshold='v>1', refractory=5*ms)
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Slicing sounds no longer works. Previously you could do, e.g. sound[:20*ms] but with Brian 2 you would need to
do sound.slice (0*ms, 20*ms).

In addition, some functions may not work correctly with Brian 2 units. In most circumstances, Brian 2 units can be used
interchangeably with Brian 1 units in the bridge, but in some cases it may be necessary to convert units from one format to
another, and to do that you can use the functions convert_unit_bl_to_bZ2and convert_unit_b2 to_bl.

1.5 Known issues

In addition to the issues noted below, you can refer to our bug tracker on GitHub.

List of known issues

e Cannot find msver90d.dll

e “AttributeError: MSVCCompiler instance has no attribute ‘compiler_cxx”

* “Missing compiler_cxx fix for MSVCCompiler”

* Problems with numerical integration

o Jupyter notebooks and C++ standalone mode progress reporting

* Parallel Brian simulations with C++ standalone

e Parallel Brian simulations with Cython on machines with NFS (e.g. a computing cluster)

o Slow C++ standalone simulations

o Cython fails with compilation error on OS X: error: use of undeclared identifier 'isinf'

* CMD windows open when running Brian on Windows with the Spyder 3 IDE

1.5.1 Cannot find msvcr90d.dll

If you see this message coming up, find the file PythonDir\Lib\site-packages\numpy\
distutils\mingw32ccompiler.py and modify the line msvcr_dbg_success =
build_msvcr_library (debug=True) to read msvcr_dbg_success = False (you can comment
out the existing line and add the new line immediately after).

1.5.2 “AttributeError: MSVCCompiler instance has no attribute ‘compiler_cxx’”

This is caused by a bug in some versions of numpy on Windows. The easiest solution is to update to the latest version of
numpy.

If that isn’t possible, a hacky solution is to modify the numpy code directly to fix the problem. The following change may
work. Modify line 388 of numpy/distutils/ccompiler.py fromelif not self.compiler_cxx: to
elif not hasattr(self, 'compiler_cxx') or not self.compiler_cxx:. If the line number is
different, it should be nearby. Search for e1if not self.compiler_cxx in thatfile.
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1.5.3 “Missing compiler_cxx fix for MSVCCompiler”

If you keep seeing this message, do not worry. It’s not possible for us to hide it, but doesn’t indicate any problems.

1.5.4 Problems with numerical integration

In some cases, the automatic choice of numerical integration method will not be appropriate, because of a choice of
parameters that couldn’t be determined in advance. In this case, typically you will get nan (not a number) values in the
results, or large oscillations. In this case, Brian will generate a warning to let you know, but will not raise an error.

1.5.5 Jupyter notebooks and C++ standalone mode progress reporting

When you run simulations in C++ standalone mode and enable progress reporting (e.g. by using report="text"' as
a keyword argument), the progress will not be displayed in the jupyter notebook. If you started the notebook from a
terminal, you will find the output there. Unfortunately, this is a tricky problem to solve at the moment, due to the details
of how the jupyter notebook handles output.

1.5.6 Parallel Brian simulations with C++ standalone

Simulations using the C++ standalone device will create code and store results in a dedicated directory (output, by
default). If you run multiple simulations in parallel, you have to take care that these simulations do not use the same
directory — otherwise, everything from compilation errors to incorrect results can happen. Either chose a different di-
rectory name for each simulation and provide it as the directory argument to the set_device or build call,
or use directory=None which will use a randomly chosen unique temporary directory (in /tmp on Unix-based
systems) for each simulation. If you need to know the directory name, you can access it after the simulation run via
device.project_dir.

1.5.7 Parallel Brian simulations with Cython on machines with NFS (e.g. a comput-
ing cluster)

Generated Cython code is stored in a cache directory on disk so that it can be reused when it is needed again, without
recompiling it. Multiple simulations running in parallel could interfere during the compilation process by trying to generate
the same file at the same time. To avoid this, Brian uses a file locking mechanism that ensures that only a process at a
time can access these files. Unfortunately, this file locking mechanism is very slow on machines using the Network File
System (NFS), which is often the case on computing clusters. On such machines, it is recommend to use an independent
cache directory per process, and to disable the file locking mechanism. This can be done with the following code that has
to be run at the beginning of each process:

from brian2 import *

import os

cache_dir = os.path.expanduser (f'~/.cython/brian-pid-{os.getpid() }")
prefs.codegen.runtime.cython.cache_dir = cache_dir
prefs.codegen.runtime.cython.multiprocess_safe = False
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1.5.8 Slow C++ standalone simulations

Some versions of the GNU standard library (in particular those used by recent Ubuntu versions) have a bug that can
dramatically slow down simulations in C++ standalone mode on modern hardware (see #803). As a workaround, Brian
will set an environment variable LD_BIND_NOW during the execution of standalone simulations which changes the way
the library is linked so that it does not suffer from this problem. If this environment variable leads to unwanted behaviour on
your machine, change the prefs.devices.cpp_standalone.run_environment_variables preference.

1.5.9 Cython fails with compilation error on OS X: error: use of undeclared
identifier 'isinf'

Try setting the environment variable MACOSX_DEPLOYMENT_TARGET=10. 9.

1.5.10 CMD windows open when running Brian on Windows with the Spyder 3 IDE

This is due to the interaction with the integrated ipython terminal. Either change the run configuration to “Execute in
an external system terminal” or patch the internal Python function used to spawn processes as described in github issue
#1140.

1.6 Support

If you are stuck with a problem using Brian, please do get in touch at our community forum.
You can save time by following this procedure when reporting a problem:

1. Do try to solve the problem on your own first. Read the documentation, including using the search feature, index
and reference documentation.

2. Search the mailing list archives to see if someone else already had the same problem.

3. Before writing, try to create a minimal example that reproduces the problem. You'll get the fastest response if you
can send just a handful of lines of code that show what isn’t working.

1.6.1 Which version of Brian am | using?

When reporting problems, it is important to include the information what exact version of Brian you are using. The
different install methods listed in /nstallation provide different mechanisms to get this information. For example, if you
used conda for installing Brian, you can use conda list brian2; if you used pip, you can use pip show
brian2.

A general method that works independent of the installation method is to ask the Brian package itself:

>>> import brian2
>>> print (brian2.__version_ )
2.4.2

This method also has the advantage that you can easily call it from the same environment (e.g. an IDE or a Jupyter
Notebook) that you use when you execute Brian scripts. This helps avoiding mistakes where you think you use a specific
version but in fact you use a different one. In such cases, it can also be helpful to look at Brian’s ___file_  attribute:

>>> print (brian2._ file_ )
/home/marcel/anaconda3/envs/brian2_test/lib/python3.9/site-packages/brian2/__init__ .py
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In the above example, it shows that the brian? installation in the conda environment brian2_test is used.

If you installed a development version of Brian, then the version number will contain additional information:

>>> print (brian2.__version__ )
2.4.2.post0.dev408

The above means that the Brian version that is used has 408 additional commits that were added after the 2.4.2 release.
To get the exact git commit for the local Brian installation, use:

>>> print (brian2.__git_revision_ )
d2cb4a85£f804037ef055503975d822ff3f473ccf

To get more information about this commit, you can append it to the repository URL on GitHub as /commit /<commit
id> (where the first few characters of the <commit id> are enough), e.g. for the commit referenced above: https:
//github.com/brian-team/brian2/commit/d2cb4a85

1.7 Compatibility and reproducibility

1.7.1 Supported Python and numpy versions

We follow the approach outlined in numpy’s deprecation policy. This means that Brian supports:
* All minor versions of Python released 42 months prior to Brian, and at minimum the two latest minor versions.
* All minor versions of numpy released in the 24 months prior to Brian, and at minimum the last three minor versions.

Note that we do not have control about the versions that are supported by the conda-forge infrastructure. Therefore,
brian?2 conda packages might not be provided for all of the supported versions. In this case, affected users can chose
to either update the Python/numpy version in their conda environment to a version with a conda package or to install
brian?2 via pip.

1.7.2 General policy

We try to keep backwards-incompatible changes to a minimum. In general, brian2 scripts should continue to work
with newer versions and should give the same results.

As an exception to the above rule, we will always correct clearly identified bugs that lead to incorrect simulation results
(i.e., not just an matter of interpretation). Since we do not want to require new users to take any action to get correct
results, we will change the default behaviour in such cases. If possible, we will give the user an option to restore the old,
incorrect behaviour to reproduce the previous results with newer Brian versions. This would typically be a preference in
the 1legacy category, see legacy.refractory_timing for an example.

Note: The order of terms when evaluating equations is not fixed and can change with the version of sympy, the symbolic
mathematics library used in Brian. Similarly, Brian performs a number of optimizations by default and asks the compiler
to perform further ones which might introduce subtle changes depending on the compiler and its version. Finally, code
generation can lead to either Python or C++ code (with a single or multiple threads) executing the actual simulation which
again may affect the numerical results. Therefore, we cannot guarantee exact, “bitwise” reproducibility of results.
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1.7.3 Syntax deprecations

We sometimes realize that the names of arguments or other syntax elements are confusing and therefore decide to
change them. In such cases, we start to use the new syntax everywhere in the documentation and examples, but leave
the former syntax available for compatiblity with previously written code. For example, earlier versions of Brian used
method="'linear"' to describe the exact solution of differential equations via sympy (that most importantly applies
to “linear” equations, i.e. linear differential equations with constant coefficients). However, some users interpreted
method="'1linear"' as a “linear approximation” like the forward Euler method. In newer versions of Brian the rec-
ommended syntax is therefore to use method="exact ', but the old syntax remains valid.

If the changed syntax is very prominent, its continued use in Brian scripts (published by others) could be confusing to
new users. In these cases, we might decide to give a warning when the deprecated syntax is used (e.g. for the pre and
post arguments in Synapses which have been replaced by on_pre and on_post). Such warnings will contain all
the information necessary to rewrite the code so that the warning is no longer raised (in line with our general policy for
warnings).

1.7.4 Random numbers

Streams of random numbers in Brian simulations (including the generation of synapses, etc.) are reproducible when a seed
is set via Brian’s seed () function. Note that there is a difference with regard to random numbers between runtime and
standalone mode: in runtime mode, numpy’s random number generator is always used — even from generated Cython code.
Therefore, the call to seed () will set numpy’s random number generator seed which then applies to all random numbers.
Regardless of whether initial values of a variable are set via an explicit call to numpy . random. randn, or via a Brian
expression such as ' randn () ', both are affected by this seed. In contrast, random numbers in standalone simulations
will be generated by an independent random number generator (but based on the same algorithm as numpy’s) and the
call to seed () will only affect these numbers, not numbers resulting from explicit calls to numpy . random. To make
standalone scripts mixing both sources of randomness reproducible, either set numpy’s random generator seed manually
in addition to calling seed (), or reformulate the model to use code generation everywhere (e.g. replace group.v =
=70*mV + 10*mV*np.random.randn (len (group)) bygroup.v = '-70*mv + 10*mV*randn () ").

Changing the code generation target can imply a change in the order in which random numbers are drawn from the
reproducible random number stream. In general, we therefore only guarantee the use of the same numbers if the code
generation target and the number of threads (for C++ standalone simulations) is the same.

Note: If there are several sources of randomness (e.g. multiple PoissonGroup objects) in a simulation, then the
order in which these elements are executed matters. The order of execution is deterministic, but if it is not unambiguously
determined by the when and order attributes (see Scheduling for details), then it will depend on the names of objects.
When not explicitly given via the name argument during the object’s creation, names are automatically generated by Brian
as e.g. poissongroup, poissongroup_1, etc. When you repeatedly run simulations within the same process,
these names might change and therefore the order in which the elements are simulated. Random numbers will then be
differently distributed to the objects. To avoid this and get reproducible random number streams you can either fix the
order of elements by specifying the order or name argument, or make sure that each simulation gets run in a fresh
Python process.
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1.7.5 Python errors

While we try to guarantee the reproducibility of simulations (within the limits stated above), we do so only for code that
does not raise any error. We constantly try to improve the error handling in Brian, and these improvements can lead
to errors raised at a different time (e.g. when creating an object as opposed to when running the simulation), different
types of errors being raised (e.g. DimensionMismatchError instead of TypeError), or simply a different error
message text. Therefore, Brian scripts should never use t ry/except blocks to implement program logic.

1.8 Contributor Covenant Code of Conduct

1.8.1 Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making
participation in our project and our community a harassment-free experience for everyone, regardless of age, body size,
disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic
status, nationality, personal appearance, race, religion, or sexual identity and orientation.

1.8.2 Our Standards

Examples of behavior that contributes to creating a positive environment include:
 Using welcoming and inclusive language
* Being respectful of differing viewpoints and experiences
* Gracefully accepting constructive criticism
* Focusing on what is best for the community
» Showing empathy towards other community members
Examples of unacceptable behavior by participants include:
» The use of sexualized language or imagery and unwelcome sexual attention or advances
* Trolling, insulting/derogatory comments, and personal or political attacks
¢ Public or private harassment
* Publishing others’ private information, such as a physical or electronic address, without explicit permission

* Other conduct which could reasonably be considered inappropriate in a professional setting

1.8.3 Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate
and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits,
issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any
contributor for other behaviors that they deem inappropriate, threatening, oftfensive, or harmful.
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1.8.4 Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the
project or its community. Examples of representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed representative at an online or offline event.
Representation of a project may be further defined and clarified by project maintainers.

1.8.5 Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at
team @briansimulator.org. All complaints will be reviewed and investigated and will result in a response that is deemed
necessary and appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to
the reporter of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent
repercussions as determined by other members of the project’s leadership.

1.8.6 Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 1.4, available at https://www.
contributor-covenant.org/version/1/4/code-of-conduct.html

For answers to common questions about this code of conduct, see https://www.contributor-covenant.org/faq
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CHAPTER
TWO

TUTORIALS

The tutorial consists of a series of Jupyter Notebooks'.

For more information about how to use Jupyter Notebooks, see the Jupyter Notebook documentation.

2.1 Introduction to Brian part 1: Neurons

All Brian scripts start with the following. If you're trying this notebook out in the Jupyter notebook, you should start by
running this cell.

’from brian2 import *

Later we’ll do some plotting in the notebook, so we activate inline plotting in the notebook by doing this:

$matplotlib inline

If you are not using the Jupyter notebook to run this example (e.g. you are using a standard Python terminal, or you
copy&paste these example into an editor and run them as a script), then plots will not automatically be displayed. In this
case, call the show () command explicitly after the plotting commands.

2.1.1 Units system

Brian has a system for using quantities with physical dimensions:

20*volt

20.0V

All of the basic SI units can be used (volt, amp, etc.) along with all the standard prefixes (m=milli, p=pico, etc.), as well
as a few special abbreviations like mV for millivolt, pF for picofarad, etc.

’1000*amp

1.0kA

’1e6*volt

1.0MV

! Formerly known as “IPython Notebooks”.
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’1000*namp

1.0000000000000002 1+ A

Also note that combinations of units with work as expected:

’10*nA*5*Mohm ‘

49.99999999999999 m V

And if you try to do something wrong like adding amps and volts, what happens?

’5*amp+10*volt

DimensionMismatchError Traceback (most recent call last)

<ipython-input-8-245c0c0332dl> in <module>
———=> 1 5*amp+10*volt

~/programming/brian2/brian2/units/fundamentalunits.py in __add__(self, other)

1429
1430 def _ add_ (self, other):

-> 1431 return self._binary_operation (other, operator.add,
1432 fail_for_mismatch=True,
1433 operator_str="+")

~/programming/brian2/brian2/units/fundamentalunits.py in _binary_operation(self, .
—other, operation, dim_operation, fail_ for_mismatch, operator_str, inplace)

1369 message = ('Cannot calculate , units do.
—not '

1370 'match') % operator_str
-> 1371 _, other_dim = fail_for_dimension_mismatch(self, other, .
—message,

1372 valuel=self,

1373 value2=other)

~/programming/brian2/brian2/units/fundamentalunits.py in fail_for_dimension_
—mismatch (objl, obj2, error_message, **error_quantities)

184 raise DimensionMismatchError (error_message, diml)
185 else:
--> 186 raise DimensionMismatchError (error_message, diml, dim2)
187 else:
188 return diml, dim2

DimensionMismatchError: Cannot calculate 5. A + 10. V, units do not match (units are.
—A and V) .

If you haven’t see an error message in Python before that can look a bit overwhelming, but it’s actually quite simple and
it’s important to know how to read these because you’ll probably see them quite often.

You should start at the bottom and work up. The last line gives the error type DimensionMismatchError along
with a more specific message (in this case, you were trying to add together two quantities with different SI units, which is
impossible).
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Working upwards, each of the sections starts with a filename (e.g. C: \Users\Dan\ . . .) with possibly the name of a
function, and then a few lines surrounding the line where the error occurred (which is identified with an arrow).

The last of these sections shows the place in the function where the error actually happened. The section above it shows
the function that called that function, and so on until the first section will be the script that you actually run. This sequence
of sections is called a traceback, and is helpful in debugging.

If you see a traceback, what you want to do is start at the bottom and scan up the sections until you find your own file
because that’s most likely where the problem is. (Of course, your code might be correct and Brian may have a bug in
which case, please let us know on the email support list.)

2.1.2 A simple model

Let’s start by defining a simple neuron model. In Brian, all models are defined by systems of differential equations. Here’s
a simple example of what that looks like:

tau = 10*ms
eqgs = T
dv/dt = (1-v)/tau : 1

In Python, the notation ' ' ' is used to begin and end a multi-line string. So the equations are just a string with one line
per equation. The equations are formatted with standard mathematical notation, with one addition. At the end of a line
you write : unit where unit is the SI unit of that variable. Note that this is not the unit of the two sides of the
equation (which would be 1 /second), but the unit of the variable defined by the equation, i.e. in this case v.

Now let’s use this definition to create a neuron.

G = NeuronGroup (1, egs)

In Brian, you only create groups of neurons, using the class NeuronGroup. The first two arguments when you create
one of these objects are the number of neurons (in this case, 1) and the defining differential equations.

Let’s see what happens if we didn’t put the variable t au in the equation:

T

egs =
dv/dt = 1-v : 1

LI B |

G = NeuronGroup (1, egs)
run (100*ms)

DimensionMismatchError Traceback (most recent call last)

~/programming/brian2/brian2/equations/equations.py in check_units(self, group, run_
—namespace)

955 try:
--> 956 check_dimensions (str (eq.expr), self.dimensions[var] /_
—second.dim,

957 all_variables)

~/programming/brian2/brian2/equations/unitcheck.py in check_dimensions (expression, .
—dimensions, variables)

44 expected=repr (get_
—unit (dimensions)))

(continues on next page)
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———> 45 fail for_dimension_mismatch (expr_dims, dimensions, err_msg)
46

~/programming/brian2/brian2/units/fundamentalunits.py in fail_for_dimension_
—mismatch (objl, obj2, error_message, **error_qgquantities)

183 if obj2 is None or isinstance(obj2, (Dimension, Unit)):
—-—> 184 raise DimensionMismatchError (error_message, diml)
185 else:

DimensionMismatchError: Expression 1-v does not have the expected unit hertz (unit is..
—1).

During handling of the above exception, another exception occurred:

DimensionMismatchError Traceback (most recent call last)

~/programming/brian2/brian2/core/network.py in before_run(self, run_namespace)

897 try:
-——> 898 obj.before_run (run_namespace)
899 except Exception as ex:

~/programming/brian2/brian2/groups/neurongroup.py in before_run(self, run_namespace)

883 # Check units
-——> 884 self.equations.check_units(self, run_namespace=run_namespace)

885 # Check that subexpressions that refer to stateful functions are.
—labeled

~/programming/brian2/brian2/equations/equations.py in check_units(self, group, run_
—namespace)

958 except DimensionMismatchError as ex:
--> 959 raise DimensionMismatchError (('Inconsistent units in '
960 'differential equation '

DimensionMismatchError: Inconsistent units in differential equation defining variable.
—V 3
Expression 1-v does not have the expected unit hertz (unit is 1).

During handling of the above exception, another exception occurred:

BrianObjectException Traceback (most recent call last)

<ipython-input-11-97ed109£5888> in <module>
3V|'
4 G = NeuronGroup(l, eqgs)

———-> 5 run(100*ms)

~/programming/brian2/brian2/units/fundamentalunits.py in new_f (*args, **kwds)

(continues on next page)
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2383 get_
—dimensions (newkeyset[k]))

2384
-> 2385 result = f(*args, **kwds)

2386 if 'result' in au:

2387 if au['result'] == bool:

~/programming/brian2/brian2/core/magic.py in run(duration, report, report_period, .
—namespace, profile, level)

371 intended use. See "MagicNetwork™ for more details.

372 e
-—> 373 return magic_network.run (duration, report=report, report_period=report_
—period,

374 namespace=namespace, profile=profile,.
—level=2+level)

375 run._ module__ = _ name_

~/programming/brian2/brian2/core/magic.py in run(self, duration, report, report_
—period, namespace, profile, level)

229 namespace=None, profile=False, level=0):
230 self._update_magic_objects (level=level+1)
-——> 231 Network.run(self, duration, report=report, report_period=report_
—period,
232 namespace=namespace, profile=profile, level=level+l)
233

~/programming/brian2/brian2/core/base.py in device_override_decorated_function (*args, .
—**kwds)

274 return getattr (curdev, name) (*args, **kwds)
275 else:
-—> 276 return func(*args, **kwds)
277
278 device_override_decorated_function. doc = func._ doc_

~/programming/brian2/brian2/units/fundamentalunits.py in new_f (*args, **kwds)

2383 get_
—dimensions (newkeyset[k]))

2384
-> 2385 result = f(*args, **kwds)

2386 if 'result' in au:

2387 if au['result'] == bool:

~/programming/brian2/brian2/core/network.py in run(self, duration, report, report_
—period, namespace, profile, level)

1007 namespace = get_local_namespace (level=level+3)
1008
-> 1009 self.before_run (namespace)
1010
1011 if len(all_objects) == 0:

~/programming/brian2/brian2/core/base.py in device_override_decorated_function (*args, .

—**kwds) (continues on next page)
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274 return getattr (curdev, name) (*args, **kwds)
275 else:
-—> 276 return func(*args, **kwds)
277
278 device_override_decorated_function. doc = func. doc

~/programming/brian2/brian2/core/network.py in before_run(self, run_namespace)

898 obj.before_run (run_namespace)

899 except Exception as ex:
-——> 900 raise brian_object_exception("An error occurred when.
—preparing an object.", obj, ex)

901

902 # Check that no object has been run as part of another network before

BrianObjectException: Original error and traceback:
Traceback (most recent call last):
File "/home/marcel/programming/brian2/brian2/equations/equations.py", line 956, in.
—check_units
check_dimensions (str(eq.expr), self.dimensions[var] / second.dim,
File "/home/marcel/programming/brian2/brian2/equations/unitcheck.py", line 45, in.
—check_dimensions
fail for_dimension_mismatch (expr_dims, dimensions, err_msg)
File "/home/marcel/programming/brian2/brian2/units/fundamentalunits.py", line 184,.
—in fail_for_dimension_mismatch
raise DimensionMismatchError (error_message, diml)
brian2.units.fundamentalunits.DimensionMismatchError: Expression 1-v does not have.
—the expected unit hertz (unit is 1).

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
File "/home/marcel/programming/brian2/brian2/core/network.py", line 898, in before_
—run
obj.before_run (run_namespace)
File "/home/marcel/programming/brian2/brian2/groups/neurongroup.py", line 884, in.
—before_run
self.equations.check_units(self, run_namespace=run_namespace)
File "/home/marcel/programming/brian2/brian2/equations/equations.py", line 959, in.
—check_units
raise DimensionMismatchError (('Inconsistent units in
brian2.units.fundamentalunits.DimensionMismatchError: Inconsistent units in.
—differential equation defining variable v:
Expression 1-v does not have the expected unit hertz (unit is 1).

Error encountered with object named "neurongroup_1".
Object was created here (most recent call only, full details in debug log):
File "<ipython-input-11-97ed109f5888>", line 4, in <module>
G = NeuronGroup(l, egs)

An error occurred when preparing an object. brian2.units.fundamentalunits.
—DimensionMismatchError: Inconsistent units in differential equation defining.
—variable v:

Expression 1-v does not have the expected unit hertz (unit is 1).

(See above for original error message and traceback.)
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An error is raised, but why? The reason is that the differential equation is now dimensionally inconsistent. The left hand
side dv/dt has units of 1/second but the right hand side 1-v is dimensionless. People often find this behaviour
of Brian confusing because this sort of equation is very common in mathematics. However, for quantities with physical
dimensions it is incorrect because the results would change depending on the unit you measured it in. For time, if you
measured it in seconds the same equation would behave differently to how it would if you measured time in milliseconds.
To avoid this, we insist that you always specify dimensionally consistent equations.

Now let’s go back to the good equations and actually run the simulation.

start_scope ()

tau = 10*ms
eqgs = T
dv/dt = (1-v)/tau : 1

v

G = NeuronGroup (1, eqgs)
run (100*ms)

INFO No numerical integration method specified for group 'neurongroup', using.
—method 'exact' (took 0.02s). [brian2.stateupdaters.base.method_choice]

First off, ignore that start_scope () at the top of the cell. You'll see that in each cell in this tutorial where we run a
simulation. All it does is make sure that any Brian objects created before the function is called aren’t included in the next
run of the simulation.

Secondly, you'll see that there is an “INFO” message about not specifying the numerical integration method. This is
harmless and just to let you know what method we chose, but we’ll fix it in the next cell by specifying the method
explicitly.

So, what has happened here? Well, the command run (100*ms) runs the simulation for 100 ms. We can see that this
has worked by printing the value of the variable v before and after the simulation.

start_scope ()

G = NeuronGroup(l, eqgs, method='exact')
print ('Before v = "% G.v[0])
run (100*ms)

print ('After v = "% G.vI[0])

Before v = 0.0
After v = 0.9999546000702376

By default, all variables start with the value 0. Since the differential equation is dv/dt= (1-v) /tau we would expect
after a while that v would tend towards the value 1, which is just what we see. Specifically, we’d expect v to have the
value 1-exp (-t /tau). Let’s see if that’s right.

’print('Expected value of v = "% (l-exp(-100*ms/tau)))

’Expected value of v = 0.9999546000702375

Good news, the simulation gives the value we’d expect!

Now let’s take a look at a graph of how the variable v evolves over time.

start_scope ()

(continues on next page)
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G = NeuronGroup(l, egs, method='exact')
M StateMonitor (G, 'v', record=True)

run (30*ms)

plot (M.t/ms, M.v[0])
xlabel ('Time (ms) ')
ylabel ('v');

0.5 1
.6 1
'}
0.4
0.2
0.0 1
0 g 10 15 20 25 a0
Time (ms})

This time we only ran the simulation for 30 ms so that we can see the behaviour better. It looks like it’s behaving as
expected, but let’s just check that analytically by plotting the expected behaviour on top.

start_scope ()

G NeuronGroup (1, egs, method='exact')
M = StateMonitor (G, 'v', record=0)

run (30*ms)

plot (M.t/ms, M.v[0], 'CO', label='Brian')

plot (M.t/ms, l-exp(-M.t/tau), 'Cl--',label='Analytic')
xlabel ('Time (ms) ")

ylabel ('v")

legend();
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As you can see, the blue (Brian) and dashed orange (analytic solution) lines coincide.

In this example, we used the object StateMonitor object. This is used to record the values of a neuron variable while
the simulation runs. The first two arguments are the group to record from, and the variable you want to record from. We
also specify record=0. This means that we record all values for neuron 0. We have to specify which neurons we want
to record because in large simulations with many neurons it usually uses up too much RAM to record the values of all

neurons.

Now try modifying the equations and parameters and see what happens in the cell below.

start_scope ()

tau = 10*ms
eqs:"’
dv/dt = (sin(2*pi*100*Hz*t)-v)/tau

# Change to Euler method because exact integrator doesn't work here
G = NeuronGroup(l, eqgs, method='euler')

M = StateMonitor (G, 'v', record=0)
G.v = 5 # initial value

run (60*ms)

plot (M.t/ms, M.v[0])

xlabel ('Time (ms) ')
ylabel ('v'");

2.1. Introduction to Brian part 1: Neurons
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Time {ms)

2.1.3 Adding spikes

So far we haven’t done anything neuronal, just played around with differential equations. Now let’s start adding spiking

behaviour.

start_scope ()

tau = 10*ms
eqs:"'
dv/dt = (1-v)/tau : 1

G = NeuronGroup (1, eqgs, threshold='v>0.8",

M StateMonitor (G, 'v', record=0)
run (50*ms)

plot (M.t/ms, M.v[0])

xlabel ("Time (ms) ")

ylabel ('v');

0', method='exact")
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We’ve added two new keywords to the NeuronGroup declaration: threshold='v>0.8" and reset="'v = 0'.
What this means is that when v>0. 8 we fire a spike, and immediately reset v = 0 after the spike. We can put any
expression and series of statements as these strings.

As you can see, at the beginning the behaviour is the same as before until v crosses the threshold v>0 . 8 at which point
you see it reset to 0. You can’t see it in this figure, but internally Brian has registered this event as a spike. Let’s have a
look at that.

start_scope ()

G = NeuronGroup (1, egs, threshold='v>0.8'", reset='v = 0', method='exact')
spikemon = SpikeMonitor (G)

run (50*ms)

[}

print ('Spike times: ' % spikemon.t[:])

Spike times: [16. 32.1 48.2] ms

The SpikeMonitor object takes the group whose spikes you want to record as its argument and stores the spike times
in the variable t. Let’s plot those spikes on top of the other figure to see that it’s getting it right.

start_scope ()

G = NeuronGroup (1, egs, threshold='v>0.8'", reset='v = 0', method='exact')
statemon = StateMonitor (G, 'v', record=0)
spikemon = SpikeMonitor (G)

run (50*ms)

plot (statemon.t/ms, statemon.v([0])

(continues on next page)
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for t in spikemon.t:

axvline (t/ms, ls='-—-', c='Cl', 1lw=3)
xlabel ('Time (ms) ")
ylabel ('v');
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Here we've used the axv1ine command frommatplot1lib to draw an orange, dashed vertical line at the time of each
spike recorded by the SpikeMonitor.

Now try changing the strings for threshold and reset in the cell above to see what happens.

2.1.4 Refractoriness

A common feature of neuron models is refractoriness. This means that after the neuron fires a spike it becomes refractory
for a certain duration and cannot fire another spike until this period is over. Here’s how we do that in Brian.

start_scope ()

tau = 10*ms

eqgs = T

dv/dt = (1-v)/tau : 1 (unless refractory)

Tra

G = NeuronGroup (1, eqgs, threshold='v>0.8'"', reset='v = 0', refractory=5*ms, method=
—'exact!'")

statemon = StateMonitor (G, 'v', record=0)

spikemon = SpikeMonitor (G)

run (50*ms)

plot (statemon.t/ms, statemon.v([0])

(continues on next page)

92 Chapter 2. Tutorials




Brian 2 Documentation, Release 2.5.1

(continued from previous page)

for t in spikemon.t:

axvline (t/ms, 1ls='—--', c='Cl', 1lw=3)
xlabel ('Time (ms) ")
ylabel ('v');
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As you can see in this figure, after the first spike, v stays at O for around 5 ms before it resumes its normal behaviour. To do
this, we’ve done two things. Firstly, we’ve added the keyword refractory=>5+*ms to the NeuronGroup declaration.
On its own, this only means that the neuron cannot spike in this period (see below), but doesn’t change how v behaves. In
order to make v stay constant during the refractory period, we have to add (unless refractory) to the end of the
definition of v in the differential equations. What this means is that the differential equation determines the behaviour of
v unless it’s refractory in which case it is switched off.

Here’s what would happen if we didn’t include (unless refractory). Note that we’ve also decreased the value of
tau and increased the length of the refractory period to make the behaviour clearer.

start_scope ()

tau = 5*ms
eqs:"’
dv/dt = (1-v)/tau : 1

G = NeuronGroup (1, eqgs, threshold='v>0.8"', reset='v = 0', refractory=15*ms, method=
—'exact")

statemon = StateMonitor (G, 'v', record=0)
spikemon = SpikeMonitor (G)

run (50*ms)

plot (statemon.t/ms, statemon.v[0])
for t in spikemon.t:

(continues on next page)
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axvline (t/ms, ls='—-', c='Cl', 1lw=3)
axhline (0.8, 1ls=':', c='C2', 1lw=3)
xlabel ('Time (ms) ")
ylabel ('v")
print ("Spike times: " % spikemon.t[:])
Spike times: [ 8. 23. 38.] ms
|
|
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|
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So what’s going on here? The behaviour for the first spike is the same: v rises to 0.8 and then the neuron fires a spike at
time 8 ms before immediately resetting to 0. Since the refractory period is now 15 ms this means that the neuron won’t
be able to spike again until time 8 + 15 = 23 ms. Immediately after the first spike, the value of v now instantly starts to
rise because we didn’t specify (unless refractory) in the definition of dv/dt. However, once it reaches the
value 0.8 (the dashed green line) at time roughly 8 ms it doesn’t fire a spike even though the threshold is v>0 . 8. This is
because the neuron is still refractory until time 23 ms, at which point it fires a spike.

Note that you can do more complicated and interesting things with refractoriness. See the full documentation for more
details about how it works.

2.1.5 Multiple neurons

So far we’ve only been working with a single neuron. Let’s do something interesting with multiple neurons.

start_scope ()

N = 100

tau = 10*ms

egs = '"!'

dv/dt = (2-v)/tau : 1

(continues on next page)
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G = NeuronGroup (N, egs, threshold='v>1', reset='v=0', method='exact'")
G.v = 'rand()"'
spikemon = SpikeMonitor (G)

run (50*ms)

plot (spikemon.t/ms, spikemon.i, '.k')
xlabel ('Time (ms) ")
ylabel ('Neuron index');
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This shows a few changes. Firstly, we’ve got a new variable N determining the number of neurons. Secondly, we added the
statement G.v = 'rand () ' before the run. What this does is initialise each neuron with a different uniform random
value between 0 and 1. We’ve done this just so each neuron will do something a bit different. The other big change is
how we plot the data in the end.

As well as the variable spikemon . t with the times of all the spikes, we’ve also used the variable spikemon. i which
gives the corresponding neuron index for each spike, and plotted a single black dot with time on the x-axis and neuron
index on the y-value. This is the standard “raster plot” used in neuroscience.

2.1.6 Parameters

To make these multiple neurons do something more interesting, let’s introduce per-neuron parameters that don’t have a
differential equation attached to them.

start_scope ()

N = 100
tau = 10*ms
vO0_max = 3

(continues on next page)
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duration 1000*ms

egs = T

dv/dt = (vO0-v)/tau : 1 (unless refractory)
vo : 1

[

G = NeuronGroup (N, eqgs, threshold='v>1', reset='v=0', refractory=5*ms, method='exact')
M SpikeMonitor (G)

G.v0 = '"i*v0_max/ (N-1)"
run (duration)

figure (figsize=(12,4))
subplot (121)

plot (M.t/ms, M.i, '.k'")
xlabel ('Time (ms) ")

ylabel ('Neuron index')
subplot (122)

plot (G.v0, M.count/duration)
xlabel ('vO0")

ylabel ('Firing rate (sp/s)');
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The line vO : 1 declares a new per-neuron parameter vO with units 1 (i.e. dimensionless).
The line G.v0 = 'i*vO0_max/ (N—-1) ' initialises the value of vO for each neuron varying from O up to vO_max.

The symbol i when it appears in strings like this refers to the neuron index.

So in this example, we're driving the neuron towards the value v0 exponentially, but when v crosses v>1, it fires a spike
and resets. The effect is that the rate at which it fires spikes will be related to the value of v0. For v0<1 it will never fire

a spike, and as vO gets larger it will fire spikes at a higher rate. The right hand plot shows the firing rate as a function of
the value of v 0. This is the I-f curve of this neuron model.

Note that in the plot we've used the count variable of the SpikeMonitozr: this is an array of the number of spikes
each neuron in the group fired. Dividing this by the duration of the run gives the firing rate.
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2.1.7 Stochastic neurons

Often when making models of neurons, we include a random element to model the effect of various forms of neural noise.
In Brian, we can do this by using the symbol xi in differential equations. Strictly speaking, this symbol is a “stochastic
differential” but you can sort of thinking of it as just a Gaussian random variable with mean 0 and standard deviation 1. We
do have to take into account the way stochastic differentials scale with time, which is why we multiply it by tau**-0.5
in the equations below (see a textbook on stochastic differential equations for more details). Note that we also changed the
method keyword argument to use 'euler' (which stands for the Euler-Maruyama method); the 'exact ' method
that we used earlier is not applicable to stochastic differential equations.

start_scope ()

N = 100

tau = 10*ms

v0_max = 3.
duration = 1000*ms
sigma = 0.2

eqs -_— LI I
dv/dt = (v0-v)/taut+sigma*xi*tau**-0.5 : 1 (unless refractory)
v : 1

v

G = NeuronGroup (N, eqgs, threshold='v>1', reset='v=0', refractory=5*ms, method='euler')
M = SpikeMonitor (G)

G.v0 = '"i*vO_max/ (N-1)"
run (duration)

figure (figsize=(12,4))
subplot (121)

plot (M.t/ms, M.i, '.k')
xlabel ('Time (ms) ")

ylabel ('Neuron index'")
subplot (122)

plot (G.v0, M.count/duration)
xlabel ('v0")

ylabel ('Firing rate (sp/s)');
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That’s the same figure as in the previous section but with some noise added. Note how the curve has changed shape:
instead of a sharp jump from firing at rate 0 to firing at a positive rate, it now increases in a sigmoidal fashion. This is
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because no matter how small the driving force the randomness may cause it to fire a spike.

2.1.8 End of tutorial

That’s the end of this part of the tutorial. The cell below has another example. See if you can work out what it is doing and
why. Try adding a StateMonitor to record the values of the variables for one of the neurons to help you understand
it.

You could also try out the things you’ve learned in this cell.

Once you’re done with that you can move on to the next tutorial on Synapses.

start_scope ()

N = 1000

tau = 10*ms
vr = —-70*mV
vt0 = -50*mV

delta_vt0 = 5*mV
tau_t = 100*ms

sigma = 0.5% (vtO-vr)

v_drive = 2* (vt0-vr)

duration = 100*ms

eqS:"'

dv/dt = (v_drive+vr-v)/tau + sigma*xi*tau**-0.5 : volt
dvt/dt = (vtO-vt)/tau_t : volt

reset = ''"!'

v = vr

vt += delta_vtO

G =
")

spikemon = SpikeMonitor (G)

NeuronGroup (N, eqgs, threshold='v>vt', reset=reset, refractory=5*ms, method='euler

G.v = 'rand () * (vtO-vr)+vr'
G.vt = vto

run (duration)

_ = hist (spikemon.t/ms, 100, histtype='stepfilled', facecolor='k',._
—weights=1list (ones (len (spikemon) )/ (N*defaultclock.dt)))

xlabel ('"Time (ms) ")

ylabel ('Instantaneous firing rate (sp/s)');
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2.2 Introduction to Brian part 2: Synapses

If you haven’t yet read part 1: Neurons, go read that now.

As before we start by importing the Brian package and setting up matplotlib for [Python:

from brian2 import *
smatplotlib inline

2.2.1 The simplest Synapse

Once you have some neurons, the next step is to connect them up via synapses. We'll start out with doing the simplest
possible type of synapse that causes an instantaneous change in a variable after a spike.

start_scope ()

T

eqgs =

dv/dt = (I-v)/tau : 1

I :1

tau : second

v

G = NeuronGroup (2, eqgs, threshold='v>1', reset='v = 0', method='exact")
G.I = [2, 0]

G.tau = [10, 100]*ms

# Comment these two lines out to see what happens without Synapses
S = Synapses (G, G, on_pre='v_post += 0.2")

S.connect (1=0, j=1)

(continues on next page)
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(continued from previous page)

M = StateMonitor (G, 'v', record=True)
run (100*ms)

plot (M.t/ms, M.v[0], label='Neuron 0")
plot (M.t/ms, M.v[1], label='Neuron 1'")
xlabel ("Time (ms) ")

ylabel ('v")

legend() ;

<matplotlib.legend.Legend at 0x7fdccb8773d0>
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There are a few things going on here. First of all, let’s recap what is going on with the NeuronGroup. We've created
two neurons, each of which has the same differential equation but different values for parameters I and tau. Neuron 0
has I=2 and tau=10*ms which means that is driven to repeatedly spike at a fairly high rate. Neuron 1 has I=0 and
tau=100*ms which means that on its own - without the synapses - it won’t spike at all (the driving current I is 0). You
can prove this to yourself by commenting out the two lines that define the synapse.

Next we define the synapses: Synapses (source, target, ...) means thatwe are defining a synaptic model
that goes from source to target. In this case, the source and target are both the same, the group G. The syntax
on_pre='v_post += 0.2' means that when a spike occurs in the presynaptic neuron (hence on_pre) it causes an
instantaneous change to happen v_post += 0.2. The _post means that the value of v referred to is the post-synaptic
value, and it is increased by 0.2. So in total, what this model says is that whenever two neurons in G are connected by a
synapse, when the source neuron fires a spike the target neuron will have its value of v increased by 0.2.

However, at this point we have only defined the synapse model, we haven’t actually created any synapses. The next line
S.connect (i=0, j=1) creates a synapse from neuron 0 to neuron 1.
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2.2.2 Adding a weight

In the previous section, we hard coded the weight of the synapse to be the value 0.2, but often we would to allow this to
be different for different synapses. We do that by introducing synapse equations.

start_scope ()

T

egs =
dv/dt = (I-v)/tau : 1

I :1

tau : second

LI B |

G = NeuronGroup (3, eqgs, threshold='v>1', reset='v = 0', method='exact")
G.I = [2, 0, 0]

G.tau = [10, 100, 100]*ms

# Comment these two lines out to see what happens without Synapses
S = Synapses(G, G, 'w : 1', on_pre='v_post += w'")

S.connect (1i=0, j=[1, 2])
S.w = "3*0.2"'

M = StateMonitor (G, 'v', record=True)
run (50*ms)

plot (M.t/ms, M.v[0], label='Neuron 0")
plot (M.t/ms, M.v[1], label='Neuron 1'")
plot (M.t/ms, M.v[2], label='Neuron 2'")
xlabel ("Time (ms) ")

ylabel ('v")

legend() ;

<matplotlib.legend.Legend at Ox7fdccb7£2750>
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This example behaves very similarly to the previous example, but now there’s a synaptic weight variable w. The string
'w : 1" is an equation string, precisely the same as for neurons, that defines a single dimensionless parameter w.
We changed the behaviour on a spike to on_pre="'v_post += w' now, so that each synapse can behave differently
depending on the value of w. To illustrate this, we’ve made a third neuron which behaves precisely the same as the second
neuron, and connected neuron O to both neurons 1 and 2. We've also set the weights via S.w = '3*0.2"'. When i
and j occur in the context of synapses, i refers to the source neuron index, and j to the target neuron index. So this will
give a synaptic connection from 0 to 1 with weight 0.2=0.2*1 and from 0 to 2 with weight 0.4=0.2%*2.

2.2.3 Introducing a delay

So far, the synapses have been instantaneous, but we can also make them act with a certain delay.

start_scope ()

egqs = '''

dv/dt = (I-v)/tau : 1

I 1

tau : second

G = NeuronGroup (3, eqgs, threshold='v>1', reset='v = 0', method='exact")
G.I = [2, 0, 0]

G.tau = [10, 100, 100]*ms

S = Synapses(G, G, 'w : 1', on_pre='v_post += w'")
S.connect (1i=0, j=[1, 2])

S.w = "'3*0.2"

S.delay = "'j*2*ms'

M = StateMonitor (G, 'v', record=True)
run (50*ms)

plot (M.t/ms, M.v[0], label='Neuron 0")
plot (M.t/ms, M.v[1], label='Neuron 1')
plot (M.t/ms, M.v[2], label='Neuron 2'")
xlabel ("Time (ms) ")

ylabel ('v'")

legend();

<matplotlib.legend.Legend at 0x7fdccb7£2290>
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As you can see, that’s as simple as adding a line S.delay = 'j*2*ms"' so that the synapse from O to 1 has a delay

of 2 ms, and from O to 2 has a delay of 4 ms.

2.2.4 More complex connectivity

So far, we specified the synaptic connectivity explicitly, but for larger networks this isn’t usually possible. For that, we
usually want to specify some condition.

start_scope ()

10

NeuronGroup (N, 'v:1")

= Synapses (G, G)

connect (condition="1i!=9", p=0.2)

N
G
S
S.

Here we’ve created a dummy neuron group of N neurons and a dummy synapses model that doens’t actually do anything
just to demonstrate the connectivity. The line S. connect (condition="'i!=3j"', p=0.2) will connect all pairs
of neurons i and j with probability 0.2 as long as the condition i !=7j holds. So, how can we see that connectivity?
Here’s a little function that will let us visualise it.

def visualise_connectivity(S):
Ns = len(S.source)
Nt = len(S.target)
figure (figsize=(10, 4))
subplot (121)
plot (zeros (Ns), arange(Ns), 'ok', ms=10)
plot (ones (Nt), arange(Nt), 'ok', ms=10)
for i, j in zip(S.i, S.J):
plot ([0, 11, [i, 3JI, '"-k")
xticks ([0, 1], ['Source', 'Target'])
ylabel ('"Neuron index')
x1lim(-0.1, 1.1)

(continues on next page)
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(continued from previous page)

ylim (-1, max(Ns, Nt))

subplot (122)

plot(S.i, S.j, 'ok")

xlim (-1, Ns)

ylim (-1, Nt)

xlabel ('Source neuron index')
ylabel ('Target neuron index')

visualise_connectivity (S)
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There are two plots here. On the left hand side, you see a vertical line of circles indicating source neurons on the left, and
a vertical line indicating target neurons on the right, and a line between two neurons that have a synapse. On the right
hand side is another way of visualising the same thing. Here each black dot is a synapse, with x value the source neuron
index, and y value the target neuron index.

Let’s see how these figures change as we change the probability of a connection:

start_scope ()

N
G

10
NeuronGroup (N, 'v:1")

for p in [0.1, 0.5, 1.0]:
S = Synapses (G, G)
S.connect (condition="1i!=3", p=p)
visualise_connectivity (S)
suptitle('p = "+str(p));
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And let’s see what another connectivity condition looks like. This one will only connect neighbouring neurons.
start_scope ()
N = 10
G = NeuronGroup (N, 'v:1")
S = Synapses (G, G)
S.connect (condition="abs (i-7)<4 and i!=3")
visualise_connectivity (S)
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Source neuron index

Try using that cell to see how other connectivity conditions look like.

You can also use the generator syntax to create connections like this more efficiently. In small examples like this, it
doesn’t matter, but for large numbers of neurons it can be much more efficient to specify directly which neurons should be
connected than to specify just a condition. Note that the following example uses skip_if_invalid to avoid errors
at the boundaries (e.g. do not try to connect the neuron with index 1 to a neuron with index -2).
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start_scope ()

N
G

10
NeuronGroup (N, 'v:1")

S = Synapses (G, G)
S.connect (j='k for k in range(i-3, i+4) if il!=k', skip_if invalid=True)
visualise_connectivity (S)
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If each source neuron is connected to precisely one target neuron (which would be normally used with two separate groups
of the same size, not with identical source and target groups as in this example), there is a special syntax that is extremely
efficient. For example, 1-to-1 connectivity looks like this:

start_scope ()

N
G

10
NeuronGroup (N, 'v:1")

S = Synapses (G, G)
S.connect (j="1")
visualise_connectivity (S)
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You can also do things like specifying the value of weights with a string. Let’s see an example where we assign each
neuron a spatial location and have a distance-dependent connectivity function. We visualise the weight of a synapse by
the size of the marker.

start_scope ()

N = 30
neuron_spacing = 50*umetre
width = N/4.0*neuron_spacing

# Neuron has one variable x, 1its position
G = NeuronGroup (N, 'x : metre')
G.x = 'i*neuron_spacing'

# All synapses are connected (excluding self-connections)
S = Synapses (G, G, 'w : 1")

S.connect (condition="i!=7j")

# Weight varies with distance

S.w = 'exp (- (x_pre-x_post)**2/ (2*width**2)) "'

scatter (S.x_pre/um, S.x_post/um, S.w*20)
xlabel ('Source neuron position (um)"')
ylabel ('Target neuron position (um)');

Text (0, 0.5, 'Target neuron position (um)"')
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Now try changing that function and seeing how the plot changes.

2.2.5 More complex synapse models: STDP

Brian’s synapse framework is very general and can do things like short-term plasticity (STP) or spike-timing dependent
plasticity (STDP). Let’s see how that works for STDP.
STDP is normally defined by an equation something like this:

A =33 Wity — tpre)

tpre tpost

That is, the change in synaptic weight w is the sum over all presynaptic spike times ?,,,.. and postsynaptic spike times s
of some function W of the difference in these spike times. A commonly used function W is:

WAy = JAmee™ 2 At>0
Aposte®t/ ot At < 0
This function looks like this:
tau_pre = tau_post = 20*ms
A_pre = 0.01
A_post = -A_pre*1.05

delta_t = linspace(-50, 50, 100) *ms

W = where(delta_t>0, A_pre*exp(-delta_t/tau_pre), A_post*exp(delta_t/tau_post))
plot (delta_t/ms, W)

xlabel (r's$\Delta t$ (ms) ")

ylabel ("W")

axhline (0, 1ls='-', c="k");

<matplotlib.lines.Line2D at Ox7fdccbbSacdd0>
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Simulating it directly using this equation though would be very inefficient, because we would have to sum over all pairs of
spikes. That would also be physiologically unrealistic because the neuron cannot remember all its previous spike times. It
turns out there is a more efficient and physiologically more plausible way to get the same effect.

We define two new variables a,,,.. and ay,,s¢ Which are “traces” of pre- and post-synaptic activity, governed by the differ-
ential equations:

d
Tpre &apre = —0Qpre
d
Tpost &apost = —0Qpost

When a presynaptic spike occurs, the presynaptic trace is updated and the weight is modified according to the rule:

Qpre — Gpre + Apre

W — W~ Apost
When a postsynaptic spike occurs:

Qpost — Apost + Apost

W — W+ Qpre

To see that this formulation is equivalent, you just have to check that the equations sum linearly, and consider two cases:
what happens if the presynaptic spike occurs before the postsynaptic spike, and vice versa. Try drawing a picture of it.

Now that we have a formulation that relies only on differential equations and spike events, we can turn that into Brian
code.

start_scope ()

taupre = taupost = 20*ms
wmax = 0.01
Apre = 0.01

(continues on next page)
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Apost = -Apre*taupre/taupost*1.05
G = NeuronGroup (1, 'v:1', threshold='v>1'"', reset='")

S = Synapses (G, G,

rr

w o : 1

dapre/dt = —-apre/taupre : 1 (event-driven)
dapost/dt = —apost/taupost : 1 (event-driven)
rr ',

on_pre="'""

v_post +=w
apre += Apre
w = clip(w+tapost, 0, wmax)

on_post="""
apost += Apost
w = clip(wtapre, 0, wmax)

vl!)

There are a few things to see there. Firstly, when defining the synapses we’ve given a more complicated multi-line string
defining three synaptic variables (w, apre and apost). We've also got a new bit of syntax there, (event-driven)
after the definitions of apre and apost. What this means is that although these two variables evolve continuously over
time, Brian should only update them at the time of an event (a spike). This is because we don’t need the values of apre
and apost except at spike times, and it is more efficient to only update them when needed.

Next we have a on_pre=. .. argument. The first line is v_post += w: this is the line that actually applies the
synaptic weight to the target neuron. The second line is apre += Apre which encodes the rule above. In the third
line, we're also encoding the rule above but we’ve added one extra feature: we’ve clamped the synaptic weights between
a minimum of 0 and a maximum of wmax so that the weights can’t get too large or negative. The function clip (x,
low, high) does this.

Finally, we have a on_post=. .. argument. This gives the statements to calculate when a post-synaptic neuron fires.
Note that we do not modify v in this case, only the synaptic variables.

Now let’s see how all the variables behave when a presynaptic spike arrives some time before a postsynaptic spike.

start_scope ()

taupre = taupost = 20*ms

wmax = 0.01

Apre = 0.01

Apost = -Apre*taupre/taupost*1.05

G = NeuronGroup (2, 'v:1', threshold='t>(1+1i)*10*ms', refractory=100*ms)

S = Synapses (G, G,
w : 1
dapre/dt = —-apre/taupre : 1 (clock-driven)
dapost/dt = -apost/taupost : 1 (clock-driven)
on_pre="""

v_post +=w
apre += Apre
w = clip(wtapost, 0, wmax)

T
4

(continues on next page)
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on_post="""
apost += Apost
w = clip(wtapre, 0, wmax)

""", method='"linear")
S.connect (1=0, j=1)
M = StateMonitor(s, ['w', 'apre', 'apost'], record=True)

run (30*ms)

figure (figsize=(4, 8))

subplot (211)

plot (M.t/ms, M.apre[0], label='apre')
plot (M.t/ms, M.apost[0], label='apost')
legend ()

subplot (212)

plot (M.t/ms, M.w[0], label='w")

legend (loc="'best")

xlabel ('Time (ms)');

Text (0.5, 0, 'Time (ms)")
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A couple of things to note here. First of all, we’ve used a trick to make neuron O fire a spike at time 10 ms, and neuron 1
at time 20 ms. Can you see how that works?

Secondly, we’ve replaced the (event-driven) by (clock—driven) soyoucansee how apre and apost evolve
over time. Try reverting this change and see what happens.

Try changing the times of the spikes to see what happens.

Finally, let’s verify that this formulation is equivalent to the original one.

start_scope ()

taupre = taupost = 20*ms
Apre = 0.01

(continues on next page)
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Apost = -Apre*taupre/taupost*1.05
tmax = 50*ms
N = 100
# Presynaptic neurons G spike at times from 0 to tmax
# Postsynaptic neurons G spike at times from tmax to 0
# So difference in spike times will vary from —-tmax to +tmax
G = NeuronGroup (N, 'tspike:second', threshold='t>tspike', refractory=100*ms)
H = NeuronGroup (N, 'tspike:second', threshold='t>tspike', refractory=100*ms)
G.tspike = 'i*tmax/ (N-1)'"'
H.tspike = ' (N-1-1)*tmax/ (N-1)'
S = Synapses (G, H,
w o 1
dapre/dt = —apre/taupre : 1 (event-driven)
dapost/dt = -apost/taupost : 1 (event-driven)
on_pre="""

apre += Apre

w = wtapost
Tr

on_post="""
apost += Apost
w = wtapre

lll)
S.connect (j="1")

run (tmax+1*ms)

plot ((H.tspike-G.tspike) /ms, S.w)
xlabel (r's\Delta t$ (ms)')

ylabel (r'S$\Delta ws$')

axhline (0, 1ls='-', c="k");

<matplotlib.lines.Line2D at 0x7fdcc8ae8890>
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Can you see how this works?

2.2.6 End of tutorial
2.3 Introduction to Brian part 3: Simulations

If you haven’t yet read parts 1 and 2 on Neurons and Synapses, go read them first.

This tutorial is about managing the slightly more complicated tasks that crop up in research problems, rather than the toy
examples we’ve been looking at so far. So we cover things like inputting sensory data, modelling experimental conditions,
etc.

As before we start by importing the Brian package and setting up matplotlib for IPython:

from brian2 import *
$matplotlib inline

2.3.1 Multiple runs

Let’s start by looking at a very common task: doing multiple runs of a simulation with some parameter that changes.
Let’s start off with something very simple, how does the firing rate of a leaky integrate-and-fire neuron driven by Poisson
spiking neurons change depending on its membrane time constant? Let’s set that up.

# remember, this is here for running separate simulations in the same notebook
start_scope ()

# Parameters

num_inputs = 100

input_rate = 10*Hz

weight = 0.1

(continues on next page)
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# Range of time constants

tau_range = linspace(l, 10, 30)*ms
# Use this list to store output rates
output_rates = []

# Iterate over range of time constants
for tau in tau_range:
# Construct the network each time

P = PoissonGroup (num_inputs, rates=input_rate)

eqgs = T

dv/dt = -v/tau : 1

G = NeuronGroup (1, eqgs, threshold='v>1', reset='v=0', method='exact")

= Synapses (P, G, on_pre='v += weight')
.connect ()
= SpikeMonitor (G)

< W0

Run it and store the output firing rate in the list
run (1 *second)
output_rates.append (M.num_spikes/second)

# And plot it

plot (tau_range/ms, output_rates)

xlabel (r'S\tau$ (ms)')

ylabel ('Firing rate (sp/s)');

= =

Firing rate [spfs)

[
=
i

2 4 & g 10
Tims)

Now if you’re running the notebook, you’ll see that this was a little slow to run. The reason is that for each loop, you're
recreating the objects from scratch. We can improve that by setting up the network just once. We store a copy of the
state of the network before the loop, and restore it at the beginning of each iteration.

start_scope ()

num_inputs = 100

input_rate = 10*Hz

weight = 0.1

tau_range = linspace(l, 10, 30)*ms

(continues on next page)
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output_rates = []
# Construct the network just once

P = PoissonGroup (num_inputs, rates=input_rate)
Tr

egs =
dv/dt = -v/tau : 1
G = NeuronGroup (1, egs, threshold='v>1', reset='v=0', method='exact'")

S = Synapses (P, G, on_pre='v += weight')
S.connect ()
M = SpikeMonitor (G)
# Store the current state of the network
store ()
for tau in tau_range:
# Restore the original state of the network
restore ()
# Run it with the new value of tau
run (1 *second)
output_rates.append (M.num_spikes/second)
plot (tau_range/ms, output_rates)
xlabel (r'S$\taus$ (ms)")
ylabel ('Firing rate (sp/s)');

Firing rate (sp/s)

2 4 G B 10
TI(ms)

That’s a very simple example of using store and restore, but you can use it in much more complicated situations. For
example, you might want to run a long training run, and then run multiple test runs afterwards. Simply put a store after
the long training run, and a restore before each testing run.

You can also see that the output curve is very noisy and doesn’t increase monotonically like we’d expect. The noise is
coming from the fact that we run the Poisson group afresh each time. If we only wanted to see the effect of the time
constant, we could make sure that the spikes were the same each time (although note that really, you ought to do multiple
runs and take an average). We do this by running just the Poisson group once, recording its spikes, and then creating a
new SpikeGeneratorGroup that will output those recorded spikes each time.
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start_scope ()

num_inputs = 100

input_rate = 10*Hz

weight = 0.1

tau_range = linspace(l, 10, 30)*ms

output_rates = []

# Construct the Poisson spikes just once

P = PoissonGroup (num_inputs, rates=input_rate)

MP = SpikeMonitor (P)

# We use a Network object because later on we don't

# want to include these objects

net = Network (P, MP)

net.run (1*second)

# And keep a copy of those spikes

spikes_1 = MP.1i

spikes_t = MP.t

# Now construct the network that we run each time

# SpikeGeneratorGroup gets the spikes that we created before
SGG = SpikeGeneratorGroup (num_inputs, spikes_i, spikes_t)

egs = '"!'

dv/dt = -v/tau : 1

Tra

G = NeuronGroup (1, eqgs, threshold='v>1', reset='v=0', method='exact'")
S = Synapses (SGG, G, on_pre='v += weight')

S.connect ()

M = SpikeMonitor (G)

# Store the current state of the network

net = Network (SGG, G, S, M)
net.store()
for tau in tau_range:
# Restore the original state of the network
net.restore ()
# Run it with the new value of tau
net.run (1*second)
output_rates.append (M.num_spikes/second)
plot (tau_range/ms, output_rates)
xlabel (r's\tau$ (ms)")
ylabel ('Firing rate (sp/s)');
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You can see that now there is much less noise and it increases monotonically because the input spikes are the same each
time, meaning we're seeing the effect of the time constant, not the random spikes.

Note that in the code above, we created Network objects. The reason is that in the loop, if we just called run it would
try to simulate all the objects, including the Poisson neurons P, and we only want to run that once. We use Network to
specify explicitly which objects we want to include.

The techniques we’ve looked at so far are the conceptually most simple way to do multiple runs, but not always the most
efficient. Since there’s only a single output neuron in the model above, we can simply duplicate that output neuron and
make the time constant a parameter of the group.

start_scope ()
num_inputs = 100
input_rate 10*Hz
weight = 0.

[N

tau_range = linspace(l, 10, 30)*ms

num_tau = len(tau_range)

P = PoissonGroup (num_inputs, rates=input_rate)
# We make tau a parameter of the group

egs = '"!'

dv/dt -v/tau : 1

tau : second

Vo

# And we have num_tau output neurons, each with a different tau
G = NeuronGroup (num_tau, eqgs, threshold='v>1', reset='v=0', method='exact')
G.tau tau_range

S = Synapses (P, G, on_pre='v += weight')

S.connect ()

M = SpikeMonitor (G)

# Now we can just run once with no loop

run (1 *second)
output_rates = M.count/second # firing rate is count/duration
plot (tau_range/ms, output_rates)

(continues on next page)

2.3. Introduction to Brian part 3: Simulations 119




Brian 2 Documentation, Release 2.5.1

(continued from previous page)

xlabel (r'S$\taus$ (ms)")
ylabel ('Firing rate (sp/s)');

WARNING "tau" is an internal variable of group "neurongroup", but also exists in.
—the run namespace with the value 10. * msecond. The internal variable will be used..
— [brian2.groups.group.Group.resolve.resolution_conflict]

=
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You can see that this is much faster again! It’s a little bit more complicated conceptually, and it’s not always possible to
do this trick, but it can be much more efficient if it’s possible.

Let’s finish with this example by having a quick look at how the mean and standard deviation of the interspike intervals
depends on the time constant.

trains = M.spike_trains()
isi_mu = full (num_tau, nan) *second
isi_std = full (num_tau, nan) *second
for idx in range (num_tau) :
train = diff (trains[idx])
if len(train)>1:
isi_mul[idx] = mean (train)
isi_std[idx] = std(train)

errorbar (tau_range/ms, isi_mu/ms, yerr=isi_std/ms)
xlabel (r'S$\taus$ (ms)")
ylabel ('Interspike interval (ms)');
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Notice that we used the spike_trains () method of SpikeMonitor. This is a dictionary with keys being the
indices of the neurons and values being the array of spike times for that neuron.

2.3.2 Changing things during a run

Imagine an experiment where you inject current into a neuron, and change the amplitude randomly every 10 ms. Let’s
see if we can model that using a Hodgkin-Huxley type neuron.

start_scope ()
# Parameters

area = 20000*umetre**2

Cm = l*ufarad*cm**-2 * area

gl = S5e-5*siemens*cm**-2 * area

El = -65*mV

EK = -90*mV

ENa = 50*mV

g_na = 100*msiemens*cm**-2 * area

g_kd = 30*msiemens*cm**-2 * area

VT = -63*mV

# The model

eqs_HH = '''

dv/dt = (gl*(El-v) - g_na* (m*m*m)*h* (v-ENa) - g_kd* (n*n*n*n)* (v-EK) + I)/Cm : volt
*

dm/dt = 0.32* (mV**-1)* (13.*mV-v+VT) /

(
(exp ((13.*mV-v+VT)/(4.*mV))-1.)/ms* (1-m)—-0.28* (mV**-1)* (v-VT-40.*mV) /

(exp ((v=VT-40.*mV)/(5.*mV))-1.)/ms*m : 1
dn/dt = 0.032* (mV**=1)* (15.*mV-v+VT) /

(exp ((15.*mV-v+VT)/(5.*mV))-1.)/ms* (1.-n)-.5%exp ((10.*mV-v+VT)/ (40.*mV)) /ms*n : 1
dh/dt = 0.128%exp ((17.*mV-v+VT)/(18.*mV) ) /ms* (1.-h)-4./ (1+exp ((40.*mV-v+VT)/(5.*mV)))/
—ms*h @ 1
I : amp

T

group = NeuronGroup(l, eqgs_HH,

(continues on next page)
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threshold='v > -40*mV"',
refractory='v > —-40*mV’',
method="'exponential_ euler'")
group.v = El
statemon = StateMonitor (group, 'v', record=True)
spikemon = SpikeMonitor (group, variables='v"')
figure (figsize=(9, 4))
for 1 in range(5):
group.I = rand()*50*nA
run (10*ms)

axvline (1*10, 1ls='--', c='k")
axhline (E1/mvV, 1ls='-', c='lightgray', 1lw=3)
plot (statemon.t/ms, statemon.v[0]/mV, '-b')

plot (spikemon.t/ms, spikemon.v/mV, 'ob'")
xlabel ('Time (ms) ")
ylabel ('v (mV)");
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In the code above, we used a loop over multiple runs to achieve this. That’s fine, but it’s not the most efficient way to do
it because each time we call run we have to do a lot of initialisation work that slows everything down. It also won’t work
as well with the more efficient standalone mode of Brian. Here’s another way.

start_scope ()
group = NeuronGroup (1, eqgs_HH,
threshold='v > —-40*mV',
refractory='v > —-40*mvV"',
method="'exponential_euler'")
group.v = El
statemon = StateMonitor (group, 'v', record=True)
spikemon = SpikeMonitor (group, variables='v"')
# we replace the loop with a run_regularly
group.run_regularly ('I = rand()*50*nA', dt=10*ms)
run (50*ms)
figure (figsize=(9, 4))
# we keep the loop just to draw the vertical lines
for 1 in range(5):
axvline(1*10, 1ls='-—-"', c='k")

(continues on next page)
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axhline (El/mv, 1ls='-', c='lightgray', 1lw=3)
plot (statemon.t/ms, statemon.v([0]/mV, '-b'")
plot (spikemon.t/ms, spikemon.v/mV, 'ob')
xlabel ('Time (ms) ")

ylabel ('v (mV)");
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We’ve replaced the loop that had multiple run calls with a run_regularly. This makes the specified block of code
run every dt=10*ms. The run_regularly lets you run code specific to a single NeuronGroup, but sometimes
you might need more flexibility. For this, you can use network_operat ion which lets you run arbitrary Python code

(but won’t work with the standalone mode).

start_scope ()

group = NeuronGroup (1, eqgs_HH,
threshold='v > -40*mV"',
refractory='v > —-40*mV’',
method="'exponential_ euler')

group.v = El

statemon = StateMonitor (group, 'v', record=True)

spikemon = SpikeMonitor (group, variables='v')

# we replace the loop with a network_operation

@network_operation (dt=10*ms)

def change_TI():

group.I = rand()*50*nA

run (50*ms)

figure (figsize=(9, 4))

for 1 in range(5):

axvline (1*10, 1ls='--', c='k")
axhline (E1/mv, 1ls='-', c='lightgray', 1lw=3)
plot (statemon.t/ms, statemon.v[0]/mV, '-b')

plot (spikemon.t/ms, spikemon.v/mV, 'ob'")
xlabel ('Time (ms) ")
ylabel ('v (mV)");
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Now let’s extend this example to run on multiple neurons, each with a different capacitance to see how that affects the
behaviour of the cell.

start_scope ()

N = 3

eqs_HH_2 = ''"

dv/dt = (gl*(El-v) - g_na* (m*m*m)*h* (v-ENa) - g_kd* (n*n*n*n)* (v-EK) + I)/C : volt
dm/dt = 0.32* (mV**=1)* (13.*mV-v+VT) /

(exp ((13.*mV-v+VT)/(4.*mV))-1.)/ms* (1-m)-0.28* (mV**-1) * (v-VT-40.*mV) /

(exp ((v=VT-40.*mV)/(5.*mV))-1.)/ms*m : 1
dn/dt = 0.032* (mV**-1)* (15.*mV-v+VT) /

(exp ((15.*mV-v+VT)/(5.*mV))-1.)/ms* (1.-n)-.5*exp ((10.*mV-v+VT)/ (40.*mV)) /ms*n : 1
dh/dt = 0.128%exp ((17.*mV-v+VT)/ (18.*mV)) /ms* (1.-h)-4./ (1+exp ((40.*mV-v+VT)/ (5.*mV)) )/
—ms*h @ 1
I : amp
C : farad
group = NeuronGroup (N, egs_HH_2,

threshold='v > —-40*mV',
refractory='v > —-40*mV',
method="'exponential_ euler')
group.v = E1
# initialise with some different capacitances
group.C = array([0.8, 1, 1.2])*ufarad*cm**-2*area
statemon = StateMonitor (group, variables=True, record=True)
# we go back to run_regularly
group.run_regularly ('I = rand()*50*nA', dt=10*ms)
run (50*ms)
figure (figsize=(9, 4))
for 1 in range (5):

axvline (1*10, 1ls='-—-"', c='k")
axhline (El/mv, ls='-', c='lightgray', 1lw=3)
plot (statemon.t/ms, statemon.v.T/mVv, '-")
xlabel ('"Time (ms) ")
ylabel ('v (mV)");
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So that runs, but something looks wrong! The injected currents look like they’re different for all the different neurons!
Let’s check:

plot (statemon.t/ms, statemon.I.T/nA, '-')
xlabel ('Time (ms) ")
ylabel ("I (nA)"');
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Sure enough, it’s different each time. But why? We wrote group.run_regularly ('I = rand()*50*nA’,

dt=10*ms) which seems like it should give the same value of I for each neuron. But, like threshold and reset statements,
run_regularly code is interpreted as being run separately for each neuron, and because I is a parameter, it can be
different for each neuron. We can fix this by making I into a shared variable, meaning it has the same value for each
neuron.
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start_scope ()

N = 3

eqs_HH_3 = """

dv/dt (gl*(El-v) - g_na* (m*m*m) *h* (v-ENa) - g_kd* (n*n*n*n)* (v-EK) + I)/C : volt
dm/dt = 0.32* (mV**—1)* (13.*mV-v+VT) /

(exp ((13.*mV-v+VT)/ (4.*mV))-1.)/ms* (1-m)—-0.28* (mV**-1) * (v-VT-40.*mV) /

(exp ((v=-VT-40.*mV)/(5.*mV))~-1.)/ms*m : 1
dn/dt = 0.032* (mV**-1)* (15.*mV-v+VT) /

(exp ((15.*mV-v+VT)/(5.*mV))-1.)/ms* (1.-n)-.5%exp ((10.*mV-v+VT)/ (40.*mV)) /ms*n : 1
dh/dt = 0.128%exp ((17.*mV-v+VT)/(18.*mV) ) /ms* (1.-h)-4./ (1+exp ((40.*mV-v+VT)/(5.*mV)))/
—ms*h 1
I : amp (shared) # everything is the same except we've added this shared
C : farad

v

group = NeuronGroup (N, egs_HH_3,
threshold='v > —-40*mV',
refractory="'v > —-40*mV’',
method="'exponential_ euler')

group.v = E1

group.C = array([0.8, 1, 1.2])*ufarad*cm**-2*area

statemon = StateMonitor (group, 'v', record=True)

group.run_regularly ('I = rand()*50*nA', dt=10*ms)

run (50*ms)

figure (figsize=(9, 4))

for 1 in range (5):

axvline (1*10, 1ls="'--', c='k")
axhline (E1/mv, 1ls='-', c='lightgray', 1lw=3)
plot (statemon.t/ms, statemon.v.T/mV, '—-")

v (mi}
S

ylabel ('v (mV)"');
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Ahh, that’s more like it!
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2.3.3 Adding input

Now let’s think about a neuron being driven by a sinusoidal input. Let’s go back to a leaky integrate-and-fire to simplify
the equations a bit.

start_scope ()
A =2.5

f = 10*Hz
tau = 5*ms
egqs = '''
dv/dt = (I-v)/tau : 1

I = A*sin(2*pi*f*t) : 1

Tra

G = NeuronGroup (1, egs, threshold='v>1', reset='v=0', method='euler'")
M = StateMonitor (G, variables=True, record=True)

run (200*ms)

plot (M.t/ms, M.v[0], label='v")

plot (M.t/ms, M.I[0], label='T")

xlabel ('Time (ms) ")

ylabel ('v")

legend (loc="best");

I I ! I
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So far, so good and the sort of thing we saw in the first tutorial. Now, what if that input current were something we had
recorded and saved in a file? In that case, we can use TimedArray. Let’s start by reproducing the picture above but
using TimedArray.

start_scope ()

A =2.5
f = 10*Hz
tau = 5*ms

# Create a TimedArray and set the equations to use it
t_recorded = arange (int (200*ms/defaultclock.dt)) *defaultclock.dt
I_recorded = TimedArray (A*sin(2*pi*f*t_recorded), dt=defaultclock.dt)

(continues on next page)
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T

eqgs =
dv/dt = (I-v)/tau : 1
I = I_recorded(t) : 1

v

G = NeuronGroup(l, egs, threshold='v>1', reset='v=0', method='exact')
M = StateMonitor (G, variables=True, record=True)

run (200*ms)

plot (M.t/ms, M.v[0], label='v")

plot (M.t/ms, M.I[0], label='T")

xlabel ("Time (ms) ")

ylabel ('v")

legend (loc='best");

I I ! I
0 25 50 75 100 125 150 175 200
Time (ms)

Note that for the example where we put the s in function directly in the equations, we had to use the method="euler"
argument because the exact integrator wouldn’t work here (try it!). However, TimedArray is considered to be constant
over its time step and so the linear integrator can be used. This means you won’t get the same behaviour from these two
methods for two reasons. Firstly, the numerical integration methods exact and euler give slightly different results.
Secondly, sin is not constant over a timestep whereas TimedArray is.

Now just to show that TimedArray works for arbitrary currents, let’s make a weird “recorded” current and run it on
that.

start_scope ()

A =2.5
f = 10*Hz
tau = 5*ms

# Let's create an array that couldn't be
# reproduced with a formula
num_samples = int (200*ms/defaultclock.dt)

I_arr = zeros (num_samples)
for _ in range(100) :
a = randint (num_samples)

(continues on next page)
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I_arr[a:a+100] = rand()
I_recorded = TimedArray (A*I_arr, dt=defaultclock.dt)
egs = '"!'
dv/dt = (I-v)/tau : 1
I = I_recorded(t) : 1
G = NeuronGroup (1, egs, threshold='v>1', reset='v=0', method='exact'")

M = StateMonitor (G, variables=True, record=True)
run (200*ms)

plot (M.t/ms, M.v[0], label='v")

plot (M.t/ms, M.I[0], label='T1")

xlabel ('Time (ms) ")

ylabel ('v')

legend (loc="'best");
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Finally, let’s finish on an example that actually reads in some data from a file. See if you can work out how this example
works.

start_scope ()

from matplotlib.image import imread

img = (l-imread('brian.png'))[::-1, :, 0].T
num_samples, N = img.shape

ta = TimedArray(img, dt=1*ms) # 228

A =1.5

tau = 2*ms

egs = T

dv/dt = (A*ta(t, 1i)-v)/tau+0.8*xi*tau**-0.5 : 1

G = NeuronGroup (N, egs, threshold='v>1', reset='v=0', method='euler'")

M = SpikeMonitor (G)
run (num_samples*ms)
plot (M.t/ms, M.i, '.k', ms=3)

(continues on next page)
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x1im (0, num_samples)
ylim (0, N)

xlabel ('Time (ms) ")
ylabel ('Neuron index');
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USER’S GUIDE

3.1 Importing Brian

After installation, Brian is available in the brian?2 package. By doing a wildcard import from this package, i.e.:

’from brian2 import *

you will not only get access to the brian?2 classes and functions, but also to everything in the pylab package, which
includes the plotting functions from matplotlib and everything included in numpy/scipy (e.g. functions such as arange,
linspace, etc.). Apart from this when you use the wildcard import, the builtin i nput function is overshadowed by the
input module in the brian2 package. If you wish to use the builtin input function in your program after importing
the brian2 package then you can explicitly import the i nput function again as shown below:

from brian2 import *
from builtins import input

The following topics are not essential for beginners.

3.1.1 Precise control over importing

If you want to use a wildcard import from Brian, but don’t want to import all the additional symbols provided by pylab
or don’t want to overshadow the builtin i nput function, you can use:

from brian2.only import *

Note that whenever you use something different from the most general from brian2 import * statement, you
should be aware that Brian overwrites some numpy functions with their unit-aware equivalents (see Units). If you combine
multiple wildcard imports, the Brian import should therefore be the last import. Similarly, you should not import and
call overwritten numpy functions directly, e.g. by using import numpy as np followed by np. sin since this will
not use the unit-aware versions. To make this easier, Brian provides a brian2.numpy_ package that provides access
to everything in numpy but overwrites certain functions. If you prefer to use prefixed names, the recommended way of
doing the imports is therefore:

import brian2.numpy_ as np
import brian2.only as br2
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Note that it is safe to use e.g. np.sin and numpy.sin aftera from brian2 import *.

3.1.2 Dependency checks

Brian will check the dependency versions during import and raise an error for an outdated dependency. An outdated
dependency does not necessarily mean that Brian cannot be run with it, it only means that Brian is untested on that
version. If you want to force Brian to run despite the outdated dependency, set the core.outdated _dependency_error
preference to False. Note that this cannot be done in a script, since you do not have access to the preferences before
importing brian2. See Preferences for instructions how to set preferences in a file.

3.2 Physical units

» Using units

* Removing units
o Temperatures
» Constants

* Importing units

* In-place operations on quantities

Brian includes a system for physical units. The base units are defined by their standard SI unit names: amp/ampere,
kilogram/kilogramme, second, metre/meter, mole/mol, kelvin, and candela. In addition to these
base units, Brian defines a set of derived units: coulomb, farad, gram/gramme, hertz, joule, liter/
litre,molar, pascal, ohm, siemens, volt, watt, together with prefixed versions (e.g. msiemens = 0.
001*siemens) using the prefixes p, n, u, m, k, M, G, T (two exceptions to this rule: kilogram is
not defined with any additional prefixes, and metre and meter are additionaly defined with the “centi” prefix, i.e.
cmetre/cmeter). For convenience, a couple of additional useful standard abbreviations such as cm (instead of cme—
tre/cmeter), nS (instead of nsiemens), ms (instead of msecond), Hz (instead of hert z), mM (instead of mmo—
lar) are included. To avoid clashes with common variable names, no one-letter abbreviations are provided (e.g. you can
use mV or nS, but not V or S).

3.2.1 Using units

You can generate a physical quantity by multiplying a scalar or vector value with its physical unit:

>>> tau = 20*ms
>>> print (tau)
20. ms

>>> rates = [10, 20, 30]*Hz
>>> print (rates)
[ 10. 20. 30.] Hz

Brian will check the consistency of operations on units and raise an error for dimensionality mismatches:

>>> tau += 1 # ms? second?
Traceback (most recent call last):

DimensionMismatchError: Cannot calculate ... += 1, units do not match (units are.

econd-and 1),

(continues on next page)
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>>> 3*kgram + 3*amp
Traceback (most recent call last):

DimensionMismatchError: Cannot calculate 3. kg + 3. A, units do not match (units are.
—kilogram and amp) .

Most Brian functions will also complain about non-specified or incorrect units:

>>> G = NeuronGroup (10, 'dv/dt = -v/tau: volt', dt=0.5)
Traceback (most recent call last):

DimensionMismatchError: Function "__init_ " expected a quantitity with unit second.
—for argument "dt" but got 0.5 (unit is 1).

Numpy functions have been overwritten to correctly work with units (see the developer documentation for more details):

>>> print (mean (rates))

20. Hz

>>> print (rates.repeat (2))

[ 10. 10. 20. 20. 30. 30.] Hz

3.2.2 Removing units
There are various options to remove the units from a value (e.g. to use it with analysis functions that do not correctly work
with units)
* Divide the value by its unit (most of the time the recommended option because it is clear about the scale)
 Transform it to a pure numpy array in the base unit by calling asarray () (no copy) or array (copy)

* Directly get the unitless value of a state variable by appending an underscore to the name

>>> tau/ms

20.0

>>> asarray (rates)

array ([ 10., 20., 30.1)

>>> G = NeuronGroup (5, 'dv/dt = -v/tau: volt'")
>>> print (G.v_[:])

[ 0. 0. 0. 0. 0.]

3.2.3 Temperatures

Brian only supports temperatures defined in °K, using the provided ke 1vin unit object. Other conventions such as °C,
or °F are not compatible with Brian’s unit system, because they cannot be expressed as a multiplicative scaling of the
SI base unit kelvin (their zero point is different). However, in biological experiments and modeling, temperatures are
typically reported in °C. How to use such temperatures depends on whether they are used as temperature differences or as
absolute temperatures:

temperature differences Their major use case is the correction of time constants for differences in temperatures based
on the Q10 temperature coefficient. In this case, all temperatures can directly use kelvin even though the tem-
peratures are reported in Celsius, since temperature differences in Celsius and Kelvin are identical.

absolute temperatures Equations such as the Goldman—Hodgkin—Katz voltage equation have a factor that depends on
the absolute temperature measured in Kelvin. To get this temperature from a temperature reported in °C, you can
use the zero_celsius constant from the brian2.units.constants package (see below):
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from brian2.units.constants import zero_celsius

celsius_temp = 27
abs_temp = celsius_temp*kelvin + zero_celsius

Note: Earlier versions of Brian had a ce1sius unit which was in fact identical to ke 1vin. While this gave the correct
results for temperature differences, it did not correctly work for absolute temperatures. To avoid confusion and possible
misinterpretation, the celsius unit has therefore been removed.

3.2.4 Constants

The brian2.units.constants package provides a range of physical constants that can be useful for detailed
biological models. Brian provides the following constants:

Value
6.022140857 x 1023 mol !
1.38064852 x 10~ 23 JK 1

Brian name
avogadro_constant
boltzmann_constant

Constant Symbol(s)
Avogadro constant Ny, L
Boltzmann constant | k

Electric constant €0 electric_constant

8.854187817 x 10~ 12Fm!

Electron mass electron_mass

9.10938356 x 10~ 3T kg

Elementary charge elementary_charge

1.6021766208 x 10~1°C

Faraday constant faraday_constant

96485.33289 C mol *

gas_constant

8.3144598 Jmol 'K~ !

Magnetic constant magnetic_constant

12.566370614 x 10" "N A~?2

Me
e
F
Gas constant R
Ho
M,

Molar mass constant w molar_mass_constant

1x 10 2 kgmol *

0°C zero_celsius

273.156K

Note that these constants are not imported by default, you will have to explicitly import them from brian2.units.
constant s. During the import, you can also give them shorter names using Python’s from import ... as
. syntax. For example, to calculate the % factor that appears in the Goldman—Hodgkin—Katz voltage equation you

can use:

from brian2 import *

from brian2.units.constants import zero_celsius, gas_constant as R,

—as F
celsius_temp = 27
T = celsius_temp*kelvin + zero_celsius

factor = R*T/F

faraday_constant.

The following topics are not essential for beginners.
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3.2.5 Importing units

Brian generates standard names for units, combining the unit name (e.g. “siemens”) with a prefixes (e.g. “m”), and
also generates squared and cubed versions by appending a number. For example, the units “msiemens”, “siemens2”,
“usiemens3” are all predefined. You can import these units from the package brian2.units.allunits —accord-
ingly, an from brian2.units.allunits import * will result in everything from Y1lumen3 (cubed yotta

lumen) to ymo1l (yocto mole) being imported.

A better choice is normally todo from brian2.units import * orimporteverything from brian2 import
* which only imports the units mentioned in the introductory paragraph (base units, derived units, and some standard
abbreviations).

3.2.6 In-place operations on quantities

In-place operations on quantity arrays change the underlying array, in the same way as for standard numpy arrays. This
means, that any other variables referencing the same object will be affected as well:

>>> g = [1, 2] * mV

>>> r = (g

>>> g += 1*mV

>>> g

array ([ 2., 3.]) * mvolt
>>> r

array ([ 2., 3.]) * mvolt

In contrast, scalar quantities will never change the underlying value but instead return a new value (in the same way as
standard Python scalars):

>>> x = 1*mV
>>> y = x
>>> x *= 2
>>> x

2. * mvolt
>>> y

1. * mvolt

3.3 Models and neuron groups

For Brian 1 users

See the document Neural models (Brian 1 —> 2 conversion) for details how to convert Brian 1 code.

* Model equations
* Noise
e Threshold and reset

* Refractoriness

* State variables
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* Subgroups
* Shared variables
* Storing state variables

* Linked variables

* Time scaling of noise

3.3.1 Model equations

The core of every simulation is a NeuronGroup, a group of neurons that share the same equations defining their
properties. The minimum NeuronGroup specification contains the number of neurons and the model description in
the form of equations:

G = NeuronGroup (10, 'dv/dt = -v/(10*ms) : volt")

This defines a group of 10 leaky integrators. The model description can be directly given as a (possibly multi-line) string
as above, or as an Equat ions object. For more details on the form of equations, see Equations. Brian needs the model
to be given in the form of differential equations, but you might see the integrated form of synapses in some textbooks and
papers. See Converting from integrated form to ODEs for details on how to convert between these representations.

Note that model descriptions can make reference to physical units, but also to scalar variables declared outside of the
model description itself:

tau = 10*ms
G = NeuronGroup (10, 'dv/dt = -v/tau : volt'")

If a variable should be taken as a parameter of the neurons, i.e. if it should be possible to vary its value across neurons, it
has to be declared as part of the model description:

G = NeuronGroup (10, '''dv/dt = -v/tau : volt
tau : second''')

To make complex model descriptions more readable, named subexpressions can be used:

G = NeuronGroup (10, '''dv/dt = I_leak / Cm : volt
I_leak = g L*(E_L — v) : amp''")

For a list of some standard model equations, see Neural models (Brian 1 —> 2 conversion).

3.3.2 Noise

In addition to ordinary differential equations, Brian allows you to introduce random noise by specifying a stochastic
differential equation. Brian uses the physicists’ notation used in the Langevin equation, representing the “noise” as a term
&(t), rather than the mathematicians’ stochastic differential d1¥;. The following is an example of the Ornstein-Uhlenbeck
process that is often used to model a leaky integrate-and-fire neuron with a stochastic current:

’G = NeuronGroup (10, 'dv/dt = -v/tau + sigma*sqgrt (2/tau)*xi : volt'")

You can start by thinking of x1i as just a Gaussian random variable with mean 0 and standard deviation 1. However, it
scales in an unusual way with time and this gives it units of 1/sgrt (second). You don’t necessarily need to understand
why this is, but it is possible to get a reasonably simple intuition for it by thinking about numerical integration: see below.
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Note: If you want to use noise in more than one equation of a NeuronGroup or Synapses, you will have to use
suffixed names (see Equation strings for details).

3.3.3 Threshold and reset

To emit spikes, neurons need a threshold. Threshold and reset are given as strings in the NeuronGroup constructor:

tau = 10*ms
G = NeuronGroup (10, 'dv/dt = -v/tau : volt', threshold='v > -50*mV',
reset="'v = -70*mV")

Whenever the threshold condition is fulfilled, the reset statements will be executed. Again, both threshold and reset can
refer to physical units, external variables and parameters, in the same way as model descriptions:

v_r = -70*mV # reset potential
G = NeuronGroup (10, '''dv/dt = -v/tau : volt
v_th : volt # neuron-specific threshold''',

threshold='v > v_th', reset='v = v_r'")

You can also create non-spike events. See Custom events for more details.

3.3.4 Refractoriness

To make a neuron non-excitable for a certain time period after a spike, the refractory keyword can be used:

G = NeuronGroup (10, 'dv/dt = -v/tau : volt', threshold='v > -50*mV’',
reset='v = -70*mV', refractory=5*ms)

This will not allow any threshold crossing for a neuron for Sms after a spike. The refractory keyword allows for more
flexible refractoriness specifications, see Refractoriness for details.

3.3.5 State variables

Differential equations and parameters in model descriptions are stored as state variables of the NeuronGroup. In
addition to these variables, Brian also defines two variables automatically:

i The index of a neuron.
N The total number of neurons.

All state variables can be accessed and set as an attribute of the group. To get the values without physical units (e.g. for
analysing data with external tools), use an underscore after the name:

>>> G = NeuronGroup (10, '''dv/dt = -v/tau : volt

Ce . tau : second''', name='neurons')

>>> G.v = —70*mV

>>> G.v

<neurons.v: array((-70., -70., -70., -70., -70., -70., -70., -70., -70., =-70.]) *_
—mvolt>

>>> G.v_ # values without units

<neurons.v_: array((-0.07, -0.07, -o0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.
<~>O7])>
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The value of state variables can also be set using string expressions that can refer to units and external variables, other
state variables or mathematical functions:

>>> G.tau = '5*ms + (1.0*i/N)*5*ms'

>>> G.tau

<neurons.tau: array([ 5. , 5.5, 6. , 6.5, 7., 7.5, 8. , 8.5, 9. , 9.5]) *_
—msecond>

You can also set the value only if a condition holds, for example:

>>> G.v['tau>7.25*ms'] = —-60*mV

>>> G.v

<neurons.v: array([(-70., -70., -70., -70., -70., -60., -60., -60., -60., -60.]) *_
—mvolt>

3.3.6 Subgroups

It is often useful to refer to a subset of neurons, this can be achieved using Python’s slicing syntax:

G = NeuronGroup (10, '''dv/dt = -v/tau : volt
tau : second''',
threshold='v > -50*mV"',
reset="'v = -70*mV")
# Create subgroups
Gl = G[:5]
G2 = G[5:]

# This will set the values in the main group, subgroups are just "views"
Gl.tau = 10*ms
G2.tau = 20*ms

Here G1 refers to the first 5 neurons in G, and G2 to the second 5 neurons. In general G[ 1 : j] refers to the neurons with
indices from i to j—1, as in general in Python.

For convenience, you can also use a single index, i.e. G[1i] is equivalentto G[i:1i+1]. In some situations, it can be
easier to provide a list of indices instead of a slice, Brian therefore also allows for this syntax. Note that this is restricted
to cases that are strictly equivalent with slicing syntax, e.g. you can write G[ [3, 4, 5]] instead of G[3:6], but you
cannot write G[ [3, 5, 7]1]orG[[5, 4, 311].

Subgroups can be used in most places where regular groups are used, e.g. their state variables or spiking activity can be
recorded using monitors, they can be connected via Synapses, etc. In such situations, indices (e.g. the indices of the
neurons to record from in a StateMonitor) are relative to the subgroup, not to the main group

The following topics are not essential for beginners.
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3.3.7 Shared variables

Sometimes it can also be useful to introduce shared variables or subexpressions, i.e. variables that have a common value
for all neurons. In contrast to external variables (such as Cm above), such variables can change during a run, e.g. by using
run_regularly (). This can be for example used for an external stimulus that changes in the course of a run:

>>> G = NeuronGroup (10, '''shared_input : volt (shared)
dv/dt = (-v + shared_input)/tau : volt
tau : second''', name='neurons')

Note that there are several restrictions around the use of shared variables: they cannot be written to in contexts where
statements apply only to a subset of neurons (e.g. reset statements, see below). If a code block mixes statements writing
to shared and vector variables, then the shared statements have to come first.

By default, subexpressions are re-evaluated whenever they are used, i.e. using a subexpression is completely equivalent to
substituting it. Sometimes it is useful to instead only evaluate a subexpression once and then use this value for the rest of the
time step. This can be achieved by using the (constant over dt) flag. This flag is mandatory for subexpressions that
refer to stateful functions like rand () which notably allows them to be recorded with a St ateMonitor — otherwise
the monitor would record a different instance of the random number than the one that was used in the equations.

For shared variables, setting by string expressions can only refer to shared values:

>>> G.shared_input = ' (4.0/N)*mV'
>>> G.shared_input
<neurons.shared_input: 0.4 * mvolt>

3.3.8 Storing state variables

Sometimes it can be convenient to access multiple state variables at once, e.g. to set initial values from a dictionary of
values or to store all the values of a group on disk. This can be done with the get_states () and set_states ()
methods:

>>> group = NeuronGroup (5, '''dv/dt = -v/tau : 1
ce tau : second''', name='neurons')
>>> initial_values = {'v': [0, 1, 2, 3, 41,

C 'tau': [10, 20, 10, 20, 10]*ms}
>>> group.set_states(initial_values)

>>> group.v[:]

array ([ 0., 1., 2., 3., 4.1)

>>> group.taul:]

array ([ 10., 20., 10., 20., 10.]) * msecond

>>> states = group.get_states()

>>> states['v']

array ([ 0., 1., 2., 3., 4.1)

The data (without physical units) can also be exported/imported to/from Pandas data frames (needs an installation of
pandas):

>>> df = group.get_states (units=False, format='pandas"')

>>> df

N dt i t tau v
0 5 0.0001 0O 0.0 0.01 ©0.0
17 5 0.0001 1 0.0 0.02 1.0
2 5 0.0001 2 0.0 0.01 2.0
3 5 0.0001 3 0.0 0.02 3.0
4 5 0.0001 4 0.0 0.01 4.0

(continues on next page)
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>>> df['tau']

.01

.02

.01

.02

.01

Name: tau, dtype: float64

>>> df['tau'] *= 2

>>> group.set_states(df[['tau']], units=False, format='pandas')
>>> group.tau

<neurons.tau: array ([ 20., 40., 20., 40., 20.]) * msecond>

Sw N e O
O O O O O

3.3.9 Linked variables

A NeuronGroup can define parameters that are not stored in this group, but are instead a reference to a state variable in
another group. For this, a group defines a parameter as 1 inked and then uses 1 inked_var () to specify the linking.
This can for example be useful to model shared noise between cells:

inp = NeuronGroup (1, 'dnoise/dt = -noise/tau + tau**-0.5*xi : 1")
neurons = NeuronGroup (100, "''noise : 1 (linked)

dv/dt = (-v + noise_strength*noise)/tau : volt''"')
neurons.noise = linked_var (inp, 'noise')

If the two groups have the same size, the linking will be done in a 1-to-1 fashion. If the source group has the size one
(as in the above example) or if the source parameter is a shared variable, then the linking will be done as 1-to-all. In all
other cases, you have to specify the indices to use for the linking explicitly:

# two inputs with different phases
inp = NeuronGroup (2, '''phase : 1

dx/dt = 1*mV/ms*sin (2*pi*100*Hz*t-phase) : volt''")
inp.phase = [0, pi/2]

neurons = NeuronGroup (100, ''"'"inp : volt (linked)

dv/dt = (-v + inp) / tau : volt''")
# Half of the cells get the first input, other half gets the second
', index=repeat ([0, 1], 50))

neurons.inp = linked_var (inp, 'x

3.3.10 Time scaling of noise

Suppose we just had the differential equation
dx/dt = ¢

To solve this numerically, we could compute
x(t+dt) =z(t) + &

where £; is a normally distributed random number with mean 0 and standard deviation 1. However, what happens if we
change the time step? Suppose we used a value of dt/2 instead of dt. Now, we compute

x(t+dt) =zt +dt/2) + & =a(t) + &+ &

The mean value of x(¢ + dt) is 0 in both cases, but the standard deviations are different. The first method z(¢t + dt) =
x(t)+& gives z(t+dt) a standard deviation of 1, whereas the second method = (t+dt) = x(t+d/2)+& = z(t)+&+&
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gives z(t) a variance of 1+1=2 and therefore a standard deviation of v/2.

In order to solve this problem, we use the rule (¢ + dt) = 2(t) 4+ /dt&;, which makes the mean and standard deviation
of the value at time ¢ independent of d¢. For this to make sense dimensionally, £ must have units of 1/sqgrt (second).

For further details, refer to a textbook on stochastic differential equations.

3.4 Numerical integration

By default, Brian chooses an integration method automatically, trying to solve the equations exactly first (for linear equa-
tions) and then resorting to numerical algorithms. It will also take care of integrating stochastic differential equations
appropriately.

Note that in some cases, the automatic choice of integration method will not be appropriate, because of a choice of
parameters that couldn’t be determined in advance. In this case, typically you will get nan (not a number) values in the
results, or large oscillations. In this case, Brian will generate a warning to let you know, but will not raise an error.

3.4.1 Method choice

You will get an INFO message telling you which integration method Brian decided to use, together with information
about how much time it took to apply the integration method to your equations. If other methods have been tried but
were not applicable, you will also see the time it took to try out those other methods. In some cases, checking other
methods (in particular the 'exact ' method which attempts to solve the equations analytically) can take a considerable
amount of time — to avoid wasting this time, you can always chose the integration method manually (see below). You can
also suppress the message by raising the log level or by explicitly suppressing 'method_choice' log messages — for
details, see Logging.

If you prefer to chose an integration algorithm yourself, you can do so using the met hod keyword for NeuronGroup,
Synapses, or SpatialNeuron. The complete list of available methods is the following:

e 'exact': exact integration for linear equations (alternative name: 'linear')
e 'exponential euler': exponential Euler integration for conditionally linear equations

e 'euler': forward Euler integration (for additive stochastic differential equations using the Euler-Maruyama
method)

e 'rk2': second order Runge-Kutta method (midpoint method)
e 'rk4': classical Runge-Kutta method (RK4)

* 'heun': stochastic Heun method for solving Stratonovich stochastic differential equations with non-diagonal
multiplicative noise.

e 'milstein': derivative-free Milstein method for solving stochastic differential equations with diagonal multi-
plicative noise

Note: The 'independent' integration method (exact integration for a system of independent equations, where all
the equations can be analytically solved independently) should no longer be used and might be removed in future versions
of Brian.

Note: The following methods are still considered experimental
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'gsl': default integrator when choosing to integrate equations with the GNU Scientific Library ODE solver: the
rkf45 method. Uses an adaptable time step by default.

'gsl_rkf45"': Runge-Kutta-Fehlberg method. A good general-purpose integrator according to the GSL docu-
mentation. Uses an adaptable time step by default.

'gsl_rk2': Second order Runge-Kutta method using GSL. Uses an adaptable time step by default.
'gsl_rk4"': Fourth order Runge-Kutta method using GSL. Uses an adaptable time step by default.
'gsl_rkck': Runge-Kutta Cash-Karp method using GSL. Uses an adaptable time step by default.

'gsl_rk8pd': Runge-Kutta Prince-Dormand method using GSL. Uses an adaptable time step by default.

The following topics are not essential for beginners.

3.4.2 Technical notes

Each class defines its own list of algorithms it tries to apply, NeuronGroup and Synapses will use the first suitable
method out of the methods 'exact', 'euler' and "heun' while SpatialNeuron objects will use 'exact',
'exponential_euler', 'rk2'or 'heun'.

You can also define your own numerical integrators, see State update for details.

3.4.3 GSL stateupdaters

The stateupdaters preceded with the gsl tag use ODE solvers defined in the GNU Scientific Library. The benefit of
using these integrators over the ones written by Brian internally, is that they are implemented with an adaptable timestep.
Integrating with an adaptable timestep comes with two advantages:

¢ These methods check whether the estimated error of the solutions returned fall within a certain error bound. For

the non-gsl integrators there is currently no such check.

Systems no longer need to be simulated with just one time step. That is, a bigger timestep can be chosen and
the integrator will reduce the timestep when increased accuracy is required. This is particularly useful for sys-
tems where both slow and fast time constants coexist, as is the case with for example (networks of neurons with)
Hodgkin-Huxley equations. Note that Brian’s timestep still determines the resolution for monitors, spike timing,
spike propagation etc. Hence, in a network, the simulation error will therefore still be on the order of dt. The
benefit is that short time constants occurring in equations no longer dictate the network time step.

In addition to a choice between different integration methods, there are a few more options that can be specified when
using GSL. These options can be specified by sending a dictionary as the method_options key upon initialization of
the object using the integrator (NeuronGroup, Synapses or SpatialNeuron). The available method options are:

* 'adaptable_timestep': whether or not to let GSL reduce the timestep to achieve the accuracy defined with

the 'absolute_error' and 'absolute_error_per_variable' options described below. If this is
set to False, the timestep is determined by Brian (i.e. the dt of the respective clock is used, see Scheduling).
If the resulted estimated error exceeds the set error bounds, the simulation is aborted. When using cython this is
reported with an IntegrationError. Defaults to True.
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e 'absolute_error': each of the methods has a way of estimating the error that is the result of using numerical
integration. You can specify the maximum size of this error to be allowed for any of the to-be-integrated variables
in base units with this keyword. Note that giving very small values makes the simulation slow and might result in
unsuccessful integration. In the case of using the 'absolute_error_per_variable' option, this is the
error for variables that were not specified individually. Defaults to le-6.

* 'absolute_error_per_variable': specify the absolute error per variable in its own units. Variables for
which the error is not specified use the error set with the 'absolute_error' option. Defaults to None.

* 'max_steps': The maximal number of steps that the integrator will take within a single “Brian timestep” in
order to reach the given error criterion. Can be set to 0 to not set any limits. Note that without limits, it can take
a very long time until the integrator figures out that it cannot reach the desired error level. This will manifest as a
simulation that appears to be stuck. Defaults to 100.

* 'use_last_timestep': withthe 'adaptable_timestep' option set to True, GSL tries different time
steps to find a solution that satisfies the set error bounds. It is likely that for Brian’s next time step the GSL time step
will be somewhat similar per neuron (e.g. active neurons will have a shorter GSL time step than inactive neurons).
With this option set to True, the time step GSL found to satisfy the set error bounds is saved per neuron and given
to GSL again in Brian’s next time step. This also means that the final time steps are saved in Brian’s memory and
can thus be recorded with the StateMonitor: it can be accessed under '_last_timestep'. Note that
some extra memory is required to keep track of the last time steps. Defaults to True.

e 'save_failed_steps':if 'adaptable_timestep' issetto True, each time GSL tries a time step and
it results in an estimated error that exceeds the set bounds, one is added to the ' _failed_steps' variable. For
purposes of investigating what happens within GSL during an integration step, we offer the option of saving this
variable. Defaults to False.

* 'save_step_count ': the same goes for the total number of GSL steps taken in a single Brian time step: this
is optionally saved in the '_step_count ' variable. Defaults to False.

Note that at the moment recording '_last_timestep', '_failed_steps',or '_step_count' requires a
call to run () (e.g. with 0 ms) to trigger the code generation process, before the call to StateMonitor.

More information on the GSL ODE solver itself can be found in its documentation.

3.5 Equations

» Equation strings

* Arithmetic operations and functions
* External variables

* Flags

e List of special symbols

» Event-driven equations

 Equation objects

* Examples of Equat ion objects
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3.5.1 Equation strings

Equations are used both in NeuronGroup and Synapses to:
¢ define state variables

* define continuous-updates on these variables, through differential equations

Note: Brian models are defined by systems of first order ordinary differential equations, but you might see the integrated
form of synapses in some textbooks and papers. See Converting from integrated form to ODEs for details on how to convert
between these representations.

Equations are defined by multiline strings.

An Equation is a set of single lines in a string:
(1) dx/dt = £ : unit (differential equation)
(2) x = £ : unit (subexpression)
(3) x : unit (parameter)

Each equation may be spread out over multiple lines to improve formatting. Comments using # may also be included.
Subunits are not allowed, i.e., one must write volt, not mV. This is to make it clear that the values are internally always
saved in the basic units, so no confusion can arise when getting the values out of a NeuronGroup and discarding the
units. Compound units are of course allowed as well (e.g. farad/meter**2). There are also three special “units” that
can be used: 1 denotes a dimensionless floating point variable, boolean and integer denote dimensionless variables
of the respective kind.

Note: For molar concentration, the base unit that has to be used in the equations is mmolar (or mM), not molar. This
is because 1 molar is 10°> mol/m? in SI units (i.e., it has a “scale” of 10%), whereas 1 millimolar corresponds to 1 mol/m?.

Some special variables are defined: t, dt (time) and xi (white noise). Variable names starting with an underscore and
a couple of other names that have special meanings under certain circumstances (e.g. names ending in _pre or _post)
are forbidden.

For stochastic equations with several x1i values it is necessary to make clear whether they correspond to the same or
different noise instantiations. To make this distinction, an arbitrary suffix can be used, e.g. using xi_ 1 several times
refers to the same variable, xi_2 (or xi_inh, xi_alpha, etc.) refers to another. An error will be raised if you
use more than one plain xi. Note that noise is always independent across neurons, you can only work around this
restriction by defining your noise variable as a shared parameter and update it using a user-defined function (e.g. with
run_regularly), or create a group that models the noise and link to its variable (see Linked variables).

3.5.2 Arithmetic operations and functions

Equation strings can make use of standard arithmetic operations for numerical values, using the Python 3 syntax. The
supported operations are +, —, *, / (floating point division), // (flooring division), % (remainder), ** (power). For
variable assignments, e.g. in reset statements, the corresponding in-place assignments such as += can be used as well.
For comparisons, the operations == (equality), != (inequality), <, <=, >, and >= are available. Truth values can be
combined using and and or, or negated using not. Note that Brian does not support any operations specific to integers,
e.g. “bitwise AND” or shift operations.
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Warning: Brian versions up to 2.1.3.1 did not support // as the floor division operator and potentially used dif-
ferent semantics for the / operator depending on whether Python 2 or 3 was used. To write code that correctly and
unambiguously works with both newer and older Brian versions, you can use expressions such as 1 . 0*a /b to enforce
floating point division (if one of the operands is a floating point number, both Python 2 and 3 will use floating point
division), or f1oor (a/b) to enforce flooring division Note that the £ 1oor function always returns a floating point
value, if it is important that the result is an integer value, additionally wrap it with the int function.

Brian also supports standard mathematical functions with the same names as used in the numpy library (e.g. exp, sqrt,
abs, clip, sin, cos, ...) — for a full list see Default functions. Note that support for such functions is provided by
Brian itself and the translation to the various code generation targets is automatically taken care of. You should therefore
refer to them directly by name and not as e.g. np . sgrt or numpy . sqrt, regardless of the way you imported Brian or
numpy. This also means that you cannot directly refer to arbitrary functions from numpy or other libraries. For details
on how to extend the support to non-default functions see User-provided functions.

3.5.3 External variables

Equations defining neuronal or synaptic equations can contain references to external parameters or functions. These
references are looked up at the time that the simulation is run. If you don’t specify where to look them up, it will look
in the Python local/global namespace (i.e. the block of code where you call run ()). If you want to override this, you
can specify an explicit “namespace”. This is a Python dictionary with keys being variable names as they appear in the
equations, and values being the desired value of that variable. This namespace can be specified either in the creation of
the group or when you can the run () function using the name space keyword argument.

The following three examples show the different ways of providing external variable values, all having the same effect in
this case:

# Explicit argument to the NeuronGroup

G = NeuronGroup(l, 'dv/dt = -v / tau : 1', namespace={'tau': 10*ms})
net = Network (G)

net.run (10*ms)

# Explicit argument to the run function

G = NeuronGroup (1, 'dv/dt = -v / tau : 1")
net = Network (G)
net.run(10*ms, namespace={'tau': 10*ms})

# Implicit namespace from the context

G = NeuronGroup(l, 'dv/dt = -v / tau : 1")
net = Network (G)
tau = 10*ms

net.run (10*ms)

See Namespaces for more details.

The following topics are not essential for beginners.
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3.5.4 Flags

A flag is a keyword in parentheses at the end of the line, which qualifies the equations. There are several keywords:

event-driven this is only used in Synapses, and means that the differential equation should be updated only at the times
of events. This implies that the equation is taken out of the continuous state update, and instead a event-based
state update statement is generated and inserted into event codes (pre and post). This can only qualify differential
equations of synapses. Currently, only one-dimensional linear equations can be handled (see below).

unless refractory this means the variable is not updated during the refractory period. This can only qualify differential
equations of neuron groups.

constant this means the parameter will not be changed during a run. This allows optimizations in state updaters. This
can only qualify parameters.

constant over dt this means that the subexpression will be only evaluated once at the beginning of the time step. This
can be useful to e.g. approximate a non-linear term as constant over a time step in order to use the 1inear nu-
merical integration algorithm. It is also mandatory for subexpressions that refer to stateful functions like rand ()
to make sure that they are only evaluated once (otherwise e.g. recording the value with a St ateMonitor would
re-evaluate it and therefore not record the same values that are used in other places). This can only qualify subex-
pressions.

shared this means that a parameter or subexpression is not neuron-/synapse-specific but rather a single value for the
whole NeuronGroup or Synapses. A shared subexpression can only refer to other shared variables.

linked this means that a parameter refers to a parameter in another NeuronGroup. See Linked variables for more
details.

Multiple flags may be specified as follows:

dx/dt = f : unit (flagl,flag2)

3.5.5 List of special symbols

The following lists all of the special symbols that Brian uses in equations and code blocks, and their meanings.
dt Time step width

i Index of a neuron (NeuronGroup) or the pre-synaptic neuron of a synapse (Synapses)

Jj Index of a post-synaptic neuron of a synapse

lastspike Last time that the neuron spiked (for refractoriness)

lastupdate Time of the last update of synaptic variables in event-driven equations (only defined when event-driven equa-
tions are used).

N Number of neurons (NeuronGroup) or synapses (Synapses). Use N_pre or N_post for the number of presy-
naptic or postsynaptic neurons in the context of Synapses.

not_refractory Boolean variable that is normally true, and false if the neuron is currently in a refractory state
t Current time
t_in_timesteps Current time measured in time steps

xi, xi_* Stochastic differential in equations
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3.5.6 Event-driven equations
Equations defined as event-driven are completely ignored in the state update. They are only defined as variables that can
be externally accessed. There are additional constraints:

¢ An event-driven variable cannot be used by any other equation that is not also event-driven.

¢ An event-driven equation cannot depend on a differential equation that is not event-driven (directly, or indirectly
through subexpressions). It can depend on a constant parameter.

Currently, automatic event-driven updates are only possible for one-dimensional linear equations, but this may be extended
in the future.

3.5.7 Equation objects

The model definitions for NeuronGroup and Synapses can be simple strings or Equat i ons objects. Such objects
can be combined using the add operator:

eqs = Equations('dx/dt = (y-x)/tau : volt'")
egs += Equations('dy/dt = —-y/tau: volt')

Equat ions allow for the specification of values in the strings, but does this by simple string replacement, e.g. you can
do:

’eqs = Equations ('dx/dt = x/tau : volt', tau=10*ms)

but this is exactly equivalent to:

’eqs = Equations ('dx/dt = x/(10*ms) : volt'")

The Equations object does some basic syntax checking and will raise an error if two equations defining the same
variable are combined. It does not however do unit checking, checking for unknown identifiers or incorrect flags — all this
will be done during the instantiation of a NeuronGroup or Synapses object.

3.5.8 Examples of Equation objects

Concatenating equations

>>> membrane_eqs = Equations('dv/dt = —(v + I)/ tau : volt')

>>> eqgsl = membrane_eqgs + Equations('''I = sin(2*pi*freg*t) : volt
. freg : Hz''")

>>> egs2 = membrane_eqgs + Equations('''I : volt''")

>>> print (egsl)

I = sin(2*pi*freg*t) : V

dv/dt = —(v + I)/ tau : V

freq : Hz

>>> print (egs2)

dv/dt = -(v + I)/ tau : V

I :V

Substituting variable names

>>> general_equation = 'dg/dt = -g / tau : siemens'
>>> eqgs_exc = Equations(general_equation, g='g_e', tau='tau_e')
>>> eqgs_1inh = Equations(general_equation, g='g_1i', tau='tau_i')

(continues on next page)
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(continued from previous page)

>>> print (egs_exc)

dg_e/dt = -g_e / tau_e : S
>>> print (egs_inh)
dg_i/dt = -g_i / tau_i : S

Inserting values

>>> egs = Equations('dv/dt = mu/tau + sigma/tau**.5*xi : volt',
mu=-65*mVvV, sigma=3*mV, tau=10*ms)

>>> print (egs)
dv/dt = (-65. * mvolt)/(10. * msecond) + (3. * mvolt)/(10. * msecond)**.5*xi : V

3.6 Refractoriness

e Defining the refractory period

* Defining model behaviour during refractoriness

* Arbitrary refractoriness

Brian allows you to model the absolute refractory period of a neuron in a flexible way. The definition of refractoriness
consists of two components: the amount of time after a spike that a neuron is considered to be refractory, and what
changes in the neuron during the refractoriness.

3.6.1 Defining the refractory period

The refractory period is specified by the refractory keyword in the NeuronGroup initializer. In the simplest case,
this is simply a fixed time, valid for all neurons:

G = NeuronGroup (N, model='...'"', threshold='...', reset='...",
refractory=2+*ms)

Alternatively, it can be a string expression that evaluates to a time. This expression will be evaluated after every spike
and allows for a varying refractory period. For example, the following will set the refractory period to a random duration
between 1ms and 3ms after every spike:

G = NeuronGroup (N, model='...', threshold='...', reset='...",
refractory=' (1 + 2*rand())*ms")

In general, modelling a refractory period that varies across neurons involves declaring a state variable that stores the
refractory period per neuron as a model parameter. The refractory expression can then refer to this parameter:

G = NeuronGroup (N, model="""...
ref : second''', threshold='...",
reset='..."', refractory='ref')
# Set the refractory period for each cell
G.ref =

This state variable can also be a dynamic variable itself. For example, it can serve as an adaptation mechanism by
increasing it after every spike and letting it relax back to a steady-state value between spikes:
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refractory_0 = 2*ms
tau_refractory = 50*ms
G = NeuronGroup (N, model="""...
dref/dt = (refractory_0 - ref) / tau_refractory : second''

r“'l

threshold='...'"', refractory='ref',

reset="""...

ref 4= 1*ms''")

G.ref = refractory_0

In some cases, the condition for leaving the refractory period is not easily expressed as a certain time span. For example,
in a Hodgkin-Huxley type model the threshold is only used for counting spikes and the refractoriness is used to prevent
the count of multiple spikes for a single threshold crossing (the threshold condition would evaluate to True for several
time points). When a neuron should leave the refractory period is not easily expressed as a time span but more naturally
as a condition that the neuron should remain refractory for as long as it stays above the threshold. This can be achieved
by using a string expression for the re fractory keyword that evaluates to a boolean condition:

G = NeuronGroup (N, model='...'"', threshold='v > -20*mV"',
refractory='v >= -20*mV")

The refractory keyword should be read as “stay refractory as long as the condition remains true”. In fact, specifying
a time span for the refractoriness will be automatically transformed into a logical expression using the current time t
and the time of the last spike lastspike. Specifying refractory=2*ms is basically equivalent to specifying
refractory="'(t - lastspike) <= 2*ms'. However, this expression can give inconsistent results for the
common case that the refractory period is a multiple of the simulation timestep. Due to floating point impreciseness, the
actual value of t - lastspike can be slightly above or below a multiple of the simulation time step; comparing it
directly to the refractory period can therefore lead to an end of the refractory one time step sooner or later. To avoid this
issue, the actual code used for the above example is equivalent to refractory="timestep (t - lastspike,
dt) <= timestep (2*ms, dt)'. The timestep function is provided by Brian and takes care of converting a
time into a time step in a safe way.

New in version 2.1.3: The t ime step function is now used to avoid floating point issues in the refractoriness calculation.
To restore the previous behaviour, set the legacy.refractory_timing preference to True.

3.6.2 Defining model behaviour during refractoriness

The refractoriness definition as described above only has a single effect by itself: threshold crossings during the refractory
period are ignored. In the following model, the variable v continues to update during the refractory period but it does not
elicit a spike if it crosses the threshold:

G = NeuronGroup(N, 'dv/dt = -v / tau : 1°',
threshold='v > 1', reset='v=0",
refractory=2+*ms)

There is also a second implementation of refractoriness that is supported by Brian, one or several state variables can be
clamped during the refractory period. To model this kind of behaviour, variables that should stop being updated during
refractoriness can be marked with the (unless refractory) flag

G = NeuronGroup(N, '''dv/dt = —-(v + w)/ tau_v : 1 (unless refractory)
dw/dt = -w / tau_w : 1''",
threshold='v > 1', reset='v=0; w+=0.1", refractory=2+*ms)

In the above model, the v variable is clamped at O for 2ms after a spike but the adaptation variable w continues to update
during this time. In addition, a variable of a neuron that is in its refractory period is read-only: incoming synapses or
other code will have no effect on the value of v until it leaves its refractory period.
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The following topics are not essential for beginners.

3.6.3 Arbitrary refractoriness

In fact, arbitrary behaviours can be defined using Brian’s refractoriness mechanism.

A NeuronGroup with refractoriness automatically defines two variables:
not_refractory A boolean variable stating whether a neuron is allowed to spike.
lastspike The time of the last spike of the neuron.

The variable not _refractory is updated at every time step by checking the refractoriness condition — for a refrac-
toriness defined by a time period, this means comparing lastspike to the current time t. The not_refractory
variable is then used to implement the refractoriness behaviour. Specifically, the threshold condition is replaced by
threshold and not_refractory and differential equations that are marked as (unless refractory)
are multiplied by int (not_refractory) (so that they have the value O when the neuron is refractory).

This not_refractory variable is also available to the user to define more sophisticated refractoriness behaviour. For
example, the following code updates the w variable with a different time constant during refractoriness:

G = NeuronGroup(N, '''dv/dt = —(v + w)/ tau_v : 1 (unless refractory)
dw/dt = (-w / tau_active) *int (not_refractory) + (-w / tau_
—ref)* (1 - int (not_refractory)) : 1''",

threshold='v > 1', reset='v=0; w+=0.1", refractory=2+*ms)

3.7 Synapses

For Brian 1 users

Synapses is now the only class for defining synaptic interactions, it replaces Connection, STDP, etc. See the document
Synapses (Brian 1 —> 2 conversion) for details how to convert Brian 1 code.

* Defining synaptic models

* Creating synapses

* Accessing synaptic variables

* Delays

¢ Monitoring synaptic variables

* Synaptic connection/weight matrices

* Creating synapses with the generator syntax

e Summed variables
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Creating multi-synapses

Multiple pathways

Numerical integration

Technical notes

3.7.1 Defining synaptic models

The most simple synapse (adding a fixed amount to the target membrane potential on every spike) is described as follows:

w = 1*mV
S = Synapses (P, Q, on_pre='v += w')

This defines a set of synapses between NeuronGroup P and NeuronGroup Q. If the target group is not specified, it
is identical to the source group by default. The on_pre keyword defines what happens when a presynaptic spike arrives
at a synapse. In this case, the constant w is added to variable v. Because v is not defined as a synaptic variable, it is
assumed by default that it is a postsynaptic variable, defined in the target NeuronGroup Q. Note that this does not
create synapses (see Creating Synapses), only the synaptic models.

To define more complex models, models can be described as string equations, similar to the models specified in Neu—
ronGroup:

S = Synapses (P, Q, model='w : volt', on_pre='v += w')

The above specifies a parameter w, i.e. a synapse-specific weight. Note that to avoid confusion, synaptic variables cannot
have the same name as a pre- or post-synaptic variables.

Synapses can also specify code that should be executed whenever a postsynaptic spike occurs (keyword on_post) and
a fixed (pre-synaptic) delay for all synapses (keyword delay).

As shown above, variable names that are not referring to a synaptic variable are automatically understood to be post-
synaptic variables. To explicitly specify that a variable should be from a pre- or post-synaptic neuron, append the suffix
_preor_post. Analternative but equivalent formulation of the on_pre statement above would therefore be v_post
+= w.

Model syntax

The model follows exactly the same syntax as for NeuronGroup. There can be parameters (e.g. synaptic variable
w above), but there can also be named subexpressions and differential equations, describing the dynamics of synaptic
variables. In all cases, synaptic variables are created, one value per synapse.

Brian also automatically defines a number of synaptic variables that can be used in equations, on_pre and on_post
statements, as well as when assigning fo other synaptic variables:

i The index of the pre-synaptic source of a synapse.

j The index of the post-synaptic target of a synapse.

N The total number of synapses.

N_incoming The total number of synapses connected to the post-synaptic target of a synapse.
N_outgoing The total number of synapses outgoing from the pre-synaptic source of a synapse.

lastupdate The last time this synapse has applied an on_pre or on_post statement. There is normally no need
to refer to this variable explicitly, it is used to implement Event-driven updates (see below). It is only defined when
event-driven equations are used.
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Event-driven updates

By default, differential equations are integrated in a clock-driven fashion, as for a NeuronGroup. This is potentially
very time consuming, because all synapses are updated at every timestep and Brian will therefore emit a warning. If you
are sure about integrating the equations at every timestep (e.g. because you want to record the values continuously), then
you should specify the flag (clock—-driven), which will silence the warning. To ask Brian 2 to simulate differential
equations in an event-driven fashion use the flag (event-driven). A typical example is pre- and postsynaptic traces
in STDP:

model="""w:1
dApre/dt=-Apre/taupre : 1 (event-driven)
dApost/dt=-Apost/taupost : 1 (event—-driven)'"''

Here, Brian updates the value of Apre for a given synapse only when this synapse receives a spike, whether it is presynaptic
or postsynaptic. More precisely, the variables are updated every time either the on_pre or on_post code is called for
the synapse, so that the values are always up to date when these codes are executed.

Automatic event-driven updates are only possible for a subset of equations, in particular for one-dimensional linear equa-
tions. These equations must also be independent of the other ones, that is, a differential equation that is not event-driven
cannot depend on an event-driven equation (since the values are not continuously updated). In other cases, the user can
write event-driven code explicitly in the update codes (see below).

Pre and post codes

The on_pre code is executed at each synapse receiving a presynaptic spike. For example:

on_pre="vt+=w'

adds the value of synaptic variable w to postsynaptic variable v. Any sort of code can be executed. For example, the
following code defines stochastic synapses, with a synaptic weight w and transmission probability p:

S=Synapses (neuron_input, neurons, model="""w : 1
p . 1""",
on_pre="v+=w* (rand () <p) ")

The code means that w is added to v with probability p. The code may also include multiple lines.

Similarly, the on_post code is executed at each synapse where the postsynaptic neuron has fired a spike.

3.7.2 Creating synapses

Creating a Synapses instance does not create synapses, it only specifies their dynamics. The following command creates
a synapse between neuron 5 in the source group and neuron 10 in the target group:

S.connect (1=5, 3=10)

Multiple synaptic connections can be created in a single statement:

S.connect ()
S.connect (i=[1, 21, j=I[3, 41)
S.connect (i=numpy.arange (10), j=1)

The first statement connects all neuron pairs. The second statement creates synapses between neurons 1 and 3, and
between neurons 2 and 4. The third statement creates synapses between the first ten neurons in the source group and
neuron 1 in the target group.
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Conditional

One can also create synapses by giving (as a string) the condition for a pair of neurons i and j to be connected by a synapse,
e.g. you could connect neurons that are not very far apart with:

S.connect (condition="abs (i-7)<=5")

The string expressions can also refer to pre- or postsynaptic variables. This can be useful for example for spatial connec-
tivity: assuming that the pre- and postsynaptic groups have user-defined parameters x and vy, storing their location, the
following statement connects all cells in a 250 um radius:

’S.connect(condition:’sqrt((x_prefx_post>**2 + (y_pre-y_post)**2) < 250*umeter')

Probabilistic

Synapse creation can also be probabilistic by providing a p argument, providing the connection probability for each pair
of synapses:

S.connect (p=0.1)

This connects all neuron pairs with a probability of 10%. Probabilities can also be given as expressions, for example to
implement a connection probability that depends on distance:

S.connect (condition="1 != 9",
p='p_max*exp (- (x_pre—-x_post) **2+ (y_pre-y_post) **2 / (2* (125%*umeter) **2))")

If this statement is applied to a Synapses object that connects a group to itself, it prevents self-connections (i != j)
and connects cells with a probability that is modulated according to a 2-dimensional Gaussian of the distance between the
cells computed from the user-defined parameters x and vy, storing their location.

One-to-one

You can specify a mapping from i to any function f(i), e.g. the simplest way to give a 1-to-1 connection would be:

’S.connect(j:'i')

This mapping can also use a restricting condition with i f, e.g. to connect neurons 0, 2, 4, 6, ... to neurons 0, 1, 2, 3, ...
you could write:

’S.connect(j:'int(i/Z) if 1 $ 2 == 0")

The connections above describe the target indices j as a function of the source indices i. You can also apply the syntax
in the other direction, i.e. describe source indices i as a function of target indices j. For a 1-to-1 connection, this does
not change anything in most cases:

S.connect (i="73")

Note that there is a subtle difference between the two descriptions if the two groups do not have the same size: if the
source group has fewer neurons than the target group, then using j="'1" is possible (there is a target neuron for each
source neuron), but i="7"' would raise an error; the opposite is true if the source group is bigger than the target group.

The second example from above (neurons 0, 2, 4, ... to neurons 0, 1, 2, ...) can be adapted for the other direction, as
well, and is possibly more intuitive in this case:
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S.connect (i="3*2")

3.7.3 Accessing synaptic variables

Synaptic variables can be accessed in a similar way as NeuronGroup variables. They can be indexed with two in-
dexes, corresponding to the indexes of pre and postsynaptic neurons, or with string expressions (referring to i and j
as the pre-/post-synaptic indices, or to other state variables of the synapse or the connected neurons). Note that set-
ting a synaptic variable always refers to the synapses that currently exist, i.e. you have to set them after the relevant
Synapses.connect call.

Here are a few examples:

S.w[2, 5] = 1*nS

S.w[l, :] = 2*nS

S.w = 1*nS # all synapses assigned

S.w[2, 3] = (1*nS, 2*nS)

S.wlgroupl, group2] = " (l+cos(i-7J))*2*ns"
S.wl[:, :] = "rand()*nS'

S.w['abs (x_pre-x_post) < 250*umetre'] = 1*nS

Assignments can also refer to pre-defined variables, e.g. to normalize synaptic weights. For example, after the following
assignment the sum of weights of all synapses that a neuron receives is identical to 1, regardless of the number of synapses
it receives:

syn.w = '1.0/N_incoming'

Note that it is also possible to index synaptic variables with a single index (integer, slice, or array), but in this case synaptic
indices have to be provided.

The N_incoming and N_outgoing variables give access to the total number of incoming/outgoing synapses for a
neuron, but this access is given for each synapse. This is necessary to apply it to individual synapses as in the statement
to normalize synaptic weights mentioned above. To access these values per neuron instead, N_incoming post and
N_outgoing_pre can be used. Note that synaptic equations or on_pre/on_post statements should always refer
to N_incoming and N_outgoing without pre/post suffix.

Here’s a little example illustrating the use of these variables:

>>> groupl = NeuronGroup (3, '')

>>> group2 = NeuronGroup (3, '')

>>> syn = Synapses (groupl, group2)

>>> sgyn.connect (i=[0, 0, 1, 21, 3j=I[1, 2, 2, 2])

>>> print (syn.N_outgoing_pre) # for each presynaptic neuron
[2 1 1]

>>> print (syn.N_outgoing[:]) # same numbers, but indexed by synapse
[2 21 1]

>>> print (syn.N_incoming_post)

[0 1 3]

>>> print (syn.N_incoming[:])

[1 3 3 3]

Note that N_incoming post and N_outgoing_pre can contain zeros for neurons that do not have any incom-
ing respectively outgoing synapses. In contrast, N_incoming and N_outgoing will never contain zeros, because
unconnected neurons are not represented in the list of synapses.
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3.7.4 Delays

There is a special synaptic variable that is automatically created: delay. Itis the propagation delay from the presynaptic
neuron to the synapse, i.e., the presynaptic delay. This is just a convenience syntax for accessing the delay stored in the
presynaptic pathway: pre.delay. When there is a postsynaptic code (keyword post), the delay of the postsynaptic
pathway can be accessed as post .delay.

The delay variable(s) can be set and accessed in the same way as other synaptic variables. The same semantics as for
other synaptic variables apply, which means in particular that the delay is only set for the synapses that have been already
created with Synapses. connect. If you want to set a global delay for all synapses of a Synapses object, you can
directly specify that delay as part of the Synapses initializer:

synapses = Synapses (sources, targets, '...', on_pre='...', delay=1*ms)

When you use this syntax, you can still change the delay afterwards by setting synapses.delay, but you can only set
it to another scalar value. If you need different delays across synapses, do not use this syntax but instead set the delay
variable as any other synaptic variable (see above).

3.7.5 Monitoring synaptic variables

A StateMonitor object can be used to monitor synaptic variables. For example, the following statement creates a
monitor for variable w for the synapses 0 and 1:

M = StateMonitor (S, 'w', record=[0,1])

Note that these are synapse indices, not neuron indices. More convenient is to directly index the Synapses object, Brian
will automatically calculate the indices for you in this case:

M = StateMonitor (S, 'w', record=S[0, :1]) # all synapses originating from neuron 0
M = StateMonitor (S, 'w', record=S['i!=j']) # all synapses excluding autapses
M = StateMonitor (S, 'w', record=S['w>0']) # all synapses with non-zero weights (at.

—~this time)

You can also record a synaptic variable for all synapses by passing record=True.

The recorded traces can then be accessed in the usual way, again with the possibility to index the Synapses object:

plot (M.t / ms, M[S[0]].w / nS) # first synapse

plot (M.t / ms, M[S[0, :]].w / nS) # all synapses originating from neuron 0

plot (M.t / ms, M[S['w>0*nS']].w / nS) # all synapses with non-zero weights (at this.
—time)

Note (for users of Brian’s advanced standalone mode only): the use of the Synapses object for indexing and
record=True only work in the default runtime modes. In standalone mode (see Standalone code generation), the
synapses have not yet been created at this point, so Brian cannot calculate the indices.

The following topics are not essential for beginners.

3.7. Synapses 155




Brian 2 Documentation, Release 2.5.1

3.7.6 Synaptic connection/weight matrices

Brian does not directly support specifying synapses by using a matrix, you always have to use a “sparse” format, where
each connection is defined by its source and target indices. However, you can easily convert between the two formats.
Assuming you have a connection matrix C' of size N x M, where N is the number of presynaptic cells, and M the
number of postsynaptic cells, with each entry being 1 for a connection, and 0 otherwise. You can convert this matrix to
arrays of source and target indices, which you can then provide to Brian’s connect function:

C = ... # The connection matrix as a numpy array of 0's and 1's
sources, targets = C.nonzero()

synapses = Synapses(...)

synapses.connect (i=sources, j=targets)

Similarly, you can transform the flat array of values stored in a synapse into a matrix form. For example, to get a matrix
with all the weight values w, with NaN values where no synapse exists:

synapses = Synapses (source_group, target_group,
w : 1 # synaptic weight''', ...)
#
# Run e.g. a simulation with plasticity that changes the weights
run(...)

# Create a matrix to store the weights and fill it with NaN
W = np.full((len(source_group), len(target_group)), np.nan)
# Insert the values from the Synapses object
W([synapses.i[:], synapses.j[:]] = synapses.w|[:]

You can also set synapses given a fully connected weight matrix (as a 2D numpy array W):

synapses.wl[:] = W.flatten()

This works because the internal ordering of synapses is exactly the same as for a flattened matrix.

3.7.7 Creating synapses with the generator syntax

The most general way of specifying a connection is using the generator syntax, e.g. to connect neuron i to all neurons j
with O<=j<=i:

’S.connect(jz'k for k in range (0, 1i+1)")

There are several parts to this syntax. The general form is:

’jZ'EXPR for VAR in RANGE if COND'

or:

i="'EXPR for VAR in RANGE if COND'

Here EXPR can be any integer-valued expression. VAR is the name of the iteration variable (any name you like can be
specified here). The 1 £ COND part is optional and lets you give an additional condition that has to be true for the synapse
to be created. Finally, RANGE can be either:

1. a Python range, e.g. range (N) is the integers from 0 to N-1, range (A, B) is the integers from A to B-1,
range (low, high, step) is the integers from low to high-1 with steps of size step;
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2. arandom sample sample (N, p=0.1) gives a random sample of integers from 0 to N-1 with 10% probability
of each integer appearing in the sample. This can have extra arguments like range, e.g. sample (low, high,
step, p=0.1) will give each integer in range (Low, high, step) with probability 10%;

3. arandom sample sample (N, size=10) with a fixed size, in this example 10 values chosen (without replace-
ment) from the integers from 0 to N-1. As for the random sample based on a probability, the sample expression
can take additional arguments to sample from a restricted range.

If you try to create an invalid synapse (i.e. connecting neurons that are outside the correct range) then you will get an
error, e.g. you might like to try to do this to connect each neuron to its neighbours:

’S‘Connect(j:'i+(—1)**k for k in range(2)")

However this won’t work at for 1=0 it gives j=-1 which is invalid. There is an option to just skip any synapses that are
outside the valid range:

’S.connect(j:'i+(fl)**k for k in range(2)', skip_if_invalid=True)

You can also use this argument to deal with random samples of incorrect size, i.e. a negative size or a size bigger than the
total population size. With skip_if_invalid=True, no error will be raised and a size of O or the population size
will be used.

3.7.8 Summed variables

In many cases, the postsynaptic neuron has a variable that represents a sum of variables over all its synapses. This is called
a “summed variable”. An example is nonlinear synapses (e.g. NMDA):

neurons = NeuronGroup (1, model='"''dv/dt=(gtot-v)/ (10*ms) : 1
gtot : 1''")
S = Synapses (neuron_input, neurons,
model="""dg/dt=—a*g+b*x* (1-g) : 1

gtot_post = g : 1 (summed)
dx/dt=-c*x : 1
w : 1 # synaptic weight''', on_pre='x+=w')

Here, each synapse has a conductance g with nonlinear dynamics. The neuron’s total conductance is gt ot. The line
stating gtot_post = g : 1 (summed) specifies the link between the two: gt ot in the postsynaptic group is the
summer over all variables g of the corresponding synapses. What happens during the simulation is that at each time step,
presynaptic conductances are summed for each neuron and the result is copied to the variable gt ot. Another example
is gap junctions:

neurons = NeuronGroup (N, model='"'"'dv/dt=(vO-v+Igap)/tau : 1
Igap = 1''")
S=Synapses (neurons,model=""'w:1 # gap junction conductance
Igap_post = w* (v_pre-v_post): 1 (summed)''")

Here, Igap is the total gap junction current received by the postsynaptic neuron.

Note that you cannot target the same post-synaptic variable from more than one Synapses object. To work around this
restriction, use multiple post-synaptic variables that ar then summed up:

neurons = NeuronGroup (1, model='"''dv/dt=(gtot-v)/(10*ms) : 1
gtot = gtotl + gtot2: 1
gtotl : 1
gtot2 : 1''")

S1 = Synapses (neuron_input, neurons,

(continues on next page)
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(continued from previous page)

model="""'dg/dt=-al*g+bl*x* (1-g) : 1

gtotl_post = g : 1 (summed)

dx/dt=-cl*x : 1

w : 1 # synaptic weight

, on_pre="xt=w')

S2 = Synapses (neuron_input, neurons,
model="""dg/dt=-a2*g+b2*x* (1-g) : 1

gtot2_post = g : 1 (summed)

dx/dt=-c2*x : 1

w : 1 # synaptic weight

, on_pre="xt=w')

T

[N

3.7.9 Creating multi-synapses

It is also possible to create several synapses for a given pair of neurons:

S.connect (i=numpy.arange (10), j=1, n=3)

This is useful for example if one wants to have multiple synapses with different delays. To distinguish multiple variables
connecting the same pair of neurons in synaptic expressions and statements, you can create a variable storing the synapse
index with the multisynaptic_index keyword:

syn = Synapses (source_group, target_group, model='w : 1', on_pre='v += w',
multisynaptic_index="'synapse_number')

syn.connect (i=numpy.arange (10), j=1, n=3)

syn.delay = '"l*ms + synapse_number*2*ms'

This index can then be used to set/get synapse-specific values:

S.delay = ' (synapse_number + 1)*ms)’' # Set delays between 1 and 10ms
S.w['synapse_number<5'] = 0.5
S.w['synapse_number>=5"'] = 1

It also enables three-dimensional indexing, the following statement has the same effect as the last one above:

S.wl:, :, 5:] =1

3.7.10 Multiple pathways

It is possible to have multiple pathways with different update codes from the same presynaptic neuron group. This may
be interesting in cases when different operations must be applied at different times for the same presynaptic spike, e.g.
for a STDP rule that shifted in time. To do this, specify a dictionary of pathway names and codes:

on_pre={'pre_transmission': 'ge+t=w',
'pre_plasticity': '''w=clip (w+Apost,0,inf)
Apre+=dApre'''}

This creates two pathways with the given names (in fact, specifying on_pre=code is just a shorter syntax for
on_pre={'pre': code}) through which the delay variables can be accessed. The following statement, for ex-
ample, sets the delay of the synapse between the first neurons of the source and target groups in the pre_plasticity
pathway:
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S.pre_plasticity.delay[0,0] = 3*ms

As mentioned above, pre pathways are generally executed before post pathways. The order of execution of several
pre (or post) pathways with the same delay is however arbitrary, and simply based on the alphabetical ordering of their
names (i.e. pre_plasticity will be executed before pre_transmission). To explicitly specify the order, set
the order attribute of the pathway, e.g.:

S.pre_transmission.order = -2

will make sure that the pre_transmission code is executed before the pre_plasticity code in each time step.

Multiple pathways can also be useful for abstract models of synaptic currents, e.g. modelling them as rectangular currents:

synapses = Synapses (...,
on_pre={'up': 'I_syn_post += 1*nA',
'down': 'I_syn_post -= 1*nA'},
delay={'up': O*ms, 'down': 5*ms} # 5ms-wide rectangular current

)

3.7.11 Numerical integration
Differential equation flags

For the integration of differential equations, one can use the same keywords as for NeuronGroup.

Note: Declaring a subexpression as (constant over dt) means that it will be evaluated each timestep for all
synapses, potentially a very costly operation.

Explicit event-driven updates

As mentioned above, it is possible to write event-driven update code for the synaptic variables. This can also be done
manually, by defining the variable 1lastupdate and referring to the predefined variable t (current time). Here’s an
example for short-term plasticity:

S=Synapses (neuron_input, neuron,

model="""x : 1

u : 1

w : 1

lastupdate : second''',
on_pre="'""u=U+ (u-U) *exp (- (t-lastupdate) /tauf)

x=1+(x-1) *exp (- (t-lastupdate) /taud)
it+=w*u*x

x*=(1-u)

u+=U* (1-u)

lastupdate = t''")

By default, the pre pathway is executed before the post pathway (both are executed in the ' synapses' scheduling
slot, but the pre pathway has the order attribute -1, wheras the post pathway has order 1. See Scheduling for more
details).

Note that using the automatic event-driven approach from above is usually preferable, see Example: exam-
ple_1_COBA for an event—-driven implementation of short-term plasticity.
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3.7.12 Technical notes

How connection arguments are interpreted

If conditions for connecting neurons are combined with both the n (number of synapses to create) and the p (probability
of a synapse) keywords, they are interpreted in the following way:

For every pair i, j:
if condition(i, j) is fulfilled:
Evaluate p(i, j)
If uniform random number between 0 and 1 < p(i, j):
Create n(i, j) synapses for (i, j)
With the generator syntax j='EXPR for VAR in RANGE if COND' (where the RANGE can be a full range or a
random sample as described above), the interpretation is:

For every i:
for every VAR in RANGE:
j=EXPR
if COND:
Create n(i, j) synapses for (i, j)
Note that the arguments in RANGE can only depend on i and the values of presynaptic variables. Similarly, the expression

for 7, EXPR can depend on 1, presynaptic variables, and on the iteration variable VAR. The condition COND can depend
on anything (presynaptic and postsynaptic variables).

The generator syntax expressing i as a function of j is interpreted in the same way:

For every j:
for every VAR in RANGE:
i=EXPR
if COND:
Create n(i, j) synapses for (i, j)
Here, RANGE can only depend on j and postsynaptic variables, and EXPR can only depend on j, postsynaptic variables,
and on the iteration variable VAR.

With the 1-to-1 mapping syntax j='EXPR"' the interpretation is:

For every i:
j=EXPR
Create n(i, j) synapses for (i, j)

And finally, 1="EXPR" is interpreted as:

For every j:
i=EXPR
Create n(i, j) synapses for (i, j)
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Efficiency considerations

If you are connecting a single pair of neurons, the direct form connect (i=5, 3j=10) is the most efficient. However,
if you are connecting a number of neurons, it will usually be more efficient to construct an array of i and j values and
have a single connect (i=1i, j=3) call

For large connections, you should use one of the string based syntaxes where possible as this will generate compiled
low-level code that will be typically much faster than equivalent Python code.

If you are expecting a majority of pairs of neurons to be connected, then using the condition-based syntax is opti-
mal, e.g. connect (condition="i!=7j"'). However, if relatively few neurons are being connected then the 1-
to-1 mapping or generator syntax will be better. For 1-to-1, connect (j="'1i"') will always be faster than con-
nect (condition="'1i==7") because the latter has to evaluate all N**2 pairs (i, 3j) and check if the condition
is true, whereas the former only has to do O(N) operations.

One tricky problem is how to efficiently generate connectivity with a probability p (1, J) that depends on both i and
J» since this requires N*N computations even if the expected number of synapses is proportional to N. Some tricks for
getting around this are shown in Example: efficient_gaussian_connectivity.

3.8 Input stimuli

For Brian 1 users

See the document Inputs (Brian 1 —> 2 conversion) for details how to convert Brian 1 code.

* Poisson inputs

* Spike generation

* Explicit equations
o Timed arrays

* Regular operations

* More on Poisson inputs

* Arbitrary Python code (network operations)

There are various ways of providing “external” input to a network.

3.8.1 Poisson inputs

For generating spikes according to a Poisson point process, PoissonGroup can be used, e.g.:

= PoissonGroup (100, np.arange (100)*Hz + 10*Hz)
NeuronGroup (100, 'dv/dt -v / (10*ms) : 1")
Synapses (P, G, on_pre='v+=0.1")

connect (j="1")

P
G
S
S.

See More on Poisson inputs below for further information.

For simulations where the individually generated spikes are just used as a source of input to a neuron, the Poisson—
Input class provides a more efficient alternative: see Efficient Poisson inputs via Poissonlnput below for details.
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3.8.2 Spike generation

You can also generate an explicit list of spikes given via arrays using SpikeGeneratorGroup. This object behaves
just like a NeuronGroup in that you can connect it to other groups via a Synapses object, but you specify three bits
of information: N the number of neurons in the group; indices an array of the indices of the neurons that will fire; and
times an array of the same length as indices with the times that the neurons will fire a spike. The indices and
times arrays are matching, so for example indices=[0,2, 1] and times=[1*ms, 2*ms, 3*ms] means that
neuron 0 fires at time 1 ms, neuron 2 fires at 2 ms and neuron 1 fires at 3 ms. Example use:

indices = array ([0, 2, 11)
times = array([1, 2, 3])*ms
G = SpikeGeneratorGroup (3, indices, times)

The spikes that will be generated by SpikeGeneratorGroup can be changed between runs with the set_spikes
method. This can be useful if the input to a system should depend on its previous output or when running multiple trials
with different input:

inp = SpikeGeneratorGroup (N, indices, times)

G = NeuronGroup (N, '"...")

feedforward = Synapses(inp, G, '...', on_pre='...")
feedforward.connect (j="1")

recurrent = Synapses (G, G, '...', on_pre='...")
recurrent.connect ('i!=7j")

spike_mon = SpikeMonitor (G)

#

run (runtime)

# Replay the previous output of group G as input into the group
inp.set_spikes (spike_mon.i, spike_mon.t + runtime)
run (runtime)

3.8.3 Explicit equations

If the input can be explicitly expressed as a function of time (e.g. a sinusoidal input current), then its description can be
directly included in the equations of the respective group:

G = NeuronGroup (100, '''dv/dt = (-v + I)/(10*ms) : 1
rates : Hz # each neuron's input has a different rate
size : 1 # and a different amplitude
I = size*sin(2*pi*rates*t) : 1''")

G.rates = '"10*Hz + 1i*Hz'

G.size = ' (100-1)/100. + 0.1°

3.8.4 Timed arrays

If the time dependence of the input cannot be expressed in the equations in the way shown above, it is possible to create
a TimedArray. This acts as a function of time where the values at given time points are given explicitly. This can
be especially useful to describe non-continuous stimulation. For example, the following code defines a TimedArray
where stimulus blocks consist of a constant current of random strength for 30ms, followed by no stimulus for 20ms. Note
that in this particular example, numerical integration can use exact methods, since it can assume that the TimedArray
is a constant function of time during a single integration time step.

Note: The semantics of TimedArray changed slightly compared to Brian 1: for TimedArray ([x1, x2, ...]1,
dt=my_dt), the value x1 will be returned for all 0<=t <my_dt, x2 formy_dt <=t <2*my_dt etc., whereas Brianl
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returned x1 for 0<=t<0.5*my_dt, x2 for 0.5*my_dt<=t<1.5*my_dt, etc.

stimulus = TimedArray (np.hstack([[c, ¢, ¢, 0, 0]
for ¢ in np.random.rand(1000)71),
dt=10*ms)
G = NeuronGroup (100, 'dv/dt = (-v + stimulus(t))/(10*ms) : 1°',
threshold='v>1", reset='v=0")
G.v = '0.5*rand ()" # different initial values for the neurons

TimedArray can take a one-dimensional value array (as above) and therefore return the same value for all neurons or
it can take a two-dimensional array with time as the first and (neuron/synapse/...-)index as the second dimension.

In the following, this is used to implement shared noise between neurons, all the “even neurons” get the first noise instan-
tiation, all the “odd neurons” get the second:

runtime = 1*second

stimulus = TimedArray (np.random.rand (int (runtime/defaultclock.dt), 2),
dt=defaultclock.dt)

G = NeuronGroup (100, 'dv/dt = (-v + stimulus(t, i % 2))/(10*ms) : 1°',

threshold='v>1"', reset='v=0")

3.8.5 Regular operations

An alternative to specifying a stimulus in advance is to run explicitly specified code at certain points during a simulation.
This can be achieved with run_regularly (). One can think of these statements as equivalent to reset statements but
executed unconditionally (i.e. for all neurons) and possibly on a different clock than the rest of the group. The following
code changes the stimulus strength of half of the neurons (randomly chosen) to a new random value every 50ms. Note
that the statement uses logical expressions to have the values only updated for the chosen subset of neurons (where the
newly introduced auxiliary variable change equals 1):

G = NeuronGroup (100, '''dv/dt = (-v + I)/(10*ms) : 1
I : 1 # one stimulus per neuron''')
G.run_regularly ('''change = int (rand() < 0.5)
I = change* (rand()*2) + (l1-change)*I''',
dt=50*ms)

The following topics are not essential for beginners.
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3.8.6 More on Poisson inputs
Setting rates for Poisson inputs

PoissonGroup takes either a constant rate, an array of rates (one rate per neuron, as in the example above), or a string
expression evaluating to a rate as an argument.

If the given value for rates is a constant, then using PoissonGroup (N, rates) isequivalent to:

’NeuronGroup(N, 'rates : Hz', threshold='rand()<rates*dt')

and setting the group’s rates attribute.

If rates is a string, then this is equivalent to:

’NeuronGroup(N, 'rates = ... : Hz', threshold='rand()<rates*dt')

with the respective expression for the rates. This expression will be evaluated at every time step and therefore allows the
use of time-dependent rates, i.e. inhomogeneous Poisson processes. For example, the following code (see also Timed
arrays) uses a TimedArray to define the rates of a PoissonGroup as a function of time, resulting in five 100ms
blocks of 100 Hz stimulation, followed by 100ms of silence:

stimulus = TimedArray (np.tile([100., 0.], 5)*Hz, dt=100.*ms)
P = PoissonGroup(l, rates='stimulus(t)")

Note that, as can be seen in its equivalent NeuronGroup formulation, a PoissonGroup does not work for high rates
where more than one spike might fall into a single timestep. Use several units with lower rates in this case (e.g. use
PoissonGroup (10, 1000*Hz) instead of PoissonGroup (1, 10000*Hz)).

Efficient Poisson inputs via Poissonlnput

For simulations where the PoissonGroup is just used as a source of input to a neuron (i.e., the individually generated
spikes are not important, just their impact on the target cell), the PoissonTInput class provides a more efficient alter-
native: instead of generating spikes, PoissonInput directly updates a target variable based on the sum of independent
Poisson processes:

G = NeuronGroup (100, 'dv/dt = -v / (10*ms) : 1")
P PoissonInput (G, 'v', 100, 100*Hz, weight=0.1)

Each input of the PoissonInput is connected to all the neurons of the target Ne uronGroup but each neuron receives
independent realizations of the Poisson spike trains. Note that the PoissonInput class is however more restrictive
than PoissonGroup, it only allows for a constant rate across all neurons (but you can create several PoissonInput
objects, targeting different subgroups). It internally uses BinomialFunction which will draw a random number
each time step, either from a binomial distribution or from a normal distribution as an approximation to the binomial
distribution if np > 5 A n(1 — p) > 5, where n is the number of inputs and p = dt - rate the spiking probability for a
single input.
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3.8.7 Arbitrary Python code (network operations)

If none of the above techniques is general enough to fulfill the requirements of a simulation, Brian allows you to write
a NetworkOperation, an arbitrary Python function that is executed every time step (possible on a different clock
than the rest of the simulation). This function can do arbitrary operations, use conditional statements etc. and it will be
executed as it is (i.e. as pure Python code even if cython code generation is active). Note that one cannot use network
operations in combination with the C++ standalone mode. Network operations are particularly useful when some condition
or calculation depends on operations across neurons, which is currently not possible to express in abstract code. The
following code switches input on for a randomly chosen single neuron every 50 ms:

G = NeuronGroup (10, '''dv/dt = (-v + active*I)/(10*ms) : 1
I = sin(2*pi*100*Hz*t) : 1 (shared) #single input
active : 1 # will be set in the network operation''')

@network_operation (dt=50*ms)
def update_active():

index = np.random.randint (10) # index for the active neuron
G.active_ = 0 # the underscore switches off unit checking
G.active_[index] = 1

Note that the network operation (in the above example: update_active) has to be included in the Net work object
if one is constructed explicitly.

Only functions with zero or one arguments can be used as a Net workOperation. If the function has one argument
then it will be passed the current time t:

@network_operation (dt=1*ms)
def update_input (t) :
if £t>50*ms and t<100*ms:
pass # do something

Note that this is preferable to accessing defaultclock.t from within the function — if the network operation is not
running on the defaultclock itself, then that value is not guaranteed to be correct.

Instance methods can be used as network operations as well, however in this case they have to be constructed explicitly,
the network_operation () decorator cannot be used:

class Simulation (object) :
def _ init_ (self, data):
self.data = data
self.group = NeuronGroup(...)
self.network_op = NetworkOperation(self.update_func, dt=10*ms)
self.network = Network (self.group, self.network_op)

def update_func(self):
pass # do something

def run(self, runtime):
self.network.run (runtime)
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3.9 Recording during a simulation

For Brian 1 users

See the document Monitors (Brian 1 —> 2 conversion) for details how to convert Brian 1 code.

* Recording spikes

* Recording variables at spike time

* Recording variables continuously

* Recording population rates

* Getting all data

* Recording values for a subset of the run

* Freeing up memory in long recordings

* Recording random subsets of neurons

Recording variables during a simulation is done with “monitor” objects. Specifically, spikes are recorded with Spike-
Monitor, the time evolution of variables with StateMonitor and the firing rate of a population of neurons with
PopulationRateMonitor.

3.9.1 Recording spikes

To record spikes from a group G simply create a SpikeMonitor via SpikeMonitor (G). After the simulation, you
can access the attributes i, t, num_spikes and count of the monitor. The i and t attributes give the array of neuron
indices and times of the spikes. For example, if M.i==[0, 2, 1] andM.t==[1*ms, 2*ms, 3*ms] it means
that neuron O fired a spike at 1 ms, neuron 2 fired a spike at 2 ms, and neuron 1 fired a spike at 3 ms. Alternatively, you
can also call the spike_ trains method to get a dictionary mapping neuron indices to arrays of spike times, i.e. in
the above example, spike_trains = M.spike_trains(); spike_trains[1] would return array ([
3.]1) * msecond. The num_spikes attribute gives the total number of spikes recorded, and count is an array of
the length of the recorded group giving the total number of spikes recorded from each neuron.

Example:

G = NeuronGroup (N, model='...")
M = SpikeMonitor (G)

run (runtime)

plot (M.t/ms, M.i, '.")

If you are only interested in summary statistics but not the individual spikes, you can set the record argumenttoFalse.
You will then not have access to i and t but you can still get the count and the total number of spikes (num_spikes).
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3.9.2 Recording variables at spike time

By default, a SpikeMonitor only records the time of the spike and the index of the neuron that spiked. Sometimes it
can be useful to addtionaly record other variables, e.g. the membrane potential for models where the threshold is not at a
fixed value. This can be done by providing an extra variables argument, the recorded variable can then be accessed
as an attribute of the SpikeMonitor,e.g.

G = NeuronGroup (10, 'v : 1', threshold="rand()<100*Hz*dt")
G.run_regularly ('v = rand()")

M = SpikeMonitor (G, wvariables=['v'])

run (100*ms)

plot (M.t/ms, M.v, '.")

To conveniently access the values of a recorded variable for a single neuron, the SpikeMonitor. values method
can be used that returns a dictionary with the values for each neuron.:

G = NeuronGroup(N, '''dv/dt = (1-v)/(10*ms) : 1
v_th « 1''",

threshold='v > v_th',

# randomly change the threshold after a spike:

reset="""v=0

v_th = clip(v_th + rand()*0.2 - 0.1, 0.1, 0.9)''")

G.v_th = 0.5
spike_mon = SpikeMonitor (G, variables='v'")
run (1 *second)

v_values = spike_mon.values('v'")

print ('Threshold crossing values for neuron 0: '.format (v_values[0]))
hist (spike_mon.v, np.arange (0, 1, .1))

show ()

Note: Spikes are not the only events that can trigger recordings, see Custom events.

3.9.3 Recording variables continuously

To record how a variable evolves over time, use a StateMonitor, e.g. to record the variable v at every time step and
plot it for neuron 0:

G = NeuronGroup(...)
M = StateMonitor (G, 'v', record=True)
run(...)

plot (M.t/ms, M.v[0]/mV)

In general, you specify the group, variables and indices you want to record from. You specify the variables with a string
or list of strings, and the indices either as an array of indices or True to record all indices (but beware because this may
take a lot of memory).

After the simulation, you can access these variables as attributes of the monitor. They are 2D arrays with shape
(num_indices, num_times). The special attribute t is an array of length num_t imes with the corresponding
times at which the values were recorded.

Note that you can also use St ateMonitor torecord from Synapses where the indices are the synapse indices rather
than neuron indices.

In this example, we record two variables v and u, and record from indices 0, 10 and 100. Afterwards, we plot the recorded
values of v and u from neuron 0:
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G = NeuronGroup(...)
M = StateMonitor (G, ('v', 'u'), record=[0, 10, 100])
run(...)

plot (M.t/ms, M.v[0]/mV, label='v")
plot (M.t/ms, M.u[0]/mV, label='u')

There are two subtly different ways to get the values for specific neurons: you can either index the 2D array stored in
the attribute with the variable name (as in the example above) or you can index the monitor itself. The former will use
an index relative to the recorded neurons (e.g. M.v [1] will return the values for the second recorded neuron which is
the neuron with the index 10 whereas M. v [10] would raise an error because only three neurons have been recorded),
whereas the latter will use an absolute index corresponding to the recorded group (e.g. M[ 1] . v will raise an error because
the neuron with the index 1 has not been recorded and M[ 1 0] . v will return the values for the neuron with the index 10).
If all neurons have been recorded (e.g. with record=True) then both forms give the same result.

Note that for plotting all recorded values at once, you have to transpose the variable values:

plot (M.t/ms, M.v.T/mV)

Note: In contrast to Brian 1, the values are recorded at the beginning of a time step and not at the end (you can set
the when argument when creating a StateMonitor, details about scheduling can be found here: Custom progress
reporting).

3.9.4 Recording population rates

To record the time-varying firing rate of a population of neurons use PopulationRateMonitor. After the simulation
the monitor will have two attributes t and rate, the latter giving the firing rate at each time step corresponding to the
time in t. For example:

G = NeuronGroup(...)
M = PopulationRateMonitor (G)
run(...)

plot (M.t/ms, M.rate/Hz)

To get a smoother version of the rate, use PopulationRateMonitor.smooth_rate.

The following topics are not essential for beginners.
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3.9.5 Getting all data

Note that all monitors are implement as “groups”, so you can get all the stored values in a monitor with the get_states
method, which can be useful to dump all recorded data to disk, for example:

import pickle
group = NeuronGroup(...)

state_mon = StateMonitor (group, 'v', record=...)
run(...)

data = state_mon.get_states(['t', 'v'])

with open('state_mon.pickle', 'w') as f:

pickle.dump (data, f)

3.9.6 Recording values for a subset of the run

Monitors can be created and deleted between runs, e.g. to ignore the first second of your simulation in your recordings
you can do:

# Set up network without monitor

run (1 *second)

state_mon = StateMonitor(....)

run(...) # Continue run and record with the StateMonitor

Alternatively, you can set the monitor’s act i ve attribute as explained in the Scheduling section.

3.9.7 Freeing up memory in long recordings

Creating and deleting monitors can also be useful to free memory during a long recording. The following will do a
simulation run, dump the monitor data to disk, delete the monitor and finally continue the run with a new monitor:

import pickle
# Set up network

state_mon = StateMonitor(...)
run(...) # a long run
data = state_mon.get_states(...)

with open('first_part.data',
pickle.dump (data, f)
del state_mon

w') as f:

del data
state_mon = StateMonitor(...)
run(...) # another long run

Note that this technique cannot be applied in standalone mode.
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3.9.8 Recording random subsets of neurons

In large networks, you might only be interested in the activity of a random subset of neurons. While you can spec-
ify a record argument for a StateMonitor that allows you to select a subset of neurons, this is not possible for
SpikeMonitor/EventMonitor and PopulationRateMonitor. However, Brian allows you to record with
these monitors from a subset of neurons by using a subgroup:

group = NeuronGroup (1000, ...)
spike_mon = SpikeMonitor (group[:100]) # only record first 100 neurons

It might seem like a restriction that such a subgroup has to be contiguous, but the order of neurons in a group does not
have any meaning as such; in a randomly ordered group of neurons, any contiguous group of neurons can be considered
a random subset. If some aspects of your model do depend on the position of the neuron in a group (e.g. a ring model,
where neurons are connected based on their distance in the ring, or a model where initial values or parameters span a
range of values in a regular fashion), then this requires an extra step: instead of using the order of neurons in the group
directly, or depending on the neuron index i, create a new, shuffled, index variable as part of the model definition and
then depend on this index instead:

group = NeuronGroup (10000, ""'"....
index : integer (constant)''"')
indices = group.if[:]
np.random.shuffle (indices)
group.index = indices
# Then use 'index' in string expressions or use it as an index array
# for initial values/parameters defined as numpy arrays

If this solution is not feasible for some reason, there is another approach that works for a SpikeMoni-
tor/EventMonitor. You can add an additional flag to each neuron, stating whether it should be recorded or not.
Then, you define a new custom event that is identical to the event you are interested in, but additionally requires the flag
to be set. E.g. to only record the spikes of neurons with the to_record attribute set:

group = NeuronGroup(..., ""'...
to_record : boolean (constant)''',
threshold='..."', reset='...",
events={'recorded_spike': '... and to_record'})
group.to_record =
mon_events = EventMonitor (group, 'recorded_spike')

Note that this solution will evaluate the threshold condition for each neuron twice, and is therefore slightly less efficient.
There’s one additional caveat: you'll have to manually include and not_refractory in your events definition if
your neuron uses refractoriness. This is done automatically for the threshold condition, but not for any user-defined
events.

3.10 Running a simulation

For Brian 1 users

See the document Networks and clocks (Brian 1 —> 2 conversion) for details how to convert Brian 1 code.

e Networks I
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o Setting the simulation time step

* Progress reporting

* Continuing/repeating simulations
* Multiple magic runs

* Changing the simulation time step
* Profiling

o Scheduling

o Store/restore

To run a simulation, one either constructs a new Network object and calls its Net work . run method, or uses the
“magic” system and a plain run () call, collecting all the objects in the current namespace.

Note that Brian has several different ways of running the actual computations, and choosing the right one can make orders
of magnitude of difference in terms of simplicity and efficiency. See Computational methods and efficiency for more
details.

3.10.1 Networks

In most straightforward simulations, you do not have to explicitly create a Net work object but instead can simply call
run () to run a simulation. This is what is called the “magic” system, because Brian figures out automatically what you
want to do.

When calling run (), Brian runs the col Iect () function to gather all the objects in the current context. It will include
all the objects that are “visible”, i.e. that you could refer to with an explicit name:

G = NeuronGroup (10, 'dv/dt = -v / (10*ms) : 1',
threshold='v > 1', reset='v = 0")

S = Synapses (G, G, model='w:1', on_pre='vt+=w')

S.connect ('i!=3")

S.w = 'rand ()"

mon = SpikeMonitor (G)

run (10*ms) # will include G, S, mon

Note that it will not automatically include objects that are “hidden” in containers, e.g. if you store several monitors in a
list. Use an explicit Net work object in this case. It might be convenient to use the colIect () function when creating
the Network object in that case:

G = NeuronGroup (10, 'dv/dt = -v / (10*ms) : 17,
threshold='v > 1', reset='v = 0")
S = Synapses (G, G, model='w:1', on_pre='vt+=w")
S.connect ('i!=3")
S.w = 'rand ()"
monitors = [SpikeMonitor (G), StateMonitor (G, 'v', record=True) ]

# a simple run would not include the monitors
net = Network (collect ()) # automatically include G and S
net .add (monitors) # manually add the monitors

net.run (10*ms)
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3.10.2 Setting the simulation time step

To set the simulation time step for every simulated object, set the dt attribute of the defaultclock which is used by
all objects that do not explicitly specify a c1lock or dt value during construction:

’defaultclock.dt = 0.05*ms

If some objects should use a different clock (e.g. to record values with a StateMonitor not at every time step in a
long running simulation), you can provide a dt argument to the respective object:

’s_mon = StateMonitor (group, 'v', record=True, dt=1*ms)

To sum up:
e Setdefaultclock.dt to the time step that should be used by most (or all) of your objects.
» Set dt explicitly when creating objects that should use a different time step.

Behind the scenes, a new C1ock object will be created for each object that defines its own dt value.

3.10.3 Progress reporting

Especially for long simulations it is useful to get some feedback about the progress of the simulation. Brian offers a few
built-in options and an extensible system to report the progress of the simulation. In the Network. run or run ()
call, two arguments determine the output: report and report_period. When report is set to 'text' or
'stdout ', the progress will be printed to the standard output, when it is set to 'stderr"', it will be printed to
“standard error”. There will be output at the start and the end of the run, and during the run in report_period
intervals. It is also possible to do custom progress reporting.

3.10.4 Continuing/repeating simulations

To store the current state of the simulation, call store () (use the Net work. st ore method for a Net work). You
can store more than one snapshot of a system by providing a name for the snapshot; if store () is called without a
specified name, 'default' is used as the name. To restore the state, use restore ().

The following simple example shows how this system can be used to run several trials of an experiment:

# set up the network
G = NeuronGroup(...)

spike_monitor = SpikeMonitor (G)

# Snapshot the state
store ()

# Run the trials

spike_counts = []

for trial in range (3):
restore () # Restore the initial state
run(...)

# store the results
spike_counts.append (spike_monitor.count)

The following schematic shows how multiple snapshots can be used to run a network with a separate “train” and “test”
phase. After training, the test is run several times based on the trained network. The whole process of training and testing
is repeated several times as well:
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# set up the network

G = NeuronGroup (..., '""'"...
test_input : amp
.lll)
S = Synapses (..., '""...
plastic : boolean (shared)
.lll)
G.v =

0
Q
O
o]
B
M -
Q
&

# First snapshot at t=0
store('initialized")

# Run 3 complete trials

for trial in range (3):
# Simulate training phase
restore ('initialized")
S.plastic = True
run(...)

# Snapshot after learning
store('after_learning')

# Run 5 tests after the training
for test_number in range (5):
restore ('after_learning')
S.plastic = False # switch plasticity off
G.test_input = test_inputs[test_number]
# monitor the activity now
spike_mon = SpikeMonitor (G)
run(...)
# Do something with the result

#

The following topics are not essential for beginners.

3.10.5 Multiple magic runs
When you use more than a single run () statement, the magic system tries to detect which of the following two situations
applies:

1. You want to continue a previous simulation

2. You want to start a new simulation

For this, it uses the following heuristic: if a simulation consists only of objects that have not been run, it will start a new
simulation starting at time O (corresponding to the creation of a new Network object). If a simulation only consists of
objects that have been simulated in the previous run () call, it will continue that simulation at the previous time.
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If neither of these two situations apply, i.e., the network consists of a mix of previously run objects and new objects, an
error will be raised. If this is not a mistake but intended (e.g. when a new input source and synapses should be added to
a network at a later stage), use an explicit Net work object.

In these checks, “non-invalidating”  objects  (i.e. objects that have BrianObject.
invalidates_magic_network setto False) are ignored, e.g. creating new monitors is always possible.

Note that if you do not want to run an object for the complete duration of your simulation, you can create the object in
the beginning of your simulation and then set its act i ve attribute. For details, see the Scheduling section below.

3.10.6 Changing the simulation time step

You can change the simulation time step after objects have been created or even after a simulation has been run:

defaultclock.dt = 0.1*ms

# Set the network

#

run (initial_time)
defaultclock.dt = 0.01*ms
run (full_time - initial_time)

To change the time step between runs for objects that do not use the defaultclock, you cannot directly change their
dt attribute (which is read-only) but instead you have to change the dt of the clock attribute. If you want to change
the dt value of several objects at the same time (but not for all of them, i.e. when you cannot use defaultclock.dt)
then you might consider creating a C1ock object explicitly and then passing this clock to each object with the clock
keyword argument (instead of dt). This way, you can later change the dt for several objects at once by assigning a new
value to Clock. dt.

Note that a change of dt has to be compatible with the internal representation of clocks as an integer value (the number
of elapsed time steps). For example, you can simulate an object for 100ms with a time step of 0.1ms (i.e. for 1000 steps)
and then switch to a dt of 0.5ms, the time will then be internally represented as 200 steps. You cannot, however, switch
to a dt of 0.3ms, because 100ms are not an integer multiple of 0.3ms.

3.10.7 Profiling

To get an idea which parts of a simulation take the most time, Brian offers a basic profiling mechanism. If a simulation
is run with the profile=True keyword argument, it will collect information about the total simulation time for each
CodeObject. This information can then be retrieved from Network.profiling_1info, which contains a list of
(name, time) tuples. For convenience, a string summary can be obtained by calling profiling summary ()
(which will automatically refer to the current ‘magic” network). The following example shows profiling output after
running the CUBA example (where the neuronal state updates take up the most time):

>>> from brian2 import profiling_summary
>>> profiling_summary (show=5) # show the 5 objects that took the longest
Profiling summary

neurongroup_stateupdater 5.54 s 61.32 %
synapses_pre 1.39 s 15.39 %
synapses_J1_pre 1.03 s 11.37 %
spikemonitor 0.59 s 6.55 %
neurongroup_thresholder 0.33 s 3.66 %

If you use an explicit Net work object, you need to pass it to profiling_summary:
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>>> net = Network(...)
>>> profiling_summary (net, ...)

3.10.8 Scheduling

Every simulated object in Brian has three attributes that can be specified at object creation time: dt, when, and order.
The time step of the simulation is determined by dt, if it is specified, or otherwise by defaultclock.dt. Changing
this will therefore change the dt of all objects that don’t specify one. Alternatively, a clock object can be specified
directly, this can be useful if a clock should be shared between several objects — under most circumstances, however, a
user should not have to deal with the creation of C1ock objects and just define dt.

During a single time step, objects are updated in an order according first to their when argument’s position in the schedule.
This schedule is determined by Net work . schedule which is a list of strings, determining “execution slots” and their
order. It defaults to: ['start', 'groups', 'thresholds', 'synapses', 'resets', 'end'].In
addition to the names provided in the schedule, names such as before_thresholdsorafter_synapses canbe
used that are understood as slots in the respective positions. The default for the when attribute is a sensible value for
most objects (resets will happen in the reset slot, etc.) but sometimes it make sense to change it, e.g. if one would
like a StateMonitor, which by default records in the start slot, to record the membrane potential before a reset is
applied (otherwise no threshold crossings will be observed in the membrane potential traces).

Finally, if during a time step two objects fall in the same execution slot, they will be updated in ascending order according
to their order attribute, an integer number defaulting to 0. If two objects have the same when and order attribute
then they will be updated in an arbitrary but reproducible order (based on the lexicographical order of their names).

Note that objects that don’t do any computation by themselves but only act as a container for other objects (e.g. a Neu-—
ronGroup which contains a StateUpdater,aResetter anda Thresholder), don’t have any value for when,
but pass on the given values for dt and order to their containing objects.

If you want your simulation object to run only for a particular time period of the whole simulation, you can use the
active attribute. For example, this can be useful when you want a monitor to be active only for some time out of a long
simulation:

# Set up the network

#

monitor = SpikeMonitor(...)
monitor.active = False

run (long_time*seconds) # not recording
monitor.active = True

run (required_time*seconds) # recording

To see how the objects in a network are scheduled, you can use the scheduling summary () function:

>>> group = NeuronGroup (10, 'dv/dt = -v/(10*ms) : 1', threshold='v > 1',
C. reset='v = 0")
>>> mon = StateMonitor (group, 'v', record=True, dt=1*ms)
>>> scheduling_summary ()
object | part of | Clock.
—dt | when | order | active
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, I
R ——— o ——— o o
statemonitor (StateMonitor) | statemonitor (StateMonitor) | 1. ms (every.
—10 steps) | start | 0 | vyes
neurongroup_stateupdater (StateUpdater) | neurongroup (NeuronGroup) | 100. us.
— (every step) | groups | 0 | yes
neurongroup_thresholder (Thresholder) | neurongroup (NeuronGroup) | 100. us.
— (every step) | thresholds | 0 | yes

(continues on next page)
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(continued from previous page)

neurongroup_resetter (Resetter) | neurongroup (NeuronGroup) | 100. us.
— (every step) | resets | 0 | yes

As you can see in the output above, the St ateMonitor will only record the membrane potential every 10 time steps,
but when it does, it will do it at the start of the time step, before the numerical integration, the thresholding, and the reset
operation takes place.

Every new Network starts a simulation at time 0; Net work . t is a read-only attribute, to go back to a previous moment
in time (e.g. to do another trial of a simulation with a new noise instantiation) use the mechanism described below.

3.10.9 Store/restore

Note that Network. run, Network.store and Network.restore (or run (), store (), restore ()) are
the only way of affecting the time of the clocks. In contrast to Brianl, it is no longer necessary (nor possible) to directly
set the time of the clocks or call a reinit function.

The state of a network can also be stored on disk with the optional filename argument of Network.
storelstore (). This way, you can run the initial part of a simulation once, store it to disk, and then continue
from this state later. Note that the store ()/restore () mechanism does not re-create the network as such, you still
need to construct all the NeuronGroup, Synapses, StateMonitor, ... objects, restoring will only restore all the
state variable values (membrane potential, conductances, synaptic connections/weights/delays, ...). This restoration does
however restore the internal state of the objects as well, e.g. spikes that have not been delivered yet because of synaptic
delays will be delivered correctly.

3.11 Multicompartment models

For Brian 1 users

See the document Multicompartmental models (Brian 1 —> 2 conversion) for details how to convert Brian 1 code.

It is possible to create neuron models with a spatially extended morphology, using the SpatialNeuron class. A Spa—
tialNeuron is a single neuron with many compartments. Essentially, it works as a NeuronGroup where elements
are compartments instead of neurons.

A SpatialNeuron is specified by a morphology (see Creating a neuron morphology) and a set of equations for trans-
membrane currents (see Creating a spatially extended neuron).

3.11.1 Creating a neuron morphology

Schematic morphologies

Morphologies can be created combining geometrical objects:

soma = Soma (diameter=30*um)
cylinder = Cylinder (diameter=1*um, length=100*um, n=10)

The first statement creates a single iso-potential compartment (i.e. with no axial resistance within the compartment), with
its area calculated as the area of a sphere with the given diameter. The second one specifies a cylinder consisting of 10
compartments with identical diameter and the given total length.
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For more precise control over the geometry, you can specify the length and diameter of each individual compartment,
including the diameter at the start of the section (i.e. for n compartments: n length and n+1 diameter values) in a
Section object:

section = Section(diameter=[6, 5, 4, 3, 2, 1]1*um, length=[10, 10, 10, 5, 5]*um, n=5)

The individual compartments are modeled as truncated cones, changing the diameter linearly between the given diameters
over the length of the compartment. Note that the diameter argument specifies the values at the nodes between the
compartments, but accessing the diameter attribute of a Morphology object will return the diameter at the center
of the compartment (see the note below).

The following table summarizes the different options to create schematic morphologies (the black compartment before
the start of the section represents the parent compartment with diameter 15 um, not specified in the code below):

Example

Soma
# Soma always has a single.
—compartment

Soma (diameter=30*um)

Cylinder

# Each compartment has fixed.
—length and diameter

Cylinder (n=5, diameter=10*um, .
—~length=50*um)

Inuaan

# Length and diameter.

Section

—~individually defined for.

—each compartment (at start

# and end)

Section (n=5, diameter=[15, 5,.

—10, 5, 10, 5]1*um,
length=[10, 20, 5, 5,_

—10] *um)

pem

Note: For a Section, the diameter argument specifies the diameter berween the compartments (and at the begin-
ning/end of the first/last compartment). the corresponding values can therefore be later retrieved from the Morphology
via the start_diameter and end_diameter attributes. The diameter attribute of a Morphology does cor-
respond to the diameter at the midpoint of the compartment. Fora Cylinder, start_diameter, diameter, and
end_diameter are of course all identical.

The tree structure of a morphology is created by attaching Morphology objects together:

morpho = Soma (diameter=30*um)
morpho.axon = Cylinder (length=100*um, diameter=1*um, n=10)
morpho.dendrite = Cylinder (length=50*um, diameter=2*um, n=5)

These statements create a morphology consisting of a cylindrical axon and a dendrite attached to a spherical soma. Note
that the names axon and dendrite are arbitrary and chosen by the user. For example, the same morphology can be
created as follows:
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morpho = Soma (diameter=30*um)
morpho.output_process = Cylinder (length=100*um, diameter=1*um, n=10)
morpho.input_process = Cylinder (length=50*um, diameter=2*um, n=5)

The syntax is recursive, for example two sections can be added at the end of the dendrite as follows:

morpho.dendrite.branchl Cylinder (length=50*um, diameter=1*um, n=3)
morpho.dendrite.branch2 = Cylinder (length=50*um, diameter=1*um, n=3)

Equivalently, one can use an indexing syntax:

morpho['dendrite'] ['branchl'] = Cylinder (length=50*um, diameter=1*um, n=3)
morpho['dendrite'] ['branch2'] = Cylinder (length=50*um, diameter=1*um, n=3)

The names given to sections are completely up to the user. However, names that consist of a single digit (1 to 9) or the
letters L (for left) and R (for right) allow for a special short syntax: they can be joined together directly, without the needs
for dots (or dictionary syntax) and therefore allow to quickly navigate through the morphology tree (e.g. morpho.LRLLR
is equivalent to morpho.L.R.L.L.R). This short syntax can also be used to create trees:

>>> morpho = Soma (diameter=30*um)
>>> morpho.L = Cylinder (length=10*um, diameter=1*um, n=
>>> morpho.Ll = Cylinder (length=5*um, diameter=1*um, n=

>>> morpho.L2 Cylinder (length=5*um, diameter=1*um,
>>> morpho.L3 Cylinder (length=5%*um, diameter=1*um,
>>> morpho.R = Cylinder (length=10*um, diameter=1*um,
>>> morpho.RL = Cylinder (length=5*um, diameter=1*um,
>>> morpho.RR Cylinder (length=5%*um, diameter=1*um,

:5:5:3:“52:555
W wwwwww

The above instructions create a dendritic tree with two main sections, three sections attached to the first section and two
to the second. This can be verified with the Morphology. topology method:

>>> morpho.topology ()

() [root]

T———] .L
- .L.1
- .L.
- .L.3

- .R
T——— .R.L
T——— .R.R

Note that an expression such as morpho . L will always refer to the entire subtree. However, accessing the attributes (e.g.
diameter) will only return the values for the given section.

Note: To avoid ambiguities, do not use names for sections that can be interpreted in the abbreviated way detailed above.
For example, do not name a child section L1 (which will be interpreted as the first child of the child L)

The number of compartments in a section can be accessed with morpho.n (or morpho.L.n, etc.), the number
of total sections and compartments in a subtree can be accessed with morpho.total_sections and morpho.
total_compartments respectively.
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Adding coordinates

For plotting purposes, it can be useful to add coordinates to a Morphology that was created using the “schematic”
approach described above. This can be done by calling the generate_coordinates method on a morphology,
which will return an identical morphology but with additional 2D or 3D coordinates. By default, this method creates a
morphology according to a deterministic algorithm in 2D:

new_morpho = morpho.generate_coordinates()

150 . .

100+

50

y (e m)

501+

-100+

=150 =100 =50 0 50 100 150

-150
X (1 m)

To get more “realistic” morphologies, this function can also be used to create morphologies in 3D where the orientation
of each section differs from the orientation of the parent section by a random amount:

new_morpho = morpho.generate_coordinates (section_randomness=25)
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This algorithm will base the orientation of each section on the orientation of the parent section and then randomly perturb
this orientation. More precisely, the algorithm first chooses a random vector orthogonal to the orientation of the parent
section. Then, the section will be rotated around this orthogonal vector by a random angle, drawn from an exponential
distribution with the 3 parameter (in degrees) given by section_randomness. This S parameter specifies both
the mean and the standard deviation of the rotation angle. Note that no maximum rotation angle is enforced, values for
section_randomness should therefore be reasonably small (e.g. using a section_randomness of 45 would
already lead to a probability of ~14% that the section will be rotated by more than 90 degrees, therefore making the
section go “backwards”).

In addition, also the orientation of each compartment within a section can be randomly varied:

new_morpho = morpho.generate_coordinates (section_randomness=25,
compartment_randomness=15)

The algorithm is the same as the one presented above, but applied individually to each compartment within a section (still
based on the orientation on the parent section, not on the orientation of the previous compartment).

Complex morphologies

Morphologies can also be created from information about the compartment coordinates in 3D space. Such morphologies
can be loaded from a . swc file (a standard format for neuronal morphologies; for a large database of morphologies in
this format see http://neuromorpho.org):

morpho = Morphology.from_file('corticalcell.swc'")

To manually create a morphology from a list of points in a similar format to SWC files, see Morphology.
from_points.

Morphologies that are created in such a way will use standard names for the sections that allow for the short syntax shown
in the previous sections: if a section has one or two child sections, then they will be called L and R, otherwise they will
be numbered starting at 1.

Morphologies with coordinates can also be created section by section, following the same syntax as for “schematic”
morphologies:

soma = Soma (diameter=30*um, x=50*um, y=20%*um)
cylinder = Cylinder (n=10, x=[0, 100]*um, diameter=1*um)
section = Section (n=5,

x=[0, 10, 20, 30, 40, 50]*um,
y=[0, 10, 20, 30, 40, 50]*um,
z=[0, 10, 10, 10, 10, 10]*um,
diameter=[6, 5, 4, 3, 2, 1]*um)

Note that the x, y, z attributes of Morphology and SpatialNeuron will return the coordinates at the midpoint
of each compartment (as for all other attributes that vary over the length of a compartment, e.g. diameter or dis—
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tance), but during construction the coordinates refer to the start and end of the section (Cy1inder), respectively to
the coordinates of the nodes between the compartments (Sect ion).

A few additional remarks:

1. In the majority of simulations, coordinates are not used in the neuronal equations, therefore the coordinates are
purely for visualization purposes and do not affect the simulation results in any way.

2. Coordinate specification cannot be combined with length specification — lengths are automatically calculated from
the coordinates.

3. The coordinate specification can also be 1- or 2-dimensional (as in the first two examples above), the unspecified
coordinate will use 0 um.

4. All coordinates are interpreted relative to the parent compartment, i.e. the point (0 pm, 0 um, O pm) refers to
the end point of the previous compartment. Most of the time, the first element of the coordinate specification is
therefore 0 pm, to continue a section where the previous one ended. However, it can be convenient to use a value
different from O wm for sections connecting to the Soma to make them (visually) connect to a point on the sphere
surface instead of the center of the sphere.

3.11.2 Creating a spatially extended neuron

A SpatialNeuron is a spatially extended neuron. It is created by specifying the morphology as a Morphology
object, the equations for transmembrane currents, and optionally the specific membrane capacitance Cm and intracellular
resistivity Ri:

gl = le-4*siemens/cm**2

EL = -70*mV

egs = '"!'

Im=gL * (EL - v) : amp/meter**2

I : amp (point current)

neuron = SpatialNeuron (morphology=morpho, model=eqgs, Cm=1*uF/cm**2, Ri=100*ohm*cm)
neuron.v = EL + 10*mV

Several state variables are created automatically: the SpatialNeuron inherits all the geometrical variables of the
compartments (Length, diameter, area, volume), as well as the di stance variable that gives the distance to
the soma. For morphologies that use coordinates, the x, v and z variables are provided as well. Additionally, a state
variable Cm is created. It is initialized with the value given at construction, but it can be modified on a compartment per
compartment basis (which is useful to model myelinated axons). The membrane potential is stored in state variable v.

Note that for all variable values that vary across a compartment (e.g. distance, x, vy, z, v), the value that is reported
is the value at the midpoint of the compartment.

The key state variable, which must be specified at construction, is Im. It is the total transmembrane current, expressed in
units of current per area. This is a mandatory line in the definition of the model. The rest of the string description may
include other state variables (differential equations or subexpressions) or parameters, exactly as in NeuronGroup. At
every timestep, Brian integrates the state variables, calculates the transmembrane current at every point on the neuronal
morphology, and updates v using the transmembrane current and the diffusion current, which is calculated based on the
morphology and the intracellular resistivity. Note that the transmembrane current is a surfacic current, not the total current
in the compartment. This choice means that the model equations are independent of the number of compartments chosen
for the simulation. The space and time constants can obtained for any point of the neuron with the space_constant
respectively t ime_constant attributes:

1 = neuron.space_constant [0]
tau = neuron.time_constant [0]
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The calculation is based on the local total conductance (not just the leak conductance), therefore, it can potentially vary
during a simulation (e.g. decrease during an action potential). The reported value is only correct for compartments with
a cylindrical geometry, though, it does not give reasonable values for compartments with strongly varying diameter.

To inject a current I at a particular point (e.g. through an electrode or a synapse), this current must be divided by the
area of the compartment when inserted in the transmembrane current equation. This is done automatically when the flag
point current is specified, as in the example above. This flag can apply only to subexpressions or parameters with
amp units. Internally, the expression of the transmembrane current Im is simply augmented with +I/area. A current
can then be injected in the first compartment of the neuron (generally the soma) as follows:

neuron.I[0] = 1*nA

State variables of the SpatialNeuron include all the compartments of that neuron (including subtrees). Therefore,
the statement neuron.v = EL + 10*mV sets the membrane potential of the entire neuron at -60 mV.

Subtrees can be accessed by attribute (in the same way as in Morphology objects):

’neuron.axon.gNa = 10*gL

Note that the state variables correspond to the entire subtree, not just the main section. That is, if the axon had branches,
then the above statement would change gNa on the main section and all the sections in the subtree. To access the main
section only, use the attribute main:

’neuron.axon.main.gNa = 10*gL

A typical use case is when one wants to change parameter values at the soma only. For example, inserting an electrode
current at the soma is done as follows:

’neuron.main.I = 1*nA

A part of a section can be accessed as follows:

initial_segment = neuron.axon[10*um:50*um]

Finally, similar to the way that you can refer to a subset of neurons of a NeuronGroup, you can also index the Spa-—
tialNeuron object itself, e.g. to get a group representing only the first compartment of a cell (typically the soma),
you can use:

soma = neuron[0]

In the same way as for sections, you can also use slices, either with the indices of compartments, or with the distance from
the root:

first_compartments = neuron|:3]
first_compartments = neuron[0*um:30*um]

However, note that this is restricted to contiguous indices which most of the time means that all compartments indexed
in this way have to be part of the same section. Such indices can be acquired directly from the morphology:

axon = neuron[morpho.axon.indices([:]]

or, more concisely:

axon = neuron[morpho.axon]
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Synaptic inputs

There are two methods to have synapses on Spat ialNeuron. The first one to insert synaptic equations directly in the
neuron equations:

egs=

Im = gL * (EL - v) : amp/meter**2

Is = gs * (Es — v) : amp (point current)

dgs/dt = —-gs/taus : siemens

neuron = SpatialNeuron (morphology=morpho, model=eqgs, Cm=1*uF/cm**2, Ri=100*ohm*cm)

Note that, as for electrode stimulation, the synaptic current must be defined as a point current. Then we use a Synapses
object to connect a spike source to the neuron:

S = Synapses (stimulation, neuron, on_pre='gs += w')
S.connect (1=0, 3=50)
S.connect (i=1, 3=100)

This creates two synapses, on compartments 50 and 100. One can specify the compartment number with its spatial
position by indexing the morphology:

S.connect (1=0, j=morpho[25*um])
S.connect (i=1, j=morpho.axon[30*um])

In this method for creating synapses, there is a single value for the synaptic conductance in any compartment. This means
that it will fail if there are several synapses onto the same compartment and synaptic equations are nonlinear. The second
method, which works in such cases, is to have synaptic equations in the Synapses object:

egs="""
Im = gL * (EL - v) : amp/meter**2
Is = gs * (Es - v) : amp (point current)
gs : siemens
v
neuron = SpatialNeuron (morphology=morpho, model=eqgs, Cm=1 * uF / cm ** 2, Ri=100 *_
—ohm * cm)
S = Synapses (stimulation, neuron, model='''dg/dt = -g/taus : siemens
gs_post = g : siemens (summed)''',

on_pre='g += w')

Here each synapse (instead of each compartment) has an associated value g, and all values of g for each compartment
(i.e., all synapses targeting that compartment) are collected into the compartmental variable gs.

Detecting spikes

To detect and record spikes, we must specify a threshold condition, essentially in the same way as for a NeuronGroup:

neuron = SpatialNeuron (morphology=morpho, model=eqgs, threshold='v > 0*mV', refractory=
—'v > -10*mvV")

Here spikes are detected when the membrane potential v reaches 0 mV. Because there is generally no explicit reset in this
type of model (although it is possible to specify one), v remains above 0 mV for some time. To avoid detecting spikes
during this entire time, we specify a refractory period. In this case no spike is detected as long as v is greater than -10
mV. Another possibility could be:
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neuron = SpatialNeuron (morphology=morpho, model=eqgs, threshold='m > 0.5', refractory=
—'m > 0.4")

where m is the state variable for sodium channel activation (assuming this has been defined in the model). Here a spike is
detected when half of the sodium channels are open.

With the syntax above, spikes are detected in all compartments of the neuron. To detect them in a single compartment,
use the threshold_location keyword:

neuron = SpatialNeuron (morphology=morpho, model=eqgs, threshold='m > 0.5', threshold_
—location=30,
refractory="m > 0.4")

In this case, spikes are only detecting in compartment number 30. Reset then applies locally to that compartment (if a
reset statement is defined). Again the location of the threshold can be specified with spatial position:

neuron = SpatialNeuron (morphology=morpho, model=eqgs, threshold='m > 0.5',
threshold_location=morpho.axon[30*um],
refractory="m > 0.4")

Subgroups

In the same way that you can refer to a subset of neurons in a NeuronGroup, you can also refer to a subset of compart-
ments ina SpatialNeuron

3.12 Computational methods and efficiency

* Runtime code generation

 Standalone code generation

* Compiler settings

Brian has several different methods for running the computations in a simulation. The default mode is Runtime code
generation, which runs the simulation loop in Python but compiles and executes the modules doing the actual simulation
work (numerical integration, synaptic propagation, etc.) in a defined target language. Brian will select the best available
target language automatically. On Windows, to ensure that you get the advantages of compiled code, read the instructions
on installing a suitable compiler in Requirements for C++ code generation. Runtime mode has the advantage that you can
combine the computations performed by Brian with arbitrary Python code specified as Net workOperation.

The fact that the simulation is run in Python means that there is a (potentially big) overhead for each simulated time step.
An alternative is to run Brian in with Standalone code generation — this is in general faster (for certain types of simulations
much faster) but cannot be used for all kinds of simulations. To enable this mode, add the following line after your Brian
import, but before your simulation code:

set_device ('cpp_standalone')

For detailed control over the compilation process (both for runtime and standalone code generation), you can change the
Cleaning up after a run that are used.

The following topics are not essential for beginners.

184 Chapter 3. User’s guide



Brian 2 Documentation, Release 2.5.1

3.12.1 Runtime code generation

Code generation means that Brian takes the Python code and strings in your model and generates code in one of several
possible different languages which is then executed. The target language for this code generation process is set in the
codegen.target preference. By default, this preference is setto 'auto ', meaning that it will choose the compiled language
target if possible and fall back to Python otherwise (also raising a warning). The compiled language targetis ' cython'
which needs the Cython package in addition to a working C++ compiler. If you want to chose a code generation target
explicitly (e.g. because you want to get rid of the warning that only the Python fallback is available), set the preference
to "numpy"' or 'cython' at the beginning of your script:

from brian2 import *
prefs.codegen.target = 'numpy' # use the Python fallback

See Preferences for different ways of setting preferences.

Caching

When you run code with cython for the first time, it will take some time to compile the code. For short simulations,
this can make these targets to appear slow compared to the numpy target where such compilation is not necessary.
However, the compiled code is stored on disk and will be re-used for later runs, making these simulations start faster. If
you run many simulations with different code (e.g. Brian’s fest suite), this code can take quite a bit of space on the disk.
During the import of the brian?2 package, we check whether the size of the disk cache exceeds the value set by the
codegen.max_cache_dir_size preference (by default, 1GB) and display a message if this is the case. You can clear the disk
cache manually, or use the clear_cache function, e.g. clear_cache ('cython').

Note: If you run simulations on parallel on a machine using the Network File System, see this known issue.

3.12.2 Standalone code generation

Brian supports generating standalone code for multiple devices. In this mode, running a Brian script generates source
code in a project tree for the target device/language. This code can then be compiled and run on the device, and modified
if needed. At the moment, the only “device” supported is standalone C++ code. In some cases, the speed gains can be
impressive, in particular for smaller networks with complicated spike propagation rules (such as STDP).

To use the C++ standalone mode, you only have to make very small changes to your script. The exact change depends on
whether your script has only a single run () (or Network . run) call, or several of them:
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Single run call

At the beginning of the script, i.e. after the import statements, add:

set_device ('cpp_standalone')

The CPPStandaloneDevice.build function will be automatically called with default arguments right after the
run () call. If you need non-standard arguments then you can specify them as part of the set_device () call:

’set_device('cpp_standalone', directory='my_directory', debug=True)

Multiple run calls

At the beginning of the script, i.e. after the import statements, add:

’set_device('cppfstandalone', build_on_run=False)

After the last run () call, call device.build () explicitly:

’device.build(directoryZ'output', compile=True, run=True, debug=False)

The bui 1d function has several arguments to specify the output directory, whether or not to compile and run the project
after creating it and whether or not to compile it with debugging support or not.

Multiple builds

To run multiple full simulations (i.e. multiple device .bui1ld calls, not just multiple run () calls as discussed above),
you have to reinitialize the device again:

device.reinit ()
device.activate ()

Note that the device “forgets” about all previously set build options provided to set_device () (most importantly the
build_on_run option, but also e.g. the directory), you'll have to specify them as part of the Device.activate
call. Also,Device.activate willresetthe defaultclock,youll therefore have tosetits dt after the activate
call if you want to use a non-default value.

Limitations

Not all features of Brian will work with C++ standalone, in particular Python based network operations and some array
based syntax suchas S.w[0, :] = ... will not work. If possible, rewrite these using string based syntax and they
should work. Also note that since the Python code actually runs as normal, code that does something like this may not
behave as you would like:

results = []

for val in vals:
# set up a network
run ()
results.append(result)

The current C++ standalone code generation only works for a fixed number of run statements, not with loops. If you
need to do loops or other features not supported automatically, you can do so by inspecting the generated C++ source
code and modifying it, or by inserting code directly into the main loop as described below.
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Variables

In standalone mode, code will only be executed when the simulation is run (after the run () call by default, or after a call
to Device.build,if set_device () has been called with build_on_run set to False). This means that it is
not possible to access state variables and synaptic connection indices in the Python script doing the set up of the model.
For example, the following code would work fine in runtime mode, but raise a Not ImplementedError in standalone
mode:

neuron = NeuronGroup (10, 'v : volt')
neuron.v = '=-70*mV + rand()*10*mV"'
print (np.mean (neuron.v))

Sometimes, access is needed to make one variable depend on another variable for initialization. In such cases, it is often
possible to circumvent the issue by using initialization with string expressions for both variables. For example, to set the
initial membrane potential relative to a random leak reversal potential, the following code would work in runtime mode
but fail in standalone mode:

neuron = NeuronGroup (10, 'dv/dt = -g_L*(v - E_L)/tau : volt"')
neuron.E_L = '"-70*mV + rand()*10*mV' # E_L between -70mV and —-60mV
neuron.v = neuron.E_L # initial membrane potential equal to E_L

Instead, you can initialize the variable v with a string expression, which means that standalone will execute it during the
run when the value of E_L is available:

neuron = NeuronGroup (10, 'dv/dt = -g_L*(v - E_L)/tau : volt"')
neuron.E_L = '"-70*mV + rand()*10*mV"' # E_L between —-70mV and —-60mV
neuron.v = 'E_L' # works both in runtime and standalone mode

The same applies to synaptic indices. For example, if we want to set weights differently depending on the target index
of a synapse, the following would work in runtime mode but fail in standalone mode, since the synaptic indices have not
been determined yet:

neurons = NeuronGroup (10, '")

synapses = Synapses (neurons, neurons, 'w : 1")

synapses.connect (p=0.25)

# Set weights to low values when targetting first five neurons and to high values.
—otherwise

synapses.w[:, :5] = 0.1

synapses.wl[:, 5:] = 0

Again, this initialization can be replaced by string expressions, so that standalone mode can evaluate them in the generated
code after synapse creation:

neurons = NeuronGroup (10, '"")

synapses = Synapses (neurons, neurons, 'w : 1'")

synapses.connect (p=0.25)

# Set weights to low values when targetting first five neurons and to high values.
—otherwise

synapses.w['j < 5'] = 0.1

synapses.w['] >= 5'] = 0.9

Note that this limitation only applies if the variables or synapses have been initialized in ways that require the execution of
code. If instead they are initialized with concrete values, they can be accessed in Python code even in standalone mode:

neurons = NeuronGroup (10, 'v : volt')
neurons.v = —70*mV

(continues on next page)
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print (np.mean (neurons.v)) # works 1in standalone
synapses = Synapses (neurons, neurons, 'w : 1")
synapses.connect (i=[0, 2, 4, 6, 81, j=I[1, 3, 5, 7, 91)
# works as well, since synaptic indices are known
synapses.wl[:, :5] = 0.1

synapses.wl[:, 5:] = 0.9

In any case, state variables, synaptic indices, and monitored variables can be accessed using standard syntax after a run
(with a few exceptions, e.g. string expressions for indexing).

Multi-threading with OpenMP

Warning: OpenMP code has not yet been well tested and so may be inaccurate.

When using the C++ standalone mode, you have the opportunity to turn on multi-threading, if your C++ compiler is
compatible with OpenMP. By default, this option is turned off and only one thread is used. However, by changing the
preferences of the codegen.cpp_standalone object, you can turn it on. To do so, just add the following line in your python
script:

prefs.devices.cpp_standalone.openmp_threads = XX

XX should be a positive value representing the number of threads that will be used during the simulation. Note that the
speedup will strongly depend on the network, so there is no guarantee that the speedup will be linear as a function of the
number of threads. However, this is working fine for networks with not too small timestep (dt > 0.1ms), and results do
not depend on the number of threads used in the simulation.

Custom code injection

It is possible to insert custom code directly into the generated code of a standalone simulation using a Device’s in—
sert_code method:

device.insert_code (slot, code)

slot can be one of main, before_start, after_start, before_network_run, af-
ter_network_run, before_end and after_end, which determines where the code is inserted. code
is the code in the Device’s language. Here is an example for the C++ Standalone Device:

device.insert_code('main', "'’
cout << "Testing direct insertion of code." << endl;

lvl)

For the C++ Standalone Device, all code is inserted into the main . cpp file, here into the main slot, referring to the
main simulation function. This is a simplified version of this function in main. cpp:

int main(int argc, char **argv)
{
// before_start
brian_start();
// after_start

{{main_lines}}

(continues on next page)
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// before_end
brian_end();
// after_end

return 0;

{{main_lines}} is replaced in the generated code with the actual simulation. Code inserted into the main slot
will be placed within the { {main_lines}}. brian_start allocates and initializes all arrays needed during the
simulation and brian_end writes the results to disc and deallocates memory. Within the { {main_lines}}, all
Network objects defined in Python are created and run. Code inserted in the before/after_network_run slot
will be inserted around the Net work . run call, which starts the time loop. Note that if your Python script has multiple
Network objects or multiple run calls, code in the before/after_network_run slot will be inserted around
each Network . run call in the generated code.

The code injection mechanism has been used for benchmarking experiments, see e.g. here for Brian2CUDA benchmarks
or here for Brian2GeNN benchmarks.

Customizing the build process

In standalone mode, a standard “make file” is used to orchestrate the compilation and linking. To pro-
vide additional arguments to the make command (respectively nmake on Windows), you can use the de-
vices.cpp_standalone.extra_make_args_unix or devices.cpp_standalone.extra_make_args_windows preference.  On
Linux, this preference is by default set to ['—j '] to enable parallel compilation. Note that you can also use these
arguments to overwrite variables in the make file, e.g. to use clang instead of the default gcc compiler:

prefs.devices.cpp_standalone.extra_make_args_unix += ['CC=clang++']

Cleaning up after a run

Standalone simulations store all results of a simulation (final state variable values and values stored in monitors) to disk.
These results can take up quite significant amount of space, and you might therefore want to delete these results when you
do not need them anymore. You can do this by using the device’s de 1 et e method:

device.delete ()

Be aware that deleting the data will make all access to state variables fail, including the access to values in monitors. You
should therefore only delete the data after doing all analysis/plotting that you are interested in.

By default, this function will delete both the generated code and the data, i.e. the full project directory. If you want to
keep the code (which typically takes up little space compared to the results), exclude it from the deletion:

’device.delete(codezFalse)

If you added any additional files to the project directory manually, these will not be deleted by default. To delete the full
directory regardless of its content, use the force option:

’device.delete(force:True)

Note: When you initialize state variables with concrete values (and not with a string expression), they will be stored to
disk from your Python script and loaded from disk at the beginning of the standalone run. Since these values are necessary
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for the compiled binary file to run, they are considered “code” from the point of view of the delete function.

3.12.3 Compiler settings

If using C++ code generation (either via cython or standalone), the compiler settings can make a big difference for the
speed of the simulation. By default, Brian uses a set of compiler settings that switches on various optimizations and
compiles for running on the same architecture where the code is compiled. This allows the compiler to make use of as
many advanced instructions as possible, but reduces portability of the generated executable (which is not usually an issue).

If there are any issues with these compiler settings, for example because you are using an older version of the C++
compiler or because you want to run the generated code on a different architecture, you can change the settings by
manually specifying the codegen.cpp.extra_compile_args preference (or by using codegen.cpp.extra_compile_args_gcc or
codegen.cpp.extra_compile_args_msvc if you want to specify the settings for either compiler only).

3.13 Converting from integrated form to ODEs

Brian requires models to be expressed as systems of first order ordinary differential equations, and the effect of spikes
to be expressed as (possibly delayed) one-off changes. However, many neuron models are given in integrated form. For
example, one form of the Spike Response Model (SRM; Gerstner and Kistler 2002) is defined as

V()= wi» PSP(t—t;) + View
% ti

where V (¢) is the membrane potential, Vi is the rest potential, w; is the synaptic weight of synapse i, and ¢; are the
timings of the spikes coming from synapse ¢, and PSP is a postsynaptic potential function.

An example PSP is the a-function PSP(t) = (t/7)e~*/7. For this function, we could rewrite the equation above in the
following ODE form:

dv
TE:Vrest—V‘Fg
dg _

Ta — Y

g <+ g + w; upon spike from synapse ¢

This could then be written in Brian as:

egs = T
dv/dt = (V_rest-V+g)/tau : 1
dg/dt = -g/tau : 1

G = NeuronGroup (N, egs, ...)

S = Synapses(G, G, 'w : 1', on_pre='g += w')

To see that these two formulations are the same, you first solve the problem for the case of a single synapse and a single
spike at time 0. The initial conditions at ¢ = 0 will be V' (0) = Vies, g(0) = w.

To solve these equations, let’s substitute s = t/7 and take derivatives with respect to s instead of ¢, set u = V' — Viey,
and assume w = 1. This gives us the equations ' = g — u, ¢’ = —g with initial conditions «(0) = 0, g(0) = 1. At this
point, you can either consult a textbook on solving linear systems of differential equations, or just plug this into Wolfram
Alpha to get the solution g(s) = e~ %, u(s) = se™* which is equal to the PSP given above.

Now we use the linearity of these differential equations to see that it also works when w # 0 and for summing over
multiple spikes at different times.
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In general, to convert from integrated form to ODE form, see Kohn and Worgotter (1998), Sanchez-Montafids (2001),
and Jahnke et al. (1999). However, for some simple and widely used types of synapses, use the list below. In this list,
we assume synapses are postsynaptic potentials, but you can replace V' (t) with a current or conductance for postsynaptic
currents or conductances. In each case, we give the Brian code with unitless variables, where eqgs is the differential
equations for the target NeuronGroup, and on_pre is the argument to Synapses.

Exponential synapse V () = e~%/7:

T

egs =
dv/dt = -V/tau : 1
on_pre = 'V += w'

Alpha synapse V () = (t/7)e"!/":

eqSZYIV
dv/dt = (x-V)/tau : 1
dx/dt = -x/tau 1
LI B |

on_pre = 'x += w'

V (t) reaches a maximum value of w/e at time ¢ = 7.

Biexponential synapse V (t) = —2— (e="/™ — e7/72):

T2—T1
egs = v
dv/dt = ((tau_2 / tau_1l) ** (tau_l / (tau_2 - tau_l1l))*x-V)/tau_1 : 1
dx/dt = —-x/tau_2 1
Tra
on_pre = 'x += w'

T2—T1 T1

V() reaches a maximum value of w at time ¢ = —*™2- log (7—2>

STDP

The weight update equation of the standard STDP is also often stated in an integrated form and can be converted to an
ODE form. This is covered in Tutorial 2.

3.14 How to plot functions

Models of synapses and neurons are typically composed of a series of functions. To affirm their correct implementation
a plot is often helpful.

Consider the following membrane voltage dependent Hodgkin-Huxley equations:

from brian2 import *
VI = —-63*mV

eqg = Equations ("""

alpha_m = 0.32* (mV**-1) *4*mV/exprel ((13*mV-v+VT) / (4*mV) ) /ms : Hz
beta_m = 0.28* (mV**-1) *5*mV/exprel ( (v-VI-40*mV) / (5*mV)) /ms : Hz
alpha_h = 0.128*%exp ((17*mV-v+VT)/ (18*mV))/ms : Hz

beta_h = 4./ (1l+exp ( (40*mV-v+VT) / (5*mV))) /ms : Hz

alpha_n = 0.032* (mV**-1) *5*mV/exprel ( (15*mV-v+VT)/ (5*mV) ) /ms : Hz
beta_n = .5%exp ((10*mV-v+VT)/ (40*mV)) /ms : Hz

tau_n = 1/ (alpha_n + beta_n) : second

(continues on next page)
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tau_m = 1/ (alpha_m + beta_m) : second
tau_h 1/ (alpha_h + beta_h) : second

nn vl)

We can do the following to plot them as function of membrane voltage:

group = NeuronGroup (100, eqg + Equations("v : volt"))
group.v = np.linspace(-100, 100, len(group)) *mV
plt.plot (group.v/mV, group.tau_m[:]/ms, label="tau_m")
plt.plot (group.v/mV, group.tau_n[:]/ms, label="tau_n")
plt.plot (group.v/mV, group.tau_h[:]/ms, label="tau_h")
plt.xlabel ('membrane voltage / mV')

plt.ylabel('tau / ms")

plt.legend()
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Note that we need to use [:] for the tau_. .. equations, because Brian cannot resolve the external constant VT

otherwise. Alternatively we could have supplied the constant in the namespace of the NeuronGroup, see Namespaces.
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CHAPTER
FOUR

ADVANCED GUIDE

This section has additional information on details not covered in the User’s guide.

4.1 Functions

* Default functions

» User-provided functions

Python code generation

Other code generation targets

Dependencies between functions

Additional compiler arguments

Arrays vs. scalar values in user-provided functions

Functions with context-dependent return values

Additional namespace

Data types

External source files

All equations, expressions and statements in Brian can make use of mathematical functions. However, functions have
to be prepared for use with Brian for two reasons: 1) Brian is strict about checking the consistency of units, therefore
every function has to specify how it deals with units; 2) functions need to be implemented differently for different code
generation targets.

Brian provides a number of default functions that are already prepared for use with numpy and C++ and also provides a
mechanism for preparing new functions for use (see below).
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4.1.1 Default functions

The following functions (stored in the DEFAULT_FUNCTIONS dictionary) are ready for use:

¢ Random numbers: rand (random numbers drawn from a uniform distribution between 0 and 1), randn (random
numbers drawn from the standard normal distribution, i.e. with mean 0 and standard deviation 1), and poisson
(discrete random numbers from a Poisson distribution with rate parameter \)

* Elementary functions: sqrt, exp, 1og, Logl0, abs, sign

¢ Trigonometric functions: sin, cos, tan, sinh, cosh, tanh, arcsin, arccos, arctan

* Functions for improved numerical accuracy: expml (calculates exp (x) — 1, more accurate for x close to 0),
loglp (calculates 1og (1 + x), more accurate for x close to 0), and exprel (calculates (exp (x) — 1)/x,
more accurate for x close to 0, and returning 1.0 instead of NaN for x == 0

 General utility functions: c1ip, floor, ceil

Brian also provides a special purpose function int, which can be used to convert an expression or variable into an integer
value. This is especially useful for boolean values (which will be converted into O or 1), for example to have a conditional
evaluation as part of an equation or statement which sometimes allows to circumvent the lack of an i f statement. For
example, the following reset statement resets the variable v to either v_r1 or v_r2, depending on the value of w: 'v
= v_rl * int(w <= 0.5) + v_r2 * int(w > 0.5)"

Finally, the function timestep is a function that takes a time and the length of a time step as an input and returns an
integer corresponding to the respective time step. The advantage of using this function over a simple division is that it
slightly shifts the time before dividing to avoid floating point issues. This function is used as part of the Refractoriness
mechanism.

4.1.2 User-provided functions
Python code generation

If a function is only used in contexts that use Python code generation, preparing a function for use with Brian only means
specifying its units. The simplest way to do this is to use the check_units () decorator:

@check_units (xl=meter, yl=meter, x2=meter, y2=meter, result=meter)
def distance(x1, v1, x2, y2):
return sqgrt ((x1 - x2)**2 + (yl1 - y2)**2)

Another option is to wrap the function in a Funct i on object:

def distance(xl1l, vy1, x2, vy2):
return sqrt ((x1 - x2)**2 + (yl1l - y2)**2)
# wrap the distance function
distance = Function(distance, arg_units=[meter, meter, meter, meter],
return_unit=meter)

The use of Brian’s unit system has the benefit of checking the consistency of units for every operation but at the expense
of performance. Consider the following function, for example:

@check_units (I=amp, result=Hz)
def piecewise_linear (I):
return clip((I-1*nA) * 50*Hz/nA, 0*Hz, 100*Hz)

When Brian runs a simulation, the state variables are stored and passed around without units for performance reasons.
If the above function is used, however, Brian adds units to its input argument so that the operations inside the function
do not fail with dimension mismatches. Accordingly, units are removed from the return value so that the function output
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can be used with the rest of the code. For better performance, Brian can alter the namespace of the function when it is
executed as part of the simulation and remove all the units, then pass values without units to the function. In the above
example, this means making the symbol nA refer to 1e-9 and Hz to 1. To use this mechanism, add the decorator
implementation () withthe discard_units keyword:

@implementation ('numpy', discard_units=True)
@check_units (I=amp, result=Hz)
def piecewise_linear (I):

return clip((I-1*nA) * 50*Hz/nA, 0*Hz, 100*Hz)

Note that the use of the function outside of simulation runs is not affected, i.e. using piecewise_linear still requires
a current in Ampere and returns a rate in Hertz. The discard_units mechanism does not work in all cases, e.g. it
does not work if the function refers to units as brian?2 .na instead of na, if it uses imports inside the function (e.g.
from brian2 import nA),etc. The discard_units can also be switched on for all functions without having
to use the implementation () decorator by setting the codegen.runtime.numpy.discard_units preference.

Other code generation targets

To make a function available for other code generation targets (e.g. C++), implementations for these targets have to be
added. This can be achieved using the implementation () decorator. The form of the code (e.g. a simple string or a
dictionary of strings) necessary is target-dependent, for C++ both options are allowed, a simple string will be interpreted
as filling the ' support_code ' block. Note that ' cpp' is used to provide C++ implementations. An implementation
for the C++ target could look like this:

@implementation('cpp', '''
double piecewise_linear (double I) {
if (I < le-9)
return 0;
if (I > 3e-9)
return 100;
return (I/l1le-9 - 1) * 50;
i
)
@check_units (I=amp, result=Hz)
def piecewise_linear (I):
return clip((I-1*nA) * 50*Hz/nA, 0*Hz, 100*Hz)

Alternatively, FunctionImplementation objects can be added to the Function object.

The same sort of approach as for C++ works for Cython using the 'cython' target. The example above would look
like this:

@implementation('cython', '''
cdef double piecewise_linear (double 1I):
if I<le-9:
return 0.0
elif I>3e-9:
return 100.0
return (I/le-9-1)*50
)
@check_units (I=amp, result=Hz)
def piecewise_linear(I):
return clip((I-1*nA) * 50*Hz/nA, 0*Hz, 100*Hz)
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Dependencies between functions

The code generation mechanism for user-defined functions only adds the source code for a function when it is necessary.
If a user-defined function refers to another function in its source code, it therefore has to explicitly state this dependency
so that the code of the dependency is added as well:

@implementation('cpp', """
double rectified_linear (double x)
{
return clip(x, 0, INFINITY);
}VY"
dependencies={'clip': DEFAULT_FUNCTIONS['clip']l}
)
@check_units (x=1, result=1)
def rectified_linear (x):
return np.clip(x, 0, np.inf)

Note: The dependency mechanism is unnecessary for the numpy code generation target, since functions are defined as
actual Python functions and not as code given in a string.

Additional compiler arguments

If the code for a function needs additional compiler options to work, e.g. to link to an external library, these options can
be provided as keyword arguments to the @implementation decorator. E.g. to link C++ code to the foo library
which is stored in the directory /usr/local/foo, use:

@implementation('cpp', '...',
libraries=['foo'], library_dirs=['/usr/local/foo'])

These arguments can also be used to refer to external source files, see below. Equivalent arguments can also be set as
global Preferences in which case they apply to all code and not only to code referring to the respective function. Note
that in C++ standalone mode, all files are compiled together, and therefore the additional compiler arguments provided
to functions are always combined with the preferences into a common set of settings that is applied to all code.

The list of currently supported additional arguments (for further explications, see the respective Preferences and the Python
documentation of the distutils.core.Extension class):

keyword C++ standalone | Cython
headers v

sources v v
define_macros Ve X
libraries v v
include_dirs v v
library_dirs v v
runtime_library_dirs | Vv v
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Arrays vs. scalar values in user-provided functions

Equations, expressions and abstract code statements are always implicitly referring to all the neurons ina NeuronGroup,
all the synapses in a Synapses object, etc. Therefore, function calls also apply to more than a single value. The way in
which this is handled differs between code generation targets that support vectorized expressions (e.g. the numpy target)
and targets that don’t (e.g. the cpp_standalone mode). If the code generation target supports vectorized expressions,
it will receive an array of values. For example, in the piecewise_1linear example above, the argument I will be an
array of values and the function returns an array of values. For code generation without support for vectorized expressions,
all code will be executed in a loop (over neurons, over synapses, ...), the function will therefore be called several times
with a single value each time.

In both cases, the function will only receive the “relevant” values, meaning that if for example a function is evaluated as
part of a reset statement, it will only receive values for the neurons that just spiked.

Functions with context-dependent return values

When using the numpy target, functions have to return an array of values (e.g. one value for each neuron). In some cases,
the number of values to return cannot be deduced from the function’s arguments. Most importantly, this is the case for
random numbers: a call to rand () has to return one value for each neuron if it is part of a neuron’s equations, but only
one value for each neuron that spiked during the time step if it is part of the reset statement. Such function are said to “auto
vectorise”, which means that their implementation receives an additional array argument _vectorisation_idx;the
length of this array determines the number of values the function should return. This argument is also provided to functions
for other code generation targets, but in these cases it is a single value (e.g. the index of the neuron), and is currently
ignored. To enable this property on a user-defined function, you’ll currently have to manually create a Funct i on object:

def exponential_rand(l, _vectorisation_idx):
"'"'"Generate a number from an exponential distribution using inverse
transform sampling'''

uniform = np.random.rand(len(_vectorisation_idx))
return - (1/1) *np.log(l - uniform)
exponential_rand = Function (exponential_rand, arg_units=[1], return_unit=1,

stateless=False, auto_vectorise=True)

Implementations for other code generation targets can then be added using the add_implementation mechanism:

cpp_code = '"'
double exponential_rand(double 1, int _vectorisation_idx)
{
double uniform = rand(_vectorisation_idx);
return -(1/1)*log (1 — uniform);
}
exponential_rand.implementations.add_implementation('cpp', cpp_code,
dependencies={'rand': DEFAULT_
< FUNCTIONS['rand'],
'log': DEFAULT_
—FUNCTIONS['log']})

Note that by referring to the rand function, the new random number generator will automatically generate reproducible
random numbers if the seed () function is use to set its seed. Restoring the random number state with restore ()
will have the expected effect as well.
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Additional namespace

Some functions need additional data to compute a result, e.g. a TimedArray needs access to the underlying array.
For the numpy target, a function can simply use a reference to an object defined outside the function, there is no need
to explicitly pass values in a namespace. For the other code language targets, values can be passed in the namespace
argument of the implementation () decorator or the add_implementation method. The namespace values
are then accessible in the function code under the given name, prefixed with _namespace. Note that this mecha-
nism should only be used for numpy arrays or general objects (e.g. function references to call Python functions from
Cython code). Scalar values should be directly included in the function code, by using a “dynamic implemention” (see
add_dynamic_implementation).

See TimedArray and BinomialFunction for examples that use this mechanism.
Data types
By default, functions are assumed to take any type of argument, and return a floating point value. If you want to put a

restriction on the type of an argument, or specify that the return type should be something other than float, either declare
itasa Function (and see its documentation on specifying types) or use the declare_ types () decorator, e.g.:

@check_units (a=1, b=1, result=1)
@declare_types (a='integer', result='highest')
def f(a, b):

return a*b

This is potentially important if you have functions that return integer or boolean values, because Brian’s code generation
optimisation step will make some potentially incorrect simplifications if it assumes that the return type is floating point.

External source files

Code for functions can also be provided via external files in the target language. This can be especially useful for linking
to existing code without having to include it a second time in the Python script. For C++-based code generation targets
(i.e. the C++ standalone mode), the external code should be in a file that is provided as an argument to the sources
keyword, together with a header file whose name is provided to headers (see the note for the codegen.cpp.headers
preference about the necessary format). Since the main simulation code is compiled and executed in a different directory,
you should also point the compiler towards the directory of the header file via the include_dirs keyword. For the
same reason, use an absolute path for the source file. For example, the piecewise_1inear function from above can
be implemented with external files as follows:

//file: piecewise_linear.h
double piecewise_linear (double);

//file: piecewise_linear.cpp
double piecewise_linear (double I) {
if (I < 1e-9)
return 0O;
if (I > 3e-9)
return 100;
return (I/1e-9 - 1) * 50;

# Python script

# Get the absolute directory of this Python script, the C++ files are

(continues on next page)
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(continued from previous page)

# expected to be stored alongside of it
import os
current_dir = os.path.abspath(os.path.dirname( file ))

@implementation('cpp', '// all code in piecewise_linear.cpp',

sources=[os.path.join (current_dir,
'piecewise_linear.cpp')l],

headers=["'"piecewise_linear.h"'],
include_dirs=[current_dir])

@check_units (I=amp, result=Hz)

def piecewise_linear(I):

return clip((I-1*nA) * 50*Hz/nA, O0*Hz, 100*Hz)

For Cython, the process is very similar (see the Cython documentation for general information). The name of the header
file does not need to be specified, it is expected to have the same name as the source file (except for the . pxd extension).
The source and header files will be automatically copied to the cache directory where Cython files are compiled, they
therefore have to be imported as top-level modules, regardless of whether the executed Python code is itself in a package
or module.

A Cython equivalent of above’s C++ example can be written as:

# file: piecewise_linear.pxd
cdef double piecewise_linear (double)

# file: piecewise_linear.pyx
cdef double piecewise_linear (double I):
if I<le-9:
return 0.0
elif I>3e-9:
return 100.0
return (I/1e-9-1)*50

# Python script

# Get the absolute directory of this Python script, the Cython files
# are expected to be stored alongside of it

import os

current_dir = os.path.abspath(os.path.dirname( file_ ))

@implementation('cython',
'from piecewise_linear cimport piecewise_linear',
sources=[os.path.join (current_dir,
'piecewise_linear.pyx')])
@check_units (I=amp, result=Hz)
def piecewise_linear(I):
return clip((I-1*nA) * 50*Hz/nA, O0*Hz, 100*Hz)
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4.2 Preferences

Brian has a system of global preferences that affect how certain objects behave. These can be set either in scripts by using
the pre £s object or in a file. Each preference looks like codegen. cpp.compiler,i.e. dotted names.

4.2.1 Accessing and setting preferences

Preferences can be accessed and set either keyword-based or attribute-based. The following are equivalent:

prefs['codegen.cpp.compiler'] = 'unix'
prefs.codegen.cpp.compiler = 'unix'

Using the attribute-based form can be particulary useful for interactive work, e.g. in ipython, as it offers autocompletion
and documentation. In ipython, prefs.codegen.cpp? would display a docstring with all the preferences available
in the codegen . cpp category.

4.2.2 Preference files
Preferences are stored in a hierarchy of files, with the following order (each step overrides the values in the previous step
but no error is raised if one is missing):

¢ The user default are stored in ~/ .brian/user_preferences (which works on Windows as well as Linux).
The ~ symbol refers to the user directory.

e The file brian_preferences in the current directory.

The preference files are of the following form:

a.b.c =1

# Comment line
[al]

b.d = 2

[a.b]

b.e = 3

This would set preferences a.b.c=1,a.b.d=2and a.b.e=3.

[logging]

# What log level to use for the log written to the console.
#
# Has to be one of CRITICAL, ERROR, WARNING, INFO, DEBUG or DIAGNOSTIC.

console_log_level = "INFO'

# Whether to delete the log and script file on exit.

#

# If set to ''True'  (the default), log files (and the copy of the main

# script) will be deleted after the brian process has exited, unless an

# uncaught exception occurred. If set to "~ "False ', all log files will be
# kept.

(continues on next page)
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delete_log_on_exit = True

# Whether to display a text for uncaught errors, mentioning the location
# of the log file, the mailing list and the github issues.

#

# Defaults to ' "True' '

display_brian_error_message = True

Whether to log to a file or not.

#
#
# If set to " "True ' (the default), logging information will be written
# to a file. The log level can be set via the ‘logging.file_log_level"
# preference.

file_log = True

# What log level to use for the log written to the log file.

#

# In case file logging is activated (see 'logging.file_log'), which log
# level should be used for logging. Has to be one of CRITICAL, ERROR,

# WARNING, INFO, DEBUG or DIAGNOSTIC.

file_log_level = 'DEBUG'
The maximum size for the debug log before it will be rotated.

If set to any value "> 0, the debug log will be rotated once

this size is reached. Rotating the log means that the old debug log
will be moved into a file in the same directory but with suffix ~ ".1""°
and the a new log file will be created with the same pathname as the
original file. Only one backup is kept; if a file with suffix ~ ".1"'°
already exists when rotating, it will be overwritten.

If set to "0, no log rotation will be applied.

The default setting rotates the log file after 10MB.
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file_log_max_size = 10000000
Whether to save a copy of the script that is run.

#

#

# If set to " 'True' (the default), a copy of the currently run script

# is saved to a temporary location. It is deleted after a successful

# run (unless 'logging.delete_log_on_exit' 1is "~ "False'') but is kept after
# an uncaught exception occured. This can be helpful for debugging,

# in particular when several simulations are running in parallel.

save_script = True
Whether or not to redirect stdout/stderr to null at certain places.

This silences a lot of annoying compiler output, but will also hide
error messages making it harder to debug problems. You can always
temporarily switch it off when debugging. If

‘logging.std _redirection_to_file' 1is set to "~ 'True ' as well, then the
output is saved to a file and if an error occurs the name of this file

#
#
#
#
#
#
#
# will be printed.

(continues on next page)
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std_redirection = True
Whether to redirect stdout/stderr to a file.

If both "'logging.std_redirection’ ' and this preference are set to
‘‘True' ', all standard output/error (most importantly output from

the compiler) will be stored in files and if an error occurs the name
of this file will be printed. If "logging.std_redirection’ is " True '
and this preference is '~ 'False' ', then all standard output/error will
be completely suppressed, i.e. neither be displayed nor stored in a
file.

The value of this preference is ignore if “logging.std_redirection’ 1is

#
#
#
#
#
#
#
#
#
#
#
# set to ' "False'’

std_redirection_to_file = True

[codegen.cpp]

# Compiler to use (uses default if empty).

# Should be " ''unix''' or " 'msvc''’

#

# To specify a specific compiler binary on unix systems, set the 'CXX ' environment
# variable instead.

compiler = "'

# List of macros to define; each macro is defined using a 2-tuple,

# where 'value' is either the string to define it to or None to

# define it without a particular value (equivalent of "#define

# FOO" in source or —-DFOO on Unix C compiler command line).

define_macros = []

# Extra arguments to pass to compiler (if None, use either
# ' ‘extra_compile_args_gcc' = or ' ‘extra_compile_args_msvc ).

extra_compile_args = None

# Extra compile arguments to pass to GCC compiler

(continues on next page)
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extra_compile_args_gcc = ['-w', '-03', '-ffast-math', '-fno-finite-math-only', '-
—march=native', '-std=c++11'"]

# Extra compile arguments to pass to MSVC compiler (the default
# ' /arch: ' flag is determined based on the processor architecture)

extra_compile_args_msvc = ['/Ox', '"/w', '', '/MP']

# Any extra platform- and compiler-specific information to use when
# linking object files together.

extra_link_args = []

# A list of strings specifying header files to use when compiling the

# code. The list might look like ["<vector>","'my_header'"]. Note that
# the header strings need to be in a form than can be pasted at the end
# of a #include statement in the C++ code.

headers = []

Include directories to use.

The default value is ' ‘Sprefix/include’’ (or " ‘Sprefix/Library/include’’
on Windows), where ' Sprefix’’ 1is Python's site-specific directory
prefix as returned by ‘sys.prefix . This will make compilation use
library files installed into a conda environment.
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include_dirs = ['/path/to/your/Python/environment/include']
# List of library names (not filenames or paths) to link against.
libraries = []

# List of directories to search for C/C++ libraries at link time.

# The default value is ' Sprefix/1ib’' (or ' ‘Sprefix/Library/lib’"

# on Windows), where " Sprefix'' is Python's site-specific directory
# prefix as returned by ‘sys.prefix’. This will make compilation use
# library files installed into a conda environment.

library_dirs = ['/path/to/your/Python/environment/lib"']

# MSVC architecture name (or use system architectue by default).

#

# Could take values such as x86, amdé4, etc.

msvc_architecture = "'

# Location of the MSVC command line tool (or search for best by default).
msvc_vars_location = ''

# List of directories to search for C/C++ libraries at run time.

# The default value is ' 'Sprefix/lib’ " (not used on Windows), where

# " Sprefix' ' 1is Python's site-specific directory prefix as returned by
#

#

‘sys.prefix’. This will make compilation use library files installed
into a conda environment.

(continues on next page)
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runtime_library_dirs = ['/path/to/your/Python/environment/1lib"]

[codegen.generators.cpp]

# Adds code to flush denormals to zero.

#

# The code is gcc and architecture specific, so may not compile on all
# platforms. The code, for reference is::

#

# #define CSR_FLUSH_TO_ZERO (1 << 15)

# unsigned csr = __builtin_ia32_stmxcsr();

# csr |= CSR_FLUSH_TO_ZERO;

# _ _builtin_ia32 ldmxcsr(csr);

#

# Found at “<http://stackoverflow.com/questions/2487653/avoiding-denormal-values-in-c>

- _

flush_denormals = False

# The keyword used for the given compiler to declare pointers as restricted.
#

# This keyword is different on different compilers, the default works for

# gcc and MSVS.

restrict_keyword = '__ _restrict'

[GSL]
# Set path to directory containing GSL header files (gsl_odeiv2.h etc.)
# If this directory is already in Python's include (e.g. because of conda.

—installation), this path can be set to None.

directory = None

[codegen.runtime.numpy]

# Whether to change the namespace of user-specifed functions to remove
# units.

(continues on next page)
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discard_units = False

[codegen.runtime.cython]

# Location of the cache directory for Cython files. By default,
# will be stored in a " 'brian_extensions'  subdirectory

# where Cython inline stores its temporary files

# (the result of ' “get_cython_cache_dir() ).

cache_dir = None

# Whether to delete source files after compiling. The Cython

# source files can take a significant amount of disk space, and
# are not used anymore when the compiled library file exists.

# They are therefore deleted by default, but keeping them around
# can be useful for debugging.

delete_source_files = True

# Whether to use a lock file to prevent simultaneous write access
# to cython .pyx and .so files.

multiprocess_safe = True

[codegen]

# Whether to pull out scalar expressions out of the statements, so that

# they are only evaluated once instead of once for every neuron/synapse/...
# Can be switched off, e.g. because it complicates the code (and the same
# optimisation is already performed by the compiler) or because the

# code generation target does not deal well with it. Defaults to ~True '

loop_invariant_optimisations = True

# The size of a directory (in MB) with cached code for Cython that triggers a warning.
# Set to 0 to never get a warning.

max_cache_dir_size = 1000

# Default target for the evaluation of string expressions (e.g. when

# indexing state variables). Should normally not be changed from the

# default numpy target, because the overhead of compiling code 1is not
# worth the speed gain for simple expressions.

#

# Accepts the same arguments as ' codegen.target' , except for "' 'auto''’
string_expression_target = 'numpy'

# Default target for code generation.

(continues on next page)
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#

# Can be a string, in which case it should be one of:

#

# * " lauto'' ' the default, automatically chose the best code generation

# target available.

# * ' 'cython''', uses the Cython package to generate C++ code. Needs a

# working installation of Cython and a C++ compiler.

# * " 'numpy' " works on all platforms and doesn't need a C compiler but

# is often less efficient.

#

# Or it can be a ~"CodeObject ' class.

target = 'auto'

# ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
# Network preferences

# _______________________________________________________________________________

[core.network]

# Default schedule used for networks that
# don't specify a schedule.

default_schedule = ['start', 'groups', 'thresholds', 'synapses', 'resets',6 'end']
# _______________________________________________________________________________
# C++ standalone preferences

# ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

[devices.cpp_standalone]

# Additional flags to pass to the GNU make command on Linux/0S-X.
# Defaults to "-3j" for parallel compilation.

extra_make_args_unix = ['—-7"]

# Additional flags to pass to the nmake command on Windows. By default, no
# additional flags are passed.

extra_make_args_windows = []

# The make command used to compile the standalone project. Defaults to the
# standard GNU make commane "make".

make_cmd_unix = 'make'

# DEPRECATED. Previously used to chose the strategy to parallelize the
# solution of the three tridiagonal systems for multicompartmental
# neurons. Now, 1its value is ignored.

openmp_spatialneuron_strategy = None

# The number of threads to use if OpenMP is turned on. By default, this value is set.
—~to 0 and the C++ code

# 1s generated without any reference to OpenMP. If greater than 0, then the.
—corresponding number of threads

# are used to launch the simulation.

(continues on next page)
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openmp_threads = 0

# The command used to run the compiled standalone project. Defaults to executing

# the compiled binary with "./main". Must be a single binary as string or a list
# of command arguments (e.g. ["./binary", "—--key", "value']).
run_cmd_unix = './main'

# Dictionary of environment variables and their values that will be set
# during the execution of the standalone code.

run_environment_variables = {'LD_BIND_NOW': '"1'}

[core]

# Default dtype for all arrays of scalars (state variables, weights, etc.).
default_float_dtype = float64

# Default dtype for all arrays of integer scalars.

default_integer_dtype = int32

# Whether to raise an error for outdated dependencies (' True' ') or just
# a warning (' "False ).

outdated_dependency_error = True

[legacy]

Whether to use the semantics for checking the refractoriness condition
that were in place up until (including) version 2.1.2. In that
implementation, refractory periods that were multiples of dt could lead
to a varying number of refractory timesteps due to the nature of
floating point comparisons). This preference is only provided for exact
reproducibility of previously obtained results, new simulations should
use the improved mechanism which uses a more robust mechanism to
convert refractoriness into timesteps. Defaults to " "False '
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refractory_timing = False
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4.2.3 List of preferences

Brian itself defines the following preferences (including their default values):

GSL

Directory containing GSL code

GSL.directory = None Set path to directory containing GSL header files (gsl_odeiv2.h etc.) If this directory is
already 