
Brian 2 Documentation
Release 2.5.1

Brian authors

Jun 23, 2022

CONTENTS

1 Introduction 3
1.1 Installation . 3
1.2 Running Brian scripts . 7
1.3 Release notes . 8
1.4 Changes for Brian 1 users . 43
1.5 Known issues . 74
1.6 Support . 76
1.7 Compatibility and reproducibility . 77
1.8 Contributor Covenant Code of Conduct . 79

2 Tutorials 81
2.1 Introduction to Brian part 1: Neurons . 81
2.2 Introduction to Brian part 2: Synapses . 99
2.3 Introduction to Brian part 3: Simulations . 115

3 User’s guide 131
3.1 Importing Brian . 131
3.2 Physical units . 132
3.3 Models and neuron groups . 135
3.4 Numerical integration . 141
3.5 Equations . 143
3.6 Refractoriness . 148
3.7 Synapses . 150
3.8 Input stimuli . 161
3.9 Recording during a simulation . 166
3.10 Running a simulation . 170
3.11 Multicompartment models . 176
3.12 Computational methods and efficiency . 184
3.13 Converting from integrated form to ODEs . 190
3.14 How to plot functions . 191

4 Advanced guide 193
4.1 Functions . 193
4.2 Preferences . 200
4.3 Logging . 213
4.4 Namespaces . 214
4.5 Custom progress reporting . 215
4.6 Random numbers . 217
4.7 Custom events . 218
4.8 State update . 221

i

4.9 How Brian works . 223
4.10 Interfacing with external code . 224

5 Examples 225
5.1 Example: COBAHH . 225
5.2 Example: CUBA . 227
5.3 Example: IF_curve_Hodgkin_Huxley . 229
5.4 Example: IF_curve_LIF . 231
5.5 Example: adaptive_threshold . 232
5.6 Example: non_reliability . 234
5.7 Example: phase_locking . 235
5.8 Example: reliability . 237
5.9 advanced . 238
5.10 compartmental . 267
5.11 frompapers . 285
5.12 frompapers/Brette_2012 . 380
5.13 frompapers/Stimberg_et_al_2018 . 391
5.14 multiprocessing . 427
5.15 standalone . 432
5.16 synapses . 439

6 brian2 package 461
6.1 check_cache function . 461
6.2 clear_cache function . 461
6.3 _version module . 462
6.4 hears module . 462
6.5 numpy_ module . 465
6.6 only module . 465
6.7 Subpackages . 466

7 Developer’s guide 823
7.1 Coding guidelines . 823
7.2 Units . 837
7.3 Equations and namespaces . 840
7.4 Variables and indices . 841
7.5 Preferences system . 844
7.6 Adding support for new functions . 851
7.7 Code generation . 852
7.8 Standalone implementation . 859
7.9 Multi-threading with OpenMP . 859
7.10 Devices . 863
7.11 Solving differential equations with the GNU Scientific Library . 864

8 Indices and tables 869

Bibliography 871

Python Module Index 873

Index 875

ii

Brian 2 Documentation, Release 2.5.1

Brian is a simulator for spiking neural networks. It is written in the Python programming language and is available on
almost all platforms. We believe that a simulator should not only save the time of processors, but also the time of scientists.
Brian is therefore designed to be easy to learn and use, highly flexible and easily extensible.
To get an idea of what writing a simulation in Brian looks like, take a look at a simple example, or run our interactive
demo.
Once you have a feel for what is involved in using Brian, we recommend you start by following the installation instructions,
and in case you are new to the Python programming language, having a look at Running Brian scripts. Then, go through
the tutorials, and finally read the User Guide.
While reading the documentation, you will see the names of certain functions and classes are highlighted links (e.g.
PoissonGroup). Clicking on these will take you to the “reference documentation”. This section is automatically
generated from the code, and includes complete and very detailed information, so for new users we recommend sticking
to the User’s guide. However, there is one feature that may be useful for all users. If you click on, for example, Pois-
sonGroup, and scroll down to the bottom, you’ll get a list of all the example code that uses PoissonGroup. This is
available for each class or method, and can be helpful in understanding how a feature works.
Finally, if you’re having problems, please do let us know at our support page.
Please note that all interactions (e.g. via the mailing list or on github) should adhere to our Code of Conduct.
Contents:

CONTENTS 1

http://mybinder.org/v2/gh/brian-team/brian2-binder/master?filepath=demo.ipynb
http://mybinder.org/v2/gh/brian-team/brian2-binder/master?filepath=demo.ipynb

Brian 2 Documentation, Release 2.5.1

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

1.1 Installation

• Standard install

• Updating an existing installation

• Requirements for C++ code generation

• Development install

• Installing other useful packages

• Testing Brian

There are various ways to install Brian, and we recommend that you chose the installation method that they are most
familiar with and use for other Python packages. If you do not yet have Python installed on your system (in particular on
Windows machines), you can install Python and all of Brian’s dependencies via the Anaconda distribution. You can then
install Brian with the conda package manager as detailed below.

Note: You need to have access to Python >=3.7 (see Brian’s support policy). In particular, Brian no longer supports
Python 2 (the last version to support Python 2 was Brian 2.3). All provided Python packages also require a 64 bit system,
but every desktop or laptop machine built in the last 10 years (and even most older machines) is 64 bit compatible.

If you are relying on Python packages for several, independent projects, we recommend that you make use of separate
environments for each project. In this way, you can safely update and install packages for one of your projects without
affecting the others. Both, conda and pip support installation in environments – for more explanations see the respective
instructions below.

1.1.1 Standard install

conda package
PyPI package (pip)
Ubuntu/Debian package
Fedora package
Spack package

3

https://www.anaconda.com/distribution/#download-section

Brian 2 Documentation, Release 2.5.1

We recommend installing Brian into a separate environment, see conda’s documentation for more details. Brian 2 is not
part of the main Anaconda distribution, but built using the community-maintained conda-forge project. You will therefore
have to to install it from the conda-forge channel. To do so, use:

conda install -c conda-forge brian2

You can also permanently add the channel to your list of channels:

conda config --add channels conda-forge

This has only to be done once. After that, you can install and update the brian2 packages as any other Anaconda package:

conda install brian2

We recommend installing Brian into a separate “virtual environment”, see the Python Packaging User Guide for more
information. Brian is included in the PyPI package index: https://pypi.python.org/pypi/Brian2 You can therefore install
it with the pip utility:

python -m pip install brian2

In rare cases where your current environment does not have access to the pip utility, you first have to install pip via:

python -m ensurepip

If you are using a recent Debian-based Linux distribution (Debian itself, or one if its derivatives like Ubuntu or Linux
Mint), you can install Brian using its built-in package manager:

sudo apt install python3-brian

Brian releases get packaged by the Debian Med team, but note that it might take a while until the most recent version
shows up in the repository.
If you are using Fedora Linux, you can install Brian using its built-in package manager:

sudo dnf install python-brian2

Brian releases get packaged by the NeuroFedora team, but note that it might take a while until the most recent version
shows up in the repository.
Spack is a flexible package manager supporting multiple versions, configurations, platforms, and compilers.
After setting up Spack you can install Brian with the following command:

spack install py-brian2

1.1.2 Updating an existing installation

How to update Brian to a new version depends on the installation method you used previously. Typically, you can run the
same command that you used for installation (sometimes with an additional option to enforce an upgrade, if available):
conda package
PyPI package (pip)
Ubuntu/Debian package
Fedora package

4 Chapter 1. Introduction

https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://conda-forge.org/
https://anaconda.org/conda-forge
https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/
https://pypi.python.org/pypi/Brian2
https://debian.org
https://ubuntu.com
https://linuxmint.com/
https://linuxmint.com/
https://www.debian.org/devel/debian-med/
https://getfedora.org/
https://docs.fedoraproject.org/en-US/neurofedora/overview/
https://spack.io

Brian 2 Documentation, Release 2.5.1

Depending on whether you added the conda-forge channel to the list of channels or not (see above), you either have
to include it in the update command again or can leave it away. I.e. use:

conda update -c conda-forge brian2

if you did not add the channel, or:

conda update brian2

if you did.
Use the install command together with the --upgrade or -U option:

python -m pip install -U brian2

Update the package repository and ask for an install. Note that the package will also be updated automatically with
commands like sudo apt full-upgrade:

sudo apt update
sudo apt install python3-brian

Update the package repository (not necessary in general, since it will be updated regularly without asking for it), and ask
for an update. Note that the package will also be updated automatically with commands like sudo dnf upgrade:

sudo dnf check-update python-brian2
sudo dnf upgrade python-brian2

1.1.3 Requirements for C++ code generation

C++ code generation is highly recommended since it can drastically increase the speed of simulations (see Computational
methods and efficiency for details). To use it, you need a C++ compiler andCython (automatically installed as a dependency
of Brian).
Linux and OS X
Windows
On Linux and Mac OS X, the conda package will automatically install a C++ compiler. But even if you install Brian
in a different way, you will most likely already have a working C++ compiler installed on your system (try calling g++
--version in a terminal). If not, use your distribution’s package manager to install a g++ package.
OnWindows, Runtime code generation (i.e. Cython) requires the Visual Studio compiler, but you do not need a full Visual
Studio installation, installing the much smaller “Build Tools” package is sufficient:

• Install the Microsoft Build Tools for Visual Studio.
• In Build tools, install C++ build tools and ensure the latest versions of MSVCv… build tools and Windows 10 SDK
are checked.

• Make sure that your setuptools package has at least version 34.4.0 (use conda update setuptools
when using Anaconda, or python -m pip install --upgrade setuptools when using pip).

For Standalone code generation, you can either use the compiler installed above or any other version of Visual Studio.
Try running the test suite (see Installing other useful packages below) after the installation to make sure everything is
working as expected.

1.1. Installation 5

http://cython.org/
https://visualstudio.microsoft.com/visual-cpp-build-tools/

Brian 2 Documentation, Release 2.5.1

1.1.4 Development install

When you encounter a problem in Brian, we will sometimes ask you to install Brian’s latest development version, which
includes changes that were included after its last release.
We regularly upload the latest development version of Brian to PyPI’s test server. You can install it via:

python -m pip install --upgrade --pre -i https://test.pypi.org/simple/ Brian2

Note that this requires that you already have all of Brian’s dependencies installed.
If you have git installed, you can also install directly from github:

python -m pip install git+https://github.com/brian-team/brian2.git

Finally, in particular if you want to either contribute to Brian’s development or regularly test its latest development version,
you can directly clone the git repository at github (https://github.com/brian-team/brian2) and then run pip install
-e ., to install Brian in “development mode”. With this installation, updating the git repository is in general enough to
keep up with changes in the code, i.e. it is not necessary to install it again.

1.1.5 Installing other useful packages

There are various packages that are useful but not necessary for working with Brian. These include: matplotlib (for
plotting), pytest (for running the test suite), ipython and jupyter-notebook (for an interactive console).
conda package
PyPI package (pip)

conda install matplotlib pytest ipython notebook

python -m pip install matplotlib pytest ipython notebook

You should also have a look at the brian2tools package, which contains several useful functions to visualize Brian 2
simulations and recordings.
conda package
PyPI package (pip)
As of now, brian2tools is not yet included in the conda-forge channel, you therefore have to install it from our
own brian-team channel:

conda install -c brian-team brian2tools

python -m pip install brian2tools

6 Chapter 1. Introduction

https://github.com/brian-team/brian2
http://matplotlib.org/
https://docs.pytest.org/en/stable/
http://ipython.org/
http://jupyter.org/
https://brian2tools.readthedocs.io

Brian 2 Documentation, Release 2.5.1

1.1.6 Testing Brian

If you have the pytest testing utility installed, you can run Brian’s test suite:

import brian2
brian2.test()

It should end with “OK”, showing a number of skipped tests but no errors or failures. For more control about the tests
that are run see the developer documentation on testing.

1.2 Running Brian scripts

Brian scripts are standard Python scripts, and can therefore be run in the same way. For interactive, explorative work, you
might want to run code in a jupyter notebook or in an ipython shell; for running finished code, you might want to execute
scripts through the standard Python interpreter; finally, for working on big projects spanning multiple files, a dedicated
integrated development environment for Python could be a good choice. We will briefly describe all these approaches and
how they relate to Brian’s examples and tutorial that are part of this documentation. Note that none of these approaches
are specific to Brian, so you can also search for more information in any of the resources listed on the Python website.

• Jupyter notebook

• IPython shell

• Python interpreter

• Integrated development environment (IDE)

1.2.1 Jupyter notebook

The Jupyter Notebook is an open-source web application that allows you to create and share documents that
contain live code, equations, visualizations and narrative text.
(from jupyter.org)

Jupyter notebooks are a great tool to run Brian code interactively, and include the results of the simulations, as well as
additional explanatory text in a common document. Such documents have the file ending .ipynb, and in Brian we use
this format to store the Tutorials. These files can be displayed by github (see e.g. the first Brian tutorial), but in this case
you can only see them as a static website, not edit or execute any of the code.
To make the full use of such notebooks, you have to run them using the jupyter infrastructure. The easiest option is to use
the free mybinder.org web service, which allows you to try out Brian without installing it on your own machine. Links to
run the tutorials on this infrastructure are provided as “launch binder” buttons on the Tutorials page, and also for each of
the Examples at the top of the respective page (e.g. Example: COBAHH). To run notebooks on your own machine, you
need an installation of the jupyter notebook software on your own machine, as well as Brian itself (see the Installation
instructions for details). To open an existing notebook, you have to download it to your machine. For the Brian tutorials,
you find the necessary links on the Tutorials page. When you have downloaded/installed everything necessary, you can
start the jupyter notebook from the command line (using Terminal on OS X/Linux, Command Prompt on Windows):

jupyter notebook

this will open the “Notebook Dashboard” in your default browser, from which you can either open an existing notebook
or create a new one. In the notebook, you can then execute individual “code cells” by pressing SHIFT+ENTER on your
keyboard, or by pressing the play button in the toolbar.

1.2. Running Brian scripts 7

https://docs.pytest.org/en/stable/
https://www.python.org/about/gettingstarted/
https://jupyter.org
https://github.com/brian-team/brian2/blob/master/tutorials/1-intro-to-brian-neurons.ipynb
https://mybinder.org

Brian 2 Documentation, Release 2.5.1

For more information, see the jupyter notebook documentation.

1.2.2 IPython shell

An alternative to using the jupyter notebook is to use the interactive Python shell IPython, which runs in the Termi-
nal/Command Prompt. You can use it to directly type Python code interactively (each line will be executed as soon as
you press ENTER), or to run Python code stored in a file. Such files typically have the file ending .py. You can either
create it yourself in a text editor of your choice (e.g. by copying&pasting code from one of the Examples), or by down-
loading such files from places such as github (e.g. the Brian examples), or ModelDB. You can then run them from within
IPython via:

%run filename.py

1.2.3 Python interpreter

The most basic way to run Python code is to run it through the standard Python interpreter. While you can also use this
interpreter interactively, it is much less convenient to use than the IPython shell or the jupyter notebook described above.
However, if all you want to do is to run an existing Python script (e.g. one of the Brian Examples), then you can do this
by calling:

python filename.py

in a Terminal/Command Prompt.

1.2.4 Integrated development environment (IDE)

Python is a widely used programming language, and is therefore support by a wide range of integrated development
environments (IDE). Such IDEs provide features that are very convenient for developing complex projects, e.g. they
integrate text editor and interactive Python console, graphical debugging tools, etc. Popular environments include Spyder,
PyCharm, and Visual Studio Code, for an extensive list see the Python wiki.

1.3 Release notes

1.3.1 Brian 2.5.1

This newminor release contains a large number of bug fixes and improvements, in particular for the C++ standalonemode,
as well as many new contributed examples. For users of Visual Studio Code, getting involved with Brian development is
now easier than ever, thanks to a new “development container” that automatically provides an environment with all the
necessary dependencies.

8 Chapter 1. Introduction

https://jupyter-notebook.readthedocs.io
https://ipython.readthedocs.io/
https://github.com/brian-team/brian2/tree/master/examples
https://senselab.med.yale.edu/modeldb/
https://www.spyder-ide.org/
https://www.jetbrains.com/pycharm/
https://code.visualstudio.com/
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments

Brian 2 Documentation, Release 2.5.1

New features

• Ben Evans added a Docker container for development with Visual Studio Code (#1387).
• Synaptic indices of synapses created with manually provided indices can now be accessed in standalone mode even
before the situation has been run. This makes certain complex situations (e.g. synapses modulating other synapses)
easier to write and also makes more detailed error checking possible (#1403).

• Additional “code slots”, as well as more detailed profiling information about compilation times are avaiable for C++
standalone mode (#1390, #1391). Thanks to Denis Alevi for contributing this feature.

• LaTeX output for quantity arrays (which is automatically used for the “rich representation” in jupyter notebooks),
is now limited to reasonable size and no longer tries to display all values for large arrays. It now also observes most
of numpy’s print options (#1426)

Selected improvements and bug fixes

• Internally, Brian objects now have more consistent names (used in the generated code), and variables declarations
are generated in deterministic order. This should make repeated runs of models faster, since less code has to be
recompiled (#1384, #1417).

• Running several simulations in parallel with Python’s multiprocessing meant that all processes accessed the
same log file which led to redundant information and could lead to crashes when several processes tried to rotate
the same file. Brian now switches off logging in subprocesses, but users can enable also enable individual logs for
each process, see Logging and multiprocessing. The default log level for the file log has also been raised to DEBUG
(#1419).

• Some common plotting idioms (e.g. plt.plot(spike_mon.t/ms, spike_mon.i, '.')) were broken
with the most recent matplotlib version and are now working again (#1412)

• Very long runs (with more then 2e9 simulation time steps) failed to run in C++ standalone mode (#1394). Thanks
to Kai Chen for making us aware of the issue.

Infrastructure and documentation improvements

• Sebastian Schmitt has contributed several new Examples, reproducing results from several papers (e.g. Example:
Maass_Natschlaeger_Markram_2002 and Example: Naud_et_al_2008_adex_firing_patterns)

• Akif Erdem Sağtekin and Sebastian Schmitt contributed the example Example: Izhikevich_2003.
• A number of fixes to the documentation have been contributed by Sebastian Schmitt.

Contributions

Github code, documentation, and issue contributions (ordered by the number of contributions):
• Marcel Stimberg (@mstimberg)
• Ben Evans (@bdevans)
• Sebastian Schmitt (@schmitts)
• Denis Alevi (@denisalevi)
• Akif Erdem Sağtekin (@aesagtekin)
• @MunozatABI
• Dan Goodman (@thesamovar)

1.3. Release notes 9

https://github.com/brian-team/brian2/issues/1387
https://github.com/brian-team/brian2/issues/1403
https://github.com/brian-team/brian2/issues/1390
https://github.com/brian-team/brian2/issues/1391
https://github.com/brian-team/brian2/issues/1426
https://github.com/brian-team/brian2/issues/1384
https://github.com/brian-team/brian2/issues/1417
https://github.com/brian-team/brian2/issues/1419
https://github.com/brian-team/brian2/issues/1412
https://github.com/brian-team/brian2/issues/1394
https://github.com/mstimberg
https://github.com/bdevans
https://github.com/schmitts
https://github.com/denisalevi
https://github.com/aesagtekin
https://github.com/MunozatABI
https://github.com/thesamovar

Brian 2 Documentation, Release 2.5.1

• @ivapl
• @dokato
• Davide Schiavone (@davideschiavone)
• Kai Chen (@NeoNeuron)
• Yahya Ashrafi (@yahya-ashrafi)
• Ariel Martínez Silberstein (@ariel-m-s)
• Adam Willats (@awillats)

1.3.2 Brian 2.5.0.3

Another patch-level release that fixes incorrectly built Python wheels (the binary package used to install packages with
pip). The wheels where mistakenly built against the most recent version of numpy (1.22), which made them incompat-
ible with earlier versions of numpy. This release also fixes a few minor mistakes in the string representation of monitors,
contributed by Felix Benjamin Kern.

1.3.3 Brian 2.5.0.2

A new patch-level release that fixes a missing #include in the synapse generation code for C++ standalone code. This
does not matter for most compilers (in particular, it does not matter for the gcc, clang, and Visual Studio compilers that
we use for testing on Linux, OS X, and Windows), but it can matter for projects like Brian2GeNN that build on top of
Brian2 and use Nvidia’s nvcc compiler. The release also fixes a minor string-formatting error (#1377), which led to
quantities that were displayed without their units.

1.3.4 Brian 2.5.0.1

A new build to provide binary wheels for Python 3.10.

1.3.5 Brian 2.5

This new major release contains a large number of bug fixes and improvements, as well as important new features for
synapse generation: the Creating synapses with the generator syntax can now create synapses “in both directions”, and also
supports random samples of fixed size. In addition, several contributors have helped to improve the documentation, in
particular by adding several new Examples. We have also updated our test infrastructure and removed workarounds and
warnings related to older, now unsupported, versions of Python. Our policy for supported Python and numpy versions
now follows the NEP 29 policy adopted by most packages in the scientific Python ecosystem. This and other policies
related to compatibility have been documented in Compatibility and reproducibility. As always, we recommend all users
of Brian 2 to upgrade.

10 Chapter 1. Introduction

https://github.com/ivapl
https://github.com/dokato
https://github.com/davideschiavone
https://github.com/NeoNeuron
https://github.com/yahya-ashrafi
https://github.com/ariel-m-s
https://github.com/awillats
https://github.com/brian-team/brian2/issues/1377
https://packaging.python.org/guides/distributing-packages-using-setuptools/#wheels
https://numpy.org/neps/nep-0029-deprecation_policy.html

Brian 2 Documentation, Release 2.5.1

New features

• Creating synapses with the generator syntax has become more powerful: it is now possible to express pre-synaptic
indices as a function of post-synaptic indices – previously, only the other direction was supported (#1294).

• Synapse generation can now make use of fixed-size random sampling (#1280). Together with the more powerful
generator syntax, this finally makes it possible to have networks where each cell receives a fixed number of random
inputs: syn.connect(i='k for k in sample(N_pre, size=number_of_inputs)').

Selected improvements and bug fixes

• Fair default build flags on several architectures (#1277). Thanks to Étienne Mollier for contributing this feature.
• Better C++ compiler detection on UNIX systems, e.g. with Anaconda installations (#1304). Thanks to Jan Marker
for this contribution.

• Fixed LaTeX output for newer sympy versions (#1299). Thanks to Sebastian Schmitt for reporting this issue. The
problem and its fix is described in detail in this blog post.

• Fixed string representation for units (#1291). Recreating a unit from its string representation gave wrong results in
some corner cases.

• Fix an error during the determination of appropriate C++ compiler flags on Windows with Python 3.9 (#1286),
and fix the detection of a C99-compatible compiler on Windows (#1257). Thanks to Kyle Johnsen for reporting
the errors and providing both fixes.

• More robust usage of external constants in C++ standalone code, avoiding clashes when the user defines constants
with common names like x (#1279). Thanks to user @wxie2013 for making us aware of this issue.

• Raise an error if summed variables refer to event-based variables (#1274) and a general rework of the dependency
checks (#1328). Thanks to Rohith Varma Buddaraju for fixing this issue.

• Fix an error for deactivated spike-emitting objects (e.g. NeuronGroup, PoissonGroup). They continued to
emit spikes despite active=False if they had spiked in the last time step of a previous run (#1319). Thanks to
forum user Shencong for making us aware of the issue.

• Avoid warnings about deprecated numpy aliases (#1273).
• Avoid a warning about an “ignored attribute shape” in some interactive Python consoles (#1372).
• Check units for summed variables (#1361). Thanks to Jan-Hendrik Schleimer for reporting this issue.
• Do not raise an error if synapses use restore instead of Synapses.connect (#1359). Thanks to forum user SIbanez
for reporting this issue.

• Fix indexing for sections in SpatialNeuron (#1358). Thanks to Sebastian Schmitt for reporting this issue
• Better error messages for missing threshold definition (#1363).
• Raise a useful error for namespace entries that start with an underscore instead of failing during compilation if
the name clashes with built-in functions (#1362). Thanks to Denis Alevi for reporting this issue.

• Consistently use include/library directory preferences (#1353). The preferences can now be used to override the
list of include/library directories, replacing the inconsistent behavior where they were either prepended (C++ stan-
dalone mode) or appended (Cython runtime mode) to the default list. Thanks to Denis Alevi for opening the
discussion on this issue.

• Remove a warning about the difference between Python 2 and Python 3 semantics related to division (#1351).
• Do not generate spurious -.o files when checking compiler compatibility (#1348). For more details, see this blog
post.

1.3. Release notes 11

https://github.com/brian-team/brian2/issues/1294
https://github.com/brian-team/brian2/issues/1280
https://github.com/brian-team/brian2/issues/1277
https://github.com/brian-team/brian2/issues/1304
https://github.com/brian-team/brian2/issues/1299
https://briansimulator.org/posts/2021/bug-hunt-episode-1-broken-latex-output-for-equations/
https://github.com/brian-team/brian2/issues/1291
https://github.com/brian-team/brian2/issues/1286
https://github.com/brian-team/brian2/issues/1257
https://github.com/brian-team/brian2/issues/1279
https://github.com/brian-team/brian2/issues/1274
https://github.com/brian-team/brian2/issues/1328
https://github.com/brian-team/brian2/issues/1319
https://github.com/brian-team/brian2/issues/1273
https://github.com/brian-team/brian2/issues/1372
https://github.com/brian-team/brian2/issues/1361
https://github.com/brian-team/brian2/issues/1359
https://github.com/brian-team/brian2/issues/1358
https://github.com/brian-team/brian2/issues/1363
https://github.com/brian-team/brian2/issues/1362
https://github.com/brian-team/brian2/issues/1353
https://github.com/brian-team/brian2/issues/1351
https://github.com/brian-team/brian2/issues/1348
https://briansimulator.org/posts/2021/bug-hunt-episode-2-a-strange-file-appears/
https://briansimulator.org/posts/2021/bug-hunt-episode-2-a-strange-file-appears/

Brian 2 Documentation, Release 2.5.1

• Make reset_to_defaults work again, which was inadvertently broken in the Python 2 → 3 transition
(#1342). Thanks to Denis Alevi for reporting and fixing this issue.

• The commands to run and compile the code in C++ standalone mode can now be changed via a preference (#1338).
This can be useful to run/compile on clusters where jobs have to submitted with special commands. Thanks to Denis
Alevi for contributing this feature.

Backward-incompatible changes

• The default_preferences file that was part of the Brian installation has been removed, since it could lead
to problems when working with development versions of Brian, and was overwritten with each update (#1354).
Users can still use a system-wide or per-directory preference file (see Preferences).

• The preferences codegen.cpp.include_dirs, codegen.cpp.library_dirs, and codegen.cpp.runtime_library_dirs now all
replace the respective default values. Previously they where prepended (C++ standalone mode) or appended
(Cython runtime mode). Users relying on a combination of the default values and their manually set values need
to include the default value (e.g. os.path.join(sys.prefix, 'include')) manually.

Infrastructure and documentation improvements

• Tagging a release will now automatically upload the release to PyPI via a GitHub Action. Versions are automatically
determined with versioneer (#1267) and include more detailed information when using a development version of
Brian. SeeWhich version of Brian am I using? for more details.

• The test suite has been moved to GitHub Actions for all operating systems (#1298). Thanks to Rohith Varma
Buddaraju for working on this.

• New Example: Jansen_Rit_1995_single_column (#1347), contributed by Ruben Tikidji-Hamburyan.
• New Example: spike_based_homeostasis (#1331), contributed by Sebastian Schmitt.
• New Example: COBAHH_approximated (#1309), contributed by Sebastian Schmitt.
• Several new examples covering several Brian usage pattern, e.g. aminimal C++ standalone script, or demonstrations
of running multiple simulations in parallel with Cython or C++ standalone, contributed by A. Ziaeemehr.

• Corrected units in Example: Kremer_et_al_2011_barrel_cortex (#1355). Thanks to AdamWillats for contributing
this fix.

• Most of Brian’s code base should now use a consistent string formatting style (#1364), documented in the Coding
conventions.

• Test reports will now show the project directory path for C++ standalone projects (#1336). Thanks to Denis Alevi
for contributing this feature.

• Fix the documentation for C++ compiler references (#1323, #1321). Thanks to Denis Alevi for fixing these issues.
• Examples are now listed in a deterministic order in the documentation (#1312), and their title is now correctly
formatted in the restructured text source (#1311). Thanks to Felix C. Stegermann for contributing these fixes.

• Document how to plot model functions (e.g. time constants) in complex neuron models (#1308). Contributed by
Sebastian Schmitt.

12 Chapter 1. Introduction

https://github.com/brian-team/brian2/issues/1342
https://github.com/brian-team/brian2/issues/1338
https://github.com/brian-team/brian2/issues/1354
https://github.com/python-versioneer/python-versioneer
https://github.com/brian-team/brian2/issues/1267
https://github.com/brian-team/brian2/issues/1298
https://github.com/brian-team/brian2/issues/1347
https://github.com/brian-team/brian2/issues/1331
https://github.com/brian-team/brian2/issues/1309
https://github.com/brian-team/brian2/issues/1355
https://github.com/brian-team/brian2/issues/1364
https://github.com/brian-team/brian2/issues/1336
https://github.com/brian-team/brian2/issues/1323
https://github.com/brian-team/brian2/issues/1321
https://github.com/brian-team/brian2/issues/1312
https://github.com/brian-team/brian2/issues/1311
https://github.com/brian-team/brian2/issues/1308

Brian 2 Documentation, Release 2.5.1

Contributions

Github code, documentation, and issue contributions (ordered by the number of contributions):
• Marcel Stimberg (@mstimberg)
• Dan Goodman (@thesamovar)
• Rohith Varma Buddaraju (@rohithvarma3000)
• Denis Alevi (@denisalevi)
• Dingkun.Liu (@DingkunLiu)
• Ruben Tikidji-Hamburyan (@rat-h)
• Sebastian Schmitt (@schmitts)
• @ramapati166
• Jan Marker (@jangmarker)
• Kyle Johnsen (@kjohnsen)
• Abolfazl Ziaeemehr (@Ziaeemehr)
• Felix Benjamin Kern (@kernfel)
• Yann Zerlaut (@yzerlaut)
• Adam (@Adam-Antios)
• @ShanqMa
• Ljubica Cimeša (@LjubicaCimesa)
• @adididi
• VigneswaranC (@Vigneswaran-Chandrasekaran)
• Nunna Lakshmi Saranya (@18sarru)
• Friedemann Zenke (@fzenke)
• @Alexis-Melot
• Adam Willats (@awillats)
• Felix C. Stegerman (@obfusk)
• Eugen Skrebenkov (@shcecter)
• Maurizio DE PITTA (@mdepitta)
• Simo (@sivanni)
• Peter Quitta (@peschn)
• Étienne Mollier (@emollier)
• chaddy (@chaddy1004)
• @DePasquale99
• @albertalbesa
• Christian Behrens (@chbehrens)

Other contributions outside of github (ordered alphabetically, apologies to anyone we forgot…):
• forum user Shencong

1.3. Release notes 13

https://github.com/mstimberg
https://github.com/thesamovar
https://github.com/rohithvarma3000
https://github.com/denisalevi
https://github.com/DingkunLiu
https://github.com/rat-h
https://github.com/schmitts
https://github.com/ramapati166
https://github.com/jangmarker
https://github.com/kjohnsen
https://github.com/Ziaeemehr
https://github.com/kernfel
https://github.com/yzerlaut
https://github.com/Adam-Antios
https://github.com/ShanqMa
https://github.com/LjubicaCimesa
https://github.com/adididi
https://github.com/Vigneswaran-Chandrasekaran
https://github.com/18sarru
https://github.com/fzenke
https://github.com/Alexis-Melot
https://github.com/awillats
https://github.com/obfusk
https://github.com/shcecter
https://github.com/mdepitta
https://github.com/sivanni
https://github.com/peschn
https://github.com/emollier
https://github.com/chaddy1004
https://github.com/DePasquale99
https://github.com/albertalbesa
https://github.com/chbehrens
https://brian.discourse.group/u/shencong/

Brian 2 Documentation, Release 2.5.1

• forum user SIbanez

1.3.6 Brian 2.4.1

This is a bugfix release with a number of small fixes and updates to the continuous integration testing.

Selected improvements and bug fixes

• The check_units() decorator can now express that some arguments need to have the same units. This mech-
anism is now used to check the units of the clip() function (#1234). Thanks to Felix Kern for notifying us of
this issue.

• Using SpatialNeuron with Cython no longer raises an unnecessary warning when the scipy library is not
installed (#1230).

• Raise an error for references to N_incoming or N_outgoing in calls to Synapses.connect. This use is
ill-defined and led to compilation errors in previous versions (#1227). Thanks to Denis Alevi for making us aware
of this issue.

Infrastructure and documentation improvements

• Brian no longer officially supports installation on 32bit operating systems. Installation via pip will probably still
work, but we are no longer testing this configuration (#1232).

• Automatic continuous integration tests for Windows now use the Microsoft Azure Pipeline infrastructure instead
of Appveyor. This should speed up tests by running different configurations in parallel (#1233).

• Fix an issue in the test suite that did not handle NotImplementedError correctly anymore after the changes
introduced with #1196.

Contributions

Github code, documentation, and issue contributions (ordered by the number of contributions):
• Marcel Stimberg (@mstimberg)
• Dan Goodman (@thesamovar)
• Denis Alevi (@denisalevi)
• SK (@akatav)

Other contributions outside of github (ordered alphabetically, apologies to anyone we forgot…):
• Felix B. Kern

14 Chapter 1. Introduction

https://brian.discourse.group/u/sibanez/
https://github.com/brian-team/brian2/issues/1234
https://github.com/brian-team/brian2/issues/1230
https://github.com/brian-team/brian2/issues/1227
https://github.com/brian-team/brian2/issues/1232
https://azure.microsoft.com/en-us/services/devops/pipelines/
https://www.appveyor.com/
https://github.com/brian-team/brian2/issues/1233
https://github.com/brian-team/brian2/issues/1196
https://github.com/mstimberg
https://github.com/thesamovar
https://github.com/denisalevi
https://github.com/akatav

Brian 2 Documentation, Release 2.5.1

1.3.7 Brian 2.4

This new release contains a large number of small improvements and bug fixes. We recommend all users of Brian 2 to
upgrade. The biggest code change of this new version is that Brian is now Python-3 only (thanks to Ben Evans for working
on this).

Selected improvements and bug fixes

• Removing objects from networks no longer fails (#1151). Thanks to Wilhelm Braun for reporting the issue.
• Point currents marked as constant over dt are now correctly handled (#1160). Thanks to Andrew Brughera
for reporting the issue.

• Elapsed and estimated remaining time are now formatted as hours/minutes/etc. in standalonemode as well (#1162).
Thanks to Rahul Kumar Gupta, Syed Osama Hussain, Bhuwan Chandra, and Vigneswaran Chandrasekaran for
working on this issue as part of the GSoC 2020 application process.

• To prevent log files filling up the disk (#1188), their file size is now limited to 10MB (configurable via the log-
ging.file_log_max_size preference). Thanks to Rike-Benjamin Schuppner for contributing this feature.

• Add more complete support for operations on VariableView attributes. Previously, operations like group.
v**2 failed and required the workaround group.v[:]**2 (#1195)

• Fix a number of compatibility issues with newer versions of numpy and sympy, and document our policy on Com-
patibility and reproducibility.

• File locking (used to avoid problems when running multiple simulations in parallel) is now based on Benedikt
Schmitt’s py-filelock package, which should hopefully make it more robust.

• String expressions in Synapses.connect are now checked for syntactic correctness before handing them over
to the code generation process, improving error messages. Thanks to Denis Alevi for making us aware of this issue.
(#1224)

• Avoid duplicate messages in “chained” exceptions. Also introduces a new preference log-
ging.display_brian_error_message to switch off the “Brian 2 encountered an unexpected error” message
(#1196).

• Brian’s unit system now correctly deals with matrix multiplication, including the @ operator (#1216). Thanks to
@kjohnsen for reporting this issue.

• Avoid turning all integer numbers in equations into floating point values (#1202). Thanks to Marco K. for making
us aware of this issue.

• New attributes Synapses.N_outgoing_pre and Synapses.N_incoming_post to access the number
of synapses per pre-/post-synaptic cell (see Accessing synaptic variables for details; #1225)

Contributions

Github code, documentation, and issue contributions (ordered by the number of contributions):
• Marcel Stimberg (@mstimberg)
• Ben Evans (@bdevans)
• Dan Goodman (@thesamovar)
• Denis Alevi (@denisalevi)
• Rike-Benjamin Schuppner (@Debilski)
• Syed Osama Hussain (@Syed-Osama-Hussain)

1.3. Release notes 15

https://github.com/brian-team/brian2/issues/1151
https://github.com/brian-team/brian2/issues/1160
https://github.com/brian-team/brian2/issues/1162
https://github.com/brian-team/brian2/issues/1188
https://github.com/brian-team/brian2/issues/1195
https://github.com/benediktschmitt/py-filelock
https://github.com/brian-team/brian2/issues/1224
https://github.com/brian-team/brian2/issues/1196
https://github.com/brian-team/brian2/issues/1216
https://github.com/kjohnsen
https://github.com/brian-team/brian2/issues/1202
https://github.com/brian-team/brian2/issues/1225
https://github.com/mstimberg
https://github.com/bdevans
https://github.com/thesamovar
https://github.com/denisalevi
https://github.com/Debilski
https://github.com/Syed-Osama-Hussain

Brian 2 Documentation, Release 2.5.1

• VigneswaranC (@Vigneswaran-Chandrasekaran)
• Tushar (@smalltimer)
• Felix Hoffmann (@felix11h)
• Rahul Kumar Gupta (@rahuliitg)
• Dominik Spicher (@dspicher)
• @nfzd
• @Snow-Crash
• @cnjackhu
• @neurologic
• @kjohnsen
• Ashwin Viswanathan Kannan (@ashwin4ever)
• Bhuwan Chandra (@zeph1yr)
• Wilhelm Braun (@wilhelmbraun)
• @cortical-iv
• Eugen Skrebenkov (@shcecter)
• @Aman-A
• Felix Benjamin Kern (@kernfel)
• Francesco Battaglia (@fpbattaglia)
• Shivam Chitnis (@shivChitinous)
• Marco K. (@spokli)
• @jcmharry
• Friedemann Zenke (@fzenke)
• @Adam-Antios

Other contributions outside of github (ordered alphabetically, apologies to anyone we forgot…):
• Andrew Brughera
• William Xavier

1.3.8 Brian 2.3

This release contains the usual mix of bug fixes and new features (see below), but also makes some important changes to
the Brian 2 code base to pave the way for the full Python 2 -> 3 transition (the source code is now directly compatible
with Python 2 and Python 3, without the need for any translation at install time). Please note that this release will be the
last release that supports Python 2, given that Python 2 reaches end-of-life in January 2020. Brian now also uses pytest as
its testing framework, since the previously used nose package is not maintained anymore. Since brian2hears has been
released as an independent package, using brian2.hears as a “bridge” to Brian 1’s brian.hears package is now
deprecated.
Finally, the Brian project has adopted the “Contributor Covenant” Contributor Covenant Code of Conduct, pledging “to
make participation in our community a harassment-free experience for everyone”.

16 Chapter 1. Introduction

https://github.com/Vigneswaran-Chandrasekaran
https://github.com/smalltimer
https://github.com/felix11h
https://github.com/rahuliitg
https://github.com/dspicher
https://github.com/nfzd
https://github.com/Snow-Crash
https://github.com/cnjackhu
https://github.com/neurologic
https://github.com/kjohnsen
https://github.com/ashwin4ever
https://github.com/zeph1yr
https://github.com/wilhelmbraun
https://github.com/cortical-iv
https://github.com/shcecter
https://github.com/Aman-A
https://github.com/kernfel
https://github.com/fpbattaglia
https://github.com/shivChitinous
https://github.com/spokli
https://github.com/jcmharry
https://github.com/fzenke
https://github.com/Adam-Antios
https://docs.pytest.org
https://brian2hears.readthedocs.io

Brian 2 Documentation, Release 2.5.1

New features

• The restore() function can now also restore the state of the random number generator, allowing for exact
reproducibility of stochastic simulations (#1134)

• The functions expm1(), log1p(), and exprel() can now be used (#1133)
• The system for calling random number generating functions has been generalized (see Functions with context-

dependent return values), and a new poisson function for Poisson-distrubted random numbers has been added
(#1111)

• New versions of Visual Studio are now supported for standalone mode on Windows (#1135)

Selected improvements and bug fixes

• run_regularly operations are now included in the network, even if they are created after the parent object
was added to the network (#1009). Contributed by Vigneswaran Chandrasekaran.

• No longer incorrectly classify some equations as having “multiplicative noise” (#968). Contributed by Vigneswaran
Chandrasekaran.

• Brian is now compatible with Python 3.8 (#1130), and doctests are compatible with numpy 1.17 (#1120)
• Progress reports for repeated runs have been fixed (#1116), thanks to Ronaldo Nunes for reporting the issue.
• SpikeGeneratorGroup now correctly works with restore() (#1084), thanks to Tom Achache for report-
ing the issue.

• An indexing problem in PopulationRateMonitor has been fixed (#1119).
• Handling of equations referring to -inf has been fixed (#1061).
• Long simulations recording more than ~2 billion data points no longer crash with a segmentation fault (#1136),
thanks to Rike-Benjamin Schuppner for reporting the issue.

Backward-incompatible changes

• The fix for run_regularly operations (#1009, see above) entails a change in how objects are stored within
Network objects. Previously, Network.objects stored a complete list of all objects, including objects such
as StateUpdater that – often invisible to the user – are a part of major objects such as NeuronGroup.
Now, Network.objects only stores the objects directly provided by the user (NeuronGroup, Synapses,
StateMonitor, …), the dependent objects (StateUpdater, Thresholder, …) are taken into account at
the time of the run. This might break code in some corner cases, e.g. when removing a StateUpdater from
Network.objects via Network.remove.

• The brian2.hears interface to Brian 1’s brian.hears package has been deprecated.

Infrastructure and documentation improvements

• The same code base is used on Python 2 and Python 3 (#1073).
• The test framework uses pytest (#1127).
• We have adapoted a Code of Conduct (#1113), thanks to Tapasweni Pathak for the suggestion.

1.3. Release notes 17

https://github.com/brian-team/brian2/issues/1134
https://github.com/brian-team/brian2/issues/1133
https://github.com/brian-team/brian2/issues/1111
https://github.com/brian-team/brian2/issues/1135
https://github.com/brian-team/brian2/issues/1009
https://github.com/Vigneswaran-Chandrasekaran
https://github.com/brian-team/brian2/issues/968
https://github.com/Vigneswaran-Chandrasekaran
https://github.com/Vigneswaran-Chandrasekaran
https://github.com/brian-team/brian2/issues/1130
https://github.com/brian-team/brian2/issues/1120
https://github.com/brian-team/brian2/issues/1116
https://github.com/brian-team/brian2/issues/1084
https://github.com/brian-team/brian2/issues/1119
https://github.com/brian-team/brian2/issues/1061
https://github.com/brian-team/brian2/issues/1136
https://github.com/brian-team/brian2/issues/1009
https://github.com/brian-team/brian2/issues/1073
https://github.com/brian-team/brian2/issues/1127
https://github.com/brian-team/brian2/issues/1113

Brian 2 Documentation, Release 2.5.1

Contributions

Github code, documentation, and issue contributions (ordered by the number of contributions):
• Marcel Stimberg (@mstimberg)
• Dan Goodman (@thesamovar)
• Vigneswaran Chandrasekaran (@Vigneswaran-Chandrasekaran)
• Moritz Orth (@morth)
• Tristan Stöber (@tristanstoeber)
• @ulyssek
• Wilhelm Braun (@wilhelmbraun)
• @flomlo
• Rike-Benjamin Schuppner (@Debilski)
• @sdeiss
• Ben Evans (@bdevans)
• Tapasweni Pathak (@tapaswenipathak)
• @jonathanoesterle
• Richard C Gerkin (@rgerkin)
• Christian Behrens (@chbehrens)
• Romain Brette (@romainbrette)
• XiaoquinNUDT (@XiaoquinNUDT)
• Dylan Muir (@DylanMuir)
• Aleksandra Teska (@alTeska)
• Felix Z. Hoffmann (@felix11h)
• @baixiaotian63648995
• Carlos de la Torre (@c-torre)
• Sam Mathias (@sammosummo)
• @Marghepano
• Simon Brodeur (@sbrodeur)
• Alex Dimitrov (@adimitr)

Other contributions outside of github (ordered alphabetically, apologies to anyone we forgot…):
• Ronaldo Nunes
• Tom Achache

18 Chapter 1. Introduction

https://github.com/mstimberg
https://github.com/thesamovar
https://github.com/Vigneswaran-Chandrasekaran
https://github.com/morth
https://github.com/tristanstoeber
https://github.com/ulyssek
https://github.com/wilhelmbraun
https://github.com/flomlo
https://github.com/Debilski
https://github.com/sdeiss
https://github.com/bdevans
https://github.com/tapaswenipathak
https://github.com/jonathanoesterle
https://github.com/rgerkin
https://github.com/chbehrens
https://github.com/romainbrette
https://github.com/XiaoquinNUDT
https://github.com/DylanMuir
https://github.com/alTeska
https://github.com/felix11h
https://github.com/baixiaotian63648995
https://github.com/c-torre
https://github.com/sammosummo
https://github.com/Marghepano
https://github.com/sbrodeur
https://github.com/adimitr

Brian 2 Documentation, Release 2.5.1

1.3.9 Brian 2.2.2.1

This is a bug-fix release that fixes several bugs and adds a few minor new features. We recommend all users of Brian 2 to
upgrade.
As always, please report bugs or suggestions to the github bug tracker (https://github.com/brian-team/brian2/issues) or
to the brian-development mailing list (brian-development@googlegroups.com).
[Note that the original upload of this release was version 2.2.2, but due to a mistake in the released archive, it has been
uploaded again as version 2.2.2.1]

Selected improvements and bug fixes

• Fix an issue with the synapses generator syntax (#1037).
• Fix an incorrect error when using a SpikeGeneratorGroup with a long period (#1041). Thanks to Kévin
Cuallado-Keltsch for reporting this issue.

• Improve the performance of SpikeGeneratorGroup by avoiding a conversion from time to integer time step
(#1043). This time step is now also available to user code as t_in_timesteps.

• Function definitions for weave/Cython/C++ standalone can now declare additional header files and libraries. They
also support a new sources argument to use a function definition from an external file. See the Functions docu-
mentation for details.

• For convenience, single-neuron subgroups can now be created with a single index instead of with a slice (e.g.
neurongroup[3] instead of neurongroup[3:4]).

• Fix an issue when -inf is used in an equation (#1061).

Contributions

Github code, documentation, and issue contributions (ordered by the number of contributions):
• Marcel Stimberg (@mstimberg)
• Dan Goodman (@thesamovar)
• Felix Z. Hoffmann (@Felix11H)
• @wjx0914
• Kévin Cuallado-Keltsch (@kevincuallado)
• Romain Cazé (@rcaze)
• Daphne (@daphn3cor)
• Erik (@parenthetical-e)
• @RahulMaram
• Eghbal Hosseini (@eghbalhosseini)
• Martino Sorbaro (@martinosorb)
• Mihir Vaidya (@MihirVaidya94)
• @hellolingling
• Volodimir Slobodyanyuk (@vslobody)
• Peter Duggins (@psipeter)

1.3. Release notes 19

https://github.com/brian-team/brian2/issues
mailto:brian-development@googlegroups.com
https://github.com/brian-team/brian2/issues/1037
https://github.com/brian-team/brian2/issues/1041
https://github.com/brian-team/brian2/issues/1043
https://github.com/brian-team/brian2/issues/1061
https://github.com/mstimberg
https://github.com/thesamovar
https://github.com/Felix11H
https://github.com/wjx0914
https://github.com/kevincuallado
https://github.com/rcaze
https://github.com/daphn3cor
https://github.com/parenthetical-e
https://github.com/RahulMaram
https://github.com/eghbalhosseini
https://github.com/martinosorb
https://github.com/MihirVaidya94
https://github.com/hellolingling
https://github.com/vslobody
https://github.com/psipeter

Brian 2 Documentation, Release 2.5.1

1.3.10 Brian 2.2.1

This is a bug-fix release that fixes a few minor bugs and incompatibilites with recent versions of the dependencies. We
recommend all users of Brian 2 to upgrade.
As always, please report bugs or suggestions to the github bug tracker (https://github.com/brian-team/brian2/issues) or
to the brian-development mailing list (brian-development@googlegroups.com).

Selected improvements and bug fixes

• Work around problems with the latest version of py-cpuinfo on Windows (#990, #1020) and no longer require
it for Linux and OS X.

• Avoid warnings with newer versions of Cython (#1030) and correctly build the Cython spike queue for Python 3.7
(#1026), thanks to Fleur Zeldenrust and Ankur Sinha for reporting these issues.

• Fix error messages for SyntaxError exceptions in jupyter notebooks (##964).

Dependency and packaging changes

• Conda packages in conda-forge are now avaible for Python 3.7 (but no longer for Python 3.5).
• Linux and OS X no longer depend on the py-cpuinfo package.
• Source packages on pypi now require a recent Cython version for installation.

Contributions

Github code, documentation, and issue contributions (ordered by the number of contributions):
• Marcel Stimberg (@mstimberg)
• Dan Goodman (@thesamovar)
• Christopher (@Chris-Currin)
• Peter Duggins (@psipeter)
• Paola Suárez (@psrmx)
• Ankur Sinha (@sanjayankur31)
• @JingjinW
• Denis Alevi (@denisalevi)
• @lemonade117
• @wjx0914
• Sven Leach (@SvennoNito)
• svadams (@svadams)
• @ghaessig
• Varshith Sreeramdass (@varshiths)

20 Chapter 1. Introduction

https://github.com/brian-team/brian2/issues
mailto:brian-development@googlegroups.com
https://github.com/brian-team/brian2/issues/990
https://github.com/brian-team/brian2/issues/1020
https://github.com/brian-team/brian2/issues/1030
https://github.com/brian-team/brian2/issues/1026
https://github.com/brian-team/brian2/issues/#964
https://conda-forge.org/
https://pypi.org/
https://github.com/mstimberg
https://github.com/thesamovar
https://github.com/Chris-Currin
https://github.com/psipeter
https://github.com/psrmx
https://github.com/sanjayankur31
https://github.com/JingjinW
https://github.com/denisalevi
https://github.com/lemonade117
https://github.com/wjx0914
https://github.com/SvennoNito
https://github.com/svadams
https://github.com/ghaessig
https://github.com/varshiths

Brian 2 Documentation, Release 2.5.1

1.3.11 Brian 2.2

This releases fixes a number of important bugs and comes with a number of performance improvements. It also makes
sure that simulation no longer give platform-dependent results for certain corner cases that involve the division of integers.
These changes can break backwards-compatiblity in certain cases, see below. We recommend all users of Brian 2 to
upgrade.
As always, please report bugs or suggestions to the github bug tracker (https://github.com/brian-team/brian2/issues) or
to the brian-development mailing list (brian-development@googlegroups.com).

Selected improvements and bug fixes

• Divisions involving integers now use floating point division, independent of Python version and code generation
target. The // operator can now used in equations and expressions to denote flooring division (#984).

• Simulations can now use single precision instead of double precision floats in simulations (#981, #1004). This is
mostly intended for use with GPU code generation targets.

• The timestep, introduced in version 2.1.3, was further optimized for performance, making the refractoriness
calculation faster (#996).

• The lastupdate variable is only automatically added to synaptic models when event-driven equations are used,
reducing the memory and performance footprint of simple synaptic models (#1003). Thanks to Denis Alevi for
bringing this up.

• A from brian2 import * imported names unrelated to Brian, and overwrote some Python builtins such as
dir (#969). Now, fewer names are imported (but note that this still includes numpy and plotting tools: Importing
Brian).

• The exponential_euler state updater is no longer failing for systems of equations with differential equations
that have trivial, constant right-hand-sides (#1010). Thanks to Peter Duggins for making us aware of this issue.

Backward-incompatible changes

• Code that divided integers (e.g. N/10) with a C-based code generation target, or with the numpy target on Python
2, will now use floating point division instead of flooring division (i.e., Python 3 semantics). A warning will notify
the user of this change, use either the flooring division operator (N//10), or the int function (int(N/10)) to
make the expression unambiguous.

• Code that directly referred to the lastupdate variable in synaptic statements, without using any event-driven
variables, now has to manually add lastupdate : second to the equations and update the variable at the
end of on_pre and/or on_post with lastupdate = t.

• Code that relied on from brian2 import * also importing unrelated names such as sympy, now has to
import such names explicitly.

1.3. Release notes 21

https://github.com/brian-team/brian2/issues
mailto:brian-development@googlegroups.com
https://github.com/brian-team/brian2/issues/984
https://github.com/brian-team/brian2/issues/981
https://github.com/brian-team/brian2/issues/1004
https://github.com/brian-team/brian2/issues/996
https://github.com/brian-team/brian2/issues/1003
https://github.com/brian-team/brian2/issues/969
https://github.com/brian-team/brian2/issues/1010

Brian 2 Documentation, Release 2.5.1

Documentation improvements

• Various small fixes and additions (e.g. installation instructions, available functions, fixes in examples)
• A new example, Izhikevich 2007, provided by Guillaume Dumas.

Contributions

Github code, documentation, and issue contributions (ordered by the number of contributions):
• Marcel Stimberg (@mstimberg)
• Dan Goodman (@thesamovar)
• Denis Alevi (@denisalevi)
• Thomas Nowotny (@tnowotny)
• @neworderofjamie
• Paul Brodersen (@paulbrodersen)
• @matrec4
• svadams (@svadams)
• XiaoquinNUDT (@XiaoquinNUDT)
• Peter Duggins (@psipeter)
• @nh17937
• Patrick Nave (@pnave95)
• @AI-pha
• Guillaume Dumas (@deep-introspection)
• @godelicbach
• @galharth

1.3.12 Brian 2.1.3.1

This is a bug-fix release that fixes two bugs in the recent 2.1.3 release:
• Fix an inefficiency in the newly introduced timestep function when using the numpy target (#965)
• Fix inefficiencies in the unit system that could lead to slow operations and high memory use (#967). Thanks to
Kaustab Pal for making us aware of the issue.

1.3.13 Brian 2.1.3

This is a bug-fix release that fixes a number of important bugs (see below), but does not introduce any new features. We
recommend all users of Brian 2 to upgrade.
As always, please report bugs or suggestions to the github bug tracker (https://github.com/brian-team/brian2/issues) or
to the brian-development mailing list (brian-development@googlegroups.com).

22 Chapter 1. Introduction

https://github.com/deep-introspection
https://github.com/mstimberg
https://github.com/thesamovar
https://github.com/denisalevi
https://github.com/tnowotny
https://github.com/neworderofjamie
https://github.com/paulbrodersen
https://github.com/matrec4
https://github.com/svadams
https://github.com/XiaoquinNUDT
https://github.com/psipeter
https://github.com/nh17937
https://github.com/pnave95
https://github.com/AI-pha
https://github.com/deep-introspection
https://github.com/godelicbach
https://github.com/galharth
https://github.com/brian-team/brian2/issues/965
https://github.com/brian-team/brian2/issues/967
https://github.com/brian-team/brian2/issues
mailto:brian-development@googlegroups.com

Brian 2 Documentation, Release 2.5.1

Selected improvements and bug fixes

• The Cython cache on disk now uses significantly less space by deleting unnecessary source files (set the code-
gen.runtime.cython.delete_source_files preference to False if you want to keep these files for debugging).
In addition, a warning will be given when the Cython or weave cache exceeds a configurable size (code-
gen.max_cache_dir_size). The clear_cache function is provided to delete files from the cache (#914).

• The C++ standalone mode now respects the profile option and therefore no longer collects profiling information
by default. This can speed up simulations in certain cases (#935).

• The exact number of time steps that a neuron stays in the state of refractoriness after a spike could vary by up to one
time step when the requested refractory time was a multiple of the simulation time step. With this fix, the number
of time steps is ensured to be as expected by making use of a new timestep function that avoids floating point
rounding issues (#949, first reported by @zhouyanasd in issue #943).

• When restore() was called twice for a network, spikes that were not yet delivered to their target were not
restored correctly (#938, reported by @zhouyanasd).

• SpikeGeneratorGroup now uses a more efficient method for sorting spike indices and times, leading to a
much faster preparation time for groups that store many spikes (#948).

• Fix a memory leak in TimedArray (#923, reported by Wilhelm Braun).
• Fix an issue with summed variables targetting subgroups (#925, reported by @AI-pha).
• Fix the use of run_regularly on subgroups (#922, reported by @AI-pha).
• Improve performance for SpatialNeuron by removing redundant computations (#910, thanks to Moritz Au-
gustin for making us aware of the issue).

• Fix linked variables that link to scalar variables (#916)
• Fix warnings for numpy 1.14 and avoid compilation issues when switching between versions of numpy (#913)
• Fix problems when using logical operators in code generated for the numpy target which could lead to issues such
as wrongly connected synapses (#901, #900).

Backward-incompatible changes

• No longer allow delay as a variable name in a synaptic model to avoid ambiguity with respect to the synaptic
delay. Also no longer allow access to the delay variable in synaptic code since there is no way to distinguish
between pre- and post-synaptic delay (#927, reported by Denis Alevi).

• Due to the changed handling of refractoriness (see bug fixes above), simulations that make use of refractoriness
will possibly no longer give exactly the same results. The preference legacy.refractory_timing can be set to True
to reinstate the previous behaviour.

Infrastructure and documentation improvements

• From this version on, conda packages will be available on conda-forge. For a limited time, we will copy over
packages to the brian-team channel as well.

• Conda packages are no longer tied to a specific numpy version (PR #954)
• New example (Brunel & Wang, 2001) contributed by Teo Stocco and Alex Seeholzer.

1.3. Release notes 23

https://github.com/brian-team/brian2/issues/914
https://github.com/brian-team/brian2/issues/935
https://github.com/brian-team/brian2/issues/949
https://github.com/zhouyanasd
https://github.com/brian-team/brian2/issues/943
https://github.com/brian-team/brian2/issues/938
https://github.com/zhouyanasd
https://github.com/brian-team/brian2/issues/948
https://github.com/brian-team/brian2/issues/923
https://github.com/brian-team/brian2/issues/925
https://github.com/AI-pha
https://github.com/brian-team/brian2/issues/922
https://github.com/AI-pha
https://github.com/brian-team/brian2/issues/910
https://github.com/moritzaugustin
https://github.com/moritzaugustin
https://github.com/brian-team/brian2/issues/916
https://github.com/brian-team/brian2/issues/913
https://github.com/brian-team/brian2/issues/901
https://github.com/brian-team/brian2/issues/900
https://github.com/brian-team/brian2/issues/927
https://conda-forge.org/
https://github.com/brian-team/brian2/issues/954
https://github.com/zifeo
https://github.com/flinz

Brian 2 Documentation, Release 2.5.1

Contributions

Github code, documentation, and issue contributions (ordered by the number of contributions):
• Marcel Stimberg (@mstimberg)
• Dan Goodman (@thesamovar)
• Teo Stocco (@zifeo)
• Dylan Muir (@DylanMuir)
• scarecrow (@zhouyanasd)
• @fuadfukhasyi
• Aditya Addepalli (@Dyex719)
• Kapil kumar (@kapilkd13)
• svadams (@svadams)
• Vafa Andalibi (@Vafa-Andalibi)
• Sven Leach (@SvennoNito)
• @matrec4
• @jarishna
• @AI-pha
• @xdzhangxuejun
• Denis Alevi (@denisalevi)
• Paul Pfeiffer (@pfeffer90)
• Romain Brette (@romainbrette)
• @hustyanghui
• Adrien F. Vincent (@afvincent)
• @ckemere
• @evearmstrong
• Paweł Kopeć (@pawelkopec)
• Moritz Augustin (@moritzaugustin)
• Bart (@louwers)
• @amarsdd
• @ttxtea
• Maria Cervera (@MariaCervera)
• ouyangxinrong (@longzhixin)

Other contributions outside of github (ordered alphabetically, apologies to anyone we forgot…):
• Wilhelm Braun

24 Chapter 1. Introduction

https://github.com/mstimberg
https://github.com/thesamovar
https://github.com/zifeo
https://github.com/DylanMuir
https://github.com/zhouyanasd
https://github.com/fuadfukhasyi
https://github.com/Dyex719
https://github.com/kapilkd13
https://github.com/svadams
https://github.com/Vafa-Andalibi
https://github.com/SvennoNito
https://github.com/matrec4
https://github.com/jarishna
https://github.com/AI-pha
https://github.com/xdzhangxuejun
https://github.com/denisalevi
https://github.com/pfeffer90
https://github.com/romainbrette
https://github.com/hustyanghui
https://github.com/afvincent
https://github.com/ckemere
https://github.com/evearmstrong
https://github.com/pawelkopec
https://github.com/moritzaugustin
https://github.com/louwers
https://github.com/amarsdd
https://github.com/ttxtea
https://github.com/MariaCervera
https://github.com/longzhixin

Brian 2 Documentation, Release 2.5.1

1.3.14 Brian 2.1.2

This is another bug fix release that fixes a major bug in Equations’ substitution mechanism (#896). Thanks to Teo
Stocco for reporting this issue.

1.3.15 Brian 2.1.1

This is a bug fix release that re-activates parts of the caching mechanism for code generation that had been erroneously
deactivated in the previous release.

1.3.16 Brian 2.1

This release introduces two main new features: a new “GSL integration” mode for differential equation that offers to
integrate equations with variable-timestep methods provided by the GNU Scientific Library, and caching for the run
preparation phase that can significantly speed up simulations. It also comes with a newly written tutorial, as well as
additional documentation and examples.
As always, please report bugs or suggestions to the github bug tracker (https://github.com/brian-team/brian2/issues) or
to the brian-development mailing list (brian-development@googlegroups.com).

New features

• New numerical integration methods with variable time-step integration, based on the GNU Scientific Library (see
Numerical integration). Contributed byCharlee Fletterman, supported by 2017’s Google Summer of Code program.

• New caching mechanism for the code generation stage (application of numerical integration algorithms, analysis of
equations and statements, etc.), reducing the preparation time before the actual run, in particular for simulations
with multiple run() statements.

Selected improvements and bug fixes

• Fix a rare problem in Cython code generation caused by missing type information (#893)
• Fix warnings about improperly closed files on Python 3.6 (#892; reported and fixed by Teo Stocco)
• Fix an error when using numpy integer types for synaptic indexing (#888)
• Fix an error in numpy codegen target, triggered when assigning to a variable with an unfulfilled condition (#887)
• Fix an error when repeatedly referring to subexpressions in multiline statements (#880)
• Shorten long arrays in warning messages (#874)
• Enable the use of if in the shorthand generator syntax for Synapses.connect (#873)
• Fix the meaning of i and j in synapses connecting to/from other synapses (#854)

1.3. Release notes 25

https://github.com/brian-team/brian2/issues/896
https://github.com/brian-team/brian2/issues
mailto:brian-development@googlegroups.com
https://github.com/CharleeSF
https://summerofcode.withgoogle.com
https://github.com/brian-team/brian2/issues/893
https://github.com/brian-team/brian2/issues/892
https://github.com/zifeo
https://github.com/brian-team/brian2/issues/888
https://github.com/brian-team/brian2/issues/887
https://github.com/brian-team/brian2/issues/880
https://github.com/brian-team/brian2/issues/874
https://github.com/brian-team/brian2/issues/873
https://github.com/brian-team/brian2/issues/854

Brian 2 Documentation, Release 2.5.1

Backward-incompatible changes and deprecations

• In C++ standalone mode, information about the number of synapses and spikes will now only be displayed when
built with debug=True (#882).

• The linear state updater has been renamed to exact to avoid confusion (#877). Users are encouraged to use
exact, but the name linear is still available and does not raise any warning or error for now.

• The independent state updater has been marked as deprecated and might be removed in future versions.

Infrastructure and documentation improvements

• A new, more advanced, tutorial “about managing the slightly more complicated tasks that crop up in research
problems, rather than the toy examples we’ve been looking at so far.”

• Additional documentation on Custom events and Converting from integrated form to ODEs (including example code
for typical synapse models).

• New example code reproducing published findings (Platkiewicz and Brette, 2011; Stimberg et al., 2018)
• Fixes to the sphinx documentation creation process, the documentation can be downloaded as a PDF once again
(705 pages!)

• Conda packages now have support for numpy 1.13 (but support for numpy 1.10 and 1.11 has been removed)

Contributions

Github code, documentation, and issue contributions (ordered by the number of contributions):
• Marcel Stimberg (@mstimberg)
• Charlee Fletterman (@CharleeSF)
• Dan Goodman (@thesamovar)
• Teo Stocco (@zifeo)
• @k47h4

Other contributions outside of github (ordered alphabetically, apologies to anyone we forgot…):
• Chaofei Hong
• Lucas (“lucascdst”)

1.3.17 Brian 2.0.2.1

Fixes a bug in the tutorials’ HMTL rendering on readthedocs.org (code blocks were not displayed). Thanks to Flora
Bouchacourt for making us aware of this problem.

26 Chapter 1. Introduction

https://github.com/brian-team/brian2/issues/882
https://github.com/brian-team/brian2/issues/877
https://github.com/mstimberg
https://github.com/CharleeSF
https://github.com/thesamovar
https://github.com/zifeo
https://github.com/k47h4

Brian 2 Documentation, Release 2.5.1

1.3.18 Brian 2.0.2

New features

• molar and liter (as well as litre, scaled versions of the former, and a few useful abbreviations such as mM)
have been added as new units (#574).

• A new module brian2.units.constants provides physical constants such as the Faraday constants or the
gas constant (see Constants for details).

• SpatialNeuron now supports non-linear membrane currents (e.g. Goldman–Hodgkin–Katz equations) by lin-
earizing them with respect to v.

• Multi-compartmental models can access the capacitive current via Ic in their equations (#677)
• A new function scheduling_summary() that displays information about the scheduling of all objects (see

Scheduling for details).
• Introduce a new preference to pass arguments to the make/nmake command in C++
standalone mode (devices.cpp_standalone.extra_make_args_unix for Linux/OS X and de-
vices.cpp_standalone.extra_make_args_windows for Windows). For Linux/OS X, this enables parallel compilation
by default.

• Anaconda packages for Brian 2 are now available for Python 3.6 (but Python 3.4 support has been removed).

Selected improvements and bug fixes

• Work around low performance for certain C++ standalone simulations on Linux, due to a bug in glibc (see #803).
Thanks to Oleg Strikov (@xj8z) for debugging this issue and providing the workaround that is now in use.

• Make exact integration of event-driven synaptic variables use the linear numerical integration algorithm
(instead of independent), fixing rare occasions where integration failed despite the equations being linear
(#801).

• Better error messages for incorrect unit definitions in equations.
• Various fixes for the internal representation of physical units and the unit registration system.
• Fix a bug in the assignment of state variables in subtrees of SpatialNeuron (#822)
• Numpy target: fix an indexing error for a SpikeMonitor that records from a subgroup (#824)
• Summed variables targeting the same post-synaptic variable now raise an error (previously, only the one executed
last was taken into account, see #766).

• Fix bugs in synapse generation affecting Cython (#781) respectively numpy (#835)
• C++ standalone simulations with many objects no longer fail on Windows (#787)

Backwards-incompatible changes

• celsius has been removed as a unit, because it was ambiguous in its relation to kelvin and gave wrong results
when used as an absolute temperature (and not a temperature difference). For temperature differences, you can
directly replace celsius by kelvin. To convert an absolute temperature in degree Celsius to Kelvin, add the
zero_celsius constant from brian2.units.constants (#817).

• State variables are no longer allowed to have names ending in _pre or _post to avoid confusion with references
to pre- and post-synaptic variables in Synapses (#818)

1.3. Release notes 27

https://github.com/brian-team/brian2/issues/574
https://github.com/brian-team/brian2/issues/677
https://github.com/brian-team/brian2/issues/803
https://github.com/xj8z
https://github.com/brian-team/brian2/issues/801
https://github.com/brian-team/brian2/issues/822
https://github.com/brian-team/brian2/issues/824
https://github.com/brian-team/brian2/issues/766
https://github.com/brian-team/brian2/issues/781
https://github.com/brian-team/brian2/issues/835
https://github.com/brian-team/brian2/issues/787
https://github.com/brian-team/brian2/issues/817
https://github.com/brian-team/brian2/issues/818

Brian 2 Documentation, Release 2.5.1

Changes to default settings

• In C++ standalone mode, the clean argument now defaults to False, meaning that make clean will not be
executed by default before building the simulation. This avoids recompiling all files for unchanged simulations that
are executed repeatedly. To return to the previous behaviour, specify clean=True in the device.build call
(or in set_device if your script does not have an explicit device.build).

Contributions

Github code, documentation, and issue contributions (ordered by the number of contributions):
• Marcel Stimberg (@mstimberg)
• Dan Goodman (@thesamovar)
• Thomas McColgan (@phreeza)
• Daan Sprenkels (@dsprenkels)
• Romain Brette (@romainbrette)
• Oleg Strikov (@xj8z)
• Charlee Fletterman (@CharleeSF)
• Meng Dong (@whenov)
• Denis Alevi (@denisalevi)
• Mihir Vaidya (@MihirVaidya94)
• Adam (@ffa)
• Sourav Singh (@souravsingh)
• Nick Hale (@nik849)
• Cody Greer (@Cody-G)
• Jean-Sébastien Dessureault (@jsdessureault)
• Michele Giugliano (@mgiugliano)
• Teo Stocco (@zifeo)
• Edward Betts (@EdwardBetts)

Other contributions outside of github (ordered alphabetically, apologies to anyone we forgot…):
• Christopher Nolan
• Regimantas Jurkus
• Shailesh Appukuttan

28 Chapter 1. Introduction

https://github.com/mstimberg
https://github.com/thesamovar
https://github.com/phreeza
https://github.com/dsprenkels
https://github.com/romainbrette
https://github.com/xj8z
https://github.com/CharleeSF
https://github.com/whenov
https://github.com/denisalevi
https://github.com/MihirVaidya94
https://github.com/ffa
https://github.com/souravsingh
https://github.com/nik849
https://github.com/Cody-G
https://github.com/jsdessureault
https://github.com/mgiugliano
https://github.com/zifeo
https://github.com/EdwardBetts

Brian 2 Documentation, Release 2.5.1

1.3.19 Brian 2.0.1

This is a bug-fix release that fixes a number of important bugs (see below), but does not introduce any new features. We
recommend all users of Brian 2 to upgrade.
As always, please report bugs or suggestions to the github bug tracker (https://github.com/brian-team/brian2/issues) or
to the brian-development mailing list (brian-development@googlegroups.com).

Improvements and bug fixes

• Fix PopulationRateMonitor for recordings from subgroups (#772)
• Fix SpikeMonitor for recordings from subgroups (#777)
• Check that string expressions provided as the rates argument for PoissonGroup have correct units.
• Fix compilation errors when multiple run statements with different report arguments are used in C++ standalone
mode.

• Several documentation updates and fixes

Contributions

Code and documentation contributions (ordered by the number of commits):
• Marcel Stimberg (@mstimberg)
• Dan Goodman (@thesamovar)
• Alex Seeholzer (@flinz)
• Meng Dong (@whenov)

Testing, suggestions and bug reports (ordered alphabetically, apologies to anyone we forgot…):
• Myung Seok Shim
• Pamela Hathway

1.3.20 Brian 2.0 (changes since 1.4)

Major new features

• Much more flexible model definitions. The behaviour of all model elements can now be defined by arbitrary
equations specified in standard mathematical notation.

• Code generation as standard. Behind the scenes, Brian automatically generates and compiles C++ code to simulate
your model, making it much faster.

• “Standalone mode”. In this mode, Brian generates a complete C++ project tree that implements your model. This
can be then be compiled and run entirely independently of Brian. This leads to both highly efficient code, as well
as making it much easier to run simulations on non-standard computational hardware, for example on robotics
platforms.

• Multicompartmental modelling.
• Python 2 and 3 support.

1.3. Release notes 29

https://github.com/brian-team/brian2/issues
mailto:brian-development@googlegroups.com
https://github.com/brian-team/brian2/issues/772
https://github.com/brian-team/brian2/issues/777
https://github.com/mstimberg
https://github.com/thesamovar
https://github.com/flinz
https://github.com/whenov

Brian 2 Documentation, Release 2.5.1

New features

• Installation should now be much easier, especially if using the Anaconda Python distribution. See Installation.
• Many improvements to Synapses which replaces the old Connection object in Brian 1. This includes:
synapses that are triggered by non-spike events; synapses that target other synapses; huge speed improvements
thanks to using code generation; new “generator syntax” when creating synapses is much more flexible and effi-
cient. See Synapses.

• New model definitions allow for much more flexible refractoriness. See Refractoriness.
• SpikeMonitor and StateMonitor are now much more flexible, and cover a lot of what used to be covered
by things like MultiStateMonitor, etc. See Recording during a simulation.

• Multiple event types. In addition to the default spike event, you can create arbitrary events, and have these trigger
code blocks (like reset) or synaptic events. See Custom events.

• New units system allows arrays to have units. This eliminates the need for a lot of the special casing that was
required in Brian 1. See Physical units.

• Indexing variable by condition, e.g. you might write G.v['x>0'] to return all values of variable v in Neuron-
Group G where the group’s variable x>0. See State variables.

• Correct numerical integration of stochastic differential equations. See Numerical integration.
• “Magic” run() system has been greatly simplified and is now much more transparent. In addition, if there is any
ambiguity about what the user wants to run, an erorr will be raised rather than making a guess. This makes it much
safer. In addition, there is now a store()/restore() mechanism that simplifies restarting simulations and
managing separate training/testing runs. See Running a simulation.

• Changing an external variable between runs now works as expected, i.e. something like tau=1*ms;
run(100*ms); tau=5*ms; run(100*ms). In Brian 1 this would have used tau=1*ms for both runs.
More generally, in Brian 2 there is now better control over namespaces. See Namespaces.

• New “shared” variables with a single value shared between all neurons. See Shared variables.
• New Group.run_regularly method for a codegen-compatible way of doing things that used to be done with
network_operation() (which can still be used). See Regular operations.

• New system for handling externally defined functions. They have to specify which units they accept in their argu-
ments, and what they return. In addition, you can easily specify the implementation of user-defined functions in
different languages for code generation. See Functions.

• State variables can now be defined as integer or boolean values. See Equations.
• State variables can now be exported directly to Pandas data frame. See Storing state variables.
• New generalised “flags” system for giving additional information when defining models. See Flags.
• TimedArray now allows for 2D arrays with arbitrary indexing. See Timed arrays.
• Better support for using Brian in IPython/Jupyter. See, for example, start_scope().
• New preferences system. See Preferences.
• Random number generation can now be made reliably reproducible. See Random numbers.
• New profiling option to see which parts of your simulation are taking the longest to run. See Profiling.
• New logging system allows for more precise control. See Logging.
• New ways of importing Brian for advanced Python users. See Importing Brian.
• Improved control over the order in which objects are updated during a run. See Custom progress reporting.
• Users can now easily define their own numerical integration methods. See State update.

30 Chapter 1. Introduction

Brian 2 Documentation, Release 2.5.1

• Support for parallel processing using the OpenMP version of standalone mode. Note that all Brian tests pass with
this, but it is still considered to be experimental. See Multi-threading with OpenMP.

Backwards incompatible changes

See Detailed Brian 1 to Brian 2 conversion notes.

Behind the scenes changes

• All user models are now passed through the code generation system. This allows us to be much more flexible about
introducing new target languages for generated code to make use of non-standard computational hardware. See
Code generation.

• New standalone/device mode allows generation of a complete project tree that can be compiled and built inde-
pendently of Brian and Python. This allows for even more flexible use of Brian on non-standard hardware. See
Devices.

• All objects now have a unique name, used in code generation. This can also be used to access the object through
the Network object.

Contributions

Full list of all Brian 2 contributors, ordered by the time of their first contribution:
• Dan Goodman (@thesamovar)
• Marcel Stimberg (@mstimberg)
• Romain Brette (@romainbrette)
• Cyrille Rossant (@rossant)
• Victor Benichoux (@victorbenichoux)
• Pierre Yger (@yger)
• Werner Beroux (@wernight)
• Konrad Wartke (@Kwartke)
• Daniel Bliss (@dabliss)
• Jan-Hendrik Schleimer (@ttxtea)
• Moritz Augustin (@moritzaugustin)
• Romain Cazé (@rcaze)
• Dominik Krzemiński (@dokato)
• Martino Sorbaro (@martinosorb)
• Benjamin Evans (@bdevans)

1.3. Release notes 31

https://github.com/thesamovar
https://github.com/mstimberg
https://github.com/romainbrette
https://github.com/rossant
https://github.com/victorbenichoux
https://github.com/yger
https://github.com/wernight
https://github.com/Kwartke
https://github.com/dabliss
https://github.com/ttxtea
https://github.com/moritzaugustin
https://github.com/rcaze
https://github.com/dokato
https://github.com/martinosorb
https://github.com/bdevans

Brian 2 Documentation, Release 2.5.1

1.3.21 Brian 2.0 (changes since 2.0rc3)

New features

• A new flag constant over dt can be applied to subexpressions to have them only evaluated once per timestep
(seeModels and neuron groups). This flag is mandatory for stateful subexpressions, e.g. expressions using rand()
or randn(). (#720, #721)

Improvements and bug fixes

• Fix EventMonitor.values and SpikeMonitor.spike_trains to always return sorted spike/event
times (#725).

• Respect the active attribute in C++ standalone mode (#718).
• More consistent check of compatible time and dt values (#730).
• Attempting to set a synaptic variable or to start a simulation with synapses without any preceding connect call now
raises an error (#737).

• Improve the performance of coordinate calculation for Morphology objects, which previously made plotting
very slow for complex morphologies (#741).

• Fix a bug in SpatialNeuronwhere it did not detect non-linear dependencies on v, introduced via point currents
(#743).

Infrastructure and documentation improvements

• An interactive demo, tutorials, and examples can now be run in an interactive jupyter notebook on the mybinder
platform, without any need for a local Brian installation (#736). Thanks to Ben Evans for the idea and help with
the implementation.

• A new extensive guide for converting Brian 1 simulations to Brian 2 user coming from Brian 1: Changes for Brian
1 users

• A re-organized User’s guide, with clearer indications which information is important for new Brian users.

Contributions

Code and documentation contributions (ordered by the number of commits):
• Marcel Stimberg (@mstimberg)
• Dan Goodman (@thesamovar)
• Benjamin Evans (@bdevans)

Testing, suggestions and bug reports (ordered alphabetically, apologies to anyone we forgot…):
• Chaofei Hong
• Daniel Bliss
• Jacopo Bono
• Ruben Tikidji-Hamburyan

32 Chapter 1. Introduction

https://github.com/brian-team/brian2/issues/720
https://github.com/brian-team/brian2/issues/721
https://github.com/brian-team/brian2/issues/725
https://github.com/brian-team/brian2/issues/718
https://github.com/brian-team/brian2/issues/730
https://github.com/brian-team/brian2/issues/737
https://github.com/brian-team/brian2/issues/741
https://github.com/brian-team/brian2/issues/743
http://mybinder.org/
https://github.com/brian-team/brian2/issues/736
https://github.com/mstimberg
https://github.com/thesamovar
https://github.com/bdevans

Brian 2 Documentation, Release 2.5.1

1.3.22 Brian 2.0rc3

This is another “release candidate” for Brian 2.0 that fixes a range of bugs and introduces better support for random
numbers (see below). We are getting close to the final Brian 2.0 release, the remaining work will focus on bug fixes, and
better error messages and documentation.
As always, please report bugs or suggestions to the github bug tracker (https://github.com/brian-team/brian2/issues) or
to the brian-development mailing list (brian-development@googlegroups.com).

New features

• Brian now comes with its own seed() function, allowing to seed the random number generator and thereby to
make simulations reproducible. This function works for all code generation targets and in runtime and standalone
mode. See Random numbers for details.

• Brian can now export/import state variables of a group or a full network to/from a pandas DataFrame and comes
with a mechanism to extend this to other formats. Thanks to Dominik Krzemiński for this contribution (see #306).

Improvements and bug fixes

• Use a Mersenne-Twister pseudorandom number generator in C++ standalone mode, replacing the previously used
low-quality random number generator from the C standard library (see #222, #671 and #706).

• Fix a memory leak in code running with the weave code generation target, and a smaller memory leak related to
units stored repetitively in the UnitRegistry.

• Fix a difference of one timestep in the number of simulated timesteps between runtime and standalone that could
arise for very specific values of dt and t (see #695).

• Fix standalone compilation failures with the most recent gcc version which defaults to C++14 mode (see #701)
• Fix incorrect summation in synapses when using the (summed) flag and writing to pre-synaptic variables (see
#704)

• Make synaptic pathways work when connecting groups that define nested subexpressions, instead of failing with a
cryptic error message (see #707).

Contributions

Code and documentation contributions (ordered by the number of commits):
• Marcel Stimberg (@mstimberg)
• Dominik Krzemiński (@dokato)
• Dan Goodman (@thesamovar)
• Martino Sorbaro (@martinosorb)

Testing, suggestions and bug reports (ordered alphabetically, apologies to anyone we forgot…):
• Craig Henriquez
• Daniel Bliss
• David Higgins
• Gordon Erlebacher
• Max Gillett

1.3. Release notes 33

https://github.com/brian-team/brian2/issues
mailto:brian-development@googlegroups.com
http://pandas.pydata.org
https://github.com/brian-team/brian2/issues/306
https://github.com/brian-team/brian2/issues/222
https://github.com/brian-team/brian2/issues/671
https://github.com/brian-team/brian2/issues/706
https://github.com/brian-team/brian2/issues/695
https://github.com/brian-team/brian2/issues/701
https://github.com/brian-team/brian2/issues/704
https://github.com/brian-team/brian2/issues/707
https://github.com/mstimberg
https://github.com/dokato
https://github.com/thesamovar
https://github.com/martinosorb

Brian 2 Documentation, Release 2.5.1

• Moritz Augustin
• Sami Abdul-Wahid

1.3.23 Brian 2.0rc1

This is a bug fix release that we release only about two weeks after the previous release because that release introduced
a bug that could lead to wrong integration of stochastic differential equations. Note that standard neuronal noise models
were not affected by this bug, it only concerned differential equations implementing a “random walk”. The release also
fixes a few other issues reported by users, see below for more information.

Improvements and bug fixes

• Fix a regression from 2.0b4: stochastic differential equations without any non-stochastic part (e.g. dx/dt =
xi/sqrt(ms)`) were not integrated correctly (see #686).

• Repeatedly calling restore() (or Network.restore) no longer raises an error (see #681).
• Fix an issue that made PoissonInput refuse to run after a change of dt (see #684).
• If the rates argument of PoissonGroup is a string, it will now be evaluated at every time step instead of once
at construction time. This makes time-dependent rate expressions work as expected (see #660).

Contributions

Code and documentation contributions (ordered by the number of commits):
• Marcel Stimberg (@mstimberg)

Testing, suggestions and bug reports (ordered alphabetically, apologies to anyone we forgot…):
• Cian O’Donnell
• Daniel Bliss
• Ibrahim Ozturk
• Olivia Gozel

1.3.24 Brian 2.0rc

This is a release candidate for the final Brian 2.0 release, meaning that from now on we will focus on bug fixes and
documentation, without introducing new major features or changing the syntax for the user. This release candidate itself
does however change a few important syntax elements, see “Backwards-incompatible changes” below.
As always, please report bugs or suggestions to the github bug tracker (https://github.com/brian-team/brian2/issues) or
to the brian-development mailing list (brian-development@googlegroups.com).

34 Chapter 1. Introduction

https://github.com/brian-team/brian2/issues/686
https://github.com/brian-team/brian2/issues/681
https://github.com/brian-team/brian2/issues/684
https://github.com/brian-team/brian2/issues/660
https://github.com/mstimberg
https://github.com/brian-team/brian2/issues
mailto:brian-development@googlegroups.com

Brian 2 Documentation, Release 2.5.1

Major new features

• New “generator syntax” to efficiently generate synapses (e.g. one-to-one connections), see Creating synapses for
more details.

• For synaptic connections with multiple synapses between a pair of neurons, the number of the synapse can now be
stored in a variable, allowing its use in expressions and statements (see Creating synapses).

• Synapses can now target other Synapses objects, useful for some models of synaptic modulation.
• The Morphology object has been completely re-worked and several issues have been fixed. The new Section
object allows to model a section as a series of truncated cones (see Creating a neuron morphology).

• Scripts with a single run() call, no longer need an explicit device.build() call to run with the C++ stan-
dalone device. A set_device() in the beginning is enough and will trigger the build call after the run (see
Standalone code generation).

• All state variables within a Network can now be accessed by Network.get_states and Network.
set_states and the store()/restore() mechanism can now store the full state of a simulation to disk.

• Stochastic differential equations with multiplicative noise can now be integrated using the Euler-Heun method
(heun). Thanks to Jan-Hendrik Schleimer for this contribution.

• Error messages have been significantly improved: errors for unit mismatches are now much clearer and error
messages triggered during the intialization phase point back to the line of code where the relevant object (e.g. a
NeuronGroup) was created.

• PopulationRateMonitor now provides a smooth_rate method for a filtered version of the stored rates.

Improvements and bug fixes

• In addition to the new synapse creation syntax, sparse probabilistic connections are now created much faster.
• The time for the initialization phase at the beginning of a run() has been significantly reduced.
• Multicompartmental simulations with a large number of compartments are now simulated more efficiently and are
making better use of several processor cores when OpenMP is activated in C++ standalone mode. Thanks toMoritz
Augustin for this contribution.

• Simulations will use compiler settings that optimize performance by default.
• Objects that have user-specified names are better supported for complex simulation scenarios (names no longer
have to be unique at all times, but only across a network or across a standalone device).

• Various fixes for compatibility with recent versions of numpy and sympy

Important backwards-incompatible changes

• The argument names in Synapses.connect have changed and the first argument can no longer be
an array of indices. To connect based on indices, use Synapses.connect(i=source_indices,
j=target_indices). See Creating synapses and the documentation of Synapses.connect for more
details.

• The actions triggered by pre-synaptic and post-synaptic spikes are now described by the on_pre and on_post
keyword arguments (instead of pre and post).

• The Morphology object no longer allows to change attributes such as length and diameter after its creation.
Complex morphologies should instead be created using the Section class, allowing for the specification of all
details.

1.3. Release notes 35

Brian 2 Documentation, Release 2.5.1

• Morphology objects that are defined with coordinates need to provide the start point (relative to the end point
of the parent compartment) as the first coordinate. See Creating a neuron morphology for more details.

• For simulations using the C++ standalone mode, no longer call Device.build (if using a single run() call),
or use set_device() with build_on_run=False (see Standalone code generation).

Infrastructure improvements

• Our test suite is now also run on Mac OS-X (on the Travis CI platform).

Contributions

Code and documentation contributions (ordered by the number of commits):
• Marcel Stimberg (@mstimberg)
• Dan Goodman (@thesamovar)
• Moritz Augustin (@moritzaugustin)
• Jan-Hendrik Schleimer (@ttxtea)
• Romain Cazé (@rcaze)
• Konrad Wartke (@Kwartke)
• Romain Brette (@romainbrette)

Testing, suggestions and bug reports (ordered alphabetically, apologies to anyone we forgot…):
• Chaofei Hong
• Kees de Leeuw
• Luke Y Prince
• Myung Seok Shim
• Owen Mackwood
• Github users: @epaxon, @flinz, @mariomulansky, @martinosorb, @neuralyzer, @oleskiw, @prcastro, @su-
doankit

1.3.25 Brian 2.0b4

This is the fourth (and probably last) beta release for Brian 2.0. This release adds a few important new features and fixes
a number of bugs so we recommend all users of Brian 2 to upgrade. If you are a user new to Brian, we also recommend
to directly start with Brian 2 instead of using the stable release of Brian 1. Note that the new recommended way to install
Brian 2 is to use the Anaconda distribution and to install the Brian 2 conda package (see Installation).
This is however still a Beta release, please report bugs or suggestions to the github bug tracker (https://github.com/
brian-team/brian2/issues) or to the brian-development mailing list (brian-development@googlegroups.com).

36 Chapter 1. Introduction

https://travis-ci.org/
https://github.com/mstimberg
https://github.com/thesamovar
https://github.com/moritzaugustin
https://github.com/ttxtea
https://github.com/rcaze
https://github.com/Kwartke
https://github.com/romainbrette
https://github.com/brian-team/brian2/issues
https://github.com/brian-team/brian2/issues
mailto:brian-development@googlegroups.com

Brian 2 Documentation, Release 2.5.1

Major new features

• In addition to the standard threshold/reset, groups can now define “custom events”. These can be recorded with
the new EventMonitor (a generalization of SpikeMonitor) and Synapses can connect to these events
instead of the standard spike event. See Custom events for more details.

• SpikeMonitor and EventMonitor can now also record state variable values at the time of spikes (or custom
events), thereby offering the functionality of StateSpikeMonitor from Brian 1. See Recording variables at
spike time for more details.

• The code generation modes that interact with C++ code (weave, Cython, and C++ standalone) can now be more
easily configured to work with external libraries (compiler and linker options, header files, etc.). See the documen-
tation of the cpp_prefs module for more details.

Improvemements and bug fixes

• Cython simulations no longer interfere with each other when run in parallel (thanks to Daniel Bliss for reporting
and fixing this).

• The C++ standalone now works with scalar delays and the spike queue implementation deals more efficiently with
them in general.

• Dynamic arrays are now resized more efficiently, leading to faster monitors in runtime mode.
• The spikes generated by a SpikeGeneratorGroup can now be changed between runs using the set_spikes
method.

• Multi-step state updaters now work correctly for non-autonomous differential equations
• PoissonInput now correctly works with multiple clocks (thanks to Daniel Bliss for reporting and fixing this)
• The get_states method now works for StateMonitor. This method provides a convenient way to access
all the data stored in the monitor, e.g. in order to store it on disk.

• C++ compilation is now easier to get to work under Windows, see Installation for details.

Important backwards-incompatible changes

• The custom_operation method has been renamed to run_regularly and can now be called without the
need for storing its return value.

• StateMonitor will now by default record at the beginning of a time step instead of at the end. See Recording
variables continuously for details.

• Scalar quantities now behave as python scalars with respect to in-place modifications (augmented assignments).
This means that x = 3*mV; y = x; y += 1*mV will no longer increase the value of the variable x as well.

Infrastructure improvements

• We now provide conda packages for Brian 2, making it very easy to install when using the Anaconda distribution
(see Installation).

1.3. Release notes 37

Brian 2 Documentation, Release 2.5.1

Contributions

Code and documentation contributions (ordered by the number of commits):
• Marcel Stimberg (@mstimberg)
• Dan Goodman (@thesamovar)
• Daniel Bliss (@dabliss)
• Romain Brette (@romainbrette)

Testing, suggestions and bug reports (ordered alphabetically, apologies to everyone we forgot…):
• Daniel Bliss
• Damien Drix
• Rainer Engelken
• Beatriz Herrera Figueredo
• Owen Mackwood
• Augustine Tan
• Ot de Wiljes

1.3.26 Brian 2.0b3

This is the third beta release for Brian 2.0. This release does not add many new features but it fixes a number of important
bugs so we recommend all users of Brian 2 to upgrade. If you are a user new to Brian, we also recommend to directly
start with Brian 2 instead of using the stable release of Brian 1.
This is however still a Beta release, please report bugs or suggestions to the github bug tracker (https://github.com/
brian-team/brian2/issues) or to the brian-development mailing list (brian-development@googlegroups.com).

Major new features

• A new PoissonInput class for efficient simulation of Poisson-distributed input events.

Improvements

• The order of execution for pre and post statements happending in the same time step was not well defined (it
fell back to the default alphabetical ordering, executing post before pre). It now explicitly specifies the order
attribute so that pre gets executed before post (as in Brian 1). See the Synapses documentation for details.

• The default schedule that is used can now be set via a preference (core.network.default_schedule). New automat-
ically generated scheduling slots relative to the explicitly defined ones can be used, e.g. before_resets or
after_synapses. See Scheduling for details.

• The scipy package is no longer a dependency (note that weave for compiled C code under Python 2 is now available
in a separate package). Note that multicompartmental models will still benefit from the scipy package if they are
simulated in pure Python (i.e. with the numpy code generation target) – otherwise Brian 2 will fall back to a
numpy-only solution which is significantly slower.

38 Chapter 1. Introduction

https://github.com/mstimberg
https://github.com/thesamovar
https://github.com/dabliss
https://github.com/romainbrette
https://github.com/brian-team/brian2/issues
https://github.com/brian-team/brian2/issues
mailto:brian-development@googlegroups.com
http://scipy.org
https://pypi.python.org/pypi/weave
http://scipy.org

Brian 2 Documentation, Release 2.5.1

Important bug fixes

• FixSpikeGeneratorGroupwhich did not emit all the spikes under certain conditions for some code generation
targets (#429)

• Fix an incorrect update of pre-synaptic variables in synaptic statements for the numpy code generation target
(#435).

• Fix the possibility of an incorrect memory access when recording a subgroup with SpikeMonitor (#454).
• Fix the storing of results on disk for C++ standalone onWindows – variables that had the same name when ignoring
case (e.g. i and I) where overwriting each other (#455).

Infrastructure improvements

• Brian 2 now has a chat room on gitter: https://gitter.im/brian-team/brian2
• The sphinx documentation can now be built from the release archive file
• After a big cleanup, all files in the repository have now simple LF line endings (see https://help.github.com/articles/
dealing-with-line-endings/ on how to configure your own machine properly if you want to contribute to Brian).

Contributions

Code and documentation contributions (ordered by the number of commits):
• Marcel Stimberg (@mstimberg)
• Dan Goodman (@thesamovar)
• Konrad Wartke (@kwartke)

Testing, suggestions and bug reports (ordered alphabetically, apologies to everyone we forgot…):
• Daniel Bliss
• Owen Mackwood
• Ankur Sinha
• Richard Tomsett

1.3.27 Brian 2.0b2

This is the second beta release for Brian 2.0, we recommend all users of Brian 2 to upgrade. If you are a user new to
Brian, we also recommend to directly start with Brian 2 instead of using the stable release of Brian 1.
This is however still a Beta release, please report bugs or suggestions to the github bug tracker (https://github.com/
brian-team/brian2/issues) or to the brian-development mailing list (brian-development@googlegroups.com).

1.3. Release notes 39

https://github.com/brian-team/brian2/issues/429
https://github.com/brian-team/brian2/issues/435
https://github.com/brian-team/brian2/issues/454
https://github.com/brian-team/brian2/issues/455
http://gitter.im
https://gitter.im/brian-team/brian2
https://help.github.com/articles/dealing-with-line-endings/
https://help.github.com/articles/dealing-with-line-endings/
https://github.com/mstimberg
https://github.com/thesamovar
https://github.com/Kwartke
https://github.com/brian-team/brian2/issues
https://github.com/brian-team/brian2/issues
mailto:brian-development@googlegroups.com

Brian 2 Documentation, Release 2.5.1

Major new features

• Multi-compartmental simulations can now be run using the Standalone code generation mode (this is not yet well-
tested, though).

• The implementation of TimedArray now supports two-dimensional arrays, i.e. different input per neuron (or
synapse, etc.), see Timed arrays for details.

• Previously, not setting a code generation target (using the codegen.target preference) would mean that the numpy
target was used. Now, the default target is auto, which means that a compiled language (weave or cython)
will be used if possible. See Computational methods and efficiency for details.

• The implementation of SpikeGeneratorGroup has been improved and it now supports a period argument
to repeatedly generate a spike pattern.

Improvements

• The selection of a numerical algorithm (if none has been specified by the user) has been simplified. See Numerical
integration for details.

• Expressions that are shared among neurons/synapses are now updated only once instead of for every neuron/synapse
which can lead to performance improvements.

• On Windows, The Microsoft Visual C compiler is now supported in the cpp_standalone mode, see the re-
spective notes in the Installation and Computational methods and efficiency documents.

• Simulation runs (using the standard “runtime” device) now collect profiling information. See Profiling for details.

Infrastructure and documentation improvements

• Tutorials for beginners in the form of ipython notebooks (currently only covering the basics of neurons and synapses)
are now available.

• The Examples in the documentation now include the images they generated. Several examples have been adapted
from Brian 1.

• The code is now automatically tested on Windows machines, using the appveyor service. This complements the
Linux testing on travis.

• Using a version of a dependency (e.g. sympy) that we don’t support will now raise an error when you import
brian2 – see Dependency checks for more details.

• Test coverage for the cpp_standalone mode has been significantly increased.

Important bug fixes

• The preparation time for complicated equations has been significantly reduced.
• The string representation of small physical quantities has been corrected (#361)
• Linking variables from a group of size 1 now works correctly (#383)

40 Chapter 1. Introduction

http://ci.appveyor.com
https://travis-ci.org
https://github.com/brian-team/brian2/issues/361
https://github.com/brian-team/brian2/issues/383

Brian 2 Documentation, Release 2.5.1

Contributions

Code and documentation contributions (ordered by the number of commits):
• Marcel Stimberg (@mstimberg)
• Dan Goodman (@thesamovar)
• Romain Brette (@romainbrette)
• Pierre Yger (@yger)

Testing, suggestions and bug reports (ordered alphabetically, apologies to everyone we forgot…):
• Conor Cox
• Gordon Erlebacher
• Konstantin Mergenthaler

1.3.28 Brian 2.0beta

This is the first beta release for Brian 2.0 and the first version of Brian 2.0 we recommend for general use. From now on,
we will try to keep changes that break existing code to a minimum. If you are a user new to Brian, we’d recommend to
start with the Brian 2 beta instead of using the stable release of Brian 1.
This is however still a Beta release, please report bugs or suggestions to the github bug tracker (https://github.com/
brian-team/brian2/issues) or to the brian-development mailing list (brian-development@googlegroups.com).

Major new features

• New classes Morphology and SpatialNeuron for the simulation of Multicompartment models

• A temporary “bridge” for brian.hears that allows to use its Brian 1 version from Brian 2 (Brian Hears)
• Cython is now a new code generation target, therefore the performance benefits of compiled code are now also
available to users running simulations under Python 3.x (where scipy.weave is not available)

• Networks can now store their current state and return to it at a later time, e.g. for simulating multiple trials starting
from a fixed network state (Continuing/repeating simulations)

• C++ standalone mode: multiple processors are now supported via OpenMP (Multi-threading with OpenMP), al-
though this code has not yet been well tested so may be inaccurate.

• C++ standalone mode: after a run, state variables and monitored values can be loaded from disk transparently.
Most scripts therefore only need two additional lines to use standalone mode instead of Brian’s default runtime
mode (Standalone code generation).

Syntax changes

• The syntax and semantics of everything around simulation time steps, clocks, and multiple runs have been cleaned
up, making reinit obsolete and also making it unnecessary for most users to explicitly generate Clock objects
– instead, a dt keyword can be specified for objects such as NeuronGroup (Running a simulation)

• The scalar flag for parameters/subexpressions has been renamed to shared
• The “unit” for boolean variables has been renamed from bool to boolean
• C++ standalone: several keywords of CPPStandaloneDevice.build have been renamed

1.3. Release notes 41

https://github.com/mstimberg
https://github.com/thesamovar
https://github.com/romainbrette
https://github.com/yger
https://github.com/brian-team/brian2/issues
https://github.com/brian-team/brian2/issues
mailto:brian-development@googlegroups.com

Brian 2 Documentation, Release 2.5.1

• The preferences are now accessible via prefs instead of brian_prefs
• The runner method has been renamed to custom_operation

Improvements

• Variables can now be linked across NeuronGroups (Linked variables)
• More flexible progress reporting system, progress reporting also works in the C++ standalone mode (Progress

reporting)
• State variables can be declared as integer (Equation strings)

Bug fixes

57 github issues have been closed since the alpha release, of which 26 had been labeled as bugs. We recommend all users
of Brian 2 to upgrade.

Contributions

Code and documentation contributions (ordered by the number of commits):
• Marcel Stimberg (@mstimberg)
• Dan Goodman (@thesamovar)
• Romain Brette (@romainbrette)
• Pierre Yger (@yger)
• Werner Beroux (@wernight)

Testing, suggestions and bug reports (ordered alphabetically, apologies to everyone we forgot…):
• Guillaume Bellec
• Victor Benichoux
• Laureline Logiaco
• Konstantin Mergenthaler
• Maurizio De Pitta
• Jan-Hendrick Schleimer
• Douglas Sterling
• Katharina Wilmes

42 Chapter 1. Introduction

https://github.com/mstimberg
https://github.com/thesamovar
https://github.com/romainbrette
https://github.com/yger
https://github.com/wernight

Brian 2 Documentation, Release 2.5.1

1.4 Changes for Brian 1 users

• Physical units

• Unported packages

• Replacement packages

• Removed classes/functions and their replacements

In most cases, Brian 2 works in a very similar way to Brian 1 but there are some important differences to be aware of. The
major distinction is that in Brian 2 you need to be more explicit about the definition of your simulation in order to avoid
inadvertent errors. In some cases, you will now get a warning in other even an error – often the error/warning message
describes a way to resolve the issue.
Specific examples how to convert code from Brian 1 can be found in the document Detailed Brian 1 to Brian 2 conversion
notes.

1.4.1 Physical units

The unit system now extends to arrays, e.g. np.arange(5) * mV will retain the units of volts and not discard them
as Brian 1 did. Brian 2 is therefore also more strict in checking the units. For example, if the state variable v uses the
unit of volt, the statement G.v = np.rand(len(G)) / 1000. will now raise an error. For consistency, units
are returned everywhere, e.g. in monitors. If mon records a state variable v, mon.t will return a time in seconds and
mon.v the stored values of v in units of volts.
If you need a pure numpy array without units for further processing, there are several options: if it is a state variable or
a recorded variable in a monitor, appending an underscore will refer to the variable values without units, e.g. mon.t_
returns pure floating point values. Alternatively, you can remove units by diving by the unit (e.g. mon.t / second)
or by explicitly converting it (np.asarray(mon.t)).
Here’s an overview showing a few expressions and their respective values in Brian 1 and Brian 2:

Expression Brian 1 Brian 2
1 * mV 1.0 * mvolt 1.0 * mvolt
np.array(1) * mV 0.001 1.0 * mvolt
np.array([1]) * mV array([0.001]) array([1.]) * mvolt
np.mean(np.arange(5) * mV) 0.002 2.0 * mvolt
np.arange(2) * mV array([0. , 0.001]) array([0., 1.]) * mvolt
(np.arange(2) * mV) >= 1 * mV array([False, True], dtype=bool) array([False, True], dtype=bool)
(np.arange(2) * mV)[0] >= 1 * mV False False
(np.arange(2) * mV)[1] >= 1 * mV DimensionMismatchError True

1.4. Changes for Brian 1 users 43

Brian 2 Documentation, Release 2.5.1

1.4.2 Unported packages

The following packages have not (yet) been ported to Brian 2. If your simulation critically depends on them, you should
consider staying with Brian 1 for now.

• brian.tools

• brian.library.modelfitting

• brian.library.electrophysiology

1.4.3 Replacement packages

The following packages that were included in Brian 1 have now been split into separate packages.
• brian.hears has been updated to brian2hears. Note that there is a legacy package brian2.hears included
in brian2, but this is now deprecated and will be removed in a future release. For now, see Brian Hears for
details.

1.4.4 Removed classes/functions and their replacements

In Brian 2, we have tried to keep the number of classes/functions to a minimum, but make each of them flexible enough
to encompass a large number of use cases. A lot of the classes and functions that existed in Brian 1 have therefore been
removed. The following table lists (most of) the classes that existed in Brian 1 but do no longer exist in Brian 2. You
can consult it when you get a NameError while converting an existing script from Brian 1. The third column links to a
document with further explanation and the second column gives either:

1. the equivalent class in Brian 2 (e.g. StateMonitor can record multiple variables now and therefore replaces
MultiStateMonitor);

2. the name of a Brian 2 class in square brackets (e.g. [Synapses] for STDP), this means that the class can be used
as a replacement but needs some additional code (e.g. explicitly specified STDP equations). The “More details”
document should help you in making the necessary changes;

3. “string expression”, if the functionality of a previously existing class can be expressed using the general string ex-
pression framework (e.g. threshold=VariableThreshold('Vt', 'V') can be replaced by thresh-
old='V > Vt');

4. a link to the relevant github issue if no equivalent class/function does exist so far in Brian 2;
5. a remark such as “obsolete” if the particular class/function is no longer needed.

Brian 1 Brian 2 More details
AdEx [Equations] Library models (Brian 1 –> 2 conversion)
aEIF [Equations] Library models (Brian 1 –> 2 conversion)
AERSpikeMonitor #298 Monitors (Brian 1 –> 2 conversion)
alpha_conductance [Equations] Library models (Brian 1 –> 2 conversion)
alpha_current [Equations] Library models (Brian 1 –> 2 conversion)
alpha_synapse [Equations] Library models (Brian 1 –> 2 conversion)
AutoCorrelogram [SpikeMonitor] Monitors (Brian 1 –> 2 conversion)
biexpr_conductance [Equations] Library models (Brian 1 –> 2 conversion)
biexpr_current [Equations] Library models (Brian 1 –> 2 conversion)
biexpr_synapse [Equations] Library models (Brian 1 –> 2 conversion)
Brette_Gerstner [Equations] Library models (Brian 1 –> 2 conversion)
CoincidenceCounter [SpikeMonitor] Monitors (Brian 1 –> 2 conversion)

continues on next page

44 Chapter 1. Introduction

https://brian2hears.readthedocs.io/
https://github.com/brian-team/brian2/issues/298

Brian 2 Documentation, Release 2.5.1

Table 1 – continued from previous page
Brian 1 Brian 2 More details
CoincidenceMatrixCounter [SpikeMonitor] Monitors (Brian 1 –> 2 conversion)
Compartments #443 Multicompartmental models (Brian 1 –> 2 conversion)
Connection Synapses Synapses (Brian 1 –> 2 conversion)
Current #443 Multicompartmental models (Brian 1 –> 2 conversion)
CustomRefractoriness [string expression] Neural models (Brian 1 –> 2 conversion)
DefaultClock Clock Networks and clocks (Brian 1 –> 2 conversion)
EmpiricalThreshold string expression Neural models (Brian 1 –> 2 conversion)
EventClock Clock Networks and clocks (Brian 1 –> 2 conversion)
exp_conductance [Equations] Library models (Brian 1 –> 2 conversion)
exp_current [Equations] Library models (Brian 1 –> 2 conversion)
exp_IF [Equations] Library models (Brian 1 –> 2 conversion)
exp_synapse [Equations] Library models (Brian 1 –> 2 conversion)
FileSpikeMonitor #298 Monitors (Brian 1 –> 2 conversion)
FloatClock Clock Networks and clocks (Brian 1 –> 2 conversion)
FunReset [string expression] Neural models (Brian 1 –> 2 conversion)
FunThreshold [string expression] Neural models (Brian 1 –> 2 conversion)
hist_plot no equivalent –
HomogeneousPoissonThreshold string expression Neural models (Brian 1 –> 2 conversion)
IdentityConnection Synapses Synapses (Brian 1 –> 2 conversion)
IonicCurrent #443 Multicompartmental models (Brian 1 –> 2 conversion)
ISIHistogramMonitor [SpikeMonitor] Monitors (Brian 1 –> 2 conversion)
Izhikevich [Equations] Library models (Brian 1 –> 2 conversion)
K_current_HH [Equations] Library models (Brian 1 –> 2 conversion)
leak_current [Equations] Library models (Brian 1 –> 2 conversion)
leaky_IF [Equations] Library models (Brian 1 –> 2 conversion)
MembraneEquation #443 Multicompartmental models (Brian 1 –> 2 conversion)
MultiStateMonitor StateMonitor Monitors (Brian 1 –> 2 conversion)
Na_current_HH [Equations] Library models (Brian 1 –> 2 conversion)
NaiveClock Clock Networks and clocks (Brian 1 –> 2 conversion)
NoReset obsolete Neural models (Brian 1 –> 2 conversion)
NoThreshold obsolete Neural models (Brian 1 –> 2 conversion)
OfflinePoissonGroup [SpikeGeneratorGroup] Inputs (Brian 1 –> 2 conversion)
OrnsteinUhlenbeck [Equations] Library models (Brian 1 –> 2 conversion)
perfect_IF [Equations] Library models (Brian 1 –> 2 conversion)
PoissonThreshold string expression Neural models (Brian 1 –> 2 conversion)
PopulationSpikeCounter SpikeMonitor Monitors (Brian 1 –> 2 conversion)
PulsePacket [SpikeGeneratorGroup] Inputs (Brian 1 –> 2 conversion)
quadratic_IF [Equations] Library models (Brian 1 –> 2 conversion)
raster_plot plot_raster (brian2tools) brian2tools documentation
RecentStateMonitor no direct equivalent Monitors (Brian 1 –> 2 conversion)
Refractoriness string expression Neural models (Brian 1 –> 2 conversion)
RegularClock Clock Networks and clocks (Brian 1 –> 2 conversion)
Reset string expression Neural models (Brian 1 –> 2 conversion)
SimpleCustomRefractoriness [string expression] Neural models (Brian 1 –> 2 conversion)
SimpleFunThreshold [string expression] Neural models (Brian 1 –> 2 conversion)
SpikeCounter SpikeMonitor Monitors (Brian 1 –> 2 conversion)
StateHistogramMonitor [StateMonitor] Monitors (Brian 1 –> 2 conversion)
StateSpikeMonitor SpikeMonitor Monitors (Brian 1 –> 2 conversion)
STDP [Synapses] Synapses (Brian 1 –> 2 conversion)

continues on next page

1.4. Changes for Brian 1 users 45

https://github.com/brian-team/brian2/issues/443
https://github.com/brian-team/brian2/issues/443
https://github.com/brian-team/brian2/issues/298
https://github.com/brian-team/brian2/issues/443
https://github.com/brian-team/brian2/issues/443
http://brian2tools.readthedocs.io

Brian 2 Documentation, Release 2.5.1

Table 1 – continued from previous page
Brian 1 Brian 2 More details
STP [Synapses] Synapses (Brian 1 –> 2 conversion)
StringReset string expression Neural models (Brian 1 –> 2 conversion)
StringThreshold string expression Neural models (Brian 1 –> 2 conversion)
Threshold string expression Neural models (Brian 1 –> 2 conversion)
VanRossumMetric [SpikeMonitor] Monitors (Brian 1 –> 2 conversion)
VariableReset string expression Neural models (Brian 1 –> 2 conversion)
VariableThreshold string expression Neural models (Brian 1 –> 2 conversion)

List of detailed instructions

Detailed Brian 1 to Brian 2 conversion notes

These documents are only relevant for former users of Brian 1. If you do not have any Brian 1 code to convert, go directly
to the main User’s guide.

Neural models (Brian 1 –> 2 conversion)

Brian 2 documentation

For the main documentation about defining neural models, see the document Models and neuron groups.

• Threshold and Reset

• Refractoriness

• Subgroups

• Linked Variables

The syntax for specifying neuron models in a NeuronGroup changed in several details. In general, a string-based syntax
(that was already optional in Brian 1) consistently replaces the use of classes (e.g. VariableThreshold) or guessing
(e.g. which variable does threshold=50*mV check).

Threshold and Reset

String-based thresholds are now the only possible option and replace all the methods of defining threshold/reset in Brian
1:

Brian 1 Brian 2

group = NeuronGroup(N, 'dv/dt = -v / tau␣
↪→: volt',

threshold=-50*mV,
reset=-70*mV)

group = NeuronGroup(N, 'dv/dt = -v / tau␣
↪→: volt',

threshold='v > -50*mV
↪→',

reset='v = -70*mV')

continues on next page

46 Chapter 1. Introduction

Brian 2 Documentation, Release 2.5.1

Table 2 – continued from previous page
Brian 1 Brian 2

group = NeuronGroup(N, 'dv/dt = -v / tau␣
↪→: volt',

threshold=Threshold(-
↪→50*mV, state='v'),

reset=Reset(-70*mV,␣
↪→state='w'))

group = NeuronGroup(N, 'dv/dt = -v / tau␣
↪→: volt',

threshold='v > -50*mV
↪→',

reset='v = -70*mV')

group = NeuronGroup(N, '''dv/dt = -v /␣
↪→tau : volt

dvt/dt = -vt /␣
↪→tau : volt

vr : volt''',
␣

↪→threshold=VariableThreshold(state='v',
␣

↪→ threshold_state='vt'),
␣

↪→reset=VariableThreshold(state='v',
␣

↪→ resetvaluestate='vr'))

group = NeuronGroup(N, '''dv/dt = -v /␣
↪→tau : volt

dvt/dt = -vt /␣
↪→tau : volt

vr : volt''',
threshold='v > vt',
reset='v = vr')

group = NeuronGroup(N, 'rate : Hz',
␣

↪→threshold=PoissonThreshold(state='rate
↪→'))

group = NeuronGroup(N, 'rate : Hz',
threshold='rand()

↪→<rate*dt')

There’s no direct equivalent for the “functional threshold/reset” mechanism from Brian 1. In simple cases, they can
be implemented using the general string expression/statement mechanism (note that in Brian 1, reset=myreset is
equivalent to reset=FunReset(myreset)):

1.4. Changes for Brian 1 users 47

Brian 2 Documentation, Release 2.5.1

Brian 1 Brian 2

def myreset(P,spikes):
P.v_[spikes] = -

↪→70*mV+rand(len(spikes))*5*mV

group = NeuronGroup(N, 'dv/dt = -v / tau␣
↪→: volt',

threshold=-50*mV,
reset=myreset)

group = NeuronGroup(N, 'dv/dt = -v / tau␣
↪→: volt',

threshold='v > -50*mV
↪→',

reset='-70*mV +␣
↪→rand()*5*mV')

def mythreshold(v):
return (v > -50*mV) & (rand(N) > 0.5)

group = NeuronGroup(N, 'dv/dt = -v / tau␣
↪→: volt',

␣
↪→threshold=SimpleFunThreshold(mythreshold,
↪→

␣
↪→ state='v'),

reset=-70*mV)

group = NeuronGroup(N, 'dv/dt = -v / tau␣
↪→: volt',

threshold='v > -
↪→50*mV and rand() > 0.5',

reset='v = -70*mV')

For more complicated cases, you can use the general mechanism for User-provided functions that Brian 2 provides.
The only caveat is that you’d have to provide an implementation of the function in the code generation target language
which is by default C++ or Cython. However, in the default Runtime code generation mode, you can chose different
code generation targets for different parts of your simulation. You can thus switch the code generation target for the
threshold/reset mechanism to numpy while leaving the default target for the rest of the simulation in place. The details
of this process and the correct definition of the functions (e.g. global_reset needs a “dummy” return value) are
somewhat cumbersome at the moment and we plan to make them more straightforward in the future. Also note that
if you use this kind of mechanism extensively, you’ll lose all the performance advantage that Brian 2’s code generation
mechanism provides (in addition to not being able to use Standalone code generation mode at all).

48 Chapter 1. Introduction

Brian 2 Documentation, Release 2.5.1

Brian 1 Brian 2

def single_threshold(v):
Only let a single neuron spike
crossed_threshold = np.nonzero(v > -

↪→50*mV)[0]
should_spike = np.zeros(len(P),␣

↪→dtype=np.bool)
if len(crossed_threshold):

choose = np.random.
↪→randint(len(crossed_threshold))

should_spike[crossed_
↪→threshold[choose]] = True

return should_spike

def global_reset(P, spikes):
Reset everything
if len(spikes):

P.v_[:] = -70*mV

neurons = NeuronGroup(N, 'dv/dt = -v /␣
↪→tau : volt',

␣
↪→threshold=SimpleFunThreshold(single_
↪→threshold,

␣
↪→ state='v'),

reset=global_reset)

@check_units(v=volt, result=bool)
def single_threshold(v):

pass # ... (identical to Brian 1)

@check_units(spikes=1, result=1)
def global_reset(spikes):

Reset everything
if len(spikes):

neurons.v_[:] = -0.070

neurons = NeuronGroup(N, 'dv/dt = -v /␣
↪→tau : volt',

threshold='single_
↪→threshold(v)',

reset='dummy =␣
↪→global_reset(i)')
Set the code generation target for␣
↪→threshold/reset only:
neuron.thresholder['spike'].codeobj_
↪→class = NumpyCodeObject
neuron.resetter['spike'].codeobj_class =␣
↪→NumpyCodeObject

For an example how to translate EmpiricalThreshold, see the section on “Refractoriness” below.

Refractoriness

For a detailed description of Brian 2’s refractoriness mechanism see Refractoriness.
In Brian 1, refractoriness was tightly linked with the reset mechanism and some combinations of refractoriness and reset
were not allowed. The standard refractory mechanism had two effects during the refractoriness: it prevented the refractory
cell from spiking and it clamped a state variable (normally the membrane potential of the cell). In Brian 2, refractoriness
is independent of reset and the two effects are specified separately: the refractory keyword specifies the time (or an
expression evaluating to a time) during which the cell does not spike, and the (unless refractory) flag marks one
or more variables to be clamped during the refractory period. To correctly translate the standard refractory mechanism
from Brian 1, you’ll therefore need to specify both:

Brian 1 Brian 2

group = NeuronGroup(N, 'dv/dt = (I - v)/
↪→tau : volt',

threshold=-50*mV,
reset=-70*mV,
refractory=3*ms)

group = NeuronGroup(N, 'dv/dt = (I - v)/
↪→tau : volt (unless refractory)',

threshold='v > -50*mV
↪→',

reset='v = -70*mV',
refractory=3*ms)

1.4. Changes for Brian 1 users 49

Brian 2 Documentation, Release 2.5.1

More complex refractoriness mechanisms based on SimpleCustomRefractoriness and CustomRefrac-
toriness can be translatated using string expressions or user-defined functions, see the remarks in the preceding
section on “Threshold and Reset”.
Brian 2 no longer has an equivalent to the EmpiricalThreshold class (which detects at the first threshold crossing
but ignores all following threshold crossings for a certain time after that). However, the standard refractoriness mechanism
can be used to implement the same behaviour, since it does not reset/clamp any value if not explicitly asked for it (which
would be fatal for Hodgkin-Huxley type models):

Brian 1 Brian 2

group = NeuronGroup(N,'''
dv/dt = (I_L - I_Na -

↪→ I_K + I)/Cm : volt
...''',
␣

↪→threshold=EmpiricalThreshold(threshold=20*mV,
↪→

␣
↪→ refractory=1*ms,

␣
↪→ state='v'))

group = NeuronGroup(N,'''
dv/dt = (I_L - I_Na -

↪→ I_K + I)/Cm : volt
...''',
threshold='v > -20*mV

↪→',
refractory=1*ms)

Subgroups

The class NeuronGroup in Brian 2 does no longer provide a subgroup method, the only way to construct subgroups
is therefore the slicing syntax (that works in the same way as in Brian 1):

Brian 1 Brian 2

group = NeuronGroup(4000, ...)
group_exc = group.subgroup(3200)
group_inh = group.subgroup(800)

group = NeuronGroup(4000, ...)
group_exc = group[:3200]
group_inh = group[3200:]

50 Chapter 1. Introduction

Brian 2 Documentation, Release 2.5.1

Linked Variables

For a description of Brian 2’s mechanism to link variables between groups, see Linked variables.
Linked variables need to be explicitly annotated with the (linked) flag in Brian 2:

Brian 1 Brian 2

group1 = NeuronGroup(N,
'dv/dt = -v / tau :␣

↪→volt')
group2 = NeuronGroup(N,

'''dv/dt = (-v + w)␣
↪→/ tau : volt

w : volt''')
group2.w = linked_var(group1, 'v')

group1 = NeuronGroup(N,
'dv/dt = -v / tau :␣

↪→volt')
group2 = NeuronGroup(N,

'''dv/dt = (-v + w)␣
↪→/ tau : volt

w : volt (linked)
↪→''')
group2.w = linked_var(group1, 'v')

Synapses (Brian 1 –> 2 conversion)

Brian 2 documentation

For the main documentation about defining and creating synapses, see the document Synapses.

• Converting Brian 1’s Connection class

• Converting Brian 1’s Synapses class

Converting Brian 1’s Connection class

In Brian 2, the Synapses class is the only class to model synaptic connections, you will therefore have to convert all uses
of Brian 1’s Connection class. The Connection class increases a post-synaptic variable by a certain amount (the
“synaptic weight”) each time a pre-synaptic spike arrives. This has to be explicitly specified when using the Synapses
class, the equivalent to the basic Connection usage is:

Brian 1 Brian 2

conn = Connection(source, target, 'ge') conn = Synapses(source, target, 'w :␣
↪→siemens',

on_pre='ge += w')

Note that he variable w, which stores the synaptic weight, has to have the same units as the post-synaptic variable (in this
case: ge) that it increases.

1.4. Changes for Brian 1 users 51

Brian 2 Documentation, Release 2.5.1

Creating synapses and setting weights

With the Connection class, creating a synapse and setting its weight is a single process whereas with the Synapses
class those two steps are separate. There is no direct equivalent to the convenience functions connect_full, con-
nect_random and connect_one_to_one, but you can easily implement the same functionality with the general
mechanism of Synapses.connect:

Brian 1 Brian 2

conn1 = Connection(source, target, 'ge')
conn1[3, 5] = 3*nS

conn1 = Synapses(source, target, 'w:␣
↪→siemens',

on_pre='ge += w')
conn1.connect(i=3, j=5)
conn1.w[3, 5] = 3*nS # (or conn1.w =␣
↪→3*nS)

conn2 = Connection(source, target, 'ge')
conn2.connect_full(source, target, 5*nS)

conn2 = ... # see above
conn2.connect()
conn2.w = 5*nS

conn3 = Connection(source, target, 'ge')
conn3.connect_random(source, target,

sparseness=0.02,
weight=2*ns)

conn3 = ... # see above
conn3.connect(p=0.02)
conn3.w = 2*nS

conn4 = Connection(source, target, 'ge')
conn4.connect_one_to_one(source, target,

weight=4*nS)

conn4 = ... # see above
conn4.connect(j='i')
conn4.w = 4*nS

conn5 = IdentityConnection(source,␣
↪→target,

weight=3*nS)

conn5 = Synapses(source, target,
'w : siemens (shared)')

conn5.w = 3*nS

52 Chapter 1. Introduction

Brian 2 Documentation, Release 2.5.1

Weight matrices

Brian 2’s Synapses class does not support setting the weights of a neuron with a weight matrix. However, Synapses.
connect creates the synapses in a predictable order (first all synapses for the first pre-synaptic cell, then all synapses for
the second pre-synaptic cell, etc.), so a reshaped “flat” weight matrix can be used:

Brian 1 Brian 2

len(source) == 20, len(target) == 30
conn6 = Connection(source, target, 'ge')
W = rand(20, 30)*nS
conn6.connect(source, target, weight=W)

len(source) == 20, len(target) == 30
conn6 = Synapses(source, target, 'w:␣
↪→siemens',

on_pre='ge += w')
W = rand(20, 30)*nS
conn6.connect()
conn6.w = W.flatten()

However note that if your weight matrix can be described mathematically (e.g. random as in the example above), then
you should not create a weight matrix in the first place but use Brian 2’s mechanism to set variables based on mathematical
expressions (in the above case: conn5.w = 'rand()'). Especially for big connection matrices this will have better
performance, since it will be executed in generated code. You should only resort to explicit weight matrices when there
is no alternative (e.g. to load weights from previous simulations).
In Brian 1, you can restrict the functions connect, connect_random, etc. to subgroups. Again, there is no direct
equivalent to this in Brian 2, but the general string syntax allows you to make connections conditional on logical statements
that refer to pre-/post-synaptic indices and can therefore also used to restrict the connection to a subgroup of cells. When
you set the synaptic weights, you can however use subgroups to restrict the subset of weights you want to set.

Brian 1 Brian 2

conn7 = Connection(source, target, 'ge')
conn7.connect_full(source[:5],␣
↪→target[5:10], 5*nS)

conn7 = Synapses(source, target, 'w:␣
↪→siemens',

on_pre='ge += w')
conn7.connect('i < 5 and j >=5 and j <10
↪→')
Alternative (more efficient):
conn7.connect(j='k in range(5, 10) if␣
↪→i < 5')
conn7.w[source[:5], target[5:10]] = 5*nS

Connections defined by functions

Brian 1 allowed you to pass in a function as the value for the weight argument in a connect call (and also for the
sparseness argument in connect_random). You should be able to replace such use cases by the the general, string-
expression based method:

1.4. Changes for Brian 1 users 53

Brian 2 Documentation, Release 2.5.1

Brian 1 Brian 2

conn8 = Connection(source, target, 'ge')
conn8.connect_full(source, target,

weight=lambda i,
↪→j:(1+cos(i-j))*2*nS)

conn8 = Synapses(source, target, 'w:␣
↪→siemens',

on_pre='ge += w')
conn8.connect()
conn8.w = '(1 + cos(i - j))*2*nS'

conn9 = Connection(source, target, 'ge')
conn9.connect_random(source, target,

sparseness=0.02,
␣

↪→weight=lambda:rand()*nS)

conn9 = ... # see above
conn9.connect(p=0.02)
conn9.w = 'rand()*nS'

conn10 = Connection(source, target, 'ge')
conn10.connect_random(source, target,

sparseness=lambda␣
↪→i,j:exp(-abs(i-j)*.1),

weight=2*ns)

conn10 = ... # see above
conn10.connect(p='exp(-abs(i - j)*.1)')
conn10.w = 2*nS

Delays

The specification of delays changed in several aspects from Brian 1 to Brian 2: In Brian 1, delays where homogeneous by
default, and heterogeneous delays had to be marked by delay=True, together with the specification of the maximum
delay. In Brian 2, heterogeneous delays are the default and you do not have to state the maximum delay. Brian 1’s syntax
of specifying a pair of values to get randomly distributed delays in that range is no longer supported, instead use Brian 2’s
standard string syntax:

Brian 1 Brian 2

conn11 = Connection(source, target, 'ge',
↪→ delay=True,

max_delay=5*ms)
conn11.connect_full(source, target,␣
↪→weight=3*nS,

delay=(0*ms, 5*ms))

conn11 = Synapses(source, target, 'w :␣
↪→siemens',

on_pre='ge += w')
conn11.connect()
conn11.w = 3*nS
conn11.delay = 'rand()*5*ms'

54 Chapter 1. Introduction

Brian 2 Documentation, Release 2.5.1

Modulation

In Brian 2, there’s no need for the modulation keyword that Brian 1 offered, you can describe the modulation as part
of the on_pre action:

Brian 1 Brian 2

conn12 = Connection(source, target, 'ge',
modulation='u')

conn12 = Synapses(source, target, 'w :␣
↪→siemens',

on_pre='ge += w * u_pre
↪→')

Structure

There’s no equivalen for Brian 1’s structure keyword in Brian 2, synapses are always stored in a sparse data structure.
There is currently no support for changing synapses at run time (i.e. the “dynamic” structure of Brian 1).

Converting Brian 1’s Synapses class

Brian 2’s Synapses class works for the most part like the class of the same name in Brian 1. There are however some
differences in details, listed below:

Synaptic models

The basic syntax to define a synaptic model is unchanged, but the keywords pre and post have been renamed to
on_pre and on_post, respectively.

Brian 1 Brian 2

stdp_syn = Synapses(inputs, neurons,␣
↪→model='''

w:1
dApre/dt = -Apre/

↪→taupre : 1 (event-driven)
dApost/dt = -Apost/

↪→taupost : 1 (event-driven)''',
pre='''ge + =w

Apre += delta_
↪→Apre

w = clip(w +␣
↪→Apost, 0, gmax)''',

post='''Apost +=␣
↪→delta_Apost

w = clip(w +␣
↪→Apre, 0, gmax)''')

stdp_syn = Synapses(inputs, neurons,␣
↪→model='''

w:1
dApre/dt = -Apre/

↪→taupre : 1 (event-driven)
dApost/dt = -Apost/

↪→taupost : 1 (event-driven)''',
on_pre='''ge + =w

Apre += delta_
↪→Apre

w = clip(w +␣
↪→Apost, 0, gmax)''',

on_post='''Apost +=␣
↪→delta_Apost

w = clip(w +␣
↪→Apre, 0, gmax)''')

1.4. Changes for Brian 1 users 55

Brian 2 Documentation, Release 2.5.1

Lumped variables (summed variables)

The syntax to define lumped variables (we use the term “summed variables” in Brian 2) has been changed: instead of
assigning the synaptic variable to the neuronal variable you’ll have to include the summed variable in the synaptic equations
with the flag (summed):

Brian 1 Brian 2

a non-linear synapse (e.g. NMDA)
neurons = NeuronGroup(1, model='''

dv/dt = (gtot - v)/
↪→(10*ms) : 1

gtot : 1''')
syn = Synapses(inputs, neurons,

model='''
dg/dt = -a*g+b*x*(1-g) : 1
dx/dt = -c*x : 1
w : 1 # synaptic weight''

↪→',
pre='x += w')

neurons.gtot=S.g

a non-linear synapse (e.g. NMDA)
neurons = NeuronGroup(1, model='''

dv/dt = (gtot - v)/
↪→(10*ms) : 1

gtot : 1''')
syn = Synapses(inputs, neurons,

model='''
dg/dt = -a*g+b*x*(1-g) : 1
dx/dt = -c*x : 1
w : 1 # synaptic weight
gtot_post = g : 1 (summed)

↪→''',
on_pre='x += w')

Creating synapses

In Brian 1, synapses were created by assigning True or an integer (the number of synapses) to an indexed Synapses
object. In Brian 2, all synapse creation goes through the Synapses.connect function. For examples how to create
more complex connection patterns, see the section on translating Connections objects above.

Brian 1 Brian 2

syn = Synapses(...)
single synapse
syn[3, 5] = True

syn = Synapses(...)
single synapse
syn.connect(i=3, j=5)

all-to-all connections
syn[:, :] = True

all-to-all connections
syn.connect()

all to neuron number 1
syn[:, 1] = True

all to neuron number 1
syn.connect(j='1')

multiple synapses
syn[4, 7] = 3

multiple synapses
syn.connect(i=4, j=7, n=3)

connection probability 2%
syn[:, :] = 0.02

connection probability 2%
syn.connect(p=0.02)

56 Chapter 1. Introduction

Brian 2 Documentation, Release 2.5.1

Multiple pathways

As Brian 1, Brian 2 supports multiple pre- or post-synaptic pathways, with separate pre-/post-codes and delays. In Brian
1, you have to specify the pathways as tuples and can then later access them individually by using their index. In Brian
2, you specify the pathways as a dictionary, i.e. by giving them individual names which you can then later use to access
them (the default pathways are called pre and post):

Brian 1 Brian 2

S = Synapses(...,
pre=('ge + =w',

'''w = clip(w + Apost,␣
↪→0, inf)

Apre += delta_Apre''
↪→'),

post='''Apost += delta_Apost
w = clip(w + Apre,␣

↪→0, inf)''')

S[:, :] = True
S.delay[1][:, :] = 3*ms # delayed trace

S = Synapses(...,
pre={'pre_transmission':

'ge += w',
'pre_plasticity':
'''w = clip(w + Apost,␣

↪→0, inf)
Apre += delta_Apre''

↪→'},
post='''Apost += delta_Apost

w = clip(w + Apre,␣
↪→0, inf)''')

S.connect()
S.pre_plasticity.delay[:, :] = 3*ms #␣
↪→delayed trace

Monitoring synaptic variables

Both in Brian 1 and Brian 2, you can record the values of synaptic variables with a StateMonitor. You no longer
have to call an explicit indexing function, but you can directly provide an appropriately indexed Synapses object. You
can now also use the same technique to index the StateMonitor object to get the recorded values, see the respective
section in the Synapses documentation for details.

Brian 1 Brian 2

syn = Synapses(...)
record all synapse targetting neuron 3
indices = syn.synapse_index((slice(None),
↪→ 3))
mon = StateMonitor(S, 'w',␣
↪→record=indices)

syn = Synapses(...)
record all synapse targetting neuron 3
mon = StateMonitor(S, 'w', record=S[:,␣
↪→3])

Inputs (Brian 1 –> 2 conversion)

Brian 2 documentation

For the main documentation about adding external stimulation to a network, see the document Input stimuli.

1.4. Changes for Brian 1 users 57

Brian 2 Documentation, Release 2.5.1

• Poisson Input

• Spike generation

• Arbitrary time-dependent input (TimedArray)

Poisson Input

Brian 2 provides the same two groups that Brian 1 provided: PoissonGroup and PoissonInput. The mechanism
for inhomogoneous Poisson processes has changed: instead of providing a Python function of time, you’ll now have to
provide a string expression that is evaluated at every time step. For most use cases, this should allow a direct translation:

Brian 1 Brian 2

rates = lambda␣
↪→t:(1+cos(2*pi*t*1*Hz))*10*Hz
group = PoissonGroup(100, rates=rates)

rates = '(1 + cos(2*pi*t*1*Hz)*10*Hz)'
group = PoissonGroup(100, rates=rates)

For more complex rate modulations, the expression can refer to User-provided functions and/or you can replace the
PoissonGroup by a general NeuronGroup with a threshold condition rand()<rates*dt (which allows you to
store per-neuron attributes).
There is currently no direct replacement for the more advanced features of PoissonInput (record, freeze,
copies, jitter, and reliability keywords), but various workarounds are possible, e.g. by directly using a Bi-
nomialFunction in the equations. For example, you can get the functionality of the freeze keyword (identical
Poisson events for all neurons) by storing the input in a shared variable and then distribute the input to all neurons:

Brian 1 Brian 2

group = NeuronGroup(10,
'dv/dt = -v/(10*ms)␣

↪→: 1')
input = PoissonInput(group, N=1000,␣
↪→rate=1*Hz,

weight=0.1, state='v
↪→',

freeze=True)

group = NeuronGroup(10, '''dv/dt = -v /␣
↪→(10*ms) : 1

shared_input␣
↪→: 1 (shared)''')
poisson_input = BinomialFunction(n=1000,␣
↪→p=1*Hz*group.dt)
group.run_regularly('''shared_input =␣
↪→poisson_input()*0.1

v += shared_input'
↪→'')

58 Chapter 1. Introduction

Brian 2 Documentation, Release 2.5.1

Spike generation

SpikeGeneratorGroup provides mostly the same functionality as in Brian 1. In contrast to Brian 1, there is only
one way to specify which neurons spike and when – you have to provide the index array and the times array as separate
arguments:

Brian 1 Brian 2

gen1 = SpikeGeneratorGroup(2, [(0, 0*ms),
↪→ (1, 1*ms)])
gen2 = SpikeGeneratorGroup(2, [(array([0,
↪→ 1]), 0*ms),

(array([0,
↪→ 1]), 1*ms)]
gen3 = SpikeGeneratorGroup(2, (array([0,␣
↪→1]),

array([0,␣
↪→1])*ms))
gen4 = SpikeGeneratorGroup(2, array([[0,␣
↪→0.0],

[1,␣
↪→0.001]])

gen1 = SpikeGeneratorGroup(2, [0, 1], [0,
↪→ 1]*ms)
gen2 = SpikeGeneratorGroup(2, [0, 1, 0,␣
↪→1],

[0, 0, 1,␣
↪→1]*ms)
gen3 = SpikeGeneratorGroup(2, [0, 1], [0,
↪→ 1]*ms)

gen4 = SpikeGeneratorGroup(2, [0, 1], [0,
↪→ 1]*ms)

Note: For large arrays, make sure to provide a Quantity array (e.g. [0, 1, 2]*ms) and not a list of Quantity
values (e.g. [0*ms, 1*ms, 2*ms]). A list has first to be translated into an array which can take a considerable
amount of time for a list with many elements.

There is no direct equivalent of the Brian 1 option to use a generator that updates spike times online. The easiest alternative
in Brian 2 is to pre-calculate the spikes and then use a standard SpikeGeneratorGroup. If this is not possible (e.g.
there are two many spikes to fit in memory), then you can workaround the restriction by using custom code (see User-
provided functions and Arbitrary Python code (network operations)).

Arbitrary time-dependent input (TimedArray)

For a detailed description of the TimedArray mechanism in Brian 2, see Timed arrays.
In Brian 1, timed arrays where special objects that could be assigned to a state variable and would then be used to update
this state variable at every time step. In Brian 2, a timed array is implemented using the standard Functions mechanism
which has the advantage that more complex access patterns can be implemented (e.g. by not using t as an argument, but
something like t - delay). This syntax was possible in Brian 1 as well, but was disadvantageous for performance
and had other limits (e.g. no unit support, no linear integration). In Brian 2, these disadvantages no longer apply and the
function syntax is therefore the only available syntax. You can convert the old-style Brian 1 syntax to Brian 2 as follows:

Warning: The example below does not correctly translate the changed semantics of TimedArray related to the
time. In Brian 1, TimedArray([0, 1, 2], dt=10*ms)will return 0 for t<5*ms, 1 for 5*ms<=t<15*ms,
and 2 for t>=15*ms. Brian 2 will return 0 for t<10*ms, 1 for 10*ms<=t<20*ms, and 2 for t>=20*ms.

1.4. Changes for Brian 1 users 59

Brian 2 Documentation, Release 2.5.1

Brian 1 Brian 2

same input for all neurons
eqs = '''

dv/dt = (I - v)/tau : volt
I : volt
'''

group = NeuronGroup(1, model=eqs,
reset=0*mV,␣

↪→threshold=15*mV)
group.I = TimedArray(linspace(0*mV,␣
↪→20*mV, 100),

dt=10*ms)

same input for all neurons
I = TimedArray(linspace(0*mV, 20*mV,␣
↪→100),

dt=10*ms)
eqs = '''

dv/dt = (I(t) - v)/tau : volt
'''

group = NeuronGroup(1, model=eqs,
reset='v = 0*mV',
threshold='v > 15*mV

↪→')

neuron-specific input
eqs = '''

dv/dt = (I - v)/tau : volt
I : volt
'''

group = NeuronGroup(5, model=eqs,
reset=0*mV,␣

↪→threshold=15*mV)
values = (linspace(0*mV, 20*mV, 100)[:,␣
↪→None] *

linspace(0, 1, 5))
group.I = TimedArray(values, dt=10*ms)

neuron-specific input
values = (linspace(0*mV, 20*mV, 100)[:,␣
↪→None] *

linspace(0, 1, 5))
I = TimedArray(values, dt=10*ms)
eqs = '''

dv/dt = (I(t, i) - v)/tau : volt
'''

group = NeuronGroup(5, model=eqs,
reset='v = 0*mV',
threshold='v > 15*mV

↪→')

Monitors (Brian 1 –> 2 conversion)

Brian 2 documentation

For the main documentation about recording network activity, see the document Recording during a simulation.

• Monitoring spiking activity

• Monitoring variables

Monitoring spiking activity

The main class to record spiking activity is SpikeMonitor which is created in the same way as in Brian 1. However,
the internal storage and retrieval of spikes is different. In Brian 1, spikes were stored as a list of pairs (i, t), the index
and time of each spike. In Brian 2, spikes are stored as two arrays i and t, storing the indices and times. You can access
these arrays as attributes of the monitor, there’s also a convenience attribute it that returns both at the same time. The
following table shows how the spike indices and times can be retrieved in various forms in Brian 1 and Brian 2:

60 Chapter 1. Introduction

Brian 2 Documentation, Release 2.5.1

Brian 1 Brian 2

mon = SpikeMonitor(group)
#... do the run
list_of_pairs = mon.spikes
index_list, time_list = zip(*list_of_
↪→pairs)
index_array = array(index_list)
time_array = array(time_list)
time_array is unitless in Brian 1

mon = SpikeMonitor(group)
#... do the run
list_of_pairs = zip(*mon.it)
index_list = list(mon.i)
time_list = list(mon.t)
index_array, time_array = mon.i, mon.t
time_array has units in Brian 2

You can also access the spike times for individual neurons. In Brian 1, you could directly index the monitor which is no
longer allowed in Brian 2. Instead, ask for a dictionary of spike times and index the returned dictionary:

Brian 1 Brian 2

dictionary of spike times for each␣
↪→neuron:
spike_dict = mon.spiketimes
all spikes for neuron 3:
spikes_3 = spike_dict[3] # (no units)
spikes_3 = mon[3] # alternative (no␣
↪→units)

dictionary of spike times for each␣
↪→neuron:
spike_dict = mon.spike_trains()
all spikes for neuron 3:
spikes_3 = spike_dict[3] # with units

In Brian 2, SpikeMonitor also provides the functionality of the Brian 1 classes SpikeCounter and Pop-
ulationSpikeCounter. If you are only interested in the counts and not in the individual spike events, use
record=False to save the memory of storing them:

Brian 1 Brian 2

counter = SpikeCounter(group)
pop_counter =␣
↪→PopulationSpikeCounter(group)
#... do the run
Number of spikes for neuron 3:
count_3 = counter[3]
Total number of spikes:
total_spikes = pop_counter.nspikes

counter = SpikeMonitor(group,␣
↪→record=False)

#... do the run
Number of spikes for neuron 3
count_3 = counter.count[3]
Total number of spikes:
total_spikes = counter.num_spikes

Currently Brian 2 provides no functionality to calculate statistics such as correlations or histograms online, there is no
equivalent to the following classes that existed in Brian 1: AutoCorrelogram, CoincidenceCounter, Co-
incidenceMatrixCounter, ISIHistogramMonitor, VanRossumMetric. You will therefore have to be
calculate the corresponding statistiacs manually after the simulation based on the information stored in the SpikeMon-
itor. If you use the default Runtime code generation, you can also create a new Python class that calculates the statistic
online (see this example from a Brian 2 tutorial).

1.4. Changes for Brian 1 users 61

https://github.com/brian-team/brian-material/blob/master/2015-CNS-tutorial/04-advanced-brian2/coincidence_counter.ipynb

Brian 2 Documentation, Release 2.5.1

Monitoring variables

Single variables are recorded with a StateMonitor in the same way as in Brian 1, but the times and variable values
are accessed differently:

Brian 1 Brian 2

mon = StateMonitor(group, 'v',
record=True)

... do the run
plot the trace of neuron 3:
plot(mon.times/ms, mon[3]/mV)
plot the traces of all neurons:
plot(mon.times/ms, mon.values.T/mV)

mon = StateMonitor(group, 'v',
record=True)

... do the run
plot the trace of neuron 3:
plot(mon.t/ms, mon[3].v/mV)
plot the traces of all neurons:
plot(mon.t/ms, mon.v.T/mV)

Further differences:
• StateMonitor now records in the 'start' scheduling slot by default. This leads to a more intuitive cor-
respondence between the recorded times and the values: in Brian 1 (where StateMonitor recorded in the
'end' slot) the recorded value at 0ms was not the initial value of the variable but the value after integrating it
for a single time step. The disadvantage of this new default is that the very last value at the end of the last time
step of a simulation is not recorded anymore. However, this value can be manually added to the monitor by calling
StateMonitor.record_single_timestep.

• To not record every time step, use the dt argument (as for all other classes) instead of specifying a number of
timesteps.

• Using record=False does no longer provide mean and variance of the recorded variable.
In contrast to Brian 1, StateMonitor can now record multiple variables and therefore replaces Brian 1’s Multi-
StateMonitor:

Brian 1 Brian 2

mon = MultiStateMonitor(group, ['v', 'w
↪→'],

record=True)
... do the run
plot the traces of v and w for neuron␣
↪→3:
plot(mon['v'].times/ms, mon['v'][3]/mV)
plot(mon['w'].times/ms, mon['w'][3]/mV)

mon = StateMonitor(group, ['v', 'w'],
record=True)

... do the run
plot the traces of v and w for neuron␣
↪→3:
plot(mon.t/ms, mon[3].v/mV)
plot(mon.t/ms, mon[3].w/mV)

To record variable values at the times of spikes, Brian 2 no longer provides a separate class as Brian 1 did
(StateSpikeMonitor). Instead, you can use SpikeMonitor to record additional variables (in addition to the
neuron index and the spike time):

62 Chapter 1. Introduction

Brian 2 Documentation, Release 2.5.1

Brian 1 Brian 2

We assume that "group" has a varying␣
↪→threshold
mon = StateSpikeMonitor(group, 'v')
... do the run
plot the mean v at spike time for each␣
↪→neuron
mean_values = [mean(mon.values('v', idx))

for idx in␣
↪→range(len(group))]

plot(mean_values/mV, 'o')

We assume that "group" has a varying␣
↪→threshold
mon = SpikeMonitor(group, variables='v')
... do the run
plot the mean v at spike time for each␣
↪→neuron
values = mon.values('v')
mean_values = [mean(values[idx])

for idx in␣
↪→range(len(group))]
plot(mean_values/mV, 'o')

Note that there is no equivalent to StateHistogramMonitor, you will have to calculate the histogram from the
recorded values or write your own custom monitor class.

Networks and clocks (Brian 1 –> 2 conversion)

Brian 2 documentation

For the main documentation about running simulations, controling the simulation timestep, etc., see the document
Running a simulation.

• Clocks and timesteps

• Networks

Clocks and timesteps

Brian’s system of handling clocks has substantially changed. For details about the new system in place see Setting the
simulation time step. The main differences to Brian 1 are:

• There is no more “clock guessing” – objects either use the defaultclock or a dt/clock value that was
explicitly specified during their construction.

• In Brian 2, the time step is allowed to change after the creation of an object and between runs – the relevant value
is the value in place at the point of the run() call.

• It is rarely necessary to create an explicit Clock object, most of the time you should use the defaultclock or
provide a dt argument during the construction of the object.

• There’s only one Clock class, the (deprecated) FloatClock, RegularClock, etc. classes that Brian 1 pro-
vided no longer exist.

• It is no longer possible to (re-)set the time of a clock explicitly, there is no direct equivalent of Clock.reinit
and reinit_default_clock. To start a completely new simulation after you have finished a previous one,
either create a new Network or use the start_scope() mechanism. To “rewind” a simulation to a previous
point, use the new store()/restore() mechanism. For more details, see below and Running a simulation.

1.4. Changes for Brian 1 users 63

Brian 2 Documentation, Release 2.5.1

Networks

Both Brian 1 and Brian 2 offer two ways to run a simulation: either by explicitly creating a Network object, or by using
a MagicNetwork, i.e. a simple run() statement.

Explicit network

The mechanism to create explicit Network objects has not changed significantly from Brian 1 to Brian 2. However,
creating a new Network will now also automatically reset the clock back to 0s, and stricter checks no longer allow the
inclusion of the same object in multiple networks.

Brian 1 Brian 2

group = ...
mon = ...
net = Network(group, mon)
net.run(1*ms)

reinit()
group = ...
mon = ...
net = Network(group, mon)
net.run(1*ms)

group = ...
mon = ...
net = Network(group, mon)
net.run(1*ms)

new network starts at 0s
group = ...
mon = ...
net = Network(group, mon)
net.run(1*ms)

“Magic” network

For most simple, “flat”, scripts (see e.g. the Examples), the run() statement in Brian 2 automatically collects all the
Brian objects (NeuronGroup, etc.) into a “magic” network in the same way as Brian 1 did. The logic behind this
collection has changed, though, with important consequences for more complex simulation scripts: in Brian 1, the magic
network includes all Brian objects that have been created in the same execution frame as the run() call. Objects that
are created in other functions could be added using magic_return and magic_register. In Brian 2, the magic
network contains all Brian objects that are visible in the same execution frame as the run() call. The advantage of the
new system is that it is clearer what will be included in the network and there is no danger of including previously created,
but no longer needed, objects in a simulation. E.g. in the following example, a common mistake in Brian 1 was to not
include the clear(), which meant that each run not only simulated the current objects, but also all objects from previous
loop iterations. Also, without the reinit_default_clock(), each run would start at the end time of the previous
run. In Brian 2, this loop does not need any explicit clearing up, each run() will only simulate the object that it “sees”
(group1, group2, syn, and mon) and start each simulation at 0s:

Brian 1 Brian 2

for r in range(100):
reinit_default_clock()
clear()
group1 = NeuronGroup(...)
group2 = NeuronGroup(...)
syn = Synapses(group1, group2, ...)
mon = SpikeMonitor(group2)
run(1*second)

for r in range(100):

group1 = NeuronGroup(...)
group2 = NeuronGroup(...)
syn = Synapses(group1, group2, ...)
mon = SpikeMonitor(group2)
run(1*second)

64 Chapter 1. Introduction

Brian 2 Documentation, Release 2.5.1

There is no replacement for the magic_return and magic_register functions. If the returned object is stored
in a variable at the level of the run() call, then it is no longer necessary to use magic_return, as the returned object
is “visible” at the level of the run() call:

Brian 1 Brian 2

@magic_return
def f():

return PoissonGroup(100,␣
↪→rates=100*Hz)

pg = f() # needs magic_return
mon = SpikeMonitor(pg)
run(100*ms)

def f():
return PoissonGroup(100,␣

↪→rates=100*Hz)

pg = f() # is "visible" and will be␣
↪→included
mon = SpikeMonitor(pg)
run(100*ms)

The general recommendation is however: if your script is complex (multiple functions/files/classes) and you are not sure
whether some objects will be included in the magic network, use an explicit Network object.
Note that one consequence of the “is visible” approach is that objects stored in containers (lists, dictionaries, …) will not
be automatically included in Brian 2. Use an explicit Network object to get around this restriction:

Brian 1 Brian 2

groups = {'exc': NeuronGroup(...),
'inh': NeuronGroup(...)}

...

run(5*ms)

groups = {'exc': NeuronGroup(...),
'inh': NeuronGroup(...)}

...
net = Network(groups)
net.run(5*ms)

External constants

In Brian 2, external constants are taken from the surrounding namespace at the point of the run() call and not when the
object is defined (for other ways to define the namespace, see External variables). This allows to easily change external
constants between runs, in contrast to Brian 1 where the whether this worked or not depended on details of the model
(e.g. whether linear integration was used):

1.4. Changes for Brian 1 users 65

Brian 2 Documentation, Release 2.5.1

Brian 1 Brian 2

tau = 10*ms
to be sure that changes between runs␣
↪→are taken into
account, define "I" as a neuronal␣
↪→parameter
group = NeuronGroup(10, '''dv/dt = (-v +␣
↪→I) / tau : 1

I : 1''')
group.v = linspace(0, 1, 10)
group.I = 0.0
mon = StateMonitor(group, 'v',␣
↪→record=True)
run(5*ms)
group.I = 0.5
run(5*ms)
group.I = 0.0
run(5*ms)

tau = 10*ms

The value for I will be updated at␣
↪→each run
group = NeuronGroup(10, 'dv/dt = (-v +␣
↪→I) / tau : 1')

group.v = linspace(0, 1, 10)
I = 0.0
mon = StateMonitor(group, 'v',␣
↪→record=True)
run(5*ms)
I = 0.5
run(5*ms)
I = 0.0
run(5*ms)

Preferences (Brian 1 –> 2 conversion)

Brian 2 documentation

For the main documentation about preferences, see the document Preferences.

In Brian 1, preferences were set either with the function set_global_preferences or by creating a module some-
where on the Python path called brian_global_config.py.

Setting preferences

The function set_global_preferences no longer exists in Brian 2. Instead, importing from brian2 gives you
a variable prefs that can be used to set preferences. For example, in Brian 1 you would write:

set_global_preferences(weavecompiler='gcc')

In Brian 2 you would write:

prefs.codegen.cpp.compiler = 'gcc'

66 Chapter 1. Introduction

Brian 2 Documentation, Release 2.5.1

Configuration file

The module brian_global_config.py is not used by Brian 2, instead we search for configuration files in the
current directory, user directory or installation directory. In Brian you would have a configuration file that looks like this:

from brian.globalprefs import *
set_global_preferences(weavecompiler='gcc')

In Brian 2 you would have a file like this:

codegen.cpp.compiler = 'gcc'

Preference name changes

• defaultclock: removed because it led to unclear behaviour of scripts.
• useweave_linear_diffeq: removed because it was no longer relevant.
• useweave: now replaced by codegen.target (but note that weave is no longer supported in Brian 2, use Cython
instead).

• weavecompiler: now replaced by codegen.cpp.compiler.
• gcc_options: now replaced by codegen.cpp.extra_compile_args_gcc.
• openmp: now replaced by devices.cpp_standalone.openmp_threads.
• usecodegen*: removed because it was no longer relevant.
• usenewpropagate: removed because it was no longer relevant.
• usecstdp: removed because it was no longer relevant.
• brianhears_usegpu: removed because Brian Hears doesn’t exist in Brian 2.
• magic_useframes: removed because it was no longer relevant.

Multicompartmental models (Brian 1 –> 2 conversion)

Brian 2 documentation

Support for multicompartmental models is now an integral part of Brian 2 (an early version of it was included as an
experimental module in Brian 1). See the document Multicompartment models.

Brian 1 offered support for simple multi-compartmental models in the compartments module. This module allowed
you to combine the equations for several compartments into a single Equations object. This is only a suitable solution
for simple morphologies (e.g. “ball-and-stick” models) but has the advantage over using SpatialNeuron that you can
have several of such neurons in a NeuronGroup.
If you already have a definition of a model using Brian 1’s compartments module, then you can simply print out
the equations and use them directly in Brian 2. For simple models, writing the equations without that help is rather
straightforward anyway:

1.4. Changes for Brian 1 users 67

Brian 2 Documentation, Release 2.5.1

Brian 1 Brian 2

V0 = 10*mV
C = 200*pF
Ra = 150*kohm
R = 50*Mohm
soma_eqs = (MembraneEquation(C) +

IonicCurrent('I=(vm-V0)/R :␣
↪→amp'))
dend_eqs = MembraneEquation(C)
neuron_eqs = Compartments({'soma': soma_
↪→eqs,

'dend': dend_
↪→eqs})

neuron = NeuronGroup(N, neuron_eqs)

V0 = 10*mV
C = 200*pF
Ra = 150*kohm
R = 50*Mohm
neuron_eqs = '''
dvm_soma/dt = (I_soma + I_soma_dend)/C :␣
↪→volt
I_soma = (V0 - vm_soma)/R : amp
I_soma_dend = (vm_dend - vm_soma)/Ra :␣
↪→amp
dvm_dend/dt = -I_soma_dend/C : volt'''

neuron = NeuronGroup(N, neuron_eqs)

Library models (Brian 1 –> 2 conversion)

• Neuron models

• Ionic currents

• Synapses

Neuron models

The neuron models in Brian 1’s brian.library.IF package are nothing more than shorthands for equations. The
following table shows how the models from Brian 1 can be converted to explicit equations (and reset statements in the case
of the adaptive exponential integrate-and-fire model) for use in Brian 2. The examples include a “current” I (depending
on the model not necessarily in units of Ampère) and could e.g. be used to plot the f-I curve of the neuron.

Perfect integrator

Brian 1 Brian 2

eqs = (perfect_IF(tau=10*ms) +
Current('I : volt'))

group = NeuronGroup(N, eqs,
threshold='v > -50*mV

↪→',
reset='v = -70*mV')

tau = 10*ms
eqs = '''dvm/dt = I/tau : volt

I : volt'''
group = NeuronGroup(N, eqs,

threshold='v > -50*mV
↪→',

reset='v = -70*mV')

68 Chapter 1. Introduction

Brian 2 Documentation, Release 2.5.1

Leaky integrate-and-fire neuron

Brian 1 Brian 2

eqs = (leaky_IF(tau=10*ms, El=-70*mV) +
Current('I : volt'))

group = ... # see above

tau = 10*ms; El = -70*mV
eqs = '''dvm/dt = ((El - vm) + I)/tau :␣
↪→volt

I : volt'''
group = ... # see above

Exponential integrate-and-fire neuron

Brian 1 Brian 2

eqs = (exp_IF(C=1*nF, gL=30*nS, EL=-
↪→70*mV,

VT=-50*mV, DeltaT=2*mV) +
Current('I : amp'))

group = ... # see above

C = 1*nF; gL = 30*nS; EL = -70*mV; VT = -
↪→50*mV; DeltaT = 2*mV
eqs = '''dvm/dt = (gL*(EL-
↪→vm)+gL*DeltaT*exp((vm-VT)/DeltaT) + I)/
↪→C : volt

I : amp'''
group = ... # see above

Quadratic integrate-and-fire neuron

Brian 1 Brian 2

eqs = (quadratic_IF(C=1*nF, a=5*nS/mV,
EL=-70*mV, VT=-50*mV) +
Current('I : amp'))

group = ... # see above

C = 1*nF; a=5*nS/mV; EL=-70*mV; VT = -
↪→50*mV
eqs = '''dvm/dt = (a*(vm-EL)*(vm-VT) +␣
↪→I)/C : volt

I : amp'''
group = ... # see above

1.4. Changes for Brian 1 users 69

Brian 2 Documentation, Release 2.5.1

Izhikevich neuron

Brian 1 Brian 2

eqs = (Izhikevich(a=0.02/ms, b=0.2/ms) +
Current('I : volt/second'))

group = ... # see above

a = 0.02/ms; b = 0.2/ms
eqs = '''dvm/dt = (0.04/ms/mV)*vm**2+(5/
↪→ms)*vm+140*mV/ms-w + I : volt

dw/dt = a*(b*vm-w) : volt/second
I : volt/second'''

group = ... # see above

Adaptive exponential integrate-and-fire neuron (“Brette-Gerstner model”)

Brian 1 Brian 2

AdEx, aEIF, and Brette_Gerstner all␣
↪→refer to the same model
eqs = (aEIF(C=1*nF, gL=30*nS, EL=-70*mV,

VT=-50*mV, DeltaT=2*mV,␣
↪→tauw=150*ms, a=4*nS) +

Current('I:amp'))
group = NeuronGroup(N, eqs,

threshold='v > -20*mV
↪→',

␣
↪→reset=AdaptiveReset(Vr=-70*mV, b=0.
↪→08*nA))

C = 1*nF; gL = 30*nS; EL = -70*mV; VT = -
↪→50*mV; DeltaT = 2*mV; tauw = 150*ms; a␣
↪→= 4*nS
eqs = '''dvm/dt = (gL*(EL-
↪→vm)+gL*DeltaT*exp((vm-VT)/DeltaT) -w +␣
↪→I)/C : volt

dw/dt=(a*(vm-EL)-w)/tauw : amp
I : amp'''

group = NeuronGroup(N, eqs,
threshold='vm > -

↪→20*mV',
reset='vm=-70*mV; w␣

↪→+= 0.08*nA')

Ionic currents

Brian 1’s functions for ionic currents, provided in brian.library.ionic_currents correspond to the following
equations (note that the currents follow the convention to use a shifted membrane potential, i.e. the membrane potential
at rest is 0mV):

70 Chapter 1. Introduction

Brian 2 Documentation, Release 2.5.1

Brian 1 Brian 2

from brian.library.ionic_currents import␣
↪→*
defaultclock.dt = 0.01*ms
eqs_leak = leak_current(gl=60*nS, El=10.
↪→6*mV, current_name='I_leak')

eqs_K = K_current_HH(gmax=7.2*uS, EK=-
↪→12*mV, current_name='I_K')

eqs_Na = Na_current_HH(gmax=24*uS,␣
↪→ENa=115*mV, current_name='I_Na')

eqs = (MembraneEquation(C=200*pF) +
eqs_leak + eqs_K + eqs+Na +
Current('I_inj : amp'))

defaultclock.dt = 0.01*ms
gl = 60*nS; El = 10.6*mV
eqs_leak = Equations('I_leak = gl*(El -␣
↪→vm) : amp')
g_K = 7.2*uS; EK = -12*mV
eqs_K = Equations('''I_K = g_K*n**4*(EK-
↪→vm) : amp

dn/dt = alphan*(1-
↪→n)-betan*n : 1

alphan = .01*(10*mV-
↪→vm)/(exp(1-.1*vm/mV)-1)/mV/ms : Hz

betan = .125*exp(-.
↪→0125*vm/mV)/ms : Hz''')
g_Na = 24*uS; ENa = 115*mV
eqs_Na = Equations('''I_Na = g_
↪→Na*m**3*h*(ENa-vm) : amp

dm/dt=alpham*(1-m)-
↪→betam*m : 1

dh/dt=alphah*(1-h)-
↪→betah*h : 1

alpham=.1*(25*mV-
↪→vm)/(exp(2.5-.1*vm/mV)-1)/mV/ms : Hz

betam=4*exp(-.
↪→0556*vm/mV)/ms : Hz

alphah=.07*exp(-.
↪→05*vm/mV)/ms : Hz

betah=1./(1+exp(3.-
↪→.1*vm/mV))/ms : Hz''')
C = 200*pF
eqs = Equations('''dvm/dt = (I_leak + I_
↪→K + I_Na + I_inj)/C : volt

I_inj : amp''') + eqs_
↪→leak + eqs_K + eqs_Na

Synapses

Brian 1’s synaptic models, provided in brian.library.synpases can be converted to the equivalent Brian 2 equa-
tions as follows:

1.4. Changes for Brian 1 users 71

Brian 2 Documentation, Release 2.5.1

Current-based synapses

Brian 1 Brian 2

syn_eqs = exp_current('s', tau=5*ms,␣
↪→current_name='I_syn')
eqs = (MembraneEquation(C=1*nF) +␣
↪→Current('Im = gl*(El-vm) : amp') +

syn_eqs)
group = NeuronGroup(N, eqs, threshold=
↪→'vm>-50*mV', reset='vm=-70*mV')
syn = Synapses(source, group, pre='s +=␣
↪→1*nA')
... connect synapses, etc.

tau = 5*ms
syn_eqs = Equations('dI_syn/dt = -I_syn/
↪→tau : amp')
eqs = (Equations('dvm/dt = (gl*(El - vm)␣
↪→+ I_syn)/C : volt') +

syn_eqs)
group = NeuronGroup(N, eqs, threshold=
↪→'vm>-50*mV', reset='vm=-70*mV')
syn = Synapses(source, group, on_pre='I_
↪→syn += 1*nA')
... connect synapses, etc.

syn_eqs = alpha_current('s', tau=2.5*ms,␣
↪→current_name='I_syn')
eqs = ... # remaining code as above

tau = 2.5*ms
syn_eqs = Equations('''dI_syn/dt = (s -␣
↪→I_syn)/tau : amp

ds/dt = -s/tau :␣
↪→amp''')
group = NeuronGroup(N, eqs, threshold=
↪→'vm>-50*mV', reset='vm=-70*mV')
syn = Synapses(source, group, on_pre='s␣
↪→+= 1*nA')
... connect synapses, etc.

syn_eqs = biexp_current('s', tau1=2.5*ms,
↪→ tau2=10*ms, current_name='I_syn')
eqs = ... # remaining code as above

tau1 = 2.5*ms; tau2 = 10*ms; invpeak =␣
↪→(tau2 / tau1) ** (tau1 / (tau2 - tau1))
syn_eqs = Equations('''dI_syn/dt =␣
↪→(invpeak*s - I_syn)/tau1 : amp

ds/dt = -s/tau2 :␣
↪→amp''')
eqs = ... # remaining code as above

Conductance-based synapses

Brian 1 Brian 2

syn_eqs = exp_conductance('s', tau=5*ms,␣
↪→E=0*mV, conductance_name='g_syn')
eqs = (MembraneEquation(C=1*nF) +␣
↪→Current('Im = gl*(El-vm) : amp') +

syn_eqs)
group = NeuronGroup(N, eqs, threshold=
↪→'vm>-50*mV', reset='vm=-70*mV')
syn = Synapses(source, group, pre='s +=␣
↪→10*nS')
... connect synapses, etc.

tau = 5*ms; E = 0*mV
syn_eqs = Equations('dg_syn/dt = -g_syn/
↪→tau : siemens')
eqs = (Equations('dvm/dt = (gl*(El - vm)␣
↪→+ g_syn*(E - vm))/C : volt') +

syn_eqs)
group = NeuronGroup(N, eqs, threshold=
↪→'vm>-50*mV', reset='vm=-70*mV')
syn = Synapses(source, group, on_pre='g_
↪→syn += 10*nS')
... connect synapses, etc.

continues on next page

72 Chapter 1. Introduction

Brian 2 Documentation, Release 2.5.1

Table 4 – continued from previous page
Brian 1 Brian 2

syn_eqs = alpha_conductance('s', tau=2.
↪→5*ms, E=0*mV, conductance_name='g_syn')
eqs = ... # remaining code as above

tau = 2.5*ms; E = 0*mV
syn_eqs = Equations('''dg_syn/dt = (s -␣
↪→g_syn)/tau : siemens

ds/dt = -s/tau :␣
↪→siemens''')
group = NeuronGroup(N, eqs, threshold=
↪→'vm>-50*mV', reset='vm=-70*mV')
syn = Synapses(source, group, on_pre='s␣
↪→+= 10*nS')
... connect synapses, etc.

syn_eqs = biexp_conductance('s', tau1=2.
↪→5*ms, tau2=10*ms, E=0*mV,

conductance_
↪→name='g_syn')
eqs = ... # remaining code as above

tau1 = 2.5*ms; tau2 = 10*ms; E = 0*mV
invpeak = (tau2 / tau1) ** (tau1 / (tau2␣
↪→- tau1))
syn_eqs = Equations('''dg_syn/dt =␣
↪→(invpeak*s - g_syn)/tau1 : siemens

ds/dt = -s/tau2 :␣
↪→siemens''')
eqs = ... # remaining code as above

Brian Hears

Deprecated since version 2.2.2.2: Use the brian2hears package instead.
This module is designed for users of the Brian 1 library “Brian Hears”. It allows you to use Brian Hears with Brian 2 with
only a few modifications (although it’s not compatible with the “standalone” mode of Brian 2). The way it works is by
acting as a “bridge” to the version in Brian 1. To make this work, you must have a copy of Brian 1 installed (preferably
the latest version), and import Brian Hears using:

from brian2.hears import *

Many scripts will run without any changes, but there are a few caveats to be aware of. Mostly, the problems are due to
the fact that the units system in Brian 2 is not 100% compatible with the units system of Brian 1.
FilterbankGroup now follows the rules forNeuronGroup in Brian 2, whichmeans some changesmay be necessary
to match the syntax of Brian 2, for example, the following would work in Brian 1 Hears:

Leaky integrate-and-fire model with noise and refractoriness
eqs = '''
dv/dt = (I-v)/(1*ms)+0.2*xi*(2/(1*ms))**.5 : 1
I : 1
'''
anf = FilterbankGroup(ihc, 'I', eqs, reset=0, threshold=1, refractory=5*ms)

However, in Brian 2 Hears you would need to do:

Leaky integrate-and-fire model with noise and refractoriness
eqs = '''
dv/dt = (I-v)/(1*ms)+0.2*xi*(2/(1*ms))**.5 : 1 (unless refractory)
I : 1
'''
anf = FilterbankGroup(ihc, 'I', eqs, reset='v=0', threshold='v>1', refractory=5*ms)

1.4. Changes for Brian 1 users 73

https://brian2hears.readthedocs.io/

Brian 2 Documentation, Release 2.5.1

Slicing sounds no longer works. Previously you could do, e.g. sound[:20*ms] but with Brian 2 you would need to
do sound.slice(0*ms, 20*ms).
In addition, some functions may not work correctly with Brian 2 units. In most circumstances, Brian 2 units can be used
interchangeably with Brian 1 units in the bridge, but in some cases it may be necessary to convert units from one format to
another, and to do that you can use the functions convert_unit_b1_to_b2 and convert_unit_b2_to_b1.

1.5 Known issues

In addition to the issues noted below, you can refer to our bug tracker on GitHub.

List of known issues

• Cannot find msvcr90d.dll

• “AttributeError: MSVCCompiler instance has no attribute ‘compiler_cxx’”

• “Missing compiler_cxx fix for MSVCCompiler”

• Problems with numerical integration

• Jupyter notebooks and C++ standalone mode progress reporting

• Parallel Brian simulations with C++ standalone

• Parallel Brian simulations with Cython on machines with NFS (e.g. a computing cluster)

• Slow C++ standalone simulations

• Cython fails with compilation error on OS X: error: use of undeclared identifier 'isinf'

• CMD windows open when running Brian on Windows with the Spyder 3 IDE

1.5.1 Cannot find msvcr90d.dll

If you see this message coming up, find the file PythonDir\Lib\site-packages\numpy\
distutils\mingw32ccompiler.py and modify the line msvcr_dbg_success =
build_msvcr_library(debug=True) to read msvcr_dbg_success = False (you can comment
out the existing line and add the new line immediately after).

1.5.2 “AttributeError: MSVCCompiler instance has no attribute ‘compiler_cxx’”

This is caused by a bug in some versions of numpy on Windows. The easiest solution is to update to the latest version of
numpy.
If that isn’t possible, a hacky solution is to modify the numpy code directly to fix the problem. The following change may
work. Modify line 388 of numpy/distutils/ccompiler.py from elif not self.compiler_cxx: to
elif not hasattr(self, 'compiler_cxx') or not self.compiler_cxx:. If the line number is
different, it should be nearby. Search for elif not self.compiler_cxx in that file.

74 Chapter 1. Introduction

https://github.com/brian-team/brian2/issues?q=is%3Aopen+is%3Aissue+label%3Abug

Brian 2 Documentation, Release 2.5.1

1.5.3 “Missing compiler_cxx fix for MSVCCompiler”

If you keep seeing this message, do not worry. It’s not possible for us to hide it, but doesn’t indicate any problems.

1.5.4 Problems with numerical integration

In some cases, the automatic choice of numerical integration method will not be appropriate, because of a choice of
parameters that couldn’t be determined in advance. In this case, typically you will get nan (not a number) values in the
results, or large oscillations. In this case, Brian will generate a warning to let you know, but will not raise an error.

1.5.5 Jupyter notebooks and C++ standalone mode progress reporting

When you run simulations in C++ standalone mode and enable progress reporting (e.g. by using report='text' as
a keyword argument), the progress will not be displayed in the jupyter notebook. If you started the notebook from a
terminal, you will find the output there. Unfortunately, this is a tricky problem to solve at the moment, due to the details
of how the jupyter notebook handles output.

1.5.6 Parallel Brian simulations with C++ standalone

Simulations using the C++ standalone device will create code and store results in a dedicated directory (output, by
default). If you run multiple simulations in parallel, you have to take care that these simulations do not use the same
directory – otherwise, everything from compilation errors to incorrect results can happen. Either chose a different di-
rectory name for each simulation and provide it as the directory argument to the set_device or build call,
or use directory=None which will use a randomly chosen unique temporary directory (in /tmp on Unix-based
systems) for each simulation. If you need to know the directory name, you can access it after the simulation run via
device.project_dir.

1.5.7 Parallel Brian simulations with Cython on machines with NFS (e.g. a comput-
ing cluster)

Generated Cython code is stored in a cache directory on disk so that it can be reused when it is needed again, without
recompiling it. Multiple simulations running in parallel could interfere during the compilation process by trying to generate
the same file at the same time. To avoid this, Brian uses a file locking mechanism that ensures that only a process at a
time can access these files. Unfortunately, this file locking mechanism is very slow on machines using the Network File
System (NFS), which is often the case on computing clusters. On such machines, it is recommend to use an independent
cache directory per process, and to disable the file locking mechanism. This can be done with the following code that has
to be run at the beginning of each process:

from brian2 import *
import os
cache_dir = os.path.expanduser(f'~/.cython/brian-pid-{os.getpid()}')
prefs.codegen.runtime.cython.cache_dir = cache_dir
prefs.codegen.runtime.cython.multiprocess_safe = False

1.5. Known issues 75

https://en.wikipedia.org/wiki/Network_File_System

Brian 2 Documentation, Release 2.5.1

1.5.8 Slow C++ standalone simulations

Some versions of the GNU standard library (in particular those used by recent Ubuntu versions) have a bug that can
dramatically slow down simulations in C++ standalone mode on modern hardware (see #803). As a workaround, Brian
will set an environment variable LD_BIND_NOW during the execution of standalone simulations which changes the way
the library is linked so that it does not suffer from this problem. If this environment variable leads to unwanted behaviour on
yourmachine, change theprefs.devices.cpp_standalone.run_environment_variables preference.

1.5.9 Cython fails with compilation error on OS X: error: use of undeclared
identifier 'isinf'

Try setting the environment variable MACOSX_DEPLOYMENT_TARGET=10.9.

1.5.10 CMD windows open when running Brian on Windows with the Spyder 3 IDE

This is due to the interaction with the integrated ipython terminal. Either change the run configuration to “Execute in
an external system terminal” or patch the internal Python function used to spawn processes as described in github issue
#1140.

1.6 Support

If you are stuck with a problem using Brian, please do get in touch at our community forum.
You can save time by following this procedure when reporting a problem:

1. Do try to solve the problem on your own first. Read the documentation, including using the search feature, index
and reference documentation.

2. Search the mailing list archives to see if someone else already had the same problem.
3. Before writing, try to create a minimal example that reproduces the problem. You’ll get the fastest response if you

can send just a handful of lines of code that show what isn’t working.

1.6.1 Which version of Brian am I using?

When reporting problems, it is important to include the information what exact version of Brian you are using. The
different install methods listed in Installation provide different mechanisms to get this information. For example, if you
used conda for installing Brian, you can use conda list brian2; if you used pip, you can use pip show
brian2.
A general method that works independent of the installation method is to ask the Brian package itself:

>>> import brian2
>>> print(brian2.__version__)
2.4.2

This method also has the advantage that you can easily call it from the same environment (e.g. an IDE or a Jupyter
Notebook) that you use when you execute Brian scripts. This helps avoiding mistakes where you think you use a specific
version but in fact you use a different one. In such cases, it can also be helpful to look at Brian’s __file__ attribute:

>>> print(brian2.__file__)
/home/marcel/anaconda3/envs/brian2_test/lib/python3.9/site-packages/brian2/__init__.py

76 Chapter 1. Introduction

https://github.com/brian-team/brian2/issues/803
https://github.com/brian-team/brian2/issues/1140
http://brian.discourse.group

Brian 2 Documentation, Release 2.5.1

In the above example, it shows that the brian2 installation in the conda environment brian2_test is used.
If you installed a development version of Brian, then the version number will contain additional information:

>>> print(brian2.__version__)
2.4.2.post0.dev408

The above means that the Brian version that is used has 408 additional commits that were added after the 2.4.2 release.
To get the exact git commit for the local Brian installation, use:

>>> print(brian2.__git_revision__)
d2cb4a85f804037ef055503975d822ff3f473ccf

To get more information about this commit, you can append it to the repository URL on GitHub as /commit/<commit
id> (where the first few characters of the <commit id> are enough), e.g. for the commit referenced above: https:
//github.com/brian-team/brian2/commit/d2cb4a85

1.7 Compatibility and reproducibility

1.7.1 Supported Python and numpy versions

We follow the approach outlined in numpy’s deprecation policy. This means that Brian supports:
• All minor versions of Python released 42 months prior to Brian, and at minimum the two latest minor versions.
• All minor versions of numpy released in the 24months prior to Brian, and at minimum the last three minor versions.

Note that we do not have control about the versions that are supported by the conda-forge infrastructure. Therefore,
brian2 conda packages might not be provided for all of the supported versions. In this case, affected users can chose
to either update the Python/numpy version in their conda environment to a version with a conda package or to install
brian2 via pip.

1.7.2 General policy

We try to keep backwards-incompatible changes to a minimum. In general, brian2 scripts should continue to work
with newer versions and should give the same results.
As an exception to the above rule, we will always correct clearly identified bugs that lead to incorrect simulation results
(i.e., not just an matter of interpretation). Since we do not want to require new users to take any action to get correct
results, we will change the default behaviour in such cases. If possible, we will give the user an option to restore the old,
incorrect behaviour to reproduce the previous results with newer Brian versions. This would typically be a preference in
the legacy category, see legacy.refractory_timing for an example.

Note: The order of terms when evaluating equations is not fixed and can change with the version of sympy, the symbolic
mathematics library used in Brian. Similarly, Brian performs a number of optimizations by default and asks the compiler
to perform further ones which might introduce subtle changes depending on the compiler and its version. Finally, code
generation can lead to either Python or C++ code (with a single or multiple threads) executing the actual simulation which
again may affect the numerical results. Therefore, we cannot guarantee exact, “bitwise” reproducibility of results.

1.7. Compatibility and reproducibility 77

https://github.com/brian-team/brian2/commit/d2cb4a85
https://github.com/brian-team/brian2/commit/d2cb4a85
https://numpy.org/neps/nep-0029-deprecation_policy.html
https://conda-forge.org/

Brian 2 Documentation, Release 2.5.1

1.7.3 Syntax deprecations

We sometimes realize that the names of arguments or other syntax elements are confusing and therefore decide to
change them. In such cases, we start to use the new syntax everywhere in the documentation and examples, but leave
the former syntax available for compatiblity with previously written code. For example, earlier versions of Brian used
method='linear' to describe the exact solution of differential equations via sympy (that most importantly applies
to “linear” equations, i.e. linear differential equations with constant coefficients). However, some users interpreted
method='linear' as a “linear approximation” like the forward Euler method. In newer versions of Brian the rec-
ommended syntax is therefore to use method='exact', but the old syntax remains valid.
If the changed syntax is very prominent, its continued use in Brian scripts (published by others) could be confusing to
new users. In these cases, we might decide to give a warning when the deprecated syntax is used (e.g. for the pre and
post arguments in Synapses which have been replaced by on_pre and on_post). Such warnings will contain all
the information necessary to rewrite the code so that the warning is no longer raised (in line with our general policy for
warnings).

1.7.4 Random numbers

Streams of random numbers in Brian simulations (including the generation of synapses, etc.) are reproducible when a seed
is set via Brian’s seed() function. Note that there is a difference with regard to random numbers between runtime and
standalone mode: in runtimemode, numpy’s random number generator is always used – even from generated Cython code.
Therefore, the call to seed()will set numpy’s random number generator seed which then applies to all random numbers.
Regardless of whether initial values of a variable are set via an explicit call to numpy.random.randn, or via a Brian
expression such as 'randn()', both are affected by this seed. In contrast, random numbers in standalone simulations
will be generated by an independent random number generator (but based on the same algorithm as numpy’s) and the
call to seed() will only affect these numbers, not numbers resulting from explicit calls to numpy.random. To make
standalone scripts mixing both sources of randomness reproducible, either set numpy’s random generator seed manually
in addition to calling seed(), or reformulate the model to use code generation everywhere (e.g. replace group.v =
-70*mV + 10*mV*np.random.randn(len(group)) by group.v = '-70*mv + 10*mV*randn()').
Changing the code generation target can imply a change in the order in which random numbers are drawn from the
reproducible random number stream. In general, we therefore only guarantee the use of the same numbers if the code
generation target and the number of threads (for C++ standalone simulations) is the same.

Note: If there are several sources of randomness (e.g. multiple PoissonGroup objects) in a simulation, then the
order in which these elements are executed matters. The order of execution is deterministic, but if it is not unambiguously
determined by the when and order attributes (see Scheduling for details), then it will depend on the names of objects.
When not explicitly given via the name argument during the object’s creation, names are automatically generated by Brian
as e.g. poissongroup, poissongroup_1, etc. When you repeatedly run simulations within the same process,
these names might change and therefore the order in which the elements are simulated. Random numbers will then be
differently distributed to the objects. To avoid this and get reproducible random number streams you can either fix the
order of elements by specifying the order or name argument, or make sure that each simulation gets run in a fresh
Python process.

78 Chapter 1. Introduction

https://numpy.org/doc/stable/reference/random/generated/numpy.random.randn.html#numpy.random.randn
https://numpy.org/doc/stable/reference/random/index.html#module-numpy.random

Brian 2 Documentation, Release 2.5.1

1.7.5 Python errors

While we try to guarantee the reproducibility of simulations (within the limits stated above), we do so only for code that
does not raise any error. We constantly try to improve the error handling in Brian, and these improvements can lead
to errors raised at a different time (e.g. when creating an object as opposed to when running the simulation), different
types of errors being raised (e.g. DimensionMismatchError instead of TypeError), or simply a different error
message text. Therefore, Brian scripts should never use try/except blocks to implement program logic.

1.8 Contributor Covenant Code of Conduct

1.8.1 Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making
participation in our project and our community a harassment-free experience for everyone, regardless of age, body size,
disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic
status, nationality, personal appearance, race, religion, or sexual identity and orientation.

1.8.2 Our Standards

Examples of behavior that contributes to creating a positive environment include:
• Using welcoming and inclusive language
• Being respectful of differing viewpoints and experiences
• Gracefully accepting constructive criticism
• Focusing on what is best for the community
• Showing empathy towards other community members

Examples of unacceptable behavior by participants include:
• The use of sexualized language or imagery and unwelcome sexual attention or advances
• Trolling, insulting/derogatory comments, and personal or political attacks
• Public or private harassment
• Publishing others’ private information, such as a physical or electronic address, without explicit permission
• Other conduct which could reasonably be considered inappropriate in a professional setting

1.8.3 Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate
and fair corrective action in response to any instances of unacceptable behavior.
Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits,
issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any
contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

1.8. Contributor Covenant Code of Conduct 79

https://docs.python.org/3/library/exceptions.html#TypeError

Brian 2 Documentation, Release 2.5.1

1.8.4 Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the
project or its community. Examples of representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed representative at an online or offline event.
Representation of a project may be further defined and clarified by project maintainers.

1.8.5 Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at
team@briansimulator.org. All complaints will be reviewed and investigated and will result in a response that is deemed
necessary and appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to
the reporter of an incident. Further details of specific enforcement policies may be posted separately.
Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent
repercussions as determined by other members of the project’s leadership.

1.8.6 Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 1.4, available at https://www.
contributor-covenant.org/version/1/4/code-of-conduct.html
For answers to common questions about this code of conduct, see https://www.contributor-covenant.org/faq

80 Chapter 1. Introduction

mailto:team@briansimulator.org
https://www.contributor-covenant.org
https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
https://www.contributor-covenant.org/faq

CHAPTER

TWO

TUTORIALS

The tutorial consists of a series of Jupyter Notebooks1.
For more information about how to use Jupyter Notebooks, see the Jupyter Notebook documentation.

2.1 Introduction to Brian part 1: Neurons

All Brian scripts start with the following. If you’re trying this notebook out in the Jupyter notebook, you should start by
running this cell.

from brian2 import *

Later we’ll do some plotting in the notebook, so we activate inline plotting in the notebook by doing this:

%matplotlib inline

If you are not using the Jupyter notebook to run this example (e.g. you are using a standard Python terminal, or you
copy&paste these example into an editor and run them as a script), then plots will not automatically be displayed. In this
case, call the show() command explicitly after the plotting commands.

2.1.1 Units system

Brian has a system for using quantities with physical dimensions:

20*volt

20.0V

All of the basic SI units can be used (volt, amp, etc.) along with all the standard prefixes (m=milli, p=pico, etc.), as well
as a few special abbreviations like mV for millivolt, pF for picofarad, etc.

1000*amp

1.0 kA

1e6*volt

1.0MV

1 Formerly known as “IPython Notebooks”.

81

http://jupyter-notebook-beginner-guide.readthedocs.org/en/latest/what_is_jupyter.html
http://jupyter.readthedocs.org/

Brian 2 Documentation, Release 2.5.1

1000*namp

1.0000000000000002µA
Also note that combinations of units with work as expected:

10*nA*5*Mohm

49.99999999999999mV
And if you try to do something wrong like adding amps and volts, what happens?

5*amp+10*volt

DimensionMismatchError Traceback (most recent call last)

<ipython-input-8-245c0c0332d1> in <module>
----> 1 5*amp+10*volt

~/programming/brian2/brian2/units/fundamentalunits.py in __add__(self, other)
1429
1430 def __add__(self, other):

-> 1431 return self._binary_operation(other, operator.add,
1432 fail_for_mismatch=True,
1433 operator_str='+')

~/programming/brian2/brian2/units/fundamentalunits.py in _binary_operation(self,␣
↪→other, operation, dim_operation, fail_for_mismatch, operator_str, inplace)

1369 message = ('Cannot calculate {value1} %s {value2}, units do␣
↪→not '

1370 'match') % operator_str
-> 1371 _, other_dim = fail_for_dimension_mismatch(self, other,␣
↪→message,

1372 value1=self,
1373 value2=other)

~/programming/brian2/brian2/units/fundamentalunits.py in fail_for_dimension_
↪→mismatch(obj1, obj2, error_message, **error_quantities)

184 raise DimensionMismatchError(error_message, dim1)
185 else:

--> 186 raise DimensionMismatchError(error_message, dim1, dim2)
187 else:
188 return dim1, dim2

DimensionMismatchError: Cannot calculate 5. A + 10. V, units do not match (units are␣
↪→A and V).

If you haven’t see an error message in Python before that can look a bit overwhelming, but it’s actually quite simple and
it’s important to know how to read these because you’ll probably see them quite often.
You should start at the bottom and work up. The last line gives the error type DimensionMismatchError along
with a more specific message (in this case, you were trying to add together two quantities with different SI units, which is
impossible).

82 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.5.1

Working upwards, each of the sections starts with a filename (e.g. C:\Users\Dan\...) with possibly the name of a
function, and then a few lines surrounding the line where the error occurred (which is identified with an arrow).
The last of these sections shows the place in the function where the error actually happened. The section above it shows
the function that called that function, and so on until the first section will be the script that you actually run. This sequence
of sections is called a traceback, and is helpful in debugging.
If you see a traceback, what you want to do is start at the bottom and scan up the sections until you find your own file
because that’s most likely where the problem is. (Of course, your code might be correct and Brian may have a bug in
which case, please let us know on the email support list.)

2.1.2 A simple model

Let’s start by defining a simple neuron model. In Brian, all models are defined by systems of differential equations. Here’s
a simple example of what that looks like:

tau = 10*ms
eqs = '''
dv/dt = (1-v)/tau : 1
'''

In Python, the notation ''' is used to begin and end a multi-line string. So the equations are just a string with one line
per equation. The equations are formatted with standard mathematical notation, with one addition. At the end of a line
you write : unit where unit is the SI unit of that variable. Note that this is not the unit of the two sides of the
equation (which would be 1/second), but the unit of the variable defined by the equation, i.e. in this case v.
Now let’s use this definition to create a neuron.

G = NeuronGroup(1, eqs)

In Brian, you only create groups of neurons, using the class NeuronGroup. The first two arguments when you create
one of these objects are the number of neurons (in this case, 1) and the defining differential equations.
Let’s see what happens if we didn’t put the variable tau in the equation:

eqs = '''
dv/dt = 1-v : 1
'''
G = NeuronGroup(1, eqs)
run(100*ms)

DimensionMismatchError Traceback (most recent call last)

~/programming/brian2/brian2/equations/equations.py in check_units(self, group, run_
↪→namespace)

955 try:
--> 956 check_dimensions(str(eq.expr), self.dimensions[var] /␣
↪→second.dim,

957 all_variables)

~/programming/brian2/brian2/equations/unitcheck.py in check_dimensions(expression,␣
↪→dimensions, variables)

44 expected=repr(get_
↪→unit(dimensions)))

(continues on next page)

2.1. Introduction to Brian part 1: Neurons 83

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
---> 45 fail_for_dimension_mismatch(expr_dims, dimensions, err_msg)

46

~/programming/brian2/brian2/units/fundamentalunits.py in fail_for_dimension_
↪→mismatch(obj1, obj2, error_message, **error_quantities)

183 if obj2 is None or isinstance(obj2, (Dimension, Unit)):
--> 184 raise DimensionMismatchError(error_message, dim1)

185 else:

DimensionMismatchError: Expression 1-v does not have the expected unit hertz (unit is␣
↪→1).

During handling of the above exception, another exception occurred:

DimensionMismatchError Traceback (most recent call last)

~/programming/brian2/brian2/core/network.py in before_run(self, run_namespace)
897 try:

--> 898 obj.before_run(run_namespace)
899 except Exception as ex:

~/programming/brian2/brian2/groups/neurongroup.py in before_run(self, run_namespace)
883 # Check units

--> 884 self.equations.check_units(self, run_namespace=run_namespace)
885 # Check that subexpressions that refer to stateful functions are␣

↪→labeled

~/programming/brian2/brian2/equations/equations.py in check_units(self, group, run_
↪→namespace)

958 except DimensionMismatchError as ex:
--> 959 raise DimensionMismatchError(('Inconsistent units in '

960 'differential equation '

DimensionMismatchError: Inconsistent units in differential equation defining variable␣
↪→v:
Expression 1-v does not have the expected unit hertz (unit is 1).

During handling of the above exception, another exception occurred:

BrianObjectException Traceback (most recent call last)

<ipython-input-11-97ed109f5888> in <module>
3 '''
4 G = NeuronGroup(1, eqs)

----> 5 run(100*ms)

~/programming/brian2/brian2/units/fundamentalunits.py in new_f(*args, **kwds)
(continues on next page)

84 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
2383 get_

↪→dimensions(newkeyset[k]))
2384

-> 2385 result = f(*args, **kwds)
2386 if 'result' in au:
2387 if au['result'] == bool:

~/programming/brian2/brian2/core/magic.py in run(duration, report, report_period,␣
↪→namespace, profile, level)

371 intended use. See `MagicNetwork` for more details.
372 '''

--> 373 return magic_network.run(duration, report=report, report_period=report_
↪→period,

374 namespace=namespace, profile=profile,␣
↪→level=2+level)

375 run.__module__ = __name__

~/programming/brian2/brian2/core/magic.py in run(self, duration, report, report_
↪→period, namespace, profile, level)

229 namespace=None, profile=False, level=0):
230 self._update_magic_objects(level=level+1)

--> 231 Network.run(self, duration, report=report, report_period=report_
↪→period,

232 namespace=namespace, profile=profile, level=level+1)
233

~/programming/brian2/brian2/core/base.py in device_override_decorated_function(*args,␣
↪→**kwds)

274 return getattr(curdev, name)(*args, **kwds)
275 else:

--> 276 return func(*args, **kwds)
277
278 device_override_decorated_function.__doc__ = func.__doc__

~/programming/brian2/brian2/units/fundamentalunits.py in new_f(*args, **kwds)
2383 get_

↪→dimensions(newkeyset[k]))
2384

-> 2385 result = f(*args, **kwds)
2386 if 'result' in au:
2387 if au['result'] == bool:

~/programming/brian2/brian2/core/network.py in run(self, duration, report, report_
↪→period, namespace, profile, level)

1007 namespace = get_local_namespace(level=level+3)
1008

-> 1009 self.before_run(namespace)
1010
1011 if len(all_objects) == 0:

~/programming/brian2/brian2/core/base.py in device_override_decorated_function(*args,␣
↪→**kwds) (continues on next page)

2.1. Introduction to Brian part 1: Neurons 85

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
274 return getattr(curdev, name)(*args, **kwds)
275 else:

--> 276 return func(*args, **kwds)
277
278 device_override_decorated_function.__doc__ = func.__doc__

~/programming/brian2/brian2/core/network.py in before_run(self, run_namespace)
898 obj.before_run(run_namespace)
899 except Exception as ex:

--> 900 raise brian_object_exception("An error occurred when␣
↪→preparing an object.", obj, ex)

901
902 # Check that no object has been run as part of another network before

BrianObjectException: Original error and traceback:
Traceback (most recent call last):

File "/home/marcel/programming/brian2/brian2/equations/equations.py", line 956, in␣
↪→check_units

check_dimensions(str(eq.expr), self.dimensions[var] / second.dim,
File "/home/marcel/programming/brian2/brian2/equations/unitcheck.py", line 45, in␣

↪→check_dimensions
fail_for_dimension_mismatch(expr_dims, dimensions, err_msg)

File "/home/marcel/programming/brian2/brian2/units/fundamentalunits.py", line 184,␣
↪→in fail_for_dimension_mismatch

raise DimensionMismatchError(error_message, dim1)
brian2.units.fundamentalunits.DimensionMismatchError: Expression 1-v does not have␣
↪→the expected unit hertz (unit is 1).

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
File "/home/marcel/programming/brian2/brian2/core/network.py", line 898, in before_

↪→run
obj.before_run(run_namespace)

File "/home/marcel/programming/brian2/brian2/groups/neurongroup.py", line 884, in␣
↪→before_run

self.equations.check_units(self, run_namespace=run_namespace)
File "/home/marcel/programming/brian2/brian2/equations/equations.py", line 959, in␣

↪→check_units
raise DimensionMismatchError(('Inconsistent units in '

brian2.units.fundamentalunits.DimensionMismatchError: Inconsistent units in␣
↪→differential equation defining variable v:
Expression 1-v does not have the expected unit hertz (unit is 1).

Error encountered with object named "neurongroup_1".
Object was created here (most recent call only, full details in debug log):
File "<ipython-input-11-97ed109f5888>", line 4, in <module>
G = NeuronGroup(1, eqs)

An error occurred when preparing an object. brian2.units.fundamentalunits.
↪→DimensionMismatchError: Inconsistent units in differential equation defining␣
↪→variable v:
Expression 1-v does not have the expected unit hertz (unit is 1).
(See above for original error message and traceback.)

86 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.5.1

An error is raised, but why? The reason is that the differential equation is now dimensionally inconsistent. The left hand
side dv/dt has units of 1/second but the right hand side 1-v is dimensionless. People often find this behaviour
of Brian confusing because this sort of equation is very common in mathematics. However, for quantities with physical
dimensions it is incorrect because the results would change depending on the unit you measured it in. For time, if you
measured it in seconds the same equation would behave differently to how it would if you measured time in milliseconds.
To avoid this, we insist that you always specify dimensionally consistent equations.
Now let’s go back to the good equations and actually run the simulation.

start_scope()

tau = 10*ms
eqs = '''
dv/dt = (1-v)/tau : 1
'''

G = NeuronGroup(1, eqs)
run(100*ms)

INFO No numerical integration method specified for group 'neurongroup', using␣
↪→method 'exact' (took 0.02s). [brian2.stateupdaters.base.method_choice]

First off, ignore that start_scope() at the top of the cell. You’ll see that in each cell in this tutorial where we run a
simulation. All it does is make sure that any Brian objects created before the function is called aren’t included in the next
run of the simulation.
Secondly, you’ll see that there is an “INFO” message about not specifying the numerical integration method. This is
harmless and just to let you know what method we chose, but we’ll fix it in the next cell by specifying the method
explicitly.
So, what has happened here? Well, the command run(100*ms) runs the simulation for 100 ms. We can see that this
has worked by printing the value of the variable v before and after the simulation.

start_scope()

G = NeuronGroup(1, eqs, method='exact')
print('Before v = %s' % G.v[0])
run(100*ms)
print('After v = %s' % G.v[0])

Before v = 0.0
After v = 0.9999546000702376

By default, all variables start with the value 0. Since the differential equation is dv/dt=(1-v)/tau we would expect
after a while that v would tend towards the value 1, which is just what we see. Specifically, we’d expect v to have the
value 1-exp(-t/tau). Let’s see if that’s right.

print('Expected value of v = %s' % (1-exp(-100*ms/tau)))

Expected value of v = 0.9999546000702375

Good news, the simulation gives the value we’d expect!
Now let’s take a look at a graph of how the variable v evolves over time.

start_scope()

(continues on next page)

2.1. Introduction to Brian part 1: Neurons 87

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
G = NeuronGroup(1, eqs, method='exact')
M = StateMonitor(G, 'v', record=True)

run(30*ms)

plot(M.t/ms, M.v[0])
xlabel('Time (ms)')
ylabel('v');

This time we only ran the simulation for 30 ms so that we can see the behaviour better. It looks like it’s behaving as
expected, but let’s just check that analytically by plotting the expected behaviour on top.

start_scope()

G = NeuronGroup(1, eqs, method='exact')
M = StateMonitor(G, 'v', record=0)

run(30*ms)

plot(M.t/ms, M.v[0], 'C0', label='Brian')
plot(M.t/ms, 1-exp(-M.t/tau), 'C1--',label='Analytic')
xlabel('Time (ms)')
ylabel('v')
legend();

88 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.5.1

As you can see, the blue (Brian) and dashed orange (analytic solution) lines coincide.
In this example, we used the object StateMonitor object. This is used to record the values of a neuron variable while
the simulation runs. The first two arguments are the group to record from, and the variable you want to record from. We
also specify record=0. This means that we record all values for neuron 0. We have to specify which neurons we want
to record because in large simulations with many neurons it usually uses up too much RAM to record the values of all
neurons.
Now try modifying the equations and parameters and see what happens in the cell below.

start_scope()

tau = 10*ms
eqs = '''
dv/dt = (sin(2*pi*100*Hz*t)-v)/tau : 1
'''

Change to Euler method because exact integrator doesn't work here
G = NeuronGroup(1, eqs, method='euler')
M = StateMonitor(G, 'v', record=0)

G.v = 5 # initial value

run(60*ms)

plot(M.t/ms, M.v[0])
xlabel('Time (ms)')
ylabel('v');

2.1. Introduction to Brian part 1: Neurons 89

Brian 2 Documentation, Release 2.5.1

2.1.3 Adding spikes

So far we haven’t done anything neuronal, just played around with differential equations. Now let’s start adding spiking
behaviour.

start_scope()

tau = 10*ms
eqs = '''
dv/dt = (1-v)/tau : 1
'''

G = NeuronGroup(1, eqs, threshold='v>0.8', reset='v = 0', method='exact')

M = StateMonitor(G, 'v', record=0)
run(50*ms)
plot(M.t/ms, M.v[0])
xlabel('Time (ms)')
ylabel('v');

90 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.5.1

We’ve added two new keywords to the NeuronGroup declaration: threshold='v>0.8' and reset='v = 0'.
What this means is that when v>0.8 we fire a spike, and immediately reset v = 0 after the spike. We can put any
expression and series of statements as these strings.
As you can see, at the beginning the behaviour is the same as before until v crosses the threshold v>0.8 at which point
you see it reset to 0. You can’t see it in this figure, but internally Brian has registered this event as a spike. Let’s have a
look at that.

start_scope()

G = NeuronGroup(1, eqs, threshold='v>0.8', reset='v = 0', method='exact')

spikemon = SpikeMonitor(G)

run(50*ms)

print('Spike times: %s' % spikemon.t[:])

Spike times: [16. 32.1 48.2] ms

The SpikeMonitor object takes the group whose spikes you want to record as its argument and stores the spike times
in the variable t. Let’s plot those spikes on top of the other figure to see that it’s getting it right.

start_scope()

G = NeuronGroup(1, eqs, threshold='v>0.8', reset='v = 0', method='exact')

statemon = StateMonitor(G, 'v', record=0)
spikemon = SpikeMonitor(G)

run(50*ms)

plot(statemon.t/ms, statemon.v[0])

(continues on next page)

2.1. Introduction to Brian part 1: Neurons 91

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
for t in spikemon.t:

axvline(t/ms, ls='--', c='C1', lw=3)
xlabel('Time (ms)')
ylabel('v');

Here we’ve used the axvline command from matplotlib to draw an orange, dashed vertical line at the time of each
spike recorded by the SpikeMonitor.
Now try changing the strings for threshold and reset in the cell above to see what happens.

2.1.4 Refractoriness

A common feature of neuron models is refractoriness. This means that after the neuron fires a spike it becomes refractory
for a certain duration and cannot fire another spike until this period is over. Here’s how we do that in Brian.

start_scope()

tau = 10*ms
eqs = '''
dv/dt = (1-v)/tau : 1 (unless refractory)
'''

G = NeuronGroup(1, eqs, threshold='v>0.8', reset='v = 0', refractory=5*ms, method=
↪→'exact')

statemon = StateMonitor(G, 'v', record=0)
spikemon = SpikeMonitor(G)

run(50*ms)

plot(statemon.t/ms, statemon.v[0])

(continues on next page)

92 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
for t in spikemon.t:

axvline(t/ms, ls='--', c='C1', lw=3)
xlabel('Time (ms)')
ylabel('v');

As you can see in this figure, after the first spike, v stays at 0 for around 5 ms before it resumes its normal behaviour. To do
this, we’ve done two things. Firstly, we’ve added the keyword refractory=5*ms to the NeuronGroup declaration.
On its own, this only means that the neuron cannot spike in this period (see below), but doesn’t change how v behaves. In
order to make v stay constant during the refractory period, we have to add (unless refractory) to the end of the
definition of v in the differential equations. What this means is that the differential equation determines the behaviour of
v unless it’s refractory in which case it is switched off.
Here’s what would happen if we didn’t include (unless refractory). Note that we’ve also decreased the value of
tau and increased the length of the refractory period to make the behaviour clearer.

start_scope()

tau = 5*ms
eqs = '''
dv/dt = (1-v)/tau : 1
'''

G = NeuronGroup(1, eqs, threshold='v>0.8', reset='v = 0', refractory=15*ms, method=
↪→'exact')

statemon = StateMonitor(G, 'v', record=0)
spikemon = SpikeMonitor(G)

run(50*ms)

plot(statemon.t/ms, statemon.v[0])
for t in spikemon.t:

(continues on next page)

2.1. Introduction to Brian part 1: Neurons 93

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
axvline(t/ms, ls='--', c='C1', lw=3)

axhline(0.8, ls=':', c='C2', lw=3)
xlabel('Time (ms)')
ylabel('v')
print("Spike times: %s" % spikemon.t[:])

Spike times: [8. 23. 38.] ms

So what’s going on here? The behaviour for the first spike is the same: v rises to 0.8 and then the neuron fires a spike at
time 8 ms before immediately resetting to 0. Since the refractory period is now 15 ms this means that the neuron won’t
be able to spike again until time 8 + 15 = 23 ms. Immediately after the first spike, the value of v now instantly starts to
rise because we didn’t specify (unless refractory) in the definition of dv/dt. However, once it reaches the
value 0.8 (the dashed green line) at time roughly 8 ms it doesn’t fire a spike even though the threshold is v>0.8. This is
because the neuron is still refractory until time 23 ms, at which point it fires a spike.
Note that you can do more complicated and interesting things with refractoriness. See the full documentation for more
details about how it works.

2.1.5 Multiple neurons

So far we’ve only been working with a single neuron. Let’s do something interesting with multiple neurons.

start_scope()

N = 100
tau = 10*ms
eqs = '''
dv/dt = (2-v)/tau : 1
'''

(continues on next page)

94 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
G = NeuronGroup(N, eqs, threshold='v>1', reset='v=0', method='exact')
G.v = 'rand()'

spikemon = SpikeMonitor(G)

run(50*ms)

plot(spikemon.t/ms, spikemon.i, '.k')
xlabel('Time (ms)')
ylabel('Neuron index');

This shows a few changes. Firstly, we’ve got a new variable N determining the number of neurons. Secondly, we added the
statement G.v = 'rand()' before the run. What this does is initialise each neuron with a different uniform random
value between 0 and 1. We’ve done this just so each neuron will do something a bit different. The other big change is
how we plot the data in the end.
As well as the variable spikemon.t with the times of all the spikes, we’ve also used the variable spikemon.i which
gives the corresponding neuron index for each spike, and plotted a single black dot with time on the x-axis and neuron
index on the y-value. This is the standard “raster plot” used in neuroscience.

2.1.6 Parameters

To make these multiple neurons do something more interesting, let’s introduce per-neuron parameters that don’t have a
differential equation attached to them.

start_scope()

N = 100
tau = 10*ms
v0_max = 3.

(continues on next page)

2.1. Introduction to Brian part 1: Neurons 95

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
duration = 1000*ms

eqs = '''
dv/dt = (v0-v)/tau : 1 (unless refractory)
v0 : 1
'''

G = NeuronGroup(N, eqs, threshold='v>1', reset='v=0', refractory=5*ms, method='exact')
M = SpikeMonitor(G)

G.v0 = 'i*v0_max/(N-1)'

run(duration)

figure(figsize=(12,4))
subplot(121)
plot(M.t/ms, M.i, '.k')
xlabel('Time (ms)')
ylabel('Neuron index')
subplot(122)
plot(G.v0, M.count/duration)
xlabel('v0')
ylabel('Firing rate (sp/s)');

The line v0 : 1 declares a new per-neuron parameter v0 with units 1 (i.e. dimensionless).
The line G.v0 = 'i*v0_max/(N-1)' initialises the value of v0 for each neuron varying from 0 up to v0_max.
The symbol i when it appears in strings like this refers to the neuron index.
So in this example, we’re driving the neuron towards the value v0 exponentially, but when v crosses v>1, it fires a spike
and resets. The effect is that the rate at which it fires spikes will be related to the value of v0. For v0<1 it will never fire
a spike, and as v0 gets larger it will fire spikes at a higher rate. The right hand plot shows the firing rate as a function of
the value of v0. This is the I-f curve of this neuron model.
Note that in the plot we’ve used the count variable of the SpikeMonitor: this is an array of the number of spikes
each neuron in the group fired. Dividing this by the duration of the run gives the firing rate.

96 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.5.1

2.1.7 Stochastic neurons

Often when making models of neurons, we include a random element to model the effect of various forms of neural noise.
In Brian, we can do this by using the symbol xi in differential equations. Strictly speaking, this symbol is a “stochastic
differential” but you can sort of thinking of it as just a Gaussian random variable with mean 0 and standard deviation 1. We
do have to take into account the way stochastic differentials scale with time, which is why we multiply it by tau**-0.5
in the equations below (see a textbook on stochastic differential equations for more details). Note that we also changed the
method keyword argument to use 'euler' (which stands for the Euler-Maruyama method); the 'exact' method
that we used earlier is not applicable to stochastic differential equations.

start_scope()

N = 100
tau = 10*ms
v0_max = 3.
duration = 1000*ms
sigma = 0.2

eqs = '''
dv/dt = (v0-v)/tau+sigma*xi*tau**-0.5 : 1 (unless refractory)
v0 : 1
'''

G = NeuronGroup(N, eqs, threshold='v>1', reset='v=0', refractory=5*ms, method='euler')
M = SpikeMonitor(G)

G.v0 = 'i*v0_max/(N-1)'

run(duration)

figure(figsize=(12,4))
subplot(121)
plot(M.t/ms, M.i, '.k')
xlabel('Time (ms)')
ylabel('Neuron index')
subplot(122)
plot(G.v0, M.count/duration)
xlabel('v0')
ylabel('Firing rate (sp/s)');

That’s the same figure as in the previous section but with some noise added. Note how the curve has changed shape:
instead of a sharp jump from firing at rate 0 to firing at a positive rate, it now increases in a sigmoidal fashion. This is

2.1. Introduction to Brian part 1: Neurons 97

https://en.wikipedia.org/wiki/Euler%E2%80%93Maruyama_method

Brian 2 Documentation, Release 2.5.1

because no matter how small the driving force the randomness may cause it to fire a spike.

2.1.8 End of tutorial

That’s the end of this part of the tutorial. The cell below has another example. See if you can work out what it is doing and
why. Try adding a StateMonitor to record the values of the variables for one of the neurons to help you understand
it.
You could also try out the things you’ve learned in this cell.
Once you’re done with that you can move on to the next tutorial on Synapses.

start_scope()

N = 1000
tau = 10*ms
vr = -70*mV
vt0 = -50*mV
delta_vt0 = 5*mV
tau_t = 100*ms
sigma = 0.5*(vt0-vr)
v_drive = 2*(vt0-vr)
duration = 100*ms

eqs = '''
dv/dt = (v_drive+vr-v)/tau + sigma*xi*tau**-0.5 : volt
dvt/dt = (vt0-vt)/tau_t : volt
'''

reset = '''
v = vr
vt += delta_vt0
'''

G = NeuronGroup(N, eqs, threshold='v>vt', reset=reset, refractory=5*ms, method='euler
↪→')
spikemon = SpikeMonitor(G)

G.v = 'rand()*(vt0-vr)+vr'
G.vt = vt0

run(duration)

_ = hist(spikemon.t/ms, 100, histtype='stepfilled', facecolor='k',␣
↪→weights=list(ones(len(spikemon))/(N*defaultclock.dt)))
xlabel('Time (ms)')
ylabel('Instantaneous firing rate (sp/s)');

98 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.5.1

2.2 Introduction to Brian part 2: Synapses

If you haven’t yet read part 1: Neurons, go read that now.
As before we start by importing the Brian package and setting up matplotlib for IPython:

from brian2 import *
%matplotlib inline

2.2.1 The simplest Synapse

Once you have some neurons, the next step is to connect them up via synapses. We’ll start out with doing the simplest
possible type of synapse that causes an instantaneous change in a variable after a spike.

start_scope()

eqs = '''
dv/dt = (I-v)/tau : 1
I : 1
tau : second
'''
G = NeuronGroup(2, eqs, threshold='v>1', reset='v = 0', method='exact')
G.I = [2, 0]
G.tau = [10, 100]*ms

Comment these two lines out to see what happens without Synapses
S = Synapses(G, G, on_pre='v_post += 0.2')
S.connect(i=0, j=1)

(continues on next page)

2.2. Introduction to Brian part 2: Synapses 99

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
M = StateMonitor(G, 'v', record=True)

run(100*ms)

plot(M.t/ms, M.v[0], label='Neuron 0')
plot(M.t/ms, M.v[1], label='Neuron 1')
xlabel('Time (ms)')
ylabel('v')
legend();

<matplotlib.legend.Legend at 0x7fdccb8773d0>

There are a few things going on here. First of all, let’s recap what is going on with the NeuronGroup. We’ve created
two neurons, each of which has the same differential equation but different values for parameters I and tau. Neuron 0
has I=2 and tau=10*ms which means that is driven to repeatedly spike at a fairly high rate. Neuron 1 has I=0 and
tau=100*ms which means that on its own - without the synapses - it won’t spike at all (the driving current I is 0). You
can prove this to yourself by commenting out the two lines that define the synapse.
Next we define the synapses: Synapses(source, target, ...) means that we are defining a synaptic model
that goes from source to target. In this case, the source and target are both the same, the group G. The syntax
on_pre='v_post += 0.2'means that when a spike occurs in the presynaptic neuron (hence on_pre) it causes an
instantaneous change to happen v_post += 0.2. The _postmeans that the value of v referred to is the post-synaptic
value, and it is increased by 0.2. So in total, what this model says is that whenever two neurons in G are connected by a
synapse, when the source neuron fires a spike the target neuron will have its value of v increased by 0.2.
However, at this point we have only defined the synapse model, we haven’t actually created any synapses. The next line
S.connect(i=0, j=1) creates a synapse from neuron 0 to neuron 1.

100 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.5.1

2.2.2 Adding a weight

In the previous section, we hard coded the weight of the synapse to be the value 0.2, but often we would to allow this to
be different for different synapses. We do that by introducing synapse equations.

start_scope()

eqs = '''
dv/dt = (I-v)/tau : 1
I : 1
tau : second
'''
G = NeuronGroup(3, eqs, threshold='v>1', reset='v = 0', method='exact')
G.I = [2, 0, 0]
G.tau = [10, 100, 100]*ms

Comment these two lines out to see what happens without Synapses
S = Synapses(G, G, 'w : 1', on_pre='v_post += w')
S.connect(i=0, j=[1, 2])
S.w = 'j*0.2'

M = StateMonitor(G, 'v', record=True)

run(50*ms)

plot(M.t/ms, M.v[0], label='Neuron 0')
plot(M.t/ms, M.v[1], label='Neuron 1')
plot(M.t/ms, M.v[2], label='Neuron 2')
xlabel('Time (ms)')
ylabel('v')
legend();

<matplotlib.legend.Legend at 0x7fdccb7f2750>

2.2. Introduction to Brian part 2: Synapses 101

Brian 2 Documentation, Release 2.5.1

This example behaves very similarly to the previous example, but now there’s a synaptic weight variable w. The string
'w : 1' is an equation string, precisely the same as for neurons, that defines a single dimensionless parameter w.
We changed the behaviour on a spike to on_pre='v_post += w' now, so that each synapse can behave differently
depending on the value of w. To illustrate this, we’ve made a third neuron which behaves precisely the same as the second
neuron, and connected neuron 0 to both neurons 1 and 2. We’ve also set the weights via S.w = 'j*0.2'. When i
and j occur in the context of synapses, i refers to the source neuron index, and j to the target neuron index. So this will
give a synaptic connection from 0 to 1 with weight 0.2=0.2*1 and from 0 to 2 with weight 0.4=0.2*2.

2.2.3 Introducing a delay

So far, the synapses have been instantaneous, but we can also make them act with a certain delay.

start_scope()

eqs = '''
dv/dt = (I-v)/tau : 1
I : 1
tau : second
'''
G = NeuronGroup(3, eqs, threshold='v>1', reset='v = 0', method='exact')
G.I = [2, 0, 0]
G.tau = [10, 100, 100]*ms

S = Synapses(G, G, 'w : 1', on_pre='v_post += w')
S.connect(i=0, j=[1, 2])
S.w = 'j*0.2'
S.delay = 'j*2*ms'

M = StateMonitor(G, 'v', record=True)

run(50*ms)

plot(M.t/ms, M.v[0], label='Neuron 0')
plot(M.t/ms, M.v[1], label='Neuron 1')
plot(M.t/ms, M.v[2], label='Neuron 2')
xlabel('Time (ms)')
ylabel('v')
legend();

<matplotlib.legend.Legend at 0x7fdccb7f2290>

102 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.5.1

As you can see, that’s as simple as adding a line S.delay = 'j*2*ms' so that the synapse from 0 to 1 has a delay
of 2 ms, and from 0 to 2 has a delay of 4 ms.

2.2.4 More complex connectivity

So far, we specified the synaptic connectivity explicitly, but for larger networks this isn’t usually possible. For that, we
usually want to specify some condition.

start_scope()

N = 10
G = NeuronGroup(N, 'v:1')
S = Synapses(G, G)
S.connect(condition='i!=j', p=0.2)

Here we’ve created a dummy neuron group of N neurons and a dummy synapses model that doens’t actually do anything
just to demonstrate the connectivity. The line S.connect(condition='i!=j', p=0.2) will connect all pairs
of neurons i and j with probability 0.2 as long as the condition i!=j holds. So, how can we see that connectivity?
Here’s a little function that will let us visualise it.

def visualise_connectivity(S):
Ns = len(S.source)
Nt = len(S.target)
figure(figsize=(10, 4))
subplot(121)
plot(zeros(Ns), arange(Ns), 'ok', ms=10)
plot(ones(Nt), arange(Nt), 'ok', ms=10)
for i, j in zip(S.i, S.j):

plot([0, 1], [i, j], '-k')
xticks([0, 1], ['Source', 'Target'])
ylabel('Neuron index')
xlim(-0.1, 1.1)

(continues on next page)

2.2. Introduction to Brian part 2: Synapses 103

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
ylim(-1, max(Ns, Nt))
subplot(122)
plot(S.i, S.j, 'ok')
xlim(-1, Ns)
ylim(-1, Nt)
xlabel('Source neuron index')
ylabel('Target neuron index')

visualise_connectivity(S)

There are two plots here. On the left hand side, you see a vertical line of circles indicating source neurons on the left, and
a vertical line indicating target neurons on the right, and a line between two neurons that have a synapse. On the right
hand side is another way of visualising the same thing. Here each black dot is a synapse, with x value the source neuron
index, and y value the target neuron index.
Let’s see how these figures change as we change the probability of a connection:

start_scope()

N = 10
G = NeuronGroup(N, 'v:1')

for p in [0.1, 0.5, 1.0]:
S = Synapses(G, G)
S.connect(condition='i!=j', p=p)
visualise_connectivity(S)
suptitle('p = '+str(p));

104 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.5.1

2.2. Introduction to Brian part 2: Synapses 105

Brian 2 Documentation, Release 2.5.1

And let’s see what another connectivity condition looks like. This one will only connect neighbouring neurons.

start_scope()

N = 10
G = NeuronGroup(N, 'v:1')

S = Synapses(G, G)
S.connect(condition='abs(i-j)<4 and i!=j')
visualise_connectivity(S)

Try using that cell to see how other connectivity conditions look like.
You can also use the generator syntax to create connections like this more efficiently. In small examples like this, it
doesn’t matter, but for large numbers of neurons it can be much more efficient to specify directly which neurons should be
connected than to specify just a condition. Note that the following example uses skip_if_invalid to avoid errors
at the boundaries (e.g. do not try to connect the neuron with index 1 to a neuron with index -2).

106 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.5.1

start_scope()

N = 10
G = NeuronGroup(N, 'v:1')

S = Synapses(G, G)
S.connect(j='k for k in range(i-3, i+4) if i!=k', skip_if_invalid=True)
visualise_connectivity(S)

If each source neuron is connected to precisely one target neuron (which would be normally used with two separate groups
of the same size, not with identical source and target groups as in this example), there is a special syntax that is extremely
efficient. For example, 1-to-1 connectivity looks like this:

start_scope()

N = 10
G = NeuronGroup(N, 'v:1')

S = Synapses(G, G)
S.connect(j='i')
visualise_connectivity(S)

2.2. Introduction to Brian part 2: Synapses 107

Brian 2 Documentation, Release 2.5.1

You can also do things like specifying the value of weights with a string. Let’s see an example where we assign each
neuron a spatial location and have a distance-dependent connectivity function. We visualise the weight of a synapse by
the size of the marker.

start_scope()

N = 30
neuron_spacing = 50*umetre
width = N/4.0*neuron_spacing

Neuron has one variable x, its position
G = NeuronGroup(N, 'x : metre')
G.x = 'i*neuron_spacing'

All synapses are connected (excluding self-connections)
S = Synapses(G, G, 'w : 1')
S.connect(condition='i!=j')
Weight varies with distance
S.w = 'exp(-(x_pre-x_post)**2/(2*width**2))'

scatter(S.x_pre/um, S.x_post/um, S.w*20)
xlabel('Source neuron position (um)')
ylabel('Target neuron position (um)');

Text(0, 0.5, 'Target neuron position (um)')

108 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.5.1

Now try changing that function and seeing how the plot changes.

2.2.5 More complex synapse models: STDP

Brian’s synapse framework is very general and can do things like short-term plasticity (STP) or spike-timing dependent
plasticity (STDP). Let’s see how that works for STDP.
STDP is normally defined by an equation something like this:

∆w =
∑
tpre

∑
tpost

W (tpost − tpre)

That is, the change in synaptic weight w is the sum over all presynaptic spike times tpre and postsynaptic spike times tpost
of some functionW of the difference in these spike times. A commonly used functionW is:

W (∆t) =

{
Apree

−∆t/τpre ∆t > 0

Aposte
∆t/τpost ∆t < 0

This function looks like this:

tau_pre = tau_post = 20*ms
A_pre = 0.01
A_post = -A_pre*1.05
delta_t = linspace(-50, 50, 100)*ms
W = where(delta_t>0, A_pre*exp(-delta_t/tau_pre), A_post*exp(delta_t/tau_post))
plot(delta_t/ms, W)
xlabel(r'Δt (ms)')
ylabel('W')
axhline(0, ls='-', c='k');

<matplotlib.lines.Line2D at 0x7fdccb5acdd0>

2.2. Introduction to Brian part 2: Synapses 109

Brian 2 Documentation, Release 2.5.1

Simulating it directly using this equation though would be very inefficient, because we would have to sum over all pairs of
spikes. That would also be physiologically unrealistic because the neuron cannot remember all its previous spike times. It
turns out there is a more efficient and physiologically more plausible way to get the same effect.
We define two new variables apre and apost which are “traces” of pre- and post-synaptic activity, governed by the differ-
ential equations:

τpre
d
dtapre = −apre

τpost
d
dtapost = −apost

When a presynaptic spike occurs, the presynaptic trace is updated and the weight is modified according to the rule:

apre → apre +Apre

w → w + apost

When a postsynaptic spike occurs:

apost → apost +Apost

w → w + apre

To see that this formulation is equivalent, you just have to check that the equations sum linearly, and consider two cases:
what happens if the presynaptic spike occurs before the postsynaptic spike, and vice versa. Try drawing a picture of it.
Now that we have a formulation that relies only on differential equations and spike events, we can turn that into Brian
code.

start_scope()

taupre = taupost = 20*ms
wmax = 0.01
Apre = 0.01

(continues on next page)

110 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
Apost = -Apre*taupre/taupost*1.05

G = NeuronGroup(1, 'v:1', threshold='v>1', reset='')

S = Synapses(G, G,
'''
w : 1
dapre/dt = -apre/taupre : 1 (event-driven)
dapost/dt = -apost/taupost : 1 (event-driven)
''',
on_pre='''
v_post += w
apre += Apre
w = clip(w+apost, 0, wmax)
''',
on_post='''
apost += Apost
w = clip(w+apre, 0, wmax)
''')

There are a few things to see there. Firstly, when defining the synapses we’ve given a more complicated multi-line string
defining three synaptic variables (w, apre and apost). We’ve also got a new bit of syntax there, (event-driven)
after the definitions of apre and apost. What this means is that although these two variables evolve continuously over
time, Brian should only update them at the time of an event (a spike). This is because we don’t need the values of apre
and apost except at spike times, and it is more efficient to only update them when needed.
Next we have a on_pre=... argument. The first line is v_post += w: this is the line that actually applies the
synaptic weight to the target neuron. The second line is apre += Apre which encodes the rule above. In the third
line, we’re also encoding the rule above but we’ve added one extra feature: we’ve clamped the synaptic weights between
a minimum of 0 and a maximum of wmax so that the weights can’t get too large or negative. The function clip(x,
low, high) does this.
Finally, we have a on_post=... argument. This gives the statements to calculate when a post-synaptic neuron fires.
Note that we do not modify v in this case, only the synaptic variables.
Now let’s see how all the variables behave when a presynaptic spike arrives some time before a postsynaptic spike.

start_scope()

taupre = taupost = 20*ms
wmax = 0.01
Apre = 0.01
Apost = -Apre*taupre/taupost*1.05

G = NeuronGroup(2, 'v:1', threshold='t>(1+i)*10*ms', refractory=100*ms)

S = Synapses(G, G,
'''
w : 1
dapre/dt = -apre/taupre : 1 (clock-driven)
dapost/dt = -apost/taupost : 1 (clock-driven)
''',
on_pre='''
v_post += w
apre += Apre
w = clip(w+apost, 0, wmax)
''',

(continues on next page)

2.2. Introduction to Brian part 2: Synapses 111

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
on_post='''
apost += Apost
w = clip(w+apre, 0, wmax)
''', method='linear')

S.connect(i=0, j=1)
M = StateMonitor(S, ['w', 'apre', 'apost'], record=True)

run(30*ms)

figure(figsize=(4, 8))
subplot(211)
plot(M.t/ms, M.apre[0], label='apre')
plot(M.t/ms, M.apost[0], label='apost')
legend()
subplot(212)
plot(M.t/ms, M.w[0], label='w')
legend(loc='best')
xlabel('Time (ms)');

Text(0.5, 0, 'Time (ms)')

112 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.5.1

A couple of things to note here. First of all, we’ve used a trick to make neuron 0 fire a spike at time 10 ms, and neuron 1
at time 20 ms. Can you see how that works?
Secondly, we’ve replaced the (event-driven) by (clock-driven) so you can see how apre and apost evolve
over time. Try reverting this change and see what happens.
Try changing the times of the spikes to see what happens.
Finally, let’s verify that this formulation is equivalent to the original one.

start_scope()

taupre = taupost = 20*ms
Apre = 0.01

(continues on next page)

2.2. Introduction to Brian part 2: Synapses 113

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
Apost = -Apre*taupre/taupost*1.05
tmax = 50*ms
N = 100

Presynaptic neurons G spike at times from 0 to tmax
Postsynaptic neurons G spike at times from tmax to 0
So difference in spike times will vary from -tmax to +tmax
G = NeuronGroup(N, 'tspike:second', threshold='t>tspike', refractory=100*ms)
H = NeuronGroup(N, 'tspike:second', threshold='t>tspike', refractory=100*ms)
G.tspike = 'i*tmax/(N-1)'
H.tspike = '(N-1-i)*tmax/(N-1)'

S = Synapses(G, H,
'''
w : 1
dapre/dt = -apre/taupre : 1 (event-driven)
dapost/dt = -apost/taupost : 1 (event-driven)
''',
on_pre='''
apre += Apre
w = w+apost
''',
on_post='''
apost += Apost
w = w+apre
''')

S.connect(j='i')

run(tmax+1*ms)

plot((H.tspike-G.tspike)/ms, S.w)
xlabel(r'Δt (ms)')
ylabel(r'Δw')
axhline(0, ls='-', c='k');

<matplotlib.lines.Line2D at 0x7fdcc8ae8890>

114 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.5.1

Can you see how this works?

2.2.6 End of tutorial

2.3 Introduction to Brian part 3: Simulations

If you haven’t yet read parts 1 and 2 on Neurons and Synapses, go read them first.
This tutorial is about managing the slightly more complicated tasks that crop up in research problems, rather than the toy
examples we’ve been looking at so far. So we cover things like inputting sensory data, modelling experimental conditions,
etc.
As before we start by importing the Brian package and setting up matplotlib for IPython:

from brian2 import *
%matplotlib inline

2.3.1 Multiple runs

Let’s start by looking at a very common task: doing multiple runs of a simulation with some parameter that changes.
Let’s start off with something very simple, how does the firing rate of a leaky integrate-and-fire neuron driven by Poisson
spiking neurons change depending on its membrane time constant? Let’s set that up.

remember, this is here for running separate simulations in the same notebook
start_scope()
Parameters
num_inputs = 100
input_rate = 10*Hz
weight = 0.1

(continues on next page)

2.3. Introduction to Brian part 3: Simulations 115

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
Range of time constants
tau_range = linspace(1, 10, 30)*ms
Use this list to store output rates
output_rates = []
Iterate over range of time constants
for tau in tau_range:

Construct the network each time
P = PoissonGroup(num_inputs, rates=input_rate)
eqs = '''
dv/dt = -v/tau : 1
'''
G = NeuronGroup(1, eqs, threshold='v>1', reset='v=0', method='exact')
S = Synapses(P, G, on_pre='v += weight')
S.connect()
M = SpikeMonitor(G)
Run it and store the output firing rate in the list
run(1*second)
output_rates.append(M.num_spikes/second)

And plot it
plot(tau_range/ms, output_rates)
xlabel(r'τ (ms)')
ylabel('Firing rate (sp/s)');

Now if you’re running the notebook, you’ll see that this was a little slow to run. The reason is that for each loop, you’re
recreating the objects from scratch. We can improve that by setting up the network just once. We store a copy of the
state of the network before the loop, and restore it at the beginning of each iteration.

start_scope()
num_inputs = 100
input_rate = 10*Hz
weight = 0.1
tau_range = linspace(1, 10, 30)*ms

(continues on next page)

116 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
output_rates = []
Construct the network just once
P = PoissonGroup(num_inputs, rates=input_rate)
eqs = '''
dv/dt = -v/tau : 1
'''
G = NeuronGroup(1, eqs, threshold='v>1', reset='v=0', method='exact')
S = Synapses(P, G, on_pre='v += weight')
S.connect()
M = SpikeMonitor(G)
Store the current state of the network
store()
for tau in tau_range:

Restore the original state of the network
restore()
Run it with the new value of tau
run(1*second)
output_rates.append(M.num_spikes/second)

plot(tau_range/ms, output_rates)
xlabel(r'τ (ms)')
ylabel('Firing rate (sp/s)');

That’s a very simple example of using store and restore, but you can use it in much more complicated situations. For
example, you might want to run a long training run, and then run multiple test runs afterwards. Simply put a store after
the long training run, and a restore before each testing run.
You can also see that the output curve is very noisy and doesn’t increase monotonically like we’d expect. The noise is
coming from the fact that we run the Poisson group afresh each time. If we only wanted to see the effect of the time
constant, we could make sure that the spikes were the same each time (although note that really, you ought to do multiple
runs and take an average). We do this by running just the Poisson group once, recording its spikes, and then creating a
new SpikeGeneratorGroup that will output those recorded spikes each time.

2.3. Introduction to Brian part 3: Simulations 117

Brian 2 Documentation, Release 2.5.1

start_scope()
num_inputs = 100
input_rate = 10*Hz
weight = 0.1
tau_range = linspace(1, 10, 30)*ms
output_rates = []
Construct the Poisson spikes just once
P = PoissonGroup(num_inputs, rates=input_rate)
MP = SpikeMonitor(P)
We use a Network object because later on we don't
want to include these objects
net = Network(P, MP)
net.run(1*second)
And keep a copy of those spikes
spikes_i = MP.i
spikes_t = MP.t
Now construct the network that we run each time
SpikeGeneratorGroup gets the spikes that we created before
SGG = SpikeGeneratorGroup(num_inputs, spikes_i, spikes_t)
eqs = '''
dv/dt = -v/tau : 1
'''
G = NeuronGroup(1, eqs, threshold='v>1', reset='v=0', method='exact')
S = Synapses(SGG, G, on_pre='v += weight')
S.connect()
M = SpikeMonitor(G)
Store the current state of the network
net = Network(SGG, G, S, M)
net.store()
for tau in tau_range:

Restore the original state of the network
net.restore()
Run it with the new value of tau
net.run(1*second)
output_rates.append(M.num_spikes/second)

plot(tau_range/ms, output_rates)
xlabel(r'τ (ms)')
ylabel('Firing rate (sp/s)');

118 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.5.1

You can see that now there is much less noise and it increases monotonically because the input spikes are the same each
time, meaning we’re seeing the effect of the time constant, not the random spikes.
Note that in the code above, we created Network objects. The reason is that in the loop, if we just called run it would
try to simulate all the objects, including the Poisson neurons P, and we only want to run that once. We use Network to
specify explicitly which objects we want to include.
The techniques we’ve looked at so far are the conceptually most simple way to do multiple runs, but not always the most
efficient. Since there’s only a single output neuron in the model above, we can simply duplicate that output neuron and
make the time constant a parameter of the group.

start_scope()
num_inputs = 100
input_rate = 10*Hz
weight = 0.1
tau_range = linspace(1, 10, 30)*ms
num_tau = len(tau_range)
P = PoissonGroup(num_inputs, rates=input_rate)
We make tau a parameter of the group
eqs = '''
dv/dt = -v/tau : 1
tau : second
'''
And we have num_tau output neurons, each with a different tau
G = NeuronGroup(num_tau, eqs, threshold='v>1', reset='v=0', method='exact')
G.tau = tau_range
S = Synapses(P, G, on_pre='v += weight')
S.connect()
M = SpikeMonitor(G)
Now we can just run once with no loop
run(1*second)
output_rates = M.count/second # firing rate is count/duration
plot(tau_range/ms, output_rates)

(continues on next page)

2.3. Introduction to Brian part 3: Simulations 119

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
xlabel(r'τ (ms)')
ylabel('Firing rate (sp/s)');

WARNING "tau" is an internal variable of group "neurongroup", but also exists in␣
↪→the run namespace with the value 10. * msecond. The internal variable will be used.␣
↪→[brian2.groups.group.Group.resolve.resolution_conflict]

You can see that this is much faster again! It’s a little bit more complicated conceptually, and it’s not always possible to
do this trick, but it can be much more efficient if it’s possible.
Let’s finish with this example by having a quick look at how the mean and standard deviation of the interspike intervals
depends on the time constant.

trains = M.spike_trains()
isi_mu = full(num_tau, nan)*second
isi_std = full(num_tau, nan)*second
for idx in range(num_tau):

train = diff(trains[idx])
if len(train)>1:

isi_mu[idx] = mean(train)
isi_std[idx] = std(train)

errorbar(tau_range/ms, isi_mu/ms, yerr=isi_std/ms)
xlabel(r'τ (ms)')
ylabel('Interspike interval (ms)');

120 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.5.1

Notice that we used the spike_trains() method of SpikeMonitor. This is a dictionary with keys being the
indices of the neurons and values being the array of spike times for that neuron.

2.3.2 Changing things during a run

Imagine an experiment where you inject current into a neuron, and change the amplitude randomly every 10 ms. Let’s
see if we can model that using a Hodgkin-Huxley type neuron.

start_scope()
Parameters
area = 20000*umetre**2
Cm = 1*ufarad*cm**-2 * area
gl = 5e-5*siemens*cm**-2 * area
El = -65*mV
EK = -90*mV
ENa = 50*mV
g_na = 100*msiemens*cm**-2 * area
g_kd = 30*msiemens*cm**-2 * area
VT = -63*mV
The model
eqs_HH = '''
dv/dt = (gl*(El-v) - g_na*(m*m*m)*h*(v-ENa) - g_kd*(n*n*n*n)*(v-EK) + I)/Cm : volt
dm/dt = 0.32*(mV**-1)*(13.*mV-v+VT)/

(exp((13.*mV-v+VT)/(4.*mV))-1.)/ms*(1-m)-0.28*(mV**-1)*(v-VT-40.*mV)/
(exp((v-VT-40.*mV)/(5.*mV))-1.)/ms*m : 1

dn/dt = 0.032*(mV**-1)*(15.*mV-v+VT)/
(exp((15.*mV-v+VT)/(5.*mV))-1.)/ms*(1.-n)-.5*exp((10.*mV-v+VT)/(40.*mV))/ms*n : 1

dh/dt = 0.128*exp((17.*mV-v+VT)/(18.*mV))/ms*(1.-h)-4./(1+exp((40.*mV-v+VT)/(5.*mV)))/
↪→ms*h : 1
I : amp
'''
group = NeuronGroup(1, eqs_HH,

(continues on next page)

2.3. Introduction to Brian part 3: Simulations 121

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
threshold='v > -40*mV',
refractory='v > -40*mV',
method='exponential_euler')

group.v = El
statemon = StateMonitor(group, 'v', record=True)
spikemon = SpikeMonitor(group, variables='v')
figure(figsize=(9, 4))
for l in range(5):

group.I = rand()*50*nA
run(10*ms)
axvline(l*10, ls='--', c='k')

axhline(El/mV, ls='-', c='lightgray', lw=3)
plot(statemon.t/ms, statemon.v[0]/mV, '-b')
plot(spikemon.t/ms, spikemon.v/mV, 'ob')
xlabel('Time (ms)')
ylabel('v (mV)');

In the code above, we used a loop over multiple runs to achieve this. That’s fine, but it’s not the most efficient way to do
it because each time we call run we have to do a lot of initialisation work that slows everything down. It also won’t work
as well with the more efficient standalone mode of Brian. Here’s another way.

start_scope()
group = NeuronGroup(1, eqs_HH,

threshold='v > -40*mV',
refractory='v > -40*mV',
method='exponential_euler')

group.v = El
statemon = StateMonitor(group, 'v', record=True)
spikemon = SpikeMonitor(group, variables='v')
we replace the loop with a run_regularly
group.run_regularly('I = rand()*50*nA', dt=10*ms)
run(50*ms)
figure(figsize=(9, 4))
we keep the loop just to draw the vertical lines
for l in range(5):

axvline(l*10, ls='--', c='k')
(continues on next page)

122 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
axhline(El/mV, ls='-', c='lightgray', lw=3)
plot(statemon.t/ms, statemon.v[0]/mV, '-b')
plot(spikemon.t/ms, spikemon.v/mV, 'ob')
xlabel('Time (ms)')
ylabel('v (mV)');

We’ve replaced the loop that had multiple run calls with a run_regularly. This makes the specified block of code
run every dt=10*ms. The run_regularly lets you run code specific to a single NeuronGroup, but sometimes
you might need more flexibility. For this, you can use network_operation which lets you run arbitrary Python code
(but won’t work with the standalone mode).

start_scope()
group = NeuronGroup(1, eqs_HH,

threshold='v > -40*mV',
refractory='v > -40*mV',
method='exponential_euler')

group.v = El
statemon = StateMonitor(group, 'v', record=True)
spikemon = SpikeMonitor(group, variables='v')
we replace the loop with a network_operation
@network_operation(dt=10*ms)
def change_I():

group.I = rand()*50*nA
run(50*ms)
figure(figsize=(9, 4))
for l in range(5):

axvline(l*10, ls='--', c='k')
axhline(El/mV, ls='-', c='lightgray', lw=3)
plot(statemon.t/ms, statemon.v[0]/mV, '-b')
plot(spikemon.t/ms, spikemon.v/mV, 'ob')
xlabel('Time (ms)')
ylabel('v (mV)');

2.3. Introduction to Brian part 3: Simulations 123

Brian 2 Documentation, Release 2.5.1

Now let’s extend this example to run on multiple neurons, each with a different capacitance to see how that affects the
behaviour of the cell.

start_scope()
N = 3
eqs_HH_2 = '''
dv/dt = (gl*(El-v) - g_na*(m*m*m)*h*(v-ENa) - g_kd*(n*n*n*n)*(v-EK) + I)/C : volt
dm/dt = 0.32*(mV**-1)*(13.*mV-v+VT)/

(exp((13.*mV-v+VT)/(4.*mV))-1.)/ms*(1-m)-0.28*(mV**-1)*(v-VT-40.*mV)/
(exp((v-VT-40.*mV)/(5.*mV))-1.)/ms*m : 1

dn/dt = 0.032*(mV**-1)*(15.*mV-v+VT)/
(exp((15.*mV-v+VT)/(5.*mV))-1.)/ms*(1.-n)-.5*exp((10.*mV-v+VT)/(40.*mV))/ms*n : 1

dh/dt = 0.128*exp((17.*mV-v+VT)/(18.*mV))/ms*(1.-h)-4./(1+exp((40.*mV-v+VT)/(5.*mV)))/
↪→ms*h : 1
I : amp
C : farad
'''
group = NeuronGroup(N, eqs_HH_2,

threshold='v > -40*mV',
refractory='v > -40*mV',
method='exponential_euler')

group.v = El
initialise with some different capacitances
group.C = array([0.8, 1, 1.2])*ufarad*cm**-2*area
statemon = StateMonitor(group, variables=True, record=True)
we go back to run_regularly
group.run_regularly('I = rand()*50*nA', dt=10*ms)
run(50*ms)
figure(figsize=(9, 4))
for l in range(5):

axvline(l*10, ls='--', c='k')
axhline(El/mV, ls='-', c='lightgray', lw=3)
plot(statemon.t/ms, statemon.v.T/mV, '-')
xlabel('Time (ms)')
ylabel('v (mV)');

124 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.5.1

So that runs, but something looks wrong! The injected currents look like they’re different for all the different neurons!
Let’s check:

plot(statemon.t/ms, statemon.I.T/nA, '-')
xlabel('Time (ms)')
ylabel('I (nA)');

Sure enough, it’s different each time. But why? We wrote group.run_regularly('I = rand()*50*nA',
dt=10*ms)which seems like it should give the same value of I for each neuron. But, like threshold and reset statements,
run_regularly code is interpreted as being run separately for each neuron, and because I is a parameter, it can be
different for each neuron. We can fix this by making I into a shared variable, meaning it has the same value for each
neuron.

2.3. Introduction to Brian part 3: Simulations 125

Brian 2 Documentation, Release 2.5.1

start_scope()
N = 3
eqs_HH_3 = '''
dv/dt = (gl*(El-v) - g_na*(m*m*m)*h*(v-ENa) - g_kd*(n*n*n*n)*(v-EK) + I)/C : volt
dm/dt = 0.32*(mV**-1)*(13.*mV-v+VT)/

(exp((13.*mV-v+VT)/(4.*mV))-1.)/ms*(1-m)-0.28*(mV**-1)*(v-VT-40.*mV)/
(exp((v-VT-40.*mV)/(5.*mV))-1.)/ms*m : 1

dn/dt = 0.032*(mV**-1)*(15.*mV-v+VT)/
(exp((15.*mV-v+VT)/(5.*mV))-1.)/ms*(1.-n)-.5*exp((10.*mV-v+VT)/(40.*mV))/ms*n : 1

dh/dt = 0.128*exp((17.*mV-v+VT)/(18.*mV))/ms*(1.-h)-4./(1+exp((40.*mV-v+VT)/(5.*mV)))/
↪→ms*h : 1
I : amp (shared) # everything is the same except we've added this shared
C : farad
'''
group = NeuronGroup(N, eqs_HH_3,

threshold='v > -40*mV',
refractory='v > -40*mV',
method='exponential_euler')

group.v = El
group.C = array([0.8, 1, 1.2])*ufarad*cm**-2*area
statemon = StateMonitor(group, 'v', record=True)
group.run_regularly('I = rand()*50*nA', dt=10*ms)
run(50*ms)
figure(figsize=(9, 4))
for l in range(5):

axvline(l*10, ls='--', c='k')
axhline(El/mV, ls='-', c='lightgray', lw=3)
plot(statemon.t/ms, statemon.v.T/mV, '-')
xlabel('Time (ms)')
ylabel('v (mV)');

Ahh, that’s more like it!

126 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.5.1

2.3.3 Adding input

Now let’s think about a neuron being driven by a sinusoidal input. Let’s go back to a leaky integrate-and-fire to simplify
the equations a bit.

start_scope()
A = 2.5
f = 10*Hz
tau = 5*ms
eqs = '''
dv/dt = (I-v)/tau : 1
I = A*sin(2*pi*f*t) : 1
'''
G = NeuronGroup(1, eqs, threshold='v>1', reset='v=0', method='euler')
M = StateMonitor(G, variables=True, record=True)
run(200*ms)
plot(M.t/ms, M.v[0], label='v')
plot(M.t/ms, M.I[0], label='I')
xlabel('Time (ms)')
ylabel('v')
legend(loc='best');

So far, so good and the sort of thing we saw in the first tutorial. Now, what if that input current were something we had
recorded and saved in a file? In that case, we can use TimedArray. Let’s start by reproducing the picture above but
using TimedArray.

start_scope()
A = 2.5
f = 10*Hz
tau = 5*ms
Create a TimedArray and set the equations to use it
t_recorded = arange(int(200*ms/defaultclock.dt))*defaultclock.dt
I_recorded = TimedArray(A*sin(2*pi*f*t_recorded), dt=defaultclock.dt)

(continues on next page)

2.3. Introduction to Brian part 3: Simulations 127

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
eqs = '''
dv/dt = (I-v)/tau : 1
I = I_recorded(t) : 1
'''
G = NeuronGroup(1, eqs, threshold='v>1', reset='v=0', method='exact')
M = StateMonitor(G, variables=True, record=True)
run(200*ms)
plot(M.t/ms, M.v[0], label='v')
plot(M.t/ms, M.I[0], label='I')
xlabel('Time (ms)')
ylabel('v')
legend(loc='best');

Note that for the example where we put the sin function directly in the equations, we had to use the method='euler'
argument because the exact integrator wouldn’t work here (try it!). However, TimedArray is considered to be constant
over its time step and so the linear integrator can be used. This means you won’t get the same behaviour from these two
methods for two reasons. Firstly, the numerical integration methods exact and euler give slightly different results.
Secondly, sin is not constant over a timestep whereas TimedArray is.
Now just to show that TimedArray works for arbitrary currents, let’s make a weird “recorded” current and run it on
that.

start_scope()
A = 2.5
f = 10*Hz
tau = 5*ms
Let's create an array that couldn't be
reproduced with a formula
num_samples = int(200*ms/defaultclock.dt)
I_arr = zeros(num_samples)
for _ in range(100):

a = randint(num_samples)

(continues on next page)

128 Chapter 2. Tutorials

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
I_arr[a:a+100] = rand()

I_recorded = TimedArray(A*I_arr, dt=defaultclock.dt)
eqs = '''
dv/dt = (I-v)/tau : 1
I = I_recorded(t) : 1
'''
G = NeuronGroup(1, eqs, threshold='v>1', reset='v=0', method='exact')
M = StateMonitor(G, variables=True, record=True)
run(200*ms)
plot(M.t/ms, M.v[0], label='v')
plot(M.t/ms, M.I[0], label='I')
xlabel('Time (ms)')
ylabel('v')
legend(loc='best');

Finally, let’s finish on an example that actually reads in some data from a file. See if you can work out how this example
works.

start_scope()
from matplotlib.image import imread
img = (1-imread('brian.png'))[::-1, :, 0].T
num_samples, N = img.shape
ta = TimedArray(img, dt=1*ms) # 228
A = 1.5
tau = 2*ms
eqs = '''
dv/dt = (A*ta(t, i)-v)/tau+0.8*xi*tau**-0.5 : 1
'''
G = NeuronGroup(N, eqs, threshold='v>1', reset='v=0', method='euler')
M = SpikeMonitor(G)
run(num_samples*ms)
plot(M.t/ms, M.i, '.k', ms=3)

(continues on next page)

2.3. Introduction to Brian part 3: Simulations 129

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
xlim(0, num_samples)
ylim(0, N)
xlabel('Time (ms)')
ylabel('Neuron index');

130 Chapter 2. Tutorials

CHAPTER

THREE

USER’S GUIDE

3.1 Importing Brian

After installation, Brian is available in the brian2 package. By doing a wildcard import from this package, i.e.:

from brian2 import *

you will not only get access to the brian2 classes and functions, but also to everything in the pylab package, which
includes the plotting functions from matplotlib and everything included in numpy/scipy (e.g. functions such as arange,
linspace, etc.). Apart from this when you use the wildcard import, the builtin input function is overshadowed by the
inputmodule in the brian2 package. If you wish to use the builtin input function in your program after importing
the brian2 package then you can explicitly import the input function again as shown below:

from brian2 import *
from builtins import input

The following topics are not essential for beginners.

3.1.1 Precise control over importing

If you want to use a wildcard import from Brian, but don’t want to import all the additional symbols provided by pylab
or don’t want to overshadow the builtin input function, you can use:

from brian2.only import *

Note that whenever you use something different from the most general from brian2 import * statement, you
should be aware that Brian overwrites some numpy functions with their unit-aware equivalents (seeUnits). If you combine
multiple wildcard imports, the Brian import should therefore be the last import. Similarly, you should not import and
call overwritten numpy functions directly, e.g. by using import numpy as np followed by np.sin since this will
not use the unit-aware versions. To make this easier, Brian provides a brian2.numpy_ package that provides access
to everything in numpy but overwrites certain functions. If you prefer to use prefixed names, the recommended way of
doing the imports is therefore:

import brian2.numpy_ as np
import brian2.only as br2

131

http://matplotlib.org/
https://docs.python.org/3/library/functions.html#input
https://docs.python.org/3/library/functions.html#input
https://docs.python.org/3/library/functions.html#input
https://docs.python.org/3/library/functions.html#input
https://docs.python.org/3/library/functions.html#input

Brian 2 Documentation, Release 2.5.1

Note that it is safe to use e.g. np.sin and numpy.sin after a from brian2 import *.

3.1.2 Dependency checks

Brian will check the dependency versions during import and raise an error for an outdated dependency. An outdated
dependency does not necessarily mean that Brian cannot be run with it, it only means that Brian is untested on that
version. If you want to force Brian to run despite the outdated dependency, set the core.outdated_dependency_error
preference to False. Note that this cannot be done in a script, since you do not have access to the preferences before
importing brian2. See Preferences for instructions how to set preferences in a file.

3.2 Physical units

• Using units

• Removing units

• Temperatures

• Constants

• Importing units

• In-place operations on quantities

Brian includes a system for physical units. The base units are defined by their standard SI unit names: amp/ampere,
kilogram/kilogramme, second, metre/meter, mole/mol, kelvin, and candela. In addition to these
base units, Brian defines a set of derived units: coulomb, farad, gram/gramme, hertz, joule, liter/
litre, molar, pascal, ohm, siemens, volt, watt, together with prefixed versions (e.g. msiemens = 0.
001*siemens) using the prefixes p, n, u, m, k, M, G, T (two exceptions to this rule: kilogram is
not defined with any additional prefixes, and metre and meter are additionaly defined with the “centi” prefix, i.e.
cmetre/cmeter). For convenience, a couple of additional useful standard abbreviations such as cm (instead of cme-
tre/cmeter), nS (instead of nsiemens), ms (instead of msecond), Hz (instead of hertz), mM (instead of mmo-
lar) are included. To avoid clashes with common variable names, no one-letter abbreviations are provided (e.g. you can
use mV or nS, but not V or S).

3.2.1 Using units

You can generate a physical quantity by multiplying a scalar or vector value with its physical unit:

>>> tau = 20*ms
>>> print(tau)
20. ms
>>> rates = [10, 20, 30]*Hz
>>> print(rates)
[10. 20. 30.] Hz

Brian will check the consistency of operations on units and raise an error for dimensionality mismatches:

>>> tau += 1 # ms? second?
Traceback (most recent call last):
...
DimensionMismatchError: Cannot calculate ... += 1, units do not match (units are␣
↪→second and 1). (continues on next page)

132 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
>>> 3*kgram + 3*amp
Traceback (most recent call last):
...
DimensionMismatchError: Cannot calculate 3. kg + 3. A, units do not match (units are␣
↪→kilogram and amp).

Most Brian functions will also complain about non-specified or incorrect units:

>>> G = NeuronGroup(10, 'dv/dt = -v/tau: volt', dt=0.5)
Traceback (most recent call last):
...
DimensionMismatchError: Function "__init__" expected a quantitity with unit second␣
↪→for argument "dt" but got 0.5 (unit is 1).

Numpy functions have been overwritten to correctly work with units (see the developer documentation for more details):

>>> print(mean(rates))
20. Hz
>>> print(rates.repeat(2))
[10. 10. 20. 20. 30. 30.] Hz

3.2.2 Removing units

There are various options to remove the units from a value (e.g. to use it with analysis functions that do not correctly work
with units)

• Divide the value by its unit (most of the time the recommended option because it is clear about the scale)
• Transform it to a pure numpy array in the base unit by calling asarray() (no copy) or array (copy)
• Directly get the unitless value of a state variable by appending an underscore to the name

>>> tau/ms
20.0
>>> asarray(rates)
array([10., 20., 30.])
>>> G = NeuronGroup(5, 'dv/dt = -v/tau: volt')
>>> print(G.v_[:])
[0. 0. 0. 0. 0.]

3.2.3 Temperatures

Brian only supports temperatures defined in °K, using the provided kelvin unit object. Other conventions such as °C,
or °F are not compatible with Brian’s unit system, because they cannot be expressed as a multiplicative scaling of the
SI base unit kelvin (their zero point is different). However, in biological experiments and modeling, temperatures are
typically reported in °C. How to use such temperatures depends on whether they are used as temperature differences or as
absolute temperatures:
temperature differences Their major use case is the correction of time constants for differences in temperatures based

on the Q10 temperature coefficient. In this case, all temperatures can directly use kelvin even though the tem-
peratures are reported in Celsius, since temperature differences in Celsius and Kelvin are identical.

absolute temperatures Equations such as the Goldman–Hodgkin–Katz voltage equation have a factor that depends on
the absolute temperature measured in Kelvin. To get this temperature from a temperature reported in °C, you can
use the zero_celsius constant from the brian2.units.constants package (see below):

3.2. Physical units 133

https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array
https://en.wikipedia.org/wiki/Q10_(temperature_coefficient)
https://en.wikipedia.org/wiki/Goldman_equation

Brian 2 Documentation, Release 2.5.1

from brian2.units.constants import zero_celsius

celsius_temp = 27
abs_temp = celsius_temp*kelvin + zero_celsius

Note: Earlier versions of Brian had a celsius unit which was in fact identical to kelvin. While this gave the correct
results for temperature differences, it did not correctly work for absolute temperatures. To avoid confusion and possible
misinterpretation, the celsius unit has therefore been removed.

3.2.4 Constants

The brian2.units.constants package provides a range of physical constants that can be useful for detailed
biological models. Brian provides the following constants:

Constant Symbol(s) Brian name Value
Avogadro constant NA, L avogadro_constant 6.022140857× 1023mol−1

Boltzmann constant k boltzmann_constant 1.38064852× 10−23 J K−1

Electric constant ϵ0 electric_constant 8.854187817× 10−12 Fm−1

Electron mass me electron_mass 9.10938356× 10−31 kg
Elementary charge e elementary_charge 1.6021766208× 10−19 C
Faraday constant F faraday_constant 96485.33289Cmol−1

Gas constant R gas_constant 8.3144598 Jmol−1 K−1

Magnetic constant µ0 magnetic_constant 12.566370614× 10−7NA−2

Molar mass constant Mu molar_mass_constant 1× 10−3 kgmol−1

0°C zero_celsius 273.15K

Note that these constants are not imported by default, you will have to explicitly import them from brian2.units.
constants. During the import, you can also give them shorter names using Python’s from ... import ... as
... syntax. For example, to calculate the RT

F factor that appears in the Goldman–Hodgkin–Katz voltage equation you
can use:

from brian2 import *
from brian2.units.constants import zero_celsius, gas_constant as R, faraday_constant␣
↪→as F

celsius_temp = 27
T = celsius_temp*kelvin + zero_celsius
factor = R*T/F

The following topics are not essential for beginners.

134 Chapter 3. User’s guide

https://en.wikipedia.org/wiki/Goldman_equation

Brian 2 Documentation, Release 2.5.1

3.2.5 Importing units

Brian generates standard names for units, combining the unit name (e.g. “siemens”) with a prefixes (e.g. “m”), and
also generates squared and cubed versions by appending a number. For example, the units “msiemens”, “siemens2”,
“usiemens3” are all predefined. You can import these units from the package brian2.units.allunits – accord-
ingly, an from brian2.units.allunits import * will result in everything from Ylumen3 (cubed yotta
lumen) to ymol (yocto mole) being imported.
A better choice is normally to do from brian2.units import * or import everything from brian2 import
* which only imports the units mentioned in the introductory paragraph (base units, derived units, and some standard
abbreviations).

3.2.6 In-place operations on quantities

In-place operations on quantity arrays change the underlying array, in the same way as for standard numpy arrays. This
means, that any other variables referencing the same object will be affected as well:

>>> q = [1, 2] * mV
>>> r = q
>>> q += 1*mV
>>> q
array([2., 3.]) * mvolt
>>> r
array([2., 3.]) * mvolt

In contrast, scalar quantities will never change the underlying value but instead return a new value (in the same way as
standard Python scalars):

>>> x = 1*mV
>>> y = x
>>> x *= 2
>>> x
2. * mvolt
>>> y
1. * mvolt

3.3 Models and neuron groups

For Brian 1 users

See the document Neural models (Brian 1 –> 2 conversion) for details how to convert Brian 1 code.

• Model equations

• Noise

• Threshold and reset

• Refractoriness

• State variables

3.3. Models and neuron groups 135

Brian 2 Documentation, Release 2.5.1

• Subgroups

• Shared variables

• Storing state variables

• Linked variables

• Time scaling of noise

3.3.1 Model equations

The core of every simulation is a NeuronGroup, a group of neurons that share the same equations defining their
properties. The minimum NeuronGroup specification contains the number of neurons and the model description in
the form of equations:

G = NeuronGroup(10, 'dv/dt = -v/(10*ms) : volt')

This defines a group of 10 leaky integrators. The model description can be directly given as a (possibly multi-line) string
as above, or as an Equations object. For more details on the form of equations, see Equations. Brian needs the model
to be given in the form of differential equations, but you might see the integrated form of synapses in some textbooks and
papers. See Converting from integrated form to ODEs for details on how to convert between these representations.
Note that model descriptions can make reference to physical units, but also to scalar variables declared outside of the
model description itself:

tau = 10*ms
G = NeuronGroup(10, 'dv/dt = -v/tau : volt')

If a variable should be taken as a parameter of the neurons, i.e. if it should be possible to vary its value across neurons, it
has to be declared as part of the model description:

G = NeuronGroup(10, '''dv/dt = -v/tau : volt
tau : second''')

To make complex model descriptions more readable, named subexpressions can be used:

G = NeuronGroup(10, '''dv/dt = I_leak / Cm : volt
I_leak = g_L*(E_L - v) : amp''')

For a list of some standard model equations, see Neural models (Brian 1 –> 2 conversion).

3.3.2 Noise

In addition to ordinary differential equations, Brian allows you to introduce random noise by specifying a stochastic
differential equation. Brian uses the physicists’ notation used in the Langevin equation, representing the “noise” as a term
ξ(t), rather than the mathematicians’ stochastic differential dWt. The following is an example of the Ornstein-Uhlenbeck
process that is often used to model a leaky integrate-and-fire neuron with a stochastic current:

G = NeuronGroup(10, 'dv/dt = -v/tau + sigma*sqrt(2/tau)*xi : volt')

You can start by thinking of xi as just a Gaussian random variable with mean 0 and standard deviation 1. However, it
scales in an unusual way with time and this gives it units of1/sqrt(second). You don’t necessarily need to understand
why this is, but it is possible to get a reasonably simple intuition for it by thinking about numerical integration: see below.

136 Chapter 3. User’s guide

https://en.wikipedia.org/wiki/Stochastic_differential_equation
https://en.wikipedia.org/wiki/Stochastic_differential_equation
https://en.wikipedia.org/wiki/Langevin_equation
http://www.scholarpedia.org/article/Stochastic_dynamical_systems#Ornstein-Uhlenbeck_process
http://www.scholarpedia.org/article/Stochastic_dynamical_systems#Ornstein-Uhlenbeck_process

Brian 2 Documentation, Release 2.5.1

Note: If you want to use noise in more than one equation of a NeuronGroup or Synapses, you will have to use
suffixed names (see Equation strings for details).

3.3.3 Threshold and reset

To emit spikes, neurons need a threshold. Threshold and reset are given as strings in the NeuronGroup constructor:

tau = 10*ms
G = NeuronGroup(10, 'dv/dt = -v/tau : volt', threshold='v > -50*mV',

reset='v = -70*mV')

Whenever the threshold condition is fulfilled, the reset statements will be executed. Again, both threshold and reset can
refer to physical units, external variables and parameters, in the same way as model descriptions:

v_r = -70*mV # reset potential
G = NeuronGroup(10, '''dv/dt = -v/tau : volt

v_th : volt # neuron-specific threshold''',
threshold='v > v_th', reset='v = v_r')

You can also create non-spike events. See Custom events for more details.

3.3.4 Refractoriness

To make a neuron non-excitable for a certain time period after a spike, the refractory keyword can be used:

G = NeuronGroup(10, 'dv/dt = -v/tau : volt', threshold='v > -50*mV',
reset='v = -70*mV', refractory=5*ms)

This will not allow any threshold crossing for a neuron for 5ms after a spike. The refractory keyword allows for more
flexible refractoriness specifications, see Refractoriness for details.

3.3.5 State variables

Differential equations and parameters in model descriptions are stored as state variables of the NeuronGroup. In
addition to these variables, Brian also defines two variables automatically:
i The index of a neuron.
N The total number of neurons.
All state variables can be accessed and set as an attribute of the group. To get the values without physical units (e.g. for
analysing data with external tools), use an underscore after the name:

>>> G = NeuronGroup(10, '''dv/dt = -v/tau : volt
... tau : second''', name='neurons')
>>> G.v = -70*mV
>>> G.v
<neurons.v: array([-70., -70., -70., -70., -70., -70., -70., -70., -70., -70.]) *␣
↪→mvolt>
>>> G.v_ # values without units
<neurons.v_: array([-0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.07, -0.
↪→07])>

3.3. Models and neuron groups 137

Brian 2 Documentation, Release 2.5.1

The value of state variables can also be set using string expressions that can refer to units and external variables, other
state variables or mathematical functions:

>>> G.tau = '5*ms + (1.0*i/N)*5*ms'
>>> G.tau
<neurons.tau: array([5. , 5.5, 6. , 6.5, 7. , 7.5, 8. , 8.5, 9. , 9.5]) *␣
↪→msecond>

You can also set the value only if a condition holds, for example:

>>> G.v['tau>7.25*ms'] = -60*mV
>>> G.v
<neurons.v: array([-70., -70., -70., -70., -70., -60., -60., -60., -60., -60.]) *␣
↪→mvolt>

3.3.6 Subgroups

It is often useful to refer to a subset of neurons, this can be achieved using Python’s slicing syntax:

G = NeuronGroup(10, '''dv/dt = -v/tau : volt
tau : second''',

threshold='v > -50*mV',
reset='v = -70*mV')

Create subgroups
G1 = G[:5]
G2 = G[5:]

This will set the values in the main group, subgroups are just "views"
G1.tau = 10*ms
G2.tau = 20*ms

Here G1 refers to the first 5 neurons in G, and G2 to the second 5 neurons. In general G[i:j] refers to the neurons with
indices from i to j-1, as in general in Python.
For convenience, you can also use a single index, i.e. G[i] is equivalent to G[i:i+1]. In some situations, it can be
easier to provide a list of indices instead of a slice, Brian therefore also allows for this syntax. Note that this is restricted
to cases that are strictly equivalent with slicing syntax, e.g. you can write G[[3, 4, 5]] instead of G[3:6], but you
cannot write G[[3, 5, 7]] or G[[5, 4, 3]].
Subgroups can be used in most places where regular groups are used, e.g. their state variables or spiking activity can be
recorded using monitors, they can be connected via Synapses, etc. In such situations, indices (e.g. the indices of the
neurons to record from in a StateMonitor) are relative to the subgroup, not to the main group

The following topics are not essential for beginners.

138 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.5.1

3.3.7 Shared variables

Sometimes it can also be useful to introduce shared variables or subexpressions, i.e. variables that have a common value
for all neurons. In contrast to external variables (such as Cm above), such variables can change during a run, e.g. by using
run_regularly(). This can be for example used for an external stimulus that changes in the course of a run:

>>> G = NeuronGroup(10, '''shared_input : volt (shared)
... dv/dt = (-v + shared_input)/tau : volt
... tau : second''', name='neurons')

Note that there are several restrictions around the use of shared variables: they cannot be written to in contexts where
statements apply only to a subset of neurons (e.g. reset statements, see below). If a code block mixes statements writing
to shared and vector variables, then the shared statements have to come first.
By default, subexpressions are re-evaluated whenever they are used, i.e. using a subexpression is completely equivalent to
substituting it. Sometimes it is useful to instead only evaluate a subexpression once and then use this value for the rest of the
time step. This can be achieved by using the(constant over dt) flag. This flag is mandatory for subexpressions that
refer to stateful functions like rand() which notably allows them to be recorded with a StateMonitor – otherwise
the monitor would record a different instance of the random number than the one that was used in the equations.
For shared variables, setting by string expressions can only refer to shared values:

>>> G.shared_input = '(4.0/N)*mV'
>>> G.shared_input
<neurons.shared_input: 0.4 * mvolt>

3.3.8 Storing state variables

Sometimes it can be convenient to access multiple state variables at once, e.g. to set initial values from a dictionary of
values or to store all the values of a group on disk. This can be done with the get_states() and set_states()
methods:

>>> group = NeuronGroup(5, '''dv/dt = -v/tau : 1
... tau : second''', name='neurons')
>>> initial_values = {'v': [0, 1, 2, 3, 4],
... 'tau': [10, 20, 10, 20, 10]*ms}
>>> group.set_states(initial_values)
>>> group.v[:]
array([0., 1., 2., 3., 4.])
>>> group.tau[:]
array([10., 20., 10., 20., 10.]) * msecond
>>> states = group.get_states()
>>> states['v']
array([0., 1., 2., 3., 4.])

The data (without physical units) can also be exported/imported to/from Pandas data frames (needs an installation of
pandas):

>>> df = group.get_states(units=False, format='pandas')
>>> df

N dt i t tau v
0 5 0.0001 0 0.0 0.01 0.0
1 5 0.0001 1 0.0 0.02 1.0
2 5 0.0001 2 0.0 0.01 2.0
3 5 0.0001 3 0.0 0.02 3.0
4 5 0.0001 4 0.0 0.01 4.0

(continues on next page)

3.3. Models and neuron groups 139

http://pandas.pydata.org/

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
>>> df['tau']
0 0.01
1 0.02
2 0.01
3 0.02
4 0.01
Name: tau, dtype: float64
>>> df['tau'] *= 2
>>> group.set_states(df[['tau']], units=False, format='pandas')
>>> group.tau
<neurons.tau: array([20., 40., 20., 40., 20.]) * msecond>

3.3.9 Linked variables

A NeuronGroup can define parameters that are not stored in this group, but are instead a reference to a state variable in
another group. For this, a group defines a parameter as linked and then uses linked_var() to specify the linking.
This can for example be useful to model shared noise between cells:

inp = NeuronGroup(1, 'dnoise/dt = -noise/tau + tau**-0.5*xi : 1')

neurons = NeuronGroup(100, '''noise : 1 (linked)
dv/dt = (-v + noise_strength*noise)/tau : volt''')

neurons.noise = linked_var(inp, 'noise')

If the two groups have the same size, the linking will be done in a 1-to-1 fashion. If the source group has the size one
(as in the above example) or if the source parameter is a shared variable, then the linking will be done as 1-to-all. In all
other cases, you have to specify the indices to use for the linking explicitly:

two inputs with different phases
inp = NeuronGroup(2, '''phase : 1

dx/dt = 1*mV/ms*sin(2*pi*100*Hz*t-phase) : volt''')
inp.phase = [0, pi/2]

neurons = NeuronGroup(100, '''inp : volt (linked)
dv/dt = (-v + inp) / tau : volt''')

Half of the cells get the first input, other half gets the second
neurons.inp = linked_var(inp, 'x', index=repeat([0, 1], 50))

3.3.10 Time scaling of noise

Suppose we just had the differential equation
dx/dt = ξ

To solve this numerically, we could compute
x(t+ dt) = x(t) + ξ1

where ξ1 is a normally distributed random number with mean 0 and standard deviation 1. However, what happens if we
change the time step? Suppose we used a value of dt/2 instead of dt. Now, we compute
x(t+ dt) = x(t+ dt/2) + ξ1 = x(t) + ξ2 + ξ1

The mean value of x(t + dt) is 0 in both cases, but the standard deviations are different. The first method x(t + dt) =
x(t)+ξ1 gives x(t+dt) a standard deviation of 1, whereas the secondmethod x(t+dt) = x(t+d/2)+ξ1 = x(t)+ξ2+ξ1

140 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.5.1

gives x(t) a variance of 1+1=2 and therefore a standard deviation of
√
2.

In order to solve this problem, we use the rule x(t+ dt) = x(t) +
√
dtξ1, which makes the mean and standard deviation

of the value at time t independent of dt. For this to make sense dimensionally, ξ must have units of 1/sqrt(second).
For further details, refer to a textbook on stochastic differential equations.

3.4 Numerical integration

By default, Brian chooses an integration method automatically, trying to solve the equations exactly first (for linear equa-
tions) and then resorting to numerical algorithms. It will also take care of integrating stochastic differential equations
appropriately.
Note that in some cases, the automatic choice of integration method will not be appropriate, because of a choice of
parameters that couldn’t be determined in advance. In this case, typically you will get nan (not a number) values in the
results, or large oscillations. In this case, Brian will generate a warning to let you know, but will not raise an error.

3.4.1 Method choice

You will get an INFO message telling you which integration method Brian decided to use, together with information
about how much time it took to apply the integration method to your equations. If other methods have been tried but
were not applicable, you will also see the time it took to try out those other methods. In some cases, checking other
methods (in particular the 'exact' method which attempts to solve the equations analytically) can take a considerable
amount of time – to avoid wasting this time, you can always chose the integration method manually (see below). You can
also suppress the message by raising the log level or by explicitly suppressing 'method_choice' log messages – for
details, see Logging.
If you prefer to chose an integration algorithm yourself, you can do so using the method keyword for NeuronGroup,
Synapses, or SpatialNeuron. The complete list of available methods is the following:

• 'exact': exact integration for linear equations (alternative name: 'linear')
• 'exponential_euler': exponential Euler integration for conditionally linear equations
• 'euler': forward Euler integration (for additive stochastic differential equations using the Euler-Maruyama
method)

• 'rk2': second order Runge-Kutta method (midpoint method)
• 'rk4': classical Runge-Kutta method (RK4)
• 'heun': stochastic Heun method for solving Stratonovich stochastic differential equations with non-diagonal
multiplicative noise.

• 'milstein': derivative-free Milstein method for solving stochastic differential equations with diagonal multi-
plicative noise

Note: The 'independent' integration method (exact integration for a system of independent equations, where all
the equations can be analytically solved independently) should no longer be used and might be removed in future versions
of Brian.

Note: The following methods are still considered experimental

3.4. Numerical integration 141

Brian 2 Documentation, Release 2.5.1

• 'gsl': default integrator when choosing to integrate equations with the GNU Scientific Library ODE solver: the
rkf45 method. Uses an adaptable time step by default.

• 'gsl_rkf45': Runge-Kutta-Fehlberg method. A good general-purpose integrator according to the GSL docu-
mentation. Uses an adaptable time step by default.

• 'gsl_rk2': Second order Runge-Kutta method using GSL. Uses an adaptable time step by default.
• 'gsl_rk4': Fourth order Runge-Kutta method using GSL. Uses an adaptable time step by default.
• 'gsl_rkck': Runge-Kutta Cash-Karp method using GSL. Uses an adaptable time step by default.
• 'gsl_rk8pd': Runge-Kutta Prince-Dormand method using GSL. Uses an adaptable time step by default.

The following topics are not essential for beginners.

3.4.2 Technical notes

Each class defines its own list of algorithms it tries to apply, NeuronGroup and Synapses will use the first suitable
method out of the methods 'exact', 'euler' and 'heun' while SpatialNeuron objects will use 'exact',
'exponential_euler', 'rk2' or 'heun'.
You can also define your own numerical integrators, see State update for details.

3.4.3 GSL stateupdaters

The stateupdaters preceded with the gsl tag use ODE solvers defined in the GNU Scientific Library. The benefit of
using these integrators over the ones written by Brian internally, is that they are implemented with an adaptable timestep.
Integrating with an adaptable timestep comes with two advantages:

• These methods check whether the estimated error of the solutions returned fall within a certain error bound. For
the non-gsl integrators there is currently no such check.

• Systems no longer need to be simulated with just one time step. That is, a bigger timestep can be chosen and
the integrator will reduce the timestep when increased accuracy is required. This is particularly useful for sys-
tems where both slow and fast time constants coexist, as is the case with for example (networks of neurons with)
Hodgkin-Huxley equations. Note that Brian’s timestep still determines the resolution for monitors, spike timing,
spike propagation etc. Hence, in a network, the simulation error will therefore still be on the order of dt. The
benefit is that short time constants occurring in equations no longer dictate the network time step.

In addition to a choice between different integration methods, there are a few more options that can be specified when
using GSL. These options can be specified by sending a dictionary as the method_options key upon initialization of
the object using the integrator (NeuronGroup, Synapses or SpatialNeuron). The available method options are:

• 'adaptable_timestep': whether or not to let GSL reduce the timestep to achieve the accuracy defined with
the 'absolute_error' and 'absolute_error_per_variable' options described below. If this is
set to False, the timestep is determined by Brian (i.e. the dt of the respective clock is used, see Scheduling).
If the resulted estimated error exceeds the set error bounds, the simulation is aborted. When using cython this is
reported with an IntegrationError. Defaults to True.

142 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.5.1

• 'absolute_error': each of the methods has a way of estimating the error that is the result of using numerical
integration. You can specify the maximum size of this error to be allowed for any of the to-be-integrated variables
in base units with this keyword. Note that giving very small values makes the simulation slow and might result in
unsuccessful integration. In the case of using the 'absolute_error_per_variable' option, this is the
error for variables that were not specified individually. Defaults to 1e-6.

• 'absolute_error_per_variable': specify the absolute error per variable in its own units. Variables for
which the error is not specified use the error set with the 'absolute_error' option. Defaults to None.

• 'max_steps': The maximal number of steps that the integrator will take within a single “Brian timestep” in
order to reach the given error criterion. Can be set to 0 to not set any limits. Note that without limits, it can take
a very long time until the integrator figures out that it cannot reach the desired error level. This will manifest as a
simulation that appears to be stuck. Defaults to 100.

• 'use_last_timestep': with the 'adaptable_timestep' option set to True, GSL tries different time
steps to find a solution that satisfies the set error bounds. It is likely that for Brian’s next time step the GSL time step
will be somewhat similar per neuron (e.g. active neurons will have a shorter GSL time step than inactive neurons).
With this option set to True, the time step GSL found to satisfy the set error bounds is saved per neuron and given
to GSL again in Brian’s next time step. This also means that the final time steps are saved in Brian’s memory and
can thus be recorded with the StateMonitor: it can be accessed under '_last_timestep'. Note that
some extra memory is required to keep track of the last time steps. Defaults to True.

• 'save_failed_steps': if 'adaptable_timestep' is set to True, each time GSL tries a time step and
it results in an estimated error that exceeds the set bounds, one is added to the '_failed_steps' variable. For
purposes of investigating what happens within GSL during an integration step, we offer the option of saving this
variable. Defaults to False.

• 'save_step_count': the same goes for the total number of GSL steps taken in a single Brian time step: this
is optionally saved in the '_step_count' variable. Defaults to False.

Note that at the moment recording '_last_timestep', '_failed_steps', or '_step_count' requires a
call to run() (e.g. with 0 ms) to trigger the code generation process, before the call to StateMonitor.
More information on the GSL ODE solver itself can be found in its documentation.

3.5 Equations

• Equation strings

• Arithmetic operations and functions

• External variables

• Flags

• List of special symbols

• Event-driven equations

• Equation objects

• Examples of Equation objects

3.5. Equations 143

https://www.gnu.org/software/gsl/manual/html_node/Ordinary-Differential-Equations.html

Brian 2 Documentation, Release 2.5.1

3.5.1 Equation strings

Equations are used both in NeuronGroup and Synapses to:
• define state variables
• define continuous-updates on these variables, through differential equations

Note: Brian models are defined by systems of first order ordinary differential equations, but you might see the integrated
form of synapses in some textbooks and papers. See Converting from integrated form to ODEs for details on how to convert
between these representations.

Equations are defined by multiline strings.
An Equation is a set of single lines in a string:
(1) dx/dt = f : unit (differential equation)
(2) x = f : unit (subexpression)
(3) x : unit (parameter)

Each equation may be spread out over multiple lines to improve formatting. Comments using # may also be included.
Subunits are not allowed, i.e., one must write volt, not mV. This is to make it clear that the values are internally always
saved in the basic units, so no confusion can arise when getting the values out of a NeuronGroup and discarding the
units. Compound units are of course allowed as well (e.g. farad/meter**2). There are also three special “units” that
can be used: 1 denotes a dimensionless floating point variable, boolean and integer denote dimensionless variables
of the respective kind.

Note: For molar concentration, the base unit that has to be used in the equations is mmolar (or mM), not molar. This
is because 1 molar is 10³ mol/m³ in SI units (i.e., it has a “scale” of 10³), whereas 1 millimolar corresponds to 1 mol/m³.

Some special variables are defined: t, dt (time) and xi (white noise). Variable names starting with an underscore and
a couple of other names that have special meanings under certain circumstances (e.g. names ending in _pre or _post)
are forbidden.
For stochastic equations with several xi values it is necessary to make clear whether they correspond to the same or
different noise instantiations. To make this distinction, an arbitrary suffix can be used, e.g. using xi_1 several times
refers to the same variable, xi_2 (or xi_inh, xi_alpha, etc.) refers to another. An error will be raised if you
use more than one plain xi. Note that noise is always independent across neurons, you can only work around this
restriction by defining your noise variable as a shared parameter and update it using a user-defined function (e.g. with
run_regularly), or create a group that models the noise and link to its variable (see Linked variables).

3.5.2 Arithmetic operations and functions

Equation strings can make use of standard arithmetic operations for numerical values, using the Python 3 syntax. The
supported operations are +, -, *, / (floating point division), // (flooring division), % (remainder), ** (power). For
variable assignments, e.g. in reset statements, the corresponding in-place assignments such as += can be used as well.
For comparisons, the operations == (equality), != (inequality), <, <=, >, and >= are available. Truth values can be
combined using and and or, or negated using not. Note that Brian does not support any operations specific to integers,
e.g. “bitwise AND” or shift operations.

144 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.5.1

Warning: Brian versions up to 2.1.3.1 did not support // as the floor division operator and potentially used dif-
ferent semantics for the / operator depending on whether Python 2 or 3 was used. To write code that correctly and
unambiguously works with both newer and older Brian versions, you can use expressions such as 1.0*a/b to enforce
floating point division (if one of the operands is a floating point number, both Python 2 and 3 will use floating point
division), or floor(a/b) to enforce flooring division Note that the floor function always returns a floating point
value, if it is important that the result is an integer value, additionally wrap it with the int function.

Brian also supports standard mathematical functions with the same names as used in the numpy library (e.g. exp, sqrt,
abs, clip, sin, cos, …) – for a full list see Default functions. Note that support for such functions is provided by
Brian itself and the translation to the various code generation targets is automatically taken care of. You should therefore
refer to them directly by name and not as e.g. np.sqrt or numpy.sqrt, regardless of the way you imported Brian or
numpy. This also means that you cannot directly refer to arbitrary functions from numpy or other libraries. For details
on how to extend the support to non-default functions see User-provided functions.

3.5.3 External variables

Equations defining neuronal or synaptic equations can contain references to external parameters or functions. These
references are looked up at the time that the simulation is run. If you don’t specify where to look them up, it will look
in the Python local/global namespace (i.e. the block of code where you call run()). If you want to override this, you
can specify an explicit “namespace”. This is a Python dictionary with keys being variable names as they appear in the
equations, and values being the desired value of that variable. This namespace can be specified either in the creation of
the group or when you can the run() function using the namespace keyword argument.
The following three examples show the different ways of providing external variable values, all having the same effect in
this case:

Explicit argument to the NeuronGroup
G = NeuronGroup(1, 'dv/dt = -v / tau : 1', namespace={'tau': 10*ms})
net = Network(G)
net.run(10*ms)

Explicit argument to the run function
G = NeuronGroup(1, 'dv/dt = -v / tau : 1')
net = Network(G)
net.run(10*ms, namespace={'tau': 10*ms})

Implicit namespace from the context
G = NeuronGroup(1, 'dv/dt = -v / tau : 1')
net = Network(G)
tau = 10*ms
net.run(10*ms)

See Namespaces for more details.

The following topics are not essential for beginners.

3.5. Equations 145

Brian 2 Documentation, Release 2.5.1

3.5.4 Flags

A flag is a keyword in parentheses at the end of the line, which qualifies the equations. There are several keywords:
event-driven this is only used in Synapses, and means that the differential equation should be updated only at the times

of events. This implies that the equation is taken out of the continuous state update, and instead a event-based
state update statement is generated and inserted into event codes (pre and post). This can only qualify differential
equations of synapses. Currently, only one-dimensional linear equations can be handled (see below).

unless refractory this means the variable is not updated during the refractory period. This can only qualify differential
equations of neuron groups.

constant this means the parameter will not be changed during a run. This allows optimizations in state updaters. This
can only qualify parameters.

constant over dt this means that the subexpression will be only evaluated once at the beginning of the time step. This
can be useful to e.g. approximate a non-linear term as constant over a time step in order to use the linear nu-
merical integration algorithm. It is also mandatory for subexpressions that refer to stateful functions like rand()
to make sure that they are only evaluated once (otherwise e.g. recording the value with a StateMonitor would
re-evaluate it and therefore not record the same values that are used in other places). This can only qualify subex-
pressions.

shared this means that a parameter or subexpression is not neuron-/synapse-specific but rather a single value for the
whole NeuronGroup or Synapses. A shared subexpression can only refer to other shared variables.

linked this means that a parameter refers to a parameter in another NeuronGroup. See Linked variables for more
details.

Multiple flags may be specified as follows:

dx/dt = f : unit (flag1,flag2)

3.5.5 List of special symbols

The following lists all of the special symbols that Brian uses in equations and code blocks, and their meanings.
dt Time step width
i Index of a neuron (NeuronGroup) or the pre-synaptic neuron of a synapse (Synapses)
j Index of a post-synaptic neuron of a synapse
lastspike Last time that the neuron spiked (for refractoriness)
lastupdate Time of the last update of synaptic variables in event-driven equations (only defined when event-driven equa-

tions are used).
N Number of neurons (NeuronGroup) or synapses (Synapses). Use N_pre or N_post for the number of presy-

naptic or postsynaptic neurons in the context of Synapses.
not_refractory Boolean variable that is normally true, and false if the neuron is currently in a refractory state
t Current time
t_in_timesteps Current time measured in time steps
xi, xi_* Stochastic differential in equations

146 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.5.1

3.5.6 Event-driven equations

Equations defined as event-driven are completely ignored in the state update. They are only defined as variables that can
be externally accessed. There are additional constraints:

• An event-driven variable cannot be used by any other equation that is not also event-driven.
• An event-driven equation cannot depend on a differential equation that is not event-driven (directly, or indirectly
through subexpressions). It can depend on a constant parameter.

Currently, automatic event-driven updates are only possible for one-dimensional linear equations, but this may be extended
in the future.

3.5.7 Equation objects

The model definitions for NeuronGroup and Synapses can be simple strings or Equations objects. Such objects
can be combined using the add operator:

eqs = Equations('dx/dt = (y-x)/tau : volt')
eqs += Equations('dy/dt = -y/tau: volt')

Equations allow for the specification of values in the strings, but does this by simple string replacement, e.g. you can
do:

eqs = Equations('dx/dt = x/tau : volt', tau=10*ms)

but this is exactly equivalent to:

eqs = Equations('dx/dt = x/(10*ms) : volt')

The Equations object does some basic syntax checking and will raise an error if two equations defining the same
variable are combined. It does not however do unit checking, checking for unknown identifiers or incorrect flags – all this
will be done during the instantiation of a NeuronGroup or Synapses object.

3.5.8 Examples of Equation objects

Concatenating equations

>>> membrane_eqs = Equations('dv/dt = -(v + I)/ tau : volt')
>>> eqs1 = membrane_eqs + Equations('''I = sin(2*pi*freq*t) : volt
... freq : Hz''')
>>> eqs2 = membrane_eqs + Equations('''I : volt''')
>>> print(eqs1)
I = sin(2*pi*freq*t) : V
dv/dt = -(v + I)/ tau : V
freq : Hz
>>> print(eqs2)
dv/dt = -(v + I)/ tau : V
I : V

Substituting variable names

>>> general_equation = 'dg/dt = -g / tau : siemens'
>>> eqs_exc = Equations(general_equation, g='g_e', tau='tau_e')
>>> eqs_inh = Equations(general_equation, g='g_i', tau='tau_i')

(continues on next page)

3.5. Equations 147

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
>>> print(eqs_exc)
dg_e/dt = -g_e / tau_e : S
>>> print(eqs_inh)
dg_i/dt = -g_i / tau_i : S

Inserting values

>>> eqs = Equations('dv/dt = mu/tau + sigma/tau**.5*xi : volt',
... mu=-65*mV, sigma=3*mV, tau=10*ms)
>>> print(eqs)
dv/dt = (-65. * mvolt)/(10. * msecond) + (3. * mvolt)/(10. * msecond)**.5*xi : V

3.6 Refractoriness

• Defining the refractory period

• Defining model behaviour during refractoriness

• Arbitrary refractoriness

Brian allows you to model the absolute refractory period of a neuron in a flexible way. The definition of refractoriness
consists of two components: the amount of time after a spike that a neuron is considered to be refractory, and what
changes in the neuron during the refractoriness.

3.6.1 Defining the refractory period

The refractory period is specified by the refractory keyword in the NeuronGroup initializer. In the simplest case,
this is simply a fixed time, valid for all neurons:

G = NeuronGroup(N, model='...', threshold='...', reset='...',
refractory=2*ms)

Alternatively, it can be a string expression that evaluates to a time. This expression will be evaluated after every spike
and allows for a varying refractory period. For example, the following will set the refractory period to a random duration
between 1ms and 3ms after every spike:

G = NeuronGroup(N, model='...', threshold='...', reset='...',
refractory='(1 + 2*rand())*ms')

In general, modelling a refractory period that varies across neurons involves declaring a state variable that stores the
refractory period per neuron as a model parameter. The refractory expression can then refer to this parameter:

G = NeuronGroup(N, model='''...
ref : second''', threshold='...',

reset='...', refractory='ref')
Set the refractory period for each cell
G.ref = ...

This state variable can also be a dynamic variable itself. For example, it can serve as an adaptation mechanism by
increasing it after every spike and letting it relax back to a steady-state value between spikes:

148 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.5.1

refractory_0 = 2*ms
tau_refractory = 50*ms
G = NeuronGroup(N, model='''...

dref/dt = (refractory_0 - ref) / tau_refractory : second''
↪→',

threshold='...', refractory='ref',
reset='''...

ref += 1*ms''')
G.ref = refractory_0

In some cases, the condition for leaving the refractory period is not easily expressed as a certain time span. For example,
in a Hodgkin-Huxley type model the threshold is only used for counting spikes and the refractoriness is used to prevent
the count of multiple spikes for a single threshold crossing (the threshold condition would evaluate to True for several
time points). When a neuron should leave the refractory period is not easily expressed as a time span but more naturally
as a condition that the neuron should remain refractory for as long as it stays above the threshold. This can be achieved
by using a string expression for the refractory keyword that evaluates to a boolean condition:

G = NeuronGroup(N, model='...', threshold='v > -20*mV',
refractory='v >= -20*mV')

The refractory keyword should be read as “stay refractory as long as the condition remains true”. In fact, specifying
a time span for the refractoriness will be automatically transformed into a logical expression using the current time t
and the time of the last spike lastspike. Specifying refractory=2*ms is basically equivalent to specifying
refractory='(t - lastspike) <= 2*ms'. However, this expression can give inconsistent results for the
common case that the refractory period is a multiple of the simulation timestep. Due to floating point impreciseness, the
actual value of t - lastspike can be slightly above or below a multiple of the simulation time step; comparing it
directly to the refractory period can therefore lead to an end of the refractory one time step sooner or later. To avoid this
issue, the actual code used for the above example is equivalent to refractory='timestep(t - lastspike,
dt) <= timestep(2*ms, dt)'. The timestep function is provided by Brian and takes care of converting a
time into a time step in a safe way.
New in version 2.1.3: The timestep function is now used to avoid floating point issues in the refractoriness calculation.
To restore the previous behaviour, set the legacy.refractory_timing preference to True.

3.6.2 Defining model behaviour during refractoriness

The refractoriness definition as described above only has a single effect by itself: threshold crossings during the refractory
period are ignored. In the following model, the variable v continues to update during the refractory period but it does not
elicit a spike if it crosses the threshold:

G = NeuronGroup(N, 'dv/dt = -v / tau : 1',
threshold='v > 1', reset='v=0',
refractory=2*ms)

There is also a second implementation of refractoriness that is supported by Brian, one or several state variables can be
clamped during the refractory period. To model this kind of behaviour, variables that should stop being updated during
refractoriness can be marked with the (unless refractory) flag:

G = NeuronGroup(N, '''dv/dt = -(v + w)/ tau_v : 1 (unless refractory)
dw/dt = -w / tau_w : 1''',

threshold='v > 1', reset='v=0; w+=0.1', refractory=2*ms)

In the above model, the v variable is clamped at 0 for 2ms after a spike but the adaptation variable w continues to update
during this time. In addition, a variable of a neuron that is in its refractory period is read-only: incoming synapses or
other code will have no effect on the value of v until it leaves its refractory period.

3.6. Refractoriness 149

Brian 2 Documentation, Release 2.5.1

The following topics are not essential for beginners.

3.6.3 Arbitrary refractoriness

In fact, arbitrary behaviours can be defined using Brian’s refractoriness mechanism.
A NeuronGroup with refractoriness automatically defines two variables:
not_refractory A boolean variable stating whether a neuron is allowed to spike.
lastspike The time of the last spike of the neuron.
The variable not_refractory is updated at every time step by checking the refractoriness condition – for a refrac-
toriness defined by a time period, this means comparing lastspike to the current time t. The not_refractory
variable is then used to implement the refractoriness behaviour. Specifically, the threshold condition is replaced by
threshold and not_refractory and differential equations that are marked as (unless refractory)
are multiplied by int(not_refractory) (so that they have the value 0 when the neuron is refractory).
This not_refractory variable is also available to the user to define more sophisticated refractoriness behaviour. For
example, the following code updates the w variable with a different time constant during refractoriness:

G = NeuronGroup(N, '''dv/dt = -(v + w)/ tau_v : 1 (unless refractory)
dw/dt = (-w / tau_active)*int(not_refractory) + (-w / tau_

↪→ref)*(1 - int(not_refractory)) : 1''',
threshold='v > 1', reset='v=0; w+=0.1', refractory=2*ms)

3.7 Synapses

For Brian 1 users

Synapses is now the only class for defining synaptic interactions, it replacesConnection, STDP, etc. See the document
Synapses (Brian 1 –> 2 conversion) for details how to convert Brian 1 code.

• Defining synaptic models

• Creating synapses

• Accessing synaptic variables

• Delays

• Monitoring synaptic variables

• Synaptic connection/weight matrices

• Creating synapses with the generator syntax

• Summed variables

150 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.5.1

• Creating multi-synapses

• Multiple pathways

• Numerical integration

• Technical notes

3.7.1 Defining synaptic models

The most simple synapse (adding a fixed amount to the target membrane potential on every spike) is described as follows:

w = 1*mV
S = Synapses(P, Q, on_pre='v += w')

This defines a set of synapses between NeuronGroup P and NeuronGroup Q. If the target group is not specified, it
is identical to the source group by default. The on_pre keyword defines what happens when a presynaptic spike arrives
at a synapse. In this case, the constant w is added to variable v. Because v is not defined as a synaptic variable, it is
assumed by default that it is a postsynaptic variable, defined in the target NeuronGroup Q. Note that this does not
create synapses (see Creating Synapses), only the synaptic models.
To define more complex models, models can be described as string equations, similar to the models specified in Neu-
ronGroup:

S = Synapses(P, Q, model='w : volt', on_pre='v += w')

The above specifies a parameter w, i.e. a synapse-specific weight. Note that to avoid confusion, synaptic variables cannot
have the same name as a pre- or post-synaptic variables.
Synapses can also specify code that should be executed whenever a postsynaptic spike occurs (keyword on_post) and
a fixed (pre-synaptic) delay for all synapses (keyword delay).
As shown above, variable names that are not referring to a synaptic variable are automatically understood to be post-
synaptic variables. To explicitly specify that a variable should be from a pre- or post-synaptic neuron, append the suffix
_pre or _post. An alternative but equivalent formulation of the on_pre statement above would therefore be v_post
+= w.

Model syntax

The model follows exactly the same syntax as for NeuronGroup. There can be parameters (e.g. synaptic variable
w above), but there can also be named subexpressions and differential equations, describing the dynamics of synaptic
variables. In all cases, synaptic variables are created, one value per synapse.
Brian also automatically defines a number of synaptic variables that can be used in equations, on_pre and on_post
statements, as well as when assigning to other synaptic variables:
i The index of the pre-synaptic source of a synapse.
j The index of the post-synaptic target of a synapse.
N The total number of synapses.
N_incoming The total number of synapses connected to the post-synaptic target of a synapse.
N_outgoing The total number of synapses outgoing from the pre-synaptic source of a synapse.
lastupdate The last time this synapse has applied an on_pre or on_post statement. There is normally no need

to refer to this variable explicitly, it is used to implement Event-driven updates (see below). It is only defined when
event-driven equations are used.

3.7. Synapses 151

Brian 2 Documentation, Release 2.5.1

Event-driven updates

By default, differential equations are integrated in a clock-driven fashion, as for a NeuronGroup. This is potentially
very time consuming, because all synapses are updated at every timestep and Brian will therefore emit a warning. If you
are sure about integrating the equations at every timestep (e.g. because you want to record the values continuously), then
you should specify the flag (clock-driven), which will silence the warning. To ask Brian 2 to simulate differential
equations in an event-driven fashion use the flag (event-driven). A typical example is pre- and postsynaptic traces
in STDP:

model='''w:1
dApre/dt=-Apre/taupre : 1 (event-driven)
dApost/dt=-Apost/taupost : 1 (event-driven)'''

Here, Brian updates the value ofApre for a given synapse only when this synapse receives a spike, whether it is presynaptic
or postsynaptic. More precisely, the variables are updated every time either the on_pre or on_post code is called for
the synapse, so that the values are always up to date when these codes are executed.
Automatic event-driven updates are only possible for a subset of equations, in particular for one-dimensional linear equa-
tions. These equations must also be independent of the other ones, that is, a differential equation that is not event-driven
cannot depend on an event-driven equation (since the values are not continuously updated). In other cases, the user can
write event-driven code explicitly in the update codes (see below).

Pre and post codes

The on_pre code is executed at each synapse receiving a presynaptic spike. For example:

on_pre='v+=w'

adds the value of synaptic variable w to postsynaptic variable v. Any sort of code can be executed. For example, the
following code defines stochastic synapses, with a synaptic weight w and transmission probability p:

S=Synapses(neuron_input,neurons,model="""w : 1
p : 1""",

on_pre="v+=w*(rand()<p)")

The code means that w is added to v with probability p. The code may also include multiple lines.
Similarly, the on_post code is executed at each synapse where the postsynaptic neuron has fired a spike.

3.7.2 Creating synapses

Creating a Synapses instance does not create synapses, it only specifies their dynamics. The following command creates
a synapse between neuron 5 in the source group and neuron 10 in the target group:

S.connect(i=5, j=10)

Multiple synaptic connections can be created in a single statement:

S.connect()
S.connect(i=[1, 2], j=[3, 4])
S.connect(i=numpy.arange(10), j=1)

The first statement connects all neuron pairs. The second statement creates synapses between neurons 1 and 3, and
between neurons 2 and 4. The third statement creates synapses between the first ten neurons in the source group and
neuron 1 in the target group.

152 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.5.1

Conditional

One can also create synapses by giving (as a string) the condition for a pair of neurons i and j to be connected by a synapse,
e.g. you could connect neurons that are not very far apart with:

S.connect(condition='abs(i-j)<=5')

The string expressions can also refer to pre- or postsynaptic variables. This can be useful for example for spatial connec-
tivity: assuming that the pre- and postsynaptic groups have user-defined parameters x and y, storing their location, the
following statement connects all cells in a 250 um radius:

S.connect(condition='sqrt((x_pre-x_post)**2 + (y_pre-y_post)**2) < 250*umeter')

Probabilistic

Synapse creation can also be probabilistic by providing a p argument, providing the connection probability for each pair
of synapses:

S.connect(p=0.1)

This connects all neuron pairs with a probability of 10%. Probabilities can also be given as expressions, for example to
implement a connection probability that depends on distance:

S.connect(condition='i != j',
p='p_max*exp(-(x_pre-x_post)**2+(y_pre-y_post)**2 / (2*(125*umeter)**2))')

If this statement is applied to a Synapses object that connects a group to itself, it prevents self-connections (i != j)
and connects cells with a probability that is modulated according to a 2-dimensional Gaussian of the distance between the
cells computed from the user-defined parameters x and y, storing their location.

One-to-one

You can specify a mapping from i to any function f(i), e.g. the simplest way to give a 1-to-1 connection would be:

S.connect(j='i')

This mapping can also use a restricting condition with if, e.g. to connect neurons 0, 2, 4, 6, … to neurons 0, 1, 2, 3, …
you could write:

S.connect(j='int(i/2) if i % 2 == 0')

The connections above describe the target indices j as a function of the source indices i. You can also apply the syntax
in the other direction, i.e. describe source indices i as a function of target indices j. For a 1-to-1 connection, this does
not change anything in most cases:

S.connect(i='j')

Note that there is a subtle difference between the two descriptions if the two groups do not have the same size: if the
source group has fewer neurons than the target group, then using j='i' is possible (there is a target neuron for each
source neuron), but i='j' would raise an error; the opposite is true if the source group is bigger than the target group.
The second example from above (neurons 0, 2, 4, … to neurons 0, 1, 2, …) can be adapted for the other direction, as
well, and is possibly more intuitive in this case:

3.7. Synapses 153

Brian 2 Documentation, Release 2.5.1

S.connect(i='j*2')

3.7.3 Accessing synaptic variables

Synaptic variables can be accessed in a similar way as NeuronGroup variables. They can be indexed with two in-
dexes, corresponding to the indexes of pre and postsynaptic neurons, or with string expressions (referring to i and j
as the pre-/post-synaptic indices, or to other state variables of the synapse or the connected neurons). Note that set-
ting a synaptic variable always refers to the synapses that currently exist, i.e. you have to set them after the relevant
Synapses.connect call.
Here are a few examples:

S.w[2, 5] = 1*nS
S.w[1, :] = 2*nS
S.w = 1*nS # all synapses assigned
S.w[2, 3] = (1*nS, 2*nS)
S.w[group1, group2] = "(1+cos(i-j))*2*nS"
S.w[:, :] = 'rand()*nS'
S.w['abs(x_pre-x_post) < 250*umetre'] = 1*nS

Assignments can also refer to pre-defined variables, e.g. to normalize synaptic weights. For example, after the following
assignment the sum of weights of all synapses that a neuron receives is identical to 1, regardless of the number of synapses
it receives:

syn.w = '1.0/N_incoming'

Note that it is also possible to index synaptic variables with a single index (integer, slice, or array), but in this case synaptic
indices have to be provided.
The N_incoming and N_outgoing variables give access to the total number of incoming/outgoing synapses for a
neuron, but this access is given for each synapse. This is necessary to apply it to individual synapses as in the statement
to normalize synaptic weights mentioned above. To access these values per neuron instead, N_incoming_post and
N_outgoing_pre can be used. Note that synaptic equations or on_pre/on_post statements should always refer
to N_incoming and N_outgoing without pre/post suffix.
Here’s a little example illustrating the use of these variables:

>>> group1 = NeuronGroup(3, '')
>>> group2 = NeuronGroup(3, '')
>>> syn = Synapses(group1, group2)
>>> syn.connect(i=[0, 0, 1, 2], j=[1, 2, 2, 2])
>>> print(syn.N_outgoing_pre) # for each presynaptic neuron
[2 1 1]
>>> print(syn.N_outgoing[:]) # same numbers, but indexed by synapse
[2 2 1 1]
>>> print(syn.N_incoming_post)
[0 1 3]
>>> print(syn.N_incoming[:])
[1 3 3 3]

Note that N_incoming_post and N_outgoing_pre can contain zeros for neurons that do not have any incom-
ing respectively outgoing synapses. In contrast, N_incoming and N_outgoing will never contain zeros, because
unconnected neurons are not represented in the list of synapses.

154 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.5.1

3.7.4 Delays

There is a special synaptic variable that is automatically created: delay. It is the propagation delay from the presynaptic
neuron to the synapse, i.e., the presynaptic delay. This is just a convenience syntax for accessing the delay stored in the
presynaptic pathway: pre.delay. When there is a postsynaptic code (keyword post), the delay of the postsynaptic
pathway can be accessed as post.delay.
The delay variable(s) can be set and accessed in the same way as other synaptic variables. The same semantics as for
other synaptic variables apply, which means in particular that the delay is only set for the synapses that have been already
created with Synapses.connect. If you want to set a global delay for all synapses of a Synapses object, you can
directly specify that delay as part of the Synapses initializer:

synapses = Synapses(sources, targets, '...', on_pre='...', delay=1*ms)

When you use this syntax, you can still change the delay afterwards by setting synapses.delay, but you can only set
it to another scalar value. If you need different delays across synapses, do not use this syntax but instead set the delay
variable as any other synaptic variable (see above).

3.7.5 Monitoring synaptic variables

A StateMonitor object can be used to monitor synaptic variables. For example, the following statement creates a
monitor for variable w for the synapses 0 and 1:

M = StateMonitor(S, 'w', record=[0,1])

Note that these are synapse indices, not neuron indices. More convenient is to directly index the Synapses object, Brian
will automatically calculate the indices for you in this case:

M = StateMonitor(S, 'w', record=S[0, :]) # all synapses originating from neuron 0
M = StateMonitor(S, 'w', record=S['i!=j']) # all synapses excluding autapses
M = StateMonitor(S, 'w', record=S['w>0']) # all synapses with non-zero weights (at␣
↪→this time)

You can also record a synaptic variable for all synapses by passing record=True.
The recorded traces can then be accessed in the usual way, again with the possibility to index the Synapses object:

plot(M.t / ms, M[S[0]].w / nS) # first synapse
plot(M.t / ms, M[S[0, :]].w / nS) # all synapses originating from neuron 0
plot(M.t / ms, M[S['w>0*nS']].w / nS) # all synapses with non-zero weights (at this␣
↪→time)

Note (for users of Brian’s advanced standalone mode only): the use of the Synapses object for indexing and
record=True only work in the default runtime modes. In standalone mode (see Standalone code generation), the
synapses have not yet been created at this point, so Brian cannot calculate the indices.

The following topics are not essential for beginners.

3.7. Synapses 155

Brian 2 Documentation, Release 2.5.1

3.7.6 Synaptic connection/weight matrices

Brian does not directly support specifying synapses by using a matrix, you always have to use a “sparse” format, where
each connection is defined by its source and target indices. However, you can easily convert between the two formats.
Assuming you have a connection matrix C of size N × M , where N is the number of presynaptic cells, and M the
number of postsynaptic cells, with each entry being 1 for a connection, and 0 otherwise. You can convert this matrix to
arrays of source and target indices, which you can then provide to Brian’s connect function:

C = ... # The connection matrix as a numpy array of 0's and 1's
sources, targets = C.nonzero()
synapses = Synapses(...)
synapses.connect(i=sources, j=targets)

Similarly, you can transform the flat array of values stored in a synapse into a matrix form. For example, to get a matrix
with all the weight values w, with NaN values where no synapse exists:

synapses = Synapses(source_group, target_group,
'''...

w : 1 # synaptic weight''', ...)
...
Run e.g. a simulation with plasticity that changes the weights
run(...)
Create a matrix to store the weights and fill it with NaN
W = np.full((len(source_group), len(target_group)), np.nan)
Insert the values from the Synapses object
W[synapses.i[:], synapses.j[:]] = synapses.w[:]

You can also set synapses given a fully connected weight matrix (as a 2D numpy array W):

synapses.w[:] = W.flatten()

This works because the internal ordering of synapses is exactly the same as for a flattened matrix.

3.7.7 Creating synapses with the generator syntax

The most general way of specifying a connection is using the generator syntax, e.g. to connect neuron i to all neurons j
with 0<=j<=i:

S.connect(j='k for k in range(0, i+1)')

There are several parts to this syntax. The general form is:

j='EXPR for VAR in RANGE if COND'

or:

i='EXPR for VAR in RANGE if COND'

Here EXPR can be any integer-valued expression. VAR is the name of the iteration variable (any name you like can be
specified here). The if COND part is optional and lets you give an additional condition that has to be true for the synapse
to be created. Finally, RANGE can be either:

1. a Python range, e.g. range(N) is the integers from 0 to N-1, range(A, B) is the integers from A to B-1,
range(low, high, step) is the integers from low to high-1 with steps of size step;

156 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.5.1

2. a random sample sample(N, p=0.1) gives a random sample of integers from 0 to N-1 with 10% probability
of each integer appearing in the sample. This can have extra arguments like range, e.g. sample(low, high,
step, p=0.1) will give each integer in range(low, high, step) with probability 10%;

3. a random sample sample(N, size=10) with a fixed size, in this example 10 values chosen (without replace-
ment) from the integers from 0 to N-1. As for the random sample based on a probability, the sample expression
can take additional arguments to sample from a restricted range.

If you try to create an invalid synapse (i.e. connecting neurons that are outside the correct range) then you will get an
error, e.g. you might like to try to do this to connect each neuron to its neighbours:

S.connect(j='i+(-1)**k for k in range(2)')

However this won’t work at for i=0 it gives j=-1 which is invalid. There is an option to just skip any synapses that are
outside the valid range:

S.connect(j='i+(-1)**k for k in range(2)', skip_if_invalid=True)

You can also use this argument to deal with random samples of incorrect size, i.e. a negative size or a size bigger than the
total population size. With skip_if_invalid=True, no error will be raised and a size of 0 or the population size
will be used.

3.7.8 Summed variables

In many cases, the postsynaptic neuron has a variable that represents a sum of variables over all its synapses. This is called
a “summed variable”. An example is nonlinear synapses (e.g. NMDA):

neurons = NeuronGroup(1, model='''dv/dt=(gtot-v)/(10*ms) : 1
gtot : 1''')

S = Synapses(neuron_input, neurons,
model='''dg/dt=-a*g+b*x*(1-g) : 1

gtot_post = g : 1 (summed)
dx/dt=-c*x : 1
w : 1 # synaptic weight''', on_pre='x+=w')

Here, each synapse has a conductance g with nonlinear dynamics. The neuron’s total conductance is gtot. The line
stating gtot_post = g : 1 (summed) specifies the link between the two: gtot in the postsynaptic group is the
summer over all variables g of the corresponding synapses. What happens during the simulation is that at each time step,
presynaptic conductances are summed for each neuron and the result is copied to the variable gtot. Another example
is gap junctions:

neurons = NeuronGroup(N, model='''dv/dt=(v0-v+Igap)/tau : 1
Igap : 1''')

S=Synapses(neurons,model='''w:1 # gap junction conductance
Igap_post = w*(v_pre-v_post): 1 (summed)''')

Here, Igap is the total gap junction current received by the postsynaptic neuron.
Note that you cannot target the same post-synaptic variable from more than one Synapses object. To work around this
restriction, use multiple post-synaptic variables that ar then summed up:

neurons = NeuronGroup(1, model='''dv/dt=(gtot-v)/(10*ms) : 1
gtot = gtot1 + gtot2: 1
gtot1 : 1
gtot2 : 1''')

S1 = Synapses(neuron_input, neurons,

(continues on next page)

3.7. Synapses 157

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
model='''dg/dt=-a1*g+b1*x*(1-g) : 1

gtot1_post = g : 1 (summed)
dx/dt=-c1*x : 1
w : 1 # synaptic weight

''', on_pre='x+=w')
S2 = Synapses(neuron_input, neurons,

model='''dg/dt=-a2*g+b2*x*(1-g) : 1
gtot2_post = g : 1 (summed)
dx/dt=-c2*x : 1
w : 1 # synaptic weight

''', on_pre='x+=w')

3.7.9 Creating multi-synapses

It is also possible to create several synapses for a given pair of neurons:

S.connect(i=numpy.arange(10), j=1, n=3)

This is useful for example if one wants to have multiple synapses with different delays. To distinguish multiple variables
connecting the same pair of neurons in synaptic expressions and statements, you can create a variable storing the synapse
index with the multisynaptic_index keyword:

syn = Synapses(source_group, target_group, model='w : 1', on_pre='v += w',
multisynaptic_index='synapse_number')

syn.connect(i=numpy.arange(10), j=1, n=3)
syn.delay = '1*ms + synapse_number*2*ms'

This index can then be used to set/get synapse-specific values:

S.delay = '(synapse_number + 1)*ms)' # Set delays between 1 and 10ms
S.w['synapse_number<5'] = 0.5
S.w['synapse_number>=5'] = 1

It also enables three-dimensional indexing, the following statement has the same effect as the last one above:

S.w[:, :, 5:] = 1

3.7.10 Multiple pathways

It is possible to have multiple pathways with different update codes from the same presynaptic neuron group. This may
be interesting in cases when different operations must be applied at different times for the same presynaptic spike, e.g.
for a STDP rule that shifted in time. To do this, specify a dictionary of pathway names and codes:

on_pre={'pre_transmission': 'ge+=w',
'pre_plasticity': '''w=clip(w+Apost,0,inf)

Apre+=dApre'''}

This creates two pathways with the given names (in fact, specifying on_pre=code is just a shorter syntax for
on_pre={'pre': code}) through which the delay variables can be accessed. The following statement, for ex-
ample, sets the delay of the synapse between the first neurons of the source and target groups in the pre_plasticity
pathway:

158 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.5.1

S.pre_plasticity.delay[0,0] = 3*ms

As mentioned above, pre pathways are generally executed before post pathways. The order of execution of several
pre (or post) pathways with the same delay is however arbitrary, and simply based on the alphabetical ordering of their
names (i.e. pre_plasticity will be executed before pre_transmission). To explicitly specify the order, set
the order attribute of the pathway, e.g.:

S.pre_transmission.order = -2

will make sure that the pre_transmission code is executed before the pre_plasticity code in each time step.
Multiple pathways can also be useful for abstract models of synaptic currents, e.g. modelling them as rectangular currents:

synapses = Synapses(...,
on_pre={'up': 'I_syn_post += 1*nA',

'down': 'I_syn_post -= 1*nA'},
delay={'up': 0*ms, 'down': 5*ms} # 5ms-wide rectangular current
)

3.7.11 Numerical integration

Differential equation flags

For the integration of differential equations, one can use the same keywords as for NeuronGroup.

Note: Declaring a subexpression as (constant over dt) means that it will be evaluated each timestep for all
synapses, potentially a very costly operation.

Explicit event-driven updates

As mentioned above, it is possible to write event-driven update code for the synaptic variables. This can also be done
manually, by defining the variable lastupdate and referring to the predefined variable t (current time). Here’s an
example for short-term plasticity:

S=Synapses(neuron_input,neuron,
model='''x : 1

u : 1
w : 1
lastupdate : second''',

on_pre='''u=U+(u-U)*exp(-(t-lastupdate)/tauf)
x=1+(x-1)*exp(-(t-lastupdate)/taud)
i+=w*u*x
x*=(1-u)
u+=U*(1-u)
lastupdate = t''')

By default, the pre pathway is executed before the post pathway (both are executed in the 'synapses' scheduling
slot, but the pre pathway has the order attribute -1, wheras the post pathway has order 1. See Scheduling for more
details).
Note that using the automatic event-driven approach from above is usually preferable, see Example: exam-
ple_1_COBA for an event-driven implementation of short-term plasticity.

3.7. Synapses 159

Brian 2 Documentation, Release 2.5.1

3.7.12 Technical notes

How connection arguments are interpreted

If conditions for connecting neurons are combined with both the n (number of synapses to create) and the p (probability
of a synapse) keywords, they are interpreted in the following way:

For every pair i, j:
if condition(i, j) is fulfilled:

Evaluate p(i, j)
If uniform random number between 0 and 1 < p(i, j):

Create n(i, j) synapses for (i, j)
With the generator syntax j='EXPR for VAR in RANGE if COND' (where the RANGE can be a full range or a
random sample as described above), the interpretation is:

For every i:
for every VAR in RANGE:

j = EXPR
if COND:

Create n(i, j) synapses for (i, j)
Note that the arguments in RANGE can only depend on i and the values of presynaptic variables. Similarly, the expression
for j, EXPR can depend on i, presynaptic variables, and on the iteration variable VAR. The condition COND can depend
on anything (presynaptic and postsynaptic variables).
The generator syntax expressing i as a function of j is interpreted in the same way:

For every j:
for every VAR in RANGE:

i = EXPR
if COND:

Create n(i, j) synapses for (i, j)
Here, RANGE can only depend on j and postsynaptic variables, and EXPR can only depend on j, postsynaptic variables,
and on the iteration variable VAR.
With the 1-to-1 mapping syntax j='EXPR' the interpretation is:

For every i:
j = EXPR
Create n(i, j) synapses for (i, j)

And finally, i='EXPR' is interpreted as:
For every j:

i = EXPR
Create n(i, j) synapses for (i, j)

160 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.5.1

Efficiency considerations

If you are connecting a single pair of neurons, the direct form connect(i=5, j=10) is the most efficient. However,
if you are connecting a number of neurons, it will usually be more efficient to construct an array of i and j values and
have a single connect(i=i, j=j) call.
For large connections, you should use one of the string based syntaxes where possible as this will generate compiled
low-level code that will be typically much faster than equivalent Python code.
If you are expecting a majority of pairs of neurons to be connected, then using the condition-based syntax is opti-
mal, e.g. connect(condition='i!=j'). However, if relatively few neurons are being connected then the 1-
to-1 mapping or generator syntax will be better. For 1-to-1, connect(j='i') will always be faster than con-
nect(condition='i==j') because the latter has to evaluate all N**2 pairs (i, j) and check if the condition
is true, whereas the former only has to do O(N) operations.
One tricky problem is how to efficiently generate connectivity with a probability p(i, j) that depends on both i and
j, since this requires N*N computations even if the expected number of synapses is proportional to N. Some tricks for
getting around this are shown in Example: efficient_gaussian_connectivity.

3.8 Input stimuli

For Brian 1 users

See the document Inputs (Brian 1 –> 2 conversion) for details how to convert Brian 1 code.

• Poisson inputs

• Spike generation

• Explicit equations

• Timed arrays

• Regular operations

• More on Poisson inputs

• Arbitrary Python code (network operations)

There are various ways of providing “external” input to a network.

3.8.1 Poisson inputs

For generating spikes according to a Poisson point process, PoissonGroup can be used, e.g.:

P = PoissonGroup(100, np.arange(100)*Hz + 10*Hz)
G = NeuronGroup(100, 'dv/dt = -v / (10*ms) : 1')
S = Synapses(P, G, on_pre='v+=0.1')
S.connect(j='i')

See More on Poisson inputs below for further information.
For simulations where the individually generated spikes are just used as a source of input to a neuron, the Poisson-
Input class provides a more efficient alternative: see Efficient Poisson inputs via PoissonInput below for details.

3.8. Input stimuli 161

Brian 2 Documentation, Release 2.5.1

3.8.2 Spike generation

You can also generate an explicit list of spikes given via arrays using SpikeGeneratorGroup. This object behaves
just like a NeuronGroup in that you can connect it to other groups via a Synapses object, but you specify three bits
of information: N the number of neurons in the group; indices an array of the indices of the neurons that will fire; and
times an array of the same length as indices with the times that the neurons will fire a spike. The indices and
times arrays are matching, so for example indices=[0,2,1] and times=[1*ms,2*ms,3*ms] means that
neuron 0 fires at time 1 ms, neuron 2 fires at 2 ms and neuron 1 fires at 3 ms. Example use:

indices = array([0, 2, 1])
times = array([1, 2, 3])*ms
G = SpikeGeneratorGroup(3, indices, times)

The spikes that will be generated by SpikeGeneratorGroup can be changed between runs with the set_spikes
method. This can be useful if the input to a system should depend on its previous output or when running multiple trials
with different input:

inp = SpikeGeneratorGroup(N, indices, times)
G = NeuronGroup(N, '...')
feedforward = Synapses(inp, G, '...', on_pre='...')
feedforward.connect(j='i')
recurrent = Synapses(G, G, '...', on_pre='...')
recurrent.connect('i!=j')
spike_mon = SpikeMonitor(G)
...
run(runtime)
Replay the previous output of group G as input into the group
inp.set_spikes(spike_mon.i, spike_mon.t + runtime)
run(runtime)

3.8.3 Explicit equations

If the input can be explicitly expressed as a function of time (e.g. a sinusoidal input current), then its description can be
directly included in the equations of the respective group:

G = NeuronGroup(100, '''dv/dt = (-v + I)/(10*ms) : 1
rates : Hz # each neuron's input has a different rate
size : 1 # and a different amplitude
I = size*sin(2*pi*rates*t) : 1''')

G.rates = '10*Hz + i*Hz'
G.size = '(100-i)/100. + 0.1'

3.8.4 Timed arrays

If the time dependence of the input cannot be expressed in the equations in the way shown above, it is possible to create
a TimedArray. This acts as a function of time where the values at given time points are given explicitly. This can
be especially useful to describe non-continuous stimulation. For example, the following code defines a TimedArray
where stimulus blocks consist of a constant current of random strength for 30ms, followed by no stimulus for 20ms. Note
that in this particular example, numerical integration can use exact methods, since it can assume that the TimedArray
is a constant function of time during a single integration time step.

Note: The semantics of TimedArray changed slightly compared to Brian 1: for TimedArray([x1, x2, ...],
dt=my_dt), the value x1 will be returned for all 0<=t<my_dt, x2 for my_dt<=t<2*my_dt etc., whereas Brian1

162 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.5.1

returned x1 for 0<=t<0.5*my_dt, x2 for 0.5*my_dt<=t<1.5*my_dt, etc.

stimulus = TimedArray(np.hstack([[c, c, c, 0, 0]
for c in np.random.rand(1000)]),

dt=10*ms)
G = NeuronGroup(100, 'dv/dt = (-v + stimulus(t))/(10*ms) : 1',

threshold='v>1', reset='v=0')
G.v = '0.5*rand()' # different initial values for the neurons

TimedArray can take a one-dimensional value array (as above) and therefore return the same value for all neurons or
it can take a two-dimensional array with time as the first and (neuron/synapse/…-)index as the second dimension.
In the following, this is used to implement shared noise between neurons, all the “even neurons” get the first noise instan-
tiation, all the “odd neurons” get the second:

runtime = 1*second
stimulus = TimedArray(np.random.rand(int(runtime/defaultclock.dt), 2),

dt=defaultclock.dt)
G = NeuronGroup(100, 'dv/dt = (-v + stimulus(t, i % 2))/(10*ms) : 1',

threshold='v>1', reset='v=0')

3.8.5 Regular operations

An alternative to specifying a stimulus in advance is to run explicitly specified code at certain points during a simulation.
This can be achieved with run_regularly(). One can think of these statements as equivalent to reset statements but
executed unconditionally (i.e. for all neurons) and possibly on a different clock than the rest of the group. The following
code changes the stimulus strength of half of the neurons (randomly chosen) to a new random value every 50ms. Note
that the statement uses logical expressions to have the values only updated for the chosen subset of neurons (where the
newly introduced auxiliary variable change equals 1):

G = NeuronGroup(100, '''dv/dt = (-v + I)/(10*ms) : 1
I : 1 # one stimulus per neuron''')

G.run_regularly('''change = int(rand() < 0.5)
I = change*(rand()*2) + (1-change)*I''',

dt=50*ms)

The following topics are not essential for beginners.

3.8. Input stimuli 163

Brian 2 Documentation, Release 2.5.1

3.8.6 More on Poisson inputs

Setting rates for Poisson inputs

PoissonGroup takes either a constant rate, an array of rates (one rate per neuron, as in the example above), or a string
expression evaluating to a rate as an argument.
If the given value for rates is a constant, then using PoissonGroup(N, rates) is equivalent to:

NeuronGroup(N, 'rates : Hz', threshold='rand()<rates*dt')

and setting the group’s rates attribute.
If rates is a string, then this is equivalent to:

NeuronGroup(N, 'rates = ... : Hz', threshold='rand()<rates*dt')

with the respective expression for the rates. This expression will be evaluated at every time step and therefore allows the
use of time-dependent rates, i.e. inhomogeneous Poisson processes. For example, the following code (see also Timed
arrays) uses a TimedArray to define the rates of a PoissonGroup as a function of time, resulting in five 100ms
blocks of 100 Hz stimulation, followed by 100ms of silence:

stimulus = TimedArray(np.tile([100., 0.], 5)*Hz, dt=100.*ms)
P = PoissonGroup(1, rates='stimulus(t)')

Note that, as can be seen in its equivalent NeuronGroup formulation, a PoissonGroup does not work for high rates
where more than one spike might fall into a single timestep. Use several units with lower rates in this case (e.g. use
PoissonGroup(10, 1000*Hz) instead of PoissonGroup(1, 10000*Hz)).

Efficient Poisson inputs via PoissonInput

For simulations where the PoissonGroup is just used as a source of input to a neuron (i.e., the individually generated
spikes are not important, just their impact on the target cell), the PoissonInput class provides a more efficient alter-
native: instead of generating spikes, PoissonInput directly updates a target variable based on the sum of independent
Poisson processes:

G = NeuronGroup(100, 'dv/dt = -v / (10*ms) : 1')
P = PoissonInput(G, 'v', 100, 100*Hz, weight=0.1)

Each input of the PoissonInput is connected to all the neurons of the target NeuronGroup but each neuron receives
independent realizations of the Poisson spike trains. Note that the PoissonInput class is however more restrictive
than PoissonGroup, it only allows for a constant rate across all neurons (but you can create several PoissonInput
objects, targeting different subgroups). It internally uses BinomialFunction which will draw a random number
each time step, either from a binomial distribution or from a normal distribution as an approximation to the binomial
distribution if np > 5 ∧ n(1− p) > 5 , where n is the number of inputs and p = dt · rate the spiking probability for a
single input.

164 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.5.1

3.8.7 Arbitrary Python code (network operations)

If none of the above techniques is general enough to fulfill the requirements of a simulation, Brian allows you to write
a NetworkOperation, an arbitrary Python function that is executed every time step (possible on a different clock
than the rest of the simulation). This function can do arbitrary operations, use conditional statements etc. and it will be
executed as it is (i.e. as pure Python code even if cython code generation is active). Note that one cannot use network
operations in combination with the C++ standalonemode. Network operations are particularly useful when some condition
or calculation depends on operations across neurons, which is currently not possible to express in abstract code. The
following code switches input on for a randomly chosen single neuron every 50 ms:

G = NeuronGroup(10, '''dv/dt = (-v + active*I)/(10*ms) : 1
I = sin(2*pi*100*Hz*t) : 1 (shared) #single input
active : 1 # will be set in the network operation''')

@network_operation(dt=50*ms)
def update_active():

index = np.random.randint(10) # index for the active neuron
G.active_ = 0 # the underscore switches off unit checking
G.active_[index] = 1

Note that the network operation (in the above example: update_active) has to be included in the Network object
if one is constructed explicitly.
Only functions with zero or one arguments can be used as a NetworkOperation. If the function has one argument
then it will be passed the current time t:

@network_operation(dt=1*ms)
def update_input(t):

if t>50*ms and t<100*ms:
pass # do something

Note that this is preferable to accessing defaultclock.t from within the function – if the network operation is not
running on the defaultclock itself, then that value is not guaranteed to be correct.
Instance methods can be used as network operations as well, however in this case they have to be constructed explicitly,
the network_operation() decorator cannot be used:

class Simulation(object):
def __init__(self, data):

self.data = data
self.group = NeuronGroup(...)
self.network_op = NetworkOperation(self.update_func, dt=10*ms)
self.network = Network(self.group, self.network_op)

def update_func(self):
pass # do something

def run(self, runtime):
self.network.run(runtime)

3.8. Input stimuli 165

Brian 2 Documentation, Release 2.5.1

3.9 Recording during a simulation

For Brian 1 users

See the document Monitors (Brian 1 –> 2 conversion) for details how to convert Brian 1 code.

• Recording spikes

• Recording variables at spike time

• Recording variables continuously

• Recording population rates

• Getting all data

• Recording values for a subset of the run

• Freeing up memory in long recordings

• Recording random subsets of neurons

Recording variables during a simulation is done with “monitor” objects. Specifically, spikes are recorded with Spike-
Monitor, the time evolution of variables with StateMonitor and the firing rate of a population of neurons with
PopulationRateMonitor.

3.9.1 Recording spikes

To record spikes from a group G simply create a SpikeMonitor via SpikeMonitor(G). After the simulation, you
can access the attributes i, t, num_spikes and count of the monitor. The i and t attributes give the array of neuron
indices and times of the spikes. For example, if M.i==[0, 2, 1] and M.t==[1*ms, 2*ms, 3*ms] it means
that neuron 0 fired a spike at 1 ms, neuron 2 fired a spike at 2 ms, and neuron 1 fired a spike at 3 ms. Alternatively, you
can also call the spike_trains method to get a dictionary mapping neuron indices to arrays of spike times, i.e. in
the above example, spike_trains = M.spike_trains(); spike_trains[1] would return array([
3.]) * msecond. The num_spikes attribute gives the total number of spikes recorded, and count is an array of
the length of the recorded group giving the total number of spikes recorded from each neuron.
Example:

G = NeuronGroup(N, model='...')
M = SpikeMonitor(G)
run(runtime)
plot(M.t/ms, M.i, '.')

If you are only interested in summary statistics but not the individual spikes, you can set the record argument to False.
You will then not have access to i and t but you can still get the count and the total number of spikes (num_spikes).

166 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.5.1

3.9.2 Recording variables at spike time

By default, a SpikeMonitor only records the time of the spike and the index of the neuron that spiked. Sometimes it
can be useful to addtionaly record other variables, e.g. the membrane potential for models where the threshold is not at a
fixed value. This can be done by providing an extra variables argument, the recorded variable can then be accessed
as an attribute of the SpikeMonitor, e.g.:

G = NeuronGroup(10, 'v : 1', threshold='rand()<100*Hz*dt')
G.run_regularly('v = rand()')
M = SpikeMonitor(G, variables=['v'])
run(100*ms)
plot(M.t/ms, M.v, '.')

To conveniently access the values of a recorded variable for a single neuron, the SpikeMonitor.values method
can be used that returns a dictionary with the values for each neuron.:

G = NeuronGroup(N, '''dv/dt = (1-v)/(10*ms) : 1
v_th : 1''',

threshold='v > v_th',
randomly change the threshold after a spike:
reset='''v=0

v_th = clip(v_th + rand()*0.2 - 0.1, 0.1, 0.9)''')
G.v_th = 0.5
spike_mon = SpikeMonitor(G, variables='v')
run(1*second)
v_values = spike_mon.values('v')
print('Threshold crossing values for neuron 0: {}'.format(v_values[0]))
hist(spike_mon.v, np.arange(0, 1, .1))
show()

Note: Spikes are not the only events that can trigger recordings, see Custom events.

3.9.3 Recording variables continuously

To record how a variable evolves over time, use a StateMonitor, e.g. to record the variable v at every time step and
plot it for neuron 0:

G = NeuronGroup(...)
M = StateMonitor(G, 'v', record=True)
run(...)
plot(M.t/ms, M.v[0]/mV)

In general, you specify the group, variables and indices you want to record from. You specify the variables with a string
or list of strings, and the indices either as an array of indices or True to record all indices (but beware because this may
take a lot of memory).
After the simulation, you can access these variables as attributes of the monitor. They are 2D arrays with shape
(num_indices, num_times). The special attribute t is an array of length num_times with the corresponding
times at which the values were recorded.
Note that you can also use StateMonitor to record from Synapses where the indices are the synapse indices rather
than neuron indices.
In this example, we record two variables v and u, and record from indices 0, 10 and 100. Afterwards, we plot the recorded
values of v and u from neuron 0:

3.9. Recording during a simulation 167

Brian 2 Documentation, Release 2.5.1

G = NeuronGroup(...)
M = StateMonitor(G, ('v', 'u'), record=[0, 10, 100])
run(...)
plot(M.t/ms, M.v[0]/mV, label='v')
plot(M.t/ms, M.u[0]/mV, label='u')

There are two subtly different ways to get the values for specific neurons: you can either index the 2D array stored in
the attribute with the variable name (as in the example above) or you can index the monitor itself. The former will use
an index relative to the recorded neurons (e.g. M.v[1] will return the values for the second recorded neuron which is
the neuron with the index 10 whereas M.v[10] would raise an error because only three neurons have been recorded),
whereas the latter will use an absolute index corresponding to the recorded group (e.g. M[1].vwill raise an error because
the neuron with the index 1 has not been recorded and M[10].v will return the values for the neuron with the index 10).
If all neurons have been recorded (e.g. with record=True) then both forms give the same result.
Note that for plotting all recorded values at once, you have to transpose the variable values:

plot(M.t/ms, M.v.T/mV)

Note: In contrast to Brian 1, the values are recorded at the beginning of a time step and not at the end (you can set
the when argument when creating a StateMonitor, details about scheduling can be found here: Custom progress
reporting).

3.9.4 Recording population rates

To record the time-varying firing rate of a population of neurons usePopulationRateMonitor. After the simulation
the monitor will have two attributes t and rate, the latter giving the firing rate at each time step corresponding to the
time in t. For example:

G = NeuronGroup(...)
M = PopulationRateMonitor(G)
run(...)
plot(M.t/ms, M.rate/Hz)

To get a smoother version of the rate, use PopulationRateMonitor.smooth_rate.

The following topics are not essential for beginners.

168 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.5.1

3.9.5 Getting all data

Note that all monitors are implement as “groups”, so you can get all the stored values in a monitor with the get_states
method, which can be useful to dump all recorded data to disk, for example:

import pickle
group = NeuronGroup(...)
state_mon = StateMonitor(group, 'v', record=...)
run(...)
data = state_mon.get_states(['t', 'v'])
with open('state_mon.pickle', 'w') as f:

pickle.dump(data, f)

3.9.6 Recording values for a subset of the run

Monitors can be created and deleted between runs, e.g. to ignore the first second of your simulation in your recordings
you can do:

Set up network without monitor
run(1*second)
state_mon = StateMonitor(....)
run(...) # Continue run and record with the StateMonitor

Alternatively, you can set the monitor’s active attribute as explained in the Scheduling section.

3.9.7 Freeing up memory in long recordings

Creating and deleting monitors can also be useful to free memory during a long recording. The following will do a
simulation run, dump the monitor data to disk, delete the monitor and finally continue the run with a new monitor:

import pickle
Set up network
state_mon = StateMonitor(...)
run(...) # a long run
data = state_mon.get_states(...)
with open('first_part.data', 'w') as f:

pickle.dump(data, f)
del state_mon
del data
state_mon = StateMonitor(...)
run(...) # another long run

Note that this technique cannot be applied in standalone mode.

3.9. Recording during a simulation 169

Brian 2 Documentation, Release 2.5.1

3.9.8 Recording random subsets of neurons

In large networks, you might only be interested in the activity of a random subset of neurons. While you can spec-
ify a record argument for a StateMonitor that allows you to select a subset of neurons, this is not possible for
SpikeMonitor/EventMonitor and PopulationRateMonitor. However, Brian allows you to record with
these monitors from a subset of neurons by using a subgroup:

group = NeuronGroup(1000, ...)
spike_mon = SpikeMonitor(group[:100]) # only record first 100 neurons

It might seem like a restriction that such a subgroup has to be contiguous, but the order of neurons in a group does not
have any meaning as such; in a randomly ordered group of neurons, any contiguous group of neurons can be considered
a random subset. If some aspects of your model do depend on the position of the neuron in a group (e.g. a ring model,
where neurons are connected based on their distance in the ring, or a model where initial values or parameters span a
range of values in a regular fashion), then this requires an extra step: instead of using the order of neurons in the group
directly, or depending on the neuron index i, create a new, shuffled, index variable as part of the model definition and
then depend on this index instead:

group = NeuronGroup(10000, '''....
index : integer (constant)''')

indices = group.i[:]
np.random.shuffle(indices)
group.index = indices
Then use 'index' in string expressions or use it as an index array
for initial values/parameters defined as numpy arrays

If this solution is not feasible for some reason, there is another approach that works for a SpikeMoni-
tor/EventMonitor. You can add an additional flag to each neuron, stating whether it should be recorded or not.
Then, you define a new custom event that is identical to the event you are interested in, but additionally requires the flag
to be set. E.g. to only record the spikes of neurons with the to_record attribute set:

group = NeuronGroup(..., '''...
to_record : boolean (constant)''',

threshold='...', reset='...',
events={'recorded_spike': '... and to_record'})

group.to_record = ...
mon_events = EventMonitor(group, 'recorded_spike')

Note that this solution will evaluate the threshold condition for each neuron twice, and is therefore slightly less efficient.
There’s one additional caveat: you’ll have to manually include and not_refractory in your events definition if
your neuron uses refractoriness. This is done automatically for the threshold condition, but not for any user-defined
events.

3.10 Running a simulation

For Brian 1 users

See the document Networks and clocks (Brian 1 –> 2 conversion) for details how to convert Brian 1 code.

• Networks

170 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.5.1

• Setting the simulation time step

• Progress reporting

• Continuing/repeating simulations

• Multiple magic runs

• Changing the simulation time step

• Profiling

• Scheduling

• Store/restore

To run a simulation, one either constructs a new Network object and calls its Network.run method, or uses the
“magic” system and a plain run() call, collecting all the objects in the current namespace.
Note that Brian has several different ways of running the actual computations, and choosing the right one can make orders
of magnitude of difference in terms of simplicity and efficiency. See Computational methods and efficiency for more
details.

3.10.1 Networks

In most straightforward simulations, you do not have to explicitly create a Network object but instead can simply call
run() to run a simulation. This is what is called the “magic” system, because Brian figures out automatically what you
want to do.
When calling run(), Brian runs the collect() function to gather all the objects in the current context. It will include
all the objects that are “visible”, i.e. that you could refer to with an explicit name:

G = NeuronGroup(10, 'dv/dt = -v / (10*ms) : 1',
threshold='v > 1', reset='v = 0')

S = Synapses(G, G, model='w:1', on_pre='v+=w')
S.connect('i!=j')
S.w = 'rand()'
mon = SpikeMonitor(G)

run(10*ms) # will include G, S, mon

Note that it will not automatically include objects that are “hidden” in containers, e.g. if you store several monitors in a
list. Use an explicit Network object in this case. It might be convenient to use the collect() function when creating
the Network object in that case:

G = NeuronGroup(10, 'dv/dt = -v / (10*ms) : 1',
threshold='v > 1', reset='v = 0')

S = Synapses(G, G, model='w:1', on_pre='v+=w')
S.connect('i!=j')
S.w = 'rand()'
monitors = [SpikeMonitor(G), StateMonitor(G, 'v', record=True)]

a simple run would not include the monitors
net = Network(collect()) # automatically include G and S
net.add(monitors) # manually add the monitors

net.run(10*ms)

3.10. Running a simulation 171

Brian 2 Documentation, Release 2.5.1

3.10.2 Setting the simulation time step

To set the simulation time step for every simulated object, set the dt attribute of the defaultclock which is used by
all objects that do not explicitly specify a clock or dt value during construction:

defaultclock.dt = 0.05*ms

If some objects should use a different clock (e.g. to record values with a StateMonitor not at every time step in a
long running simulation), you can provide a dt argument to the respective object:

s_mon = StateMonitor(group, 'v', record=True, dt=1*ms)

To sum up:
• Set defaultclock.dt to the time step that should be used by most (or all) of your objects.
• Set dt explicitly when creating objects that should use a different time step.

Behind the scenes, a new Clock object will be created for each object that defines its own dt value.

3.10.3 Progress reporting

Especially for long simulations it is useful to get some feedback about the progress of the simulation. Brian offers a few
built-in options and an extensible system to report the progress of the simulation. In the Network.run or run()
call, two arguments determine the output: report and report_period. When report is set to 'text' or
'stdout', the progress will be printed to the standard output, when it is set to 'stderr', it will be printed to
“standard error”. There will be output at the start and the end of the run, and during the run in report_period
intervals. It is also possible to do custom progress reporting.

3.10.4 Continuing/repeating simulations

To store the current state of the simulation, call store() (use the Network.store method for a Network). You
can store more than one snapshot of a system by providing a name for the snapshot; if store() is called without a
specified name, 'default' is used as the name. To restore the state, use restore().
The following simple example shows how this system can be used to run several trials of an experiment:

set up the network
G = NeuronGroup(...)
...
spike_monitor = SpikeMonitor(G)

Snapshot the state
store()

Run the trials
spike_counts = []
for trial in range(3):

restore() # Restore the initial state
run(...)
store the results
spike_counts.append(spike_monitor.count)

The following schematic shows how multiple snapshots can be used to run a network with a separate “train” and “test”
phase. After training, the test is run several times based on the trained network. The whole process of training and testing
is repeated several times as well:

172 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.5.1

set up the network
G = NeuronGroup(..., '''...

test_input : amp
...''')

S = Synapses(..., '''...
plastic : boolean (shared)
...''')

G.v = ...
S.connect(...)
S.w = ...

First snapshot at t=0
store('initialized')

Run 3 complete trials
for trial in range(3):

Simulate training phase
restore('initialized')
S.plastic = True
run(...)

Snapshot after learning
store('after_learning')

Run 5 tests after the training
for test_number in range(5):

restore('after_learning')
S.plastic = False # switch plasticity off
G.test_input = test_inputs[test_number]
monitor the activity now
spike_mon = SpikeMonitor(G)
run(...)
Do something with the result
...

The following topics are not essential for beginners.

3.10.5 Multiple magic runs

When you use more than a single run() statement, the magic system tries to detect which of the following two situations
applies:

1. You want to continue a previous simulation
2. You want to start a new simulation

For this, it uses the following heuristic: if a simulation consists only of objects that have not been run, it will start a new
simulation starting at time 0 (corresponding to the creation of a new Network object). If a simulation only consists of
objects that have been simulated in the previous run() call, it will continue that simulation at the previous time.

3.10. Running a simulation 173

Brian 2 Documentation, Release 2.5.1

If neither of these two situations apply, i.e., the network consists of a mix of previously run objects and new objects, an
error will be raised. If this is not a mistake but intended (e.g. when a new input source and synapses should be added to
a network at a later stage), use an explicit Network object.
In these checks, “non-invalidating” objects (i.e. objects that have BrianObject.
invalidates_magic_network set to False) are ignored, e.g. creating new monitors is always possible.
Note that if you do not want to run an object for the complete duration of your simulation, you can create the object in
the beginning of your simulation and then set its active attribute. For details, see the Scheduling section below.

3.10.6 Changing the simulation time step

You can change the simulation time step after objects have been created or even after a simulation has been run:

defaultclock.dt = 0.1*ms
Set the network
...
run(initial_time)
defaultclock.dt = 0.01*ms
run(full_time - initial_time)

To change the time step between runs for objects that do not use the defaultclock, you cannot directly change their
dt attribute (which is read-only) but instead you have to change the dt of the clock attribute. If you want to change
the dt value of several objects at the same time (but not for all of them, i.e. when you cannot use defaultclock.dt)
then you might consider creating a Clock object explicitly and then passing this clock to each object with the clock
keyword argument (instead of dt). This way, you can later change the dt for several objects at once by assigning a new
value to Clock.dt.
Note that a change of dt has to be compatible with the internal representation of clocks as an integer value (the number
of elapsed time steps). For example, you can simulate an object for 100ms with a time step of 0.1ms (i.e. for 1000 steps)
and then switch to a dt of 0.5ms, the time will then be internally represented as 200 steps. You cannot, however, switch
to a dt of 0.3ms, because 100ms are not an integer multiple of 0.3ms.

3.10.7 Profiling

To get an idea which parts of a simulation take the most time, Brian offers a basic profiling mechanism. If a simulation
is run with the profile=True keyword argument, it will collect information about the total simulation time for each
CodeObject. This information can then be retrieved from Network.profiling_info, which contains a list of
(name, time) tuples. For convenience, a string summary can be obtained by calling profiling_summary()
(which will automatically refer to the current “magic” network). The following example shows profiling output after
running the CUBA example (where the neuronal state updates take up the most time):

>>> from brian2 import profiling_summary
>>> profiling_summary(show=5) # show the 5 objects that took the longest
Profiling summary
=================
neurongroup_stateupdater 5.54 s 61.32 %
synapses_pre 1.39 s 15.39 %
synapses_1_pre 1.03 s 11.37 %
spikemonitor 0.59 s 6.55 %
neurongroup_thresholder 0.33 s 3.66 %

If you use an explicit Network object, you need to pass it to profiling_summary:

174 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.5.1

>>> net = Network(...)
>>> profiling_summary(net, ...)

3.10.8 Scheduling

Every simulated object in Brian has three attributes that can be specified at object creation time: dt, when, and order.
The time step of the simulation is determined by dt, if it is specified, or otherwise by defaultclock.dt. Changing
this will therefore change the dt of all objects that don’t specify one. Alternatively, a clock object can be specified
directly, this can be useful if a clock should be shared between several objects – under most circumstances, however, a
user should not have to deal with the creation of Clock objects and just define dt.
During a single time step, objects are updated in an order according first to their when argument’s position in the schedule.
This schedule is determined by Network.schedule which is a list of strings, determining “execution slots” and their
order. It defaults to: ['start', 'groups', 'thresholds', 'synapses', 'resets', 'end']. In
addition to the names provided in the schedule, names such as before_thresholds or after_synapses can be
used that are understood as slots in the respective positions. The default for the when attribute is a sensible value for
most objects (resets will happen in the reset slot, etc.) but sometimes it make sense to change it, e.g. if one would
like a StateMonitor, which by default records in the start slot, to record the membrane potential before a reset is
applied (otherwise no threshold crossings will be observed in the membrane potential traces).
Finally, if during a time step two objects fall in the same execution slot, they will be updated in ascending order according
to their order attribute, an integer number defaulting to 0. If two objects have the same when and order attribute
then they will be updated in an arbitrary but reproducible order (based on the lexicographical order of their names).
Note that objects that don’t do any computation by themselves but only act as a container for other objects (e.g. a Neu-
ronGroup which contains a StateUpdater, a Resetter and a Thresholder), don’t have any value for when,
but pass on the given values for dt and order to their containing objects.
If you want your simulation object to run only for a particular time period of the whole simulation, you can use the
active attribute. For example, this can be useful when you want a monitor to be active only for some time out of a long
simulation:

Set up the network
...
monitor = SpikeMonitor(...)
monitor.active = False
run(long_time*seconds) # not recording
monitor.active = True
run(required_time*seconds) # recording

To see how the objects in a network are scheduled, you can use the scheduling_summary() function:

>>> group = NeuronGroup(10, 'dv/dt = -v/(10*ms) : 1', threshold='v > 1',
... reset='v = 0')
>>> mon = StateMonitor(group, 'v', record=True, dt=1*ms)
>>> scheduling_summary()

object | part of | Clock␣
↪→dt | when | order | active
--+-----------------------------+---------------
↪→---------+------------+-------+-------
statemonitor (StateMonitor) | statemonitor (StateMonitor) | 1. ms (every␣
↪→10 steps) | start | 0 | yes
neurongroup_stateupdater (StateUpdater) | neurongroup (NeuronGroup) | 100. us␣
↪→(every step) | groups | 0 | yes
neurongroup_thresholder (Thresholder) | neurongroup (NeuronGroup) | 100. us␣
↪→(every step) | thresholds | 0 | yes

(continues on next page)

3.10. Running a simulation 175

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
neurongroup_resetter (Resetter) | neurongroup (NeuronGroup) | 100. us␣
↪→(every step) | resets | 0 | yes

As you can see in the output above, the StateMonitor will only record the membrane potential every 10 time steps,
but when it does, it will do it at the start of the time step, before the numerical integration, the thresholding, and the reset
operation takes place.
Every new Network starts a simulation at time 0; Network.t is a read-only attribute, to go back to a previous moment
in time (e.g. to do another trial of a simulation with a new noise instantiation) use the mechanism described below.

3.10.9 Store/restore

Note that Network.run, Network.store and Network.restore (or run(), store(), restore()) are
the only way of affecting the time of the clocks. In contrast to Brian1, it is no longer necessary (nor possible) to directly
set the time of the clocks or call a reinit function.
The state of a network can also be stored on disk with the optional filename argument of Network.
store/store(). This way, you can run the initial part of a simulation once, store it to disk, and then continue
from this state later. Note that the store()/restore() mechanism does not re-create the network as such, you still
need to construct all the NeuronGroup, Synapses, StateMonitor, … objects, restoring will only restore all the
state variable values (membrane potential, conductances, synaptic connections/weights/delays, …). This restoration does
however restore the internal state of the objects as well, e.g. spikes that have not been delivered yet because of synaptic
delays will be delivered correctly.

3.11 Multicompartment models

For Brian 1 users

See the document Multicompartmental models (Brian 1 –> 2 conversion) for details how to convert Brian 1 code.

It is possible to create neuron models with a spatially extended morphology, using the SpatialNeuron class. A Spa-
tialNeuron is a single neuron with many compartments. Essentially, it works as a NeuronGroup where elements
are compartments instead of neurons.
A SpatialNeuron is specified by a morphology (see Creating a neuron morphology) and a set of equations for trans-
membrane currents (see Creating a spatially extended neuron).

3.11.1 Creating a neuron morphology

Schematic morphologies

Morphologies can be created combining geometrical objects:

soma = Soma(diameter=30*um)
cylinder = Cylinder(diameter=1*um, length=100*um, n=10)

The first statement creates a single iso-potential compartment (i.e. with no axial resistance within the compartment), with
its area calculated as the area of a sphere with the given diameter. The second one specifies a cylinder consisting of 10
compartments with identical diameter and the given total length.

176 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.5.1

For more precise control over the geometry, you can specify the length and diameter of each individual compartment,
including the diameter at the start of the section (i.e. for n compartments: n length and n+1 diameter values) in a
Section object:

section = Section(diameter=[6, 5, 4, 3, 2, 1]*um, length=[10, 10, 10, 5, 5]*um, n=5)

The individual compartments are modeled as truncated cones, changing the diameter linearly between the given diameters
over the length of the compartment. Note that the diameter argument specifies the values at the nodes between the
compartments, but accessing the diameter attribute of a Morphology object will return the diameter at the center
of the compartment (see the note below).
The following table summarizes the different options to create schematic morphologies (the black compartment before
the start of the section represents the parent compartment with diameter 15 μm, not specified in the code below):

Example
Soma

Soma always has a single␣
↪→compartment
Soma(diameter=30*um)

Cylinder
Each compartment has fixed␣
↪→length and diameter
Cylinder(n=5, diameter=10*um,␣
↪→length=50*um)

Section
Length and diameter␣
↪→individually defined for␣
↪→each compartment (at start
and end)
Section(n=5, diameter=[15, 5,␣
↪→10, 5, 10, 5]*um,

length=[10, 20, 5, 5,␣
↪→10]*um)

Note: For a Section, the diameter argument specifies the diameter between the compartments (and at the begin-
ning/end of the first/last compartment). the corresponding values can therefore be later retrieved from the Morphology
via the start_diameter and end_diameter attributes. The diameter attribute of a Morphology does cor-
respond to the diameter at the midpoint of the compartment. For a Cylinder, start_diameter, diameter, and
end_diameter are of course all identical.

The tree structure of a morphology is created by attaching Morphology objects together:

morpho = Soma(diameter=30*um)
morpho.axon = Cylinder(length=100*um, diameter=1*um, n=10)
morpho.dendrite = Cylinder(length=50*um, diameter=2*um, n=5)

These statements create a morphology consisting of a cylindrical axon and a dendrite attached to a spherical soma. Note
that the names axon and dendrite are arbitrary and chosen by the user. For example, the same morphology can be
created as follows:

3.11. Multicompartment models 177

Brian 2 Documentation, Release 2.5.1

morpho = Soma(diameter=30*um)
morpho.output_process = Cylinder(length=100*um, diameter=1*um, n=10)
morpho.input_process = Cylinder(length=50*um, diameter=2*um, n=5)

The syntax is recursive, for example two sections can be added at the end of the dendrite as follows:

morpho.dendrite.branch1 = Cylinder(length=50*um, diameter=1*um, n=3)
morpho.dendrite.branch2 = Cylinder(length=50*um, diameter=1*um, n=3)

Equivalently, one can use an indexing syntax:

morpho['dendrite']['branch1'] = Cylinder(length=50*um, diameter=1*um, n=3)
morpho['dendrite']['branch2'] = Cylinder(length=50*um, diameter=1*um, n=3)

The names given to sections are completely up to the user. However, names that consist of a single digit (1 to 9) or the
letters L (for left) and R (for right) allow for a special short syntax: they can be joined together directly, without the needs
for dots (or dictionary syntax) and therefore allow to quickly navigate through themorphology tree (e.g. morpho.LRLLR
is equivalent to morpho.L.R.L.L.R). This short syntax can also be used to create trees:

>>> morpho = Soma(diameter=30*um)
>>> morpho.L = Cylinder(length=10*um, diameter=1*um, n=3)
>>> morpho.L1 = Cylinder(length=5*um, diameter=1*um, n=3)
>>> morpho.L2 = Cylinder(length=5*um, diameter=1*um, n=3)
>>> morpho.L3 = Cylinder(length=5*um, diameter=1*um, n=3)
>>> morpho.R = Cylinder(length=10*um, diameter=1*um, n=3)
>>> morpho.RL = Cylinder(length=5*um, diameter=1*um, n=3)
>>> morpho.RR = Cylinder(length=5*um, diameter=1*um, n=3)

The above instructions create a dendritic tree with two main sections, three sections attached to the first section and two
to the second. This can be verified with the Morphology.topology method:

>>> morpho.topology()
() [root]

`---| .L
`---| .L.1
`---| .L.2
`---| .L.3

`---| .R
`---| .R.L
`---| .R.R

Note that an expression such as morpho.L will always refer to the entire subtree. However, accessing the attributes (e.g.
diameter) will only return the values for the given section.

Note: To avoid ambiguities, do not use names for sections that can be interpreted in the abbreviated way detailed above.
For example, do not name a child section L1 (which will be interpreted as the first child of the child L)

The number of compartments in a section can be accessed with morpho.n (or morpho.L.n, etc.), the number
of total sections and compartments in a subtree can be accessed with morpho.total_sections and morpho.
total_compartments respectively.

178 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.5.1

Adding coordinates

For plotting purposes, it can be useful to add coordinates to a Morphology that was created using the “schematic”
approach described above. This can be done by calling the generate_coordinates method on a morphology,
which will return an identical morphology but with additional 2D or 3D coordinates. By default, this method creates a
morphology according to a deterministic algorithm in 2D:

new_morpho = morpho.generate_coordinates()

To get more “realistic” morphologies, this function can also be used to create morphologies in 3D where the orientation
of each section differs from the orientation of the parent section by a random amount:

new_morpho = morpho.generate_coordinates(section_randomness=25)

3.11. Multicompartment models 179

Brian 2 Documentation, Release 2.5.1

This algorithm will base the orientation of each section on the orientation of the parent section and then randomly perturb
this orientation. More precisely, the algorithm first chooses a random vector orthogonal to the orientation of the parent
section. Then, the section will be rotated around this orthogonal vector by a random angle, drawn from an exponential
distribution with the β parameter (in degrees) given by section_randomness. This β parameter specifies both
the mean and the standard deviation of the rotation angle. Note that no maximum rotation angle is enforced, values for
section_randomness should therefore be reasonably small (e.g. using a section_randomness of 45 would
already lead to a probability of ~14% that the section will be rotated by more than 90 degrees, therefore making the
section go “backwards”).
In addition, also the orientation of each compartment within a section can be randomly varied:

new_morpho = morpho.generate_coordinates(section_randomness=25,
compartment_randomness=15)

The algorithm is the same as the one presented above, but applied individually to each compartment within a section (still
based on the orientation on the parent section, not on the orientation of the previous compartment).

Complex morphologies

Morphologies can also be created from information about the compartment coordinates in 3D space. Such morphologies
can be loaded from a .swc file (a standard format for neuronal morphologies; for a large database of morphologies in
this format see http://neuromorpho.org):

morpho = Morphology.from_file('corticalcell.swc')

To manually create a morphology from a list of points in a similar format to SWC files, see Morphology.
from_points.
Morphologies that are created in such a way will use standard names for the sections that allow for the short syntax shown
in the previous sections: if a section has one or two child sections, then they will be called L and R, otherwise they will
be numbered starting at 1.
Morphologies with coordinates can also be created section by section, following the same syntax as for “schematic”
morphologies:

soma = Soma(diameter=30*um, x=50*um, y=20*um)
cylinder = Cylinder(n=10, x=[0, 100]*um, diameter=1*um)
section = Section(n=5,

x=[0, 10, 20, 30, 40, 50]*um,
y=[0, 10, 20, 30, 40, 50]*um,
z=[0, 10, 10, 10, 10, 10]*um,
diameter=[6, 5, 4, 3, 2, 1]*um)

Note that the x, y, z attributes of Morphology and SpatialNeuron will return the coordinates at the midpoint
of each compartment (as for all other attributes that vary over the length of a compartment, e.g. diameter or dis-

180 Chapter 3. User’s guide

http://neuromorpho.org

Brian 2 Documentation, Release 2.5.1

tance), but during construction the coordinates refer to the start and end of the section (Cylinder), respectively to
the coordinates of the nodes between the compartments (Section).
A few additional remarks:

1. In the majority of simulations, coordinates are not used in the neuronal equations, therefore the coordinates are
purely for visualization purposes and do not affect the simulation results in any way.

2. Coordinate specification cannot be combined with length specification – lengths are automatically calculated from
the coordinates.

3. The coordinate specification can also be 1- or 2-dimensional (as in the first two examples above), the unspecified
coordinate will use 0 μm.

4. All coordinates are interpreted relative to the parent compartment, i.e. the point (0 μm, 0 μm, 0 μm) refers to
the end point of the previous compartment. Most of the time, the first element of the coordinate specification is
therefore 0 μm, to continue a section where the previous one ended. However, it can be convenient to use a value
different from 0 μm for sections connecting to the Soma to make them (visually) connect to a point on the sphere
surface instead of the center of the sphere.

3.11.2 Creating a spatially extended neuron

A SpatialNeuron is a spatially extended neuron. It is created by specifying the morphology as a Morphology
object, the equations for transmembrane currents, and optionally the specific membrane capacitance Cm and intracellular
resistivity Ri:

gL = 1e-4*siemens/cm**2
EL = -70*mV
eqs = '''
Im=gL * (EL - v) : amp/meter**2
I : amp (point current)
'''
neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=1*uF/cm**2, Ri=100*ohm*cm)
neuron.v = EL + 10*mV

Several state variables are created automatically: the SpatialNeuron inherits all the geometrical variables of the
compartments (length, diameter, area, volume), as well as the distance variable that gives the distance to
the soma. For morphologies that use coordinates, the x, y and z variables are provided as well. Additionally, a state
variable Cm is created. It is initialized with the value given at construction, but it can be modified on a compartment per
compartment basis (which is useful to model myelinated axons). The membrane potential is stored in state variable v.
Note that for all variable values that vary across a compartment (e.g. distance, x, y, z, v), the value that is reported
is the value at the midpoint of the compartment.
The key state variable, which must be specified at construction, is Im. It is the total transmembrane current, expressed in
units of current per area. This is a mandatory line in the definition of the model. The rest of the string description may
include other state variables (differential equations or subexpressions) or parameters, exactly as in NeuronGroup. At
every timestep, Brian integrates the state variables, calculates the transmembrane current at every point on the neuronal
morphology, and updates v using the transmembrane current and the diffusion current, which is calculated based on the
morphology and the intracellular resistivity. Note that the transmembrane current is a surfacic current, not the total current
in the compartment. This choice means that the model equations are independent of the number of compartments chosen
for the simulation. The space and time constants can obtained for any point of the neuron with the space_constant
respectively time_constant attributes:

l = neuron.space_constant[0]
tau = neuron.time_constant[0]

3.11. Multicompartment models 181

Brian 2 Documentation, Release 2.5.1

The calculation is based on the local total conductance (not just the leak conductance), therefore, it can potentially vary
during a simulation (e.g. decrease during an action potential). The reported value is only correct for compartments with
a cylindrical geometry, though, it does not give reasonable values for compartments with strongly varying diameter.
To inject a current I at a particular point (e.g. through an electrode or a synapse), this current must be divided by the
area of the compartment when inserted in the transmembrane current equation. This is done automatically when the flag
point current is specified, as in the example above. This flag can apply only to subexpressions or parameters with
amp units. Internally, the expression of the transmembrane current Im is simply augmented with +I/area. A current
can then be injected in the first compartment of the neuron (generally the soma) as follows:

neuron.I[0] = 1*nA

State variables of the SpatialNeuron include all the compartments of that neuron (including subtrees). Therefore,
the statement neuron.v = EL + 10*mV sets the membrane potential of the entire neuron at -60 mV.
Subtrees can be accessed by attribute (in the same way as in Morphology objects):

neuron.axon.gNa = 10*gL

Note that the state variables correspond to the entire subtree, not just the main section. That is, if the axon had branches,
then the above statement would change gNa on the main section and all the sections in the subtree. To access the main
section only, use the attribute main:

neuron.axon.main.gNa = 10*gL

A typical use case is when one wants to change parameter values at the soma only. For example, inserting an electrode
current at the soma is done as follows:

neuron.main.I = 1*nA

A part of a section can be accessed as follows:

initial_segment = neuron.axon[10*um:50*um]

Finally, similar to the way that you can refer to a subset of neurons of a NeuronGroup, you can also index the Spa-
tialNeuron object itself, e.g. to get a group representing only the first compartment of a cell (typically the soma),
you can use:

soma = neuron[0]

In the same way as for sections, you can also use slices, either with the indices of compartments, or with the distance from
the root:

first_compartments = neuron[:3]
first_compartments = neuron[0*um:30*um]

However, note that this is restricted to contiguous indices which most of the time means that all compartments indexed
in this way have to be part of the same section. Such indices can be acquired directly from the morphology:

axon = neuron[morpho.axon.indices[:]]

or, more concisely:

axon = neuron[morpho.axon]

182 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.5.1

Synaptic inputs

There are two methods to have synapses on SpatialNeuron. The first one to insert synaptic equations directly in the
neuron equations:

eqs='''
Im = gL * (EL - v) : amp/meter**2
Is = gs * (Es - v) : amp (point current)
dgs/dt = -gs/taus : siemens
'''
neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=1*uF/cm**2, Ri=100*ohm*cm)

Note that, as for electrode stimulation, the synaptic current must be defined as a point current. Then we use a Synapses
object to connect a spike source to the neuron:

S = Synapses(stimulation, neuron, on_pre='gs += w')
S.connect(i=0, j=50)
S.connect(i=1, j=100)

This creates two synapses, on compartments 50 and 100. One can specify the compartment number with its spatial
position by indexing the morphology:

S.connect(i=0, j=morpho[25*um])
S.connect(i=1, j=morpho.axon[30*um])

In this method for creating synapses, there is a single value for the synaptic conductance in any compartment. This means
that it will fail if there are several synapses onto the same compartment and synaptic equations are nonlinear. The second
method, which works in such cases, is to have synaptic equations in the Synapses object:

eqs='''
Im = gL * (EL - v) : amp/meter**2
Is = gs * (Es - v) : amp (point current)
gs : siemens
'''
neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=1 * uF / cm ** 2, Ri=100 *␣
↪→ohm * cm)
S = Synapses(stimulation, neuron, model='''dg/dt = -g/taus : siemens

gs_post = g : siemens (summed)''',
on_pre='g += w')

Here each synapse (instead of each compartment) has an associated value g, and all values of g for each compartment
(i.e., all synapses targeting that compartment) are collected into the compartmental variable gs.

Detecting spikes

To detect and record spikes, we must specify a threshold condition, essentially in the same way as for a NeuronGroup:

neuron = SpatialNeuron(morphology=morpho, model=eqs, threshold='v > 0*mV', refractory=
↪→'v > -10*mV')

Here spikes are detected when the membrane potential v reaches 0 mV. Because there is generally no explicit reset in this
type of model (although it is possible to specify one), v remains above 0 mV for some time. To avoid detecting spikes
during this entire time, we specify a refractory period. In this case no spike is detected as long as v is greater than -10
mV. Another possibility could be:

3.11. Multicompartment models 183

Brian 2 Documentation, Release 2.5.1

neuron = SpatialNeuron(morphology=morpho, model=eqs, threshold='m > 0.5', refractory=
↪→'m > 0.4')

where m is the state variable for sodium channel activation (assuming this has been defined in the model). Here a spike is
detected when half of the sodium channels are open.
With the syntax above, spikes are detected in all compartments of the neuron. To detect them in a single compartment,
use the threshold_location keyword:

neuron = SpatialNeuron(morphology=morpho, model=eqs, threshold='m > 0.5', threshold_
↪→location=30,

refractory='m > 0.4')

In this case, spikes are only detecting in compartment number 30. Reset then applies locally to that compartment (if a
reset statement is defined). Again the location of the threshold can be specified with spatial position:

neuron = SpatialNeuron(morphology=morpho, model=eqs, threshold='m > 0.5',
threshold_location=morpho.axon[30*um],
refractory='m > 0.4')

Subgroups

In the same way that you can refer to a subset of neurons in a NeuronGroup, you can also refer to a subset of compart-
ments in a SpatialNeuron

3.12 Computational methods and efficiency

• Runtime code generation

• Standalone code generation

• Compiler settings

Brian has several different methods for running the computations in a simulation. The default mode is Runtime code
generation, which runs the simulation loop in Python but compiles and executes the modules doing the actual simulation
work (numerical integration, synaptic propagation, etc.) in a defined target language. Brian will select the best available
target language automatically. OnWindows, to ensure that you get the advantages of compiled code, read the instructions
on installing a suitable compiler in Requirements for C++ code generation. Runtime mode has the advantage that you can
combine the computations performed by Brian with arbitrary Python code specified as NetworkOperation.
The fact that the simulation is run in Python means that there is a (potentially big) overhead for each simulated time step.
An alternative is to run Brian in with Standalone code generation – this is in general faster (for certain types of simulations
much faster) but cannot be used for all kinds of simulations. To enable this mode, add the following line after your Brian
import, but before your simulation code:

set_device('cpp_standalone')

For detailed control over the compilation process (both for runtime and standalone code generation), you can change the
Cleaning up after a run that are used.

The following topics are not essential for beginners.

184 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.5.1

3.12.1 Runtime code generation

Code generation means that Brian takes the Python code and strings in your model and generates code in one of several
possible different languages which is then executed. The target language for this code generation process is set in the
codegen.target preference. By default, this preference is set to 'auto', meaning that it will choose the compiled language
target if possible and fall back to Python otherwise (also raising a warning). The compiled language target is 'cython'
which needs the Cython package in addition to a working C++ compiler. If you want to chose a code generation target
explicitly (e.g. because you want to get rid of the warning that only the Python fallback is available), set the preference
to 'numpy' or 'cython' at the beginning of your script:

from brian2 import *
prefs.codegen.target = 'numpy' # use the Python fallback

See Preferences for different ways of setting preferences.

Caching

When you run code with cython for the first time, it will take some time to compile the code. For short simulations,
this can make these targets to appear slow compared to the numpy target where such compilation is not necessary.
However, the compiled code is stored on disk and will be re-used for later runs, making these simulations start faster. If
you run many simulations with different code (e.g. Brian’s test suite), this code can take quite a bit of space on the disk.
During the import of the brian2 package, we check whether the size of the disk cache exceeds the value set by the
codegen.max_cache_dir_size preference (by default, 1GB) and display a message if this is the case. You can clear the disk
cache manually, or use the clear_cache function, e.g. clear_cache('cython').

Note: If you run simulations on parallel on a machine using the Network File System, see this known issue.

3.12.2 Standalone code generation

Brian supports generating standalone code for multiple devices. In this mode, running a Brian script generates source
code in a project tree for the target device/language. This code can then be compiled and run on the device, and modified
if needed. At the moment, the only “device” supported is standalone C++ code. In some cases, the speed gains can be
impressive, in particular for smaller networks with complicated spike propagation rules (such as STDP).
To use the C++ standalone mode, you only have to make very small changes to your script. The exact change depends on
whether your script has only a single run() (or Network.run) call, or several of them:

3.12. Computational methods and efficiency 185

http://cython.org/

Brian 2 Documentation, Release 2.5.1

Single run call

At the beginning of the script, i.e. after the import statements, add:

set_device('cpp_standalone')

The CPPStandaloneDevice.build function will be automatically called with default arguments right after the
run() call. If you need non-standard arguments then you can specify them as part of the set_device() call:

set_device('cpp_standalone', directory='my_directory', debug=True)

Multiple run calls

At the beginning of the script, i.e. after the import statements, add:

set_device('cpp_standalone', build_on_run=False)

After the last run() call, call device.build() explicitly:

device.build(directory='output', compile=True, run=True, debug=False)

The build function has several arguments to specify the output directory, whether or not to compile and run the project
after creating it and whether or not to compile it with debugging support or not.

Multiple builds

To run multiple full simulations (i.e. multiple device.build calls, not just multiple run() calls as discussed above),
you have to reinitialize the device again:

device.reinit()
device.activate()

Note that the device “forgets” about all previously set build options provided to set_device() (most importantly the
build_on_run option, but also e.g. the directory), you’ll have to specify them as part of the Device.activate
call. Also, Device.activatewill reset thedefaultclock, you’ll therefore have to set itsdt after theactivate
call if you want to use a non-default value.

Limitations

Not all features of Brian will work with C++ standalone, in particular Python based network operations and some array
based syntax such as S.w[0, :] = ... will not work. If possible, rewrite these using string based syntax and they
should work. Also note that since the Python code actually runs as normal, code that does something like this may not
behave as you would like:

results = []
for val in vals:

set up a network
run()
results.append(result)

The current C++ standalone code generation only works for a fixed number of run statements, not with loops. If you
need to do loops or other features not supported automatically, you can do so by inspecting the generated C++ source
code and modifying it, or by inserting code directly into the main loop as described below.

186 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.5.1

Variables

In standalone mode, code will only be executed when the simulation is run (after the run() call by default, or after a call
to Device.build, if set_device() has been called with build_on_run set to False). This means that it is
not possible to access state variables and synaptic connection indices in the Python script doing the set up of the model.
For example, the following code would work fine in runtime mode, but raise a NotImplementedError in standalone
mode:

neuron = NeuronGroup(10, 'v : volt')
neuron.v = '-70*mV + rand()*10*mV'
print(np.mean(neuron.v))

Sometimes, access is needed to make one variable depend on another variable for initialization. In such cases, it is often
possible to circumvent the issue by using initialization with string expressions for both variables. For example, to set the
initial membrane potential relative to a random leak reversal potential, the following code would work in runtime mode
but fail in standalone mode:

neuron = NeuronGroup(10, 'dv/dt = -g_L*(v - E_L)/tau : volt')
neuron.E_L = '-70*mV + rand()*10*mV' # E_L between -70mV and -60mV
neuron.v = neuron.E_L # initial membrane potential equal to E_L

Instead, you can initialize the variable v with a string expression, which means that standalone will execute it during the
run when the value of E_L is available:

neuron = NeuronGroup(10, 'dv/dt = -g_L*(v - E_L)/tau : volt')
neuron.E_L = '-70*mV + rand()*10*mV' # E_L between -70mV and -60mV
neuron.v = 'E_L' # works both in runtime and standalone mode

The same applies to synaptic indices. For example, if we want to set weights differently depending on the target index
of a synapse, the following would work in runtime mode but fail in standalone mode, since the synaptic indices have not
been determined yet:

neurons = NeuronGroup(10, '')
synapses = Synapses(neurons, neurons, 'w : 1')
synapses.connect(p=0.25)
Set weights to low values when targetting first five neurons and to high values␣
↪→otherwise
synapses.w[:, :5] = 0.1
synapses.w[:, 5:] = 0.9

Again, this initialization can be replaced by string expressions, so that standalone mode can evaluate them in the generated
code after synapse creation:

neurons = NeuronGroup(10, '')
synapses = Synapses(neurons, neurons, 'w : 1')
synapses.connect(p=0.25)
Set weights to low values when targetting first five neurons and to high values␣
↪→otherwise
synapses.w['j < 5'] = 0.1
synapses.w['j >= 5'] = 0.9

Note that this limitation only applies if the variables or synapses have been initialized in ways that require the execution of
code. If instead they are initialized with concrete values, they can be accessed in Python code even in standalone mode:

neurons = NeuronGroup(10, 'v : volt')
neurons.v = -70*mV

(continues on next page)

3.12. Computational methods and efficiency 187

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
print(np.mean(neurons.v)) # works in standalone
synapses = Synapses(neurons, neurons, 'w : 1')
synapses.connect(i=[0, 2, 4, 6, 8], j=[1, 3, 5, 7, 9])
works as well, since synaptic indices are known
synapses.w[:, :5] = 0.1
synapses.w[:, 5:] = 0.9

In any case, state variables, synaptic indices, and monitored variables can be accessed using standard syntax after a run
(with a few exceptions, e.g. string expressions for indexing).

Multi-threading with OpenMP

Warning: OpenMP code has not yet been well tested and so may be inaccurate.

When using the C++ standalone mode, you have the opportunity to turn on multi-threading, if your C++ compiler is
compatible with OpenMP. By default, this option is turned off and only one thread is used. However, by changing the
preferences of the codegen.cpp_standalone object, you can turn it on. To do so, just add the following line in your python
script:

prefs.devices.cpp_standalone.openmp_threads = XX

XX should be a positive value representing the number of threads that will be used during the simulation. Note that the
speedup will strongly depend on the network, so there is no guarantee that the speedup will be linear as a function of the
number of threads. However, this is working fine for networks with not too small timestep (dt > 0.1ms), and results do
not depend on the number of threads used in the simulation.

Custom code injection

It is possible to insert custom code directly into the generated code of a standalone simulation using a Device’s in-
sert_code method:

device.insert_code(slot, code)

slot can be one of main, before_start, after_start, before_network_run, af-
ter_network_run, before_end and after_end, which determines where the code is inserted. code
is the code in the Device’s language. Here is an example for the C++ Standalone Device:

device.insert_code('main', '''
cout << "Testing direct insertion of code." << endl;
''')

For the C++ Standalone Device, all code is inserted into the main.cpp file, here into the main slot, referring to the
main simulation function. This is a simplified version of this function in main.cpp:

int main(int argc, char **argv)
{

// before_start
brian_start();
// after_start

{{main_lines}}

(continues on next page)

188 Chapter 3. User’s guide

Brian 2 Documentation, Release 2.5.1

(continued from previous page)

// before_end
brian_end();
// after_end

return 0;
}

{{main_lines}} is replaced in the generated code with the actual simulation. Code inserted into the main slot
will be placed within the {{main_lines}}. brian_start allocates and initializes all arrays needed during the
simulation and brian_end writes the results to disc and deallocates memory. Within the {{main_lines}}, all
Network objects defined in Python are created and run. Code inserted in the before/after_network_run slot
will be inserted around the Network.run call, which starts the time loop. Note that if your Python script has multiple
Network objects or multiple run calls, code in the before/after_network_run slot will be inserted around
each Network.run call in the generated code.
The code injection mechanism has been used for benchmarking experiments, see e.g. here for Brian2CUDA benchmarks
or here for Brian2GeNN benchmarks.

Customizing the build process

In standalone mode, a standard “make file” is used to orchestrate the compilation and linking. To pro-
vide additional arguments to the make command (respectively nmake on Windows), you can use the de-
vices.cpp_standalone.extra_make_args_unix or devices.cpp_standalone.extra_make_args_windows preference. On
Linux, this preference is by default set to ['-j'] to enable parallel compilation. Note that you can also use these
arguments to overwrite variables in the make file, e.g. to use clang instead of the default gcc compiler:

prefs.devices.cpp_standalone.extra_make_args_unix += ['CC=clang++']

Cleaning up after a run

Standalone simulations store all results of a simulation (final state variable values and values stored in monitors) to disk.
These results can take up quite significant amount of space, and you might therefore want to delete these results when you
do not need them anymore. You can do this by using the device’s delete method:

device.delete()

Be aware that deleting the data will make all access to state variables fail, including the access to values in monitors. You
should therefore only delete the data after doing all analysis/plotting that you are interested in.
By default, this function will delete both the generated code and the data, i.e. the full project directory. If you want to
keep the code (which typically takes up little space compared to the results), exclude it from the deletion:

device.delete(code=False)

If you added any additional files to the project directory manually, these will not be deleted by default. To delete the full
directory regardless of its content, use the force option:

device.delete(force=True)

Note: When you initialize state variables with concrete values (and not with a string expression), they will be stored to
disk from your Python script and loaded from disk at the beginning of the standalone run. Since these values are necessary

3.12. Computational methods and efficiency 189

https://github.com/brian-team/brian2cuda/blob/835c978ad758bc0621e34344c1fb7b811ef8a118/brian2cuda/tests/features/cuda_configuration.py#L148-L156
https://github.com/brian-team/brian2genn_benchmarks/blob/6d1a6d9d97c05653cec2e413c9fd312cfe13e15c/benchmark_utils.py#L78-L136
https://clang.llvm.org/
https://gcc.gnu.org/

Brian 2 Documentation, Release 2.5.1

for the compiled binary file to run, they are considered “code” from the point of view of the delete function.

3.12.3 Compiler settings

If using C++ code generation (either via cython or standalone), the compiler settings can make a big difference for the
speed of the simulation. By default, Brian uses a set of compiler settings that switches on various optimizations and
compiles for running on the same architecture where the code is compiled. This allows the compiler to make use of as
many advanced instructions as possible, but reduces portability of the generated executable (which is not usually an issue).
If there are any issues with these compiler settings, for example because you are using an older version of the C++
compiler or because you want to run the generated code on a different architecture, you can change the settings by
manually specifying the codegen.cpp.extra_compile_args preference (or by using codegen.cpp.extra_compile_args_gcc or
codegen.cpp.extra_compile_args_msvc if you want to specify the settings for either compiler only).

3.13 Converting from integrated form to ODEs

Brian requires models to be expressed as systems of first order ordinary differential equations, and the effect of spikes
to be expressed as (possibly delayed) one-off changes. However, many neuron models are given in integrated form. For
example, one form of the Spike Response Model (SRM; Gerstner and Kistler 2002) is defined as

V (t) =
∑
i

wi

∑
ti

PSP(t− ti) + Vrest

where V (t) is the membrane potential, Vrest is the rest potential, wi is the synaptic weight of synapse i, and ti are the
timings of the spikes coming from synapse i, and PSP is a postsynaptic potential function.
An example PSP is the α-function PSP(t) = (t/τ)e−t/τ . For this function, we could rewrite the equation above in the
following ODE form:

τ
dV
dt = Vrest − V + g

τ
dg
dt = −g

g ← g + wi upon spike from synapse i

This could then be written in Brian as:

eqs = '''
dV/dt = (V_rest-V+g)/tau : 1
dg/dt = -g/tau : 1
'''
G = NeuronGroup(N, eqs, ...)
...
S = Synapses(G, G, 'w : 1', on_pre='g += w')

To see that these two formulations are the same, you first solve the problem for the case of a single synapse and a single
spike at time 0. The initial conditions at t = 0 will be V (0) = Vrest, g(0) = w.
To solve these equations, let’s substitute s = t/τ and take derivatives with respect to s instead of t, set u = V − Vrest,
and assume w = 1. This gives us the equations u′ = g − u, g′ = −g with initial conditions u(0) = 0, g(0) = 1. At this
point, you can either consult a textbook on solving linear systems of differential equations, or just plug this into Wolfram
Alpha to get the solution g(s) = e−s, u(s) = se−s which is equal to the PSP given above.
Now we use the linearity of these differential equations to see that it also works when w ̸= 0 and for summing over
multiple spikes at different times.

190 Chapter 3. User’s guide

https://www.wolframalpha.com/input/?i=u%27(s)%3Dg(s)-u(s),+g%27(s)%3D-g(s),+u(0)%3D0,+g(0)%3D1
https://www.wolframalpha.com/input/?i=u%27(s)%3Dg(s)-u(s),+g%27(s)%3D-g(s),+u(0)%3D0,+g(0)%3D1

Brian 2 Documentation, Release 2.5.1

In general, to convert from integrated form to ODE form, see Köhn and Wörgötter (1998), Sánchez-Montañás (2001),
and Jahnke et al. (1999). However, for some simple and widely used types of synapses, use the list below. In this list,
we assume synapses are postsynaptic potentials, but you can replace V (t) with a current or conductance for postsynaptic
currents or conductances. In each case, we give the Brian code with unitless variables, where eqs is the differential
equations for the target NeuronGroup, and on_pre is the argument to Synapses.
Exponential synapse V (t) = e−t/τ :

eqs = '''
dV/dt = -V/tau : 1
'''
on_pre = 'V += w'

Alpha synapse V (t) = (t/τ)e−t/τ :

eqs = '''
dV/dt = (x-V)/tau : 1
dx/dt = -x/tau : 1
'''
on_pre = 'x += w'

V (t) reaches a maximum value of w/e at time t = τ .
Biexponential synapse V (t) = τ2

τ2−τ1

(
e−t/τ1 − e−t/τ2

)
:

eqs = '''
dV/dt = ((tau_2 / tau_1) ** (tau_1 / (tau_2 - tau_1))*x-V)/tau_1 : 1
dx/dt = -x/tau_2 : 1
'''
on_pre = 'x += w'

V (t) reaches a maximum value of w at time t = τ1τ2
τ2−τ1

log
(

τ2
τ1

)
.

STDP
The weight update equation of the standard STDP is also often stated in an integrated form and can be converted to an
ODE form. This is covered in Tutorial 2.

3.14 How to plot functions

Models of synapses and neurons are typically composed of a series of functions. To affirm their correct implementation
a plot is often helpful.
Consider the following membrane voltage dependent Hodgkin-Huxley equations:

from brian2 import *

VT = -63*mV

eq = Equations("""
alpha_m = 0.32*(mV**-1)*4*mV/exprel((13*mV-v+VT)/(4*mV))/ms : Hz
beta_m = 0.28*(mV**-1)*5*mV/exprel((v-VT-40*mV)/(5*mV))/ms : Hz
alpha_h = 0.128*exp((17*mV-v+VT)/(18*mV))/ms : Hz
beta_h = 4./(1+exp((40*mV-v+VT)/(5*mV)))/ms : Hz
alpha_n = 0.032*(mV**-1)*5*mV/exprel((15*mV-v+VT)/(5*mV))/ms : Hz
beta_n = .5*exp((10*mV-v+VT)/(40*mV))/ms : Hz
tau_n = 1/(alpha_n + beta_n) : second

(continues on next page)

3.14. How to plot functions 191

http://www.mitpressjournals.org/doi/abs/10.1162/089976698300017061
https://link.springer.com/chapter/10.1007/3-540-45720-8_14
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.20.2284&rep=rep1&type=pdf

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
tau_m = 1/(alpha_m + beta_m) : second
tau_h = 1/(alpha_h + beta_h) : second
""")

We can do the following to plot them as function of membrane voltage:

group = NeuronGroup(100, eq + Equations("v : volt"))
group.v = np.linspace(-100, 100, len(group))*mV

plt.plot(group.v/mV, group.tau_m[:]/ms, label="tau_m")
plt.plot(group.v/mV, group.tau_n[:]/ms, label="tau_n")
plt.plot(group.v/mV, group.tau_h[:]/ms, label="tau_h")
plt.xlabel('membrane voltage / mV')
plt.ylabel('tau / ms')
plt.legend()

Note that we need to use [:] for the tau_... equations, because Brian cannot resolve the external constant VT
otherwise. Alternatively we could have supplied the constant in the namespace of the NeuronGroup, see Namespaces.

192 Chapter 3. User’s guide

CHAPTER

FOUR

ADVANCED GUIDE

This section has additional information on details not covered in the User’s guide.

4.1 Functions

• Default functions

• User-provided functions

– Python code generation

– Other code generation targets

– Dependencies between functions

– Additional compiler arguments

– Arrays vs. scalar values in user-provided functions

– Functions with context-dependent return values

– Additional namespace

– Data types

– External source files

All equations, expressions and statements in Brian can make use of mathematical functions. However, functions have
to be prepared for use with Brian for two reasons: 1) Brian is strict about checking the consistency of units, therefore
every function has to specify how it deals with units; 2) functions need to be implemented differently for different code
generation targets.
Brian provides a number of default functions that are already prepared for use with numpy and C++ and also provides a
mechanism for preparing new functions for use (see below).

193

Brian 2 Documentation, Release 2.5.1

4.1.1 Default functions

The following functions (stored in the DEFAULT_FUNCTIONS dictionary) are ready for use:
• Random numbers: rand (random numbers drawn from a uniform distribution between 0 and 1), randn (random
numbers drawn from the standard normal distribution, i.e. with mean 0 and standard deviation 1), and poisson
(discrete random numbers from a Poisson distribution with rate parameter λ)

• Elementary functions: sqrt, exp, log, log10, abs, sign
• Trigonometric functions: sin, cos, tan, sinh, cosh, tanh, arcsin, arccos, arctan
• Functions for improved numerical accuracy: expm1 (calculates exp(x) - 1, more accurate for x close to 0),
log1p (calculates log(1 + x), more accurate for x close to 0), and exprel (calculates (exp(x) - 1)/x,
more accurate for x close to 0, and returning 1.0 instead of NaN for x == 0

• General utility functions: clip, floor, ceil
Brian also provides a special purpose function int, which can be used to convert an expression or variable into an integer
value. This is especially useful for boolean values (which will be converted into 0 or 1), for example to have a conditional
evaluation as part of an equation or statement which sometimes allows to circumvent the lack of an if statement. For
example, the following reset statement resets the variable v to either v_r1 or v_r2, depending on the value of w: 'v
= v_r1 * int(w <= 0.5) + v_r2 * int(w > 0.5)'

Finally, the function timestep is a function that takes a time and the length of a time step as an input and returns an
integer corresponding to the respective time step. The advantage of using this function over a simple division is that it
slightly shifts the time before dividing to avoid floating point issues. This function is used as part of the Refractoriness
mechanism.

4.1.2 User-provided functions

Python code generation

If a function is only used in contexts that use Python code generation, preparing a function for use with Brian only means
specifying its units. The simplest way to do this is to use the check_units() decorator:

@check_units(x1=meter, y1=meter, x2=meter, y2=meter, result=meter)
def distance(x1, y1, x2, y2):

return sqrt((x1 - x2)**2 + (y1 - y2)**2)

Another option is to wrap the function in a Function object:

def distance(x1, y1, x2, y2):
return sqrt((x1 - x2)**2 + (y1 - y2)**2)

wrap the distance function
distance = Function(distance, arg_units=[meter, meter, meter, meter],

return_unit=meter)

The use of Brian’s unit system has the benefit of checking the consistency of units for every operation but at the expense
of performance. Consider the following function, for example:

@check_units(I=amp, result=Hz)
def piecewise_linear(I):

return clip((I-1*nA) * 50*Hz/nA, 0*Hz, 100*Hz)

When Brian runs a simulation, the state variables are stored and passed around without units for performance reasons.
If the above function is used, however, Brian adds units to its input argument so that the operations inside the function
do not fail with dimension mismatches. Accordingly, units are removed from the return value so that the function output

194 Chapter 4. Advanced guide

Brian 2 Documentation, Release 2.5.1

can be used with the rest of the code. For better performance, Brian can alter the namespace of the function when it is
executed as part of the simulation and remove all the units, then pass values without units to the function. In the above
example, this means making the symbol nA refer to 1e-9 and Hz to 1. To use this mechanism, add the decorator
implementation() with the discard_units keyword:

@implementation('numpy', discard_units=True)
@check_units(I=amp, result=Hz)
def piecewise_linear(I):

return clip((I-1*nA) * 50*Hz/nA, 0*Hz, 100*Hz)

Note that the use of the function outside of simulation runs is not affected, i.e. using piecewise_linear still requires
a current in Ampere and returns a rate in Hertz. The discard_units mechanism does not work in all cases, e.g. it
does not work if the function refers to units as brian2.nA instead of nA, if it uses imports inside the function (e.g.
from brian2 import nA), etc. The discard_units can also be switched on for all functions without having
to use the implementation() decorator by setting the codegen.runtime.numpy.discard_units preference.

Other code generation targets

To make a function available for other code generation targets (e.g. C++), implementations for these targets have to be
added. This can be achieved using the implementation() decorator. The form of the code (e.g. a simple string or a
dictionary of strings) necessary is target-dependent, for C++ both options are allowed, a simple string will be interpreted
as filling the 'support_code' block. Note that 'cpp' is used to provide C++ implementations. An implementation
for the C++ target could look like this:

@implementation('cpp', '''
double piecewise_linear(double I) {

if (I < 1e-9)
return 0;

if (I > 3e-9)
return 100;

return (I/1e-9 - 1) * 50;
}
''')

@check_units(I=amp, result=Hz)
def piecewise_linear(I):

return clip((I-1*nA) * 50*Hz/nA, 0*Hz, 100*Hz)

Alternatively, FunctionImplementation objects can be added to the Function object.
The same sort of approach as for C++ works for Cython using the 'cython' target. The example above would look
like this:

@implementation('cython', '''
cdef double piecewise_linear(double I):

if I<1e-9:
return 0.0

elif I>3e-9:
return 100.0

return (I/1e-9-1)*50
''')

@check_units(I=amp, result=Hz)
def piecewise_linear(I):

return clip((I-1*nA) * 50*Hz/nA, 0*Hz, 100*Hz)

4.1. Functions 195

Brian 2 Documentation, Release 2.5.1

Dependencies between functions

The code generation mechanism for user-defined functions only adds the source code for a function when it is necessary.
If a user-defined function refers to another function in its source code, it therefore has to explicitly state this dependency
so that the code of the dependency is added as well:

@implementation('cpp','''
double rectified_linear(double x)
{

return clip(x, 0, INFINITY);
}''',
dependencies={'clip': DEFAULT_FUNCTIONS['clip']}
)

@check_units(x=1, result=1)
def rectified_linear(x):

return np.clip(x, 0, np.inf)

Note: The dependency mechanism is unnecessary for the numpy code generation target, since functions are defined as
actual Python functions and not as code given in a string.

Additional compiler arguments

If the code for a function needs additional compiler options to work, e.g. to link to an external library, these options can
be provided as keyword arguments to the @implementation decorator. E.g. to link C++ code to the foo library
which is stored in the directory /usr/local/foo, use:

@implementation('cpp', '...',
libraries=['foo'], library_dirs=['/usr/local/foo'])

These arguments can also be used to refer to external source files, see below. Equivalent arguments can also be set as
global Preferences in which case they apply to all code and not only to code referring to the respective function. Note
that in C++ standalone mode, all files are compiled together, and therefore the additional compiler arguments provided
to functions are always combined with the preferences into a common set of settings that is applied to all code.
The list of currently supported additional arguments (for further explications, see the respective Preferences and the Python
documentation of the distutils.core.Extension class):

keyword C++ standalone Cython
headers ✓ ❌
sources ✓ ✓
define_macros ✓ ❌
libraries ✓ ✓
include_dirs ✓ ✓
library_dirs ✓ ✓
runtime_library_dirs ✓ ✓

196 Chapter 4. Advanced guide

https://docs.python.org/3/distutils/apiref.html#distutils.core.Extension

Brian 2 Documentation, Release 2.5.1

Arrays vs. scalar values in user-provided functions

Equations, expressions and abstract code statements are always implicitly referring to all the neurons in a NeuronGroup,
all the synapses in a Synapses object, etc. Therefore, function calls also apply to more than a single value. The way in
which this is handled differs between code generation targets that support vectorized expressions (e.g. the numpy target)
and targets that don’t (e.g. the cpp_standalonemode). If the code generation target supports vectorized expressions,
it will receive an array of values. For example, in the piecewise_linear example above, the argument I will be an
array of values and the function returns an array of values. For code generation without support for vectorized expressions,
all code will be executed in a loop (over neurons, over synapses, …), the function will therefore be called several times
with a single value each time.
In both cases, the function will only receive the “relevant” values, meaning that if for example a function is evaluated as
part of a reset statement, it will only receive values for the neurons that just spiked.

Functions with context-dependent return values

When using the numpy target, functions have to return an array of values (e.g. one value for each neuron). In some cases,
the number of values to return cannot be deduced from the function’s arguments. Most importantly, this is the case for
random numbers: a call to rand() has to return one value for each neuron if it is part of a neuron’s equations, but only
one value for each neuron that spiked during the time step if it is part of the reset statement. Such function are said to “auto
vectorise”, which means that their implementation receives an additional array argument _vectorisation_idx; the
length of this array determines the number of values the function should return. This argument is also provided to functions
for other code generation targets, but in these cases it is a single value (e.g. the index of the neuron), and is currently
ignored. To enable this property on a user-defined function, you’ll currently have to manually create a Function object:

def exponential_rand(l, _vectorisation_idx):
'''Generate a number from an exponential distribution using inverse

transform sampling'''
uniform = np.random.rand(len(_vectorisation_idx))
return -(1/l)*np.log(1 - uniform)

exponential_rand = Function(exponential_rand, arg_units=[1], return_unit=1,
stateless=False, auto_vectorise=True)

Implementations for other code generation targets can then be added using the add_implementation mechanism:

cpp_code = '''
double exponential_rand(double l, int _vectorisation_idx)
{

double uniform = rand(_vectorisation_idx);
return -(1/l)*log(1 - uniform);

}
'''
exponential_rand.implementations.add_implementation('cpp', cpp_code,

dependencies={'rand': DEFAULT_
↪→FUNCTIONS['rand'],

'log': DEFAULT_
↪→FUNCTIONS['log']})

Note that by referring to the rand function, the new random number generator will automatically generate reproducible
random numbers if the seed() function is use to set its seed. Restoring the random number state with restore()
will have the expected effect as well.

4.1. Functions 197

Brian 2 Documentation, Release 2.5.1

Additional namespace

Some functions need additional data to compute a result, e.g. a TimedArray needs access to the underlying array.
For the numpy target, a function can simply use a reference to an object defined outside the function, there is no need
to explicitly pass values in a namespace. For the other code language targets, values can be passed in the namespace
argument of the implementation() decorator or the add_implementation method. The namespace values
are then accessible in the function code under the given name, prefixed with _namespace. Note that this mecha-
nism should only be used for numpy arrays or general objects (e.g. function references to call Python functions from
Cython code). Scalar values should be directly included in the function code, by using a “dynamic implemention” (see
add_dynamic_implementation).
See TimedArray and BinomialFunction for examples that use this mechanism.

Data types

By default, functions are assumed to take any type of argument, and return a floating point value. If you want to put a
restriction on the type of an argument, or specify that the return type should be something other than float, either declare
it as a Function (and see its documentation on specifying types) or use the declare_types() decorator, e.g.:

@check_units(a=1, b=1, result=1)
@declare_types(a='integer', result='highest')
def f(a, b):

return a*b

This is potentially important if you have functions that return integer or boolean values, because Brian’s code generation
optimisation step will make some potentially incorrect simplifications if it assumes that the return type is floating point.

External source files

Code for functions can also be provided via external files in the target language. This can be especially useful for linking
to existing code without having to include it a second time in the Python script. For C++-based code generation targets
(i.e. the C++ standalone mode), the external code should be in a file that is provided as an argument to the sources
keyword, together with a header file whose name is provided to headers (see the note for the codegen.cpp.headers
preference about the necessary format). Since the main simulation code is compiled and executed in a different directory,
you should also point the compiler towards the directory of the header file via the include_dirs keyword. For the
same reason, use an absolute path for the source file. For example, the piecewise_linear function from above can
be implemented with external files as follows:

//file: piecewise_linear.h
double piecewise_linear(double);

//file: piecewise_linear.cpp
double piecewise_linear(double I) {

if (I < 1e-9)
return 0;

if (I > 3e-9)
return 100;

return (I/1e-9 - 1) * 50;
}

Python script

Get the absolute directory of this Python script, the C++ files are

(continues on next page)

198 Chapter 4. Advanced guide

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
expected to be stored alongside of it
import os
current_dir = os.path.abspath(os.path.dirname(__file__))

@implementation('cpp', '// all code in piecewise_linear.cpp',
sources=[os.path.join(current_dir,

'piecewise_linear.cpp')],
headers=['"piecewise_linear.h"'],
include_dirs=[current_dir])

@check_units(I=amp, result=Hz)
def piecewise_linear(I):

return clip((I-1*nA) * 50*Hz/nA, 0*Hz, 100*Hz)

For Cython, the process is very similar (see the Cython documentation for general information). The name of the header
file does not need to be specified, it is expected to have the same name as the source file (except for the .pxd extension).
The source and header files will be automatically copied to the cache directory where Cython files are compiled, they
therefore have to be imported as top-level modules, regardless of whether the executed Python code is itself in a package
or module.
A Cython equivalent of above’s C++ example can be written as:

file: piecewise_linear.pxd
cdef double piecewise_linear(double)

file: piecewise_linear.pyx
cdef double piecewise_linear(double I):

if I<1e-9:
return 0.0

elif I>3e-9:
return 100.0

return (I/1e-9-1)*50

Python script

Get the absolute directory of this Python script, the Cython files
are expected to be stored alongside of it
import os
current_dir = os.path.abspath(os.path.dirname(__file__))

@implementation('cython',
'from piecewise_linear cimport piecewise_linear',
sources=[os.path.join(current_dir,

'piecewise_linear.pyx')])
@check_units(I=amp, result=Hz)
def piecewise_linear(I):

return clip((I-1*nA) * 50*Hz/nA, 0*Hz, 100*Hz)

4.1. Functions 199

https://cython.readthedocs.io/en/latest/src/userguide/sharing_declarations.html

Brian 2 Documentation, Release 2.5.1

4.2 Preferences

Brian has a system of global preferences that affect how certain objects behave. These can be set either in scripts by using
the prefs object or in a file. Each preference looks like codegen.cpp.compiler, i.e. dotted names.

4.2.1 Accessing and setting preferences

Preferences can be accessed and set either keyword-based or attribute-based. The following are equivalent:

prefs['codegen.cpp.compiler'] = 'unix'
prefs.codegen.cpp.compiler = 'unix'

Using the attribute-based form can be particulary useful for interactive work, e.g. in ipython, as it offers autocompletion
and documentation. In ipython, prefs.codegen.cpp? would display a docstring with all the preferences available
in the codegen.cpp category.

4.2.2 Preference files

Preferences are stored in a hierarchy of files, with the following order (each step overrides the values in the previous step
but no error is raised if one is missing):

• The user default are stored in ~/.brian/user_preferences (which works on Windows as well as Linux).
The ~ symbol refers to the user directory.

• The file brian_preferences in the current directory.
The preference files are of the following form:

a.b.c = 1
Comment line
[a]
b.d = 2
[a.b]
b.e = 3

This would set preferences a.b.c=1, a.b.d=2 and a.b.e=3.

#---
Logging system preferences
#---

[logging]

What log level to use for the log written to the console.
#
Has to be one of CRITICAL, ERROR, WARNING, INFO, DEBUG or DIAGNOSTIC.

console_log_level = 'INFO'

Whether to delete the log and script file on exit.
#
If set to ``True`` (the default), log files (and the copy of the main
script) will be deleted after the brian process has exited, unless an
uncaught exception occurred. If set to ``False``, all log files will be
kept.

(continues on next page)

200 Chapter 4. Advanced guide

Brian 2 Documentation, Release 2.5.1

(continued from previous page)

delete_log_on_exit = True

Whether to display a text for uncaught errors, mentioning the location
of the log file, the mailing list and the github issues.
#
Defaults to ``True``.

display_brian_error_message = True

Whether to log to a file or not.
#
If set to ``True`` (the default), logging information will be written
to a file. The log level can be set via the `logging.file_log_level`
preference.

file_log = True

What log level to use for the log written to the log file.
#
In case file logging is activated (see `logging.file_log`), which log
level should be used for logging. Has to be one of CRITICAL, ERROR,
WARNING, INFO, DEBUG or DIAGNOSTIC.

file_log_level = 'DEBUG'

The maximum size for the debug log before it will be rotated.
#
If set to any value ``> 0``, the debug log will be rotated once
this size is reached. Rotating the log means that the old debug log
will be moved into a file in the same directory but with suffix ``".1"``
and the a new log file will be created with the same pathname as the
original file. Only one backup is kept; if a file with suffix ``".1"``
already exists when rotating, it will be overwritten.
If set to ``0``, no log rotation will be applied.
The default setting rotates the log file after 10MB.

file_log_max_size = 10000000

Whether to save a copy of the script that is run.
#
If set to ``True`` (the default), a copy of the currently run script
is saved to a temporary location. It is deleted after a successful
run (unless `logging.delete_log_on_exit` is ``False``) but is kept after
an uncaught exception occured. This can be helpful for debugging,
in particular when several simulations are running in parallel.

save_script = True

Whether or not to redirect stdout/stderr to null at certain places.
#
This silences a lot of annoying compiler output, but will also hide
error messages making it harder to debug problems. You can always
temporarily switch it off when debugging. If
`logging.std_redirection_to_file` is set to ``True`` as well, then the
output is saved to a file and if an error occurs the name of this file
will be printed.

(continues on next page)

4.2. Preferences 201

Brian 2 Documentation, Release 2.5.1

(continued from previous page)

std_redirection = True

Whether to redirect stdout/stderr to a file.
#
If both ``logging.std_redirection`` and this preference are set to
``True``, all standard output/error (most importantly output from
the compiler) will be stored in files and if an error occurs the name
of this file will be printed. If `logging.std_redirection` is ``True``
and this preference is ``False``, then all standard output/error will
be completely suppressed, i.e. neither be displayed nor stored in a
file.
#
The value of this preference is ignore if `logging.std_redirection` is
set to ``False``.

std_redirection_to_file = True

#---
Runtime codegen preferences (see subcategories for individual targets)
#---

[codegen.runtime]

#---
Codegen generator preferences (see subcategories for individual languages)
#---

[codegen.generators]

#---
C++ compilation preferences
#---

[codegen.cpp]

Compiler to use (uses default if empty).
Should be ``'unix'`` or ``'msvc'``.
#
To specify a specific compiler binary on unix systems, set the `CXX` environment
variable instead.

compiler = ''

List of macros to define; each macro is defined using a 2-tuple,
where 'value' is either the string to define it to or None to
define it without a particular value (equivalent of "#define
FOO" in source or -DFOO on Unix C compiler command line).

define_macros = []

Extra arguments to pass to compiler (if None, use either
``extra_compile_args_gcc`` or ``extra_compile_args_msvc``).

extra_compile_args = None

Extra compile arguments to pass to GCC compiler
(continues on next page)

202 Chapter 4. Advanced guide

Brian 2 Documentation, Release 2.5.1

(continued from previous page)

extra_compile_args_gcc = ['-w', '-O3', '-ffast-math', '-fno-finite-math-only', '-
↪→march=native', '-std=c++11']

Extra compile arguments to pass to MSVC compiler (the default
``/arch:`` flag is determined based on the processor architecture)

extra_compile_args_msvc = ['/Ox', '/w', '', '/MP']

Any extra platform- and compiler-specific information to use when
linking object files together.

extra_link_args = []

A list of strings specifying header files to use when compiling the
code. The list might look like ["<vector>","'my_header'"]. Note that
the header strings need to be in a form than can be pasted at the end
of a #include statement in the C++ code.

headers = []

Include directories to use.
The default value is ``$prefix/include`` (or ``$prefix/Library/include``
on Windows), where ``$prefix`` is Python's site-specific directory
prefix as returned by `sys.prefix`. This will make compilation use
library files installed into a conda environment.

include_dirs = ['/path/to/your/Python/environment/include']

List of library names (not filenames or paths) to link against.

libraries = []

List of directories to search for C/C++ libraries at link time.
The default value is ``$prefix/lib`` (or ``$prefix/Library/lib``
on Windows), where ``$prefix`` is Python's site-specific directory
prefix as returned by `sys.prefix`. This will make compilation use
library files installed into a conda environment.

library_dirs = ['/path/to/your/Python/environment/lib']

MSVC architecture name (or use system architectue by default).
#
Could take values such as x86, amd64, etc.

msvc_architecture = ''

Location of the MSVC command line tool (or search for best by default).

msvc_vars_location = ''

List of directories to search for C/C++ libraries at run time.
The default value is ``$prefix/lib`` (not used on Windows), where
``$prefix`` is Python's site-specific directory prefix as returned by
`sys.prefix`. This will make compilation use library files installed
into a conda environment.

(continues on next page)

4.2. Preferences 203

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
runtime_library_dirs = ['/path/to/your/Python/environment/lib']

#---
C++ codegen preferences
#---

[codegen.generators.cpp]

Adds code to flush denormals to zero.
#
The code is gcc and architecture specific, so may not compile on all
platforms. The code, for reference is::
#
#define CSR_FLUSH_TO_ZERO (1 << 15)
unsigned csr = __builtin_ia32_stmxcsr();
csr |= CSR_FLUSH_TO_ZERO;
__builtin_ia32_ldmxcsr(csr);
#
Found at `<http://stackoverflow.com/questions/2487653/avoiding-denormal-values-in-c>
↪→`_.

flush_denormals = False

The keyword used for the given compiler to declare pointers as restricted.
#
This keyword is different on different compilers, the default works for
gcc and MSVS.

restrict_keyword = '__restrict'

#---
Device preferences
#---

[devices]

#---
Directory containing GSL code
#---

[GSL]

Set path to directory containing GSL header files (gsl_odeiv2.h etc.)
If this directory is already in Python's include (e.g. because of conda␣
↪→installation), this path can be set to None.

directory = None

#---
Numpy runtime codegen preferences
#---

[codegen.runtime.numpy]

Whether to change the namespace of user-specifed functions to remove
units.

(continues on next page)

204 Chapter 4. Advanced guide

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
discard_units = False

#---
Cython runtime codegen preferences
#---

[codegen.runtime.cython]

Location of the cache directory for Cython files. By default,
will be stored in a ``brian_extensions`` subdirectory
where Cython inline stores its temporary files
(the result of ``get_cython_cache_dir()``).

cache_dir = None

Whether to delete source files after compiling. The Cython
source files can take a significant amount of disk space, and
are not used anymore when the compiled library file exists.
They are therefore deleted by default, but keeping them around
can be useful for debugging.

delete_source_files = True

Whether to use a lock file to prevent simultaneous write access
to cython .pyx and .so files.

multiprocess_safe = True

#---
Code generation preferences
#---

[codegen]

Whether to pull out scalar expressions out of the statements, so that
they are only evaluated once instead of once for every neuron/synapse/...
Can be switched off, e.g. because it complicates the code (and the same
optimisation is already performed by the compiler) or because the
code generation target does not deal well with it. Defaults to ``True``.

loop_invariant_optimisations = True

The size of a directory (in MB) with cached code for Cython that triggers a warning.
Set to 0 to never get a warning.

max_cache_dir_size = 1000

Default target for the evaluation of string expressions (e.g. when
indexing state variables). Should normally not be changed from the
default numpy target, because the overhead of compiling code is not
worth the speed gain for simple expressions.
#
Accepts the same arguments as `codegen.target`, except for ``'auto'``

string_expression_target = 'numpy'

Default target for code generation.
(continues on next page)

4.2. Preferences 205

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
#
Can be a string, in which case it should be one of:
#
* ``'auto'`` the default, automatically chose the best code generation
target available.
* ``'cython'``, uses the Cython package to generate C++ code. Needs a
working installation of Cython and a C++ compiler.
* ``'numpy'`` works on all platforms and doesn't need a C compiler but
is often less efficient.
#
Or it can be a ``CodeObject`` class.

target = 'auto'

#---
Network preferences
#---

[core.network]

Default schedule used for networks that
don't specify a schedule.

default_schedule = ['start', 'groups', 'thresholds', 'synapses', 'resets', 'end']

#---
C++ standalone preferences
#---

[devices.cpp_standalone]

Additional flags to pass to the GNU make command on Linux/OS-X.
Defaults to "-j" for parallel compilation.

extra_make_args_unix = ['-j']

Additional flags to pass to the nmake command on Windows. By default, no
additional flags are passed.

extra_make_args_windows = []

The make command used to compile the standalone project. Defaults to the
standard GNU make commane "make".

make_cmd_unix = 'make'

DEPRECATED. Previously used to chose the strategy to parallelize the
solution of the three tridiagonal systems for multicompartmental
neurons. Now, its value is ignored.

openmp_spatialneuron_strategy = None

The number of threads to use if OpenMP is turned on. By default, this value is set␣
↪→to 0 and the C++ code
is generated without any reference to OpenMP. If greater than 0, then the␣
↪→corresponding number of threads
are used to launch the simulation.

(continues on next page)

206 Chapter 4. Advanced guide

Brian 2 Documentation, Release 2.5.1

(continued from previous page)

openmp_threads = 0

The command used to run the compiled standalone project. Defaults to executing
the compiled binary with "./main". Must be a single binary as string or a list
of command arguments (e.g. ["./binary", "--key", "value"]).

run_cmd_unix = './main'

Dictionary of environment variables and their values that will be set
during the execution of the standalone code.

run_environment_variables = {'LD_BIND_NOW': '1'}

#---
Core Brian preferences
#---

[core]

Default dtype for all arrays of scalars (state variables, weights, etc.).

default_float_dtype = float64

Default dtype for all arrays of integer scalars.

default_integer_dtype = int32

Whether to raise an error for outdated dependencies (``True``) or just
a warning (``False``).

outdated_dependency_error = True

#---
Preferences to enable legacy behaviour
#---

[legacy]

Whether to use the semantics for checking the refractoriness condition
that were in place up until (including) version 2.1.2. In that
implementation, refractory periods that were multiples of dt could lead
to a varying number of refractory timesteps due to the nature of
floating point comparisons). This preference is only provided for exact
reproducibility of previously obtained results, new simulations should
use the improved mechanism which uses a more robust mechanism to
convert refractoriness into timesteps. Defaults to ``False``.

refractory_timing = False

4.2. Preferences 207

Brian 2 Documentation, Release 2.5.1

4.2.3 List of preferences

Brian itself defines the following preferences (including their default values):

GSL

Directory containing GSL code
GSL.directory = None Set path to directory containing GSL header files (gsl_odeiv2.h etc.) If this directory is

already in Python’s include (e.g. because of conda installation), this path can be set to None.

codegen

Code generation preferences
codegen.loop_invariant_optimisations = True

Whether to pull out scalar expressions out of the statements, so that they are only evaluated once instead of
once for every neuron/synapse/… Can be switched off, e.g. because it complicates the code (and the same
optimisation is already performed by the compiler) or because the code generation target does not deal well
with it. Defaults to True.

codegen.max_cache_dir_size = 1000
The size of a directory (in MB) with cached code for Cython that triggers a warning. Set to 0 to never get a
warning.

codegen.string_expression_target = 'numpy'
Default target for the evaluation of string expressions (e.g. when indexing state variables). Should normally
not be changed from the default numpy target, because the overhead of compiling code is not worth the speed
gain for simple expressions.
Accepts the same arguments as codegen.target, except for 'auto'

codegen.target = 'auto'
Default target for code generation.
Can be a string, in which case it should be one of:

• 'auto' the default, automatically chose the best code generation target available.
• 'cython', uses the Cython package to generate C++ code. Needs a working installation of Cython
and a C++ compiler.

• 'numpy' works on all platforms and doesn’t need a C compiler but is often less efficient.
Or it can be a CodeObject class.

codegen.cpp
C++ compilation preferences
codegen.cpp.compiler = ''

Compiler to use (uses default if empty). Should be 'unix' or 'msvc'.
To specify a specific compiler binary on unix systems, set the CXX environment variable instead.

codegen.cpp.define_macros = []

208 Chapter 4. Advanced guide

Brian 2 Documentation, Release 2.5.1

List of macros to define; each macro is defined using a 2-tuple, where ‘value’ is either the string to define it
to or None to define it without a particular value (equivalent of “#define FOO” in source or -DFOO on Unix
C compiler command line).

codegen.cpp.extra_compile_args = None
Extra arguments to pass to compiler (if None, use either extra_compile_args_gcc or ex-
tra_compile_args_msvc).

codegen.cpp.extra_compile_args_gcc = ['-w', '-O3', '-ffast-math',
'-fno-finite-math-only', '-march=native', '-std=c++11']

Extra compile arguments to pass to GCC compiler
codegen.cpp.extra_compile_args_msvc = ['/Ox', '/w', '', '/MP']

Extra compile arguments to pass to MSVC compiler (the default /arch: flag is determined based on the
processor architecture)

codegen.cpp.extra_link_args = []
Any extra platform- and compiler-specific information to use when linking object files together.

codegen.cpp.headers = []
A list of strings specifying header files to use when compiling the code. The list might look like [“<vec-
tor>”,“‘my_header’”]. Note that the header strings need to be in a form than can be pasted at the end of a
#include statement in the C++ code.

codegen.cpp.include_dirs = ['/path/to/your/Python/environment/include']
Include directories to use. The default value is $prefix/include (or $prefix/Library/
include on Windows), where $prefix is Python’s site-specific directory prefix as returned by sys.
prefix. This will make compilation use library files installed into a conda environment.

codegen.cpp.libraries = []
List of library names (not filenames or paths) to link against.

codegen.cpp.library_dirs = ['/path/to/your/Python/environment/lib']
List of directories to search for C/C++ libraries at link time. The default value is $prefix/lib (or
$prefix/Library/lib on Windows), where $prefix is Python’s site-specific directory prefix as
returned by sys.prefix. This will make compilation use library files installed into a conda environment.

codegen.cpp.msvc_architecture = ''
MSVC architecture name (or use system architectue by default).
Could take values such as x86, amd64, etc.

codegen.cpp.msvc_vars_location = ''
Location of the MSVC command line tool (or search for best by default).

codegen.cpp.runtime_library_dirs = ['/path/to/your/Python/environment/lib']
List of directories to search for C/C++ libraries at run time. The default value is $prefix/lib (not used
onWindows), where $prefix is Python’s site-specific directory prefix as returned by sys.prefix. This
will make compilation use library files installed into a conda environment.

codegen.generators
Codegen generator preferences (see subcategories for individual languages)
codegen.generators.cpp

4.2. Preferences 209

https://docs.python.org/3/library/sys.html#sys.prefix
https://docs.python.org/3/library/sys.html#sys.prefix
https://docs.python.org/3/library/sys.html#sys.prefix
https://docs.python.org/3/library/sys.html#sys.prefix

Brian 2 Documentation, Release 2.5.1

C++ codegen preferences
codegen.generators.cpp.flush_denormals = False

Adds code to flush denormals to zero.
The code is gcc and architecture specific, so may not compile on all platforms. The code, for reference is:

#define CSR_FLUSH_TO_ZERO (1 << 15)
unsigned csr = __builtin_ia32_stmxcsr();
csr |= CSR_FLUSH_TO_ZERO;
__builtin_ia32_ldmxcsr(csr);

Found at http://stackoverflow.com/questions/2487653/avoiding-denormal-values-in-c.
codegen.generators.cpp.restrict_keyword = '__restrict'

The keyword used for the given compiler to declare pointers as restricted.
This keyword is different on different compilers, the default works for gcc and MSVS.

codegen.runtime
Runtime codegen preferences (see subcategories for individual targets)
codegen.runtime.cython
Cython runtime codegen preferences
codegen.runtime.cython.cache_dir = None

Location of the cache directory for Cython files. By default, will be stored in a brian_extensions
subdirectory where Cython inline stores its temporary files (the result of get_cython_cache_dir()).

codegen.runtime.cython.delete_source_files = True
Whether to delete source files after compiling. The Cython source files can take a significant amount of disk
space, and are not used anymore when the compiled library file exists. They are therefore deleted by default,
but keeping them around can be useful for debugging.

codegen.runtime.cython.multiprocess_safe = True
Whether to use a lock file to prevent simultaneous write access to cython .pyx and .so files.

codegen.runtime.numpy
Numpy runtime codegen preferences
codegen.runtime.numpy.discard_units = False

Whether to change the namespace of user-specifed functions to remove units.

core

Core Brian preferences
core.default_float_dtype = float64

Default dtype for all arrays of scalars (state variables, weights, etc.).
core.default_integer_dtype = int32

Default dtype for all arrays of integer scalars.
core.outdated_dependency_error = True

Whether to raise an error for outdated dependencies (True) or just a warning (False).

210 Chapter 4. Advanced guide

http://stackoverflow.com/questions/2487653/avoiding-denormal-values-in-c

Brian 2 Documentation, Release 2.5.1

core.network
Network preferences
core.network.default_schedule = ['start', 'groups', 'thresholds', 'synapses',
'resets', 'end']

Default schedule used for networks that don’t specify a schedule.

devices

Device preferences
devices.cpp_standalone
C++ standalone preferences
devices.cpp_standalone.extra_make_args_unix = ['-j']

Additional flags to pass to the GNUmake command on Linux/OS-X. Defaults to “-j” for parallel compilation.
devices.cpp_standalone.extra_make_args_windows = []

Additional flags to pass to the nmake command on Windows. By default, no additional flags are passed.
devices.cpp_standalone.make_cmd_unix = 'make'

The make command used to compile the standalone project. Defaults to the standard GNU make commane
“make”.

devices.cpp_standalone.openmp_spatialneuron_strategy = None
DEPRECATED. Previously used to chose the strategy to parallelize the solution of the three tridiagonal
systems for multicompartmental neurons. Now, its value is ignored.

devices.cpp_standalone.openmp_threads = 0
The number of threads to use if OpenMP is turned on. By default, this value is set to 0 and the C++ code
is generated without any reference to OpenMP. If greater than 0, then the corresponding number of threads
are used to launch the simulation.

devices.cpp_standalone.run_cmd_unix = './main'
The command used to run the compiled standalone project. Defaults to executing the compiled binary with
“./main”. Must be a single binary as string or a list of command arguments (e.g. [“./binary”, “–key”, “value”]).

devices.cpp_standalone.run_environment_variables = {'LD_BIND_NOW': '1'}

Dictionary of environment variables and their values that will be set during the execution of the standalone
code.

legacy

Preferences to enable legacy behaviour
legacy.refractory_timing = False

Whether to use the semantics for checking the refractoriness condition that were in place up until (including)
version 2.1.2. In that implementation, refractory periods that were multiples of dt could lead to a varying
number of refractory timesteps due to the nature of floating point comparisons). This preference is only
provided for exact reproducibility of previously obtained results, new simulations should use the improved
mechanismwhich uses amore robustmechanism to convert refractoriness into timesteps. Defaults toFalse.

4.2. Preferences 211

Brian 2 Documentation, Release 2.5.1

logging

Logging system preferences
logging.console_log_level = 'INFO'

What log level to use for the log written to the console.
Has to be one of CRITICAL, ERROR, WARNING, INFO, DEBUG or DIAGNOSTIC.

logging.delete_log_on_exit = True
Whether to delete the log and script file on exit.
If set to True (the default), log files (and the copy of the main script) will be deleted after the brian process
has exited, unless an uncaught exception occurred. If set to False, all log files will be kept.

logging.display_brian_error_message = True
Whether to display a text for uncaught errors, mentioning the location of the log file, the mailing list and the
github issues.
Defaults to True.

logging.file_log = True
Whether to log to a file or not.
If set to True (the default), logging information will be written to a file. The log level can be set via the
logging.file_log_level preference.

logging.file_log_level = 'DEBUG'
What log level to use for the log written to the log file.
In case file logging is activated (see logging.file_log), which log level should be used for logging. Has to be
one of CRITICAL, ERROR, WARNING, INFO, DEBUG or DIAGNOSTIC.

logging.file_log_max_size = 10000000
The maximum size for the debug log before it will be rotated.
If set to any value > 0, the debug log will be rotated once this size is reached. Rotating the log means that
the old debug log will be moved into a file in the same directory but with suffix ".1" and the a new log
file will be created with the same pathname as the original file. Only one backup is kept; if a file with suffix
".1" already exists when rotating, it will be overwritten. If set to 0, no log rotation will be applied. The
default setting rotates the log file after 10MB.

logging.save_script = True
Whether to save a copy of the script that is run.
If set to True (the default), a copy of the currently run script is saved to a temporary location. It is deleted
after a successful run (unless logging.delete_log_on_exit is False) but is kept after an uncaught exception
occured. This can be helpful for debugging, in particular when several simulations are running in parallel.

logging.std_redirection = True
Whether or not to redirect stdout/stderr to null at certain places.
This silences a lot of annoying compiler output, but will also hide error messages making it harder to debug
problems. You can always temporarily switch it off when debugging. If logging.std_redirection_to_file is set
to True as well, then the output is saved to a file and if an error occurs the name of this file will be printed.

logging.std_redirection_to_file = True

212 Chapter 4. Advanced guide

Brian 2 Documentation, Release 2.5.1

Whether to redirect stdout/stderr to a file.
If both logging.std_redirection and this preference are set to True, all standard output/error
(most importantly output from the compiler) will be stored in files and if an error occurs the name of this
file will be printed. If logging.std_redirection is True and this preference is False, then all standard out-
put/error will be completely suppressed, i.e. neither be displayed nor stored in a file.
The value of this preference is ignore if logging.std_redirection is set to False.

4.3 Logging

Brian uses a logging system to display warnings and general information messages to the user, as well as writing them to
a file with more detailed information, useful for debugging. Each log message has one of the following “log levels”:
ERROR Only used when an exception is raised, i.e. an error occurs and the current operation is interrupted. Example:

You use a variable name in an equation that Brian does not recognize.
WARNING Brian thinks that something is most likely a bug, but it cannot be sure. Example: You use a Synapses object

without any synapses in your simulation.
INFO Brian wants to make the user aware of some automatic choice that it did for the user. Example: You did not

specify an integration method for a NeuronGroup and therefore Brian chose an appropriate method for you.
DEBUG Additional information that might be useful when a simulation is not working as expected. Example: The inte-

gration timestep used during the simulation.
DIAGNOSTIC Additional information useful when tracking down bugs in Brian itself. Example: The generated code

for a CodeObject.
By default, all messages with level DEBUG or above are written to the log file and all messages of level INFO and above
are displayed on the console. To change what messages are displayed, see below.

Note: By default, the log file is deleted after a successful simulation run, i.e. when the simulation exited without an error.
To keep the log around, set the logging.delete_log_on_exit preference to False.

4.3.1 Logging and multiprocessing

Brian’s logging system is not designed for multiple parallel Brian processes started via Python’s multiprocessing
module (see the multiprocessing examples). Log messages that get printed from different processes to the console are not
printed in a well-defined order and do not contain any indication about which processes they are coming from. You might
therefore consider using e.g. BrianLogger.log_level_error to only show error messages before starting the
processes and avoid cluttering your console with warning and info messages.
To avoid issues when multiple processes try to log to the same log file, file logging is automatically switched off for
all processes except for the initial process. If you need a file log for sub-processes, you can call BrianLogger.
initialize in each sub-process. This way, each process will log to its own file.

4.3. Logging 213

https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing

Brian 2 Documentation, Release 2.5.1

4.3.2 Showing/hiding log messages

If you want to change what messages are displayed on the console, you can call a method of the method of BrianLog-
ger:

BrianLogger.log_level_debug() # now also display debug messages

It is also possible to suppress messages for certain sub-hierarchies by using BrianLogger.suppress_hierarchy:

Suppress code generation messages on the console
BrianLogger.suppress_hierarchy('brian2.codegen')
Suppress preference messages even in the log file
BrianLogger.suppress_hierarchy('brian2.core.preferences',

filter_log_file=True)

Similarly, messages ending in a certain name can be suppressed with BrianLogger.suppress_name:

Suppress resolution conflict warnings
BrianLogger.suppress_name('resolution_conflict')

These functions should be used with care, as they suppresses messages independent of the level, i.e. even warning and
error messages.

4.3.3 Preferences

You can also change details of the logging system via Brian’s Preferences system. With this mechanism, you can switch
the logging to a file off completely (by setting logging.file_log to False) or have it log less messages (by setting log-
ging.file_log_level to a level higher than DEBUG). To debug details of the code generation system, you can also set
logging.file_log_level to DIAGNOSTIC. Note that this will make the log file grow quickly in size. To prevent it from
filling up the disk, it will only be allowed to grow up to a certain size. You can configure the maximum file size with the
logging.file_log_max_size preference.
For a list of all preferences related to logging, see the documentation of the brian2.utils.logger module.

Warning: Most of the logging preferences are only taken into account during the initialization of the logging system
which takes place as soon as brian2 is imported. Therefore, if you use e.g. prefs.logging.file_log =
False in your script, this will not have the intended effect! To make sure these preferences are taken into account,
call BrianLogger.initialize after setting the preferences. Alternatively, you can set the preferences in a file
(see Preferences).

4.4 Namespaces

Equations can contain references to external parameters or functions. During the initialisation of a NeuronGroup
or a Synapses object, this namespace can be provided as an argument. This is a group-specific namespace that will
only be used for names in the context of the respective group. Note that units and a set of standard functions are always
provided and should not be given explicitly. This namespace does not necessarily need to be exhaustive at the time of
the creation of the NeuronGroup/Synapses, entries can be added (or modified) at a later stage via the namespace
attribute (e.g. G.namespace['tau'] = 10*ms).
At the point of the call to the Network.run namespace, any group-specific namespace will be augmented by the “run
namespace”. This namespace can be either given explicitly as an argument to the run method or it will be taken from
the locals and globals surrounding the call. A warning will be emitted if a name is defined in more than one namespace.

214 Chapter 4. Advanced guide

Brian 2 Documentation, Release 2.5.1

To summarize: an external identifier will be looked up in the context of an object such as NeuronGroup or Synapses.
It will follow the following resolution hierarchy:

1. Default unit and function names.
2. Names defined in the explicit group-specific namespace.
3. Names in the run namespace which is either explicitly given or the implicit namespace surrounding the run call.

Note that if you completely specify your namespaces at the Group level, you should probably pass an empty dictionary
as the namespace argument to the run call – this will completely switch off the “implicit namespace” mechanism.
The following three examples show the different ways of providing external variable values, all having the same effect in
this case:

Explicit argument to the NeuronGroup
G = NeuronGroup(1, 'dv/dt = -v / tau : 1', namespace={'tau': 10*ms})
net = Network(G)
net.run(10*ms)

Explicit argument to the run function
G = NeuronGroup(1, 'dv/dt = -v / tau : 1')
net = Network(G)
net.run(10*ms, namespace={'tau': 10*ms})

Implicit namespace from the context
G = NeuronGroup(1, 'dv/dt = -v / tau : 1')
net = Network(G)
tau = 10*ms
net.run(10*ms)

External variables are free to change between runs (but not during one run), the value at the time of the run() call is
used in the simulation.

4.5 Custom progress reporting

4.5.1 Progress reporting

For custom progress reporting (e.g. graphical output, writing to a file, etc.), the report keyword accepts a callable (i.e.
a function or an object with a __call__ method) that will be called with four parameters:

• elapsed: the total (real) time since the start of the run
• completed: the fraction of the total simulation that is completed, i.e. a value between 0 and 1
• start: The start of the simulation (in biological time)
• duration: the total duration (in biological time) of the simulation

The function will be called every report_period during the simulation, but also at the beginning and end with
completed equal to 0.0 and 1.0, respectively.
For the C++ standalone mode, the same standard options are available. It is also possible to implement custom progress
reporting by directly passing the code (as a multi-line string) to the report argument. This code will be filled into a
progress report function template, it should therefore only contain a function body. The simplest use of this might look
like:

net.run(duration, report='std::cout << (int)(completed*100.) << "% completed" <<␣
↪→std::endl;')

4.5. Custom progress reporting 215

Brian 2 Documentation, Release 2.5.1

Examples of custom reporting

Progress printed to a file

from brian2.core.network import TextReport
report_file = open('report.txt', 'w')
file_reporter = TextReport(report_file)
net.run(duration, report=file_reporter)
report_file.close()

“Graphical” output on the console
This needs a “normal” Linux console, i.e. it might not work in an integrated console in an IDE.
Adapted from http://stackoverflow.com/questions/3160699/python-progress-bar

import sys

class ProgressBar(object):
def __init__(self, toolbar_width=40):

self.toolbar_width = toolbar_width
self.ticks = 0

def __call__(self, elapsed, complete, start, duration):
if complete == 0.0:

setup toolbar
sys.stdout.write("[%s]" % (" " * self.toolbar_width))
sys.stdout.flush()
sys.stdout.write("\b" * (self.toolbar_width + 1)) # return to start of␣

↪→line, after '['
else:

ticks_needed = int(round(complete * self.toolbar_width))
if self.ticks < ticks_needed:

sys.stdout.write("-" * (ticks_needed-self.ticks))
sys.stdout.flush()
self.ticks = ticks_needed

if complete == 1.0:
sys.stdout.write("\n")

net.run(duration, report=ProgressBar(), report_period=1*second)

“Standalone Mode” Text based progress bar on console
This needs a “normal” Linux console, i.e. it might not work in an integrated console in an IDE.
Adapted from https://stackoverflow.com/questions/14539867/how-to-display-a-progress-indicator-in-pure-c-c-cout-printf

set_device('cpp_standalone')

report_func = '''
int remaining = (int)((1-completed)/completed*elapsed+0.5);
if (completed == 0.0)
{

std::cout << "Starting simulation at t=" << start << " s for duration " <<␣
↪→duration << " s"<<std::flush;

}
else
{

int barWidth = 70;

(continues on next page)

216 Chapter 4. Advanced guide

http://stackoverflow.com/questions/3160699/python-progress-bar
https://stackoverflow.com/questions/14539867/how-to-display-a-progress-indicator-in-pure-c-c-cout-printf

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
std::cout << "\\r[";
int pos = barWidth * completed;
for (int i = 0; i < barWidth; ++i) {

if (i < pos) std::cout << "=";
else if (i == pos) std::cout << ">";
else std::cout << " ";

}
std::cout << "] " << int(completed * 100.0) << "% completed. | "<

↪→<int(remaining) <<"s remaining"<<std::flush;
}

'''
run(100*second, report=report_func)

4.6 Random numbers

Brian provides two basic functions to generate random numbers that can be used in model code and equations: rand(),
to generate uniformly generated random numbers between 0 and 1, and randn(), to generate random numbers from a
standard normal distribution (i.e. normally distributed numbers with a mean of 0 and a standard deviation of 1). All other
stochastic elements of a simulation (probabilistic connections, Poisson-distributed input generated by PoissonGroup
or PoissonInput, differential equations using the noise term xi, …) will internally make use of these two basic
functions.
For Runtime code generation, random numbers are generated by numpy.random.rand and numpy.random.
randn respectively, which uses a Mersenne-Twister pseudorandom number generator. When the numpy code gen-
eration target is used, these functions are called directly, but for cython, Brian uses a internal buffers for uniformly and
normally distributed random numbers and calls the numpy functions whenever all numbers from this buffer have been
used. This avoids the overhead of switching between C code and Python code for each random number. For Standalone
code generation, the random number generation is based on “randomkit”, the same Mersenne-Twister implementation
that is used by numpy. The source code of this implementation will be included in every generated standalone project.

4.6.1 Seeding and reproducibility

Runtime mode

As explained above, Runtime code generation makes use of numpy’s random number generator. In principle, using
numpy.random.seed therefore permits reproducing a stream of random numbers. However, for cython, Brian’s
buffer complicates the matter a bit: if a simulation sets numpy’s seed, uses 10000 random numbers, and then resets the
seed, the following 10000 random numbers (assuming the current size of the buffer) will come out of the pre-generated
buffer before numpy’s random number generation functions are called again and take into account the seed set by the
user. Instead, users should use the seed() function provided by Brian 2 itself, this will take care of setting numpy’s
random seed and empty Brian’s internal buffers. This function also has the advantage that it will continue to work when
the simulation is switched to standalone code generation (see below). Note that random numbers are not guaranteed to
be reproducible across different code generation targets or different versions of Brian, especially if several sources of
randomness are used in the same CodeObject (e.g. two noise variables in the equations of a NeuronGroup). This
is because Brian does not guarantee the order of certain operations (e.g. should it first generate all random numbers for
the first noise variable for all neurons, followed by the random numbers for the second noise variable for all neurons or
rather first the random numbers for all noice variables of the first neuron, then for the second neuron, etc.) Since all
random numbers are coming from the same stream of random numbers, the order of getting the numbers out of this
stream matter.

4.6. Random numbers 217

https://numpy.org/doc/stable/reference/random/generated/numpy.random.rand.html#numpy.random.rand
https://numpy.org/doc/stable/reference/random/generated/numpy.random.randn.html#numpy.random.randn
https://numpy.org/doc/stable/reference/random/generated/numpy.random.randn.html#numpy.random.randn
https://en.wikipedia.org/wiki/Mersenne_Twister
https://numpy.org/doc/stable/reference/random/generated/numpy.random.seed.html#numpy.random.seed

Brian 2 Documentation, Release 2.5.1

Standalone mode

For Standalone code generation, Brian’s seed() function will insert code to set the random number generator seed into
the generated code. The code will be generated at the position where the seed() call was made, allowing detailed
control over the seeding. For example the following code would generate identical initial conditions every time it is run,
but the noise generated by the xi variable would differ:

G = NeuronGroup(10, 'dv/dt = -v/(10*ms) + 0.1*xi/sqrt(ms) : 1')
seed(4321)
G.v = 'rand()'
seed()
run(100*ms)

Note: In standalone mode, seed() will not set numpy’s random number generator. If you use random numbers in
the Python script itself (e.g. to generate a list of synaptic connections that will be passed to the standalone code as a
pre-calculated array), then you have to explicitly call numpy.random.seed yourself to make these random numbers
reproducible.

Note: Seeding should lead to reproducible random numbers even when using OpenMP with multiple threads (for
repeated simulations with the same number of threads), but this has not been rigorously tested. Use at your own risk.

4.7 Custom events

4.7.1 Overview

In most simulations, a NeuronGroup defines a threshold on its membrane potential that triggers a spike event. This
event can be monitored by a SpikeMonitor, it is used in synaptic interactions, and in integrate-and-fire models it also
leads to the execution of one or more reset statements.
Sometimes, it can be useful to define additional events, e.g. when an ion concentration in the cell crosses a certain
threshold. This can be done with the custom events system in Brian, which is illustrated in this diagram.

218 Chapter 4. Advanced guide

https://numpy.org/doc/stable/reference/random/generated/numpy.random.seed.html#numpy.random.seed

Brian 2 Documentation, Release 2.5.1

spike

evt_other

evt_mon

evt_run

NeuronGroup G

spike

NeuronGroupSynapses

pre

post

other

EventMonitorG.run_on_event

You can see in this diagram that the source NeuronGroup has four types of events, called spike, evt_other,
evt_mon and evt_run. The event spike is the default event. It is triggered when you you include threshold='.
..' in a NeuronGroup, and has two potential effects. Firstly, when the event is triggered it causes the reset code to
run, specified by reset='...'. Secondly, if there are Synapses connected, it causes the on_pre on on_post
code to run (depending if the NeuronGroup is presynaptic or postsynaptic for those Synapses).
In the diagram though, we have three additional event types. We’ve included several event types here to make it clearer,
but you could use the same event for different purposes. Let’s start with the first one, evt_other. To understand this,
we need to look at the Synapses object in a bit more detail. A Synapses object has multiple pathways associated to it.
By default, there are just two, called pre and post. The pre pathway is activated by presynaptic spikes, and the post
pathway by postsynaptic spikes. Specifically, the spike event on the presynaptic NeuronGroup triggers the pre
pathway, and the spike event on the postsynaptic NeuronGroup triggers the post pathway. In the example in the
diagram, we have created a new pathway called other, and the evt_other event in the presynaptic NeuronGroup
triggers this pathway. Note that we can arrange this however we want. We could have spike trigger the other pathway
if we wanted to, or allow it to trigger both the pre and other pathways. We could also allow evt_other to trigger
the pre pathway. See below for details on the syntax for this.
The third type of event in the example is named evt_mon and this is connected to an EventMonitor which works
exactly the same way as SpikeMonitor (which is just an EventMonitor attached by default to the event spike).
Finally, the fourth type of event in the example is named evt_run, and this causes some code to be run in the Neu-
ronGroup triggered by the event. To add this code, we call NeuronGroup.run_on_event. So, when you set
reset='...', this is equivalent to calling NeuronGroup.run_on_event with the spike event.

4.7. Custom events 219

Brian 2 Documentation, Release 2.5.1

4.7.2 Details

Defining an event

This can be done with the events keyword in the NeuronGroup initializer:

group = NeuronGroup(N, '...', threshold='...', reset='...',
events={'custom_event': 'x > x_th'})

In this example, we define an event with the name custom_event that is triggered when the x variable crosses the
threshold x_th. Note that you can define any number of custom events. Each event is defined by its name as the key,
and its condition as the value of the dictionary.

Recording events

Custom events can be recorded with an EventMonitor:

event_mon = EventMonitor(group, 'custom_event')

Such an EventMonitor can be used in the same way as a SpikeMonitor – in fact, creating the SpikeMonitor
is basically identical to recording the spike event with an EventMonitor. An EventMonitor is not limited to
record the event time/neuron index, it can also record other variables of the model at the time of the event:

event_mon = EventMonitor(group, 'custom_event', variables['var1', 'var2'])

Triggering NeuronGroup code

If the event should trigger a series of statements (i.e. the equivalent of reset statements), this can be added by calling
run_on_event:

group.run_on_event('custom_event', 'x=0')

Triggering synaptic pathways

When neurons are connected by Synapses, the pre and post pathways are triggered by spike events on the presy-
naptic and postsynaptic NeuronGroup by default. It is possible to change which pathway is triggered by which event
by providing an on_event keyword that either specifies which event to use for all pathways, or a specific event for each
pathway (where non-specified pathways use the default spike event):

synapse_1 = Synapses(group, another_group, '...', on_pre='...', on_event='custom_event
↪→')

The code above causes all pathways to be triggered by an event named custom_event instead of the default spike.

synapse_2 = Synapses(group, another_group, '...', on_pre='...', on_post='...',
on_event={'pre': 'custom_event'})

In the code above, only the pre pathway is triggered by the custom_event event.
We can also create new pathways and have them be triggered by custom events. For example:

220 Chapter 4. Advanced guide

Brian 2 Documentation, Release 2.5.1

synapse_3 = Synapses(group, another_group, '...',
on_pre={'pre': '....',

'custom_pathway': '...'},
on_event={'pre': 'spike',

'custom_pathway': 'custom_event'})

In this code, the default pre pathway is still triggered by the spike event, but there is a new pathway called cus-
tom_pathway that is triggered by the custom_event event.

Scheduling

By default, custom events are checked after the spiking threshold (in the after_thresholds slots) and statements are
executed after the reset (in the after_resets slots). The slot for the execution of custom event-triggered statements
can be changed when it is added with the usual when and order keyword arguments (see Scheduling for details). To
change the time when the condition is checked, use NeuronGroup.set_event_schedule.

4.8 State update

In Brian, a state updater transforms a set of equations into an abstract state update code (and therefore is automatically
target-independent). In general, any function (or callable object) that takes an Equations object and returns abstract
code (as a string) can be used as a state updater and passed to the NeuronGroup constructor as a method argument.
The more common use case is to specify no state updater at all or chose one by name, see Choice of state updaters below.

4.8.1 Explicit state update

Explicit state update schemes can be specified in mathematical notation, using the ExplicitStateUpdater class.
A state updater scheme contains a series of statements, defining temporary variables and a final line (starting with x_new
=), giving the updated value for the state variable. The description can make reference to t (the current time), dt (the
size of the time step), x (value of the state variable), and f(x, t) (the definition of the state variable x, assuming
dx/dt = f(x, t). In addition, state updaters supporting stochastic equations additionally make use of dW (a normal
distributed random variable with variance dt) and g(x, t), the factor multiplied with the noise variable, assuming
dx/dt = f(x, t) + g(x, t) * xi.
Using this notation, simple forward Euler integration is specified as:

x_new = x + dt * f(x, t)

A Runge-Kutta 2 (midpoint) method is specified as:

k = dt * f(x,t)
x_new = x + dt * f(x + k/2, t + dt/2)

When creating a new state updater using ExplicitStateUpdater, you can specify the stochastic keyword
argument, determining whether this state updater does not support any stochastic equations (None, the default), stochastic
equations with additive noise only ('additive'), or arbitrary stochastic equations ('multiplicative'). The
provided state updaters use the Stratonovich interpretation for stochastic equations (which is the correct interpretation if
the white noise source is seen as the limit of a coloured noise source with a short time constant). As a result of this, the
simple Euler-Maruyama scheme (x_new = x + dt*f(x, t) + dW*g(x, t)) will only be used for additive
noise.
An example for a general state updater that handles arbitrary multiplicative noise (under Stratonovich interpretation) is
the derivative-free Milstein method:

4.8. State update 221

Brian 2 Documentation, Release 2.5.1

x_support = x + dt*f(x, t) + dt**.5 * g(x, t)
g_support = g(x_support, t)
k = 1/(2*dt**.5)*(g_support - g(x, t))*(dW**2)
x_new = x + dt*f(x,t) + g(x, t) * dW + k

Note that a single line in these descriptions is only allowed to mention g(x, t), respectively f(x, t) only once
(and you are not allowed to write, for example, g(f(x, t), t)). You can work around these restrictions by using
intermediate steps, defining temporary variables, as in the above examples for milstein and rk2.

4.8.2 Choice of state updaters

As mentioned in the beginning, you can pass arbitrary callables to the method argument of a NeuronGroup, as long as
this callable converts an Equations object into abstract code. The best way to add a new state updater, however, is to
register it with brian and provide a method to determine whether it is appropriate for a given set of equations. This way, it
can be automatically chosen when no method is specified and it can be referred to with a name (i.e. you can pass a string
like 'euler' to the method argument instead of importing euler and passing a reference to the object itself).
If you create a new state updater using theExplicitStateUpdater class, you have to specify what kind of stochastic
equations it supports. The keyword argument stochastic takes the values None (no stochastic equation support,
the default), 'additive' (support for stochastic equations with additive noise), 'multiplicative' (support for
arbitrary stochastic equations).
After creating the state updater, it has to be registered with StateUpdateMethod:

new_state_updater = ExplicitStateUpdater('...', stochastic='additive')
StateUpdateMethod.register('mymethod', new_state_updater)

The preferred way to do write new general state updaters (i.e. state updaters that cannot be described using the explicit
syntax described above) is to extend the StateUpdateMethod class (but this is not strictly necessary, all that is needed
is an object that implements a __call__method that operates on an Equations object and a dictionary of variables).
Optionally, the state updater can be registered with StateUpdateMethod as shown above.

4.8.3 Implicit state updates

Note: All of the following is just here for future reference, it’s not implemented yet.

Implicit schemes often use Newton-Raphson or fixed point iterations. These can also be defined by mathematical state-
ments, but the number of iterations is dynamic and therefore not easily vectorised. However, this might not be a big issue
in C, GPU or even with Numba.

Backward Euler

Backward Euler is defined as follows:

x(t+dt)=x(t)+dt*f(x(t+dt),t+dt)

This is not a executable statement because the RHS depends on the future. A simple way is to perform fixed point
iterations:

x(t+dt)=x(t)
x(t+dt)=x(t)+dt*dx=f(x(t+dt),t+dt) until increment<tolerance

222 Chapter 4. Advanced guide

Brian 2 Documentation, Release 2.5.1

This includes a loop with a different number of iterations depending on the neuron.

4.9 How Brian works

In this section we will briefly cover some of the internals of how Brian works. This is included here to understand the
general process that Brian goes through in running a simulation, but it will not be sufficient to understand the source code
of Brian itself or to extend it to do new things. For a more detailed view of this, see the documentation in the Developer’s
guide.

4.9.1 Clock-driven versus event-driven

Brian is a clock-driven simulator. This means that the simulation time is broken into an equally spaced time grid, 0, dt,
2*dt, 3*dt, …. At each time step t, the differential equations specifying the models are first integrated giving the values
at time t+dt. Spikes are generated when a condition such as v>vt is satisfied, and spikes can only occur on the time grid.
The advantage of clock driven simulation is that it is very flexible (arbitrary differential equations can be used) and
computationally efficient. However, the time grid approximation can lead to an overestimate of the amount of synchrony
that is present in a network. This is usually not a problem, and can be managed by reducing the time step dt, but it can
be an issue for some models.
Note that the inaccuracy introduced by the spike time approximation is of order O(dt), so the total accuracy of the
simulation is of order O(dt) per time step. This means that in many cases, there is no need to use a higher order numerical
integration method than forward Euler, as it will not improve the order of the error beyond O(dt). See State update for
more details of numerical integration methods.
Some simulators use an event-driven method. With this method, spikes can occur at arbitrary times instead of just on the
grid. This method can bemore accurate than a clock-driven simulation, but it is usually substantially more computationally
expensive (especially for larger networks). In addition, they are usually more restrictive in terms of the class of differential
equations that can be solved.
For a review of some of the simulation strategies that have been used, see Brette et al. 2007.

4.9.2 Code overview

The user-visible part of Brian consists of a number of objects such as NeuronGroup, Synapses, Network, etc.
These are all written in pure Python and essentially work to translate the user specified model into the computational
engine. The end state of this translation is a collection of short blocks of code operating on a namespace, which are
called in a sequence by the Network. Examples of these short blocks of code are the “state updaters” which perform
numerical integration, or the synaptic propagation step. The namespaces consist of a mapping from names to values,
where the possible values can be scalar values, fixed-length or dynamically sized arrays, and functions.

4.9.3 Syntax layer

The syntax layer consists of everything that is independent of the way the final simulation is computed (i.e. the language
and device it is running on). This includes things like NeuronGroup, Synapses, Network, Equations, etc.
The user-visible part of this is documented fully in the User’s guide and the Advanced guide. In particular, things such as
the analysis of equations and assignment of numerical integrators. The end result of this process, which is passed to the
computational engine, is a specification of the simulation consisting of the following data:

• A collection of variables which are scalar values, fixed-length arrays, dynamically sized arrays, and functions.
These are handled by Variable objects detailed in Variables and indices. Examples: each state variable of

4.9. How Brian works 223

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2638500/

Brian 2 Documentation, Release 2.5.1

a NeuronGroup is assigned an ArrayVariable; the list of spike indices stored by a SpikeMonitor is
assigned a DynamicArrayVariable; etc.

• A collection of code blocks specified via an “abstract code block” and a template name. The “abstract code block”
is a sequence of statements such as v = vrwhich are to be executed. In the case that say, v and vr are arrays, then
the statement is to be executed for each element of the array. These abstract code blocks are either given directly by
the user (in the case of neuron threshold and reset, and synaptic pre and post codes), or generated from differential
equations combined with a numerical integrator. The template name is one of a small set (around 20 total) which
give additional context. For example, the code block a = b when considered as part of a “state update” means
execute that for each neuron index. In the context of a reset statement, it means execute it for each neuron index of
a neuron that has spiked. Internally, these templates need to be implemented for each target language/device, but
there are relatively few of them.

• The order of execution of these code blocks, as defined by the Network.

4.9.4 Computational engine

The computational engine covers everything from generating to running code in a particular language or on a particular
device. It starts with the abstract definition of the simulation resulting from the syntax layer described above.
The computational engine is described by a Device object. This is used for allocating memory, generating and running
code. There are two types of device, “runtime” and “standalone”. In runtime mode, everything is managed by Python,
even if individual code blocks are in a different language. Memory is managed using numpy arrays (which can be passed
as pointers to use in other languages). In standalone mode, the output of the process (after calling Device.build) is
a complete source code project that handles everything, including memory management, and is independent of Python.
For both types of device, one of the key steps that works in the same way is code generation, the creation of a compilable
and runnable block of code from an abstract code block and a collection of variables. This happens in two stages: first
of all, the abstract code block is converted into a code snippet, which is a syntactically correct block of code in the target
language, but not one that can run on its own (it doesn’t handle accessing the variables from memory, etc.). This code
snippet typically represents the inner loop code. This step is handled by a CodeGenerator object. In some cases it
will involve a syntax translation (e.g. the Python syntax x**y in C++ should be pow(x, y)). The next step is to
insert this code snippet into a template to form a compilable code block. This code block is then passed to a runtime
CodeObject. In the case of standalone mode, this doesn’t do anything, but for runtime devices it handles compiling
the code and then running the compiled code block in the given namespace.

4.10 Interfacing with external code

Some neural simulations benefit from a direct connections to external libraries, e.g. to support real-time input from
a sensor (but note that Brian currently does not offer facilities to assure real-time processing) or to perform complex
calculations during a simulation run.
If the external library is written in Python (or is a library with Python bindings), then the connection can be made either
using the mechanism for User-provided functions, or using a network operation.
In case of C/C++ libraries, only theUser-provided functionsmechanism can be used. On the other hand, such simulations
can use the same user-provided C++ code to run with the Standalone code generation mode. In addition to that code,
one generally needs to include additional header files and use compiler/linker options to interface with the external code.
For this, several preferences can be used that will be taken into account for cython and the cpp_standalone
device. These preferences are mostly equivalent to the respective keyword arguments for Python’s distutils.core.
Extension class, see the documentation of the cpp_prefs module for more details.

224 Chapter 4. Advanced guide

https://docs.python.org/3/distutils/apiref.html#distutils.core.Extension
https://docs.python.org/3/distutils/apiref.html#distutils.core.Extension

CHAPTER

FIVE

EXAMPLES

5.1 Example: COBAHH

This is an implementation of a benchmark described in the following review paper:
Simulation of networks of spiking neurons: A review of tools and strategies (2006). Brette, Rudolph, Carnevale, Hines,
Beeman, Bower, Diesmann, Goodman, Harris, Zirpe, Natschläger, Pecevski, Ermentrout, Djurfeldt, Lansner, Rochel,
Vibert, Alvarez, Muller, Davison, El Boustani and Destexhe. Journal of Computational Neuroscience
Benchmark 3: random network of HH neurons with exponential synaptic conductances
Clock-driven implementation (no spike time interpolation)
R. Brette - Dec 2007

from brian2 import *

Parameters
area = 20000*umetre**2
Cm = (1*ufarad*cm**-2) * area
gl = (5e-5*siemens*cm**-2) * area

El = -60*mV
EK = -90*mV
ENa = 50*mV
g_na = (100*msiemens*cm**-2) * area
g_kd = (30*msiemens*cm**-2) * area
VT = -63*mV
Time constants
taue = 5*ms
taui = 10*ms
Reversal potentials
Ee = 0*mV
Ei = -80*mV
we = 6*nS # excitatory synaptic weight
wi = 67*nS # inhibitory synaptic weight

The model
eqs = Equations('''
dv/dt = (gl*(El-v)+ge*(Ee-v)+gi*(Ei-v)-

g_na*(m*m*m)*h*(v-ENa)-
g_kd*(n*n*n*n)*(v-EK))/Cm : volt

dm/dt = alpha_m*(1-m)-beta_m*m : 1

(continues on next page)

225

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
dn/dt = alpha_n*(1-n)-beta_n*n : 1
dh/dt = alpha_h*(1-h)-beta_h*h : 1
dge/dt = -ge*(1./taue) : siemens
dgi/dt = -gi*(1./taui) : siemens
alpha_m = 0.32*(mV**-1)*4*mV/exprel((13*mV-v+VT)/(4*mV))/ms : Hz
beta_m = 0.28*(mV**-1)*5*mV/exprel((v-VT-40*mV)/(5*mV))/ms : Hz
alpha_h = 0.128*exp((17*mV-v+VT)/(18*mV))/ms : Hz
beta_h = 4./(1+exp((40*mV-v+VT)/(5*mV)))/ms : Hz
alpha_n = 0.032*(mV**-1)*5*mV/exprel((15*mV-v+VT)/(5*mV))/ms : Hz
beta_n = .5*exp((10*mV-v+VT)/(40*mV))/ms : Hz
''')

P = NeuronGroup(4000, model=eqs, threshold='v>-20*mV', refractory=3*ms,
method='exponential_euler')

Pe = P[:3200]
Pi = P[3200:]
Ce = Synapses(Pe, P, on_pre='ge+=we')
Ci = Synapses(Pi, P, on_pre='gi+=wi')
Ce.connect(p=0.02)
Ci.connect(p=0.02)

Initialization
P.v = 'El + (randn() * 5 - 5)*mV'
P.ge = '(randn() * 1.5 + 4) * 10.*nS'
P.gi = '(randn() * 12 + 20) * 10.*nS'

Record a few traces
trace = StateMonitor(P, 'v', record=[1, 10, 100])
run(1 * second, report='text')
plot(trace.t/ms, trace[1].v/mV)
plot(trace.t/ms, trace[10].v/mV)
plot(trace.t/ms, trace[100].v/mV)
xlabel('t (ms)')
ylabel('v (mV)')
show()

226 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

5.2 Example: CUBA

This is a Brian script implementing a benchmark described in the following review paper:
Simulation of networks of spiking neurons: A review of tools and strategies (2007). Brette, Rudolph, Carnevale, Hines,
Beeman, Bower, Diesmann, Goodman, Harris, Zirpe, Natschlager, Pecevski, Ermentrout, Djurfeldt, Lansner, Rochel,
Vibert, Alvarez, Muller, Davison, El Boustani and Destexhe. Journal of Computational Neuroscience 23(3):349-98
Benchmark 2: random network of integrate-and-fire neurons with exponential synaptic currents.
Clock-driven implementation with exact subthreshold integration (but spike times are aligned to the grid).

from brian2 import *

taum = 20*ms
taue = 5*ms
taui = 10*ms
Vt = -50*mV
Vr = -60*mV
El = -49*mV

eqs = '''

(continues on next page)

5.2. Example: CUBA 227

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
dv/dt = (ge+gi-(v-El))/taum : volt (unless refractory)
dge/dt = -ge/taue : volt
dgi/dt = -gi/taui : volt
'''

P = NeuronGroup(4000, eqs, threshold='v>Vt', reset='v = Vr', refractory=5*ms,
method='exact')

P.v = 'Vr + rand() * (Vt - Vr)'
P.ge = 0*mV
P.gi = 0*mV

we = (60*0.27/10)*mV # excitatory synaptic weight (voltage)
wi = (-20*4.5/10)*mV # inhibitory synaptic weight
Ce = Synapses(P, P, on_pre='ge += we')
Ci = Synapses(P, P, on_pre='gi += wi')
Ce.connect('i<3200', p=0.02)
Ci.connect('i>=3200', p=0.02)

s_mon = SpikeMonitor(P)

run(1 * second)

plot(s_mon.t/ms, s_mon.i, ',k')
xlabel('Time (ms)')
ylabel('Neuron index')
show()

228 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

5.3 Example: IF_curve_Hodgkin_Huxley

Input-Frequency curve of a HH model.
Network: 100 unconnected Hodgin-Huxley neurons with an input current I. The input is set differently for each neuron.
This simulation should use exponential Euler integration.

from brian2 import *

num_neurons = 100
duration = 2*second

Parameters
area = 20000*umetre**2
Cm = 1*ufarad*cm**-2 * area
gl = 5e-5*siemens*cm**-2 * area
El = -65*mV
EK = -90*mV
ENa = 50*mV
g_na = 100*msiemens*cm**-2 * area
g_kd = 30*msiemens*cm**-2 * area

(continues on next page)

5.3. Example: IF_curve_Hodgkin_Huxley 229

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
VT = -63*mV

The model
eqs = Equations('''
dv/dt = (gl*(El-v) - g_na*(m*m*m)*h*(v-ENa) - g_kd*(n*n*n*n)*(v-EK) + I)/Cm : volt
dm/dt = 0.32*(mV**-1)*4*mV/exprel((13.*mV-v+VT)/(4*mV))/ms*(1-m)-0.28*(mV**-1)*5*mV/
↪→exprel((v-VT-40.*mV)/(5*mV))/ms*m : 1
dn/dt = 0.032*(mV**-1)*5*mV/exprel((15.*mV-v+VT)/(5*mV))/ms*(1.-n)-.5*exp((10.*mV-
↪→v+VT)/(40.*mV))/ms*n : 1
dh/dt = 0.128*exp((17.*mV-v+VT)/(18.*mV))/ms*(1.-h)-4./(1+exp((40.*mV-v+VT)/(5.*mV)))/
↪→ms*h : 1
I : amp
''')
Threshold and refractoriness are only used for spike counting
group = NeuronGroup(num_neurons, eqs,

threshold='v > -40*mV',
refractory='v > -40*mV',
method='exponential_euler')

group.v = El
group.I = '0.7*nA * i / num_neurons'

monitor = SpikeMonitor(group)

run(duration)

plot(group.I/nA, monitor.count / duration)
xlabel('I (nA)')
ylabel('Firing rate (sp/s)')
show()

230 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

5.4 Example: IF_curve_LIF

Input-Frequency curve of a IF model.
Network: 1000 unconnected integrate-and-fire neurons (leaky IF) with an input parameter v0. The input is set differently
for each neuron.

from brian2 import *

n = 1000
duration = 1*second
tau = 10*ms
eqs = '''
dv/dt = (v0 - v) / tau : volt (unless refractory)
v0 : volt
'''
group = NeuronGroup(n, eqs, threshold='v > 10*mV', reset='v = 0*mV',

refractory=5*ms, method='exact')
group.v = 0*mV
group.v0 = '20*mV * i / (n-1)'

monitor = SpikeMonitor(group)

(continues on next page)

5.4. Example: IF_curve_LIF 231

Brian 2 Documentation, Release 2.5.1

(continued from previous page)

run(duration)
plot(group.v0/mV, monitor.count / duration)
xlabel('v0 (mV)')
ylabel('Firing rate (sp/s)')
show()

5.5 Example: adaptive_threshold

A model with adaptive threshold (increases with each spike)

from brian2 import *

eqs = '''
dv/dt = -v/(10*ms) : volt
dvt/dt = (10*mV-vt)/(15*ms) : volt
'''

reset = '''
v = 0*mV

(continues on next page)

232 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
vt += 3*mV
'''

IF = NeuronGroup(1, model=eqs, reset=reset, threshold='v>vt',
method='exact')

IF.vt = 10*mV
PG = PoissonGroup(1, 500 * Hz)

C = Synapses(PG, IF, on_pre='v += 3*mV')
C.connect()

Mv = StateMonitor(IF, 'v', record=True)
Mvt = StateMonitor(IF, 'vt', record=True)
Record the value of v when the threshold is crossed
M_crossings = SpikeMonitor(IF, variables='v')
run(2*second, report='text')

subplot(1, 2, 1)
plot(Mv.t / ms, Mv[0].v / mV)
plot(Mvt.t / ms, Mvt[0].vt / mV)
ylabel('v (mV)')
xlabel('t (ms)')
zoom in on the first 100ms
xlim(0, 100)
subplot(1, 2, 2)
hist(M_crossings.v / mV, bins=np.arange(10, 20, 0.5))
xlabel('v at threshold crossing (mV)')
show()

5.5. Example: adaptive_threshold 233

Brian 2 Documentation, Release 2.5.1

5.6 Example: non_reliability

Reliability of spike timing.
See e.g. Mainen & Sejnowski (1995) for experimental results in vitro.
Here: a constant current is injected in all trials.

from brian2 import *

N = 25
tau = 20*ms
sigma = .015
eqs_neurons = '''
dx/dt = (1.1 - x) / tau + sigma * (2 / tau)**.5 * xi : 1 (unless refractory)
'''
neurons = NeuronGroup(N, model=eqs_neurons, threshold='x > 1', reset='x = 0',

refractory=5*ms, method='euler')
spikes = SpikeMonitor(neurons)

run(500*ms)
plot(spikes.t/ms, spikes.i, '.k')

(continues on next page)

234 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
xlabel('Time (ms)')
ylabel('Neuron index')
show()

5.7 Example: phase_locking

Phase locking of IF neurons to a periodic input.

from brian2 import *

tau = 20*ms
n = 100
b = 1.2 # constant current mean, the modulation varies
freq = 10*Hz

eqs = '''
dv/dt = (-v + a * sin(2 * pi * freq * t) + b) / tau : 1
a : 1
'''
neurons = NeuronGroup(n, model=eqs, threshold='v > 1', reset='v = 0',

(continues on next page)

5.7. Example: phase_locking 235

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
method='euler')

neurons.v = 'rand()'
neurons.a = '0.05 + 0.7*i/n'
S = SpikeMonitor(neurons)
trace = StateMonitor(neurons, 'v', record=50)

run(1000*ms)
subplot(211)
plot(S.t/ms, S.i, '.k')
xlabel('Time (ms)')
ylabel('Neuron index')
subplot(212)
plot(trace.t/ms, trace.v.T)
xlabel('Time (ms)')
ylabel('v')
tight_layout()
show()

236 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

5.8 Example: reliability

Reliability of spike timing.
See e.g. Mainen & Sejnowski (1995) for experimental results in vitro.

from brian2 import *

The common noisy input
N = 25
tau_input = 5*ms
neuron_input = NeuronGroup(1, 'dx/dt = -x / tau_input + (2 /tau_input)**.5 * xi : 1')

The noisy neurons receiving the same input
tau = 10*ms
sigma = .015
eqs_neurons = '''
dx/dt = (0.9 + .5 * I - x) / tau + sigma * (2 / tau)**.5 * xi : 1
I : 1 (linked)
'''
neurons = NeuronGroup(N, model=eqs_neurons, threshold='x > 1',

reset='x = 0', refractory=5*ms, method='euler')
neurons.x = 'rand()'
neurons.I = linked_var(neuron_input, 'x') # input.x is continuously fed into neurons.I
spikes = SpikeMonitor(neurons)

run(500*ms)
plt.plot(spikes.t/ms, spikes.i, '.k')
xlabel('Time (ms)')
ylabel('Neuron index')
show()

5.8. Example: reliability 237

Brian 2 Documentation, Release 2.5.1

5.9 advanced

5.9.1 Example: COBAHH_approximated

Follows exercise 4, chapter 2 of Eugene M. Izhikevich: Dynamical Systems in Neuroscience
Sebastian Schmitt, 2021

import argparse
from functools import reduce
import operator

import matplotlib.pyplot as plt
from cycler import cycler
import numpy as np

from brian2 import run
from brian2 import mS, cmeter, ms, mV, uA, uF
from brian2 import Equations, NeuronGroup, StateMonitor, TimedArray, defaultclock

(continues on next page)

238 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
def construct_gating_variable_inf_equation(gating_variable):

"""Construct the voltage-dependent steady-state gating variable equation.

Approximated by Boltzmann function.

gating_variable -- gating variable, typically one of "m", "n" and "h"
"""

return Equations('xinf = 1/(1+exp((v_half-v)/k)) : 1',
xinf=f'{gating_variable}_inf',
v_half=f'v_{gating_variable}_half',
k=f'k_{gating_variable}')

def construct_gating_variable_tau_equation(gating_variable):
"""Construct the voltage-dependent gating variable time constant equation.

Approximated by Gaussian function.

gating_variable -- gating variable, typically one of "m", "n" and "h"
"""

return Equations('tau = c_base + c_amp*exp(-(v_max - v)**2/sigma**2) : second',
tau=f'tau_{gating_variable}',
c_base=f'c_{gating_variable}_base',
c_amp=f'c_{gating_variable}_amp',
v_max=f'v_{gating_variable}_max',
sigma=f'sigma_{gating_variable}')

def construct_gating_variable_ode(gating_variable):
"""Construct the ordinary differential equation of the gating variable.

gating_variable -- gating variable, typically one of "m", "n" and "h"
"""

return Equations('dx/dt = (xinf - x)/tau : 1',
x=gating_variable,
xinf=f'{gating_variable}_inf',
tau=f'tau_{gating_variable}')

def construct_neuron_ode():
"""Construct the ordinary differential equation of the membrane."""

conductances
g_K_eq = Equations('g_K = g_K_bar*n**4 : siemens/meter**2')
g_Na_eq = Equations('g_Na = g_Na_bar*m**3*h : siemens/meter**2')

currents
I_K_eq = Equations('I_K = g_K*(v - e_K) : ampere/meter**2')
I_Na_eq = Equations('I_Na = g_Na*(v - e_Na) : ampere/meter**2')
I_L_eq = Equations('I_L = g_L*(v - e_L) : ampere/meter**2')

external drive
I_ext_eq = Equations('I_ext = I_stim(t) : ampere/meter**2')

(continues on next page)

5.9. advanced 239

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
membrane
membrane_eq = Equations('dv/dt = (I_ext - I_K - I_Na - I_L)/C_mem : volt')

return [g_K_eq, g_Na_eq, I_K_eq, I_Na_eq, I_L_eq, I_ext_eq, membrane_eq]

def plot_tau(ax, parameters):
"""Plot gating variable time constants as function of membrane potential.

ax -- matplotlib axes to be plotted on
parameters -- dictionary of parameters for gating variable time constant equations
"""

tau_group = NeuronGroup(100,
Equations('v : volt') +
reduce(operator.add, [construct_gating_variable_tau_

↪→equation(
gv) for gv in ['m', 'n', 'h']]),

method='euler', namespace=parameters)

min_v = -100
max_v = 100
tau_group.v = np.linspace(min_v, max_v, len(tau_group))*mV

ax.plot(tau_group.v/mV, tau_group.tau_m/ms, label=r'τ_m')
ax.plot(tau_group.v/mV, tau_group.tau_n/ms, label=r'τ_n')
ax.plot(tau_group.v/mV, tau_group.tau_h/ms, label=r'τ_h')

ax.set_xlabel('v (mV)')
ax.set_ylabel(r'τ (ms)')
ax.yaxis.set_label_position("right")
ax.yaxis.tick_right()
ax.legend()

def plot_inf(ax, parameters):
"""Plot gating variable steady-state values as function of membrane potential.

ax -- matplotlib axes to be plotted on
parameters -- dictionary of parameters for gating variable steady-state equations
"""

inf_group = NeuronGroup(100,
Equations('v : volt') +
reduce(operator.add, [construct_gating_variable_inf_

↪→equation(
gv) for gv in ['m', 'n', 'h']]),

method='euler', namespace=parameters)
inf_group.v = np.linspace(-100, 100, len(inf_group))*mV

ax.plot(inf_group.v/mV, inf_group.m_inf, label=r'm_∞')
ax.plot(inf_group.v/mV, inf_group.n_inf, label=r'n_∞')
ax.plot(inf_group.v/mV, inf_group.h_inf, label=r'h_∞')
ax.set_xlabel('v (mV)')
ax.set_ylabel('steady-state activation')
ax.yaxis.set_label_position("right")
ax.yaxis.tick_right()

(continues on next page)

240 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
ax.legend()

def plot_membrane_voltage(ax, statemon):
"""Plot simulation result: membrane potential.

ax -- matplotlib axes to be plotted on
statemon -- StateMonitor (with v recorded)
"""

ax.plot(statemon.t/ms, statemon.v[0]/mV, label='membrane voltage')
ax.set_xlabel('t (ms)')
ax.set_ylabel('v (mV)')
ax.axhline(0, linestyle='dashed')
ax.legend()

def plot_gating_variable_activations(ax, statemon):
"""Plot simulation result: gating variables.

ax -- matplotlib axes to be plotted on
statemon -- StateMonitor (with m, n and h recorded)
"""

ax.plot(statemon.t/ms, statemon.m[0], label='m')
ax.plot(statemon.t/ms, statemon.n[0], label='n')
ax.plot(statemon.t/ms, statemon.h[0], label='h')
ax.set_xlabel('t (ms)')
ax.set_ylabel('activation')
ax.legend()

def plot_conductances(ax, statemon):
"""Plot simulation result: conductances.

ax -- matplotlib axes to be plotted on
statemon -- StateMonitor (with g_K and g_Na recorded)
"""

ax.plot(statemon.t/ms, statemon.g_K[0] / (mS/(cmeter**2)),
label=r'$g_\mathregular{K}$')

ax.plot(statemon.t/ms, statemon.g_Na[0] / (mS/(cmeter**2)),
label=r'$g_\mathregular{Na}$')

ax.set_xlabel('t (ms)')
ax.set_ylabel('g (mS/cm2)')
ax.legend()

def plot_currents(ax, statemon):
"""Plot simulation result: currents.

ax -- matplotlib axes to be plotted on
statemon -- StateMonitor (with I_K, I_Na and I_L recorded)
"""

(continues on next page)

5.9. advanced 241

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
ax.plot(statemon.t/ms,

statemon.I_K[0] / (uA/(cmeter**2)),
label=r'$I_\mathregular{K}$')

ax.plot(statemon.t/ms, statemon.I_Na[0] / (uA/(cmeter**2)),
label=r'$I_\mathregular{Na}$')

ax.plot(statemon.t/ms, (statemon.I_Na[0] + statemon.I_K[0] +
statemon.I_L[0]) / (uA/(cmeter**2)),

label=r'$I_\mathregular{Na} + I_\mathregular{K} + I_\mathregular{L}$')

ax.set_xlabel('t (ms)')
ax.set_ylabel(r'I (μA/cm2)')
ax.legend()

def plot_current_stimulus(ax, statemon):
"""Plot simulation result: external current stimulus.

ax -- matplotlib axes to be plotted on
statemon -- StateMonitor (with I_ext recorded)
"""

ax.plot(statemon.t/ms, statemon.I_ext[0] /
(uA/(cmeter**2)), label=r'$I_\mathregular{ext}$')

ax.set_xlabel('t (ms)')
ax.set_ylabel(r'I (μA/cm2)')
ax.legend()

def plot_gating_variable_time_constants(ax, statemon):
"""Plot simulation result: gating variable time constants.

ax -- matplotlib axes to be plotted on
statemon -- StateMonitor (with tau_m, tau_n and tau_h recorded)
"""

ax.plot(statemon.t/ms, statemon.tau_m[0]/ms, label=r'τ_m')
ax.plot(statemon.t/ms, statemon.tau_n[0]/ms, label=r'τ_n')
ax.plot(statemon.t/ms, statemon.tau_h[0]/ms, label=r'τ_h')

ax.set_xlabel('t (ms)')
ax.set_ylabel(r'τ (ms)')
ax.legend()

def run_simulation(parameters):
"""Run the simulation.

parameters -- dictionary with parameters
"""

equations = []
for gating_variable in ["m", "n", "h"]:

equations.append(
construct_gating_variable_inf_equation(gating_variable))

(continues on next page)

242 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
equations.append(

construct_gating_variable_tau_equation(gating_variable))
equations.append(construct_gating_variable_ode(gating_variable))

equations += construct_neuron_ode()

eqs_HH = reduce(operator.add, equations)
group = NeuronGroup(1, eqs_HH, method='euler', namespace=parameters)

group.v = parameters["v_initial"]

group.m = parameters["m_initial"]
group.n = parameters["n_initial"]
group.h = parameters["h_initial"]

statemon = StateMonitor(group, ['v',
'I_ext',
'm', 'n', 'h',
'g_K', 'g_Na',
'I_K', 'I_Na', 'I_L',
'tau_m', 'tau_n', 'tau_h'],

record=True)

defaultclock.dt = parameters["defaultclock_dt"]
run(parameters["duration"])

return statemon

def main(parameters):
"""Run simulation and return matplotlib figure.

parameters -- dictionary with parameters
"""

statemon = run_simulation(parameters)

fig = plt.figure(figsize=(20, 15), constrained_layout=True)
gs = fig.add_gridspec(6, 2)

ax0 = fig.add_subplot(gs[0, 0])
ax1 = fig.add_subplot(gs[1, 0])
ax2 = fig.add_subplot(gs[2, 0])
ax3 = fig.add_subplot(gs[3, 0])
ax4 = fig.add_subplot(gs[4, 0])
ax5 = fig.add_subplot(gs[5, 0])
ax6 = fig.add_subplot(gs[:3, 1])
ax7 = fig.add_subplot(gs[3:, 1])

plot_membrane_voltage(ax0, statemon)
plot_gating_variable_activations(ax1, statemon)
plot_conductances(ax2, statemon)
plot_currents(ax3, statemon)
plot_current_stimulus(ax4, statemon)
plot_gating_variable_time_constants(ax5, statemon)

plot_tau(ax6, parameters)
plot_inf(ax7, parameters)

(continues on next page)

5.9. advanced 243

Brian 2 Documentation, Release 2.5.1

(continued from previous page)

return fig

parameters = {

Boltzmann function parameters
'v_n_half': 12*mV,
'v_m_half': 25*mV,
'v_h_half': 3*mV,

'k_n': 15*mV,
'k_m': 9*mV,
'k_h': -7*mV,

Gaussian function parameters
'v_n_max': -14*mV,
'v_m_max': 27*mV,
'v_h_max': -2*mV,

'sigma_n': 50*mV,
'sigma_m': 30*mV,
'sigma_h': 20*mV,

'c_n_amp': 4.7*ms,
'c_m_amp': 0.46*ms,
'c_h_amp': 7.4*ms,

'c_n_base': 1.1*ms,
'c_m_base': 0.04*ms,
'c_h_base': 1.2*ms,

conductances
'g_K_bar': 36*mS / (cmeter**2),
'g_Na_bar': 120*mS / (cmeter**2),
'g_L': 0.3*mS / (cmeter**2),

reversal potentials
'e_K': -12*mV,
'e_Na': 120*mV,
'e_L': 10.6*mV,

membrane capacitance
'C_mem': 1*uF / cmeter**2,

initial membrane voltage
'v_initial': 0*mV,

initial gating variable activations
'm_initial': 0.05,
'n_initial': 0.32,
'h_initial': 0.60,

external stimulus at 2 ms with 4 uA/cm^2 and at 10 ms with 15 uA/cm^2
for 0.5 ms each
'I_stim': TimedArray(values=([0]*4+[4]+[0]*15+[15]+[0])*uA/(cmeter**2),

dt=0.5*ms),
(continues on next page)

244 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)

simulation time step
'defaultclock_dt': 0.01*ms,

simulation duration
'duration': 20*ms

}

linestyle_cycler = cycler('linestyle',['-','--',':','-.'])
plt.rc('axes', prop_cycle=linestyle_cycler)

fig = main(parameters)

plt.show()

5.9. advanced 245

Brian 2 Documentation, Release 2.5.1

5.9.2 Example: Ornstein_Uhlenbeck

Ornstein-Uhlenbeck process
Figure 2: Two realizations of the Ornstein-Uhlenbeck process for parameters τ=1.0 and σ=0.1 (black curve), and for
τ=0.1 and σ=0.31622 (red curve). In both cases the noise intensity is σ^2*τ=0.01 . The red curve represents a noise
that more closely mimics Gaussian white noise. Both realizations begin here at x(0)=1.0 , after which the mean decays
exponentially to zero with time constant τ.
Andre Longtin (2010) Stochastic dynamical systems. Scholarpedia, 5(4):1619.
Sebastian Schmitt, 2022

import matplotlib.pyplot as plt
import numpy as np

from brian2 import run
from brian2 import NeuronGroup, StateMonitor
from brian2 import second, ms

N = NeuronGroup(
2,
"""
tau : second
sigma : 1
dy/dt = -y/tau + sqrt(2*sigma**2/tau)*xi : 1
""",
method="euler"

)

N.tau = np.array([1, 0.1]) * second
N.sigma = np.array([0.1, 0.31622])
N.y = 1

M = StateMonitor(N, "y", record=True)

run(10 * second)

plt.plot(M.t / second, M.y[1], color="red", label=r"τ=0.1 s, σ=0.31622")
plt.plot(M.t / second, M.y[0], color="k", label=r"τ=1 s, σ=0.1")

plt.xlim(0, 10)
plt.ylim(-1.1, 1.1)

plt.xlabel("time (sec)")
plt.ylabel("Ornstein-Uhlenbeck process")

plt.legend()

plt.show()

246 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

5.9.3 Example: compare_GSL_to_conventional

Example using GSL ODE solvers with a variable time step and comparing it to the Brian solver.
For highly accurate simulations, i.e. simulations with a very low desired error, the GSL simulation with a variable time
step can be faster because it uses a low time step only when it is necessary. In biologically detailed models (e.g. of the
Hodgkin-Huxley type), the relevant time constants are very short around an action potential, but much longer when the
neuron is near its resting potential. The following example uses a very simple neuron model (leaky integrate-and-fire), but
simulates a change in relevant time constants by changing the actual time constant every 10ms, independently for each of
100 neurons. To accurately simulate this model with a fixed time step, the time step has to be very small, wasting many
unnecessary steps for all the neurons where the time constant is long.
Note that using the GSL ODE solver is much slower, if both methods use a comparable number of steps, i.e. if the desired
accuracy is low enough so that a single step per “Brian time step” is enough.

from brian2 import *
import time

Run settings
start_dt = .1 * ms
method = 'rk2'
error = 1.e-6 # requested accuracy

(continues on next page)

5.9. advanced 247

Brian 2 Documentation, Release 2.5.1

(continued from previous page)

def runner(method, dt, options=None):
seed(0)
I = 5
group = NeuronGroup(100, '''dv/dt = (-v + I)/tau : 1

tau : second''',
method=method,
method_options=options,
dt=dt)

group.run_regularly('''v = rand()
tau = 0.1*ms + rand()*9.9*ms''', dt=10*ms)

rec_vars = ['v', 'tau']
if 'gsl' in method:

rec_vars += ['_step_count']
net = Network(group)
net.run(0 * ms)
mon = StateMonitor(group, rec_vars, record=True, dt=start_dt)
net.add(mon)
start = time.time()
net.run(1 * second)
mon.add_attribute('run_time')
mon.run_time = time.time() - start
return mon

lin = runner('linear', start_dt)
method_options = {'save_step_count': True,

'absolute_error': error,
'max_steps': 10000}

gsl = runner('gsl_%s' % method, start_dt, options=method_options)

print("Running with GSL integrator and variable time step:")
print('Run time: %.3fs' % gsl.run_time)

check gsl error
assert np.max(np.abs(

lin.v - gsl.v)) < error, "Maximum error gsl integration too large: %f" % np.max(
np.abs(lin.v - gsl.v))

print("average step count: %.1f" % np.mean(gsl._step_count))
print("average absolute error: %g" % np.mean(np.abs(gsl.v - lin.v)))

print("\nRunning with exact integration and fixed time step:")
dt = start_dt
count = 0
dts = []
avg_errors = []
max_errors = []
runtimes = []
while True:

print('Using dt: %s' % str(dt))
brian = runner(method, dt)
print('\tRun time: %.3fs' % brian.run_time)
avg_errors.append(np.mean(np.abs(brian.v - lin.v)))
max_errors.append(np.max(np.abs(brian.v - lin.v)))
dts.append(dt)

(continues on next page)

248 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
runtimes.append(brian.run_time)
if np.max(np.abs(brian.v - lin.v)) > error:

print('\tError too high (%g), decreasing dt' % np.max(
np.abs(brian.v - lin.v)))

dt *= .5
count += 1

else:
break

print("Desired error level achieved:")
print("average step count: %.2fs" % (start_dt / dt))
print("average absolute error: %g" % np.mean(np.abs(brian.v - lin.v)))

print('Run time: %.3fs' % brian.run_time)
if brian.run_time > gsl.run_time:

print("This is %.1f times slower than the simulation with GSL's variable "
"time step method." % (brian.run_time / gsl.run_time))

else:
print("This is %.1f times faster than the simulation with GSL's variable "

"time step method." % (gsl.run_time / brian.run_time))

fig, (ax1, ax2) = plt.subplots(1, 2)
ax2.axvline(1e-6, color='gray')
for label, gsl_error, std_errors, ax in [('average absolute error', np.mean(np.
↪→abs(gsl.v - lin.v)), avg_errors, ax1),

('maximum absolute error', np.max(np.abs(gsl.
↪→v - lin.v)), max_errors, ax2)]:

ax.set(xscale='log', yscale='log')
ax.plot([], [], 'o', color='C0', label='fixed time step') # for the legend entry
for (error, runtime, dt) in zip(std_errors, runtimes, dts):

ax.plot(error, runtime, 'o', color='C0')
ax.annotate('%s' % str(dt), xy=(error, runtime), xytext=(2.5, 5),

textcoords='offset points', color='C0')
ax.plot(gsl_error, gsl.run_time, 'o', color='C1', label='variable time step (GSL)

↪→')
ax.set(xlabel=label, xlim=(10**-10, 10**1))

ax1.set_ylabel('runtime (s)')
ax2.legend(loc='lower left')

plt.show()

5.9. advanced 249

Brian 2 Documentation, Release 2.5.1

5.9.4 Example: custom_events

Example demonstrating the use of custom events.
Here we have three neurons, the first is Poisson spiking and connects to neuron G, which in turn connects to neuron H.
Neuron G has two variables v and g, and the incoming Poisson spikes cause an instantaneous increase in variable g. g
decays rapidly, and in turn causes a slow increase in v. If v crosses a threshold, it causes a standard spike and reset. If
g crosses a threshold, it causes a custom event gspike, and if it returns below that threshold it causes a custom event
end_gspike. The standard spike event when v crosses a threshold causes an instantaneous increase in variable x in
neuron H (which happens through the standard pre pathway in the synapses), and the gspike event causes an increase in
variable y (which happens through the custom pathway gpath).

from brian2 import *
Input Poisson spikes
inp = PoissonGroup(1, rates=250*Hz)
First group G
eqs_G = '''
dv/dt = (g-v)/(50*ms) : 1
dg/dt = -g/(10*ms) : 1
allow_gspike : boolean
'''
G = NeuronGroup(1, eqs_G, threshold='v>1',

(continues on next page)

250 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
reset='v = 0; g = 0; allow_gspike = True;',
events={'gspike': 'g>1 and allow_gspike',

'end_gspike': 'g<1 and not allow_gspike'})
G.run_on_event('gspike', 'allow_gspike = False')
G.run_on_event('end_gspike', 'allow_gspike = True')
Second group H
eqs_H = '''
dx/dt = -x/(10*ms) : 1
dy/dt = -y/(10*ms) : 1
'''
H = NeuronGroup(1, eqs_H)
Synapses from input Poisson group to G
Sin = Synapses(inp, G, on_pre='g += 0.5')
Sin.connect()
Synapses from G to H
S = Synapses(G, H,

on_pre={'pre': 'x += 1',
'gpath': 'y += 1'},

on_event={'pre': 'spike',
'gpath': 'gspike'})

S.connect()
Monitors
Mstate = StateMonitor(G, ('v', 'g'), record=True)
Mgspike = EventMonitor(G, 'gspike', 'g')
Mspike = SpikeMonitor(G, 'v')
MHstate = StateMonitor(H, ('x', 'y'), record=True)
Initialise and run
G.allow_gspike = True
run(500*ms)
Plot
figure(figsize=(10, 4))
subplot(121)
plot(Mstate.t/ms, Mstate.g[0], '-g', label='g')
plot(Mstate.t/ms, Mstate.v[0], '-b', lw=2, label='V')
plot(Mspike.t/ms, Mspike.v, 'ob', label='_nolegend_')
plot(Mgspike.t/ms, Mgspike.g, 'og', label='_nolegend_')
xlabel('Time (ms)')
title('Presynaptic group G')
legend(loc='best')
subplot(122)
plot(MHstate.t/ms, MHstate.y[0], '-r', label='y')
plot(MHstate.t/ms, MHstate.x[0], '-k', lw=2, label='x')
xlabel('Time (ms)')
title('Postsynaptic group H')
legend(loc='best')
tight_layout()
show()

5.9. advanced 251

Brian 2 Documentation, Release 2.5.1

5.9.5 Example: exprel_function

Show the improved numerical accuracy when using the exprel() function in rate equations.
Rate equations for channel opening/closing rates often include a term of the form x

exp(x)−1 . This term is problematic for
two reasons:

• It is not defined for x = 0 (where it should equal to 1 for continuity);
• For values x ≈ 0, there is a loss of accuracy.

For better accuracy, and to avoid issues at x = 0, Brian provides the function exprel(), which is equivalent to exp(x)−1
x ,

but with better accuracy and the expected result at x = 0. In this example, we demonstrate the advantage of expressing
a typical rate equation from the HH model with exprel().

from brian2 import *

Dummy group to evaluate the rate equation at various points
eqs = '''v : volt

opening rate from the HH model
alpha_simple = 0.32*(mV**-1)*(-50*mV-v)/

(exp((-50*mV-v)/(4*mV))-1.)/ms : Hz
alpha_improved = 0.32*(mV**-1)*4*mV/exprel((-50*mV-v)/(4*mV))/ms : Hz'''

neuron = NeuronGroup(1000, eqs)

Use voltage values around the problematic point
neuron.v = np.linspace(-50 - .5e-6, -50 + .5e-6, len(neuron))*mV

fig, ax = plt.subplots()
ax.plot((neuron.v + 50*mV)/nvolt, neuron.alpha_simple,

'.', label=r'α_simple')
ax.plot((neuron.v + 50*mV)/nvolt, neuron.alpha_improved,

'k', label=r'α_improved')
ax.legend()
ax.set(xlabel='v relative to -50mV (nV)', ylabel=r'α (Hz)')
ax.ticklabel_format(useOffset=False)
plt.tight_layout()
plt.show()

252 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

5.9.6 Example: float_32_64_benchmark

Benchmark showing the performance of float32 versus float64.

from brian2 import *
from brian2.devices.device import reset_device, reinit_devices

CUBA benchmark
def run_benchmark(name):

if name=='CUBA':

taum = 20*ms
taue = 5*ms
taui = 10*ms
Vt = -50*mV
Vr = -60*mV
El = -49*mV

eqs = '''
dv/dt = (ge+gi-(v-El))/taum : volt (unless refractory)
dge/dt = -ge/taue : volt
dgi/dt = -gi/taui : volt

(continues on next page)

5.9. advanced 253

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
'''

P = NeuronGroup(4000, eqs, threshold='v>Vt', reset='v = Vr', refractory=5*ms,
method='exact')

P.v = 'Vr + rand() * (Vt - Vr)'
P.ge = 0*mV
P.gi = 0*mV

we = (60*0.27/10)*mV # excitatory synaptic weight (voltage)
wi = (-20*4.5/10)*mV # inhibitory synaptic weight
Ce = Synapses(P, P, on_pre='ge += we')
Ci = Synapses(P, P, on_pre='gi += wi')
Ce.connect('i<3200', p=0.02)
Ci.connect('i>=3200', p=0.02)

elif name=='COBA':

Parameters
area = 20000 * umetre ** 2
Cm = (1 * ufarad * cm ** -2) * area
gl = (5e-5 * siemens * cm ** -2) * area

El = -60 * mV
EK = -90 * mV
ENa = 50 * mV
g_na = (100 * msiemens * cm ** -2) * area
g_kd = (30 * msiemens * cm ** -2) * area
VT = -63 * mV
Time constants
taue = 5 * ms
taui = 10 * ms
Reversal potentials
Ee = 0 * mV
Ei = -80 * mV
we = 6 * nS # excitatory synaptic weight
wi = 67 * nS # inhibitory synaptic weight

The model
eqs = Equations('''
dv/dt = (gl*(El-v)+ge*(Ee-v)+gi*(Ei-v)-

g_na*(m*m*m)*h*(v-ENa)-
g_kd*(n*n*n*n)*(v-EK))/Cm : volt

dm/dt = alpha_m*(1-m)-beta_m*m : 1
dn/dt = alpha_n*(1-n)-beta_n*n : 1
dh/dt = alpha_h*(1-h)-beta_h*h : 1
dge/dt = -ge*(1./taue) : siemens
dgi/dt = -gi*(1./taui) : siemens
alpha_m = 0.32*(mV**-1)*4*mV/exprel((13*mV-v+VT)/(4*mV))/ms : Hz
beta_m = 0.28*(mV**-1)*5*mV/exprel((v-VT-40*mV)/(5*mV))/ms : Hz
alpha_h = 0.128*exp((17*mV-v+VT)/(18*mV))/ms : Hz
beta_h = 4./(1+exp((40*mV-v+VT)/(5*mV)))/ms : Hz
alpha_n = 0.032*(mV**-1)*5*mV/exprel((15*mV-v+VT)/(5*mV))/ms : Hz
beta_n = .5*exp((10*mV-v+VT)/(40*mV))/ms : Hz
''')

P = NeuronGroup(4000, model=eqs, threshold='v>-20*mV', refractory=3 * ms,
method='exponential_euler')

(continues on next page)

254 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
Pe = P[:3200]
Pi = P[3200:]
Ce = Synapses(Pe, P, on_pre='ge+=we')
Ci = Synapses(Pi, P, on_pre='gi+=wi')
Ce.connect(p=0.02)
Ci.connect(p=0.02)

Initialization
P.v = 'El + (randn() * 5 - 5)*mV'
P.ge = '(randn() * 1.5 + 4) * 10.*nS'
P.gi = '(randn() * 12 + 20) * 10.*nS'

run(1 * second, profile=True)

return sum(t for name, t in magic_network.profiling_info)

def generate_results(num_repeats):
results = {}

for name in ['CUBA', 'COBA']:
for target in ['numpy', 'cython']:

for dtype in [float32, float64]:
prefs.codegen.target = target
prefs.core.default_float_dtype = dtype
times = [run_benchmark(name) for repeat in range(num_repeats)]
results[name, target, dtype.__name__] = amin(times)

for name in ['CUBA', 'COBA']:
for dtype in [float32, float64]:

times = []
for _ in range(num_repeats):

reset_device()
reinit_devices()
set_device('cpp_standalone', directory=None, with_output=False)
prefs.core.default_float_dtype = dtype
times.append(run_benchmark(name))

results[name, 'cpp_standalone', dtype.__name__] = amin(times)

return results

results = generate_results(3)

bar_width = 0.9
names = ['CUBA', 'COBA']
targets = ['numpy', 'cython', 'cpp_standalone']
precisions = ['float32', 'float64']

figure(figsize=(8, 8))
for j, name in enumerate(names):

subplot(2, 2, 1+2*j)
title(name)
index = arange(len(targets))
for i, precision in enumerate(precisions):

bar(index+i*bar_width/len(precisions),
[results[name, target, precision] for target in targets],
bar_width/len(precisions), label=precision, align='edge')

ylabel('Time (s)')
(continues on next page)

5.9. advanced 255

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
if j:

xticks(index+0.5*bar_width, targets, rotation=45)
else:

xticks(index+0.5*bar_width, ('',)*len(targets))
legend(loc='best')

subplot(2, 2, 2+2*j)
index = arange(len(precisions))
for i, target in enumerate(targets):

bar(index+i*bar_width/len(targets),
[results[name, target, precision] for precision in precisions],
bar_width/len(targets), label=target, align='edge')

ylabel('Time (s)')
if j:

xticks(index+0.5*bar_width, precisions, rotation=45)
else:

xticks(index+0.5*bar_width, ('',)*len(precisions))
legend(loc='best')

tight_layout()
show()

5.9.7 Example: modelfitting_sbi

Model fitting with simulation-based inference

In this example, a HH-type model is used to demonstrate simulation-based inference with the sbi toolbox (https://www.
mackelab.org/sbi/). It is based on a fake current-clamp recording generated from the same model that we use in the
inference process. Two of the parameters (the maximum sodium and potassium conductances) are considered parameters
of the model.
For more details about this approach, see the references below.
To run this example, you need to install the sbi package, e.g. with:

pip install sbi

References:
• https://www.mackelab.org/sbi
• Tejero-Cantero et al., (2020). sbi: A toolkit for simulation-based inference. Journal of Open Source Software,
5(52), 2505, https://doi.org/10.21105/joss.02505

import matplotlib.pyplot as plt

from brian2 import *
import sbi.utils
import sbi.analysis
import sbi.inference
import torch # PyTorch

defaultclock.dt = 0.05*ms

(continues on next page)

256 Chapter 5. Examples

https://www.mackelab.org/sbi/
https://www.mackelab.org/sbi/
https://www.mackelab.org/sbi
https://doi.org/10.21105/joss.02505

Brian 2 Documentation, Release 2.5.1

(continued from previous page)

def simulate(params, I=1*nA, t_on=50*ms, t_total=350*ms):
"""
Simulates the HH-model with Brian2 for parameter sets in params and the
given input current (injection of I between t_on and t_total-t_on).

Returns a dictionary {'t': time steps, 'v': voltage,
'I_inj': current, 'spike_count': spike count}.

"""
assert t_total > 2*t_on
t_off = t_total - t_on

params = np.atleast_2d(params)
fixed parameters
gleak = 10*nS
Eleak = -70*mV
VT = -60.0*mV
C = 200*pF
ENa = 53*mV
EK = -107*mV

The conductance-based model
eqs = '''

dVm/dt = -(gNa*m**3*h*(Vm - ENa) + gK*n**4*(Vm - EK) + gleak*(Vm - Eleak) -␣
↪→I_inj) / C : volt

I_inj = int(t >= t_on and t < t_off)*I : amp (shared)
dm/dt = alpham*(1-m) - betam*m : 1
dn/dt = alphan*(1-n) - betan*n : 1
dh/dt = alphah*(1-h) - betah*h : 1

alpham = (-0.32/mV) * (Vm - VT - 13.*mV) / (exp((-(Vm - VT - 13.*mV))/(4.
↪→*mV)) - 1)/ms : Hz

betam = (0.28/mV) * (Vm - VT - 40.*mV) / (exp((Vm - VT - 40.*mV)/(5.*mV)) -␣
↪→1)/ms : Hz

alphah = 0.128 * exp(-(Vm - VT - 17.*mV) / (18.*mV))/ms : Hz
betah = 4/(1 + exp((-(Vm - VT - 40.*mV)) / (5.*mV)))/ms : Hz

alphan = (-0.032/mV) * (Vm - VT - 15.*mV) / (exp((-(Vm - VT - 15.*mV)) / (5.
↪→*mV)) - 1)/ms : Hz

betan = 0.5*exp(-(Vm - VT - 10.*mV) / (40.*mV))/ms : Hz
The parameters to fit
gNa : siemens (constant)
gK : siemens (constant)
'''

neurons = NeuronGroup(params.shape[0], eqs, threshold='m>0.5', refractory='m>0.5',
method='exponential_euler', name='neurons')

Vm_mon = StateMonitor(neurons, 'Vm', record=True, name='Vm_mon')
spike_mon = SpikeMonitor(neurons, record=False, name='spike_mon') #record=False␣

↪→→ do not record times
neurons.gNa_ = params[:, 0]*uS
neurons.gK = params[:, 1]*uS

neurons.Vm = 'Eleak'
neurons.m = '1/(1 + betam/alpham)' # Would be the solution when dm/dt = 0
neurons.h = '1/(1 + betah/alphah)' # Would be the solution when dh/dt = 0
neurons.n = '1/(1 + betan/alphan)' # Would be the solution when dn/dt = 0

(continues on next page)

5.9. advanced 257

Brian 2 Documentation, Release 2.5.1

(continued from previous page)

run(t_total)
For convenient plotting, reconstruct the current
I_inj = ((Vm_mon.t >= t_on) & (Vm_mon.t < t_off))*I
return dict(v=Vm_mon.Vm,

t=Vm_mon.t,
I_inj=I_inj,
spike_count=spike_mon.count)

def calculate_summary_statistics(x):
"""Calculate summary statistics for results in x"""
I_inj = x["I_inj"]
v = x["v"]/mV

spike_count = x["spike_count"]
Mean and standard deviation during stimulation
v_active = v[:, I_inj > 0*nA]
mean_active = np.mean(v_active, axis=1)
std_active = np.std(v_active, axis=1)
Height of action potential peaks
max_v = np.max(v_active, axis=1)

concatenation of summary statistics
sum_stats = np.vstack((spike_count, mean_active, std_active, max_v))

return sum_stats.T

def simulation_wrapper(params):
"""
Returns summary statistics from conductance values in `params`.
Summarizes the output of the simulation and converts it to `torch.Tensor`.
"""
obs = simulate(params)
summstats = torch.as_tensor(calculate_summary_statistics(obs))
return summstats.to(torch.float32)

if __name__ == '__main__':
Define prior distribution over parameters
prior_min = [.5, 1e-4] # (gNa, gK) in µS
prior_max = [80.,15.]
prior = sbi.utils.torchutils.BoxUniform(low=torch.as_tensor(prior_min),

high=torch.as_tensor(prior_max))

Simulate samples from the prior distribution
theta = prior.sample((10_000,))
print('Simulating samples from prior simulation... ', end='')
stats = simulation_wrapper(theta.numpy())
print('done.')

Train inference network
density_estimator_build_fun = sbi.utils.posterior_nn(model='mdn')
inference = sbi.inference.SNPE(prior,

density_estimator=density_estimator_build_fun)
print('Training inference network... ')

(continues on next page)

258 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
inference.append_simulations(theta, stats).train()
posterior = inference.build_posterior()

true parameters for real ground truth data
true_params = np.array([[32., 1.]])
true_data = simulate(true_params)
t = true_data['t']
I_inj = true_data['I_inj']
v = true_data['v']
xo = calculate_summary_statistics(true_data)
print("The true summary statistics are: ", xo)

Plot estimated posterior distribution
samples = posterior.sample((1000,), x=xo, show_progress_bars=False)
labels_params = [r'\overline{g}_{Na}', r'\overline{g}_{K}']
sbi.analysis.pairplot(samples,

limits=[[.5, 80], [1e-4, 15.]],
ticks=[[.5, 80], [1e-4, 15.]],
figsize=(4, 4),
points=true_params, labels=labels_params,
points_offdiag={'markersize': 6},
points_colors=['r'])

plt.tight_layout()

Draw a single sample from the posterior and convert to numpy for plotting.
posterior_sample = posterior.sample((1,), x=xo,

show_progress_bars=False).numpy()
x = simulate(posterior_sample)

plot observation and sample
fig, ax = plt.subplots(figsize=(8, 4))
ax.plot(t/ms, v[0, :]/mV, lw=2, label='observation')
ax.plot(t/ms, x['v'][0, :]/mV, '--', lw=2, label='posterior sample')
ax.legend()
ax.set(xlabel='time (ms)', ylabel='voltage (mV)')
plt.show()

5.9. advanced 259

Brian 2 Documentation, Release 2.5.1

260 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

5.9.8 Example: opencv_movie

An example that uses a function from external C library (OpenCV in this case). Works for all C-based code generation
targets (i.e. for cython and cpp_standalone device) and for numpy (using the Python bindings).
This example needs a working installation of OpenCV 3.x and its Python bindings. It has been tested on 64 bit Linux
in a conda environment with packages from the conda-forge channels (opencv 3.4.4, x264 1!152.20180717, ffmpeg
4.1).

import os
import urllib.request, urllib.error, urllib.parse
import cv2 # Import OpenCV2

from brian2 import *

defaultclock.dt = 1*ms
prefs.codegen.target = 'cython'
prefs.logging.std_redirection = False
set_device('cpp_standalone', clean=True)
filename = os.path.abspath('Megamind.avi')

if not os.path.exists(filename):
print('Downloading the example video file')
response = urllib.request.urlopen('http://docs.opencv.org/2.4/_downloads/Megamind.

↪→avi')
data = response.read()
with open(filename, 'wb') as f:

f.write(data)

video = cv2.VideoCapture(filename)
width, height, frame_count = (int(video.get(cv2.CAP_PROP_FRAME_WIDTH)),

int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)),
int(video.get(cv2.CAP_PROP_FRAME_COUNT)))

fps = 24
time_between_frames = 1*second/fps

@implementation('cpp', '''
double* get_frame(bool new_frame)
{

// The following initializations will only be executed once
static cv::VideoCapture source("VIDEO_FILENAME");
static cv::Mat frame;
static double* grayscale_frame = (double*)malloc(VIDEO_WIDTH*VIDEO_

↪→HEIGHT*sizeof(double));
if (new_frame)
{

source >> frame;
double mean_value = 0;
for (int row=0; row<VIDEO_HEIGHT; row++)

for (int col=0; col<VIDEO_WIDTH; col++)
{

const double grayscale_value = (frame.at<cv::Vec3b>(row, col)[0] +
frame.at<cv::Vec3b>(row, col)[1] +
frame.at<cv::Vec3b>(row, col)[2])/(3.

↪→0*128);
mean_value += grayscale_value / (VIDEO_WIDTH * VIDEO_HEIGHT);

(continues on next page)

5.9. advanced 261

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
grayscale_frame[row*VIDEO_WIDTH + col] = grayscale_value;

}
// subtract the mean
for (int i=0; i<VIDEO_HEIGHT*VIDEO_WIDTH; i++)

grayscale_frame[i] -= mean_value;
}
return grayscale_frame;

}

double video_input(const int x, const int y)
{

// Get the current frame (or a new frame in case we are asked for the first
// element
double *frame = get_frame(x==0 && y==0);
return frame[y*VIDEO_WIDTH + x];

}
'''.replace('VIDEO_FILENAME', filename),

libraries=['opencv_core',
'opencv_highgui',
'opencv_videoio'],

headers=['<opencv2/core/core.hpp>',
'<opencv2/highgui/highgui.hpp>'],

define_macros=[('VIDEO_WIDTH', width),
('VIDEO_HEIGHT', height)])

@check_units(x=1, y=1, result=1)
def video_input(x, y):

we assume this will only be called in the custom operation (and not for
example in a reset or synaptic statement), so we don't need to do indexing
but we can directly return the full result
_, frame = video.read()
grayscale = frame.mean(axis=2)
grayscale /= 128. # scale everything between 0 and 2
return grayscale.ravel() - grayscale.ravel().mean()

N = width * height
tau, tau_th = 10*ms, time_between_frames
G = NeuronGroup(N, '''dv/dt = (-v + I)/tau : 1

dv_th/dt = -v_th/tau_th : 1
row : integer (constant)
column : integer (constant)
I : 1 # input current''',

threshold='v>v_th', reset='v=0; v_th = 3*v_th + 1.0',
method='exact')

G.v_th = 1
G.row = 'i//width'
G.column = 'i%width'

G.run_regularly('I = video_input(column, row)',
dt=time_between_frames)

mon = SpikeMonitor(G)
runtime = frame_count*time_between_frames
run(runtime, report='text')

Avoid going through the whole Brian2 indexing machinery too much
i, t, row, column = mon.i[:], mon.t[:], G.row[:], G.column[:]

(continues on next page)

262 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
import matplotlib.animation as animation

TODO: Use overlapping windows
stepsize = 100*ms
def next_spikes():

step = next_spikes.step
if step*stepsize > runtime:

next_spikes.step=0
raise StopIteration()

spikes = i[(t>=step*stepsize) & (t<(step+1)*stepsize)]
next_spikes.step += 1
yield column[spikes], row[spikes]

next_spikes.step = 0

fig, ax = plt.subplots()
dots, = ax.plot([], [], 'k.', markersize=2, alpha=.25)
ax.set_xlim(0, width)
ax.set_ylim(0, height)
ax.invert_yaxis()
def run(data):

x, y = data
dots.set_data(x, y)

ani = animation.FuncAnimation(fig, run, next_spikes, blit=False, repeat=True,
repeat_delay=1000)

plt.show()

5.9.9 Example: stochastic_odes

Demonstrate the correctness of the “derivative-free Milstein method” for multiplicative noise.

from brian2 import *
We only get exactly the same random numbers for the exact solution and the
simulation if we use the numpy code generation target
prefs.codegen.target = 'numpy'

setting a random seed makes all variants use exactly the same Wiener process
seed = 12347

X0 = 1
mu = 0.5/second # drift
sigma = 0.1/second #diffusion

runtime = 1*second

def simulate(method, dt):
"""
simulate geometrical Brownian with the given method
"""
np.random.seed(seed)
G = NeuronGroup(1, 'dX/dt = (mu - 0.5*second*sigma**2)*X + X*sigma*xi*second**.5:␣

↪→1',

(continues on next page)

5.9. advanced 263

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
dt=dt, method=method)

G.X = X0
mon = StateMonitor(G, 'X', record=True)
net = Network(G, mon)
net.run(runtime)
return mon.t_[:], mon.X.flatten()

def exact_solution(t, dt):
"""
Return the exact solution for geometrical Brownian motion at the given
time points
"""
Remove units for simplicity
my_mu = float(mu)
my_sigma = float(sigma)
dt = float(dt)
t = asarray(t)

np.random.seed(seed)
We are calculating the values at the *start* of a time step, as when using
a StateMonitor. Therefore the Brownian motion starts with zero
brownian = np.hstack([0, cumsum(sqrt(dt) * np.random.randn(len(t)-1))])

return (X0 * exp((my_mu - 0.5*my_sigma**2)*(t+dt) + my_sigma*brownian))

figure(1, figsize=(16, 7))
figure(2, figsize=(16, 7))

methods = ['milstein', 'heun']
dts = [1*ms, 0.5*ms, 0.2*ms, 0.1*ms, 0.05*ms, 0.025*ms, 0.01*ms, 0.005*ms]

rows = floor(sqrt(len(dts)))
cols = ceil(1.0 * len(dts) / rows)
errors = dict([(method, zeros(len(dts))) for method in methods])
for dt_idx, dt in enumerate(dts):

print('dt: %s' % dt)
trajectories = {}
Test the numerical methods
for method in methods:

t, trajectories[method] = simulate(method, dt)
Calculate the exact solution
exact = exact_solution(t, dt)

for method in methods:
plot the trajectories
figure(1)
subplot(rows, cols, dt_idx+1)
plot(t, trajectories[method], label=method, alpha=0.75)

determine the mean absolute error
errors[method][dt_idx] = mean(abs(trajectories[method] - exact))
plot the difference to the real trajectory
figure(2)
subplot(rows, cols, dt_idx+1)
plot(t, trajectories[method] - exact, label=method, alpha=0.75)

(continues on next page)

264 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
figure(1)
plot(t, exact, color='gray', lw=2, label='exact', alpha=0.75)
title('dt = %s' % str(dt))
xticks([])

figure(1)
legend(frameon=False, loc='best')
tight_layout()

figure(2)
legend(frameon=False, loc='best')
tight_layout()

figure(3)
for method in methods:

plot(array(dts) / ms, errors[method], 'o', label=method)
legend(frameon=False, loc='best')
xscale('log')
yscale('log')
xlabel('dt (ms)')
ylabel('Mean absolute error')
tight_layout()

show()

5.9. advanced 265

Brian 2 Documentation, Release 2.5.1

266 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

5.10 compartmental

5.10.1 Example: bipolar_cell

A pseudo MSO neuron, with two dendrites and one axon (fake geometry).

from brian2 import *

Morphology
morpho = Soma(30*um)
morpho.axon = Cylinder(diameter=1*um, length=300*um, n=100)
morpho.L = Cylinder(diameter=1*um, length=100*um, n=50)
morpho.R = Cylinder(diameter=1*um, length=150*um, n=50)

Passive channels
gL = 1e-4*siemens/cm**2
EL = -70*mV
eqs='''
Im = gL * (EL - v) : amp/meter**2
I : amp (point current)
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs,
Cm=1*uF/cm**2, Ri=100*ohm*cm, method='exponential_euler')

neuron.v = EL
neuron.I = 0*amp

Monitors
mon_soma = StateMonitor(neuron, 'v', record=[0])
mon_L = StateMonitor(neuron.L, 'v', record=True)
mon_R = StateMonitor(neuron, 'v', record=morpho.R[75*um])

run(1*ms)
neuron.I[morpho.L[50*um]] = 0.2*nA # injecting in the left dendrite
run(5*ms)
neuron.I = 0*amp
run(50*ms, report='text')

subplot(211)
plot(mon_L.t/ms, mon_soma[0].v/mV, 'k')
plot(mon_L.t/ms, mon_L[morpho.L[50*um]].v/mV, 'r')
plot(mon_L.t/ms, mon_R[morpho.R[75*um]].v/mV, 'b')
ylabel('v (mV)')
subplot(212)
for x in linspace(0*um, 100*um, 10, endpoint=False):

plot(mon_L.t/ms, mon_L[morpho.L[x]].v/mV)
xlabel('Time (ms)')
ylabel('v (mV)')
show()

5.10. compartmental 267

Brian 2 Documentation, Release 2.5.1

5.10.2 Example: bipolar_with_inputs

A pseudo MSO neuron, with two dendrites (fake geometry). There are synaptic inputs.

from brian2 import *

Morphology
morpho = Soma(30*um)
morpho.L = Cylinder(diameter=1*um, length=100*um, n=50)
morpho.R = Cylinder(diameter=1*um, length=100*um, n=50)

Passive channels
gL = 1e-4*siemens/cm**2
EL = -70*mV
Es = 0*mV
eqs='''
Im = gL*(EL-v) : amp/meter**2
Is = gs*(Es-v) : amp (point current)
gs : siemens
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs,

(continues on next page)

268 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
Cm=1*uF/cm**2, Ri=100*ohm*cm, method='exponential_euler')

neuron.v = EL

Regular inputs
stimulation = NeuronGroup(2, 'dx/dt = 300*Hz : 1', threshold='x>1', reset='x=0',

method='euler')
stimulation.x = [0, 0.5] # Asynchronous

Synapses
taus = 1*ms
w = 20*nS
S = Synapses(stimulation, neuron, model='''dg/dt = -g/taus : siemens (clock-driven)

gs_post = g : siemens (summed)''',
on_pre='g += w', method='exact')

S.connect(i=0, j=morpho.L[-1])
S.connect(i=1, j=morpho.R[-1])

Monitors
mon_soma = StateMonitor(neuron, 'v', record=[0])
mon_L = StateMonitor(neuron.L, 'v', record=True)
mon_R = StateMonitor(neuron.R, 'v',

record=morpho.R[-1])

run(50*ms, report='text')

subplot(211)
plot(mon_L.t/ms, mon_soma[0].v/mV, 'k')
plot(mon_L.t/ms, mon_L[morpho.L[-1]].v/mV, 'r')
plot(mon_L.t/ms, mon_R[morpho.R[-1]].v/mV, 'b')
ylabel('v (mV)')
subplot(212)
for x in linspace(0*um, 100*um, 10, endpoint=False):

plot(mon_L.t/ms, mon_L[morpho.L[x]].v/mV)
xlabel('Time (ms)')
ylabel('v (mV)')
show()

5.10. compartmental 269

Brian 2 Documentation, Release 2.5.1

5.10.3 Example: bipolar_with_inputs2

A pseudo MSO neuron, with two dendrites (fake geometry). There are synaptic inputs.
Second method.

from brian2 import *

Morphology
morpho = Soma(30*um)
morpho.L = Cylinder(diameter=1*um, length=100*um, n=50)
morpho.R = Cylinder(diameter=1*um, length=100*um, n=50)

Passive channels
gL = 1e-4*siemens/cm**2
EL = -70*mV
Es = 0*mV
taus = 1*ms
eqs='''
Im = gL*(EL-v) : amp/meter**2
Is = gs*(Es-v) : amp (point current)
dgs/dt = -gs/taus : siemens
'''

(continues on next page)

270 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)

neuron = SpatialNeuron(morphology=morpho, model=eqs,
Cm=1*uF/cm**2, Ri=100*ohm*cm, method='exponential_euler')

neuron.v = EL

Regular inputs
stimulation = NeuronGroup(2, 'dx/dt = 300*Hz : 1', threshold='x>1', reset='x=0',

method='euler')
stimulation.x = [0, 0.5] # Asynchronous

Synapses
w = 20*nS
S = Synapses(stimulation, neuron, on_pre='gs += w')
S.connect(i=0, j=morpho.L[99.9*um])
S.connect(i=1, j=morpho.R[99.9*um])

Monitors
mon_soma = StateMonitor(neuron, 'v', record=[0])
mon_L = StateMonitor(neuron.L, 'v', record=True)
mon_R = StateMonitor(neuron, 'v', record=morpho.R[99.9*um])

run(50*ms, report='text')

subplot(211)
plot(mon_L.t/ms, mon_soma[0].v/mV, 'k')
plot(mon_L.t/ms, mon_L[morpho.L[99.9*um]].v/mV, 'r')
plot(mon_L.t/ms, mon_R[morpho.R[99.9*um]].v/mV, 'b')
ylabel('v (mV)')
subplot(212)
for i in [0, 5, 10, 15, 20, 25, 30, 35, 40, 45]:

plot(mon_L.t/ms, mon_L.v[i, :]/mV)
xlabel('Time (ms)')
ylabel('v (mV)')
show()

5.10. compartmental 271

Brian 2 Documentation, Release 2.5.1

5.10.4 Example: cylinder

A short cylinder with constant injection at one end.

from brian2 import *

defaultclock.dt = 0.01*ms

Morphology
diameter = 1*um
length = 300*um
Cm = 1*uF/cm**2
Ri = 150*ohm*cm
N = 200
morpho = Cylinder(diameter=diameter, length=length, n=N)

Passive channels
gL = 1e-4*siemens/cm**2
EL = -70*mV
eqs = '''
Im = gL * (EL - v) : amp/meter**2
I : amp (point current)

(continues on next page)

272 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=Cm, Ri=Ri,
method='exponential_euler')

neuron.v = EL

la = neuron.space_constant[0]
print("Electrotonic length: %s" % la)

neuron.I[0] = 0.02*nA # injecting at the left end
run(100*ms, report='text')

plot(neuron.distance/um, neuron.v/mV, 'kx')
Theory
x = neuron.distance
ra = la * 4 * Ri / (pi * diameter**2)
theory = EL + ra * neuron.I[0] * cosh((length - x) / la) / sinh(length / la)
plot(x/um, theory/mV, 'r')
xlabel('x (um)')
ylabel('v (mV)')
show()

5.10. compartmental 273

Brian 2 Documentation, Release 2.5.1

5.10.5 Example: hh_with_spikes

Hodgkin-Huxley equations (1952).
Spikes are recorded along the axon, and then velocity is calculated.

from brian2 import *
from scipy import stats

defaultclock.dt = 0.01*ms

morpho = Cylinder(length=10*cm, diameter=2*238*um, n=1000, type='axon')

El = 10.613*mV
ENa = 115*mV
EK = -12*mV
gl = 0.3*msiemens/cm**2
gNa0 = 120*msiemens/cm**2
gK = 36*msiemens/cm**2

Typical equations
eqs = '''
The same equations for the whole neuron, but possibly different parameter values
distributed transmembrane current
Im = gl * (El-v) + gNa * m**3 * h * (ENa-v) + gK * n**4 * (EK-v) : amp/meter**2
I : amp (point current) # applied current
dm/dt = alpham * (1-m) - betam * m : 1
dn/dt = alphan * (1-n) - betan * n : 1
dh/dt = alphah * (1-h) - betah * h : 1
alpham = (0.1/mV) * 10*mV/exprel((-v+25*mV)/(10*mV))/ms : Hz
betam = 4 * exp(-v/(18*mV))/ms : Hz
alphah = 0.07 * exp(-v/(20*mV))/ms : Hz
betah = 1/(exp((-v+30*mV) / (10*mV)) + 1)/ms : Hz
alphan = (0.01/mV) * 10*mV/exprel((-v+10*mV)/(10*mV))/ms : Hz
betan = 0.125*exp(-v/(80*mV))/ms : Hz
gNa : siemens/meter**2
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs, method="exponential_euler",
refractory="m > 0.4", threshold="m > 0.5",
Cm=1*uF/cm**2, Ri=35.4*ohm*cm)

neuron.v = 0*mV
neuron.h = 1
neuron.m = 0
neuron.n = .5
neuron.I = 0*amp
neuron.gNa = gNa0
M = StateMonitor(neuron, 'v', record=True)
spikes = SpikeMonitor(neuron)

run(50*ms, report='text')
neuron.I[0] = 1*uA # current injection at one end
run(3*ms)
neuron.I = 0*amp
run(50*ms, report='text')

(continues on next page)

274 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
Calculation of velocity
slope, intercept, r_value, p_value, std_err = stats.linregress(spikes.t/second,

neuron.distance[spikes.i]/meter)
print("Velocity = %.2f m/s" % slope)

subplot(211)
for i in range(10):

plot(M.t/ms, M.v.T[:, i*100]/mV)
ylabel('v')
subplot(212)
plot(spikes.t/ms, spikes.i*neuron.length[0]/cm, '.k')
plot(spikes.t/ms, (intercept+slope*(spikes.t/second))/cm, 'r')
xlabel('Time (ms)')
ylabel('Position (cm)')
show()

5.10. compartmental 275

Brian 2 Documentation, Release 2.5.1

5.10.6 Example: hodgkin_huxley_1952

Hodgkin-Huxley equations (1952).

from brian2 import *

morpho = Cylinder(length=10*cm, diameter=2*238*um, n=1000, type='axon')

El = 10.613*mV
ENa = 115*mV
EK = -12*mV
gl = 0.3*msiemens/cm**2
gNa0 = 120*msiemens/cm**2
gK = 36*msiemens/cm**2

Typical equations
eqs = '''
The same equations for the whole neuron, but possibly different parameter values
distributed transmembrane current
Im = gl * (El-v) + gNa * m**3 * h * (ENa-v) + gK * n**4 * (EK-v) : amp/meter**2
I : amp (point current) # applied current
dm/dt = alpham * (1-m) - betam * m : 1
dn/dt = alphan * (1-n) - betan * n : 1
dh/dt = alphah * (1-h) - betah * h : 1
alpham = (0.1/mV) * 10*mV/exprel((-v+25*mV)/(10*mV))/ms : Hz
betam = 4 * exp(-v/(18*mV))/ms : Hz
alphah = 0.07 * exp(-v/(20*mV))/ms : Hz
betah = 1/(exp((-v+30*mV) / (10*mV)) + 1)/ms : Hz
alphan = (0.01/mV) * 10*mV/exprel((-v+10*mV)/(10*mV))/ms : Hz
betan = 0.125*exp(-v/(80*mV))/ms : Hz
gNa : siemens/meter**2
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=1*uF/cm**2,
Ri=35.4*ohm*cm, method="exponential_euler")

neuron.v = 0*mV
neuron.h = 1
neuron.m = 0
neuron.n = .5
neuron.I = 0
neuron.gNa = gNa0
neuron[5*cm:10*cm].gNa = 0*siemens/cm**2
M = StateMonitor(neuron, 'v', record=True)

run(50*ms, report='text')
neuron.I[0] = 1*uA # current injection at one end
run(3*ms)
neuron.I = 0*amp
run(100*ms, report='text')
for i in range(75, 125, 1):

plot(cumsum(neuron.length)/cm, i+(1./60)*M.v[:, i*5]/mV, 'k')
yticks([])
ylabel('Time [major] v (mV) [minor]')
xlabel('Position (cm)')
axis('tight')
show()

276 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

5.10.7 Example: infinite_cable

An (almost) infinite cable with pulse injection in the middle.

from brian2 import *

defaultclock.dt = 0.001*ms

Morphology
diameter = 1*um
Cm = 1*uF/cm**2
Ri = 100*ohm*cm
N = 500
morpho = Cylinder(diameter=diameter, length=3*mm, n=N)

Passive channels
gL = 1e-4*siemens/cm**2
EL = -70*mV
eqs = '''
Im = gL * (EL-v) : amp/meter**2
I : amp (point current)
'''

(continues on next page)

5.10. compartmental 277

Brian 2 Documentation, Release 2.5.1

(continued from previous page)

neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=Cm, Ri=Ri,
method = 'exponential_euler')

neuron.v = EL

taum = Cm /gL # membrane time constant
print("Time constant: %s" % taum)
la = neuron.space_constant[0]
print("Characteristic length: %s" % la)

Monitors
mon = StateMonitor(neuron, 'v', record=range(0, N//2, 20))

neuron.I[len(neuron) // 2] = 1*nA # injecting in the middle
run(0.02*ms)
neuron.I = 0*amp
run(10*ms, report='text')

t = mon.t
plot(t/ms, mon.v.T/mV, 'k')
Theory (incorrect near cable ends)
for i in range(0, len(neuron)//2, 20):

x = (len(neuron)/2 - i) * morpho.length[0]
theory = (1/(la*Cm*pi*diameter) * sqrt(taum / (4*pi*(t + defaultclock.dt))) *

exp(-(t+defaultclock.dt)/taum -
taum / (4*(t+defaultclock.dt))*(x/la)**2))

theory = EL + theory * 1*nA * 0.02*ms
plot(t/ms, theory/mV, 'r')

xlabel('Time (ms)')
ylabel('v (mV')
show()

278 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

5.10.8 Example: lfp

Hodgkin-Huxley equations (1952)
We calculate the extracellular field potential at various places.

from brian2 import *
defaultclock.dt = 0.01*ms
morpho = Cylinder(x=[0, 10]*cm, diameter=2*238*um, n=1000, type='axon')

El = 10.613* mV
ENa = 115*mV
EK = -12*mV
gl = 0.3*msiemens/cm**2
gNa0 = 120*msiemens/cm**2
gK = 36*msiemens/cm**2

Typical equations
eqs = '''
The same equations for the whole neuron, but possibly different parameter values
distributed transmembrane current
Im = gl * (El-v) + gNa * m**3 * h * (ENa-v) + gK * n**4 * (EK-v) : amp/meter**2
I : amp (point current) # applied current

(continues on next page)

5.10. compartmental 279

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
dm/dt = alpham * (1-m) - betam * m : 1
dn/dt = alphan * (1-n) - betan * n : 1
dh/dt = alphah * (1-h) - betah * h : 1
alpham = (0.1/mV) * 10*mV/exprel((-v+25*mV)/(10*mV))/ms : Hz
betam = 4 * exp(-v/(18*mV))/ms : Hz
alphah = 0.07 * exp(-v/(20*mV))/ms : Hz
betah = 1/(exp((-v+30*mV) / (10*mV)) + 1)/ms : Hz
alphan = (0.01/mV) * 10*mV/exprel((-v+10*mV)/(10*mV))/ms : Hz
betan = 0.125*exp(-v/(80*mV))/ms : Hz
gNa : siemens/meter**2
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=1*uF/cm**2,
Ri=35.4*ohm*cm, method="exponential_euler")

neuron.v = 0*mV
neuron.h = 1
neuron.m = 0
neuron.n = .5
neuron.I = 0
neuron.gNa = gNa0
neuron[5*cm:10*cm].gNa = 0*siemens/cm**2
M = StateMonitor(neuron, 'v', record=True)

LFP recorder
Ne = 5 # Number of electrodes
sigma = 0.3*siemens/meter # Resistivity of extracellular field (0.3-0.4 S/m)
lfp = NeuronGroup(Ne, model='''v : volt

x : meter
y : meter
z : meter''')

lfp.x = 7*cm # Off center (to be far from stimulating electrode)
lfp.y = [1*mm, 2*mm, 4*mm, 8*mm, 16*mm]
S = Synapses(neuron, lfp, model='''w : ohm*meter**2 (constant) # Weight in the LFP␣
↪→calculation

v_post = w*(Ic_pre-Im_pre) : volt (summed)''')
S.summed_updaters['v_post'].when = 'after_groups' # otherwise Ic has not yet been␣
↪→updated for the current time step.
S.connect()
S.w = 'area_pre/(4*pi*sigma)/((x_pre-x_post)**2+(y_pre-y_post)**2+(z_pre-z_
↪→post)**2)**.5'

Mlfp = StateMonitor(lfp, 'v', record=True)

run(50*ms, report='text')
neuron.I[0] = 1*uA # current injection at one end
run(3*ms)
neuron.I = 0*amp
run(100*ms, report='text')

subplot(211)
for i in range(10):

plot(M.t/ms, M.v[i*100]/mV)
ylabel('V_m (mV)')
subplot(212)
for i in range(5):

plot(M.t/ms, Mlfp.v[i]/mV)
ylabel('LFP (mV)')

(continues on next page)

280 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
xlabel('Time (ms)')
show()

5.10.9 Example: morphotest

Demonstrate the usage of the Morphology object.

from brian2 import *

Morphology
morpho = Soma(30*um)
morpho.L = Cylinder(diameter=1*um, length=100*um, n=5)
morpho.LL = Cylinder(diameter=1*um, length=20*um, n=2)
morpho.R = Cylinder(diameter=1*um, length=100*um, n=5)

Passive channels
gL = 1e-4*siemens/cm**2
EL = -70*mV
eqs = '''
Im = gL * (EL-v) : amp/meter**2
'''

(continues on next page)

5.10. compartmental 281

Brian 2 Documentation, Release 2.5.1

(continued from previous page)

neuron = SpatialNeuron(morphology=morpho, model=eqs,
Cm=1*uF/cm**2, Ri=100*ohm*cm, method='exponential_euler')

neuron.v = arange(0, 13)*volt

print(neuron.v)
print(neuron.L.v)
print(neuron.LL.v)
print(neuron.L.main.v)

5.10.10 Example: rall

A cylinder plus two branches, with diameters according to Rall’s formula

from brian2 import *

defaultclock.dt = 0.01*ms

Passive channels
gL = 1e-4*siemens/cm**2
EL = -70*mV

Morphology
diameter = 1*um
length = 300*um
Cm = 1*uF/cm**2
Ri = 150*ohm*cm
N = 500
rm = 1 / (gL * pi * diameter) # membrane resistance per unit length
ra = (4 * Ri)/(pi * diameter**2) # axial resistance per unit length
la = sqrt(rm / ra) # space length
morpho = Cylinder(diameter=diameter, length=length, n=N)
d1 = 0.5*um
L1 = 200*um
rm = 1 / (gL * pi * d1) # membrane resistance per unit length
ra = (4 * Ri) / (pi * d1**2) # axial resistance per unit length
l1 = sqrt(rm / ra) # space length
morpho.L = Cylinder(diameter=d1, length=L1, n=N)
d2 = (diameter**1.5 - d1**1.5)**(1. / 1.5)
rm = 1/(gL * pi * d2) # membrane resistance per unit length
ra = (4 * Ri) / (pi * d2**2) # axial resistance per unit length
l2 = sqrt(rm / ra) # space length
L2 = (L1 / l1) * l2
morpho.R = Cylinder(diameter=d2, length=L2, n=N)

eqs='''
Im = gL * (EL-v) : amp/meter**2
I : amp (point current)
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=Cm, Ri=Ri,
method='exponential_euler')

neuron.v = EL

(continues on next page)

282 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)

neuron.I[0] = 0.02*nA # injecting at the left end
run(100*ms, report='text')

plot(neuron.main.distance/um, neuron.main.v/mV, 'k')
plot(neuron.L.distance/um, neuron.L.v/mV, 'k')
plot(neuron.R.distance/um, neuron.R.v/mV, 'k')
Theory
x = neuron.main.distance
ra = la * 4 * Ri/(pi * diameter**2)
l = length/la + L1/l1
theory = EL + ra*neuron.I[0]*cosh(l - x/la)/sinh(l)
plot(x/um, theory/mV, 'r')
x = neuron.L.distance
theory = (EL+ra*neuron.I[0]*cosh(l - neuron.main.distance[-1]/la -

(x - neuron.main.distance[-1])/l1)/sinh(l))
plot(x/um, theory/mV, 'r')
x = neuron.R.distance
theory = (EL+ra*neuron.I[0]*cosh(l - neuron.main.distance[-1]/la -

(x - neuron.main.distance[-1])/l2)/sinh(l))
plot(x/um, theory/mV, 'r')
xlabel('x (um)')
ylabel('v (mV)')
show()

5.10. compartmental 283

Brian 2 Documentation, Release 2.5.1

5.10.11 Example: spike_initiation

Ball and stick with Na and K channels

from brian2 import *

defaultclock.dt = 0.025*ms

Morphology
morpho = Soma(30*um)
morpho.axon = Cylinder(diameter=1*um, length=300*um, n=100)

Channels
gL = 1e-4*siemens/cm**2
EL = -70*mV
ENa = 50*mV
ka = 6*mV
ki = 6*mV
va = -30*mV
vi = -50*mV
EK = -90*mV
vk = -20*mV
kk = 8*mV
eqs = '''
Im = gL*(EL-v)+gNa*m*h*(ENa-v)+gK*n*(EK-v) : amp/meter**2
dm/dt = (minf-m)/(0.3*ms) : 1 # simplified Na channel
dh/dt = (hinf-h)/(3*ms) : 1 # inactivation
dn/dt = (ninf-n)/(5*ms) : 1 # K+
minf = 1/(1+exp((va-v)/ka)) : 1
hinf = 1/(1+exp((v-vi)/ki)) : 1
ninf = 1/(1+exp((vk-v)/kk)) : 1
I : amp (point current)
gNa : siemens/meter**2
gK : siemens/meter**2
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs,
Cm=1*uF/cm**2, Ri=100*ohm*cm, method='exponential_euler')

neuron.v = -65*mV
neuron.I = 0*amp
neuron.axon[30*um:60*um].gNa = 700*gL
neuron.axon[30*um:60*um].gK = 700*gL

Monitors
mon=StateMonitor(neuron, 'v', record=True)

run(1*ms)
neuron.main.I = 0.15*nA
run(50*ms)
neuron.I = 0*amp
run(95*ms, report='text')

plot(mon.t/ms, mon.v[0]/mV, 'r')
plot(mon.t/ms, mon.v[20]/mV, 'g')
plot(mon.t/ms, mon.v[40]/mV, 'b')
plot(mon.t/ms, mon.v[60]/mV, 'k')

(continues on next page)

284 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
plot(mon.t/ms, mon.v[80]/mV, 'y')
xlabel('Time (ms)')
ylabel('v (mV)')
show()

5.11 frompapers

5.11.1 Example: Brette_2004

5.11. frompapers 285

Brian 2 Documentation, Release 2.5.1

Phase locking in leaky integrate-and-fire model

Fig. 2A from:
Brette R (2004). Dynamics of one-dimensional spiking neuron models. J Math Biol 48(1): 38-56.
This shows the phase-locking structure of a LIF driven by a sinusoidal current. When the current crosses the threshold
(a<3), the model almost always phase locks (in a measure-theoretical sense).

from brian2 import *

defaultclock.dt = 0.01*ms # for a more precise picture
N = 2000
tau = 100*ms
freq = 1/tau

eqs = '''
dv/dt = (-v + a + 2*sin(2*pi*t/tau))/tau : 1
a : 1
'''

neurons = NeuronGroup(N, eqs, threshold='v>1', reset='v=0', method='euler')
neurons.a = linspace(2, 4, N)

run(5*second, report='text') # discard the first spikes (wait for convergence)
S = SpikeMonitor(neurons)
run(5*second, report='text')

i, t = S.it
plot((t % tau)/tau, neurons.a[i], ',')
xlabel('Spike phase')
ylabel('Parameter a')
show()

286 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

5.11.2 Example: Brette_Gerstner_2005

Adaptive exponential integrate-and-fire model.
http://www.scholarpedia.org/article/Adaptive_exponential_integrate-and-fire_model
Introduced in Brette R. and Gerstner W. (2005), Adaptive Exponential Integrate-and-Fire Model as an Effective De-
scription of Neuronal Activity, J. Neurophysiol. 94: 3637 - 3642.

from brian2 import *

Parameters
C = 281 * pF
gL = 30 * nS
taum = C / gL
EL = -70.6 * mV
VT = -50.4 * mV
DeltaT = 2 * mV
Vcut = VT + 5 * DeltaT

Pick an electrophysiological behaviour
tauw, a, b, Vr = 144*ms, 4*nS, 0.0805*nA, -70.6*mV # Regular spiking (as in the paper)
#tauw,a,b,Vr=20*ms,4*nS,0.5*nA,VT+5*mV # Bursting

(continues on next page)

5.11. frompapers 287

http://www.scholarpedia.org/article/Adaptive_exponential_integrate-and-fire_model

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
#tauw,a,b,Vr=144*ms,2*C/(144*ms),0*nA,-70.6*mV # Fast spiking

eqs = """
dvm/dt = (gL*(EL - vm) + gL*DeltaT*exp((vm - VT)/DeltaT) + I - w)/C : volt
dw/dt = (a*(vm - EL) - w)/tauw : amp
I : amp
"""

neuron = NeuronGroup(1, model=eqs, threshold='vm>Vcut',
reset="vm=Vr; w+=b", method='euler')

neuron.vm = EL
trace = StateMonitor(neuron, 'vm', record=0)
spikes = SpikeMonitor(neuron)

run(20 * ms)
neuron.I = 1*nA
run(100 * ms)
neuron.I = 0*nA
run(20 * ms)

We draw nicer spikes
vm = trace[0].vm[:]
for t in spikes.t:

i = int(t / defaultclock.dt)
vm[i] = 20*mV

plot(trace.t / ms, vm / mV)
xlabel('time (ms)')
ylabel('membrane potential (mV)')
show()

288 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

5.11.3 Example: Brette_Guigon_2003

Reliability of spike timing

Adapted from Fig. 10D,E of
Brette R and E Guigon (2003). Reliability of Spike Timing Is a General Property of Spiking Model Neurons. Neural
Computation 15, 279-308.
This shows that reliability of spike timing is a generic property of spiking neurons, even those that are not leaky. This is
a non-physiological model which can be leaky or anti-leaky depending on the sign of the input I.
All neurons receive the same fluctuating input, scaled by a parameter p that varies across neurons. This shows:

1. reproducibility of spike timing
2. robustness with respect to deterministic changes (parameter)
3. increased reproducibility in the fluctuation-driven regime (input crosses the threshold)

from brian2 import *

N = 500

(continues on next page)

5.11. frompapers 289

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
tau = 33*ms
taux = 20*ms
sigma = 0.02

eqs_input = '''
dx/dt = -x/taux + (2/taux)**.5*xi : 1
'''

eqs = '''
dv/dt = (v*I + 1)/tau + sigma*(2/tau)**.5*xi : 1
I = 0.5 + 3*p*B : 1
B = 2./(1 + exp(-2*x)) - 1 : 1 (shared)
p : 1
x : 1 (linked)
'''

input = NeuronGroup(1, eqs_input, method='euler')
neurons = NeuronGroup(N, eqs, threshold='v>1', reset='v=0', method='euler')
neurons.p = '1.0*i/N'
neurons.v = 'rand()'
neurons.x = linked_var(input, 'x')

M = StateMonitor(neurons, 'B', record=0)
S = SpikeMonitor(neurons)

run(1000*ms, report='text')

subplot(211) # The input
plot(M.t/ms, M[0].B)
xticks([])
title('shared input')
subplot(212)
plot(S.t/ms, neurons.p[S.i], ',')
plot([0, 1000], [.5, .5], color='C1')
xlabel('time (ms)')
ylabel('p')
title('spiking activity')
show()

290 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

5.11.4 Example: Brunel_2000

Fig. 8 from:
Brunel, N. Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons. J Comput Neurosci
8, 183–208 (2000). https://doi.org/10.1023/A:1008925309027
Inspired by http://neuronaldynamics.epfl.ch
Sebastian Schmitt, 2022

import random
from brian2 import *
import matplotlib.pyplot as plt

def sim(g, nu_ext_over_nu_thr, sim_time, ax_spikes, ax_rates, rate_tick_step):
"""
g -- relative inhibitory to excitatory synaptic strength
nu_ext_over_nu_thr -- ratio of external stimulus rate to threshold rate
sim_time -- simulation time
ax_spikes -- matplotlib axes to plot spikes on
ax_rates -- matplotlib axes to plot rates on

(continues on next page)

5.11. frompapers 291

https://doi.org/10.1023/A:1008925309027
http://neuronaldynamics.epfl.ch

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
rate_tick_step -- step size for rate axis ticks
"""

network parameters
N_E = 10000
gamma = 0.25
N_I = round(gamma * N_E)
N = N_E + N_I
epsilon = 0.1
C_E = epsilon * N_E
C_ext = C_E

neuron parameters
tau = 20 * ms
theta = 20 * mV
V_r = 10 * mV
tau_rp = 2 * ms

synapse parameters
J = 0.1 * mV
D = 1.5 * ms

external stimulus
nu_thr = theta / (J * C_E * tau)

defaultclock.dt = 0.1 * ms

neurons = NeuronGroup(N,
"""
dv/dt = -v/tau : volt (unless refractory)
""",
threshold="v > theta",
reset="v = V_r",
refractory=tau_rp,
method="exact",

)

excitatory_neurons = neurons[:N_E]
inhibitory_neurons = neurons[N_E:]

exc_synapses = Synapses(excitatory_neurons, target=neurons, on_pre="v += J",␣
↪→delay=D)

exc_synapses.connect(p=epsilon)

inhib_synapses = Synapses(inhibitory_neurons, target=neurons, on_pre="v += -g*J",␣
↪→delay=D)

inhib_synapses.connect(p=epsilon)

nu_ext = nu_ext_over_nu_thr * nu_thr

external_poisson_input = PoissonInput(
target=neurons, target_var="v", N=C_ext, rate=nu_ext, weight=J

)

rate_monitor = PopulationRateMonitor(neurons)

record from the first 50 excitatory neurons
(continues on next page)

292 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
spike_monitor = SpikeMonitor(neurons[:50])

run(sim_time, report='text')

ax_spikes.plot(spike_monitor.t / ms, spike_monitor.i, "|")
ax_rates.plot(rate_monitor.t / ms, rate_monitor.rate / Hz)

ax_spikes.set_yticks([])

ax_spikes.set_xlim(*params["t_range"])
ax_rates.set_xlim(*params["t_range"])

ax_rates.set_ylim(*params["rate_range"])
ax_rates.set_xlabel("t [ms]")

ax_rates.set_yticks(
np.arange(

params["rate_range"][0], params["rate_range"][1] + rate_tick_step, rate_
↪→tick_step

)
)

plt.subplots_adjust(hspace=0)

parameters = {
"A": {

"g": 3,
"nu_ext_over_nu_thr": 2,
"t_range": [500, 600],
"rate_range": [0, 6000],
"rate_tick_step": 1000,

},
"B": {

"g": 6,
"nu_ext_over_nu_thr": 4,
"t_range": [1000, 1200],
"rate_range": [0, 400],
"rate_tick_step": 100,

},
"C": {

"g": 5,
"nu_ext_over_nu_thr": 2,
"t_range": [1000, 1200],
"rate_range": [0, 200],
"rate_tick_step": 50,

},
"D": {

"g": 4.5,
"nu_ext_over_nu_thr": 0.9,
"t_range": [1000, 1200],
"rate_range": [0, 250],
"rate_tick_step": 50,

},
}

for panel, params in parameters.items():
(continues on next page)

5.11. frompapers 293

Brian 2 Documentation, Release 2.5.1

(continued from previous page)

fig = plt.figure(figsize=(4, 5))
fig.suptitle(panel)

gs = fig.add_gridspec(ncols=1, nrows=2, height_ratios=[4, 1])

ax_spikes, ax_rates = gs.subplots(sharex="col")

sim(
params["g"],
params["nu_ext_over_nu_thr"],
params["t_range"][1] * ms,
ax_spikes,
ax_rates,
params["rate_tick_step"],

)

plt.show()

294 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

5.11. frompapers 295

Brian 2 Documentation, Release 2.5.1

296 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

5.11.5 Example: Brunel_Hakim_1999

Dynamics of a network of sparsely connected inhibitory current-based integrate-and-fire neurons. Individual neurons fire
irregularly at low rate but the network is in an oscillatory global activity regime where neurons are weakly synchronized.
Reference: “Fast Global Oscillations in Networks of Integrate-and-Fire Neurons with Low Firing Rates” Nicolas Brunel

& Vincent Hakim Neural Computation 11, 1621-1671 (1999)

from brian2 import *

N = 5000
Vr = 10*mV
theta = 20*mV
tau = 20*ms
delta = 2*ms
taurefr = 2*ms
duration = .1*second
C = 1000
sparseness = float(C)/N
J = .1*mV
muext = 25*mV

(continues on next page)

5.11. frompapers 297

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
sigmaext = 1*mV

eqs = """
dV/dt = (-V+muext + sigmaext * sqrt(tau) * xi)/tau : volt
"""

group = NeuronGroup(N, eqs, threshold='V>theta',
reset='V=Vr', refractory=taurefr, method='euler')

group.V = Vr
conn = Synapses(group, group, on_pre='V += -J', delay=delta)
conn.connect(p=sparseness)
M = SpikeMonitor(group)
LFP = PopulationRateMonitor(group)

run(duration)

subplot(211)
plot(M.t/ms, M.i, '.')
xlim(0, duration/ms)

subplot(212)
plot(LFP.t/ms, LFP.smooth_rate(window='flat', width=0.5*ms)/Hz)
xlim(0, duration/ms)

show()

298 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

5.11.6 Example: Brunel_Wang_2001

Sample-specific persistent activity

Five subpopulations with three selective and one reset stimuli example. Analog to figure 6b in the paper.
BRUNEL, Nicolas et WANG, Xiao-Jing. Effects of neuromodulation in a cortical network model of object working
memory dominated by recurrent inhibition. Journal of computational neuroscience, 2001, vol. 11, no 1, p. 63-85.

from brian2 import *

populations
N = 1000
N_E = int(N * 0.8) # pyramidal neurons
N_I = int(N * 0.2) # interneurons

voltage
V_L = -70. * mV
V_thr = -50. * mV
V_reset = -55. * mV
V_E = 0. * mV
V_I = -70. * mV

membrane capacitance
C_m_E = 0.5 * nF
C_m_I = 0.2 * nF

membrane leak
g_m_E = 25. * nS
g_m_I = 20. * nS

refractory period
tau_rp_E = 2. * ms
tau_rp_I = 1. * ms

external stimuli
rate = 3 * Hz
C_ext = 800

synapses
C_E = N_E
C_I = N_I

AMPA (excitatory)
g_AMPA_ext_E = 2.08 * nS
g_AMPA_rec_E = 0.104 * nS * 800. / N_E
g_AMPA_ext_I = 1.62 * nS
g_AMPA_rec_I = 0.081 * nS * 800. / N_E
tau_AMPA = 2. * ms

NMDA (excitatory)
g_NMDA_E = 0.327 * nS * 800. / N_E
g_NMDA_I = 0.258 * nS * 800. / N_E
tau_NMDA_rise = 2. * ms
tau_NMDA_decay = 100. * ms

(continues on next page)

5.11. frompapers 299

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
alpha = 0.5 / ms
Mg2 = 1.

GABAergic (inhibitory)
g_GABA_E = 1.25 * nS * 200. / N_I
g_GABA_I = 0.973 * nS * 200. / N_I
tau_GABA = 10. * ms

subpopulations
f = 0.1
p = 5
N_sub = int(N_E * f)
N_non = int(N_E * (1. - f * p))
w_plus = 2.1
w_minus = 1. - f * (w_plus - 1.) / (1. - f)

modeling
eqs_E = '''
dv / dt = (- g_m_E * (v - V_L) - I_syn) / C_m_E : volt (unless refractory)

I_syn = I_AMPA_ext + I_AMPA_rec + I_NMDA_rec + I_GABA_rec : amp

I_AMPA_ext = g_AMPA_ext_E * (v - V_E) * s_AMPA_ext : amp
I_AMPA_rec = g_AMPA_rec_E * (v - V_E) * 1 * s_AMPA : amp
ds_AMPA_ext / dt = - s_AMPA_ext / tau_AMPA : 1
ds_AMPA / dt = - s_AMPA / tau_AMPA : 1

I_NMDA_rec = g_NMDA_E * (v - V_E) / (1 + Mg2 * exp(-0.062 * v / mV) / 3.57) * s_NMDA_
↪→tot : amp
s_NMDA_tot : 1

I_GABA_rec = g_GABA_E * (v - V_I) * s_GABA : amp
ds_GABA / dt = - s_GABA / tau_GABA : 1
'''

eqs_I = '''
dv / dt = (- g_m_I * (v - V_L) - I_syn) / C_m_I : volt (unless refractory)

I_syn = I_AMPA_ext + I_AMPA_rec + I_NMDA_rec + I_GABA_rec : amp

I_AMPA_ext = g_AMPA_ext_I * (v - V_E) * s_AMPA_ext : amp
I_AMPA_rec = g_AMPA_rec_I * (v - V_E) * 1 * s_AMPA : amp
ds_AMPA_ext / dt = - s_AMPA_ext / tau_AMPA : 1
ds_AMPA / dt = - s_AMPA / tau_AMPA : 1

I_NMDA_rec = g_NMDA_I * (v - V_E) / (1 + Mg2 * exp(-0.062 * v / mV) / 3.57) * s_NMDA_
↪→tot : amp
s_NMDA_tot : 1

I_GABA_rec = g_GABA_I * (v - V_I) * s_GABA : amp
ds_GABA / dt = - s_GABA / tau_GABA : 1
'''

P_E = NeuronGroup(N_E, eqs_E, threshold='v > V_thr', reset='v = V_reset',␣
↪→refractory=tau_rp_E, method='euler')
P_E.v = V_L
P_I = NeuronGroup(N_I, eqs_I, threshold='v > V_thr', reset='v = V_reset',␣
↪→refractory=tau_rp_I, method='euler') (continues on next page)

300 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
P_I.v = V_L

eqs_glut = '''
s_NMDA_tot_post = w * s_NMDA : 1 (summed)
ds_NMDA / dt = - s_NMDA / tau_NMDA_decay + alpha * x * (1 - s_NMDA) : 1 (clock-driven)
dx / dt = - x / tau_NMDA_rise : 1 (clock-driven)
w : 1
'''

eqs_pre_glut = '''
s_AMPA += w
x += 1
'''

eqs_pre_gaba = '''
s_GABA += 1
'''

eqs_pre_ext = '''
s_AMPA_ext += 1
'''

E to E
C_E_E = Synapses(P_E, P_E, model=eqs_glut, on_pre=eqs_pre_glut, method='euler')
C_E_E.connect('i != j')
C_E_E.w[:] = 1

for pi in range(N_non, N_non + p * N_sub, N_sub):

internal other subpopulation to current nonselective
C_E_E.w[C_E_E.indices[:, pi:pi + N_sub]] = w_minus

internal current subpopulation to current subpopulation
C_E_E.w[C_E_E.indices[pi:pi + N_sub, pi:pi + N_sub]] = w_plus

E to I
C_E_I = Synapses(P_E, P_I, model=eqs_glut, on_pre=eqs_pre_glut, method='euler')
C_E_I.connect()
C_E_I.w[:] = 1

I to I
C_I_I = Synapses(P_I, P_I, on_pre=eqs_pre_gaba, method='euler')
C_I_I.connect('i != j')

I to E
C_I_E = Synapses(P_I, P_E, on_pre=eqs_pre_gaba, method='euler')
C_I_E.connect()

external noise
C_P_E = PoissonInput(P_E, 's_AMPA_ext', C_ext, rate, '1')
C_P_I = PoissonInput(P_I, 's_AMPA_ext', C_ext, rate, '1')

at 1s, select population 1
C_selection = int(f * C_ext)
rate_selection = 25 * Hz
stimuli1 = TimedArray(np.r_[np.zeros(40), np.ones(2), np.zeros(100)], dt=25 * ms)
input1 = PoissonInput(P_E[N_non:N_non + N_sub], 's_AMPA_ext', C_selection, rate_
↪→selection, 'stimuli1(t)') (continues on next page)

5.11. frompapers 301

Brian 2 Documentation, Release 2.5.1

(continued from previous page)

at 2s, select population 2
stimuli2 = TimedArray(np.r_[np.zeros(80), np.ones(2), np.zeros(100)], dt=25 * ms)
input2 = PoissonInput(P_E[N_non + N_sub:N_non + 2 * N_sub], 's_AMPA_ext', C_selection,
↪→ rate_selection, 'stimuli2(t)')

at 4s, reset selection
stimuli_reset = TimedArray(np.r_[np.zeros(120), np.ones(2), np.zeros(100)], dt=25 *␣
↪→ms)
input_reset_I = PoissonInput(P_E, 's_AMPA_ext', C_ext, rate_selection, 'stimuli_
↪→reset(t)')
input_reset_E = PoissonInput(P_I, 's_AMPA_ext', C_ext, rate_selection, 'stimuli_
↪→reset(t)')

monitors
N_activity_plot = 15
sp_E_sels = [SpikeMonitor(P_E[pi:pi + N_activity_plot]) for pi in range(N_non, N_non␣
↪→+ p * N_sub, N_sub)]
sp_E = SpikeMonitor(P_E[:N_activity_plot])
sp_I = SpikeMonitor(P_I[:N_activity_plot])

r_E_sels = [PopulationRateMonitor(P_E[pi:pi + N_sub]) for pi in range(N_non, N_non +␣
↪→p * N_sub, N_sub)]
r_E = PopulationRateMonitor(P_E[:N_non])
r_I = PopulationRateMonitor(P_I)

simulate, can be long >120s
net = Network(collect())
net.add(sp_E_sels)
net.add(r_E_sels)
net.run(4 * second, report='stdout')

plotting
title('Population rates')
xlabel('ms')
ylabel('Hz')

plot(r_E.t / ms, r_E.smooth_rate(width=25 * ms) / Hz, label='nonselective')
plot(r_I.t / ms, r_I.smooth_rate(width=25 * ms) / Hz, label='inhibitory')

for i, r_E_sel in enumerate(r_E_sels[::-1]):
plot(r_E_sel.t / ms, r_E_sel.smooth_rate(width=25 * ms) / Hz,

label=f"selective {p - i}")

legend()
figure()

title(f"Population activities ({N_activity_plot} neurons/pop)")
xlabel('ms')
yticks([])

plot(sp_E.t / ms, sp_E.i + (p + 1) * N_activity_plot, '.', markersize=2,
label="nonselective")

plot(sp_I.t / ms, sp_I.i + p * N_activity_plot, '.', markersize=2, label="inhibitory")

for i, sp_E_sel in enumerate(sp_E_sels[::-1]):
plot(sp_E_sel.t / ms, sp_E_sel.i + (p - i - 1) * N_activity_plot, '.',␣

↪→markersize=2, (continues on next page)

302 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
label=f"selective {p - i}")

legend()
show()

5.11. frompapers 303

Brian 2 Documentation, Release 2.5.1

5.11.7 Example: Clopath_et_al_2010_homeostasis

This code contains an adapted version of the voltage-dependent triplet STDP rule from: Clopath et al., Connectivity
reflects coding: a model of voltage-based STDP with homeostasis, Nature Neuroscience, 2010 (http://dx.doi.org/10.
1038/nn.2479)
The plasticity rule is adapted for a leaky integrate & fire model in Brian2. More specifically, the filters v_lowpass1
and v_lowpass2 are incremented by a constant at every post-synaptic spike time, to compensate for the lack of an
actual spike in the integrate & fire model.
As an illustration of the rule, we simulate the competition between inputs projecting on a downstream neuron. We would
like to note that the parameters have been chosen arbitrarily to qualitatively reproduce the behavior of the original work,
but need additional fitting.
We kindly ask to cite the article when using the model presented below.
This code was written by Jacopo Bono, 12/2015

from brian2 import *

##
PLASTICITY MODEL
##

(continues on next page)

304 Chapter 5. Examples

http://dx.doi.org/10.1038/nn.2479
http://dx.doi.org/10.1038/nn.2479

Brian 2 Documentation, Release 2.5.1

(continued from previous page)

Plasticity Parameters

V_rest = -70.*mV # resting potential
V_thresh = -55.*mV # spiking threshold
Theta_low = V_rest # depolarization threshold for plasticity
x_reset = 1. # spike trace reset value
taux = 15.*ms # spike trace time constant
A_LTD = 1.5e-4 # depression amplitude
A_LTP = 1.5e-2 # potentiation amplitude
tau_lowpass1 = 40*ms # timeconstant for low-pass filtered voltage
tau_lowpass2 = 30*ms # timeconstant for low-pass filtered voltage
tau_homeo = 1000*ms # homeostatic timeconstant
v_target = 12*mV**2 # target depolarisation

Plasticity Equations

equations executed at every timestepC
Syn_model = ('''

w_ampa:1 # synaptic weight (ampa synapse)
''')

equations executed only when a presynaptic spike occurs
Pre_eq = ('''

g_ampa_post += w_ampa*ampa_max_cond ␣
↪→ # increment synaptic conductance

A_LTD_u = A_LTD*(v_homeo**2/v_target) ␣
↪→ # metaplasticity

w_minus = A_LTD_u*(v_lowpass1_post/mV - Theta_low/mV)*int(v_lowpass1_post/
↪→mV - Theta_low/mV > 0) # synaptic depression

w_ampa = clip(w_ampa-w_minus, 0, w_max) ␣
↪→ # hard bounds

''')

equations executed only when a postsynaptic spike occurs
Post_eq = ('''

v_lowpass1 += 10*mV ␣
↪→ # mimics the depolarisation effect due to a spike

v_lowpass2 += 10*mV ␣
↪→ # mimics the depolarisation effect due to a spike

v_homeo += 0.1*mV ␣
↪→ # mimics the depolarisation effect due to a spike

w_plus = A_LTP*x_trace_pre*(v_lowpass2_post/mV - Theta_low/mV)*int(v_
↪→lowpass2_post/mV - Theta_low/mV > 0) # synaptic potentiation

w_ampa = clip(w_ampa+w_plus, 0, w_max) ␣
↪→ # hard bounds

''')

##
I&F Parameters and equations
##

Neuron parameters

gleak = 30.*nS # leak conductance
C = 300.*pF # membrane capacitance
tau_AMPA = 2.*ms # AMPA synaptic timeconstant

(continues on next page)

5.11. frompapers 305

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
E_AMPA = 0.*mV # reversal potential AMPA

ampa_max_cond = 5.e-8*siemens # Ampa maximal conductance
w_max = 1. # maximal ampa weight

Neuron Equations

We connect 10 presynaptic neurons to 1 downstream neuron

downstream neuron
eqs_neurons = '''
dv/dt = (gleak*(V_rest-v) + I_ext + I_syn)/C: volt # voltage
dv_lowpass1/dt = (v-v_lowpass1)/tau_lowpass1 : volt # low-pass filter of the␣
↪→voltage
dv_lowpass2/dt = (v-v_lowpass2)/tau_lowpass2 : volt # low-pass filter of the␣
↪→voltage
dv_homeo/dt = (v-V_rest-v_homeo)/tau_homeo : volt # low-pass filter of the␣
↪→voltage
I_ext : amp # external current
I_syn = g_ampa*(E_AMPA-v): amp # synaptic current
dg_ampa/dt = -g_ampa/tau_AMPA : siemens # synaptic conductance
dx_trace/dt = -x_trace/taux :1 # spike trace
'''

input neurons
eqs_inputs = '''
dv/dt = gleak*(V_rest-v)/C: volt # voltage
dx_trace/dt = -x_trace/taux :1 # spike trace
rates : Hz # input rates
selected_index : integer (shared) # active neuron
'''

##
Simulation
##

Parameters

defaultclock.dt = 500.*us # timestep
Nr_neurons = 1 # Number of downstream neurons
Nr_inputs = 5 # Number of input neurons
input_rate = 35*Hz # Rates
init_weight = 0.5 # initial synaptic weight
final_t = 20.*second # end of simulation
input_time = 100.*ms # duration of an input

Create neuron objects

Nrn_downstream = NeuronGroup(Nr_neurons, eqs_neurons, threshold='v>V_thresh',
reset='v=V_rest;x_trace+=x_reset/(taux/ms)',
method='euler')

Nrns_input = NeuronGroup(Nr_inputs, eqs_inputs, threshold='rand()<rates*dt',
reset='v=V_rest;x_trace+=x_reset/(taux/ms)',
method='exact')

create Synapses

(continues on next page)

306 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
Syn = Synapses(Nrns_input, Nrn_downstream,

model=Syn_model,
on_pre=Pre_eq,
on_post=Post_eq
)

Syn.connect(i=numpy.arange(Nr_inputs), j=0)

Monitors and storage
W_evolution = StateMonitor(Syn, 'w_ampa', record=True)

Run

Initial values
Nrn_downstream.v = V_rest
Nrn_downstream.v_lowpass1 = V_rest
Nrn_downstream.v_lowpass2 = V_rest
Nrn_downstream.v_homeo = 0
Nrn_downstream.I_ext = 0.*amp
Nrn_downstream.x_trace = 0.
Nrns_input.v = V_rest
Nrns_input.x_trace = 0.
Syn.w_ampa = init_weight

Switch on a different input every 100ms
Nrns_input.run_regularly('''

selected_index = int(floor(rand()*Nr_inputs))
rates = input_rate * int(selected_index == i) # All rates␣

↪→are zero except for the selected neuron
''', dt=input_time)

run(final_t, report='text')

##
Plots
##
stitle = 'Synaptic Competition'

fig = figure(figsize=(8, 5))
for kk in range(Nr_inputs):

plt.plot(W_evolution.t, W_evolution.w_ampa[kk], '-', linewidth=2)
xlabel('Time [ms]', fontsize=22)
ylabel('Weight [a.u.]', fontsize=22)
plt.subplots_adjust(bottom=0.2, left=0.15, right=0.95, top=0.85)
title(stitle, fontsize=22)
plt.show()

5.11. frompapers 307

Brian 2 Documentation, Release 2.5.1

5.11.8 Example: Clopath_et_al_2010_no_homeostasis

This code contains an adapted version of the voltage-dependent triplet STDP rule from: Clopath et al., Connectivity
reflects coding: a model of voltage-based STDP with homeostasis, Nature Neuroscience, 2010 (http://dx.doi.org/10.
1038/nn.2479)
The plasticity rule is adapted for a leaky integrate & fire model in Brian2. In particular, the filters v_lowpass1 and
v_lowpass2 are incremented by a constant at every post-synaptic spike time, to compensate for the lack of an actual
spike in the integrate & fire model. Moreover, this script does not include the homeostatic metaplasticity.
As an illustration of the Rule, we simulate a plot analogous to figure 2b in the above article, showing the frequency
dependence of plasticity as measured in: Sjöström et al., Rate, timing and cooperativity jointly determine cortical synaptic
plasticity. Neuron, 2001. Wewould like to note that the parameters have been chosen arbitrarily to qualitatively reproduce
the behavior of the original works, but need additional fitting.
We kindly ask to cite both articles when using the model presented below.
This code was written by Jacopo Bono, 12/2015

from brian2 import *
##
PLASTICITY MODEL
##

Plasticity Parameters

V_rest = -70.*mV # resting potential
V_thresh = -50.*mV # spiking threshold

(continues on next page)

308 Chapter 5. Examples

http://dx.doi.org/10.1038/nn.2479
http://dx.doi.org/10.1038/nn.2479

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
Theta_low = V_rest # depolarization threshold for plasticity
x_reset = 1. # spike trace reset value
taux = 15.*ms # spike trace time constant
A_LTD = 1.5e-4 # depression amplitude
A_LTP = 1.5e-2 # potentiation amplitude
tau_lowpass1 = 40*ms # timeconstant for low-pass filtered voltage
tau_lowpass2 = 30*ms # timeconstant for low-pass filtered voltage

Plasticity Equations

equations executed at every timestep
Syn_model = '''

w_ampa:1 # synaptic weight (ampa synapse)
'''

equations executed only when a presynaptic spike occurs
Pre_eq = '''

g_ampa_post += w_ampa*ampa_max_cond ␣
↪→ # increment synaptic conductance

w_minus = A_LTD*(v_lowpass1_post/mV - Theta_low/mV)*int(v_lowpass1_post/mV -␣
↪→Theta_low/mV > 0) # synaptic depression

w_ampa = clip(w_ampa-w_minus,0,w_max) ␣
↪→ # hard bounds

'''

equations executed only when a postsynaptic spike occurs
Post_eq = '''

v_lowpass1 += 10*mV ␣
↪→ # mimics the depolarisation by a spike

v_lowpass2 += 10*mV ␣
↪→ # mimics the depolarisation by a spike

w_plus = A_LTP*x_trace_pre*(v_lowpass2_post/mV - Theta_low/mV)*int(v_
↪→lowpass2_post/mV - Theta_low/mV > 0) # synaptic potentiation

w_ampa = clip(w_ampa+w_plus,0,w_max) ␣
↪→ # hard bounds

'''

##
I&F Parameters and equations
##

Neuron parameters

gleak = 30.*nS # leak conductance
C = 300.*pF # membrane capacitance
tau_AMPA = 2.*ms # AMPA synaptic timeconstant
E_AMPA = 0.*mV # reversal potential AMPA

ampa_max_cond = 5.e-10*siemens # Ampa maximal conductance
w_max = 1. # maximal ampa weight

Neuron Equations

(continues on next page)

5.11. frompapers 309

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
eqs_neurons = '''
dv/dt = (gleak*(V_rest-v) + I_ext + I_syn)/C: volt # voltage
dv_lowpass1/dt = (v-v_lowpass1)/tau_lowpass1 : volt # low-pass filter of the␣
↪→voltage
dv_lowpass2/dt = (v-v_lowpass2)/tau_lowpass2 : volt # low-pass filter of the␣
↪→voltage
I_ext : amp # external current
I_syn = g_ampa*(E_AMPA-v): amp # synaptic current
dg_ampa/dt = -g_ampa/tau_AMPA : siemens # synaptic conductance
dx_trace/dt = -x_trace/taux :1 # spike trace
'''

##
Simulation
##

Parameters

defaultclock.dt = 100.*us # timestep
Nr_neurons = 2 # Number of neurons
rate_array = [1., 5., 10., 15., 20., 30., 50.]*Hz # Rates
init_weight = 0.5 # initial synaptic weight
reps = 15 # Number of pairings

Create neuron objects

Nrns = NeuronGroup(Nr_neurons, eqs_neurons, threshold='v>V_thresh',
reset='v=V_rest;x_trace+=x_reset/(taux/ms)', method='euler')#

create Synapses

Syn = Synapses(Nrns, Nrns,
model=Syn_model,
on_pre=Pre_eq,
on_post=Post_eq
)

Syn.connect('i!=j')

Monitors and storage
weight_result = np.zeros((2, len(rate_array))) # to save the final␣
↪→weights

Run

loop over rates
for jj, rate in enumerate(rate_array):

Calculate interval between pairs
pair_interval = 1./rate - 10*ms
print('Starting simulations for %s' % rate)

Initial values
Nrns.v = V_rest
Nrns.v_lowpass1 = V_rest

(continues on next page)

310 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
Nrns.v_lowpass2 = V_rest
Nrns.I_ext = 0*amp
Nrns.x_trace = 0.
Syn.w_ampa = init_weight

loop over pairings
for ii in range(reps):

1st SPIKE
Nrns.v[0] = V_thresh + 1*mV
2nd SPIKE
run(10*ms)
Nrns.v[1] = V_thresh + 1*mV
run
run(pair_interval)
print('Pair %d out of %d' % (ii+1, reps))

#store weight changes
weight_result[0, jj] = 100.*Syn.w_ampa[0]/init_weight
weight_result[1, jj] = 100.*Syn.w_ampa[1]/init_weight

##
Plots
##

stitle = 'Pairings'
scolor = 'k'

figure(figsize=(8, 5))
plot(rate_array, weight_result[0,:], '-', linewidth=2, color=scolor)
plot(rate_array, weight_result[1,:], ':', linewidth=2, color=scolor)
xlabel('Pairing frequency [Hz]', fontsize=22)
ylabel('Normalised Weight [%]', fontsize=22)
legend(['Pre-Post', 'Post-Pre'], loc='best')
subplots_adjust(bottom=0.2, left=0.15, right=0.95, top=0.85)
title(stitle)
show()

5.11. frompapers 311

Brian 2 Documentation, Release 2.5.1

5.11.9 Example: Destexhe_et_al_1998

Reproduces Figure 12 (simplified three-compartment model) from the following paper:
Dendritic Low-Threshold Calcium Currents in Thalamic Relay Cells Alain Destexhe, Mike Neubig, Daniel Ulrich, John
Huguenard Journal of Neuroscience 15 May 1998, 18 (10) 3574-3588
The original NEURON code is available on ModelDB: https://senselab.med.yale.edu/modeldb/ShowModel.cshtml?
model=279
Reference for the original morphology:
Rat VB neuron (thalamocortical cell), given by J. Huguenard, stained with biocytin and traced by A. Destexhe, December
1992. The neuron is described in: J.R. Huguenard & D.A. Prince, A novel T-type current underlies prolonged calcium-
dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus. J. Neurosci. 12: 3804-3817, 1992.
Available at NeuroMorpho.org:
http://neuromorpho.org/neuron_info.jsp?neuron_name=tc200 NeuroMorpho.Org ID :NMO_00881

312 Chapter 5. Examples

https://senselab.med.yale.edu/modeldb/ShowModel.cshtml?model=279
https://senselab.med.yale.edu/modeldb/ShowModel.cshtml?model=279
http://neuromorpho.org/neuron_info.jsp?neuron_name=tc200

Brian 2 Documentation, Release 2.5.1

Notes

• Completely removed the “Fast mechanism for submembranal Ca++ concentration (cai)” – it did not affect the
results presented here

• Time constants for the I_T current are slightly different from the equations given in the paper – the paper calculation
seems to be based on 36 degree Celsius but the temperature that is used is 34 degrees.

• To reproduce Figure 12C, the “presence of dendritic shunt conductances” meant setting g_L to 0.15 mS/cm^2 for
the whole neuron.

• Other small discrepancies with the paper – values from the NEURON code were used whenever different from the
values stated in the paper

from brian2 import *
from brian2.units.constants import (zero_celsius, faraday_constant as F,

gas_constant as R)

defaultclock.dt = 0.01*ms

VT = -52*mV
El = -76.5*mV # from code, text says: -69.85*mV

E_Na = 50*mV
E_K = -100*mV
C_d = 7.954 # dendritic correction factor

T = 34*kelvin + zero_celsius # 34 degC (current-clamp experiments)
tadj_HH = 3.0**((34-36)/10.0) # temperature adjustment for Na & K (original␣
↪→recordings at 36 degC)
tadj_m_T = 2.5**((34-24)/10.0)
tadj_h_T = 2.5**((34-24)/10.0)

shift_I_T = -1*mV

gamma = F/(R*T) # R=gas constant, F=Faraday constant
Z_Ca = 2 # Valence of Calcium ions
Ca_i = 240*nM # intracellular Calcium concentration
Ca_o = 2*mM # extracellular Calcium concentration

eqs = Equations('''
Im = gl*(El-v) - I_Na - I_K - I_T: amp/meter**2
I_inj : amp (point current)
gl : siemens/meter**2

HH-type currents for spike initiation
g_Na : siemens/meter**2
g_K : siemens/meter**2
I_Na = g_Na * m**3 * h * (v-E_Na) : amp/meter**2
I_K = g_K * n**4 * (v-E_K) : amp/meter**2
v2 = v - VT : volt # shifted membrane potential (Traub convention)
dm/dt = (0.32*(mV**-1)*(13.*mV-v2)/

(exp((13.*mV-v2)/(4.*mV))-1.)*(1-m)-0.28*(mV**-1)*(v2-40.*mV)/
(exp((v2-40.*mV)/(5.*mV))-1.)*m) / ms * tadj_HH: 1

dn/dt = (0.032*(mV**-1)*(15.*mV-v2)/
(exp((15.*mV-v2)/(5.*mV))-1.)*(1.-n)-.5*exp((10.*mV-v2)/(40.*mV))*n) / ms *␣

↪→tadj_HH: 1
dh/dt = (0.128*exp((17.*mV-v2)/(18.*mV))*(1.-h)-4./(1+exp((40.*mV-v2)/(5.*mV)))*h) /␣
↪→ms * tadj_HH: 1

(continues on next page)

5.11. frompapers 313

Brian 2 Documentation, Release 2.5.1

(continued from previous page)

Low-threshold Calcium current (I_T) -- nonlinear function of voltage
I_T = P_Ca * m_T**2*h_T * G_Ca : amp/meter**2
P_Ca : meter/second # maximum Permeability to Calcium
G_Ca = Z_Ca**2*F*v*gamma*(Ca_i - Ca_o*exp(-Z_Ca*gamma*v))/(1 - exp(-Z_Ca*gamma*v)) :␣
↪→coulomb/meter**3
dm_T/dt = -(m_T - m_T_inf)/tau_m_T : 1
dh_T/dt = -(h_T - h_T_inf)/tau_h_T : 1
m_T_inf = 1/(1 + exp(-(v/mV + 56)/6.2)) : 1
h_T_inf = 1/(1 + exp((v/mV + 80)/4)) : 1
tau_m_T = (0.612 + 1.0/(exp(-(v/mV + 131)/16.7) + exp((v/mV + 15.8)/18.2))) * ms /␣
↪→tadj_m_T: second
tau_h_T = (int(v<-81*mV) * exp((v/mV + 466)/66.6) +

int(v>=-81*mV) * (28 + exp(-(v/mV + 21)/10.5))) * ms / tadj_h_T: second
''')

Simplified three-compartment morphology
morpho = Cylinder(x=[0, 38.42]*um, diameter=26*um)
morpho.dend = Cylinder(x=[0, 12.49]*um, diameter=10.28*um)
morpho.dend.distal = Cylinder(x=[0, 84.67]*um, diameter=8.5*um)
neuron = SpatialNeuron(morpho, eqs, Cm=0.88*uF/cm**2, Ri=173*ohm*cm,

method='exponential_euler')

neuron.v = -74*mV
Only the soma has Na/K channels
neuron.main.g_Na = 100*msiemens/cm**2
neuron.main.g_K = 100*msiemens/cm**2
Apply the correction factor to the dendrites

neuron.dend.Cm *= C_d
neuron.m_T = 'm_T_inf'
neuron.h_T = 'h_T_inf'

mon = StateMonitor(neuron, ['v'], record=True)

store('initial state')

def do_experiment(currents, somatic_density, dendritic_density,
dendritic_conductance=0.0379*msiemens/cm**2,
HH_currents=True):

restore('initial state')
voltages = []
neuron.P_Ca = somatic_density
neuron.dend.distal.P_Ca = dendritic_density * C_d
dendritic conductance (shunting conductance used for Fig 12C)
neuron.gl = dendritic_conductance
neuron.dend.gl = dendritic_conductance * C_d
if not HH_currents:

Shut off spiking (for Figures 12B and 12C)
neuron.g_Na = 0*msiemens/cm**2
neuron.g_K = 0*msiemens/cm**2

run(180*ms)
store('before current')
for current in currents:

restore('before current')
neuron.main.I_inj = current

(continues on next page)

314 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
print('.', end='')
run(320*ms)
voltages.append(mon[morpho].v[:]) # somatic voltage

return voltages

Run the various variants of the model to reproduce Figure 12
mpl.rcParams['lines.markersize'] = 3.0
fig, axes = plt.subplots(2, 2)
print('Running experiments for Figure A1 ', end='')
voltages = do_experiment([50, 75]*pA, somatic_density=1.7e-5*cm/second,

dendritic_density=1.7e-5*cm/second)
print(' done.')
cut_off = 100*ms # Do not display first part of simulation
axes[0, 0].plot((mon.t - cut_off) / ms, voltages[0] / mV, color='gray')
axes[0, 0].plot((mon.t - cut_off) / ms, voltages[1] / mV, color='black')
axes[0, 0].set(xlim=(0, 400), ylim=(-80, 40), xticks=[],

title='A1: Uniform T-current density', ylabel='Voltage (mV)')
axes[0, 0].spines['right'].set_visible(False)
axes[0, 0].spines['top'].set_visible(False)
axes[0, 0].spines['bottom'].set_visible(False)

print('Running experiments for Figure A2 ', end='')
voltages = do_experiment([50, 75]*pA, somatic_density=1.7e-5*cm/second,

dendritic_density=9.5e-5*cm/second)
print(' done.')
cut_off = 100*ms # Do not display first part of simulation
axes[1, 0].plot((mon.t - cut_off) / ms, voltages[0] / mV, color='gray')
axes[1, 0].plot((mon.t - cut_off) / ms, voltages[1] / mV, color='black')
axes[1, 0].set(xlim=(0, 400), ylim=(-80, 40),

title='A2: High T-current density in dendrites',
xlabel='Time (ms)', ylabel='Voltage (mV)')

axes[1, 0].spines['right'].set_visible(False)
axes[1, 0].spines['top'].set_visible(False)

print('Running experiments for Figure B ', end='')
currents = np.linspace(0, 200, 41)*pA
voltages_somatic = do_experiment(currents, somatic_density=56.36e-5*cm/second,

dendritic_density=0*cm/second,
HH_currents=False)

voltages_somatic_dendritic = do_experiment(currents, somatic_density=1.7e-5*cm/second,
dendritic_density=9.5e-5*cm/second,
HH_currents=False)

print(' done.')
maxima_somatic = Quantity(voltages_somatic).max(axis=1)
maxima_somatic_dendritic = Quantity(voltages_somatic_dendritic).max(axis=1)
axes[0, 1].yaxis.tick_right()
axes[0, 1].plot(currents/pA, maxima_somatic/mV,

'o-', color='black', label='Somatic only')
axes[0, 1].plot(currents/pA, maxima_somatic_dendritic/mV,

's-', color='black', label='Somatic & dendritic')
axes[0, 1].set(xlabel='Injected current (pA)', ylabel='Peak LTS (mV)',

ylim=(-80, 0))
axes[0, 1].legend(loc='best', frameon=False)

print('Running experiments for Figure C ', end='')
currents = np.linspace(200, 400, 41)*pA

(continues on next page)

5.11. frompapers 315

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
voltages_somatic = do_experiment(currents, somatic_density=56.36e-5*cm/second,

dendritic_density=0*cm/second,
dendritic_conductance=0.15*msiemens/cm**2,
HH_currents=False)

voltages_somatic_dendritic = do_experiment(currents, somatic_density=1.7e-5*cm/second,
dendritic_density=9.5e-5*cm/second,
dendritic_conductance=0.15*msiemens/cm**2,
HH_currents=False)

print(' done.')
maxima_somatic = Quantity(voltages_somatic).max(axis=1)
maxima_somatic_dendritic = Quantity(voltages_somatic_dendritic).max(axis=1)
axes[1, 1].yaxis.tick_right()
axes[1, 1].plot(currents/pA, maxima_somatic/mV,

'o-', color='black', label='Somatic only')
axes[1, 1].plot(currents/pA, maxima_somatic_dendritic/mV,

's-', color='black', label='Somatic & dendritic')
axes[1, 1].set(xlabel='Injected current (pA)', ylabel='Peak LTS (mV)',

ylim=(-80, 0))
axes[1, 1].legend(loc='best', frameon=False)

plt.tight_layout()
plt.show()

316 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

5.11.10 Example: Diesmann_et_al_1999

Synfire chains

M. Diesmann et al. (1999). Stable propagation of synchronous spiking in cortical neural networks. Nature 402, 529-533.

from brian2 import *

duration = 100*ms

Neuron model parameters
Vr = -70*mV
Vt = -55*mV
taum = 10*ms
taupsp = 0.325*ms
weight = 4.86*mV
Neuron model
eqs = Equations('''
dV/dt = (-(V-Vr)+x)*(1./taum) : volt
dx/dt = (-x+y)*(1./taupsp) : volt
dy/dt = -y*(1./taupsp)+25.27*mV/ms+

(39.24*mV/ms**0.5)*xi : volt
''')

Neuron groups
n_groups = 10
group_size = 100
P = NeuronGroup(N=n_groups*group_size, model=eqs,

threshold='V>Vt', reset='V=Vr', refractory=1*ms,
method='euler')

Pinput = SpikeGeneratorGroup(85, np.arange(85),
np.random.randn(85)*1*ms + 50*ms)

The network structure
S = Synapses(P, P, on_pre='y+=weight')
S.connect(j='k for k in range((int(i/group_size)+1)*group_size, (int(i/group_
↪→size)+2)*group_size) '

'if i<N_pre-group_size')
Sinput = Synapses(Pinput, P[:group_size], on_pre='y+=weight')
Sinput.connect()

Record the spikes
Mgp = SpikeMonitor(P)
Minput = SpikeMonitor(Pinput)
Setup the network, and run it
P.V = 'Vr + rand() * (Vt - Vr)'
run(duration)

plot(Mgp.t/ms, 1.0*Mgp.i/group_size, '.')
plot([0, duration/ms], np.arange(n_groups).repeat(2).reshape(-1, 2).T, 'k-')
ylabel('group number')
yticks(np.arange(n_groups))
xlabel('time (ms)')
show()

5.11. frompapers 317

Brian 2 Documentation, Release 2.5.1

5.11.11 Example: Graupner_Brunel_2012

Fig. 2 C, panel DP from:
Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and dendritic location
PNAS 109 (10): 3991-3996 (2012) https://doi.org/10.1073/pnas.1109359109
by Graupner M. and Brunel N. (2012)
For the noise term see corrections https://www.pnas.org/doi/10.1073/pnas.1220044110.
For the original implementations see https://github.com/mgraupe/CalciumBasedPlasticityModel/tree/main/
Graupner2012PNAS.
Sebastian Schmitt, 2022

import multiprocessing

import numpy as np
import matplotlib.pyplot as plt

from brian2 import NeuronGroup, Synapses
from brian2 import ms, second

(continues on next page)

318 Chapter 5. Examples

https://doi.org/10.1073/pnas.1109359109
https://www.pnas.org/doi/10.1073/pnas.1220044110
https://github.com/mgraupe/CalciumBasedPlasticityModel/tree/main/Graupner2012PNAS
https://github.com/mgraupe/CalciumBasedPlasticityModel/tree/main/Graupner2012PNAS

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
from brian2 import run

number of time differences in STDP plot
POINTS = 41

maximal time difference
STDP_DT_MAX = 100 * ms

(symmetric) minimal time difference
STDP_DT_MIN = -STDP_DT_MAX

number of repetitions
REPETITIONS = 1000

time difference step size
STDP_DT_STEP = (STDP_DT_MAX - STDP_DT_MIN) / (POINTS - 1)

def run_sim(point_index):
"""Run simulation for one STDP time difference"""

Cf. https://brian2.readthedocs.io/en/stable/resources/tutorials/2-intro-to-
↪→brian-synapses.html#more-complex-synapse-models-stdp

set up two groups of neurons, G spikes at fixed times starting from STDP_DT_MAX
H spikes shifted according to point_index and has as many neurons as␣

↪→REPETITIONS*2
(we need to multiply by 2 for both initial states (UP and DOWN))
G: |
H: |
H: |
H: |
...
G = NeuronGroup(1, "", threshold=f"t>{STDP_DT_MAX/ms}*ms", refractory=1 * second)
H = NeuronGroup(

REPETITIONS * 2, "tspike:second", threshold="t>tspike", refractory=1 * second
)
H.tspike = [point_index * STDP_DT_STEP] * REPETITIONS * 2

synapses_eqs = """
tau : second (constant, shared)
rho_star : 1 (constant, shared)
gamma_p : 1 (constant, shared)
theta_p : 1 (constant, shared)
gamma_d : 1 (constant, shared)
theta_d : 1 (constant, shared)
drho/dt = (-rho*(1-rho)*(rho_star-rho)

+ gamma_p*(1-rho)*int((c - theta_p) > 0)
- gamma_d*rho*int((c-theta_d) > 0)
+ sigma*sqrt(tau)*sqrt(int((c-theta_d) > 0) + int((c-theta_p) > 0))*xi
) / tau : 1 (clock-driven)

dc/dt = -c/tau_Ca : 1 (clock-driven)
tau_Ca : second (constant, shared)
sigma : 1 (constant, shared)
"""

C_pre = 1
C_post = 2

(continues on next page)

5.11. frompapers 319

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
D = 13.7 * ms

synapses = Synapses(
G,
H,
model=synapses_eqs,
on_pre="c += C_pre",
on_post="c += C_post",
delay=D,
method="heun",

)

synapses.connect()

synapses.tau_Ca = 20 * ms
synapses.theta_d = 1
synapses.theta_p = 1.3
synapses.gamma_d = 200
synapses.gamma_p = 321.808
synapses.sigma = 2.8284
synapses.tau = 150 * second
synapses.rho_star = 0.5

start with equal number of synapses in DOWN and UP state
must match b in analysis below
rho_initial = np.array([0] * REPETITIONS + [1] * REPETITIONS)
synapses.rho = rho_initial

def report_callback(elapsed, completed, start, duration):
print(

f"time difference {(point_index*STDP_DT_STEP - STDP_DT_MAX)/ms:.0f} ms is
↪→{completed:2.0%} done"

)

run(60 * second, report=report_callback)

return synapses.rho[:], rho_initial

if __name__ == "__main__":

with multiprocessing.Pool() as p:
results = p.map(run_sim, range(POINTS))

initial fraction of synapses in DOWN state
beta = 0.5

ratio of UP and DOWN state weights (w1/w0)
b = 5

change_in_syn_strengths = []

for rhos, rhos_initial in results:

average switching probabilities
U = np.mean(rhos[rhos_initial < 0.5] > 0.5)
D = np.mean(rhos[rhos_initial > 0.5] < 0.5)

(continues on next page)

320 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)

change_in_syn_strength = (
(1 - U) * beta + D * (1 - beta) + b * (U * beta + (1 - D) * (1 - beta))

) / (beta + (1 - beta) * b)

change_in_syn_strengths.append(change_in_syn_strength)

stdp_dts = [
point_index * STDP_DT_STEP - STDP_DT_MAX for point_index in range(POINTS)

]

plt.axvline(0, linestyle="dashed", color="k")
plt.axhline(1, linestyle="dashed", color="k")
plt.plot(stdp_dts / ms, change_in_syn_strengths, marker="o", linestyle="None")
plt.xlim(

(STDP_DT_MIN - STDP_DT_STEP / 2) / ms, (STDP_DT_MAX + STDP_DT_STEP / 2) / ms
)
plt.ylim(0.3, 1.7)
plt.xlabel(r"time difference Δt (ms)")
plt.ylabel("change in synaptic strength (after/before)")
plt.show()

5.11. frompapers 321

Brian 2 Documentation, Release 2.5.1

5.11.12 Example: Hindmarsh_Rose_1984

Burst generation in the Hinsmarsh-Rose model. Reproduces Figure 6 of:
Hindmarsh, J. L., and R. M. Rose. “A Model of Neuronal Bursting Using Three Coupled First Order Differential Equa-
tions.” Proceedings of the Royal Society of London. Series B, Biological Sciences 221, no. 1222 (1984): 87–102.

from brian2 import *

In the original model, time is measured in arbitrary time units
time_unit = 1*ms
defaultclock.dt = time_unit/10

x_1 = -1.6 # leftmost equilibrium point of the model without adaptation
a = 1; b = 3; c = 1; d = 5
r = 0.001; s = 4
eqs = '''
dx/dt = (y - a*x**3 + b*x**2 + I - z)/time_unit : 1
dy/dt = (c - d*x**2 - y)/time_unit : 1
dz/dt = r*(s*(x - x_1) - z)/time_unit : 1
I : 1 (constant)
'''

We run the model with three different currents
neuron = NeuronGroup(3, eqs, method='rk4')

Set all variables to their equilibrium point
neuron.x = x_1
neuron.y = 'c - d*x**2'
neuron.z = 'r*(s*(x - x_1))'

Set the constant current input
neuron.I = [0.4, 2, 4]

Record the "membrane potential"
mon = StateMonitor(neuron, 'x', record=True)

run(2100*time_unit)

ax_top = plt.subplot2grid((2, 3), (0, 0), colspan=3)
ax_bottom_l = plt.subplot2grid((2, 3), (1, 0), colspan=2)
ax_bottom_r = plt.subplot2grid((2, 3), (1, 2))
for ax in [ax_top, ax_bottom_l, ax_bottom_r]:

ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.set(ylim=(-2, 2), yticks=[-2, 0, 2])

ax_top.plot(mon.t/time_unit, mon.x[0])

ax_bottom_l.plot(mon.t/time_unit, mon.x[1])
ax_bottom_l.set_xlim(700, 2100)

ax_bottom_r.plot(mon.t/time_unit, mon.x[2])
ax_bottom_r.set_xlim(1400, 2100)
ax_bottom_r.set_yticks([])

plt.show()

322 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

5.11.13 Example: Izhikevich_2003

Fig. 3 of
Simple Model of Spiking Neurons IEEE Transactions on Neural Networks (Volume: 14, Issue: 6, Nov. 2003) Eugene
M. Izhikevich
based on net.m by Eugene M. Izhikevich (http://izhikevich.org/publications/spikes.htm)
Akif Erdem Sağtekin and Sebastian Schmitt, 2022

import matplotlib.pyplot as plt
import numpy as np

from brian2 import NeuronGroup, Synapses, SpikeMonitor, StateMonitor
from brian2 import ms, mV
from brian2 import defaultclock, run

tfinal = 1000 * ms
Ne = 800
Ni = 200

re = np.random.uniform(size=Ne)

(continues on next page)

5.11. frompapers 323

http://izhikevich.org/publications/spikes.htm

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
ri = np.random.uniform(size=Ni)
weights = np.hstack(

[
0.5 * np.random.uniform(size=(Ne + Ni, Ne)),
-np.random.uniform(size=(Ne + Ni, Ni)),

]
).T

defaultclock.dt = 1 * ms

eqs = """dv/dt = (0.04*v**2 + 5*v + 140 - u + I + I_noise)/ms : 1
du/dt = (a*(b*v - u))/ms : 1
I : 1
I_noise : 1
a : 1
b : 1
c : 1
d : 1

"""

N = NeuronGroup(Ne + Ni, eqs, threshold="v>=30", reset="v=c; u+=d", method="euler")
N.v = -65

N_exc = N[:Ne]
N_inh = N[Ne:]

spikemon = SpikeMonitor(N)
statemon = StateMonitor(N, 'v', record=0, when='after_thresholds')
N_exc.a = 0.02
N_exc.b = 0.2
N_exc.c = -65 + 15 * re**2
N_exc.d = 8 - 6 * re**2

N_inh.a = 0.02 + 0.08 * ri
N_inh.b = 0.25 - 0.05 * ri
N_inh.c = -65
N_inh.d = 2

N_exc.u = "b*v"
N_inh.u = "b*v"

S = Synapses(
N,
N,
"w : 1",
on_pre={"up": "I += w", "down": "I -= w"},
delay={"up": 0 * ms, "down": 1 * ms},

)
S.connect()
S.w[:] = weights.flatten()

N_exc.run_regularly("I_noise = 5*randn()", dt=1 * ms)
N_inh.run_regularly("I_noise = 2*randn()", dt=1 * ms)

run(tfinal)

fig, (ax, ax_voltage) = plt.subplots(2, 1, sharex=True,
(continues on next page)

324 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
gridspec_kw={'height_ratios': (3, 1)})

ax.scatter(spikemon.t / ms, spikemon.i[:], marker="_", color="k", s=10)
ax.set_xlim(0, tfinal / ms)
ax.set_ylim(0, len(N))
ax.set_ylabel("neuron number")
ax.set_yticks(np.arange(0, len(N), 100))
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
ax.axhline(Ne, color="k")
ax.text(500, 900, 'inhibitory', backgroundcolor='w', color='k', ha='center')
ax.text(500, 400, 'excitatory', backgroundcolor='w', color='k', ha='center')

ax_voltage.plot(statemon.t / ms, np.clip(statemon.v[0], -np.inf, 30),
color='k')

ax_voltage.text(25, 0, 'v₁(t)')
ax_voltage.set_xticks(np.arange(0, tfinal / ms, 100))
ax_voltage.spines['right'].set_visible(False)
ax_voltage.spines['top'].set_visible(False)
ax_voltage.set_xlabel("time, ms")

plt.show()

5.11. frompapers 325

Brian 2 Documentation, Release 2.5.1

5.11.14 Example: Izhikevich_2007

STDP modulated with reward
Adapted from Fig. 1c of:
Eugene M. Izhikevich Solving the distal reward problem through linkage of STDP and dopamine signaling. Cerebral
cortex 17, no. 10 (2007): 2443-2452.
Note: The variable “mode” can switch the behavior of the synapse from “Classical STDP” to “Dopamine modulated
STDP”.
Author: Guillaume Dumas (Institut Pasteur) Date: 2018-08-24

from brian2 import *

Parameters
simulation_duration = 6 * second

Neurons
taum = 10*ms
Ee = 0*mV
vt = -54*mV
vr = -60*mV
El = -74*mV
taue = 5*ms

STDP
taupre = 20*ms
taupost = taupre
gmax = .01
dApre = .01
dApost = -dApre * taupre / taupost * 1.05
dApost *= gmax
dApre *= gmax

Dopamine signaling
tauc = 1000*ms
taud = 200*ms
taus = 1*ms
epsilon_dopa = 5e-3

Setting the stage

Stimuli section
input_indices = array([0, 1, 0, 1, 1, 0,

0, 1, 0, 1, 1, 0])
input_times = array([500, 550, 1000, 1010, 1500, 1510,

3500, 3550, 4000, 4010, 4500, 4510])*ms
spike_input = SpikeGeneratorGroup(2, input_indices, input_times)

neurons = NeuronGroup(2, '''dv/dt = (ge * (Ee-vr) + El - v) / taum : volt
dge/dt = -ge / taue : 1''',

threshold='v>vt', reset='v = vr',
method='exact')

neurons.v = vr
neurons_monitor = SpikeMonitor(neurons)

(continues on next page)

326 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)

synapse = Synapses(spike_input, neurons,
model='''s: volt''',
on_pre='v += s')

synapse.connect(i=[0, 1], j=[0, 1])
synapse.s = 100. * mV

STDP section
synapse_stdp = Synapses(neurons, neurons,

model='''mode: 1
dc/dt = -c / tauc : 1 (clock-driven)
dd/dt = -d / taud : 1 (clock-driven)
ds/dt = mode * c * d / taus : 1 (clock-driven)
dApre/dt = -Apre / taupre : 1 (event-driven)
dApost/dt = -Apost / taupost : 1 (event-driven)''',

on_pre='''ge += s
Apre += dApre
c = clip(c + mode * Apost, -gmax, gmax)
s = clip(s + (1-mode) * Apost, -gmax, gmax)
''',

on_post='''Apost += dApost
c = clip(c + mode * Apre, -gmax, gmax)
s = clip(s + (1-mode) * Apre, -gmax, gmax)
''',

method='euler'
)

synapse_stdp.connect(i=0, j=1)
synapse_stdp.mode = 0
synapse_stdp.s = 1e-10
synapse_stdp.c = 1e-10
synapse_stdp.d = 0
synapse_stdp_monitor = StateMonitor(synapse_stdp, ['s', 'c', 'd'], record=[0])

Dopamine signaling section
dopamine_indices = array([0, 0, 0])
dopamine_times = array([3520, 4020, 4520])*ms
dopamine = SpikeGeneratorGroup(1, dopamine_indices, dopamine_times)
dopamine_monitor = SpikeMonitor(dopamine)
reward = Synapses(dopamine, synapse_stdp, model='''''',

on_pre='''d_post += epsilon_dopa''',
method='exact')

reward.connect()

Simulation
Classical STDP
synapse_stdp.mode = 0
run(simulation_duration/2)
Dopamine modulated STDP
synapse_stdp.mode = 1
run(simulation_duration/2)

Visualisation
dopamine_indices, dopamine_times = dopamine_monitor.it
neurons_indices, neurons_times = neurons_monitor.it
figure(figsize=(12, 6))
subplot(411)
plot([0.05, 2.95], [2.7, 2.7], linewidth=5, color='k')

(continues on next page)

5.11. frompapers 327

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
text(1.5, 3, 'Classical STDP', horizontalalignment='center', fontsize=20)
plot([3.05, 5.95], [2.7, 2.7], linewidth=5, color='k')
text(4.5, 3, 'Dopamine modulated STDP', horizontalalignment='center', fontsize=20)
plot(neurons_times, neurons_indices, 'ob')
plot(dopamine_times, dopamine_indices + 2, 'or')
xlim([0, simulation_duration/second])
ylim([-0.5, 4])
yticks([0, 1, 2], ['Pre-neuron', 'Post-neuron', 'Reward'])
xticks([])
subplot(412)
plot(synapse_stdp_monitor.t/second, synapse_stdp_monitor.d.T/gmax, 'r-')
xlim([0, simulation_duration/second])
ylabel('Extracellular\ndopamine d(t)')
xticks([])
subplot(413)
plot(synapse_stdp_monitor.t/second, synapse_stdp_monitor.c.T/gmax, 'b-')
xlim([0, simulation_duration/second])
ylabel('Eligibility\ntrace c(t)')
xticks([])
subplot(414)
plot(synapse_stdp_monitor.t/second, synapse_stdp_monitor.s.T/gmax, 'g-')
xlim([0, simulation_duration/second])
ylabel('Synaptic\nstrength s(t)')
xlabel('Time (s)')
tight_layout()
show()

328 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

5.11.15 Example: Jansen_Rit_1995_single_column

[Jansen and Rit 1995 model](https://link.springer.com/content/pdf/10.1007/BF00199471.pdf) (Figure 3) in Brian2.
Equations are the system of differential equations number (6) in the original paper. The rate parameters $a=100
s^{-1}$ and $b=200 s^{-1}$ were changed to excitatory $tau_e = 1000ms/a =10ms$ and inhibitory $tau_i =
1000ms/b =20ms$ time constants as in [Thomas Knosche review](https://link.springer.com/referenceworkentry/
10.1007%2F978-1-4614-6675-8_65), [Touboul et al. 2011](https://direct.mit.edu/neco/article-abstract/23/12/3232/
7717/Neural-Mass-Activity-Bifurcations-and-Epilepsy?redirectedFrom=fulltext), or [David & Friston 2003](https://
www.sciencedirect.com/science/article/pii/S1053811903004579). Units were removerd from parameters e_0, v_0,
r_0, A, B, and p to stop Brian’s confusion.
Ruben Tikidji-Hamburyan 2021 (rth@r-a-r.org)

from numpy import *
from numpy import random as rnd
from matplotlib.pyplot import *
from brian2 import *

defaultclock.dt = .1*ms #default time step

te,ti = 10.*ms, 20.*ms #taus for excitatory and inhibitory populations
e0 = 5. #max firing rate
v0 = 6. #(max FR)/2 input
r0 = 0.56 #gain rate
A,B,C = 3.25, 22., 135 #standard parameters as in the set (7) of the original paper
P,deltaP = 120, 320.-120 #random input uniformly distributed between 120 and

#320 pulses per second

Random noise
nstim = TimedArray(rnd.rand(70000),2*ms)

Equations as in the system (6) of the original paper
equs = """
dy0/dt = y3 /second : 1
dy3/dt = (A * Sp -2*y3 -y0/te*second)/te : 1
dy1/dt = y4 /second : 1
dy4/dt = (A*(p+ C2 * Se)-2*y4 -y1/te*second)/te : 1
dy2/dt = y5 /second : 1
dy5/dt = (B * C4 * Si -2*y5 -y2/ti*second)/ti : 1
p = P0+nstim(t)*dlP : 1
Sp = e0/(1+exp(r0*(v0 - (y1-y2)))) : 1
Se = e0/(1+exp(r0*(v0 - C1*y0))) : 1
Si = e0/(1+exp(r0*(v0 - C3*y0))) : 1
C1 : 1
C2 = 0.8 *C1 : 1
C3 = 0.25*C1 : 1
C4 = 0.25*C1 : 1
P0 : 1
dlP : 1
"""

n = NeuronGroup(6,equs,method='euler') #creates 6 JR models for different␣
↪→connectivity parameters

#set parameters as for different traces on figure 3 of the original paper

(continues on next page)

5.11. frompapers 329

https://link.springer.com/content/pdf/10.1007/BF00199471.pdf
https://link.springer.com/referenceworkentry/10.1007%2F978-1-4614-6675-8_65
https://link.springer.com/referenceworkentry/10.1007%2F978-1-4614-6675-8_65
https://direct.mit.edu/neco/article-abstract/23/12/3232/7717/Neural-Mass-Activity-Bifurcations-and-Epilepsy?redirectedFrom=fulltext
https://direct.mit.edu/neco/article-abstract/23/12/3232/7717/Neural-Mass-Activity-Bifurcations-and-Epilepsy?redirectedFrom=fulltext
https://www.sciencedirect.com/science/article/pii/S1053811903004579
https://www.sciencedirect.com/science/article/pii/S1053811903004579
mailto:rth@r-a-r.org

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
n.C1[0] = 68
n.C1[1] = 128
n.C1[2] = C
n.C1[3] = 270
n.C1[4] = 675
n.C1[5] = 1350
#set stimulus offset and noise magnitude
n.P0 = P
n.dlP = deltaP

#just record everything
sm = StateMonitor(n,['y4','y1','y3','y0','y5','y2'],record=True)

#Runs for 5 second
run(5*second,report='text')

#This code goes over all models with different parameters and plot activity of each␣
↪→population.

figure(1,figsize=(22,16))
idx1 = where(sm.t/second>2.)[0]

o = 0
for p in [0,1,2,3,4,5]:

if o == 0: ax = subplot(6,3,1)
else :subplot(6,3,1+o,sharex=ax)
if o == 0: title("E")
plot(sm.t[idx1]/second, sm[p].y1[idx1],'g-')
ylabel(f"C={n[p].C1[0]}")
if o == 15: xlabel("Time (seconds)")
subplot(6,3,2+o,sharex=ax)
if o == 0: title("P")
plot(sm.t[idx1]/second, sm[p].y0[idx1],'b-')
if o == 15: xlabel("Time (seconds)")
subplot(6,3,3+o,sharex=ax)
if o == 0: title("I")
plot(sm.t[idx1]/second, sm[p].y2[idx1],'r-')
if o == 15: xlabel("Time (seconds)")
o += 3

show()

330 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

5.11.16 Example: Kremer_et_al_2011_barrel_cortex

Late Emergence of the Whisker Direction Selectivity Map in the Rat Barrel Cortex. Kremer Y, Leger JF, Goodman DF,
Brette R, Bourdieu L (2011). J Neurosci 31(29):10689-700.
Development of direction maps with pinwheels in the barrel cortex. Whiskers are deflected with random moving bars.
N.B.: network construction can be long.

from brian2 import *
import time

t1 = time.time()

PARAMETERS
Neuron numbers
M4, M23exc, M23inh = 22, 25, 12 # size of each barrel (in neurons)
N4, N23exc, N23inh = M4**2, M23exc**2, M23inh**2 # neurons per barrel
barrelarraysize = 5 # Choose 3 or 4 if memory error
Nbarrels = barrelarraysize**2
Stimulation
stim_change_time = 5*ms
Fmax = .5/stim_change_time # maximum firing rate in layer 4 (.5 spike / stimulation)

(continues on next page)

5.11. frompapers 331

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
Neuron parameters
taum, taue, taui = 10*ms, 2*ms, 25*ms
El = -70*mV
Vt, vt_inc, tauvt = -55*mV, 2*mV, 50*ms # adaptive threshold
STDP
taup, taud = 5*ms, 25*ms
Ap, Ad= .05, -.04
EPSPs/IPSPs
EPSP, IPSP = 1*mV, -1*mV
EPSC = EPSP * (taue/taum)**(taum/(taue-taum))
IPSC = IPSP * (taui/taum)**(taum/(taui-taum))
Ap, Ad = Ap*EPSC, Ad*EPSC

Layer 4, models the input stimulus
eqs_layer4 = '''
rate = int(is_active)*clip(cos(direction - selectivity), 0, inf)*Fmax: Hz
is_active = abs((barrel_x + 0.5 - bar_x) * cos(direction) + (barrel_y + 0.5 - bar_y)␣
↪→* sin(direction)) < 0.5: boolean
barrel_x : integer # The x index of the barrel
barrel_y : integer # The y index of the barrel
selectivity : 1
Stimulus parameters (same for all neurons)
bar_x = cos(direction)*(t - stim_start_time)/(5*ms) + stim_start_x : 1 (shared)
bar_y = sin(direction)*(t - stim_start_time)/(5*ms) + stim_start_y : 1 (shared)
direction : 1 (shared) # direction of the current stimulus
stim_start_time : second (shared) # start time of the current stimulus
stim_start_x : 1 (shared) # start position of the stimulus
stim_start_y : 1 (shared) # start position of the stimulus
'''
layer4 = NeuronGroup(N4*Nbarrels, eqs_layer4, threshold='rand() < rate*dt',

method='euler', name='layer4')
layer4.barrel_x = '(i // N4) % barrelarraysize + 0.5'
layer4.barrel_y = 'i // (barrelarraysize*N4) + 0.5'
layer4.selectivity = '(i%N4)/(1.0*N4)*2*pi' # for each barrel, selectivity between 0␣
↪→and 2*pi

stimradius = (11+1)*.5

Chose a new randomly oriented bar every 60ms
runner_code = '''
direction = rand()*2*pi
stim_start_x = barrelarraysize / 2.0 - cos(direction)*stimradius
stim_start_y = barrelarraysize / 2.0 - sin(direction)*stimradius
stim_start_time = t
'''
layer4.run_regularly(runner_code, dt=60*ms, when='start')

Layer 2/3
Model: IF with adaptive threshold
eqs_layer23 = '''
dv/dt=(ge+gi+El-v)/taum : volt
dge/dt=-ge/taue : volt
dgi/dt=-gi/taui : volt
dvt/dt=(Vt-vt)/tauvt : volt # adaptation
barrel_idx : integer
x : 1 # in "barrel width" units
y : 1 # in "barrel width" units

(continues on next page)

332 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
'''
layer23 = NeuronGroup(Nbarrels*(N23exc+N23inh), eqs_layer23,

threshold='v>vt', reset='v = El; vt += vt_inc',
refractory=2*ms, method='euler', name='layer23')

layer23.v = El
layer23.vt = Vt

Subgroups for excitatory and inhibitory neurons in layer 2/3
layer23exc = layer23[:Nbarrels*N23exc]
layer23inh = layer23[Nbarrels*N23exc:]

Layer 2/3 excitatory
The units for x and y are the width/height of a single barrel
layer23exc.x = '(i % (barrelarraysize*M23exc)) * (1.0/M23exc)'
layer23exc.y = '(i // (barrelarraysize*M23exc)) * (1.0/M23exc)'
layer23exc.barrel_idx = 'floor(x) + floor(y)*barrelarraysize'

Layer 2/3 inhibitory
layer23inh.x = 'i % (barrelarraysize*M23inh) * (1.0/M23inh)'
layer23inh.y = 'i // (barrelarraysize*M23inh) * (1.0/M23inh)'
layer23inh.barrel_idx = 'floor(x) + floor(y)*barrelarraysize'

print("Building synapses, please wait...")
Feedforward connections (plastic)
feedforward = Synapses(layer4, layer23exc,

model='''w:volt
dA_source/dt = -A_source/taup : volt (event-driven)
dA_target/dt = -A_target/taud : volt (event-driven)''

↪→',
on_pre='''ge+=w

A_source += Ap
w = clip(w+A_target, 0*volt, EPSC)''',

on_post='''
A_target += Ad
w = clip(w+A_source, 0*volt, EPSC)''',

name='feedforward')
Connect neurons in the same barrel with 50% probability
feedforward.connect('(barrel_x_pre + barrelarraysize*barrel_y_pre) == barrel_idx_post
↪→',

p=0.5)
feedforward.w = EPSC*.5

print('excitatory lateral')
Excitatory lateral connections
recurrent_exc = Synapses(layer23exc, layer23, model='w:volt', on_pre='ge+=w',

name='recurrent_exc')
recurrent_exc.connect(p='.15*exp(-.5*(((x_pre-x_post)/.4)**2+((y_pre-y_post)/.4)**2))
↪→')
recurrent_exc.w['j<Nbarrels*N23exc'] = EPSC*.3 # excitatory->excitatory
recurrent_exc.w['j>=Nbarrels*N23exc'] = EPSC # excitatory->inhibitory

Inhibitory lateral connections
print('inhibitory lateral')
recurrent_inh = Synapses(layer23inh, layer23exc, on_pre='gi+=IPSC',

name='recurrent_inh')
recurrent_inh.connect(p='exp(-.5*(((x_pre-x_post)/.2)**2+((y_pre-y_post)/.2)**2))')

(continues on next page)

5.11. frompapers 333

Brian 2 Documentation, Release 2.5.1

(continued from previous page)

if get_device().__class__.__name__=='RuntimeDevice':
print('Total number of connections')
print('feedforward: %d' % len(feedforward))
print('recurrent exc: %d' % len(recurrent_exc))
print('recurrent inh: %d' % len(recurrent_inh))

t2 = time.time()
print("Construction time: %.1fs" % (t2 - t1))

run(5*second, report='text')

Calculate the preferred direction of each cell in layer23 by doing a
vector average of the selectivity of the projecting layer4 cells, weighted
by the synaptic weight.
_r = bincount(feedforward.j,

weights=feedforward.w * cos(feedforward.selectivity_pre)/feedforward.N_
↪→incoming,

minlength=len(layer23exc))
_i = bincount(feedforward.j,

weights=feedforward.w * sin(feedforward.selectivity_pre)/feedforward.N_
↪→incoming,

minlength=len(layer23exc))
selectivity_exc = (arctan2(_r, _i) % (2*pi))*180./pi

scatter(layer23.x[:Nbarrels*N23exc], layer23.y[:Nbarrels*N23exc],
c=selectivity_exc[:Nbarrels*N23exc],
edgecolors='none', marker='s', cmap='hsv')

vlines(np.arange(barrelarraysize), 0, barrelarraysize, 'k')
hlines(np.arange(barrelarraysize), 0, barrelarraysize, 'k')
clim(0, 360)
colorbar()
show()

334 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

5.11.17 Example: Maass_Natschlaeger_Markram_2002

Fig. 2 from:
Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations
Neural Computation 14, 2531–2560 (2002)
by Maass W., Natschläger T. and Markram H.
Sebastian Schmitt, 2022

from collections import defaultdict
import multiprocessing

import numpy as np
import matplotlib.pyplot as plt

from brian2 import (
NeuronGroup,
Synapses,
SpikeGeneratorGroup,
SpikeMonitor,
Network,

(continues on next page)

5.11. frompapers 335

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
prefs,

)
from brian2 import ms, mV, Mohm, nA, second, Hz
from brian2 import defaultclock, prefs

N_NEURONS = 135
V_THRESH = 15 * mV
V_RESET = 13.5 * mV

STIMULUS_POISSON_RATE = 20 * Hz
TARGET_DISTANCES = [0.4, 0.2, 0.1]
N_PAIRS = 200

DT = 0.1 * ms
DURATION = 500 * ms
TS = np.arange(0, DURATION / ms, DT / ms)

def exponential_convolution(t, spikes, tau):
"""Convolute spikes with exponential kernel
t -- numpy array of times to evaluate the convolution
spikes -- iterable of spike times
tau -- exponential decay constant
"""
if len(spikes):

return sum([np.exp(-((t - st) / tau)) * (t >= st) for st in spikes])
else:

return np.zeros(len(TS))

def gaussian_convolution(t, spikes, tau):
"""Convolute spikes with Gaussian kernel
t -- numpy array of times to evaluate the convolution
spikes -- iterable of spike times
tau -- exponential decay constant
"""
if len(spikes):

return sum([np.exp(-(((t - st) / tau) ** 2)) for st in spikes])
else:

return np.zeros(len(TS))

def euclidian_distance(liquid_states_u, liquid_states_v):
"""Euclidian distance between liquid states
liquid_states_u -- liquid states
liquid_states_v -- other liquid states

To match the numbers in the paper, the square root is omitted
"""

return np.mean((liquid_states_u - liquid_states_v) ** 2, axis=0)

def distance(conv_a, conv_b, dt):
"""Difference of convolutions in the L2-norm
conv_a -- convolutions
conv_b -- other convolutions

(continues on next page)

336 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
dt -- time step

To match the numbers in the paper, the square root is omitted
"""

return sum((conv_a - conv_b) ** 2) * dt

def generate_poisson(duration, rate):
"""Generate Poisson spike train
duration -- duration of spike train
rate -- rate of spike train

Return only spike trains that do not have multiple spikes per time bin
"""
while True:

N = np.random.poisson(rate * duration)
spikes = np.random.uniform(0, duration, N)

spikes_orig = np.sort(spikes)
shift = 1e-3 * (DT / ms)
timebins = ((spikes_orig + shift) / (DT / ms)).astype(np.int32)

if not any(np.diff(timebins) == 0):
return spikes_orig

def collect_stimulus_pairs():
"""Collect pairs of input stimuli close in target distance"""
DELTA_DISTANCE = 0.01
collected_pairs = defaultdict(list)

while True:

spikes_u = generate_poisson(DURATION / ms, STIMULUS_POISSON_RATE / Hz / 1e3)
spikes_v = generate_poisson(DURATION / ms, STIMULUS_POISSON_RATE / Hz / 1e3)

conv_u = gaussian_convolution(TS, spikes_u, tau=5)
conv_v = gaussian_convolution(TS, spikes_v, tau=5)

normed_distance = distance(conv_u, conv_v, DT / ms) / (DURATION / ms)

for target_distance in TARGET_DISTANCES:
if (

abs(normed_distance - target_distance) < DELTA_DISTANCE
and len(collected_pairs[target_distance]) < N_PAIRS

):
collected_pairs[target_distance].append((spikes_u, spikes_v))

stop if we have enough pairs collected
if len(collected_pairs) == len(TARGET_DISTANCES) and all(

np.array(list(map(len, collected_pairs.values()))) == N_PAIRS
):

break

return collected_pairs

(continues on next page)

5.11. frompapers 337

Brian 2 Documentation, Release 2.5.1

(continued from previous page)

def get_neurons():
neurons = NeuronGroup(

N_NEURONS,
"""
tau_mem : second (shared, constant)
tau_refrac : second (constant)
v_reset : volt (shared, constant)
v_thresh : volt (shared, constant)
I_b : ampere (shared, constant)
tau_stimulus : second (constant)
I_syn_ee_synapses : ampere
I_syn_ei_synapses : ampere
I_syn_ie_synapses : ampere
I_syn_ii_synapses : ampere
dI_stimulus/dt = -I_stimulus/tau_stimulus : ampere
R_in : ohm
dv/dt = -v/tau_mem + (I_syn_ee_synapses +

I_syn_ei_synapses +
I_syn_ie_synapses +
I_syn_ii_synapses)*R_in/tau_mem

+ I_b*R_in/tau_mem
+ I_stimulus*R_in/tau_mem: volt (unless refractory)

x_pos : 1 (constant)
y_pos : 1 (constant)
z_pos : 1 (constant)
""",
threshold="v>v_thresh",
reset="v=v_reset",
refractory="tau_refrac",
method="exact",
name="neurons",

)

neurons.tau_mem = 30 * ms
neurons.v_thresh = V_THRESH
neurons.v_reset = V_RESET

neurons.I_b = 13.5 * nA

neurons.v[:] = (
np.random.uniform(V_RESET / mV, V_THRESH / mV, size=len(neurons)) * mV

)

neurons.R_in = 1 * Mohm

to randomly assign excitatory and inhibitory neurons later
indices = np.arange(len(neurons))
np.random.shuffle(indices)

a column of 15x3x3 neurons
neurons.x_pos = indices % 3
neurons.y_pos = (indices // 3) % 3
neurons.z_pos = indices // 9

return neurons

(continues on next page)

338 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)

def get_synapses(name, source, target, C, l, tau_I, A, U, D, F, delay):
synapses_eqs = """
A : ampere (constant)
U : 1 (constant)
tau_I : second (shared, constant)
D : second (constant)
dx/dt = z/D : 1 (clock-driven) # recovered
dy/dt = -y/tau_I : 1 (clock-driven) # active
z = 1 - x - y : 1 # inactive
I_syn_{}_post = A*y : ampere (summed)
""".format(name)

if F:
synapses_eqs += """
du/dt = -u/F : 1 (clock-driven)
F : second (constant)
"""

synapses_action = """
u += U*(1-u)
y += u*x # important: update y first
x += -u*x
"""

else:
synapses_action = """
y += U*x # important: update y first
x += -U*x
"""

synapses = Synapses(
source,
target,
model=synapses_eqs,
on_pre=synapses_action,
method="exact",
name=name,
delay=delay,

)

synapses.connect(
p=f"{C} * exp(-((x_pos_pre-x_pos_post)**2 + (y_pos_pre-y_pos_post)**2 + (z_

↪→pos_pre-z_pos_post)**2)/{l}**2)"
)

N_syn = len(synapses)

synapses.tau_I = tau_I

synapses.A[:] = np.sign(A / nA) * np.random.gamma(1, abs(A / nA), size=N_syn) * nA

synapses.U[:] = np.random.normal(U, 0.5, size=N_syn)
paper samples from uniform, we take the mean
synapses.U[:][synapses.U < 0] = U

synapses.D[:] = np.random.normal(D / ms, 0.5 * D / ms, size=N_syn) * ms
paper samples from uniform, we take the mean

(continues on next page)

5.11. frompapers 339

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
synapses.D[:][synapses.D / ms <= 0] = D

start fully recovered
synapses.x = 1

if F:
synapses.F[:] = np.random.normal(F / ms, 0.5 * F / ms, size=N_syn) * ms
paper samples from uniform, we take the mean
synapses.F[:][synapses.F / ms <= 0] = F

return synapses

def sim(net, spike_times):
"""Run network with given stimulus

Redraws initial membrane voltages

net -- the network to simulate
spike_times -- the stimulus to inject
"""
net.restore()

net["neurons"].v = (
np.random.uniform(V_RESET / mV, V_THRESH / mV, size=len(neurons)) * mV

)
net["stimulus"].set_spikes([0] * len(spike_times), spike_times * ms)

net.run(DURATION)

spikes = list(net["spike_monitor_exc"].spike_trains().values()) + list(
net["spike_monitor_inh"].spike_trains().values()

)

liquid_states = np.array(
[exponential_convolution(TS, st / ms, tau=30) for st in spikes]

)

return liquid_states

if __name__ == '__main__':
neurons = get_neurons()

N_exc = int(0.8 * len(neurons))

exc_neurons = neurons[:N_exc]
exc_neurons.tau_refrac = 3 * ms
exc_neurons.tau_stimulus = 3 * ms

inh_neurons = neurons[N_exc:]
inh_neurons.tau_refrac = 2 * ms
inh_neurons.tau_stimulus = 6 * ms

l_lambda = 2

ee_synapses = get_synapses(
"ee_synapses",

(continues on next page)

340 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
exc_neurons,
exc_neurons,
C=0.3,
l=l_lambda,
tau_I=3 * ms,
A=30 * nA,
U=0.5,
D=1.1 * second,
F=0.05 * second,
delay=1.5 * ms,

)
ei_synapses = get_synapses(

"ei_synapses",
exc_neurons,
inh_neurons,
C=0.2,
l=l_lambda,
tau_I=3 * ms,
A=60 * nA,
U=0.05,
D=0.125 * second,
F=1.2 * second,
delay=0.8 * ms,

)
ie_synapses = get_synapses(

"ie_synapses",
inh_neurons,
exc_neurons,
C=0.4,
l=l_lambda,
tau_I=6 * ms,
A=-19 * nA,
U=0.25,
D=0.7 * second,
F=0.02 * second,
delay=0.8 * ms,

)
ii_synapses = get_synapses(

"ii_synapses",
inh_neurons,
inh_neurons,
C=0.1,
l=l_lambda,
tau_I=6 * ms,
A=-19 * nA,
U=0.32,
D=0.144 * second,
F=0.06 * second,
delay=0.8 * ms,

)

place holder for stimulus
stimulus = SpikeGeneratorGroup(1, [], [] * ms, name="stimulus")

spike_monitor_stimulus = SpikeMonitor(stimulus)

static_synapses_exc = Synapses(
(continues on next page)

5.11. frompapers 341

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
stimulus,
exc_neurons,
"A : ampere (shared, constant)",
on_pre="I_stimulus += A"

)
static_synapses_exc.connect(p=1)
static_synapses_exc.A = 18 * nA

static_synapses_inh = Synapses(
stimulus,
inh_neurons,
"A : ampere (shared, constant)",
on_pre="I_stimulus += A"

)
static_synapses_inh.connect(p=1)
static_synapses_inh.A = 9 * nA

spike_monitor_exc = SpikeMonitor(exc_neurons, name="spike_monitor_exc")
spike_monitor_inh = SpikeMonitor(inh_neurons, name="spike_monitor_inh")

defaultclock.dt = DT

net = Network(
[

neurons,
ee_synapses,
ei_synapses,
ie_synapses,
ii_synapses,
static_synapses_exc,
static_synapses_inh,
stimulus,
spike_monitor_exc,
spike_monitor_inh,

]
)
net.store()

collected_pairs = collect_stimulus_pairs()

add only jittered pairs
collected_pairs[0] = [

[generate_poisson(DURATION / ms, STIMULUS_POISSON_RATE / Hz / 1e3)] * 2
for _ in range(N_PAIRS)

]

def map_sim(spike_times):
"""Wrapper to sim for multiprocessing
"""
return sim(net, spike_times)

result = defaultdict(list)
loop over all distances and Poisson stimulus pairs
for d, pairs in collected_pairs.items():

with multiprocessing.Pool() as p:
states_u = p.map(map_sim, [p[0] for p in pairs])

(continues on next page)

342 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
states_v = p.map(map_sim, [p[1] for p in pairs])

for liquid_states_u, liquid_states_v in zip(states_u, states_v):
ed = euclidian_distance(liquid_states_u, liquid_states_v)
result[d].append(ed)

plot
fig, ax = plt.subplots(figsize=(5, 5))

linestyles = ["dashed", (0, (8, 6, 1, 6)), (0, (5, 10)), "solid"]

for d, ls in zip(TARGET_DISTANCES + [0], linestyles):

eds = result[d]
eds = np.array(eds)

ax.plot(
TS / 1000, np.mean(eds, axis=0), label=f"d(u,v)={d}", linestyle=ls, color=

↪→"k"
)

ax.set_xlabel("time [sec]")
ax.set_ylabel("state distance")

ax.set_xlim(0, 0.5)
ax.set_ylim(0, 2.5)

ax.legend(loc="upper center", fontsize="x-large", frameon=False)

plt.show()

5.11. frompapers 343

Brian 2 Documentation, Release 2.5.1

5.11.18 Example: Morris_Lecar_1981

Morris-Lecar model
Reproduces Fig. 9 of:
Catherine Morris and Harold Lecar. “Voltage Oscillations in the Barnacle Giant Muscle Fiber.” Biophysical Journal 35,
no. 1 (1981): 193–213.

from brian2 import *
set_device('cpp_standalone')
defaultclock.dt = 0.01*ms

g_L = 2*mS
g_Ca = 4*mS
g_K = 8*mS
V_L = -50*mV
V_Ca = 100*mV
V_K = -70*mV
lambda_n__max = 1.0/(15*ms)
V_1 = 10*mV
V_2 = 15*mV # Note that Figure caption says -15 which seems to be a typo

(continues on next page)

344 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
V_3 = -1*mV
V_4 = 14.5*mV
C = 20*uF

V,N-reduced system (Eq. 9 in article), note that the variables M and N (and lambda_
↪→N, etc.)
have been renamed to m and n to better match the Hodgkin-Huxley convention, and␣
↪→because N has
a reserved meaning in Brian (number of neurons)
eqs = '''
dV/dt = (-g_L*(V - V_L) - g_Ca*m_inf*(V - V_Ca) - g_K*n*(V - V_K) + I)/C : volt
dn/dt = lambda_n*(n_inf - n) : 1
m_inf = 0.5*(1 + tanh((V - V_1)/V_2)) : 1
n_inf = 0.5*(1 + tanh((V - V_3)/V_4)) : 1
lambda_n = lambda_n__max*cosh((V - V_3)/(2*V_4)) : Hz
I : amp
'''

neuron = NeuronGroup(17, eqs, method='exponential_euler')
neuron.I = (np.arange(17)*25+100)*uA
neuron.V = V_L
neuron.n = 'n_inf'
mon = StateMonitor(neuron, ['V', 'n'], record=True)

run_time = 220*ms
run(run_time)
fig, (ax1, ax2) = plt.subplots(1, 2, gridspec_kw={'right': 0.95, 'bottom': 0.15},

figsize=(6.4, 3.2))
fig.subplots_adjust(wspace=0.4)
for line_no, idx in enumerate([0, 4, 12, 15]):

color = 'C%d' % line_no
ax1.plot(mon.t/ms, mon.V[idx]/mV, color=color)
ax1.text(225, mon.V[idx][-1]/mV, '%.0f' % (neuron.I[idx]/uA), color=color)

ax1.set(xlim=(0, 220), ylim=(-50, 50), xlabel='time (ms)')
ax1.set_ylabel('V (mV)', rotation=0)
ax1.spines['right'].set_visible(False)
ax1.spines['top'].set_visible(False)

dV/dt nullclines
V = linspace(-50, 50, 100)*mV
for line_no, (idx, color) in enumerate([(0, 'C0'), (4, 'C1'), (8, 'C4'), (12, 'C2'),␣
↪→(16, 'C5')]):

n_null = (g_L*(V - V_L) + g_Ca*0.5*(1 + tanh((V - V_1)/V_2))*(V - V_Ca) - neuron.
↪→I[idx])/(-g_K*(V - V_K))

ax2.plot(V/mV, n_null, color=color)
ax2.text(V[20+5*line_no]/mV, n_null[20+5*line_no]+0.01, '%.0f' % (neuron.I[idx]/

↪→uA), color=color)
dn/dt nullcline
n_null = 0.5*(1 + tanh((V - V_3)/V_4))
ax2.plot(V/mV, n_null, color='k')
ax2.set(xlim=(-50, 50), ylim=(0, 1), xlabel='V (mV)')
ax2.set_ylabel('n', rotation=0)
ax2.spines['right'].set_visible(False)
ax2.spines['top'].set_visible(False)
plt.show()

5.11. frompapers 345

Brian 2 Documentation, Release 2.5.1

5.11.19 Example: Naud_et_al_2008_adex_firing_patterns

Firing patterns in the adaptive exponential integrate-and-fire model

Naud R et al. (2008): Firing patterns in the adaptive exponential integrate-and-fire model. Biol Cybern. 2008; 99(4):
335–347. doi:10.1007/s00422-008-0264-7
Parameters adapted by P. Müller to match figures, cf. http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.
php?id=3445.
Sebastian Schmitt, Sebastian Billaudelle, 2022

from brian2 import *
import matplotlib.pyplot as plt

def sim(ax_vm, ax_w, ax_vm_w, parameters):
"""
simulate with parameters and plot to axes
"""

taken from Touboul_Brette_2008
eqs = """
dvm/dt = (g_l*(e_l - vm) + g_l*d_t*exp((vm-v_t)/d_t) + i_stim - w)/c_m : volt
dw/dt = (a*(vm - e_l) - w)/tau_w : amp
"""

neuron = NeuronGroup(
1,
model=eqs,
threshold="vm > 0*mV",
reset="vm = v_r; w += b",

(continues on next page)

346 Chapter 5. Examples

http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3445
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3445

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
method="euler",
namespace=parameters,

)

neuron.vm = parameters["e_l"]
neuron.w = 0

states = StateMonitor(neuron, ["vm", "w"], record=True, when="thresholds")

defaultclock.dt = 0.1 * ms
run(0.6 * second)

clip membrane voltages to threshold (0 mV)
vms = np.clip(states[0].vm / mV, a_min=None, a_max=0)

ax_vm.plot(states[0].t / ms, vms)
ax_w.plot(states[0].t / ms, states[0].w / nA)
ax_vm_w.plot(vms, states[0].w / nA)

ax_w.sharex(ax_vm)
ax_vm.tick_params(labelbottom=False)

ax_vm.set_ylabel("V [mV]")

ax_w.set_xlabel("t [ms]")
ax_w.set_ylabel("w [nA]")

ax_vm_w.set_xlabel("V [mV]")
ax_vm_w.set_ylabel("w [nA]")

ax_vm_w.yaxis.tick_right()
ax_vm_w.yaxis.set_label_position("right")

patterns = {
"tonic spiking": {

"c_m": 200 * pF,
"g_l": 10 * nS,
"e_l": -70.0 * mV,
"v_t": -50.0 * mV,
"d_t": 2.0 * mV,
"a": 2.0 * nS,
"tau_w": 30.0 * ms,
"b": 0.0 * pA,
"v_r": -58.0 * mV,
"i_stim": 500 * pA,

},
"adaptation": {

"c_m": 200 * pF,
"g_l": 12 * nS,
"e_l": -70.0 * mV,
"v_t": -50.0 * mV,
"d_t": 2.0 * mV,
"a": 2.0 * nS,
"tau_w": 300.0 * ms,
"b": 60.0 * pA,
"v_r": -58.0 * mV,

(continues on next page)

5.11. frompapers 347

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
"i_stim": 500 * pA,

},
"initial burst": {

"c_m": 130 * pF,
"g_l": 18 * nS,
"e_l": -58.0 * mV,
"v_t": -50.0 * mV,
"d_t": 2.0 * mV,
"a": 4.0 * nS,
"tau_w": 150.0 * ms,
"b": 120.0 * pA,
"v_r": -50.0 * mV,
"i_stim": 400 * pA,

},
"regular bursting": {

"c_m": 200 * pF,
"g_l": 10 * nS,
"e_l": -58.0 * mV,
"v_t": -50.0 * mV,
"d_t": 2.0 * mV,
"a": 2.0 * nS,
"tau_w": 120.0 * ms,
"b": 100.0 * pA,
"v_r": -46.0 * mV,
"i_stim": 210 * pA,

},
"delayed accelerating": {

"c_m": 200 * pF,
"g_l": 12 * nS,
"e_l": -70.0 * mV,
"v_t": -50.0 * mV,
"d_t": 2.0 * mV,
"a": -10.0 * nS,
"tau_w": 300.0 * ms,
"b": 0.0 * pA,
"v_r": -58.0 * mV,
"i_stim": 300 * pA,

},
"delayed regular bursting": {

"c_m": 100 * pF,
"g_l": 10 * nS,
"e_l": -65.0 * mV,
"v_t": -50.0 * mV,
"d_t": 2.0 * mV,
"a": -10.0 * nS,
"tau_w": 90.0 * ms,
"b": 30.0 * pA,
"v_r": -47.0 * mV,
"i_stim": 110 * pA,

},
"transient spiking": {

"c_m": 100 * pF,
"g_l": 10 * nS,
"e_l": -65.0 * mV,
"v_t": -50.0 * mV,
"d_t": 2.0 * mV,
"a": 10.0 * nS,

(continues on next page)

348 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
"tau_w": 90.0 * ms,
"b": 100.0 * pA,
"v_r": -47.0 * mV,
"i_stim": 180 * pA,

},
"irregular spiking": {

"c_m": 100 * pF,
"g_l": 12 * nS,
"e_l": -60.0 * mV,
"v_t": -50.0 * mV,
"d_t": 2.0 * mV,
"a": -11.0 * nS,
"tau_w": 130.0 * ms,
"b": 30.0 * pA,
"v_r": -48.0 * mV,
"i_stim": 160 * pA,

},
}

loop over all patterns and plot
for pattern, parameters in patterns.items():

fig = plt.figure(figsize=(10, 5))
fig.suptitle(pattern)
gs = fig.add_gridspec(2, 2)

ax_vm = fig.add_subplot(gs[0, 0])
ax_w = fig.add_subplot(gs[1, 0])
ax_vm_w = fig.add_subplot(gs[:, 1])

sim(ax_vm, ax_w, ax_vm_w, parameters)
plt.show()

5.11. frompapers 349

Brian 2 Documentation, Release 2.5.1

350 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

5.11. frompapers 351

Brian 2 Documentation, Release 2.5.1

352 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

5.11.20 Example: Platkiewicz_Brette_2011

Slope-threshold relationship with noisy inputs, in the adaptive threshold model

Fig. 5E,F from:
Platkiewicz J and R Brette (2011). Impact of Fast Sodium Channel Inactivation on Spike Threshold Dynamics and
Synaptic Integration. PLoS Comp Biol 7(5): e1001129. doi:10.1371/journal.pcbi.1001129

from scipy import optimize
from scipy.stats import linregress

from brian2 import *

N = 200 # 200 neurons to get more statistics, only one is shown
duration = 1*second
--Biophysical parameters
ENa = 60*mV
EL = -70*mV
vT = -55*mV
Vi = -63*mV
tauh = 5*ms
tau = 5*ms
ka = 5*mV
ki = 6*mV
a = ka / ki
tauI = 5*ms
mu = 15*mV
sigma = 6*mV / sqrt(tauI / (tauI + tau))

--Theoretical prediction for the slope-threshold relationship (approximation:␣
↪→a=1+epsilon)

(continues on next page)

5.11. frompapers 353

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
thresh = lambda slope, a: Vi - slope * tauh * log(1 + (Vi - vT / a) / (slope * tauh))
-----Exact calculation of the slope-threshold relationship
(note that optimize.fsolve does not work with units, we therefore let th be a
unitless quantity, i.e. the value in volt).
thresh_ex = lambda s: optimize.fsolve(lambda th: (a*s*tauh*exp((Vi-th*volt)/(s*tauh))-
↪→th*volt*(1-a)-a*(s*tauh+Vi)+vT)/volt,

thresh(s, a))*volt

eqs = """
dv/dt=(EL-v+mu+sigma*I)/tau : volt
dtheta/dt=(vT+a*clip(v-Vi, 0*mV, inf*mV)-theta)/tauh : volt
dI/dt=-I/tauI+(2/tauI)**.5*xi : 1 # Ornstein-Uhlenbeck
"""
neurons = NeuronGroup(N, eqs, threshold="v>theta", reset='v=EL',

refractory=5*ms)
neurons.v = EL
neurons.theta = vT
neurons.I = 0
S = SpikeMonitor(neurons)
M = StateMonitor(neurons, 'v', record=True)
Mt = StateMonitor(neurons, 'theta', record=0)

run(duration, report='text')

Linear regression gives depolarization slope before spikes
tx = M.t[(M.t > 0*second) & (M.t < 1.5 * tauh)]
slope, threshold = [], []

for (i, t) in zip(S.i, S.t):
ind = (M.t < t) & (M.t > t - tauh)
mx = M.v[i, ind]
s, _, _, _, _ = linregress(tx[:len(mx)]/ms, mx/mV)
slope.append(s)
threshold.append(mx[-1])

Figure
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 4))

ax1.plot(M.t/ms, M.v[0]/mV, 'k')
ax1.plot(Mt.t/ms, Mt.theta[0]/mV, 'r')
Display spikes on the trace
spike_timesteps = np.round(S.t[S.i == 0]/defaultclock.dt).astype(int)
ax1.vlines(S.t[S.i == 0]/ms,

M.v[0, spike_timesteps]/mV,
0, color='r')

ax1.plot(S.t[S.i == 0]/ms, M.v[0, spike_timesteps]/mV, 'ro', ms=3)
ax1.set(xlabel='Time (ms)', ylabel='Voltage (mV)', xlim=(0, 500),

ylim=(-75, -35))

ax2.plot(slope, Quantity(threshold)/mV, 'r.')
sx = linspace(0.5*mV/ms, 4*mV/ms, 100)
t = Quantity([thresh_ex(s) for s in sx])
ax2.plot(sx/(mV/ms), t/mV, 'k')
ax2.set(xlim=(0.5, 4), xlabel='Depolarization slope (mV/ms)',

ylabel='Threshold (mV)')

fig.tight_layout()
(continues on next page)

354 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
plt.show()

5.11.21 Example: Rossant_et_al_2011bis

5.11.22 Distributed synchrony example

Fig. 14 from:
Rossant C, Leijon S, Magnusson AK, Brette R (2011). “Sensitivity of noisy neurons to coincident inputs”.
Journal of Neuroscience, 31(47).

5000 independent E/I Poisson inputs are injected into a leaky integrate-and-fire neuron. Synchronous events, following an
independent Poisson process at 40 Hz, are considered, where 15 E Poisson spikes are randomly shifted to be synchronous
at those events. The output firing rate is then significantly higher, showing that the spike timing of less than 1% of the
excitatory synapses have an important impact on the postsynaptic firing.

from brian2 import *

neuron parameters
theta = -55*mV
El = -65*mV
vmean = -65*mV
taum = 5*ms
taue = 3*ms
taui = 10*ms
eqs = Equations("""

dv/dt = (ge+gi-(v-El))/taum : volt
dge/dt = -ge/taue : volt
dgi/dt = -gi/taui : volt
""")

input parameters
p = 15
ne = 4000

(continues on next page)

5.11. frompapers 355

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
ni = 1000
lambdac = 40*Hz
lambdae = lambdai = 1*Hz

synapse parameters
we = .5*mV/(taum/taue)**(taum/(taue-taum))
wi = (vmean-El-lambdae*ne*we*taue)/(lambdae*ni*taui)

NeuronGroup definition
group = NeuronGroup(N=2, model=eqs, reset='v = El',

threshold='v>theta',
refractory=5*ms, method='exact')

group.v = El
group.ge = group.gi = 0

independent E/I Poisson inputs
p1 = PoissonInput(group[0:1], 'ge', N=ne, rate=lambdae, weight=we)
p2 = PoissonInput(group[0:1], 'gi', N=ni, rate=lambdai, weight=wi)

independent E/I Poisson inputs + synchronous E events
p3 = PoissonInput(group[1:], 'ge', N=ne, rate=lambdae-(p*1.0/ne)*lambdac, weight=we)
p4 = PoissonInput(group[1:], 'gi', N=ni, rate=lambdai, weight=wi)
p5 = PoissonInput(group[1:], 'ge', N=1, rate=lambdac, weight=p*we)

run the simulation
M = SpikeMonitor(group)
SM = StateMonitor(group, 'v', record=True)
BrianLogger.log_level_info()
run(1*second)
plot trace and spikes
for i in [0, 1]:

spikes = (M.t[M.i == i] - defaultclock.dt)/ms
val = SM[i].v
subplot(2, 1, i+1)
plot(SM.t/ms, val)
plot(tile(spikes, (2, 1)),

vstack((val[array(spikes, dtype=int)],
zeros(len(spikes)))), 'C0')

title("%s: %d spikes/second" % (["uncorrelated inputs", "correlated inputs"][i],
M.count[i]))

tight_layout()
show()

356 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

5.11.23 Example: Rothman_Manis_2003

Cochlear neuron model of Rothman & Manis

Rothman JS, Manis PB (2003) The roles potassium currents play in regulating the electrical activity of ventral cochlear
nucleus neurons. J Neurophysiol 89:3097-113.
All model types differ only by the maximal conductances.
Adapted from their Neuron implementation by Romain Brette

from brian2 import *

#defaultclock.dt=0.025*ms # for better precision

'''
Simulation parameters: choose current amplitude and neuron type
(from type1c, type1t, type12, type 21, type2, type2o)
'''
neuron_type = 'type1c'
Ipulse = 250*pA

(continues on next page)

5.11. frompapers 357

Brian 2 Documentation, Release 2.5.1

(continued from previous page)

C = 12*pF
Eh = -43*mV
EK = -70*mV # -77*mV in mod file
El = -65*mV
ENa = 50*mV
nf = 0.85 # proportion of n vs p kinetics
zss = 0.5 # steady state inactivation of glt
temp = 22. # temperature in degree celcius
q10 = 3. ** ((temp - 22) / 10.)
hcno current (octopus cell)
frac = 0.0
qt = 4.5 ** ((temp - 33.) / 10.)

Maximal conductances of different cell types in nS
maximal_conductances = dict(
type1c=(1000, 150, 0, 0, 0.5, 0, 2),
type1t=(1000, 80, 0, 65, 0.5, 0, 2),
type12=(1000, 150, 20, 0, 2, 0, 2),
type21=(1000, 150, 35, 0, 3.5, 0, 2),
type2=(1000, 150, 200, 0, 20, 0, 2),
type2o=(1000, 150, 600, 0, 0, 40, 2) # octopus cell
)
gnabar, gkhtbar, gkltbar, gkabar, ghbar, gbarno, gl = [x * nS for x in maximal_
↪→conductances[neuron_type]]

Classical Na channel
eqs_na = """
ina = gnabar*m**3*h*(ENa-v) : amp
dm/dt=q10*(minf-m)/mtau : 1
dh/dt=q10*(hinf-h)/htau : 1
minf = 1./(1+exp(-(vu + 38.) / 7.)) : 1
hinf = 1./(1+exp((vu + 65.) / 6.)) : 1
mtau = ((10. / (5*exp((vu+60.) / 18.) + 36.*exp(-(vu+60.) / 25.))) + 0.04)*ms :␣
↪→second
htau = ((100. / (7*exp((vu+60.) / 11.) + 10.*exp(-(vu+60.) / 25.))) + 0.6)*ms :␣
↪→second
"""

KHT channel (delayed-rectifier K+)
eqs_kht = """
ikht = gkhtbar*(nf*n**2 + (1-nf)*p)*(EK-v) : amp
dn/dt=q10*(ninf-n)/ntau : 1
dp/dt=q10*(pinf-p)/ptau : 1
ninf = (1 + exp(-(vu + 15) / 5.))**-0.5 : 1
pinf = 1. / (1 + exp(-(vu + 23) / 6.)) : 1
ntau = ((100. / (11*exp((vu+60) / 24.) + 21*exp(-(vu+60) / 23.))) + 0.7)*ms : second
ptau = ((100. / (4*exp((vu+60) / 32.) + 5*exp(-(vu+60) / 22.))) + 5)*ms : second
"""

Ih channel (subthreshold adaptive, non-inactivating)
eqs_ih = """
ih = ghbar*r*(Eh-v) : amp
dr/dt=q10*(rinf-r)/rtau : 1
rinf = 1. / (1+exp((vu + 76.) / 7.)) : 1
rtau = ((100000. / (237.*exp((vu+60.) / 12.) + 17.*exp(-(vu+60.) / 14.))) + 25.)*ms :␣
↪→second

(continues on next page)

358 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
"""

KLT channel (low threshold K+)
eqs_klt = """
iklt = gkltbar*w**4*z*(EK-v) : amp
dw/dt=q10*(winf-w)/wtau : 1
dz/dt=q10*(zinf-z)/ztau : 1
winf = (1. / (1 + exp(-(vu + 48.) / 6.)))**0.25 : 1
zinf = zss + ((1.-zss) / (1 + exp((vu + 71.) / 10.))) : 1
wtau = ((100. / (6.*exp((vu+60.) / 6.) + 16.*exp(-(vu+60.) / 45.))) + 1.5)*ms : second
ztau = ((1000. / (exp((vu+60.) / 20.) + exp(-(vu+60.) / 8.))) + 50)*ms : second
"""

Ka channel (transient K+)
eqs_ka = """
ika = gkabar*a**4*b*c*(EK-v): amp
da/dt=q10*(ainf-a)/atau : 1
db/dt=q10*(binf-b)/btau : 1
dc/dt=q10*(cinf-c)/ctau : 1
ainf = (1. / (1 + exp(-(vu + 31) / 6.)))**0.25 : 1
binf = 1. / (1 + exp((vu + 66) / 7.))**0.5 : 1
cinf = 1. / (1 + exp((vu + 66) / 7.))**0.5 : 1
atau = ((100. / (7*exp((vu+60) / 14.) + 29*exp(-(vu+60) / 24.))) + 0.1)*ms : second
btau = ((1000. / (14*exp((vu+60) / 27.) + 29*exp(-(vu+60) / 24.))) + 1)*ms : second
ctau = ((90. / (1 + exp((-66-vu) / 17.))) + 10)*ms : second
"""

Leak
eqs_leak = """
ileak = gl*(El-v) : amp
"""

h current for octopus cells
eqs_hcno = """
ihcno = gbarno*(h1*frac + h2*(1-frac))*(Eh-v) : amp
dh1/dt=(hinfno-h1)/tau1 : 1
dh2/dt=(hinfno-h2)/tau2 : 1
hinfno = 1./(1+exp((vu+66.)/7.)) : 1
tau1 = bet1/(qt*0.008*(1+alp1))*ms : second
tau2 = bet2/(qt*0.0029*(1+alp2))*ms : second
alp1 = exp(1e-3*3*(vu+50)*9.648e4/(8.315*(273.16+temp))) : 1
bet1 = exp(1e-3*3*0.3*(vu+50)*9.648e4/(8.315*(273.16+temp))) : 1
alp2 = exp(1e-3*3*(vu+84)*9.648e4/(8.315*(273.16+temp))) : 1
bet2 = exp(1e-3*3*0.6*(vu+84)*9.648e4/(8.315*(273.16+temp))) : 1
"""

eqs = """
dv/dt = (ileak + ina + ikht + iklt + ika + ih + ihcno + I)/C : volt
vu = v/mV : 1 # unitless v
I : amp
"""
eqs += eqs_leak + eqs_ka + eqs_na + eqs_ih + eqs_klt + eqs_kht + eqs_hcno

neuron = NeuronGroup(1, eqs, method='exponential_euler')
neuron.v = El

run(50*ms, report='text') # Go to rest
(continues on next page)

5.11. frompapers 359

Brian 2 Documentation, Release 2.5.1

(continued from previous page)

M = StateMonitor(neuron, 'v', record=0)
neuron.I = Ipulse

run(100*ms, report='text')

plot(M.t / ms, M[0].v / mV)
xlabel('t (ms)')
ylabel('v (mV)')
show()

5.11.24 Example: Sturzl_et_al_2000

Adapted from Theory of Arachnid Prey Localization W. Sturzl, R. Kempter, and J. L. van Hemmen PRL 2000
Poisson inputs are replaced by integrate-and-fire neurons
Romain Brette

from brian2 import *

Parameters

(continues on next page)

360 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
degree = 2 * pi / 360.
duration = 500*ms
R = 2.5*cm # radius of scorpion
vr = 50*meter/second # Rayleigh wave speed
phi = 144*degree # angle of prey
A = 250*Hz
deltaI = .7*ms # inhibitory delay
gamma = (22.5 + 45 * arange(8)) * degree # leg angle
delay = R / vr * (1 - cos(phi - gamma)) # wave delay

Wave (vector w)
time = arange(int(duration / defaultclock.dt) + 1) * defaultclock.dt
Dtot = 0.
w = 0.
for f in arange(150, 451)*Hz:

D = exp(-(f/Hz - 300) ** 2 / (2 * (50 ** 2)))
rand_angle = 2 * pi * rand()
w += 100 * D * cos(2 * pi * f * time + rand_angle)
Dtot += D

w = .01 * w / Dtot

Rates from the wave
rates = TimedArray(w, dt=defaultclock.dt)

Leg mechanical receptors
tau_legs = 1 * ms
sigma = .01
eqs_legs = """
dv/dt = (1 + rates(t - d) - v)/tau_legs + sigma*(2./tau_legs)**.5*xi:1
d : second
"""
legs = NeuronGroup(8, model=eqs_legs, threshold='v > 1', reset='v = 0',

refractory=1*ms, method='euler')
legs.d = delay
spikes_legs = SpikeMonitor(legs)

Command neurons
tau = 1 * ms
taus = 1.001 * ms
wex = 7
winh = -2
eqs_neuron = '''
dv/dt = (x - v)/tau : 1
dx/dt = (y - x)/taus : 1 # alpha currents
dy/dt = -y/taus : 1
'''
neurons = NeuronGroup(8, model=eqs_neuron, threshold='v>1', reset='v=0',

method='exact')
synapses_ex = Synapses(legs, neurons, on_pre='y+=wex')
synapses_ex.connect(j='i')
synapses_inh = Synapses(legs, neurons, on_pre='y+=winh', delay=deltaI)
synapses_inh.connect('abs(((j - i) % N_post) - N_post/2) <= 1')
spikes = SpikeMonitor(neurons)

run(duration, report='text')

nspikes = spikes.count
(continues on next page)

5.11. frompapers 361

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
phi_est = imag(log(sum(nspikes * exp(gamma * 1j))))
print("True angle (deg): %.2f" % (phi/degree))
print("Estimated angle (deg): %.2f" % (phi_est/degree))
rmax = amax(nspikes)/duration/Hz
polar(concatenate((gamma, [gamma[0] + 2 * pi])),

concatenate((nspikes, [nspikes[0]])) / duration / Hz,
c='k')

axvline(phi, ls='-', c='g')
axvline(phi_est, ls='-', c='b')
show()

362 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

5.11.25 Example: Touboul_Brette_2008

Chaos in the AdEx model

Fig. 8B from: Touboul, J. and Brette, R. (2008). Dynamics and bifurcations of the adaptive exponential integrate-and-fire
model. Biological Cybernetics 99(4-5):319-34.
This shows the bifurcation structure when the reset value is varied (vertical axis shows the values of w at spike times for
a given a reset value Vr).

from brian2 import *

defaultclock.dt = 0.01*ms

C = 281*pF
gL = 30*nS
EL = -70.6*mV
VT = -50.4*mV
DeltaT = 2*mV
tauw = 40*ms
a = 4*nS
b = 0.08*nA
I = .8*nA
Vcut = VT + 5 * DeltaT # practical threshold condition
N = 200

eqs = """
dvm/dt=(gL*(EL-vm)+gL*DeltaT*exp((vm-VT)/DeltaT)+I-w)/C : volt
dw/dt=(a*(vm-EL)-w)/tauw : amp
Vr:volt
"""

neuron = NeuronGroup(N, model=eqs, threshold='vm > Vcut',
reset="vm = Vr; w += b", method='euler')

neuron.vm = EL
neuron.w = a * (neuron.vm - EL)
neuron.Vr = linspace(-48.3 * mV, -47.7 * mV, N) # bifurcation parameter

init_time = 3*second
run(init_time, report='text') # we discard the first spikes

states = StateMonitor(neuron, "w", record=True, when='start')
spikes = SpikeMonitor(neuron)
run(1 * second, report='text')

Get the values of Vr and w for each spike
Vr = neuron.Vr[spikes.i]
w = states.w[spikes.i, int_((spikes.t-init_time)/defaultclock.dt)]

figure()
plot(Vr / mV, w / nA, '.k')
xlabel('Vr (mV)')
ylabel('w (nA)')
show()

5.11. frompapers 363

Brian 2 Documentation, Release 2.5.1

5.11.26 Example: Tsodyks_Pawelzik_Markram_1998

Fig. 1 from:
M. Tsodyks, K. Pawelzik, H. Markram Neural Networks with Dynamic Synapses Neural Computation 10, 821–835
(1998)
https://doi.org/10.1162/089976698300017502
Sebastian Schmitt, 2022

import numpy as np
import matplotlib.pyplot as plt

from brian2 import (
NeuronGroup,
Synapses,
SpikeGeneratorGroup,
SpikeMonitor,
StateMonitor,

)
from brian2 import ms, mV, pA, Mohm, Gohm, Hz
from brian2 import run

(continues on next page)

364 Chapter 5. Examples

https://doi.org/10.1162/089976698300017502

Brian 2 Documentation, Release 2.5.1

(continued from previous page)

def get_neuron(tau_mem, R_in):
"""
tau_mem -- membrane time constant
R_in -- input resistance
"""
neuron = NeuronGroup(1,

"""
tau_mem : second
I_syn : ampere
R_in : ohm
dv/dt = -v/tau_mem + (R_in*I_syn)/tau_mem : volt
""",
method="exact")

neuron.tau_mem = tau_mem
neuron.R_in = R_in

return neuron

def get_synapses(stimulus, neuron, tau_inact, A_SE, U_SE, tau_rec, tau_facil=None):
"""
stimulus -- input stimulus
neuron -- target neuron
tau_inact -- inactivation time constant
A_SE -- absolute synaptic strength
U_SE -- utilization of synaptic efficacy
tau_rec -- recovery time constant
tau_facil -- facilitation time constant (optional)
"""

synapses_eqs = """
dx/dt = z/tau_rec : 1 (clock-driven) # recovered
dy/dt = -y/tau_inact : 1 (clock-driven) # active
A_SE : ampere
U_SE : 1
tau_inact : second
tau_rec : second
z = 1 - x - y : 1 # inactive
I_syn_post = A_SE*y : ampere (summed)
"""

if tau_facil:
synapses_eqs += """
du/dt = -u/tau_facil : 1 (clock-driven)
tau_facil : second
"""

synapses_action = """
u += U_SE*(1-u)
y += u*x # important: update y first
x += -u*x
"""

else:
synapses_action = """

(continues on next page)

5.11. frompapers 365

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
y += U_SE*x # important: update y first
x += -U_SE*x
"""

synapses = Synapses(stimulus,
neuron,
model=synapses_eqs,
on_pre=synapses_action,
method="exponential_euler")

synapses.connect()

start fully recovered
synapses.x = 1

synapses.tau_inact = tau_inact
synapses.A_SE = A_SE
synapses.U_SE = U_SE
synapses.tau_rec = tau_rec

if tau_facil:
synapses.tau_facil = tau_facil

return synapses

def get_stimulus(start, stop, frequency):
"""
start -- start time of stimulus
stop -- stop time of stimulus
frequency -- frequency of stimulus
"""

times = np.arange(start / ms, stop / ms, 1 / (frequency / Hz) * 1e3) * ms
stimulus = SpikeGeneratorGroup(1, [0] * len(times), times)

return stimulus

parameters = {
"A": {

"neuron": {"tau_mem": 40 * ms,
"R_in": 100*Mohm},

"synapse": {
"tau_inact": 3 * ms,
"A_SE": 250 * pA,
"tau_rec": 800 * ms,
"U_SE": 0.6, # 0.5 from publication does not match plot

},
"stimulus": {"start": 100 * ms,

"stop": 1100 * ms,
"frequency": 20 * Hz},

"simulation": {"duration": 1200 * ms},
"plot": {

"title": "A) D - 20 Hz",
"ylim": [0, 1],
"xlim": [0, 1200],
"xtickstep": 200,

(continues on next page)

366 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
},

},
"B": {

"neuron": {"tau_mem": 60 * ms,
"R_in": 1*Gohm},

"synapse": {
"tau_inact": 1.5 * ms,
"A_SE": 1540 * pA,
"tau_rec": 130 * ms,
"U_SE": 0.03,
"tau_facil": 530 * ms,

},
"stimulus": {"start": 100 * ms,

"stop": 1100 * ms,
"frequency": 20 * Hz},

"simulation": {"duration": 1200 * ms},
"plot": {

"title": "B) F - 20 Hz",
"ylim": [0, 14.9],
"xlim": [0, 1200],
"xtickstep": 200,

},
},
"C": {

"neuron": {"tau_mem": 60 * ms,
"R_in": 1*Gohm},

"synapse": {
"tau_inact": 1.5 * ms,
"A_SE": 1540 * pA,
"tau_rec": 130 * ms,
"U_SE": 0.03,
"tau_facil": 530 * ms,

},
"stimulus": {"start": 100 * ms,

"stop": 375 * ms,
"frequency": 70 * Hz},

"simulation": {"duration": 500 * ms},
"plot": {

"title": "C) F - 70 Hz",
"ylim": [0, 20],
"xlim": [0, 500],
"xtickstep": 50,

},
},

}

fig, axes = plt.subplots(3)

for ax, (panel, p) in zip(axes, parameters.items()):

neuron = get_neuron(**p["neuron"])
stimulus = get_stimulus(**p["stimulus"])
synapses = get_synapses(stimulus, neuron, **p["synapse"])

state_monitor_neuron = StateMonitor(neuron, ["v"], record=True)

run(p["simulation"]["duration"])
(continues on next page)

5.11. frompapers 367

Brian 2 Documentation, Release 2.5.1

(continued from previous page)

ax.plot(
state_monitor_neuron.t / ms,
state_monitor_neuron[0].v / mV,
label=p["plot"]["title"],

)

ax.set_xlim(*p["plot"]["xlim"])
ax.set_ylim(*p["plot"]["ylim"])
ax.set_ylabel("mV")
ax.set_xlabel("Time (ms)")

ax.set_xticks(
np.arange(

p["plot"]["xlim"][0],
p["plot"]["xlim"][1] + p["plot"]["xtickstep"],
p["plot"]["xtickstep"],

)
)

ax.legend()

plt.show()

368 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

5.11.27 Example: Tsodyks_Uziel_Markram_2000

Fig. 1 from:
Synchrony Generation in Recurrent Networks with Frequency-Dependent Synapses The Journal of Neuroscience, 2000,
Vol. 20 RC50
Implementation partially based on nest-2.0.0/examples/nest/tsodyks_shortterm_bursts.sli by Moritz Helias, 2006.
Sebastian Schmitt, 2022

import numpy as np

set seed for reproducible figures
np.random.seed(5)

for truncated normal
import scipy
from scipy import stats

import matplotlib.pyplot as plt

from brian2 import (
NeuronGroup,
Synapses,
SpikeGeneratorGroup,
SpikeMonitor,
StateMonitor,

)
from brian2 import ms, mV
from brian2 import run, defaultclock

def truncated_normal(loc, scale, bounds, size):
"""Normal distribution truncated within bounds

loc -- mean (“centre”) of the distribution
scale -- standard deviation (spread or “width”) of the distribution
bounds -- list of min and maximum
size -- number of samples
"""
bounds = np.array([bounds] * size)

s = scipy.stats.truncnorm.rvs(
(bounds[:, 0] - loc) / scale, (bounds[:, 1] - loc) / scale, loc=loc,␣

↪→scale=scale
)

return s

def get_population(name, N, tau_refrac):
"""Get population of neurons

name -- name of population
N -- number of neurons
tau_refrac -- refractory period

(continues on next page)

5.11. frompapers 369

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
"""

neurons = NeuronGroup(
N,
"""
tau_mem : second
tau_refrac : second
v_reset : volt
v_thresh : volt
I_syn_ee_synapses : volt
I_syn_ei_synapses : volt
I_syn_ie_synapses : volt
I_syn_ii_synapses : volt
I_b : volt
dv/dt = -v/tau_mem + (I_syn_ee_synapses +

I_syn_ei_synapses +
I_syn_ie_synapses +
I_syn_ii_synapses)/tau_mem

+ I_b/tau_mem : volt (unless refractory)
""",
threshold="v>v_thresh",
reset="v=v_reset",
refractory=tau_refrac,
method="exact",
name=name,

)

v_thresh = 15 * mV
v_reset = 13.5 * mV

neurons.tau_mem = 30 * ms
neurons.v_thresh = v_thresh
neurons.v_reset = v_reset

paper gives range of 0.05 mV but population bursts are not visible with that␣
↪→value

-> increased to 1 mV range
neurons.I_b = (

np.random.uniform(v_thresh / mV - 0.5, v_thresh / mV + 0.5, size=N) * mV
)

return neurons

def get_synapses(name, source, target, tau_I, A, U, tau_rec, tau_facil=None):
"""Construct connections and retrieve synapses

name -- name of synapses
source -- source of connections
target -- target of connections
tau_I -- inactivation time constant
A -- absolute synaptic strength
U -- utilization of synaptic efficacy
tau_rec -- recovery time constant
tau_facil -- facilitation time constant (optional)
"""

(continues on next page)

370 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
synapses_eqs = """
A : volt
U : 1
tau_I : second
tau_rec : second

dx/dt = z/tau_rec : 1 (clock-driven) # recovered
dy/dt = -y/tau_I : 1 (clock-driven) # active
z = 1 - x - y : 1 # inactive
I_syn_{}_post = A*y : volt (summed)
""".format(

name
)

if tau_facil:
synapses_eqs += """
du/dt = -u/tau_facil : 1 (clock-driven)
tau_facil : second
"""

synapses_action = """
u += U*(1-u)
y += u*x # important: update y first
x += -u*x
"""

else:
synapses_action = """
y += U*x # important: update y first
x += -U*x
"""

synapses = Synapses(
source,
target,
model=synapses_eqs,
on_pre=synapses_action,
method="exact",
name=name,

)
synapses.connect(p=0.1)

N_syn = len(synapses)

synapses.tau_I = tau_I

A_min = min(0.2 * A, 2 * A)
A_max = max(0.2 * A, 2 * A)
synapses.A = (

truncated_normal(
A / mV, 0.5 * abs(A / mV), [A_min / mV, A_max / mV], size=N_syn

) * mV
)
assert not any(synapses.A < A_min)
assert not any(synapses.A > A_max)

U_mean, U_min, U_max = U
synapses.U = truncated_normal(U_mean, 0.5 * U_mean, [U_min, U_max], size=N_syn)

(continues on next page)

5.11. frompapers 371

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
assert not any(synapses.U <= U_min)
assert not any(synapses.U > U_max)

tau_min = 5
synapses.tau_rec = (

truncated_normal(
tau_rec / ms, 0.5 * tau_rec / ms, [tau_min, np.inf], size=N_syn

) * ms
)
assert not any(synapses.tau_rec / ms <= tau_min)

if tau_facil:
synapses.tau_facil = (

truncated_normal(
tau_facil / ms, 0.5 * tau_facil / ms, [tau_min, np.inf], size=N_syn

) * ms
)
assert not any(synapses.tau_facil / ms <= tau_min)

start fully recovered
synapses.x = 1

return synapses

configure neuron populations
exc_neurons = get_population("exc_neurons", N=400, tau_refrac=3 * ms)
inh_neurons = get_population("inh_neurons", N=100, tau_refrac=2 * ms)

configure synapses
ee_synapses = get_synapses(

"ee_synapses",
exc_neurons,
exc_neurons,
tau_I=3 * ms,
A=1.8 * mV,
U=[0.5, 0.1, 0.9],
tau_rec=800 * ms,

)
ei_synapses = get_synapses(

"ei_synapses",
exc_neurons,
inh_neurons,
tau_I=3 * ms,
A=7.2 * mV,
U=[0.04, 0.001, 0.07],
tau_rec=100 * ms,
tau_facil=1000 * ms,

)
ie_synapses = get_synapses(

"ie_synapses",
inh_neurons,
exc_neurons,
tau_I=3 * ms,
A=-5.4 * mV,
U=[0.5, 0.1, 0.9],
tau_rec=800 * ms,

(continues on next page)

372 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
)
ii_synapses = get_synapses(

"ii_synapses",
inh_neurons,
inh_neurons,
tau_I=3 * ms,
A=-7.2 * mV,
U=[0.04, 0.001, 0.07],
tau_rec=100 * ms,
tau_facil=1000 * ms,

)

run for burnin time to settle network activity
defaultclock.dt = 1 * ms
burnin = 900
run(burnin * ms)

record from now on
spike_monitor_exc = SpikeMonitor(exc_neurons)
spike_monitor_inh = SpikeMonitor(inh_neurons)
state_monitor_ee = StateMonitor(ee_synapses, ["x"], record=True)

duration = 4200
run(duration * ms, report="text")

plots
fig, axes = plt.subplots(3, figsize=(6, 8), sharex=True)

raster plot
axes[0].plot(spike_monitor_exc.t / ms, spike_monitor_exc.i, ".k", ms=1)
axes[0].plot(spike_monitor_inh.t / ms, spike_monitor_inh.i + len(exc_neurons), ".k",␣
↪→ms=1)
axes[0].set_ylabel("Neuron No.")
axes[0].set_ylim(0, len(exc_neurons) + len(inh_neurons))

network activity
net_activity = np.histogram(

np.concatenate(
list(spike_monitor_exc.spike_trains().values())
+ list(spike_monitor_inh.spike_trains().values())

) / ms,
bins=np.arange(burnin, duration + burnin, 1))[0] / (len(exc_neurons) + len(inh_

↪→neurons))
axes[1].plot(np.arange(0, len(net_activity)) + burnin, net_activity, "k")
net_activity_min = 0
net_activity_max = 0.2
axes[1].set_ylim(net_activity_min, net_activity_max)
axes[1].set_ylabel("Net activity")

network activity inset
axins = axes[1].inset_axes([0.05, 0.35, 0.2, 0.6])
axins.plot(np.arange(0, len(net_activity)) + burnin, net_activity, "k")
inset_min = 1220
inset_max = 1260
axins.set_xlim(inset_min + burnin, inset_max + burnin)
axins.set_ylim(net_activity_min, net_activity_max)
axins.set_xticks([inset_min + burnin, inset_max + burnin])

(continues on next page)

5.11. frompapers 373

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
axins.set_xticklabels([inset_min, inset_max])
axins.set_yticks([])

recovered synaptic partition
axes[2].plot(

state_monitor_ee.t / ms, np.mean(state_monitor_ee.x, axis=0), "k", label="x"
)
axes[2].set_ylim(0.2, 0.6)
axes[2].set_xlabel("Time (msec)")
axes[2].set_ylabel("Recov excit")
axes[2].set_xlim(burnin, duration + burnin)
xtickstep = 1000
axes[2].set_xticks(np.arange(burnin, duration + burnin, xtickstep))
axes[2].set_xticklabels(map(str, range(0, duration, xtickstep)))

axes[0].xaxis.set_tick_params(which="both", labelbottom=True)
axes[1].xaxis.set_tick_params(which="both", labelbottom=True)

plt.show()

374 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

5.11. frompapers 375

Brian 2 Documentation, Release 2.5.1

5.11.28 Example: Vogels_et_al_2011

Inhibitory synaptic plasticity in a recurrent network model

(F. Zenke, 2011) (from the 2012 Brian twister)
Adapted from:
Vogels, T. P., H. Sprekeler, F. Zenke, C. Clopath, and W. Gerstner. Inhibitory Plasticity Balances Excitation and Inhibi-
tion in Sensory Pathways and Memory Networks. Science (November 10, 2011).

from brian2 import *

###
Defining network model parameters
###

NE = 8000 # Number of excitatory cells
NI = NE/4 # Number of inhibitory cells

tau_ampa = 5.0*ms # Glutamatergic synaptic time constant
tau_gaba = 10.0*ms # GABAergic synaptic time constant
epsilon = 0.02 # Sparseness of synaptic connections

tau_stdp = 20*ms # STDP time constant

simtime = 10*second # Simulation time

###
Neuron model
###

gl = 10.0*nsiemens # Leak conductance
el = -60*mV # Resting potential
er = -80*mV # Inhibitory reversal potential
vt = -50.*mV # Spiking threshold
memc = 200.0*pfarad # Membrane capacitance
bgcurrent = 200*pA # External current

eqs_neurons='''
dv/dt=(-gl*(v-el)-(g_ampa*v+g_gaba*(v-er))+bgcurrent)/memc : volt (unless refractory)
dg_ampa/dt = -g_ampa/tau_ampa : siemens
dg_gaba/dt = -g_gaba/tau_gaba : siemens
'''

###
Initialize neuron group
###

neurons = NeuronGroup(NE+NI, model=eqs_neurons, threshold='v > vt',
reset='v=el', refractory=5*ms, method='euler')

Pe = neurons[:NE]
Pi = neurons[NE:]

###

(continues on next page)

376 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
Connecting the network
###

con_e = Synapses(Pe, neurons, on_pre='g_ampa += 0.3*nS')
con_e.connect(p=epsilon)
con_ii = Synapses(Pi, Pi, on_pre='g_gaba += 3*nS')
con_ii.connect(p=epsilon)

###
Inhibitory Plasticity
###

eqs_stdp_inhib = '''
w : 1
dApre/dt=-Apre/tau_stdp : 1 (event-driven)
dApost/dt=-Apost/tau_stdp : 1 (event-driven)
'''
alpha = 3*Hz*tau_stdp*2 # Target rate parameter
gmax = 100 # Maximum inhibitory weight

con_ie = Synapses(Pi, Pe, model=eqs_stdp_inhib,
on_pre='''Apre += 1.

w = clip(w+(Apost-alpha)*eta, 0, gmax)
g_gaba += w*nS''',

on_post='''Apost += 1.
w = clip(w+Apre*eta, 0, gmax)

''')
con_ie.connect(p=epsilon)
con_ie.w = 1e-10

###
Setting up monitors
###

sm = SpikeMonitor(Pe)

###
Run without plasticity
###
eta = 0 # Learning rate
run(1*second)

###
Run with plasticity
###
eta = 1e-2 # Learning rate
run(simtime-1*second, report='text')

###
Make plots
###

i, t = sm.it
subplot(211)
plot(t/ms, i, 'k.', ms=0.25)
title("Before")
xlabel("")

(continues on next page)

5.11. frompapers 377

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
yticks([])
xlim(0.8*1e3, 1*1e3)
subplot(212)
plot(t/ms, i, 'k.', ms=0.25)
xlabel("time (ms)")
yticks([])
title("After")
xlim((simtime-0.2*second)/ms, simtime/ms)
show()

5.11.29 Example: Wang_Buszaki_1996

378 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

Wang-Buszaki model

J Neurosci. 1996 Oct 15;16(20):6402-13. Gamma oscillation by synaptic inhibition in a hippocampal interneuronal
network model. Wang XJ, Buzsaki G.
Note that implicit integration (exponential Euler) cannot be used, and therefore simulation is rather slow.

from brian2 import *

defaultclock.dt = 0.01*ms

Cm = 1*uF # /cm**2
Iapp = 2*uA
gL = 0.1*msiemens
EL = -65*mV
ENa = 55*mV
EK = -90*mV
gNa = 35*msiemens
gK = 9*msiemens

eqs = '''
dv/dt = (-gNa*m**3*h*(v-ENa)-gK*n**4*(v-EK)-gL*(v-EL)+Iapp)/Cm : volt
m = alpha_m/(alpha_m+beta_m) : 1
alpha_m = 0.1/mV*10*mV/exprel(-(v+35*mV)/(10*mV))/ms : Hz
beta_m = 4*exp(-(v+60*mV)/(18*mV))/ms : Hz
dh/dt = 5*(alpha_h*(1-h)-beta_h*h) : 1
alpha_h = 0.07*exp(-(v+58*mV)/(20*mV))/ms : Hz
beta_h = 1./(exp(-0.1/mV*(v+28*mV))+1)/ms : Hz
dn/dt = 5*(alpha_n*(1-n)-beta_n*n) : 1
alpha_n = 0.01/mV*10*mV/exprel(-(v+34*mV)/(10*mV))/ms : Hz
beta_n = 0.125*exp(-(v+44*mV)/(80*mV))/ms : Hz
'''

neuron = NeuronGroup(1, eqs, method='exponential_euler')
neuron.v = -70*mV
neuron.h = 1
M = StateMonitor(neuron, 'v', record=0)

run(100*ms, report='text')

plot(M.t/ms, M[0].v/mV)
show()

5.11. frompapers 379

Brian 2 Documentation, Release 2.5.1

5.12 frompapers/Brette_2012

5.12.1 Example: Fig1

Brette R (2013). Sharpness of spike initiation in neurons explained by compartmentalization. PLoS Comp Biol, doi:
10.1371/journal.pcbi.1003338.
Fig 1C-E. Somatic voltage-clamp in a ball-and-stick model with Na channels at a particular location.

from brian2 import *
from params import *

defaultclock.dt = 0.025*ms

Morphology
morpho = Soma(50*um) # chosen for a target Rm
morpho.axon = Cylinder(diameter=1*um, length=300*um, n=300)

location = 40*um # where Na channels are placed
duration = 500*ms

(continues on next page)

380 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
Channels
eqs='''
Im = gL*(EL - v) + gclamp*(vc - v) + gNa*m*(ENa - v) : amp/meter**2
dm/dt = (minf - m) / taum: 1 # simplified Na channel
minf = 1 / (1 + exp((va - v) / ka)) : 1
gclamp : siemens/meter**2
gNa : siemens/meter**2
vc = EL + 50*mV * t/duration : volt (shared) # Voltage clamp with a ramping voltage␣
↪→command
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=Cm, Ri=Ri)
compartment = morpho.axon[location]
neuron.v = EL
neuron.gclamp[0] = gL*500
neuron.gNa[compartment] = gNa_0/neuron.area[compartment]

Monitors
mon = StateMonitor(neuron, ['v', 'vc', 'm'], record=True)

run(duration, report='text')

subplot(221)
plot(mon[0].vc/mV,

-((mon[0].vc - mon[0].v)*(neuron.gclamp[0]))*neuron.area[0]/nA, 'k')
xlabel('V (mV)')
ylabel('I (nA)')
xlim(-75, -45)
title('I-V curve')

subplot(222)
plot(mon[0].vc/mV, mon[compartment].m, 'k')
xlabel('V (mV)')
ylabel('m')
title('Activation curve (m(V))')

subplot(223)
Number of simulation time steps for each volt increment in the voltage-clamp
dt_per_volt = len(mon.t)/(50*mV)
for v in [-64*mV, -61*mV, -58*mV, -55*mV]:

plot(mon.v[:100, int(dt_per_volt*(v - EL))]/mV, 'k')
xlabel('Distance from soma (um)')
ylabel('V (mV)')
title('Voltage across axon')

subplot(224)
plot(mon[compartment].v/mV, mon[compartment].v/mV, 'k--') # Diagonal
plot(mon[0].v/mV, mon[compartment].v/mV, 'k')
xlabel('Vs (mV)')
ylabel('Va (mV)')
tight_layout()
show()

5.12. frompapers/Brette_2012 381

Brian 2 Documentation, Release 2.5.1

5.12.2 Example: Fig3AB

Brette R (2013). Sharpness of spike initiation in neurons explained by compartmentalization. PLoS Comp Biol, doi:
10.1371/journal.pcbi.1003338.
Fig. 3. A, B. Kink with only Nav1.6 channels

from brian2 import *
from params import *

codegen.target='numpy'

defaultclock.dt = 0.025*ms

Morphology
morpho = Soma(50*um) # chosen for a target Rm
morpho.axon = Cylinder(diameter=1*um, length=300*um, n=300)

location = 40*um # where Na channels are placed

Channels
eqs='''
Im = gL*(EL - v) + gNa*m*(ENa - v) : amp/meter**2

(continues on next page)

382 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
dm/dt = (minf - m) / taum : 1 # simplified Na channel
minf = 1 / (1 + exp((va - v) / ka)) : 1
gNa : siemens/meter**2
Iin : amp (point current)
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=Cm, Ri=Ri,
method="exponential_euler")

compartment = morpho.axon[location]
neuron.v = EL
neuron.gNa[compartment] = gNa_0/neuron.area[compartment]
M = StateMonitor(neuron, ['v', 'm'], record=True)

run(20*ms, report='text')
neuron.Iin[0] = gL * 20*mV * neuron.area[0]
run(80*ms, report='text')

subplot(121)
plot(M.t/ms, M[0].v/mV, 'r')
plot(M.t/ms, M[compartment].v/mV, 'k')
plot(M.t/ms, M[compartment].m*(80+60)-80, 'k--') # open channels
ylim(-80, 60)
xlabel('Time (ms)')
ylabel('V (mV)')
title('Voltage traces')

subplot(122)
dm = diff(M[0].v) / defaultclock.dt
dm40 = diff(M[compartment].v) / defaultclock.dt
plot((M[0].v/mV)[1:], dm/(volt/second), 'r')
plot((M[compartment].v/mV)[1:], dm40/(volt/second), 'k')
xlim(-80, 40)
xlabel('V (mV)')
ylabel('dV/dt (V/s)')
title('Phase plot')
tight_layout()
show()

5.12. frompapers/Brette_2012 383

Brian 2 Documentation, Release 2.5.1

5.12.3 Example: Fig3CF

Brette R (2013). Sharpness of spike initiation in neurons explained by compartmentalization. PLoS Comp Biol, doi:
10.1371/journal.pcbi.1003338.
Fig. 3C-F. Kink with Nav1.6 and Nav1.2

from brian2 import *
from params import *

defaultclock.dt = 0.01*ms

Morphology
morpho = Soma(50*um) # chosen for a target Rm
morpho.axon = Cylinder(diameter=1*um, length=300*um, n=300)

location16 = 40*um # where Nav1.6 channels are placed
location12 = 15*um # where Nav1.2 channels are placed

va2 = va + 15*mV # depolarized Nav1.2

Channels
duration = 100*ms

(continues on next page)

384 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
eqs='''
Im = gL * (EL - v) + gNa*m*(ENa - v) + gNa2*m2*(ENa - v) : amp/meter**2
dm/dt = (minf - m) / taum : 1 # simplified Na channel
minf = 1 / (1 + exp((va - v) / ka)) : 1
dm2/dt = (minf2 - m2) / taum : 1 # simplified Na channel, Nav1.2
minf2 = 1/(1 + exp((va2 - v) / ka)) : 1
gNa : siemens/meter**2
gNa2 : siemens/meter**2 # Nav1.2
Iin : amp (point current)
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=Cm, Ri=Ri,
method="exponential_euler")

compartment16 = morpho.axon[location16]
compartment12 = morpho.axon[location12]
neuron.v = EL
neuron.gNa[compartment16] = gNa_0/neuron.area[compartment16]
neuron.gNa2[compartment12] = 20*gNa_0/neuron.area[compartment12]
Monitors
M = StateMonitor(neuron, ['v', 'm', 'm2'], record=True)

run(20*ms, report='text')
neuron.Iin[0] = gL * 20*mV * neuron.area[0]
run(80*ms, report='text')

subplot(221)
plot(M.t/ms, M[0].v/mV, 'r')
plot(M.t/ms, M[compartment16].v/mV, 'k')
plot(M.t/ms, M[compartment16].m*(80+60)-80, 'k--') # open channels
ylim(-80, 60)
xlabel('Time (ms)')
ylabel('V (mV)')
title('Voltage traces')

subplot(222)
plot(M[0].v/mV, M[compartment16].m, 'k')
plot(M[0].v/mV, 1 / (1 + exp((va - M[0].v) / ka)), 'k--')
plot(M[0].v/mV, M[compartment12].m2, 'r')
plot(M[0].v/mV, 1 / (1 + exp((va2 - M[0].v) / ka)), 'r--')
xlim(-70, 0)
xlabel('V (mV)')
ylabel('m')
title('Activation curves')

subplot(223)
dm = diff(M[0].v) / defaultclock.dt
dm40 = diff(M[compartment16].v) / defaultclock.dt
plot((M[0].v/mV)[1:], dm/(volt/second), 'r')
plot((M[compartment16].v/mV)[1:], dm40/(volt/second), 'k')
xlim(-80, 40)
xlabel('V (mV)')
ylabel('dV/dt (V/s)')
title('Phase plot')

subplot(224)
plot((M[0].v/mV)[1:], dm/(volt/second), 'r')
plot((M[compartment16].v/mV)[1:], dm40/(volt/second), 'k')

(continues on next page)

5.12. frompapers/Brette_2012 385

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
plot((M[0].v/mV)[1:], 10 + 0*dm/(volt/second), 'k--')
xlim(-70, -40)
ylim(0, 20)
xlabel('V (mV)')
ylabel('dV/dt (V/s)')
title('Phase plot(zoom)')
tight_layout()
show()

5.12.4 Example: Fig4

Brette R (2013). Sharpness of spike initiation in neurons explained by compartmentalization. PLoS Comp Biol, doi:
10.1371/journal.pcbi.1003338.
Fig. 4E-F. Spatial distribution of Na channels. Tapering axon near soma.

from brian2 import *
from params import *

defaultclock.dt = 0.025*ms

(continues on next page)

386 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
Morphology
morpho = Soma(50*um) # chosen for a target Rm
Tapering (change this for the other figure panels)
diameters = hstack([linspace(4, 1, 11), ones(290)])*um
morpho.axon = Section(diameter=diameters, length=ones(300)*um, n=300)

Na channels
Na_start = (25 + 10)*um
Na_end = (40 + 10)*um
linear_distribution = True # True is F, False is E

duration = 500*ms

Channels
eqs='''
Im = gL*(EL - v) + gclamp*(vc - v) + gNa*m*(ENa - v) : amp/meter**2
dm/dt = (minf - m) / taum: 1 # simplified Na channel
minf = 1 / (1 + exp((va - v) / ka)) : 1
gclamp : siemens/meter**2
gNa : siemens/meter**2
vc = EL + 50*mV * t / duration : volt (shared) # Voltage clamp with a ramping␣
↪→voltage command
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=Cm, Ri=Ri,
method="exponential_euler")

compartments = morpho.axon[Na_start:Na_end]
neuron.v = EL
neuron.gclamp[0] = gL*500

if linear_distribution:
profile = linspace(1, 0, len(compartments))

else:
profile = ones(len(compartments))

profile = profile / sum(profile) # normalization

neuron.gNa[compartments] = gNa_0 * profile / neuron.area[compartments]

Monitors
mon = StateMonitor(neuron, 'v', record=True)

run(duration, report='text')

dt_per_volt = len(mon.t) / (50*mV)
for v in [-64*mV, -61*mV, -58*mV, -55*mV, -52*mV]:

plot(mon.v[:100, int(dt_per_volt * (v - EL))]/mV, 'k')
xlim(0, 50+10)
ylim(-65, -25)
ylabel('V (mV)')
xlabel('Location (um)')
title('Voltage across axon')
tight_layout()
show()

5.12. frompapers/Brette_2012 387

Brian 2 Documentation, Release 2.5.1

5.12.5 Example: Fig5A

Brette R (2013). Sharpness of spike initiation in neurons explained by compartmentalization. PLoS Comp Biol, doi:
10.1371/journal.pcbi.1003338.
Fig. 5A. Voltage trace for current injection, with an additional reset when a spike is produced.
Trick: to reset the entire neuron, we use a set of synapses from the spike initiation compartment where the threshold
condition applies to all compartments, and the reset operation (v = EL) is applied there every time a spike is produced.

from brian2 import *
from params import *

defaultclock.dt = 0.025*ms
duration = 500*ms

Morphology
morpho = Soma(50*um) # chosen for a target Rm
morpho.axon = Cylinder(diameter=1*um, length=300*um, n=300)

Input
taux = 5*ms
sigmax = 12*mV

(continues on next page)

388 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
xx0 = 7*mV

compartment = 40

Channels
eqs = '''
Im = gL * (EL - v) + gNa * m * (ENa - v) + gLx * (xx0 + xx) : amp/meter**2
dm/dt = (minf - m) / taum : 1 # simplified Na channel
minf = 1 / (1 + exp((va - v) / ka)) : 1
gNa : siemens/meter**2
gLx : siemens/meter**2
dxx/dt = -xx / taux + sigmax * (2 / taux)**.5 *xi : volt
'''

neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=Cm, Ri=Ri,
threshold='m>0.5', threshold_location=compartment,
refractory=5*ms)

neuron.v = EL
neuron.gLx[0] = gL
neuron.gNa[compartment] = gNa_0 / neuron.area[compartment]

Reset the entire neuron when there is a spike
reset = Synapses(neuron, neuron, on_pre='v = EL')
reset.connect('i == compartment') # Connects the spike initiation compartment to all␣
↪→compartments

Monitors
S = SpikeMonitor(neuron)
M = StateMonitor(neuron, 'v', record=0)
run(duration, report='text')

Add spikes for display
v = M[0].v
for t in S.t:

v[int(t / defaultclock.dt)] = 50*mV

plot(M.t/ms, v/mV, 'k')
tight_layout()
show()

5.12. frompapers/Brette_2012 389

Brian 2 Documentation, Release 2.5.1

5.12.6 Example: params

Parameters for spike initiation simulations.

from brian2.units import *

Passive parameters
EL = -75*mV
S = 7.85e-9*meter**2 # area (sphere of 50 um diameter)
Cm = 0.75*uF/cm**2
gL = 1. / (30000*ohm*cm**2)
Ri = 150*ohm*cm

Na channels
ENa = 60*mV
ka = 6*mV
va = -40*mV
gNa_0 = gL * 2*S
taum = 0.1*ms

390 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

5.12.7 README.txt

These are Brian scripts corresponding to the following paper:

Brette R (2013). Sharpness of spike initiation in neurons explained by␣
↪→compartmentalization.
PLoS Comp Biol, doi: 10.1371/journal.pcbi.1003338.

params.py contains model parameters

Essential figures from the paper:
Fig1.py
Fig3AB.py
Fig3CD.py
Fig4.py
Fig5A.py

5.13 frompapers/Stimberg_et_al_2018

5.13.1 Example: example_1_COBA

Modeling neuron-glia interactions with the Brian 2 simulator Marcel Stimberg, Dan F. M. Goodman, Romain Brette,
Maurizio De Pittà bioRxiv 198366; doi: https://doi.org/10.1101/198366
Figure 1: Modeling of neurons and synapses.
Randomly connected networks with conductance-based synapses (COBA; see Brunel, 2000). Synapses exhibit short-time
plasticity (Tsodyks, 2005; Tsodyks et al., 1998).

from brian2 import *
import sympy

import plot_utils as pu

seed(11922) # to get identical figures for repeated runs

##
Model parameters
##
General parameters
duration = 1.0*second # Total simulation time
sim_dt = 0.1*ms # Integrator/sampling step
N_e = 3200 # Number of excitatory neurons
N_i = 800 # Number of inhibitory neurons

Neuron parameters
E_l = -60*mV # Leak reversal potential
g_l = 9.99*nS # Leak conductance
E_e = 0*mV # Excitatory synaptic reversal potential
E_i = -80*mV # Inhibitory synaptic reversal potential
C_m = 198*pF # Membrane capacitance
tau_e = 5*ms # Excitatory synaptic time constant
tau_i = 10*ms # Inhibitory synaptic time constant

(continues on next page)

5.13. frompapers/Stimberg_et_al_2018 391

https://doi.org/10.1101/198366

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
tau_r = 5*ms # Refractory period
I_ex = 150*pA # External current
V_th = -50*mV # Firing threshold
V_r = E_l # Reset potential

Synapse parameters
w_e = 0.05*nS # Excitatory synaptic conductance
w_i = 1.0*nS # Inhibitory synaptic conductance
U_0 = 0.6 # Synaptic release probability at rest
Omega_d = 2.0/second # Synaptic depression rate
Omega_f = 3.33/second # Synaptic facilitation rate

##
Model definition
##
Set the integration time (in this case not strictly necessary, since we are
using the default value)
defaultclock.dt = sim_dt

Neurons
neuron_eqs = '''
dv/dt = (g_l*(E_l-v) + g_e*(E_e-v) + g_i*(E_i-v) +

I_ex)/C_m : volt (unless refractory)
dg_e/dt = -g_e/tau_e : siemens # post-synaptic exc. conductance
dg_i/dt = -g_i/tau_i : siemens # post-synaptic inh. conductance
'''
neurons = NeuronGroup(N_e + N_i, model=neuron_eqs,

threshold='v>V_th', reset='v=V_r',
refractory='tau_r', method='euler')

Random initial membrane potential values and conductances
neurons.v = 'E_l + rand()*(V_th-E_l)'
neurons.g_e = 'rand()*w_e'
neurons.g_i = 'rand()*w_i'
exc_neurons = neurons[:N_e]
inh_neurons = neurons[N_e:]

Synapses
synapses_eqs = '''
Usage of releasable neurotransmitter per single action potential:
du_S/dt = -Omega_f * u_S : 1 (event-driven)
Fraction of synaptic neurotransmitter resources available:
dx_S/dt = Omega_d *(1 - x_S) : 1 (event-driven)
'''
synapses_action = '''
u_S += U_0 * (1 - u_S)
r_S = u_S * x_S
x_S -= r_S
'''
exc_syn = Synapses(exc_neurons, neurons, model=synapses_eqs,

on_pre=synapses_action+'g_e_post += w_e*r_S')
inh_syn = Synapses(inh_neurons, neurons, model=synapses_eqs,

on_pre=synapses_action+'g_i_post += w_i*r_S')

exc_syn.connect(p=0.05)
inh_syn.connect(p=0.2)
Start from "resting" condition: all synapses have fully-replenished
neurotransmitter resources

(continues on next page)

392 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
exc_syn.x_S = 1
inh_syn.x_S = 1

##
Monitors
##
Note that we could use a single monitor for all neurons instead, but in this
way plotting is a bit easier in the end
exc_mon = SpikeMonitor(exc_neurons)
inh_mon = SpikeMonitor(inh_neurons)

We record some additional data from a single excitatory neuron
ni = 50
Record conductances and membrane potential of neuron ni
state_mon = StateMonitor(exc_neurons, ['v', 'g_e', 'g_i'], record=ni)
We make sure to monitor synaptic variables after synapse are updated in order
to use simple recurrence relations to reconstruct them. Record all synapses
originating from neuron ni
synapse_mon = StateMonitor(exc_syn, ['u_S', 'x_S'],

record=exc_syn[ni, :], when='after_synapses')

##
Simulation run
##
run(duration, report='text')

##
Analysis and plotting
##
plt.style.use('figures.mplstyle')

Spiking activity (w/ rate)
fig1, ax = plt.subplots(nrows=2, ncols=1, sharex=False,

gridspec_kw={'height_ratios': [3, 1],
'left': 0.18, 'bottom': 0.18, 'top': 0.95,
'hspace': 0.1},

figsize=(3.07, 3.07))
ax[0].plot(exc_mon.t[exc_mon.i <= N_e//4]/ms,

exc_mon.i[exc_mon.i <= N_e//4], '|', color='C0')
ax[0].plot(inh_mon.t[inh_mon.i <= N_i//4]/ms,

inh_mon.i[inh_mon.i <= N_i//4]+N_e//4, '|', color='C1')
pu.adjust_spines(ax[0], ['left'])
ax[0].set(xlim=(0., duration/ms), ylim=(0, (N_e+N_i)//4), ylabel='neuron index')

Generate frequencies
bin_size = 1*ms
spk_count, bin_edges = np.histogram(np.r_[exc_mon.t/ms, inh_mon.t/ms],

int(duration/ms))
rate = double(spk_count)/(N_e + N_i)/bin_size/Hz
ax[1].plot(bin_edges[:-1], rate, '-', color='k')
pu.adjust_spines(ax[1], ['left', 'bottom'])
ax[1].set(xlim=(0., duration/ms), ylim=(0, 10.),

xlabel='time (ms)', ylabel='rate (Hz)')
pu.adjust_ylabels(ax, x_offset=-0.18)

Dynamics of a single neuron
fig2, ax = plt.subplots(4, sharex=False,

(continues on next page)

5.13. frompapers/Stimberg_et_al_2018 393

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
gridspec_kw={'left': 0.27, 'bottom': 0.18, 'top': 0.95,

'hspace': 0.2},
figsize=(3.07, 3.07))

Postsynaptic conductances
ax[0].plot(state_mon.t/ms, state_mon.g_e[0]/nS, color='C0')
ax[0].plot(state_mon.t/ms, -state_mon.g_i[0]/nS, color='C1')
ax[0].plot([state_mon.t[0]/ms, state_mon.t[-1]/ms], [0, 0], color='grey',

linestyle=':')
Adjust axis
pu.adjust_spines(ax[0], ['left'])
ax[0].set(xlim=(0., duration/ms), ylim=(-5.0, 0.25),

ylabel=f"postsyn.\nconduct.\n(${sympy.latex(nS)}$)")

Membrane potential
ax[1].axhline(V_th/mV, color='C2', linestyle=':') # Threshold
Artificially insert spikes
ax[1].plot(state_mon.t/ms, state_mon.v[0]/mV, color='black')
ax[1].vlines(exc_mon.t[exc_mon.i == ni]/ms, V_th/mV, 0, color='black')
pu.adjust_spines(ax[1], ['left'])
ax[1].set(xlim=(0., duration/ms), ylim=(-1+V_r/mV, 0.),

ylabel=f"membrane\npotential\n(${sympy.latex(mV)}$)")

Synaptic variables
Retrieves indexes of spikes in the synaptic monitor using the fact that we
are sampling spikes and synaptic variables by the same dt
spk_index = np.in1d(synapse_mon.t, exc_mon.t[exc_mon.i == ni])
ax[2].plot(synapse_mon.t[spk_index]/ms, synapse_mon.x_S[0][spk_index], '.',

ms=4, color='C3')
ax[2].plot(synapse_mon.t[spk_index]/ms, synapse_mon.u_S[0][spk_index], '.',

ms=4, color='C4')
Super-impose reconstructed solutions
time = synapse_mon.t # time vector
tspk = Quantity(synapse_mon.t, copy=True) # Spike times
for ts in exc_mon.t[exc_mon.i == ni]:

tspk[time >= ts] = ts
ax[2].plot(synapse_mon.t/ms, 1 + (synapse_mon.x_S[0]-1)*exp(-(time-tspk)*Omega_d),

'-', color='C3')
ax[2].plot(synapse_mon.t/ms, synapse_mon.u_S[0]*exp(-(time-tspk)*Omega_f),

'-', color='C4')
Adjust axis
pu.adjust_spines(ax[2], ['left'])
ax[2].set(xlim=(0., duration/ms), ylim=(-0.05, 1.05),

ylabel='synaptic\nvariables\n$u_S,\,x_S$')

nspikes = np.sum(spk_index)
x_S_spike = synapse_mon.x_S[0][spk_index]
u_S_spike = synapse_mon.u_S[0][spk_index]
ax[3].vlines(synapse_mon.t[spk_index]/ms, np.zeros(nspikes),

x_S_spike*u_S_spike/(1-u_S_spike))
pu.adjust_spines(ax[3], ['left', 'bottom'])
ax[3].set(xlim=(0., duration/ms), ylim=(-0.01, 0.62),

yticks=np.arange(0, 0.62, 0.2), xlabel='time (ms)', ylabel='r_S')

pu.adjust_ylabels(ax, x_offset=-0.20)

plt.show()

394 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

5.13.2 Example: example_2_gchi_astrocyte

Modeling neuron-glia interactions with the Brian 2 simulator Marcel Stimberg, Dan F. M. Goodman, Romain Brette,
Maurizio De Pittà bioRxiv 198366; doi: https://doi.org/10.1101/198366
Figure 2: Modeling of synaptically-activated astrocytes
Two astrocytes (one stochastic and the other deterministic) activated by synapses (connecting “dummy” groups of neurons)
(see De Pitta’ et al., 2009)

from brian2 import *

import plot_utils as pu

(continues on next page)

5.13. frompapers/Stimberg_et_al_2018 395

https://doi.org/10.1101/198366

Brian 2 Documentation, Release 2.5.1

(continued from previous page)

set_device('cpp_standalone', directory=None) # Use fast "C++ standalone mode"
seed(790824) # to get identical figures for repeated runs

##
Model parameters
##
General parameters
duration = 30*second # Total simulation time
sim_dt = 1*ms # Integrator/sampling step

Neuron parameters
f_0 = 0.5*Hz # Spike rate of the "source" neurons

Synapse parameters
rho_c = 0.001 # Synaptic vesicle-to-extracellular space volume ratio
Y_T = 500*mmolar # Total vesicular neurotransmitter concentration
Omega_c = 40/second # Neurotransmitter clearance rate

Astrocyte parameters
--- Calcium fluxes
O_P = 0.9*umolar/second # Maximal Ca^2+ uptake rate by SERCAs
K_P = 0.1 * umolar # Ca2+ affinity of SERCAs
C_T = 2*umolar # Total cell free Ca^2+ content
rho_A = 0.18 # ER-to-cytoplasm volume ratio
Omega_C = 6/second # Maximal rate of Ca^2+ release by IP_3Rs
Omega_L = 0.1/second # Maximal rate of Ca^2+ leak from the ER
--- IP_3R kinectics
d_1 = 0.13*umolar # IP_3 binding affinity
d_2 = 1.05*umolar # Ca^2+ inactivation dissociation constant
O_2 = 0.2/umolar/second # IP_3R binding rate for Ca^2+ inhibition
d_3 = 0.9434*umolar # IP_3 dissociation constant
d_5 = 0.08*umolar # Ca^2+ activation dissociation constant
--- Agonist-dependent IP_3 production
O_beta = 5*umolar/second # Maximal rate of IP_3 production by PLCbeta
O_N = 0.3/umolar/second # Agonist binding rate
Omega_N = 0.5/second # Maximal inactivation rate
K_KC = 0.5*umolar # Ca^2+ affinity of PKC
zeta = 10 # Maximal reduction of receptor affinity by PKC
--- IP_3 production
O_delta = 0.2 *umolar/second # Maximal rate of IP_3 production by PLCdelta
kappa_delta = 1.5 * umolar # Inhibition constant of PLC_delta by IP_3
K_delta = 0.3*umolar # Ca^2+ affinity of PLCdelta
--- IP_3 degradation
Omega_5P = 0.1/second # Maximal rate of IP_3 degradation by IP-5P
K_D = 0.5*umolar # Ca^2+ affinity of IP3-3K
K_3K = 1*umolar # IP_3 affinity of IP_3-3K
O_3K = 4.5*umolar/second # Maximal rate of IP_3 degradation by IP_3-3K
--- IP_3 external production
F_ex = 0.09*umolar/second # Maximal exogenous IP3 flow
I_Theta = 0.3*umolar # Threshold gradient for IP_3 diffusion
omega_I = 0.05*umolar # Scaling factor of diffusion

##
Model definition
##
defaultclock.dt = sim_dt # Set the integration time

(continues on next page)

396 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)

"Neurons"
(We are only interested in the activity of the synapse, so we replace the
neurons by trivial "dummy" groups
Regular spiking neuron
source_neurons = NeuronGroup(1, 'dx/dt = f_0 : 1', threshold='x>1',

reset='x=0', method='euler')
Dummy neuron
target_neurons = NeuronGroup(1, '')

Synapses
Our synapse model is trivial, we are only interested in its neurotransmitter
release
synapses_eqs = 'dY_S/dt = -Omega_c * Y_S : mmolar (clock-driven)'
synapses_action = 'Y_S += rho_c * Y_T'
synapses = Synapses(source_neurons, target_neurons,

model=synapses_eqs, on_pre=synapses_action,
method='exact')

synapses.connect()

Astrocytes
We are modelling two astrocytes, the first is deterministic while the second
displays stochastic dynamics
astro_eqs = '''
Fraction of activated astrocyte receptors:
dGamma_A/dt = O_N * Y_S * (1 - Gamma_A) -

Omega_N*(1 + zeta * C/(C + K_KC)) * Gamma_A : 1

IP_3 dynamics:
dI/dt = J_beta + J_delta - J_3K - J_5P + J_ex : mmolar
J_beta = O_beta * Gamma_A : mmolar/second
J_delta = O_delta/(1 + I/kappa_delta) *

C**2/(C**2 + K_delta**2) : mmolar/second
J_3K = O_3K * C**4/(C**4 + K_D**4) * I/(I + K_3K) : mmolar/second
J_5P = Omega_5P*I : mmolar/second
delta_I_bias = I - I_bias : mmolar
J_ex = -F_ex/2*(1 + tanh((abs(delta_I_bias) - I_Theta)/omega_I)) *

sign(delta_I_bias) : mmolar/second
I_bias : mmolar (constant)

Ca^2+-induced Ca^2+ release:
dC/dt = J_r + J_l - J_p : mmolar
IP3R de-inactivation probability
dh/dt = (h_inf - h_clipped)/tau_h *

(1 + noise*xi*tau_h**0.5) : 1
h_clipped = clip(h,0,1) : 1
J_r = (Omega_C * m_inf**3 * h_clipped**3) *

(C_T - (1 + rho_A)*C) : mmolar/second
J_l = Omega_L * (C_T - (1 + rho_A)*C) : mmolar/second
J_p = O_P * C**2/(C**2 + K_P**2) : mmolar/second
m_inf = I/(I + d_1) * C/(C + d_5) : 1
h_inf = Q_2/(Q_2 + C) : 1
tau_h = 1/(O_2 * (Q_2 + C)) : second
Q_2 = d_2 * (I + d_1)/(I + d_3) : mmolar

Neurotransmitter concentration in the extracellular space
(continues on next page)

5.13. frompapers/Stimberg_et_al_2018 397

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
Y_S : mmolar
Noise flag
noise : 1 (constant)
'''
Milstein integration method for the multiplicative noise
astrocytes = NeuronGroup(2, astro_eqs, method='milstein')
astrocytes.h = 0.9 # IP3Rs are initially mostly available for CICR

The first astrocyte is deterministic ("zero noise"), the second stochastic
astrocytes.noise = [0, 1]
Connection between synapses and astrocytes (both astrocytes receive the
same input from the synapse). Note that in this special case, where each
astrocyte is only influenced by the neurotransmitter from a single synapse,
the '(linked)' variable mechanism could be used instead. The mechanism used
below is more general and can add the contribution of several synapses.
ecs_syn_to_astro = Synapses(synapses, astrocytes,

'Y_S_post = Y_S_pre : mmolar (summed)')
ecs_syn_to_astro.connect()
##
Monitors
##
astro_mon = StateMonitor(astrocytes, variables=['Gamma_A', 'C', 'h', 'I'],

record=True)

##
Simulation run
##
run(duration, report='text')

##
Analysis and plotting
##
from matplotlib.ticker import FormatStrFormatter
plt.style.use('figures.mplstyle')

Plot Gamma_A
fig, ax = plt.subplots(4, 1, figsize=(6.26894, 6.26894*0.66))
ax[0].plot(astro_mon.t/second, astro_mon.Gamma_A.T)
ax[0].set(xlim=(0., duration/second), ylim=[-0.05, 1.02], yticks=[0.0, 0.5, 1.0],

ylabel=r'Γ_{A}')
Adjust axis
pu.adjust_spines(ax[0], ['left'])

Plot I
ax[1].plot(astro_mon.t/second, astro_mon.I.T/umolar)
ax[1].set(xlim=(0., duration/second), ylim=[-0.1, 5.0],

yticks=arange(0.0, 5.1, 1., dtype=float),
ylabel=r'I (μM)')

ax[1].yaxis.set_major_formatter(FormatStrFormatter('%.1f'))
ax[1].legend(['deterministic', 'stochastic'], loc='upper left')
pu.adjust_spines(ax[1], ['left'])

Plot C
ax[2].plot(astro_mon.t/second, astro_mon.C.T/umolar)
ax[2].set(xlim=(0., duration/second), ylim=[-0.1, 1.3],

ylabel=r'C (μM)')
pu.adjust_spines(ax[2], ['left'])

(continues on next page)

398 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)

Plot h
ax[3].plot(astro_mon.t/second, astro_mon.h.T)
ax[3].set(xlim=(0., duration/second),

ylim=[0.4, 1.02],
ylabel='h', xlabel='time (s)')

pu.adjust_spines(ax[3], ['left', 'bottom'])

pu.adjust_ylabels(ax, x_offset=-0.1)

plt.show()

5.13.3 Example: example_3_io_synapse

Modeling neuron-glia interactions with the Brian 2 simulator Marcel Stimberg, Dan F. M. Goodman, Romain Brette,
Maurizio De Pittà bioRxiv 198366; doi: https://doi.org/10.1101/198366
Figure 3: Modeling of modulation of synaptic release by gliotransmission.
Three synapses: the first one without astrocyte, the remaining two respectively with open-loop and close-loop gliotrans-
mission (see De Pitta’ et al., 2011, 2016)

from brian2 import *

import plot_utils as pu

(continues on next page)

5.13. frompapers/Stimberg_et_al_2018 399

https://doi.org/10.1101/198366

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
set_device('cpp_standalone', directory=None) # Use fast "C++ standalone mode"

##
Model parameters
##
General parameters
transient = 16.5*second
duration = transient + 600*ms # Total simulation time
sim_dt = 1*ms # Integrator/sampling step

Synapse parameters
rho_c = 0.005 # Synaptic vesicle-to-extracellular space volume ratio
Y_T = 500*mmolar # Total vesicular neurotransmitter concentration
Omega_c = 40/second # Neurotransmitter clearance rate
U_0__star = 0.6 # Resting synaptic release probability
Omega_f = 3.33/second # Synaptic facilitation rate
Omega_d = 2.0/second # Synaptic depression rate
--- Presynaptic receptors
O_G = 1.5/umolar/second # Agonist binding (activating) rate
Omega_G = 0.5/(60*second) # Agonist release (deactivating) rate

Astrocyte parameters
--- Calcium fluxes
O_P = 0.9*umolar/second # Maximal Ca^2+ uptake rate by SERCAs
K_P = 0.05 * umolar # Ca2+ affinity of SERCAs
C_T = 2*umolar # Total cell free Ca^2+ content
rho_A = 0.18 # ER-to-cytoplasm volume ratio
Omega_C = 6/second # Maximal rate of Ca^2+ release by IP_3Rs
Omega_L = 0.1/second # Maximal rate of Ca^2+ leak from the ER
--- IP_3R kinectics
d_1 = 0.13*umolar # IP_3 binding affinity
d_2 = 1.05*umolar # Ca^2+ inactivation dissociation constant
O_2 = 0.2/umolar/second # IP_3R binding rate for Ca^2+ inhibition
d_3 = 0.9434*umolar # IP_3 dissociation constant
d_5 = 0.08*umolar # Ca^2+ activation dissociation constant
--- IP_3 production
O_delta = 0.6*umolar/second # Maximal rate of IP_3 production by PLCdelta
kappa_delta = 1.5* umolar # Inhibition constant of PLC_delta by IP_3
K_delta = 0.1*umolar # Ca^2+ affinity of PLCdelta
--- IP_3 degradation
Omega_5P = 0.05/second # Maximal rate of IP_3 degradation by IP-5P
K_D = 0.7*umolar # Ca^2+ affinity of IP3-3K
K_3K = 1.0*umolar # IP_3 affinity of IP_3-3K
O_3K = 4.5*umolar/second # Maximal rate of IP_3 degradation by IP_3-3K
--- IP_3 diffusion
F_ex = 2.0*umolar/second # Maximal exogenous IP3 flow
I_Theta = 0.3*umolar # Threshold gradient for IP_3 diffusion
omega_I = 0.05*umolar # Scaling factor of diffusion
--- Gliotransmitter release and time course
C_Theta = 0.5*umolar # Ca^2+ threshold for exocytosis
Omega_A = 0.6/second # Gliotransmitter recycling rate
U_A = 0.6 # Gliotransmitter release probability
G_T = 200*mmolar # Total vesicular gliotransmitter concentration
rho_e = 6.5e-4 # Astrocytic vesicle-to-extracellular volume ratio
Omega_e = 60/second # Gliotransmitter clearance rate
alpha = 0.0 # Gliotransmission nature

(continues on next page)

400 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
##
Model definition
##
defaultclock.dt = sim_dt # Set the integration time

"Neurons"
We are only interested in the activity of the synapse, so we replace the
neurons by trivial "dummy" groups
spikes = [0, 50, 100, 150, 200,

300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400]*ms
spikes += transient # allow for some initial transient
source_neurons = SpikeGeneratorGroup(1, np.zeros(len(spikes)), spikes)
target_neurons = NeuronGroup(1, '')

Synapses
Note that the synapse does not actually have any effect on the post-synaptic
target
Also note that for easier plotting we do not use the "event-driven" flag here,
even though the value of u_S and x_S only needs to be updated on the arrival
of a spike
synapses_eqs = '''
Neurotransmitter
dY_S/dt = -Omega_c * Y_S : mmolar (clock-driven)
Fraction of activated presynaptic receptors
dGamma_S/dt = O_G * G_A * (1 - Gamma_S) -

Omega_G * Gamma_S : 1 (clock-driven)
Usage of releasable neurotransmitter per single action potential:
du_S/dt = -Omega_f * u_S : 1 (clock-driven)
Fraction of synaptic neurotransmitter resources available:
dx_S/dt = Omega_d *(1 - x_S) : 1 (clock-driven)
released synaptic neurotransmitter resources:
r_S : 1
gliotransmitter concentration in the extracellular space:
G_A : mmolar
'''
synapses_action = '''
U_0 = (1 - Gamma_S) * U_0__star + alpha * Gamma_S
u_S += U_0 * (1 - u_S)
r_S = u_S * x_S
x_S -= r_S
Y_S += rho_c * Y_T * r_S
'''
synapses = Synapses(source_neurons, target_neurons,

model=synapses_eqs, on_pre=synapses_action,
method='exact')

We create three synapses, only the second and third ones are modulated by astrocytes
synapses.connect(True, n=3)

Astrocytes
The astrocyte emits gliotransmitter when its Ca^2+ concentration crosses
a threshold
astro_eqs = '''
IP_3 dynamics:
dI/dt = J_delta - J_3K - J_5P + J_ex : mmolar
J_delta = O_delta/(1 + I/kappa_delta) * C**2/(C**2 + K_delta**2) : mmolar/second
J_3K = O_3K * C**4/(C**4 + K_D**4) * I/(I + K_3K) : mmolar/second
J_5P = Omega_5P*I : mmolar/second

(continues on next page)

5.13. frompapers/Stimberg_et_al_2018 401

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
Exogenous stimulation
delta_I_bias = I - I_bias : mmolar
J_ex = -F_ex/2*(1 + tanh((abs(delta_I_bias) - I_Theta)/omega_I)) *

sign(delta_I_bias) : mmolar/second
I_bias : mmolar (constant)

Ca^2+-induced Ca^2+ release:
dC/dt = (Omega_C * m_inf**3 * h**3 + Omega_L) * (C_T - (1 + rho_A)*C) -

O_P * C**2/(C**2 + K_P**2) : mmolar
dh/dt = (h_inf - h)/tau_h : 1 # IP3R de-inactivation probability
m_inf = I/(I + d_1) * C/(C + d_5) : 1
h_inf = Q_2/(Q_2 + C) : 1
tau_h = 1/(O_2 * (Q_2 + C)) : second
Q_2 = d_2 * (I + d_1)/(I + d_3) : mmolar
Fraction of gliotransmitter resources available:
dx_A/dt = Omega_A * (1 - x_A) : 1
gliotransmitter concentration in the extracellular space:
dG_A/dt = -Omega_e*G_A : mmolar
'''
glio_release = '''
G_A += rho_e * G_T * U_A * x_A
x_A -= U_A * x_A
'''
The following formulation makes sure that a "spike" is only triggered at the
first threshold crossing -- the astrocyte is considered "refractory" (i.e.,
not allowed to trigger another event) as long as the Ca2+ concentration
remains above threshold
The gliotransmitter release happens when the threshold is crossed, in Brian
terms it can therefore be considered a "reset"
astrocyte = NeuronGroup(2, astro_eqs,

threshold='C>C_Theta',
refractory='C>C_Theta',
reset=glio_release,
method='rk4')

Different length of stimulation
astrocyte.x_A = 1.0
astrocyte.h = 0.9
astrocyte.I = 0.4*umolar
astrocyte.I_bias = np.asarray([0.8, 1.25])*umolar

Connection between astrocytes and the second synapse. Note that in this
special case, where the synapse is only influenced by the gliotransmitter from
a single astrocyte, the '(linked)' variable mechanism could be used instead.
The mechanism used below is more general and can add the contribution of
several astrocytes
ecs_astro_to_syn = Synapses(astrocyte, synapses,

'G_A_post = G_A_pre : mmolar (summed)')
Connect second and third synapse to a different astrocyte
ecs_astro_to_syn.connect(j='i+1')

##
Monitors
##
Note that we cannot use "record=True" for synapses in C++ standalone mode --
the StateMonitor needs to know the number of elements to record from during
its initialization, but in C++ standalone mode, no synapses have been created
yet. We therefore explicitly state to record from the three synapses.

(continues on next page)

402 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
syn_mon = StateMonitor(synapses, variables=['u_S', 'x_S', 'r_S', 'Y_S'],

record=[0, 1, 2])
ast_mon = StateMonitor(astrocyte, variables=['C', 'G_A'], record=True)

##
Simulation run
##
run(duration, report='text')

##
Analysis and plotting
##
from matplotlib import cycler
plt.style.use('figures.mplstyle')

fig, ax = plt.subplots(nrows=7, ncols=1, figsize=(6.26894, 6.26894 * 1.2),
gridspec_kw={'height_ratios': [3, 2, 1, 1, 3, 3, 3],

'top': 0.98, 'bottom': 0.08,
'left': 0.15, 'right': 0.95})

Ca^2+ traces of the two astrocytes
ax[0].plot((ast_mon.t-transient)/second, ast_mon.C[0]/umolar, '-', color='C2')
ax[0].plot((ast_mon.t-transient)/second, ast_mon.C[1]/umolar, '-', color='C3')
Add threshold for gliotransmitter release
ax[0].plot(np.asarray([-transient/second, 0.0]),

np.asarray([C_Theta, C_Theta])/umolar, ':', color='gray')
ax[0].set(xlim=[-transient/second, 0.0], yticks=[0., 0.4, 0.8, 1.2],

ylabel=r'C (μM)')
pu.adjust_spines(ax[0], ['left'])

Gliotransmitter concentration in the extracellular space
ax[1].plot((ast_mon.t-transient)/second, ast_mon.G_A[0]/umolar, '-', color='C2')
ax[1].plot((ast_mon.t-transient)/second, ast_mon.G_A[1]/umolar, '-', color='C3')
ax[1].set(yticks=[0., 50., 100.], xlim=[-transient/second, 0.0],

xlabel='time (s)', ylabel=r'G_A (μM)')
pu.adjust_spines(ax[1], ['left', 'bottom'])

Turn off one axis to display x-labeling of ax[1] correctly
ax[2].axis('off')

Synaptic stimulation
ax[3].vlines((spikes-transient)/ms, 0, 1, clip_on=False)
ax[3].set(xlim=(0, (duration-transient)/ms))
ax[3].axis('off')

Synaptic variables
Use a custom cycle that uses black as the first color
prop_cycle = cycler(color='k').concat(matplotlib.rcParams['axes.prop_cycle'][2:])
ax[4].set(xlim=(0, (duration-transient)/ms), ylim=[0., 1.],

yticks=np.arange(0, 1.1, .25), ylabel='u_S',
prop_cycle=prop_cycle)

ax[4].plot((syn_mon.t-transient)/ms, syn_mon.u_S.T)
pu.adjust_spines(ax[4], ['left'])

ax[5].set(xlim=(0, (duration-transient)/ms), ylim=[-0.05, 1.],
yticks=np.arange(0, 1.1, .25), ylabel='x_S',
prop_cycle=prop_cycle)

(continues on next page)

5.13. frompapers/Stimberg_et_al_2018 403

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
ax[5].plot((syn_mon.t-transient)/ms, syn_mon.x_S.T)
pu.adjust_spines(ax[5], ['left'])

ax[6].set(xlim=(0, (duration-transient)/ms), ylim=(-5., 1500),
xticks=np.arange(0, (duration-transient)/ms, 100), xlabel='time (ms)',
yticks=[0, 500, 1000, 1500], ylabel=r'Y_S (μM)',
prop_cycle=prop_cycle)

ax[6].plot((syn_mon.t-transient)/ms, syn_mon.Y_S.T/umolar)
ax[6].legend(['no gliotransmission',

'weak gliotransmission',
'stronger gliotransmission'], loc='upper right')

pu.adjust_spines(ax[6], ['left', 'bottom'])

pu.adjust_ylabels(ax, x_offset=-0.11)

plt.show()

404 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

5.13. frompapers/Stimberg_et_al_2018 405

Brian 2 Documentation, Release 2.5.1

5.13.4 Example: example_4_rsmean

Modeling neuron-glia interactions with the Brian 2 simulator Marcel Stimberg, Dan F. M. Goodman, Romain Brette,
Maurizio De Pittà bioRxiv 198366; doi: https://doi.org/10.1101/198366
Figure 4C: Closed-loop gliotransmission.
I/O curves in terms average per-spike release vs. rate of stimulation for three synapses: one without gliotransmission, and
the other two with open- and close-loop gliotransmssion.

from brian2 import *

import plot_utils as pu

set_device('cpp_standalone', directory=None) # Use fast "C++ standalone mode"
seed(1929) # to get identical figures for repeated runs

##
Model parameters
##
General parameters
N_synapses = 100
N_astro = 2
transient = 15*second
duration = transient + 180*second # Total simulation time
sim_dt = 1*ms # Integrator/sampling step

Neuron parameters

Synapse parameters
Synapse parameters
rho_c = 0.005 # Synaptic vesicle-to-extracellular space volume ratio
Y_T = 500*mmolar # Total vesicular neurotransmitter concentration
Omega_c = 40/second # Neurotransmitter clearance rate
U_0__star = 0.6 # Resting synaptic release probability
Omega_f = 3.33/second # Synaptic facilitation rate
Omega_d = 2.0/second # Synaptic depression rate
--- Presynaptic receptors
O_G = 1.5/umolar/second # Agonist binding (activating) rate
Omega_G = 0.5/(60*second) # Agonist release (deactivating) rate

Astrocyte parameters
--- Calcium fluxes
O_P = 0.9*umolar/second # Maximal Ca^2+ uptake rate by SERCAs
K_P = 0.05 * umolar # Ca2+ affinity of SERCAs
C_T = 2*umolar # Total cell free Ca^2+ content
rho_A = 0.18 # ER-to-cytoplasm volume ratio
Omega_C = 6/second # Maximal rate of Ca^2+ release by IP_3Rs
Omega_L = 0.1/second # Maximal rate of Ca^2+ leak from the ER
--- IP_3R kinectics
d_1 = 0.13*umolar # IP_3 binding affinity
d_2 = 1.05*umolar # Ca^2+ inactivation dissociation constant
O_2 = 0.2/umolar/second # IP_3R binding rate for Ca^2+ inhibition
d_3 = 0.9434*umolar # IP_3 dissociation constant
d_5 = 0.08*umolar # Ca^2+ activation dissociation constant
--- IP_3 production
--- Agonist-dependent IP_3 production

(continues on next page)

406 Chapter 5. Examples

https://doi.org/10.1101/198366

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
O_beta = 3.2*umolar/second # Maximal rate of IP_3 production by PLCbeta
O_N = 0.3/umolar/second # Agonist binding rate
Omega_N = 0.5/second # Maximal inactivation rate
K_KC = 0.5*umolar # Ca^2+ affinity of PKC
zeta = 10 # Maximal reduction of receptor affinity by PKC
--- Endogenous IP3 production
O_delta = 0.6*umolar/second # Maximal rate of IP_3 production by PLCdelta
kappa_delta = 1.5* umolar # Inhibition constant of PLC_delta by IP_3
K_delta = 0.1*umolar # Ca^2+ affinity of PLCdelta
--- IP_3 degradation
Omega_5P = 0.05/second # Maximal rate of IP_3 degradation by IP-5P
K_D = 0.7*umolar # Ca^2+ affinity of IP3-3K
K_3K = 1.0*umolar # IP_3 affinity of IP_3-3K
O_3K = 4.5*umolar/second # Maximal rate of IP_3 degradation by IP_3-3K
--- IP_3 diffusion
F_ex = 2.0*umolar/second # Maximal exogenous IP3 flow
I_Theta = 0.3*umolar # Threshold gradient for IP_3 diffusion
omega_I = 0.05*umolar # Scaling factor of diffusion
--- Gliotransmitter release and time course
C_Theta = 0.5*umolar # Ca^2+ threshold for exocytosis
Omega_A = 0.6/second # Gliotransmitter recycling rate
U_A = 0.6 # Gliotransmitter release probability
G_T = 200*mmolar # Total vesicular gliotransmitter concentration
rho_e = 6.5e-4 # Astrocytic vesicle-to-extracellular volume ratio
Omega_e = 60/second # Gliotransmitter clearance rate
alpha = 0.0 # Gliotransmission nature

##
Model definition
##
defaultclock.dt = sim_dt # Set the integration time

f_vals = np.logspace(-1, 2, N_synapses)*Hz
source_neurons = PoissonGroup(N_synapses, rates=f_vals)
target_neurons = NeuronGroup(N_synapses, '')

Synapses
Note that the synapse does not actually have any effect on the post-synaptic
target
Also note that for easier plotting we do not use the "event-driven" flag here,
even though the value of u_S and x_S only needs to be updated on the arrival
of a spike
synapses_eqs = '''
Neurotransmitter
dY_S/dt = -Omega_c * Y_S : mmolar (clock-driven)
Fraction of activated presynaptic receptors
dGamma_S/dt = O_G * G_A * (1 - Gamma_S) - Omega_G * Gamma_S : 1 (clock-driven)
Usage of releasable neurotransmitter per single action potential:
du_S/dt = -Omega_f * u_S : 1 (event-driven)
Fraction of synaptic neurotransmitter resources available for release:
dx_S/dt = Omega_d *(1 - x_S) : 1 (event-driven)
r_S : 1 # released synaptic neurotransmitter resources
G_A : mmolar # gliotransmitter concentration in the extracellular space
'''
synapses_action = '''
U_0 = (1 - Gamma_S) * U_0__star + alpha * Gamma_S
u_S += U_0 * (1 - u_S)

(continues on next page)

5.13. frompapers/Stimberg_et_al_2018 407

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
r_S = u_S * x_S
x_S -= r_S
Y_S += rho_c * Y_T * r_S
'''
synapses = Synapses(source_neurons, target_neurons,

model=synapses_eqs, on_pre=synapses_action,
method='exact')

We create three synapses per connection: only the first two are modulated by
the astrocyte however. Note that we could also create three synapses per
connection with a single connect call by using connect(j='i', n=3), but this
would create synapses arranged differently (synapses connection pairs
(0, 0), (0, 0), (0, 0), (1, 1), (1, 1), (1, 1), ..., instead of
connections (0, 0), (1, 1), ..., (0, 0), (1, 1), ..., (0, 0), (1, 1), ...)
making the later connection descriptions more complicated.
synapses.connect(j='i') # closed-loop modulation
synapses.connect(j='i') # open modulation
synapses.connect(j='i') # no modulation
synapses.x_S = 1.0

Astrocytes
The astrocyte emits gliotransmitter when its Ca^2+ concentration crosses
a threshold
astro_eqs = '''
Fraction of activated astrocyte receptors:
dGamma_A/dt = O_N * Y_S * (1 - Gamma_A) -

Omega_N*(1 + zeta * C/(C + K_KC)) * Gamma_A : 1

IP_3 dynamics:
dI/dt = J_beta + J_delta - J_3K - J_5P + J_ex : mmolar
J_beta = O_beta * Gamma_A : mmolar/second
J_delta = O_delta/(1 + I/kappa_delta) *

C**2/(C**2 + K_delta**2) : mmolar/second
J_3K = O_3K * C**4/(C**4 + K_D**4) * I/(I + K_3K) : mmolar/second
J_5P = Omega_5P*I : mmolar/second
delta_I_bias = I - I_bias : mmolar
J_ex = -F_ex/2*(1 + tanh((abs(delta_I_bias) - I_Theta)/omega_I)) *

sign(delta_I_bias) : mmolar/second
I_bias : mmolar (constant)

Ca^2+-induced Ca^2+ release:
dC/dt = (Omega_C * m_inf**3 * h**3 + Omega_L) * (C_T - (1 + rho_A)*C) -

O_P * C**2/(C**2 + K_P**2) : mmolar
dh/dt = (h_inf - h)/tau_h : 1 # IP3R de-inactivation probability
m_inf = I/(I + d_1) * C/(C + d_5) : 1
h_inf = Q_2/(Q_2 + C) : 1
tau_h = 1/(O_2 * (Q_2 + C)) : second
Q_2 = d_2 * (I + d_1)/(I + d_3) : mmolar

Fraction of gliotransmitter resources available for release
dx_A/dt = Omega_A * (1 - x_A) : 1
gliotransmitter concentration in the extracellular space
dG_A/dt = -Omega_e*G_A : mmolar
Neurotransmitter concentration in the extracellular space
Y_S : mmolar
'''
glio_release = '''
G_A += rho_e * G_T * U_A * x_A

(continues on next page)

408 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
x_A -= U_A * x_A
'''
astrocyte = NeuronGroup(N_astro*N_synapses, astro_eqs,

The following formulation makes sure that a "spike" is
only triggered at the first threshold crossing
threshold='C>C_Theta',
refractory='C>C_Theta',
The gliotransmitter release happens when the threshold
is crossed, in Brian terms it can therefore be
considered a "reset"
reset=glio_release,
method='rk4')

astrocyte.h = 0.9
astrocyte.x_A = 1.0
Only the second group of N_synapses astrocytes are activated by external stimulation
astrocyte.I_bias = (np.r_[np.zeros(N_synapses), np.ones(N_synapses)])*1.0*umolar

Connections
ecs_syn_to_astro = Synapses(synapses, astrocyte,

'Y_S_post = Y_S_pre : mmolar (summed)')
Connect the first N_synapses synapses--astrocyte pairs
ecs_syn_to_astro.connect(j='i if i < N_synapses')

ecs_astro_to_syn = Synapses(astrocyte, synapses,
'G_A_post = G_A_pre : mmolar (summed)')

Connect the first N_synapses astrocytes--pairs
(closed-loop configuration)
ecs_astro_to_syn.connect(j='i if i < N_synapses')
Connect the second N_synapses astrocyte--synapses pairs
(open-loop configuration)
ecs_astro_to_syn.connect(j='i if i >= N_synapses and i < 2*N_synapses')

##
Monitors
##
syn_mon = StateMonitor(synapses, 'r_S',

record=np.arange(N_synapses*(N_astro+1)))

##
Simulation run
##
run(duration, report='text')

##
Analysis and plotting
##
plt.style.use('figures.mplstyle')

fig, ax = plt.subplots(nrows=4, ncols=1, figsize=(3.07, 3.07*1.33), sharex=False,
gridspec_kw={'height_ratios': [1, 3, 3, 3],

'top': 0.98, 'bottom': 0.12,
'left': 0.22, 'right': 0.93})

Turn off one axis to display accordingly to the other figure in example_4_synrel.py
ax[0].axis('off')

ax[1].errorbar(f_vals/Hz, np.mean(syn_mon.r_S[2*N_synapses:], axis=1),
(continues on next page)

5.13. frompapers/Stimberg_et_al_2018 409

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
np.std(syn_mon.r_S[2*N_synapses:], axis=1),
fmt='o', color='black', lw=0.5)

ax[1].set(xlim=(0.08, 100), xscale='log',
ylim=(0., 0.7),
ylabel=r'$\langle r_S \rangle$')

pu.adjust_spines(ax[1], ['left'])

ax[2].errorbar(f_vals/Hz, np.mean(syn_mon.r_S[N_synapses:2*N_synapses], axis=1),
np.std(syn_mon.r_S[N_synapses:2*N_synapses], axis=1),
fmt='o', color='C2', lw=0.5)

ax[2].set(xlim=(0.08, 100), xscale='log',
ylim=(0., 0.2), ylabel=r'$\langle r_S \rangle$')

pu.adjust_spines(ax[2], ['left'])

ax[3].errorbar(f_vals/Hz, np.mean(syn_mon.r_S[:N_synapses], axis=1),
np.std(syn_mon.r_S[:N_synapses], axis=1),
fmt='o', color='C3', lw=0.5)

ax[3].set(xlim=(0.08, 100), xticks=np.logspace(-1, 2, 4), xscale='log',
ylim=(0., 0.7), xlabel='input frequency (Hz)',
ylabel=r'$\langle r_S \rangle$')

ax[3].xaxis.set_major_formatter(ScalarFormatter())
pu.adjust_spines(ax[3], ['left', 'bottom'])

pu.adjust_ylabels(ax, x_offset=-0.2)

plt.show()

410 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

5.13.5 Example: example_4_synrel

Modeling neuron-glia interactions with the Brian 2 simulator Marcel Stimberg, Dan F. M. Goodman, Romain Brette,
Maurizio De Pittà bioRxiv 198366; doi: https://doi.org/10.1101/198366
Figure 4B: Closed-loop gliotransmission.
Extracellular neurotransmitter concentration (averaged across 500 synapses) for three step increases of the presynaptic
rate, for three synapses: one without gliotransmission, and the other two with open- and close-loop gliotransmssion.

from brian2 import *

import plot_utils as pu

set_device('cpp_standalone', directory=None) # Use fast "C++ standalone mode"
seed(16283) # to get identical figures for repeated runs

##
Model parameters
##
General parameters
N_synapses = 500
N_astro = 2
duration = 20*second # Total simulation time
sim_dt = 1*ms # Integrator/sampling step

Neuron parameters

Synapse parameters
Synapse parameters
rho_c = 0.005 # Synaptic vesicle-to-extracellular space volume ratio
Y_T = 500*mmolar # Total vesicular neurotransmitter concentration
Omega_c = 40/second # Neurotransmitter clearance rate
U_0__star = 0.6 # Resting synaptic release probability
Omega_f = 3.33/second # Synaptic facilitation rate
Omega_d = 2.0/second # Synaptic depression rate
--- Presynaptic receptors
O_G = 1.5/umolar/second # Agonist binding (activating) rate
Omega_G = 0.5/(60*second) # Agonist release (deactivating) rate

Astrocyte parameters
--- Calcium fluxes
O_P = 0.9*umolar/second # Maximal Ca^2+ uptake rate by SERCAs
K_P = 0.05 * umolar # Ca2+ affinity of SERCAs
C_T = 2*umolar # Total cell free Ca^2+ content
rho_A = 0.18 # ER-to-cytoplasm volume ratio
Omega_C = 6/second # Maximal rate of Ca^2+ release by IP_3Rs
Omega_L = 0.1/second # Maximal rate of Ca^2+ leak from the ER
--- IP_3R kinectics
d_1 = 0.13*umolar # IP_3 binding affinity
d_2 = 1.05*umolar # Ca^2+ inactivation dissociation constant
O_2 = 0.2/umolar/second # IP_3R binding rate for Ca^2+ inhibition
d_3 = 0.9434*umolar # IP_3 dissociation constant
d_5 = 0.08*umolar # Ca^2+ activation dissociation constant
--- IP_3 production
--- Agonist-dependent IP_3 production
O_beta = 3.2*umolar/second # Maximal rate of IP_3 production by PLCbeta

(continues on next page)

5.13. frompapers/Stimberg_et_al_2018 411

https://doi.org/10.1101/198366

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
O_N = 0.3/umolar/second # Agonist binding rate
Omega_N = 0.5/second # Maximal inactivation rate
K_KC = 0.5*umolar # Ca^2+ affinity of PKC
zeta = 10 # Maximal reduction of receptor affinity by PKC
--- Endogenous IP3 production
O_delta = 0.6*umolar/second # Maximal rate of IP_3 production by PLCdelta
kappa_delta = 1.5* umolar # Inhibition constant of PLC_delta by IP_3
K_delta = 0.1*umolar # Ca^2+ affinity of PLCdelta
--- IP_3 diffusion
F = 2*umolar/second # GJC IP_3 permeability
I_Theta = 0.3*umolar # Threshold gradient for IP_3 diffusion
omega_I = 0.05*umolar # Scaling factor of diffusion
--- IP_3 degradation
Omega_5P = 0.05/second # Maximal rate of IP_3 degradation by IP-5P
K_D = 0.7*umolar # Ca^2+ affinity of IP3-3K
K_3K = 1.0*umolar # IP_3 affinity of IP_3-3K
O_3K = 4.5*umolar/second # Maximal rate of IP_3 degradation by IP_3-3K
--- IP_3 diffusion
F_ex = 2.0*umolar/second # Maximal exogenous IP3 flow
I_Theta = 0.3*umolar # Threshold gradient for IP_3 diffusion
omega_I = 0.05*umolar # Scaling factor of diffusion
--- Gliotransmitter release and time course
C_Theta = 0.5*umolar # Ca^2+ threshold for exocytosis
Omega_A = 0.6/second # Gliotransmitter recycling rate
U_A = 0.6 # Gliotransmitter release probability
G_T = 200*mmolar # Total vesicular gliotransmitter concentration
rho_e = 6.5e-4 # Astrocytic vesicle-to-extracellular volume ratio
Omega_e = 60/second # Gliotransmitter clearance rate
alpha = 0.0 # Gliotransmission nature

##
Model definition
##
defaultclock.dt = sim_dt # Set the integration time

"Neurons"
rate_in = TimedArray([0.011, 0.11, 1.1, 11] * Hz, dt=5*second)
source_neurons = PoissonGroup(N_synapses, rates='rate_in(t)')
target_neurons = NeuronGroup(N_synapses, '')

Synapses
Note that the synapse does not actually have any effect on the post-synaptic
target
Also note that for easier plotting we do not use the "event-driven" flag here,
even though the value of u_S and x_S only needs to be updated on the arrival
of a spike
synapses_eqs = '''
Neurotransmitter
dY_S/dt = -Omega_c * Y_S : mmolar (clock-driven)
Fraction of activated presynaptic receptors
dGamma_S/dt = O_G * G_A * (1 - Gamma_S) - Omega_G * Gamma_S : 1 (clock-driven)
Usage of releasable neurotransmitter per single action potential:
du_S/dt = -Omega_f * u_S : 1 (event-driven)
Fraction of synaptic neurotransmitter resources available for release:
dx_S/dt = Omega_d *(1 - x_S) : 1 (event-driven)
r_S : 1 # released synaptic neurotransmitter resources
G_A : mmolar # gliotransmitter concentration in the extracellular space

(continues on next page)

412 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
'''
synapses_action = '''
U_0 = (1 - Gamma_S) * U_0__star + alpha * Gamma_S
u_S += U_0 * (1 - u_S)
r_S = u_S * x_S
x_S -= r_S
Y_S += rho_c * Y_T * r_S
'''
synapses = Synapses(source_neurons, target_neurons,

model=synapses_eqs, on_pre=synapses_action,
method='exact')

We create three synapses per connection: only the first two are modulated by
the astrocyte however. Note that we could also create three synapses per
connection with a single connect call by using connect(j='i', n=3), but this
would create synapses arranged differently (synapses connection pairs
(0, 0), (0, 0), (0, 0), (1, 1), (1, 1), (1, 1), ..., instead of
connections (0, 0), (1, 1), ..., (0, 0), (1, 1), ..., (0, 0), (1, 1), ...)
making the later connection descriptions more complicated.
synapses.connect(j='i') # closed-loop modulation
synapses.connect(j='i') # open modulation
synapses.connect(j='i') # no modulation
synapses.x_S = 1.0

Astrocytes
The astrocyte emits gliotransmitter when its Ca^2+ concentration crosses
a threshold
astro_eqs = '''
Fraction of activated astrocyte receptors:
dGamma_A/dt = O_N * Y_S * (1 - Gamma_A) -

Omega_N*(1 + zeta * C/(C + K_KC)) * Gamma_A : 1

IP_3 dynamics:
dI/dt = J_beta + J_delta - J_3K - J_5P + J_ex : mmolar
J_beta = O_beta * Gamma_A : mmolar/second
J_delta = O_delta/(1 + I/kappa_delta) *

C**2/(C**2 + K_delta**2) : mmolar/second
J_3K = O_3K * C**4/(C**4 + K_D**4) * I/(I + K_3K) : mmolar/second
J_5P = Omega_5P*I : mmolar/second
delta_I_bias = I - I_bias : mmolar
J_ex = -F_ex/2*(1 + tanh((abs(delta_I_bias) - I_Theta)/omega_I)) *

sign(delta_I_bias) : mmolar/second
I_bias : mmolar (constant)

Ca^2+-induced Ca^2+ release:
dC/dt = (Omega_C * m_inf**3 * h**3 + Omega_L) * (C_T - (1 + rho_A)*C) -

O_P * C**2/(C**2 + K_P**2) : mmolar
dh/dt = (h_inf - h)/tau_h : 1 # IP3R de-inactivation probability
m_inf = I/(I + d_1) * C/(C + d_5) : 1
h_inf = Q_2/(Q_2 + C) : 1
tau_h = 1/(O_2 * (Q_2 + C)) : second
Q_2 = d_2 * (I + d_1)/(I + d_3) : mmolar

Fraction of gliotransmitter resources available for release
dx_A/dt = Omega_A * (1 - x_A) : 1
gliotransmitter concentration in the extracellular space
dG_A/dt = -Omega_e*G_A : mmolar
Neurotransmitter concentration in the extracellular space

(continues on next page)

5.13. frompapers/Stimberg_et_al_2018 413

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
Y_S : mmolar
'''
glio_release = '''
G_A += rho_e * G_T * U_A * x_A
x_A -= U_A * x_A
'''
astrocyte = NeuronGroup(N_astro*N_synapses, astro_eqs,

The following formulation makes sure that a "spike" is
only triggered at the first threshold crossing
threshold='C>C_Theta',
refractory='C>C_Theta',
The gliotransmitter release happens when the threshold
is crossed, in Brian terms it can therefore be
considered a "reset"
reset=glio_release,
method='rk4')

astrocyte.h = 0.9
astrocyte.x_A = 1.0
Only the second group of N_synapses astrocytes are activated by external stimulation
astrocyte.I_bias = (np.r_[np.zeros(N_synapses), np.ones(N_synapses)])*1.0*umolar

Connections
ecs_syn_to_astro = Synapses(synapses, astrocyte,

'Y_S_post = Y_S_pre : mmolar (summed)')
Connect the first N_synapses synapses--astrocyte pairs
ecs_syn_to_astro.connect(j='i if i < N_synapses')
ecs_astro_to_syn = Synapses(astrocyte, synapses,

'G_A_post = G_A_pre : mmolar (summed)')
Connect the first N_synapses astrocytes--pairs (closed-loop)
ecs_astro_to_syn.connect(j='i if i < N_synapses')
Connect the second N_synapses astrocyte--synapses pairs (open-loop)
ecs_astro_to_syn.connect(j='i if i >= N_synapses and i < 2*N_synapses')

##
Monitors
##
syn_mon = StateMonitor(synapses, 'Y_S',

record=np.arange(N_synapses*(N_astro+1)), dt=10*ms)

##
Simulation run
##
run(duration, report='text')

##
Analysis and plotting
##
plt.style.use('figures.mplstyle')

fig, ax = plt.subplots(nrows=4, ncols=1, figsize=(3.07, 3.07*1.33),
sharex=False,
gridspec_kw={'height_ratios': [1, 3, 3, 3],

'top': 0.98, 'bottom': 0.12,
'left': 0.24, 'right': 0.95})

ax[0].semilogy(syn_mon.t/second, rate_in(syn_mon.t), '-', color='black')
ax[0].set(xlim=(0, duration/second), ylim=(0.01, 12),

yticks=[0.01, 0.1, 1, 10], ylabel=r'ν_{in} (Hz)')
(continues on next page)

414 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
ax[0].yaxis.set_major_formatter(ScalarFormatter())
pu.adjust_spines(ax[0], ['left'])

ax[1].plot(syn_mon.t/second,
np.mean(syn_mon.Y_S[2*N_synapses:]/umolar, axis=0),
'-', color='black')

ax[1].set(xlim=(0, duration/second), ylim=(-5, 260),
yticks=np.arange(0, 260, 50),
ylabel=r'$\langle Y_S \rangle$ (μM)')

ax[1].legend(['no gliotransmission'], loc='upper left')
pu.adjust_spines(ax[1], ['left'])

ax[2].plot(syn_mon.t/second,
np.mean(syn_mon.Y_S[N_synapses:2*N_synapses]/umolar, axis=0),
'-', color='C2')

ax[2].set(xlim=(0, duration/second), ylim=(-3, 150),
yticks=np.arange(0, 151, 25),
ylabel=r'$\langle Y_S \rangle$ (μM)')

ax[2].legend(['open-loop gliotransmission'], loc='upper left')
pu.adjust_spines(ax[2], ['left'])

ax[3].plot(syn_mon.t/second,
np.mean(syn_mon.Y_S[:N_synapses]/umolar, axis=0),
'-', color='C3')

ax[3].set(xlim=(0, duration/second), ylim=(-2, 150),
xticks=np.arange(0., duration/second+1, 5.0),
yticks=np.arange(0, 151, 25),
xlabel='time (s)', ylabel=r'$\langle Y_S \rangle$ (μM)')

ax[3].legend(['closed-loop gliotransmission'], loc='upper left')
pu.adjust_spines(ax[3], ['left', 'bottom'])

pu.adjust_ylabels(ax, x_offset=-0.22)

plt.show()

5.13. frompapers/Stimberg_et_al_2018 415

Brian 2 Documentation, Release 2.5.1

5.13.6 Example: example_5_astro_ring

Modeling neuron-glia interactions with the Brian 2 simulator Marcel Stimberg, Dan F. M. Goodman, Romain Brette,
Maurizio De Pittà bioRxiv 198366; doi: https://doi.org/10.1101/198366
Figure 5: Astrocytes connected in a network.
Intercellular calcium wave propagation in a ring of 50 astrocytes connected by bidirectional gap junctions (see Goldberg
et al., 2010)

from brian2 import *

import plot_utils as pu

set_device('cpp_standalone', directory=None) # Use fast "C++ standalone mode"

##
Model parameters
##
General parameters
duration = 4000*second # Total simulation time
sim_dt = 50*ms # Integrator/sampling step

Astrocyte parameters
--- Calcium fluxes
O_P = 0.9*umolar/second # Maximal Ca^2+ uptake rate by SERCAs
K_P = 0.05 * umolar # Ca2+ affinity of SERCAs
C_T = 2*umolar # Total cell free Ca^2+ content

(continues on next page)

416 Chapter 5. Examples

https://doi.org/10.1101/198366

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
rho_A = 0.18 # ER-to-cytoplasm volume ratio
Omega_C = 6/second # Maximal rate of Ca^2+ release by IP_3Rs
Omega_L = 0.1/second # Maximal rate of Ca^2+ leak from the ER
--- IP_3R kinectics
d_1 = 0.13*umolar # IP_3 binding affinity
d_2 = 1.05*umolar # Ca^2+ inactivation dissociation constant
O_2 = 0.2/umolar/second # IP_3R binding rate for Ca^2+ inhibition
d_3 = 0.9434*umolar # IP_3 dissociation constant
d_5 = 0.08*umolar # Ca^2+ activation dissociation constant
--- IP_3 production
O_delta = 0.6*umolar/second # Maximal rate of IP_3 production by PLCdelta
kappa_delta = 1.5* umolar # Inhibition constant of PLC_delta by IP_3
K_delta = 0.1*umolar # Ca^2+ affinity of PLCdelta
--- IP_3 degradation
Omega_5P = 0.05/second # Maximal rate of IP_3 degradation by IP-5P
K_D = 0.7*umolar # Ca^2+ affinity of IP3-3K
K_3K = 1.0*umolar # IP_3 affinity of IP_3-3K
O_3K = 4.5*umolar/second # Maximal rate of IP_3 degradation by IP_3-3K
--- IP_3 diffusion
F_ex = 0.09*umolar/second # Maximal exogenous IP3 flow
F = 0.09*umolar/second # GJC IP_3 permeability
I_Theta = 0.3*umolar # Threshold gradient for IP_3 diffusion
omega_I = 0.05*umolar # Scaling factor of diffusion

##
Model definition
##
defaultclock.dt = sim_dt # Set the integration time

Astrocytes
astro_eqs = '''
dI/dt = J_delta - J_3K - J_5P + J_ex + J_coupling : mmolar
J_delta = O_delta/(1 + I/kappa_delta) * C**2/(C**2 + K_delta**2) : mmolar/second
J_3K = O_3K * C**4/(C**4 + K_D**4) * I/(I + K_3K) : mmolar/second
J_5P = Omega_5P*I : mmolar/second
Exogenous stimulation (rectangular wave with period of 50s and duty factor 0.4)
stimulus = int((t % (50*second))<20*second) : 1
delta_I_bias = I - I_bias*stimulus : mmolar
J_ex = -F_ex/2*(1 + tanh((abs(delta_I_bias) - I_Theta)/omega_I)) *

sign(delta_I_bias) : mmolar/second
Diffusion between astrocytes
J_coupling : mmolar/second

Ca^2+-induced Ca^2+ release:
dC/dt = J_r + J_l - J_p : mmolar
dh/dt = (h_inf - h)/tau_h : 1
J_r = (Omega_C * m_inf**3 * h**3) * (C_T - (1 + rho_A)*C) : mmolar/second
J_l = Omega_L * (C_T - (1 + rho_A)*C) : mmolar/second
J_p = O_P * C**2/(C**2 + K_P**2) : mmolar/second
m_inf = I/(I + d_1) * C/(C + d_5) : 1
h_inf = Q_2/(Q_2 + C) : 1
tau_h = 1/(O_2 * (Q_2 + C)) : second
Q_2 = d_2 * (I + d_1)/(I + d_3) : mmolar

External IP_3 drive
I_bias : mmolar (constant)
'''

(continues on next page)

5.13. frompapers/Stimberg_et_al_2018 417

Brian 2 Documentation, Release 2.5.1

(continued from previous page)

N_astro = 50 # Total number of astrocytes in the network
astrocytes = NeuronGroup(N_astro, astro_eqs, method='rk4')
Asymmetric stimulation on the 50th cell to get some nice chaotic patterns
astrocytes.I_bias[N_astro//2] = 1.0*umolar
astrocytes.h = 0.9
Diffusion between astrocytes
astro_to_astro_eqs = '''
delta_I = I_post - I_pre : mmolar
J_coupling_post = -F/2 * (1 + tanh((abs(delta_I) - I_Theta)/omega_I)) *

sign(delta_I) : mmolar/second (summed)
'''
astro_to_astro = Synapses(astrocytes, astrocytes,

model=astro_to_astro_eqs)
Couple neighboring astrocytes: two connections per astrocyte pair, as
the above formulation will only update the I_coupling term of one of the
astrocytes
astro_to_astro.connect('j == (i + 1) % N_pre or '

'j == (i + N_pre - 1) % N_pre')

##
Monitors
##
astro_mon = StateMonitor(astrocytes, variables=['C'], record=True)

##
Simulation run
##
run(duration, report='text')

##
Analysis and plotting
##
plt.style.use('figures.mplstyle')

fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(6.26894, 6.26894 * 0.66),
gridspec_kw={'left': 0.1, 'bottom': 0.12})

scaling = 1.2
step = 10
ax.plot(astro_mon.t/second,

(astro_mon.C[0:N_astro//2-1].T/astro_mon.C.max() +
np.arange(N_astro//2-1)*scaling), color='black')

ax.plot(astro_mon.t/second, (astro_mon.C[N_astro//2:].T/astro_mon.C.max() +
np.arange(N_astro//2, N_astro)*scaling),

color='black')
ax.plot(astro_mon.t/second, (astro_mon.C[N_astro//2-1].T/astro_mon.C.max() +

np.arange(N_astro//2-1, N_astro//2)*scaling),
color='C0')

ax.set(xlim=(0., duration/second), ylim=(0, (N_astro+1.5)*scaling),
xticks=np.arange(0., duration/second, 500), xlabel='time (s)',
yticks=np.arange(0.5*scaling, (N_astro + 1.5)*scaling, step*scaling),
yticklabels=[str(yt) for yt in np.arange(0, N_astro + 1, step)],
ylabel='C/C_{max} (cell index)')

pu.adjust_spines(ax, ['left', 'bottom'])

pu.adjust_ylabels([ax], x_offset=-0.08)

(continues on next page)

418 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
plt.show()

5.13.7 Example: example_6_COBA_with_astro

Modeling neuron-glia interactions with the Brian 2 simulator Marcel Stimberg, Dan F. M. Goodman, Romain Brette,
Maurizio De Pittà bioRxiv 198366; doi: https://doi.org/10.1101/198366
Figure 6: Recurrent neuron-glial network.
Randomly connected COBA network (see Brunel, 2000) with excitatory synapses modulated by release-increasing glio-
transmission from a randomly connected network of astrocytes.

from brian2 import *

import plot_utils as pu

set_device('cpp_standalone', directory=None) # Use fast "C++ standalone mode"
seed(28371) # to get identical figures for repeated runs

##
Model parameters
##
General parameters
N_e = 3200 # Number of excitatory neurons
N_i = 800 # Number of inhibitory neurons
N_a = 3200 # Number of astrocytes

(continues on next page)

5.13. frompapers/Stimberg_et_al_2018 419

https://doi.org/10.1101/198366

Brian 2 Documentation, Release 2.5.1

(continued from previous page)

Some metrics parameters needed to establish proper connections
size = 3.75*mmeter # Length and width of the square lattice
distance = 50*umeter # Distance between neurons

Neuron parameters
E_l = -60*mV # Leak reversal potential
g_l = 9.99*nS # Leak conductance
E_e = 0*mV # Excitatory synaptic reversal potential
E_i = -80*mV # Inhibitory synaptic reversal potential
C_m = 198*pF # Membrane capacitance
tau_e = 5*ms # Excitatory synaptic time constant
tau_i = 10*ms # Inhibitory synaptic time constant
tau_r = 5*ms # Refractory period
I_ex = 100*pA # External current
V_th = -50*mV # Firing threshold
V_r = E_l # Reset potential

Synapse parameters
rho_c = 0.005 # Synaptic vesicle-to-extracellular space volume ratio
Y_T = 500.*mmolar # Total vesicular neurotransmitter concentration
Omega_c = 40/second # Neurotransmitter clearance rate
U_0__star = 0.6 # Resting synaptic release probability
Omega_f = 3.33/second # Synaptic facilitation rate
Omega_d = 2.0/second # Synaptic depression rate
w_e = 0.05*nS # Excitatory synaptic conductance
w_i = 1.0*nS # Inhibitory synaptic conductance
--- Presynaptic receptors
O_G = 1.5/umolar/second # Agonist binding (activating) rate
Omega_G = 0.5/(60*second) # Agonist release (deactivating) rate

Astrocyte parameters
--- Calcium fluxes
O_P = 0.9*umolar/second # Maximal Ca^2+ uptake rate by SERCAs
K_P = 0.05*umolar # Ca2+ affinity of SERCAs
C_T = 2*umolar # Total cell free Ca^2+ content
rho_A = 0.18 # ER-to-cytoplasm volume ratio
Omega_C = 6/second # Maximal rate of Ca^2+ release by IP_3Rs
Omega_L = 0.1/second # Maximal rate of Ca^2+ leak from the ER
--- IP_3R kinectics
d_1 = 0.13*umolar # IP_3 binding affinity
d_2 = 1.05*umolar # Ca^2+ inactivation dissociation constant
O_2 = 0.2/umolar/second # IP_3R binding rate for Ca^2+ inhibition
d_3 = 0.9434*umolar # IP_3 dissociation constant
d_5 = 0.08*umolar # Ca^2+ activation dissociation constant
--- IP_3 production
--- Agonist-dependent IP_3 production
O_beta = 0.5*umolar/second # Maximal rate of IP_3 production by PLCbeta
O_N = 0.3/umolar/second # Agonist binding rate
Omega_N = 0.5/second # Maximal inactivation rate
K_KC = 0.5*umolar # Ca^2+ affinity of PKC
zeta = 10 # Maximal reduction of receptor affinity by PKC
--- Endogenous IP3 production
O_delta = 1.2*umolar/second # Maximal rate of IP_3 production by PLCdelta
kappa_delta = 1.5*umolar # Inhibition constant of PLC_delta by IP_3
K_delta = 0.1*umolar # Ca^2+ affinity of PLCdelta
--- IP_3 degradation

(continues on next page)

420 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
Omega_5P = 0.05/second # Maximal rate of IP_3 degradation by IP-5P
K_D = 0.7*umolar # Ca^2+ affinity of IP3-3K
K_3K = 1.0*umolar # IP_3 affinity of IP_3-3K
O_3K = 4.5*umolar/second # Maximal rate of IP_3 degradation by IP_3-3K
--- IP_3 diffusion
F = 0.09*umolar/second # GJC IP_3 permeability
I_Theta = 0.3*umolar # Threshold gradient for IP_3 diffusion
omega_I = 0.05*umolar # Scaling factor of diffusion
--- Gliotransmitter release and time course
C_Theta = 0.5*umolar # Ca^2+ threshold for exocytosis
Omega_A = 0.6/second # Gliotransmitter recycling rate
U_A = 0.6 # Gliotransmitter release probability
G_T = 200*mmolar # Total vesicular gliotransmitter concentration
rho_e = 6.5e-4 # Astrocytic vesicle-to-extracellular volume ratio
Omega_e = 60/second # Gliotransmitter clearance rate
alpha = 0.0 # Gliotransmission nature

##
Define HF stimulus
##
stimulus = TimedArray([1.0, 1.2, 1.0, 1.0], dt=2*second)

##
Simulation time (based on the stimulus)
##
duration = 8*second # Total simulation time

##
Model definition
##
Neurons
neuron_eqs = '''
dv/dt = (g_l*(E_l-v) + g_e*(E_e-v) + g_i*(E_i-v) + I_ex*stimulus(t))/C_m : volt␣
↪→(unless refractory)
dg_e/dt = -g_e/tau_e : siemens # post-synaptic excitatory conductance
dg_i/dt = -g_i/tau_i : siemens # post-synaptic inhibitory conductance
Neuron position in space
x : meter (constant)
y : meter (constant)
'''
neurons = NeuronGroup(N_e + N_i, model=neuron_eqs,

threshold='v>V_th', reset='v=V_r',
refractory='tau_r', method='euler')

exc_neurons = neurons[:N_e]
inh_neurons = neurons[N_e:]
Arrange excitatory neurons in a grid
N_rows = int(sqrt(N_e))
N_cols = N_e//N_rows
grid_dist = (size / N_cols)
exc_neurons.x = '(i // N_rows)*grid_dist - N_rows/2.0*grid_dist'
exc_neurons.y = '(i % N_rows)*grid_dist - N_cols/2.0*grid_dist'
Random initial membrane potential values and conductances
neurons.v = 'E_l + rand()*(V_th-E_l)'
neurons.g_e = 'rand()*w_e'
neurons.g_i = 'rand()*w_i'

Synapses
(continues on next page)

5.13. frompapers/Stimberg_et_al_2018 421

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
synapses_eqs = '''
Neurotransmitter
dY_S/dt = -Omega_c * Y_S : mmolar (clock-driven)
Fraction of activated presynaptic receptors
dGamma_S/dt = O_G * G_A * (1 - Gamma_S) - Omega_G * Gamma_S : 1 (clock-driven)
Usage of releasable neurotransmitter per single action potential:
du_S/dt = -Omega_f * u_S : 1 (event-driven)
Fraction of synaptic neurotransmitter resources available for release:
dx_S/dt = Omega_d *(1 - x_S) : 1 (event-driven)
U_0 : 1
released synaptic neurotransmitter resources:
r_S : 1
gliotransmitter concentration in the extracellular space:
G_A : mmolar
which astrocyte covers this synapse ?
astrocyte_index : integer (constant)
'''
synapses_action = '''
U_0 = (1 - Gamma_S) * U_0__star + alpha * Gamma_S
u_S += U_0 * (1 - u_S)
r_S = u_S * x_S
x_S -= r_S
Y_S += rho_c * Y_T * r_S
'''
exc_syn = Synapses(exc_neurons, neurons, model=synapses_eqs,

on_pre=synapses_action+'g_e_post += w_e*r_S',
method='exact')

exc_syn.connect(True, p=0.05)
exc_syn.x_S = 1.0
inh_syn = Synapses(inh_neurons, neurons, model=synapses_eqs,

on_pre=synapses_action+'g_i_post += w_i*r_S',
method='exact')

inh_syn.connect(True, p=0.2)
inh_syn.x_S = 1.0
Connect excitatory synapses to an astrocyte depending on the position of the
post-synaptic neuron
N_rows_a = int(sqrt(N_a))
N_cols_a = N_a/N_rows_a
grid_dist = size / N_rows_a
exc_syn.astrocyte_index = ('int(x_post/grid_dist) + '

'N_cols_a*int(y_post/grid_dist)')
Astrocytes
The astrocyte emits gliotransmitter when its Ca^2+ concentration crosses
a threshold
astro_eqs = '''
Fraction of activated astrocyte receptors:
dGamma_A/dt = O_N * Y_S * (1 - clip(Gamma_A,0,1)) -

Omega_N*(1 + zeta * C/(C + K_KC)) * clip(Gamma_A,0,1) : 1
Intracellular IP_3
dI/dt = J_beta + J_delta - J_3K - J_5P + J_coupling : mmolar
J_beta = O_beta * Gamma_A : mmolar/second
J_delta = O_delta/(1 + I/kappa_delta) * C**2/(C**2 + K_delta**2) : mmolar/second
J_3K = O_3K * C**4/(C**4 + K_D**4) * I/(I + K_3K) : mmolar/second
J_5P = Omega_5P*I : mmolar/second
Diffusion between astrocytes:
J_coupling : mmolar/second

(continues on next page)

422 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
Ca^2+-induced Ca^2+ release:
dC/dt = J_r + J_l - J_p : mmolar
dh/dt = (h_inf - h)/tau_h : 1
J_r = (Omega_C * m_inf**3 * h**3) * (C_T - (1 + rho_A)*C) : mmolar/second
J_l = Omega_L * (C_T - (1 + rho_A)*C) : mmolar/second
J_p = O_P * C**2/(C**2 + K_P**2) : mmolar/second
m_inf = I/(I + d_1) * C/(C + d_5) : 1
h_inf = Q_2/(Q_2 + C) : 1
tau_h = 1/(O_2 * (Q_2 + C)) : second
Q_2 = d_2 * (I + d_1)/(I + d_3) : mmolar

Fraction of gliotransmitter resources available for release:
dx_A/dt = Omega_A * (1 - x_A) : 1
gliotransmitter concentration in the extracellular space:
dG_A/dt = -Omega_e*G_A : mmolar
Neurotransmitter concentration in the extracellular space:
Y_S : mmolar
The astrocyte position in space
x : meter (constant)
y : meter (constant)
'''
glio_release = '''
G_A += rho_e * G_T * U_A * x_A
x_A -= U_A * x_A
'''
astrocytes = NeuronGroup(N_a, astro_eqs,

The following formulation makes sure that a "spike" is
only triggered at the first threshold crossing
threshold='C>C_Theta',
refractory='C>C_Theta',
The gliotransmitter release happens when the threshold
is crossed, in Brian terms it can therefore be
considered a "reset"
reset=glio_release,
method='rk4',
dt=1e-2*second)

Arrange astrocytes in a grid
astrocytes.x = '(i // N_rows_a)*grid_dist - N_rows_a/2.0*grid_dist'
astrocytes.y = '(i % N_rows_a)*grid_dist - N_cols_a/2.0*grid_dist'
Add random initialization
astrocytes.C = 0.01*umolar
astrocytes.h = 0.9
astrocytes.I = 0.01*umolar
astrocytes.x_A = 1.0

ecs_astro_to_syn = Synapses(astrocytes, exc_syn,
'G_A_post = G_A_pre : mmolar (summed)')

ecs_astro_to_syn.connect('i == astrocyte_index_post')
ecs_syn_to_astro = Synapses(exc_syn, astrocytes,

'Y_S_post = Y_S_pre/N_incoming : mmolar (summed)')
ecs_syn_to_astro.connect('astrocyte_index_pre == j')
Diffusion between astrocytes
astro_to_astro_eqs = '''
delta_I = I_post - I_pre : mmolar
J_coupling_post = -(1 + tanh((abs(delta_I) - I_Theta)/omega_I))*

sign(delta_I)*F/2 : mmolar/second (summed)
'''

(continues on next page)

5.13. frompapers/Stimberg_et_al_2018 423

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
astro_to_astro = Synapses(astrocytes, astrocytes,

model=astro_to_astro_eqs)
Connect to all astrocytes less than 75um away
(about 4 connections per astrocyte)
astro_to_astro.connect('i != j and '

'sqrt((x_pre-x_post)**2 +'
' (y_pre-y_post)**2) < 75*um')

##
Monitors
##
Note that we could use a single monitor for all neurons instead, but this
way plotting is a bit easier in the end
exc_mon = SpikeMonitor(exc_neurons)
inh_mon = SpikeMonitor(inh_neurons)
ast_mon = SpikeMonitor(astrocytes)

##
Simulation run
##
run(duration, report='text')

##
Plot of Spiking activity
##
plt.style.use('figures.mplstyle')

fig, ax = plt.subplots(nrows=3, ncols=1, sharex=True, figsize=(6.26894, 6.26894*0.8),
gridspec_kw={'height_ratios': [1, 6, 2],

'left': 0.12, 'top': 0.97})
time_range = np.linspace(0, duration/second, int(duration/second*100))*second
ax[0].plot(time_range, I_ex*stimulus(time_range)/pA, 'k')
ax[0].set(xlim=(0, duration/second), ylim=(98, 122),

yticks=[100, 120], ylabel='I_{ex} (pA)')
pu.adjust_spines(ax[0], ['left'])

We only plot a fraction of the spikes
fraction = 4
ax[1].plot(exc_mon.t[exc_mon.i <= N_e//fraction]/second,

exc_mon.i[exc_mon.i <= N_e//fraction], '|', color='C0')
ax[1].plot(inh_mon.t[inh_mon.i <= N_i//fraction]/second,

inh_mon.i[inh_mon.i <= N_i//fraction]+N_e//fraction, '|', color='C1')
ax[1].plot(ast_mon.t[ast_mon.i <= N_a//fraction]/second,

ast_mon.i[ast_mon.i <= N_a//fraction]+(N_e+N_i)//fraction,
'|', color='C2')

ax[1].set(xlim=(0, duration/second), ylim=[0, (N_e+N_i+N_a)//fraction],
yticks=np.arange(0, (N_e+N_i+N_a)//fraction+1, 250),
ylabel='cell index')

pu.adjust_spines(ax[1], ['left'])

Generate frequencies
bin_size = 1*ms
spk_count, bin_edges = np.histogram(np.r_[exc_mon.t/second, inh_mon.t/second],

int(duration/bin_size))
rate = 1.0*spk_count/(N_e + N_i)/bin_size/Hz
rate[rate<0.001] = 0.001 # Fix 0 lower bound for log scale
ax[2].semilogy(bin_edges[:-1], rate, '-', color='k')

(continues on next page)

424 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
pu.adjust_spines(ax[2], ['left', 'bottom'])
ax[2].set(xlim=(0, duration/second), ylim=(0.1, 150),

xticks=np.arange(0, 9), yticks=[0.1, 1, 10, 100],
xlabel='time (s)', ylabel='rate (Hz)')

ax[2].get_yaxis().set_major_formatter(ScalarFormatter())

pu.adjust_ylabels(ax, x_offset=-0.11)

plt.show()

5.13.8 Example: plot_utils

Module with useful functions for making publication-ready plots.

def adjust_spines(ax, spines, position=5):
"""
Set custom visibility and position of axes

ax : Axes
Axes handle

(continues on next page)

5.13. frompapers/Stimberg_et_al_2018 425

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
spines : List
String list of 'left', 'bottom', 'right', 'top' spines to show

position : Integer
Number of points for position of axis

"""
for loc, spine in ax.spines.items():

if loc in spines:
spine.set_position(('outward', position))

else:
spine.set_color('none') # don't draw spine

turn off ticks where there is no spine
if 'left' in spines:

ax.yaxis.set_ticks_position('left')
elif 'right' in spines:

ax.yaxis.set_ticks_position('right')
else:

no yaxis ticks
ax.yaxis.set_ticks([])
ax.tick_params(axis='y', which='both', left='off', right='off')

if 'bottom' in spines:
ax.xaxis.set_ticks_position('bottom')

elif 'top' in spines:
ax.xaxis.set_ticks_position('top')

else:
no xaxis ticks
ax.xaxis.set_ticks([])
ax.tick_params(axis='x', which='both', bottom='off', top='off')

def adjust_ylabels(ax,x_offset=0):
'''
Scan all ax list and identify the outmost y-axis position.
Setting all the labels to that position + x_offset.
'''

xc = 0.0
for a in ax:

xc = min(xc, (a.yaxis.get_label()).get_position()[0])

for a in ax:
a.yaxis.set_label_coords(xc + x_offset,

(a.yaxis.get_label()).get_position()[1])

5.13.9 README.md

These Brian scripts reproduce the figures from the following preprint:

Modeling neuron-glia interactions with the Brian 2 simulator
Marcel Stimberg, Dan F. M. Goodman, Romain Brette, Maurizio De Pittà
bioRxiv 198366; doi: https://doi.org/10.1101/198366

Each file can be run individually to reproduce the respective figure. Note that

(continues on next page)

426 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
most files use the [standalone mode](http://brian2.readthedocs.io/en/stable/user/
↪→computation.html#standalone-code-generation)
for faster simulation. If your setup does not support this mode, you can instead
fallback to the runtime mode by removing the `set_device('cpp_standalone)` line.

Note that example 6 ("recurrent neuron-glial network") takes a relatively long
time (~15min on a reasonably fast desktop machine) to run.

5.13.10 figures.mplstyle

axes.linewidth : 1
xtick.labelsize : 8
ytick.labelsize : 8
axes.labelsize : 8
lines.linewidth : 1
lines.markersize : 2
legend.frameon : False
legend.fontsize : 8
axes.prop_cycle : cycler(color=['e41a1c', '377eb8', '4daf4a', '984ea3', 'ff7f00',
↪→'ffff33'])

5.14 multiprocessing

5.14.1 Example: 01_using_cython

Parallel processes using Cython
This example use multiprocessing to run several simulations in parallel. The code is using the default runtime mode (and
Cython compilation, if possible).
The numb_proc variable set the number of processes. run_sim is just a toy example that creates a single neuron and
connects a StateMonitor to record the voltage.
For more details see the github issue 1154:

import os
import multiprocessing

from brian2 import *

def run_sim(tau):
pid = os.getpid()
print(f'RUNNING {pid}')
G = NeuronGroup(1, 'dv/dt = -v/tau : 1', method='exact')
G.v = 1
mon = StateMonitor(G, 'v', record=0)
run(100*ms)
print(f'FINISHED {pid}')
return mon.t/ms, mon.v[0]

(continues on next page)

5.14. multiprocessing 427

https://github.com/brian-team/brian2/issues/1154#issuecomment-582994117

Brian 2 Documentation, Release 2.5.1

(continued from previous page)

if __name__ == "__main__":
num_proc = 4

tau_values = np.arange(10)*ms + 5*ms
with multiprocessing.Pool(num_proc) as p:

results = p.map(run_sim, tau_values)

for tau_value, (t, v) in zip(tau_values, results):
plt.plot(t, v, label=str(tau_value))

plt.legend()
plt.show()

428 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

5.14.2 Example: 02_using_standalone

Parallel processes using standalone mode
This example use multiprocessing to run several simulations in parallel. The code is using the C++ standalone mode to
compile and execute the code.
The generated code is stored in a standalone{pid} directory, with pid being the id of each process.
Note that the set_device() call should be in the run_sim function.
By moving the set_device() line into the parallelised function, it creates one C++ standalone device per process.
The device.reinit() needs to be called` if you are running multiple simulations per process (there are 10 tau values
and num_proc = 4).
Each simulation uses it’s own code folder to generate the code for the simulation, controlled by the directory keyword to
the set_device call. By setting directory=None, a temporary folder with random name is created. This way, each
simulation uses a different folder for code generation and there is nothing shared between the parallel processes.
If you don’t set the directory argument, it defaults to directory="output". In that case each process would use the
same files to try to generate and compile your simulation, which would lead to compile/execution errors.
Setting directory=f"standalone{pid}" is even better than using directory=None in this case. That is,
giving each parallel process it’s own directory to work on. This way you avoid the problem of multiple processes working
on the same code directories. But you also don’t need to recompile the entire project at each simulation. What happens
is that in the generated code in two consecutive simulations in a single process will only differ slightly (in this case only
the tau parameter). The compiler will therefore only recompile the file that has changed and not the entire project.
The numb_proc sets the number of processes. run_sim is just a toy example that creates a single neuron and connects
a StateMonitor to record the voltage.
For more details see the discussion in the Brian forum.

import os
import multiprocessing
from time import time as wall_time
from os import system
from brian2 import *

def run_sim(tau):
pid = os.getpid()
directory = f"standalone{pid}"
set_device('cpp_standalone', directory=directory)
print(f'RUNNING {pid}')

G = NeuronGroup(1, 'dv/dt = -v/tau : 1', method='euler')
G.v = 1

mon = StateMonitor(G, 'v', record=0)
net = Network()
net.add(G, mon)
net.run(100 * ms)
res = (mon.t/ms, mon.v[0])

device.reinit()

print(f'FINISHED {pid}')
return res

(continues on next page)

5.14. multiprocessing 429

https://brian.discourse.group/t/multiprocessing-in-standalone-mode/142/2

Brian 2 Documentation, Release 2.5.1

(continued from previous page)

if __name__ == "__main__":
start_time = wall_time()

num_proc = 4
tau_values = np.arange(10)*ms + 5*ms
with multiprocessing.Pool(num_proc) as p:

results = p.map(run_sim, tau_values)

print(f"Done in {wall_time() - start_time:10.3f}")

for tau_value, (t, v) in zip(tau_values, results):
plt.plot(t, v, label=str(tau_value))

plt.legend()
plt.show()

430 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

5.14.3 Example: 03_standalone_joblib

This example use C++ standalone mode for the simulation and the joblib library to parallelize the code. See the previous
example (02_using_standalone.py) for more explanations.

from joblib import Parallel, delayed
from time import time as wall_time
from brian2 import *
import os

def run_sim(tau):
pid = os.getpid()
directory = f"standalone{pid}"
set_device('cpp_standalone', directory=directory)
print(f'RUNNING {pid}')

G = NeuronGroup(1, 'dv/dt = -v/tau : 1', method='euler')
G.v = 1

mon = StateMonitor(G, 'v', record=0)
net = Network()
net.add(G, mon)
net.run(100 * ms)
res = (mon.t/ms, mon.v[0])

device.reinit()

print(f'FINISHED {pid}')
return res

if __name__ == "__main__":
start_time = wall_time()

n_jobs = 4
tau_values = np.arange(10)*ms + 5*ms

results = Parallel(n_jobs=n_jobs)(map(delayed(run_sim), tau_values))

print(f"Done in {wall_time() - start_time:10.3f}")

for tau_value, (t, v) in zip(tau_values, results):
plt.plot(t, v, label=str(tau_value))

plt.legend()
plt.show()

5.14. multiprocessing 431

https://joblib.readthedocs.io

Brian 2 Documentation, Release 2.5.1

5.15 standalone

5.15.1 Example: STDP_standalone

Spike-timing dependent plasticity. Adapted from Song, Miller and Abbott (2000) and Song and Abbott (2001).
This example is modified from synapses_STDP.py and writes a standalone C++ project in the directory
STDP_standalone.

from brian2 import *

set_device('cpp_standalone', directory='STDP_standalone')

N = 1000
taum = 10*ms
taupre = 20*ms
taupost = taupre
Ee = 0*mV
vt = -54*mV
vr = -60*mV
El = -74*mV

(continues on next page)

432 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
taue = 5*ms
F = 15*Hz
gmax = .01
dApre = .01
dApost = -dApre * taupre / taupost * 1.05
dApost *= gmax
dApre *= gmax

eqs_neurons = '''
dv/dt = (ge * (Ee-v) + El - v) / taum : volt
dge/dt = -ge / taue : 1
'''

input = PoissonGroup(N, rates=F)
neurons = NeuronGroup(1, eqs_neurons, threshold='v>vt', reset='v = vr',

method='euler')
S = Synapses(input, neurons,

'''w : 1
dApre/dt = -Apre / taupre : 1 (event-driven)
dApost/dt = -Apost / taupost : 1 (event-driven)''',

on_pre='''ge += w
Apre += dApre
w = clip(w + Apost, 0, gmax)''',

on_post='''Apost += dApost
w = clip(w + Apre, 0, gmax)''',

)
S.connect()
S.w = 'rand() * gmax'
mon = StateMonitor(S, 'w', record=[0, 1])
s_mon = SpikeMonitor(input)

run(100*second, report='text')

subplot(311)
plot(S.w / gmax, '.k')
ylabel('Weight / gmax')
xlabel('Synapse index')
subplot(312)
hist(S.w / gmax, 20)
xlabel('Weight / gmax')
subplot(313)
plot(mon.t/second, mon.w.T/gmax)
xlabel('Time (s)')
ylabel('Weight / gmax')
tight_layout()
show()

5.15. standalone 433

Brian 2 Documentation, Release 2.5.1

5.15.2 Example: cuba_openmp

Run the cuba.py example with OpenMP threads.

from brian2 import *

set_device('cpp_standalone', directory='CUBA')
prefs.devices.cpp_standalone.openmp_threads = 4

taum = 20*ms
taue = 5*ms
taui = 10*ms
Vt = -50*mV
Vr = -60*mV
El = -49*mV

eqs = '''
dv/dt = (ge+gi-(v-El))/taum : volt (unless refractory)
dge/dt = -ge/taue : volt (unless refractory)
dgi/dt = -gi/taui : volt (unless refractory)
'''

(continues on next page)

434 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
P = NeuronGroup(4000, eqs, threshold='v>Vt', reset='v = Vr', refractory=5*ms,

method='exact')
P.v = 'Vr + rand() * (Vt - Vr)'
P.ge = 0*mV
P.gi = 0*mV

we = (60*0.27/10)*mV # excitatory synaptic weight (voltage)
wi = (-20*4.5/10)*mV # inhibitory synaptic weight
Ce = Synapses(P, P, on_pre='ge += we')
Ci = Synapses(P, P, on_pre='gi += wi')
Ce.connect('i<3200', p=0.02)
Ci.connect('i>=3200', p=0.02)

s_mon = SpikeMonitor(P)

run(1 * second)

plot(s_mon.t/ms, s_mon.i, ',k')
xlabel('Time (ms)')
ylabel('Neuron index')
show()

5.15. standalone 435

Brian 2 Documentation, Release 2.5.1

5.15.3 Example: simple_case

The most simple case how to use standalone mode.

from brian2 import *
set_device('cpp_standalone') # ← only difference to "normal" simulation

tau = 10*ms
eqs = '''
dv/dt = (1-v)/tau : 1
'''
G = NeuronGroup(10, eqs, method='exact')
G.v = 'rand()'
mon = StateMonitor(G, 'v', record=True)
run(100*ms)

plt.plot(mon.t/ms, mon.v.T)
plt.gca().set(xlabel='t (ms)', ylabel='v')
plt.show()

436 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

5.15.4 Example: simple_case_build

The most simple case how to use standalone mode with several run() calls.

from brian2 import *
set_device('cpp_standalone', build_on_run=False)

tau = 10*ms
I = 1 # input current
eqs = '''
dv/dt = (I-v)/tau : 1
'''
G = NeuronGroup(10, eqs, method='exact')
G.v = 'rand()'
mon = StateMonitor(G, 'v', record=True)
run(20*ms)
I = 0
run(80*ms)
Actually generate/compile/run the code:
device.build()

plt.plot(mon.t/ms, mon.v.T)
plt.gca().set(xlabel='t (ms)', ylabel='v')
plt.show()

5.15. standalone 437

Brian 2 Documentation, Release 2.5.1

5.15.5 Example: standalone_multiplerun

This example shows how to run several, independent simulations in standalone mode. Note that this is not the optimal
approach if running the same model with minor differences (as in this example).
The example come from Tutorial part 3. For a discussion see this post on the Brian forum.

import numpy as np
import pylab as plt
import brian2 as b2
from time import time

b2.set_device('cpp_standalone')

def simulate(tau):
These two lines are needed to start a new standalone simulation:
b2.device.reinit()
b2.device.activate()

eqs = '''
dv/dt = -v/tau : 1
'''

net = b2.Network()
P = b2.PoissonGroup(num_inputs, rates=input_rate)
G = b2.NeuronGroup(1, eqs, threshold='v>1', reset='v=0', method='euler')
S = b2.Synapses(P, G, on_pre='v += weight')
S.connect()
M = b2.SpikeMonitor(G)
net.add([P, G, S, M])

net.run(1000 * b2.ms)

return M

if __name__ == "__main__":
start_time = time()
num_inputs = 100
input_rate = 10 * b2.Hz
weight = 0.1
npoints = 15
tau_range = np.linspace(1, 15, npoints) * b2.ms

output_rates = np.zeros(npoints)
for ii in range(npoints):

tau_i = tau_range[ii]
M = simulate(tau_i)
output_rates[ii] = M.num_spikes / b2.second

print(f"Done in {time() - start_time}")

plt.plot(tau_range/b2.ms, output_rates)
plt.xlabel(r"τ (ms)")
plt.ylabel("Firing rate (sp/s)")
plt.show()

438 Chapter 5. Examples

https://brian.discourse.group/t/multiple-run-in-standalone-mode/131

Brian 2 Documentation, Release 2.5.1

5.16 synapses

5.16.1 Example: STDP

Spike-timing dependent plasticity
Adapted from Song, Miller and Abbott (2000) and Song and Abbott (2001)

from brian2 import *

N = 1000
taum = 10*ms
taupre = 20*ms
taupost = taupre
Ee = 0*mV
vt = -54*mV
vr = -60*mV
El = -74*mV
taue = 5*ms
F = 15*Hz
gmax = .01

(continues on next page)

5.16. synapses 439

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
dApre = .01
dApost = -dApre * taupre / taupost * 1.05
dApost *= gmax
dApre *= gmax

eqs_neurons = '''
dv/dt = (ge * (Ee-v) + El - v) / taum : volt
dge/dt = -ge / taue : 1
'''

poisson_input = PoissonGroup(N, rates=F)
neurons = NeuronGroup(1, eqs_neurons, threshold='v>vt', reset='v = vr',

method='euler')
S = Synapses(poisson_input, neurons,

'''w : 1
dApre/dt = -Apre / taupre : 1 (event-driven)
dApost/dt = -Apost / taupost : 1 (event-driven)''',

on_pre='''ge += w
Apre += dApre
w = clip(w + Apost, 0, gmax)''',

on_post='''Apost += dApost
w = clip(w + Apre, 0, gmax)''',

)
S.connect()
S.w = 'rand() * gmax'
mon = StateMonitor(S, 'w', record=[0, 1])
s_mon = SpikeMonitor(poisson_input)

run(100*second, report='text')

subplot(311)
plot(S.w / gmax, '.k')
ylabel('Weight / gmax')
xlabel('Synapse index')
subplot(312)
hist(S.w / gmax, 20)
xlabel('Weight / gmax')
subplot(313)
plot(mon.t/second, mon.w.T/gmax)
xlabel('Time (s)')
ylabel('Weight / gmax')
tight_layout()
show()

440 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

5.16.2 Example: continuous_interaction

Synaptic model with continuous interaction

This example implements a conductance base synapse that is continuously linking two neurons, i.e. the synaptic gating
variable updates at each time step. Two Reduced Traub-Miles Model (RTM) neurons are connected to each other through
a directed synapse from neuron 1 to 2.
Here, the complexity stems from the fact that the synaptic conductance is a continuous function of themembrane potential,
instead of being triggered by individual spikes. This can be useful in particular when analyzing models mathematically
but it is not recommended in most cases because they tend to be less efficient. Also note that this model only works with
(pre-synaptic) neuron models that model the action potential in detail, i.e. not with integrate-and-fire type models.
There are two broad approaches (s as part of the pre-synaptic neuron or s as part of the Synapses object), all depends on
whether the time constants are the same across all synapses or whether they can vary between synapses. In this example,
the time constant is assumed to be the same and s is therefore part of the pre-synaptic neuron model.
References:

• Introduction to modeling neural dynamics, Börgers, chapter 20
• Discussion in Brian forum

5.16. synapses 441

https://brian.discourse.group/t/how-to-implement-a-conductance-base-synapse/77/2

Brian 2 Documentation, Release 2.5.1

from brian2 import *

I_e = 1.5*uA
simulation_time = 100*ms
neuron RTM parameters
El = -67 * mV
EK = -100 * mV
ENa = 50 * mV
ESyn = 0 * mV
gl = 0.1 * msiemens
gK = 80 * msiemens
gNa = 100 * msiemens

C = 1 * ufarad

weight = 0.25
gSyn = 1.0 * msiemens
tau_d = 2 * ms
tau_r = 0.2 * ms

forming RTM model with differential equations
eqs = """
alphah = 0.128 * exp(-(vm + 50.0*mV) / (18.0*mV))/ms :Hz
alpham = 0.32/mV * (vm + 54*mV) / (1.0 - exp(-(vm + 54.0*mV) / (4.0*mV)))/ms:Hz
alphan = 0.032/mV * (vm + 52*mV) / (1.0 - exp(-(vm + 52.0*mV) / (5.0*mV)))/ms:Hz

betah = 4.0 / (1.0 + exp(-(vm + 27.0*mV) / (5.0*mV)))/ms:Hz
betam = 0.28/mV * (vm + 27.0*mV) / (exp((vm + 27.0*mV) / (5.0*mV)) - 1.0)/ms:Hz
betan = 0.5 * exp(-(vm + 57.0*mV) / (40.0*mV))/ms:Hz

membrane_Im = I_ext + gNa*m**3*h*(ENa-vm) +
gl*(El-vm) + gK*n**4*(EK-vm) + gSyn*s_in*(-vm): amp

I_ext : amp
s_in : 1

dm/dt = alpham*(1-m)-betam*m : 1
dn/dt = alphan*(1-n)-betan*n : 1
dh/dt = alphah*(1-h)-betah*h : 1

ds/dt = 0.5 * (1 + tanh(0.1*vm/mV)) * (1-s)/tau_r - s/tau_d : 1

dvm/dt = membrane_Im/C : volt
"""

neuron = NeuronGroup(2, eqs, method="exponential_euler")

initialize variables
neuron.vm = [-70.0, -65.0]*mV
neuron.m = "alpham / (alpham + betam)"
neuron.h = "alphah / (alphah + betah)"
neuron.n = "alphan / (alphan + betan)"
neuron.I_ext = [I_e, 0.0*uA]

S = Synapses(neuron,
neuron,
's_in_post = weight*s_pre:1 (summed)')

S.connect(i=0, j=1)

(continues on next page)

442 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)

tracking variables
st_mon = StateMonitor(neuron, ["vm", "s", "s_in"], record=[0, 1])

running the simulation
run(simulation_time)

plot the results
fig, ax = plt.subplots(2, figsize=(10, 6), sharex=True,

gridspec_kw={'height_ratios': (3, 1)})

ax[0].plot(st_mon.t/ms, st_mon.vm[0]/mV,
lw=2, c="r", alpha=0.5, label="neuron 0")

ax[0].plot(st_mon.t/ms, st_mon.vm[1]/mV,
lw=2, c="b", alpha=0.5, label='neuron 1')

ax[1].plot(st_mon.t/ms, st_mon.s[0],
lw=2, c="r", alpha=0.5, label='s, neuron 0')

ax[1].plot(st_mon.t/ms, st_mon.s_in[1],
lw=2, c="b", alpha=0.5, label='s_in, neuron 1')

ax[0].set(ylabel='v [mV]', xlim=(0, np.max(st_mon.t / ms)),
ylim=(-100, 50))

ax[1].set(xlabel="t [ms]", ylabel="s", ylim=(0, 1))

ax[0].legend()
ax[1].legend()

plt.show()

5.16. synapses 443

Brian 2 Documentation, Release 2.5.1

5.16.3 Example: efficient_gaussian_connectivity

An example of turning an expensive Synapses.connect operation into three cheap ones using a mathematical trick.

Consider the connection probability between neurons i and j given by the Gaussian function p = e−α(i−j)2 (for some
constant α). If we want to connect neurons with this probability, we can very simply do:

S.connect(p='exp(-alpha*(i-j)**2)')

However, this has a problem. Although we know that this will create O(N) synapses if N is the number of neurons,
because we have specified p as a function of i and j, we have to evaluate p(i, j) for every pair (i, j), and therefore
it takes O(N2) operations.
Our first option is to take a cutoff, and say that if p < q for some small q, then we assume that p ≈ 0. We can work out
which j values are compatible with a given value of i by solving e−α(i−j)2 < q which gives |i−j| <

√
− log(q)/α) = w.

Now we implement the rule using the generator syntax to only search for values between i-w and i+w, except that some
of these values will be outside the valid range of values for j so we set skip_if_invalid=True. The connection
code is then:

S.connect(j='k for k in range(i-w, i+w) if rand()<exp(-alpha*(i-j)**2)',
skip_if_invalid=True)

This is a lot faster (see graph labelled “Limited” for this algorithm).
However, it may be a problem that we have to specify a cutoff and so we will lose some synapses doing this: it won’t be
mathematically exact. This isn’t a problem for the Gaussian because w grows very slowly with the cutoff probability q,
but for other probability distributions with more weight in the tails, it could be an issue.
If we want to be exact, we can still do a big improvement. For the case i− w ≤ j ≤ i+ w we use the same connection
code, but we also handle the case |i − j| > w. This time, we note that we want to create a synapse with probability
p(i − j) and we can rewrite this as p(i − j)/p(w) · p(w). If |i − j| > w then this is a product of two probabilities
p(i− j)/p(w) and p(w). So in the region |i− j| > w a synapse will be created if two random events both occur, with
these two probabilities. This might seem a little strange until you notice that one of the two probabilities p(w) doesn’t
depend on i or j. This lets us use the much more efficient sample algorithm to generate a set of candidate j values, and
then add the additional test rand()<p(i-j)/p(w). Here’s the code for that:

w = int(ceil(sqrt(log(q)/-0.1)))
S.connect(j='k for k in range(i-w, i+w) if rand()<exp(-alpha*(i-j)**2)',

skip_if_invalid=True)
pmax = exp(-0.1*w**2)
S.connect(j='k for k in sample(0, i-w, p=pmax) if rand()<exp(-alpha*(i-j)**2)/pmax',

skip_if_invalid=True)
S.connect(j='k for k in sample(i+w, N_post, p=pmax) if rand()<exp(-alpha*(i-j)**2)/
↪→pmax',

skip_if_invalid=True)

This “Divided” method is also much faster than the naive method, and is mathematically correct. Note though that this
method is still O(N2) but the constants are much, much smaller and this will usually be sufficient. It is possible to take
the ideas developed here even further and get even better scaling, but in most cases it’s unlikely to be worth the effort.
The code below shows these examples written out, along with some timing code and plots for different values of N.

from brian2 import *
import time

def naive(N):

(continues on next page)

444 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
G = NeuronGroup(N, 'v:1', threshold='v>1', name='G')
S = Synapses(G, G, on_pre='v += 1', name='S')
S.connect(p='exp(-0.1*(i-j)**2)')

def limited(N, q=0.001):
G = NeuronGroup(N, 'v:1', threshold='v>1', name='G')
S = Synapses(G, G, on_pre='v += 1', name='S')
w = int(ceil(sqrt(log(q)/-0.1)))
S.connect(j='k for k in range(i-w, i+w) if rand()<exp(-0.1*(i-j)**2)', skip_if_

↪→invalid=True)

def divided(N, q=0.001):
G = NeuronGroup(N, 'v:1', threshold='v>1', name='G')
S = Synapses(G, G, on_pre='v += 1', name='S')
w = int(ceil(sqrt(log(q)/-0.1)))
S.connect(j='k for k in range(i-w, i+w) if rand()<exp(-0.1*(i-j)**2)', skip_if_

↪→invalid=True)
pmax = exp(-0.1*w**2)
S.connect(j='k for k in sample(0, i-w, p=pmax) if rand()<exp(-0.1*(i-j)**2)/pmax',

↪→ skip_if_invalid=True)
S.connect(j='k for k in sample(i+w, N_post, p=pmax) if rand()<exp(-0.1*(i-j)**2)/

↪→pmax', skip_if_invalid=True)

def repeated_run(f, N, repeats):
start_time = time.time()
for _ in range(repeats):

f(N)
end_time = time.time()
return (end_time-start_time)/repeats

N = array([100, 500, 1000, 5000, 10000, 20000])
repeats = array([100, 10, 10, 1, 1, 1])*3
naive(10)
limited(10)
divided(10)
print('Starting naive')
loglog(N, [repeated_run(naive, n, r) for n, r in zip(N, repeats)],

label='Naive', lw=2)
print('Starting limit')
loglog(N, [repeated_run(limited, n, r) for n, r in zip(N, repeats)],

label='Limited', lw=2)
print('Starting divided')
loglog(N, [repeated_run(divided, n, r) for n, r in zip(N, repeats)],

label='Divided', lw=2)
xlabel('N')
ylabel('Time (s)')
legend(loc='best', frameon=False)
show()

5.16. synapses 445

Brian 2 Documentation, Release 2.5.1

5.16.4 Example: gapjunctions

Neurons with gap junctions.

from brian2 import *

n = 10
v0 = 1.05
tau = 10*ms

eqs = '''
dv/dt = (v0 - v + Igap) / tau : 1
Igap : 1 # gap junction current
'''

neurons = NeuronGroup(n, eqs, threshold='v > 1', reset='v = 0',
method='exact')

neurons.v = 'i * 1.0 / (n-1)'
trace = StateMonitor(neurons, 'v', record=[0, 5])

S = Synapses(neurons, neurons, '''
w : 1 # gap junction conductance

(continues on next page)

446 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
Igap_post = w * (v_pre - v_post) : 1 (summed)
''')

S.connect()
S.w = .02

run(500*ms)

plot(trace.t/ms, trace[0].v)
plot(trace.t/ms, trace[5].v)
xlabel('Time (ms)')
ylabel('v')
show()

5.16.5 Example: jeffress

Jeffress model, adapted with spiking neuron models. A sound source (white noise) is moving around the head. Delay
differences between the two ears are used to determine the azimuth of the source. Delays are mapped to a neural place
code using delay lines (each neuron receives input from both ears, with different delays).

from brian2 import *

(continues on next page)

5.16. synapses 447

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
defaultclock.dt = .02*ms

Sound
sound = TimedArray(10 * randn(50000), dt=defaultclock.dt) # white noise

Ears and sound motion around the head (constant angular speed)
sound_speed = 300*metre/second
interaural_distance = 20*cm # big head!
max_delay = interaural_distance / sound_speed
print("Maximum interaural delay: %s" % max_delay)
angular_speed = 2 * pi / second # 1 turn/second
tau_ear = 1*ms
sigma_ear = .1
eqs_ears = '''
dx/dt = (sound(t-delay)-x)/tau_ear+sigma_ear*(2./tau_ear)**.5*xi : 1 (unless␣
↪→refractory)
delay = distance*sin(theta) : second
distance : second # distance to the centre of the head in time units
dtheta/dt = angular_speed : radian
'''
ears = NeuronGroup(2, eqs_ears, threshold='x>1', reset='x = 0',

refractory=2.5*ms, name='ears', method='euler')
ears.distance = [-.5 * max_delay, .5 * max_delay]
traces = StateMonitor(ears, 'delay', record=True)
Coincidence detectors
num_neurons = 30
tau = 1*ms
sigma = .1
eqs_neurons = '''
dv/dt = -v / tau + sigma * (2 / tau)**.5 * xi : 1
'''
neurons = NeuronGroup(num_neurons, eqs_neurons, threshold='v>1',

reset='v = 0', name='neurons', method='euler')

synapses = Synapses(ears, neurons, on_pre='v += .5')
synapses.connect()

synapses.delay['i==0'] = '(1.0*j)/(num_neurons-1)*1.1*max_delay'
synapses.delay['i==1'] = '(1.0*(num_neurons-j-1))/(num_neurons-1)*1.1*max_delay'

spikes = SpikeMonitor(neurons)

run(1000*ms)

Plot the results
i, t = spikes.it
subplot(2, 1, 1)
plot(t/ms, i, '.')
xlabel('Time (ms)')
ylabel('Neuron index')
xlim(0, 1000)
subplot(2, 1, 2)
plot(traces.t/ms, traces.delay.T/ms)
xlabel('Time (ms)')
ylabel('Input delay (ms)')
xlim(0, 1000)
tight_layout()

(continues on next page)

448 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
show()

5.16.6 Example: licklider

Spike-based adaptation of Licklider’s model of pitch processing (autocorrelation with delay lines) with phase locking.

from brian2 import *

defaultclock.dt = .02 * ms

Ear and sound
max_delay = 20*ms # 50 Hz
tau_ear = 1*ms
sigma_ear = 0.0
eqs_ear = '''
dx/dt = (sound-x)/tau_ear+0.1*(2./tau_ear)**.5*xi : 1 (unless refractory)
sound = 5*sin(2*pi*frequency*t)**3 : 1 # nonlinear distortion
#sound = 5*(sin(4*pi*frequency*t)+.5*sin(6*pi*frequency*t)) : 1 # missing fundamental
frequency = (200+200*t*Hz)*Hz : Hz # increasing pitch
'''
receptors = NeuronGroup(2, eqs_ear, threshold='x>1', reset='x=0',

(continues on next page)

5.16. synapses 449

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
refractory=2*ms, method='euler')

Coincidence detectors
min_freq = 50*Hz
max_freq = 1000*Hz
num_neurons = 300
tau = 1*ms
sigma = .1
eqs_neurons = '''
dv/dt = -v/tau+sigma*(2./tau)**.5*xi : 1
'''

neurons = NeuronGroup(num_neurons, eqs_neurons, threshold='v>1', reset='v=0',
method='euler')

synapses = Synapses(receptors, neurons, on_pre='v += 0.5')
synapses.connect()
synapses.delay = 'i*1.0/exp(log(min_freq/Hz)+(j*1.0/(num_neurons-1))*log(max_freq/min_
↪→freq))*second'

spikes = SpikeMonitor(neurons)

run(500*ms)
plot(spikes.t/ms, spikes.i, '.k')
xlabel('Time (ms)')
ylabel('Frequency')
yticks([0, 99, 199, 299],

array(1. / synapses.delay[1, [0, 99, 199, 299]], dtype=int))
show()

450 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

5.16.7 Example: nonlinear

NMDA synapses.

from brian2 import *

a = 1 / (10*ms)
b = 1 / (10*ms)
c = 1 / (10*ms)

neuron_input = NeuronGroup(2, 'dv/dt = 1/(10*ms) : 1', threshold='v>1', reset='v = 0',
method='euler')

neurons = NeuronGroup(1, """dv/dt = (g-v)/(10*ms) : 1
g : 1""", method='exact')

S = Synapses(neuron_input, neurons, '''
dg_syn/dt = -a*g_syn+b*x*(1-g_syn) : 1 (clock-driven)
g_post = g_syn : 1 (summed)
dx/dt=-c*x : 1 (clock-driven)
w : 1 # synaptic weight

''', on_pre='x += w') # NMDA synapses

S.connect()

(continues on next page)

5.16. synapses 451

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
S.w = [1., 10.]
neuron_input.v = [0., 0.5]

M = StateMonitor(S, 'g',
If not using standalone mode, this could also simply be
record=True
record=np.arange(len(neuron_input)*len(neurons)))

Mn = StateMonitor(neurons, 'g', record=0)

run(1000*ms)

subplot(2, 1, 1)
plot(M.t/ms, M.g.T)
xlabel('Time (ms)')
ylabel('g_syn')
subplot(2, 1, 2)
plot(Mn.t/ms, Mn[0].g)
ylabel('Time (ms)')
ylabel('g')
tight_layout()
show()

452 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

5.16.8 Example: spatial_connections

A simple example showing how string expressions can be used to implement spatial (deterministic or stochastic) connec-
tion patterns.

from brian2 import *

rows, cols = 20, 20
G = NeuronGroup(rows * cols, '''x : meter

y : meter''')
initialize the grid positions
grid_dist = 25*umeter
G.x = '(i // rows) * grid_dist - rows/2.0 * grid_dist'
G.y = '(i % rows) * grid_dist - cols/2.0 * grid_dist'

Deterministic connections
distance = 120*umeter
S_deterministic = Synapses(G, G)
S_deterministic.connect('sqrt((x_pre - x_post)**2 + (y_pre - y_post)**2) < distance')

Random connections (no self-connections)
S_stochastic = Synapses(G, G)
S_stochastic.connect('i != j',

p='1.5 * exp(-((x_pre-x_post)**2 + (y_pre-y_post)**2)/
↪→(2*(60*umeter)**2))')

figure(figsize=(12, 6))

Show the connections for some neurons in different colors
for color in ['g', 'b', 'm']:

subplot(1, 2, 1)
neuron_idx = np.random.randint(0, rows*cols)
plot(G.x[neuron_idx] / umeter, G.y[neuron_idx] / umeter, 'o', mec=color,

mfc='none')
plot(G.x[S_deterministic.j[neuron_idx, :]] / umeter,

G.y[S_deterministic.j[neuron_idx, :]] / umeter, color + '.')
subplot(1, 2, 2)
plot(G.x[neuron_idx] / umeter, G.y[neuron_idx] / umeter, 'o', mec=color,

mfc='none')
plot(G.x[S_stochastic.j[neuron_idx, :]] / umeter,

G.y[S_stochastic.j[neuron_idx, :]] / umeter, color + '.')

for idx, t in enumerate(['determininstic connections',
'random connections']):

subplot(1, 2, idx + 1)
xlim((-rows/2.0 * grid_dist) / umeter, (rows/2.0 * grid_dist) / umeter)
ylim((-cols/2.0 * grid_dist) / umeter, (cols/2.0 * grid_dist) / umeter)
title(t)
xlabel('x')
ylabel('y', rotation='horizontal')
axis('equal')

tight_layout()
show()

5.16. synapses 453

Brian 2 Documentation, Release 2.5.1

5.16.9 Example: spike_based_homeostasis

Following O. Breitwieser: “Towards a Neuromorphic Implementation of Spike-Based Expectation Maximization”
Two poisson stimuli are connected to a neuron. One with a varying rate and the other with a fixed rate. The synaptic
weight from the varying rate stimulus to the neuron is fixed. The synaptic weight from the fixed rate stimulus to the neuron
is plastic and tries to keep the neuron at a firing rate that is determined by the parameters of the plasticity rule.
Sebastian Schmitt, 2021

import itertools
import numpy as np
import matplotlib.pyplot as plt

from brian2 import TimedArray, PoissonGroup, NeuronGroup, Synapses, StateMonitor,␣
↪→PopulationRateMonitor
from brian2 import defaultclock, run
from brian2 import Hz, ms, second

The synaptic weight from the steady stimulus is plastic
steady_stimulus = TimedArray([50]*Hz, dt=40*second)
steady_poisson = PoissonGroup(1, rates='steady_stimulus(t)')

The synaptic weight from the varying stimulus is static
varying_stimulus = TimedArray([25*Hz, 50*Hz, 0*Hz, 35*Hz, 0*Hz], dt=10*second)
varying_poisson = PoissonGroup(1, rates='varying_stimulus(t)')

dw_plus/dw_minus determines scales the steady stimulus rate to the target firing␣
↪→rate, must not be larger 1
the magntude of dw_plus and dw_minus determines the "speed" of the homeostasis
parameters = {

'tau': 10*ms, # membrane time constant
'dw_plus': 0.05, # weight increment on pre spike

(continues on next page)

454 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
'dw_minus': 0.05, # weight increment on post spike
'w_max': 2, # maximum plastic weight
'w_initial': 0 # initial plastic weight

}

eqs = 'dv/dt = (0 - v)/tau : 1 (unless refractory)'

neuron_with_homeostasis = NeuronGroup(1, eqs,
threshold='v > 1', reset='v = -1',
method='euler', refractory=1*ms,
namespace=parameters)

neuron_without_homeostasis = NeuronGroup(1, eqs,
threshold='v > 1', reset='v = -1',
method='euler', refractory=1*ms,
namespace=parameters)

plastic_synapse = Synapses(steady_poisson, neuron_with_homeostasis,
'w : 1',
on_pre='''
v_post += w
w = clip(w + dw_plus, 0, w_max)
''',
on_post='''
w = clip(w - dw_minus, 0, w_max)
''', namespace=parameters)

plastic_synapse.connect()
plastic_synapse.w = parameters['w_initial']

non_plastic_synapse_neuron_without_homeostasis = Synapses(varying_poisson,
neuron_without_homeostasis,
'w : 1', on_pre='v_post += w

↪→')
non_plastic_synapse_neuron_without_homeostasis.connect()
non_plastic_synapse_neuron_without_homeostasis.w = 2

non_plastic_synapse_neuron = Synapses(varying_poisson, neuron_with_homeostasis,
'w : 1', on_pre='v_post += w')

non_plastic_synapse_neuron.connect()
non_plastic_synapse_neuron.w = 2

M = StateMonitor(neuron_with_homeostasis, 'v', record=True)
M2 = StateMonitor(plastic_synapse, 'w', record=True)
M_rate_neuron_with_homeostasis = PopulationRateMonitor(neuron_with_homeostasis)
M_rate_neuron_without_homeostasis = PopulationRateMonitor(neuron_without_homeostasis)

duration = 40*second
defaultclock.dt = 0.1*ms
run(duration, report='text')

fig, axes = plt.subplots(3, sharex=True)

axes[0].plot(M2.t/second, M2.w[0], label="homeostatic weight")
axes[0].set_ylabel("weight")
axes[0].legend()

dt is in second
dts = np.arange(0., len(varying_stimulus.values)*varying_stimulus.dt, varying_
↪→stimulus.dt) (continues on next page)

5.16. synapses 455

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
x = list(itertools.chain(*zip(dts, dts)))
y = list(itertools.chain(*zip(varying_stimulus.values/Hz, varying_stimulus.values/
↪→Hz)))
axes[1].plot(x, [0] + y[:-1], label="varying stimulus")
axes[1].set_ylabel("rate [Hz]")
axes[1].legend()

in ms
smooth_width = 100*ms
axes[2].plot(M_rate_neuron_with_homeostasis.t/second,

M_rate_neuron_with_homeostasis.smooth_rate(width=smooth_width)/Hz,
label="with homeostasis")

axes[2].plot(M_rate_neuron_without_homeostasis.t/second,
M_rate_neuron_without_homeostasis.smooth_rate(width=smooth_width)/Hz,
label="without homeostasis")

axes[2].set_ylabel("firing rate [Hz]")
axes[2].legend()

plt.xlabel('Time (s)')
plt.show()

456 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

5.16.10 Example: state_variables

Set state variable values with a string (using code generation).

from brian2 import *

G = NeuronGroup(100, 'v:volt', threshold='v>-50*mV')
G.v = '(sin(2*pi*i/N) - 70 + 0.25*randn()) * mV'
S = Synapses(G, G, 'w : volt', on_pre='v += w')
S.connect()

space_constant = 200.0
S.w['i > j'] = 'exp(-(i - j)**2/space_constant) * mV'

Generate a matrix for display
w_matrix = np.zeros((len(G), len(G)))
w_matrix[S.i[:], S.j[:]] = S.w[:]

subplot(1, 2, 1)
plot(G.v[:] / mV)
xlabel('Neuron index')
ylabel('v')
subplot(1, 2, 2)
imshow(w_matrix)
xlabel('i')
ylabel('j')
title('Synaptic weight')
tight_layout()
show()

5.16. synapses 457

Brian 2 Documentation, Release 2.5.1

5.16.11 Example: synapses

A simple example of using Synapses.

from brian2 import *

G1 = NeuronGroup(10, 'dv/dt = -v / (10*ms) : 1',
threshold='v > 1', reset='v=0.', method='exact')

G1.v = 1.2
G2 = NeuronGroup(10, 'dv/dt = -v / (10*ms) : 1',

threshold='v > 1', reset='v=0', method='exact')

syn = Synapses(G1, G2, 'dw/dt = -w / (50*ms): 1 (event-driven)', on_pre='v += w')

syn.connect('i == j', p=0.75)

Set the delays
syn.delay = '1*ms + i*ms + 0.25*ms * randn()'
Set the initial values of the synaptic variable
syn.w = 1

mon = StateMonitor(G2, 'v', record=True)

(continues on next page)

458 Chapter 5. Examples

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
run(20*ms)
plot(mon.t/ms, mon.v.T)
xlabel('Time (ms)')
ylabel('v')
show()

5.16. synapses 459

Brian 2 Documentation, Release 2.5.1

460 Chapter 5. Examples

CHAPTER

SIX

BRIAN2 PACKAGE

Brian 2
Functions

check_cache(target)

6.1 check_cache function

(Shortest import: from brian2.__init__ import check_cache)

brian2.__init__.check_cache(target)

clear_cache(target) Clears the on-disk cache with the compiled files for a
given code generation target.

6.2 clear_cache function

(Shortest import: from brian2.__init__ import clear_cache)

brian2.__init__.clear_cache(target)
Clears the on-disk cache with the compiled files for a given code generation target.

Parameters target : str
The code generation target (e.g. 'cython')

Raises

ValueError If the given code generation target does not have an on-disk cache
IOError If the cache directory contains unexpected files, suggesting that deleting it would also delete files unre-

lated to the cache.

461

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#IOError

Brian 2 Documentation, Release 2.5.1

6.3 _version module

Functions

get_versions()

6.3.1 get_versions function

(Shortest import: from brian2._version import get_versions)

brian2._version.get_versions()

6.4 hears module

This is only a bridge for using Brian 1 hears with Brian 2.
Deprecated since version 2.2.2.2: Use the brian2hears package instead.
NOTES:

• Slicing sounds with Brian 2 units doesn’t work, you need to either use Brian 1 units or replace calls to
sound[:20*ms] with sound.slice(None, 20*ms), etc.

TODO: handle properties (e.g. sound.duration)
Not working examples:

• time_varying_filter1 (care with units)
Exported members: convert_unit_b1_to_b2, convert_unit_b2_to_b1
Classes

BridgeSound() We add a newmethod slice because slicingwith units can't
work with Brian 2 units.

6.4.1 BridgeSound class

(Shortest import: from brian2.hears import BridgeSound)

class brian2.hears.BridgeSound

Bases: brian2.hears.wrap_units_class.<locals>.new_class
We add a new method slice because slicing with units can’t work with Brian 2 units.

462 Chapter 6. brian2 package

https://brian2hears.readthedocs.io/

Brian 2 Documentation, Release 2.5.1

Methods

slice(*args)

Details

slice(*args)

FilterbankGroup(*args, **kw)

Methods

6.4.2 FilterbankGroup class

(Shortest import: from brian2.hears import FilterbankGroup)

class brian2.hears.FilterbankGroup(*args, **kw)
Bases: brian2.groups.neurongroup.NeuronGroup

Methods

reinit()

Details

reinit()

Sound alias of brian2.hears.BridgeSound

6.4.3 Sound class

(Shortest import: from brian2.hears import Sound)

brian2.hears.Sound

alias of brian2.hears.BridgeSound

WrappedSound alias of brian2.hears.wrap_units_class.
<locals>.new_class

6.4. hears module 463

Brian 2 Documentation, Release 2.5.1

6.4.4 WrappedSound class

(Shortest import: from brian2.hears import WrappedSound)

brian2.hears.WrappedSound

alias of brian2.hears.wrap_units_class.<locals>.new_class
Functions

convert_unit_b1_to_b2(val)

6.4.5 convert_unit_b1_to_b2 function

(Shortest import: from brian2.hears import convert_unit_b1_to_b2)

brian2.hears.convert_unit_b1_to_b2(val)

convert_unit_b2_to_b1(val)

6.4.6 convert_unit_b2_to_b1 function

(Shortest import: from brian2.hears import convert_unit_b2_to_b1)

brian2.hears.convert_unit_b2_to_b1(val)

modify_arg(arg) Modify arguments to make them compatible with Brian
1.

6.4.7 modify_arg function

(Shortest import: from brian2.hears import modify_arg)

brian2.hears.modify_arg(arg)
Modify arguments to make them compatible with Brian 1.

• Arrays of units are replaced with straight arrays
• Single values are replaced with Brian 1 equivalents
• Slices are handled so we can use e.g. sound[:20*ms]

The second part was necessary because some functions/classes test if an object is an array or not to see if it is a
sequence, but because brian2.Quantity derives from ndarray this was causing problems.

wrap_units(f) Wrap a function to convert units into a form that Brian 1
can handle.

464 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

6.4.8 wrap_units function

(Shortest import: from brian2.hears import wrap_units)

brian2.hears.wrap_units(f)

Wrap a function to convert units into a form that Brian 1 can handle. Also, check the output argument, if it is a
b1h.Sound wrap it.

wrap_units_class(_C) Wrap a class to convert units into a form that Brian 1 can
handle in all methods

6.4.9 wrap_units_class function

(Shortest import: from brian2.hears import wrap_units_class)

brian2.hears.wrap_units_class(_C)
Wrap a class to convert units into a form that Brian 1 can handle in all methods

wrap_units_property(p)

6.4.10 wrap_units_property function

(Shortest import: from brian2.hears import wrap_units_property)

brian2.hears.wrap_units_property(p)

6.5 numpy_ module

A dummy package to allow importing numpy and the unit-aware replacements of numpy functions without having to
know which functions are overwritten.
This can be used for example as import brian2.numpy_ as np

Exported members: ModuleDeprecationWarning, VisibleDeprecationWarning, __version__,
show_config(), char, rec, memmap, newaxis, ndarray, flatiter, nditer, nested_iters, ufunc,
arange(), array, zeros, count_nonzero(), empty, broadcast, dtype, fromstring, fromfile,
frombuffer, where(), argwhere()… (620 more members)

6.6 only module

A dummy package to allow wildcard import from brian2 without also importing the pylab (numpy + matplotlib) names-
pace.
Usage: from brian2.only import *

Exported members: get_logger(), BrianLogger, std_silent, Trackable, Nameable, Spike-
Source, linked_var(), DEFAULT_FUNCTIONS, Function, implementation(), declare_types(),

6.5. numpy_ module 465

https://numpy.org/doc/stable/reference/generated/numpy.memmap.html#numpy.memmap
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.flatiter.html#numpy.flatiter
https://numpy.org/doc/stable/reference/generated/numpy.nditer.html#numpy.nditer
https://numpy.org/doc/stable/reference/generated/numpy.nested_iters.html#numpy.nested_iters
https://numpy.org/doc/stable/reference/generated/numpy.ufunc.html#numpy.ufunc
https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array
https://numpy.org/doc/stable/reference/generated/numpy.zeros.html#numpy.zeros
https://numpy.org/doc/stable/reference/generated/numpy.empty.html#numpy.empty
https://numpy.org/doc/stable/reference/generated/numpy.broadcast.html#numpy.broadcast
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://numpy.org/doc/stable/reference/generated/numpy.fromstring.html#numpy.fromstring
https://numpy.org/doc/stable/reference/generated/numpy.fromfile.html#numpy.fromfile
https://numpy.org/doc/stable/reference/generated/numpy.frombuffer.html#numpy.frombuffer

Brian 2 Documentation, Release 2.5.1

PreferenceError, BrianPreference, prefs, brian_prefs, Clock, defaultclock, Equa-
tions, Expression, Statements, BrianObject, BrianObjectException, Network, profil-
ing_summary(), scheduling_summary()… (304 more members)
Functions

restore_initial_state() Restores internal Brian variables to the state they are in
when Brian is imported

6.6.1 restore_initial_state function

(Shortest import: from brian2 import restore_initial_state)

brian2.only.restore_initial_state()

Restores internal Brian variables to the state they are in when Brian is imported
Resets defaultclock.dt = 0.1*ms, BrianGlobalPreferences._restore preferences, and set
BrianObject._scope_current_key back to 0.

6.7 Subpackages

6.7.1 codegen package

Package providing the code generation framework.
Exported members: NumpyCodeObject, CythonCodeObject

_prefs module

Module declaring general code generation preferences.

Preferences

Code generation preferences
codegen.loop_invariant_optimisations = True

Whether to pull out scalar expressions out of the statements, so that they are only evaluated once instead of
once for every neuron/synapse/… Can be switched off, e.g. because it complicates the code (and the same
optimisation is already performed by the compiler) or because the code generation target does not deal well
with it. Defaults to True.

codegen.max_cache_dir_size = 1000
The size of a directory (in MB) with cached code for Cython that triggers a warning. Set to 0 to never get a
warning.

codegen.string_expression_target = 'numpy'
Default target for the evaluation of string expressions (e.g. when indexing state variables). Should normally
not be changed from the default numpy target, because the overhead of compiling code is not worth the speed
gain for simple expressions.
Accepts the same arguments as codegen.target, except for 'auto'

466 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

codegen.target = 'auto'
Default target for code generation.
Can be a string, in which case it should be one of:

• 'auto' the default, automatically chose the best code generation target available.
• 'cython', uses the Cython package to generate C++ code. Needs a working installation of Cython
and a C++ compiler.

• 'numpy' works on all platforms and doesn’t need a C compiler but is often less efficient.
Or it can be a CodeObject class.

codeobject module

Module providing the base CodeObject and related functions.
Exported members: CodeObject, constant_or_scalar
Classes

CodeObject(*args, **kw) Executable code object.

CodeObject class

(Shortest import: from brian2.codegen.codeobject import CodeObject)

class brian2.codegen.codeobject.CodeObject(*args, **kw)
Bases: brian2.core.names.Nameable
Executable code object.
The code can either be a string or a brian2.codegen.templates.MultiTemplate.
After initialisation, the code is compiled with the given namespace using code.compile(namespace).
Calling code(key1=val1, key2=val2) executes the code with the given variables inserted into the names-
pace.

Attributes

class_name A short name for this type of CodeObject
generator_class The CodeGenerator class used by this CodeOb-

ject

6.7. Subpackages 467

Brian 2 Documentation, Release 2.5.1

Methods

__call__(**kwds) Call self as a function.
after_run() Runs the finalizing code in the namespace.
before_run() Runs the preparation code in the namespace.
compile()

compile_block(block)

is_available() Whether this target for code generation is available.
run() Runs the main code in the namespace.
run_block(block)

update_namespace() Update the namespace for this timestep.

Details

class_name

A short name for this type of CodeObject
generator_class

The CodeGenerator class used by this CodeObject
__call__(**kwds)

Call self as a function.
after_run()

Runs the finalizing code in the namespace. This code will only be executed once per run.
Returns return_value : dict

A dictionary with the keys corresponding to the output_variables defined during
the call of CodeGenerator.code_object.

before_run()

Runs the preparation code in the namespace. This code will only be executed once per run.
Returns return_value : dict

A dictionary with the keys corresponding to the output_variables defined during
the call of CodeGenerator.code_object.

compile()

compile_block(block)

classmethod is_available()

Whether this target for code generation is available. Should use a minimal example to check whether code
generation works in general.

run()

Runs the main code in the namespace.
Returns return_value : dict

A dictionary with the keys corresponding to the output_variables defined during
the call of CodeGenerator.code_object.

468 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

run_block(block)

update_namespace()

Update the namespace for this timestep. Should only deal with variables where the reference changes every
timestep, i.e. where the current reference in namespace is not correct.

Functions

check_compiler_kwds(compiler_kwds, ...) Internal function to check the provided compiler key-
words against the list of understood keywords.

check_compiler_kwds function

(Shortest import: from brian2.codegen.codeobject import check_compiler_kwds)

brian2.codegen.codeobject.check_compiler_kwds(compiler_kwds, accepted_kwds, target)
Internal function to check the provided compiler keywords against the list of understood keywords.

Parameters compiler_kwds : dict
Dictionary of compiler keywords and respective list of values.

accepted_kwds : list of str
The compiler keywords understood by the code generation target

target : str
The name of the code generation target (used for the error message).

Raises

ValueError If a compiler keyword is not understood

constant_or_scalar(varname, variable) Convenience function to generate code to access the value
of a variable.

constant_or_scalar function

(Shortest import: from brian2.codegen.codeobject import constant_or_scalar)

brian2.codegen.codeobject.constant_or_scalar(varname, variable)
Convenience function to generate code to access the value of a variable. Will return 'varname' if the vari-
able is a constant, and array_name[0] if it is a scalar array.

create_runner_codeobj(group, code, ...[, ...]) Create a CodeObject for the execution of code in the
context of a Group.

6.7. Subpackages 469

https://docs.python.org/3/library/exceptions.html#ValueError

Brian 2 Documentation, Release 2.5.1

create_runner_codeobj function

(Shortest import: from brian2.codegen.codeobject import create_runner_codeobj)

brian2.codegen.codeobject.create_runner_codeobj(group, code, template_name, run_namespace,
user_code=None, variable_indices=None,
name=None, check_units=True,
needed_variables=None,
additional_variables=None,
template_kwds=None,
override_conditional_write=None,
codeobj_class=None)

Create a CodeObject for the execution of code in the context of a Group.
Parameters group : Group

The group where the code is to be run
code : str or dict of str

The code to be executed.
template_name : str

The name of the template to use for the code.
run_namespace : dict-like

An additional namespace that is used for variable lookup (either an explicitly defined
namespace or one taken from the local context).

user_code : str, optional
The code that had been specified by the user before other code was added automatically.
If not specified, will be assumed to be identical to code.

variable_indices : dict-like, optional
A mapping from Variable objects to index names (strings). If none is given, uses the
corresponding attribute of group.

name : str, optional
A name for this code object, will use group + '_codeobject*' if none is given.

check_units : bool, optional
Whether to check units in the statement. Defaults to True.

needed_variables: list of str, optional :
A list of variables that are neither present in the abstract code, nor in the
USES_VARIABLES statement in the template. This is only rarely necessary, an exam-
ple being a StateMonitor where the names of the variables are neither known to the
template nor included in the abstract code statements.

additional_variables : dict-like, optional
A mapping of names to Variable objects, used in addition to the variables saved in
group.

template_kwds : dict, optional
A dictionary of additional information that is passed to the template.

470 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

override_conditional_write: list of str, optional :
A list of variable names which are used as conditions (e.g. for refractoriness) which should
be ignored.

codeobj_class : class, optional
The CodeObject class to run code with. If not specified, defaults to the group’s
codeobj_class attribute.

cpp_prefs module

Preferences related to C++ compilation

Preferences

C++ compilation preferences
codegen.cpp.compiler = ''

Compiler to use (uses default if empty). Should be 'unix' or 'msvc'.
To specify a specific compiler binary on unix systems, set the CXX environment variable instead.

codegen.cpp.define_macros = []
List of macros to define; each macro is defined using a 2-tuple, where ‘value’ is either the string to define it
to or None to define it without a particular value (equivalent of “#define FOO” in source or -DFOO on Unix
C compiler command line).

codegen.cpp.extra_compile_args = None
Extra arguments to pass to compiler (if None, use either extra_compile_args_gcc or ex-
tra_compile_args_msvc).

codegen.cpp.extra_compile_args_gcc = ['-w', '-O3', '-ffast-math',
'-fno-finite-math-only', '-march=native', '-std=c++11']

Extra compile arguments to pass to GCC compiler
codegen.cpp.extra_compile_args_msvc = ['/Ox', '/w', '', '/MP']

Extra compile arguments to pass to MSVC compiler (the default /arch: flag is determined based on the
processor architecture)

codegen.cpp.extra_link_args = []
Any extra platform- and compiler-specific information to use when linking object files together.

codegen.cpp.headers = []
A list of strings specifying header files to use when compiling the code. The list might look like [“<vec-
tor>”,“‘my_header’”]. Note that the header strings need to be in a form than can be pasted at the end of a
#include statement in the C++ code.

codegen.cpp.include_dirs = ['/path/to/your/Python/environment/include']
Include directories to use. The default value is $prefix/include (or $prefix/Library/
include on Windows), where $prefix is Python’s site-specific directory prefix as returned by sys.
prefix. This will make compilation use library files installed into a conda environment.

codegen.cpp.libraries = []

6.7. Subpackages 471

https://docs.python.org/3/library/sys.html#sys.prefix
https://docs.python.org/3/library/sys.html#sys.prefix

Brian 2 Documentation, Release 2.5.1

List of library names (not filenames or paths) to link against.
codegen.cpp.library_dirs = ['/path/to/your/Python/environment/lib']

List of directories to search for C/C++ libraries at link time. The default value is $prefix/lib (or
$prefix/Library/lib on Windows), where $prefix is Python’s site-specific directory prefix as
returned by sys.prefix. This will make compilation use library files installed into a conda environment.

codegen.cpp.msvc_architecture = ''
MSVC architecture name (or use system architectue by default).
Could take values such as x86, amd64, etc.

codegen.cpp.msvc_vars_location = ''
Location of the MSVC command line tool (or search for best by default).

codegen.cpp.runtime_library_dirs = ['/path/to/your/Python/environment/lib']
List of directories to search for C/C++ libraries at run time. The default value is $prefix/lib (not used
onWindows), where $prefix is Python’s site-specific directory prefix as returned by sys.prefix. This
will make compilation use library files installed into a conda environment.

Exported members: get_compiler_and_args, get_msvc_env, compiler_supports_c99, C99Check
Classes

C99Check(name) Helper class to create objects that can be passed as
an availability_check to a FunctionImple-
mentation.

C99Check class

(Shortest import: from brian2.codegen.cpp_prefs import C99Check)

class brian2.codegen.cpp_prefs.C99Check(name)
Bases: object
Helper class to create objects that can be passed as an availability_check to a FunctionImplemen-
tation.

Methods

__call__(*args, **kwargs) Call self as a function.

Details

__call__(*args, **kwargs)
Call self as a function.

Functions

compiler_supports_c99()

472 Chapter 6. brian2 package

https://docs.python.org/3/library/sys.html#sys.prefix
https://docs.python.org/3/library/sys.html#sys.prefix
https://docs.python.org/3/library/functions.html#object

Brian 2 Documentation, Release 2.5.1

compiler_supports_c99 function

(Shortest import: from brian2.codegen.cpp_prefs import compiler_supports_c99)

brian2.codegen.cpp_prefs.compiler_supports_c99()

get_compiler_and_args() Returns the computed compiler and compilation flags

get_compiler_and_args function

(Shortest import: from brian2.codegen.cpp_prefs import get_compiler_and_args)

brian2.codegen.cpp_prefs.get_compiler_and_args()

Returns the computed compiler and compilation flags

get_msvc_env()

get_msvc_env function

(Shortest import: from brian2.codegen.cpp_prefs import get_msvc_env)

brian2.codegen.cpp_prefs.get_msvc_env()

has_flag(compiler, flagname)

has_flag function

(Shortest import: from brian2.codegen.cpp_prefs import has_flag)

brian2.codegen.cpp_prefs.has_flag(compiler, flagname)

get_cpu_flags module

This script is used to ask for the CPU flags on Windows. We use this instead of importing the cpuinfo package, be-
cause recent versions of py-cpuinfo use the multiprocessing module, and any import of cpuinfo that is not within a if
__name__ == '__main__': block will lead to the script being executed twice.
The CPU flags are printed to stdout encoded as JSON.

6.7. Subpackages 473

Brian 2 Documentation, Release 2.5.1

optimisation module

Simplify and optimise sequences of statements by rewriting and pulling out loop invariants.
Exported members: optimise_statements, ArithmeticSimplifier, Simplifier
Classes

ArithmeticSimplifier(variables) Carries out the following arithmetic simplifications:

ArithmeticSimplifier class

(Shortest import: from brian2.codegen.optimisation import ArithmeticSimplifier)

class brian2.codegen.optimisation.ArithmeticSimplifier(variables)
Bases: brian2.parsing.bast.BrianASTRenderer
Carries out the following arithmetic simplifications:
1. Constant evaluation (e.g. exp(0)=1) by attempting to evaluate the expression in an “assumptions namespace”
2. Binary operators, e.g. 0*x=0, 1*x=x, etc. You have to take care that the dtypes match here, e.g. if x is an

integer, then 1.0*x shouldn’t be replaced with x but left as 1.0*x.

Parameters variables : dict of (str, Variable)
Usual definition of variables.

assumptions : sequence of str
Additional assumptions that can be used in simplification, each assumption is a string
statement. These might be the scalar statements for example.

Methods

render_BinOp(node)

render_node(node) Assumes that the node has already been fully pro-
cessed by BrianASTRenderer

Details

render_BinOp(node)

render_node(node)
Assumes that the node has already been fully processed by BrianASTRenderer

Simplifier(variables, scalar_statements[, ...]) Carry out arithmetic simplifications (see Arith-
meticSimplifier) and loop invariants

474 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

Simplifier class

(Shortest import: from brian2.codegen.optimisation import Simplifier)

class brian2.codegen.optimisation.Simplifier(variables, scalar_statements, extra_lio_prefix='')
Bases: brian2.parsing.bast.BrianASTRenderer
Carry out arithmetic simplifications (see ArithmeticSimplifier) and loop invariants

Parameters variables : dict of (str, Variable)
Usual definition of variables.

scalar_statements : sequence of Statement
Predefined scalar statements that can be used as part of simplification

Notes

After calling render_expr on a sequence of expressions (coming from vector statements typically), this object
will have some new attributes:
loop_invariants [OrderedDict of (expression, varname)] varname will be of the form _lio_N where N

is some integer, and the expressions will be strings that correspond to scalar-only expressions that can be
evaluated outside of the vector block.

loop_invariant_dtypes [dict of (varname, dtypename)] dtypename will be one of 'boolean', 'in-
teger', 'float'.

Methods

render_expr(expr)

render_node(node) Assumes that the node has already been fully pro-
cessed by BrianASTRenderer

Details

render_expr(expr)

render_node(node)

Assumes that the node has already been fully processed by BrianASTRenderer
Functions

cancel_identical_terms(primary, inverted) Cancel terms in a collection, e.g.

6.7. Subpackages 475

Brian 2 Documentation, Release 2.5.1

cancel_identical_terms function

(Shortest import: from brian2.codegen.optimisation import cancel_identical_terms)

brian2.codegen.optimisation.cancel_identical_terms(primary, inverted)
Cancel terms in a collection, e.g. a+b-a should be cancelled to b
Simply renders the nodes into expressions and removes whenever there is a common expression in primary and
inverted.

Parameters primary : list of AST nodes
These are the nodes that are positive with respect to the operator, e.g. in x*y/z it would
be [x, y].

inverted : list of AST nodes
These are the nodes that are inverted with respect to the operator, e.g. in x*y/z it would
be [z].

Returns primary : list of AST nodes
Primary nodes after cancellation

inverted : list of AST nodes
Inverted nodes after cancellation

collect(node) Attempts to collect commutative operations into one and
simplifies them.

collect function

(Shortest import: from brian2.codegen.optimisation import collect)

brian2.codegen.optimisation.collect(node)
Attempts to collect commutative operations into one and simplifies them.
For example, if x and y are scalars, and z is a vector, then (x*z)*y should be rewritten as (x*y)*z to minimise the
number of vector operations. Similarly, ((x*2)*3)*4 should be rewritten as x*24.
Works for either multiplication/division or addition/subtraction nodes.
The final output is a subexpression of the following maximal form:

(((numerical_value*(product of scalars))/(product of scalars))*(product of vectors))/(product of vec-
tors)

Any possible cancellations will have been done.
Parameters node : Brian AST node

The node to be collected/simplified.
Returns node : Brian AST node

Simplified node.

collect_commutative(node, primary, inverted,
...)

476 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

collect_commutative function

(Shortest import: from brian2.codegen.optimisation import collect_commutative)

brian2.codegen.optimisation.collect_commutative(node, primary, inverted, terms_primary,
terms_inverted, add_to_inverted=False)

evaluate_expr(expr, ns) Try to evaluate the expression in the given namespace

evaluate_expr function

(Shortest import: from brian2.codegen.optimisation import evaluate_expr)

brian2.codegen.optimisation.evaluate_expr(expr, ns)
Try to evaluate the expression in the given namespace
Returns either (value, True) if successful, or (expr, False) otherwise.

expression_complexity(expr, variables)

expression_complexity function

(Shortest import: from brian2.codegen.optimisation import expression_complexity)

brian2.codegen.optimisation.expression_complexity(expr, variables)

optimise_statements(scalar_statements, ...) Optimise a sequence of scalar and vector statements

optimise_statements function

(Shortest import: from brian2.codegen.optimisation import optimise_statements)

brian2.codegen.optimisation.optimise_statements(scalar_statements, vector_statements,
variables, blockname='')

Optimise a sequence of scalar and vector statements
Performs the following optimisations:
1. Constant evaluations (e.g. exp(0) to 1). See evaluate_expr.
2. Arithmetic simplifications (e.g. 0*x to 0). See ArithmeticSimplifier, collect().
3. Pulling out loop invariants (e.g. v*exp(-dt/tau) to a=exp(-dt/tau) outside the loop and v*a inside). See Sim-

plifier.
4. Boolean simplifications (allowing the replacement of expressions with booleans with a sequence of if/thens).

See Simplifier.

Parameters scalar_statements : sequence of Statement
Statements that only involve scalar values and should be evaluated in the scalar block.

vector_statements : sequence of Statement

6.7. Subpackages 477

Brian 2 Documentation, Release 2.5.1

Statements that involve vector values and should be evaluated in the vector block.
variables : dict of (str, Variable)

Definition of the types of the variables.
blockname : str, optional

Name of the block (used for LIO constant prefixes to avoid name clashes)
Returns new_scalar_statements : sequence of Statement

As above but with loop invariants pulled out from vector statements
new_vector_statements : sequence of Statement

Simplified/optimised versions of statements

reduced_node(terms, op) Reduce a sequence of terms with the given operator

reduced_node function

(Shortest import: from brian2.codegen.optimisation import reduced_node)

brian2.codegen.optimisation.reduced_node(terms, op)
Reduce a sequence of terms with the given operator
For examples, if terms were [a, b, c] and op was multiplication then the reduction would be (a*b)*c.

Parameters terms : list
AST nodes.

op : AST node
Could be ast.Mult or ast.Add.

Examples

>>> import ast
>>> nodes = [ast.Name(id='x'), ast.Name(id='y'), ast.Name(id='z')]
>>> ast.dump(reduced_node(nodes, ast.Mult), annotate_fields=False)
"BinOp(BinOp(Name('x'), Mult(), Name('y')), Mult(), Name('z'))"
>>> nodes = [ast.Name(id='x')]
>>> ast.dump(reduced_node(nodes, ast.Add), annotate_fields=False)
"Name('x')"

permutation_analysis module

Module for analysing synaptic pre and post code for synapse order independence.
Exported members: OrderDependenceError, check_for_order_independence
Classes

OrderDependenceError

478 Chapter 6. brian2 package

https://docs.python.org/3/library/ast.html#ast.Mult
https://docs.python.org/3/library/ast.html#ast.Add

Brian 2 Documentation, Release 2.5.1

OrderDependenceError class

(Shortest import: from brian2.codegen.permutation_analysis import OrderDependenceEr-
ror)

class brian2.codegen.permutation_analysis.OrderDependenceError

Bases: Exception
Functions

check_for_order_independence(statements,
...)

Check that the sequence of statements doesn't depend on
the order in which the indices are iterated through.

check_for_order_independence function

(Shortest import: from brian2.codegen.permutation_analysis import
check_for_order_independence)

brian2.codegen.permutation_analysis.check_for_order_independence(statements,
variables, indices)

Check that the sequence of statements doesn’t depend on the order in which the indices are iterated through.

statements module

Module providing the Statement class.
Classes

Statement(var, op, expr, comment, dtype[, ...]) A single line mathematical statement.

Statement class

(Shortest import: from brian2.codegen.statements import Statement)

class brian2.codegen.statements.Statement(var, op, expr, comment, dtype, constant=False,
subexpression=False, scalar=False)

Bases: object
A single line mathematical statement.
The structure is var op expr.

Parameters var : str
The left hand side of the statement, the value being written to.

op : str
The operation, can be any of the standard Python operators (including += etc.) or a special
operator :=which means you are defining a new symbol (whereas =means you are setting
the value of an existing symbol).

expr : str, Expression
The right hand side of the statement.

6.7. Subpackages 479

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#object

Brian 2 Documentation, Release 2.5.1

dtype : dtype
The numpy dtype of the value or array var().

constant : bool, optional
Set this flag to True if the value will not change (only applies for op==':='.

subexpression : bool, optional
Set this flag to True if the variable is a subexpression. In some languages (e.g. Python)
you can use this to save a memory copy, because you don’t need to do lhs[:] = rhs
but a redefinition lhs = rhs.

scalar : bool, optional
Set this flag to True if var() and expr are scalar.

Notes

Will compute the following attribute:
inplace True or False depending if the operation is in-place or not.
Boolean simplification notes:
Will initially set the attribute used_boolean_variables to None. This is set by opti-
mise_statements when it is called on a sequence of statements to the list of boolean variables that are used
in this expression. In addition, the attribute boolean_simplified_expressions is set to a dictionary
with keys consisting of a tuple of pairs (var, value) where var is the name of the boolean variable (will
be in used_boolean_variables) and var is True or False. The values of the dictionary are strings
representing the simplified version of the expression if each var=value substitution is made for that key. The
keys will range over all possible values of the set of boolean variables. The complexity of the original statement
is set as the attribute complexity_std, and the complexity of the simplified versions are in the dictionary
complexities (with the same keys).
This information can be used to generate code that replaces a complex expression that varies depending on the
value of one or more boolean variables with an if/then sequence where each subexpression is simplified. It is
optional to use this (e.g. the numpy codegen does not, but the cython one does).

targets module

Module that stores all known code generation targets as codegen_targets.
Exported members: codegen_targets

templates module

Handles loading templates from a directory.
Exported members: Templater

Classes

CodeObjectTemplate(template, template_source) Single template object returned by Templater and
used for final code generation

480 Chapter 6. brian2 package

https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype

Brian 2 Documentation, Release 2.5.1

CodeObjectTemplate class

(Shortest import: from brian2.codegen.templates import CodeObjectTemplate)

class brian2.codegen.templates.CodeObjectTemplate(template, template_source)
Bases: object
Single template object returned by Templater and used for final code generation
Should not be instantiated by the user, but only directly by Templater.

Notes

The final code is obtained from this by calling the template (see __call__).

Attributes

allows_scalar_write Does this template allow writing to scalar variables?
iterate_all The indices over which the template iterates com-

pletely
variables The set of variables in this template
writes_read_only Read-only variables that are changed by this template

Methods

__call__(scalar_code, vector_code, **kwds) Return a usable code block or blocks from this tem-
plate.

Details

allows_scalar_write

Does this template allow writing to scalar variables?
iterate_all

The indices over which the template iterates completely
variables

The set of variables in this template
writes_read_only

Read-only variables that are changed by this template
__call__(scalar_code, vector_code, **kwds)

Return a usable code block or blocks from this template.
Parameters scalar_code : dict

Dictionary of scalar code blocks.
vector_code : dict
Dictionary of vector code blocks

6.7. Subpackages 481

https://docs.python.org/3/library/functions.html#object

Brian 2 Documentation, Release 2.5.1

**kwds :
Additional parameters to pass to the template

Notes

Returns either a string (if macros were not used in the template), or a MultiTemplate (if macros were
used).

LazyTemplateLoader(environment, extension) Helper object to load templates only when they are
needed.

LazyTemplateLoader class

(Shortest import: from brian2.codegen.templates import LazyTemplateLoader)

class brian2.codegen.templates.LazyTemplateLoader(environment, extension)
Bases: object
Helper object to load templates only when they are needed.

Methods

get_template(name)

Details

get_template(name)

MultiTemplate(module) Code generated by a CodeObjectTemplate with
multiple blocks

MultiTemplate class

(Shortest import: from brian2.codegen.templates import MultiTemplate)

class brian2.codegen.templates.MultiTemplate(module)
Bases: collections.abc.Mapping
Code generated by a CodeObjectTemplate with multiple blocks
Each block is a string stored as an attribute with the block name. The object can also be accessed as a dictionary.

Templater(package_name, extension[, ...]) Class to load and return all the templates aCodeObject
defines.

482 Chapter 6. brian2 package

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping

Brian 2 Documentation, Release 2.5.1

Templater class

(Shortest import: from brian2.codegen.templates import Templater)

class brian2.codegen.templates.Templater(package_name, extension, env_globals=None,
templates_dir='templates')

Bases: object
Class to load and return all the templates a CodeObject defines.

Parameters package_name : str, tuple of str
The package where the templates are saved. If this is a tuple then each template will be
searched in order starting from the first package in the tuple until the template is found.
This allows for derived templates to be used. See also derive.

extension : str
The file extension (e.g. .pyx) used for the templates.

env_globals : dict (optional)
A dictionary of global values accessible by the templates. Can be used for providing utility
functions. In all cases, the filter ‘autoindent’ is available (see existing templates for example
usage).

templates_dir : str, tuple of str, optional
The name of the directory containing the templates. Defaults to 'templates'.

Notes

Templates are accessed using templater.template_base_name (the base name is without the file exten-
sion). This returns a CodeObjectTemplate.

Methods

derive(package_name[, extension, ...]) Return a new Templater derived from this one, where
the new package name and globals overwrite the old.

Details

derive(package_name, extension=None, env_globals=None, templates_dir='templates')
Return a new Templater derived from this one, where the new package name and globals overwrite the old.

Functions

autoindent(code)

6.7. Subpackages 483

https://docs.python.org/3/library/functions.html#object

Brian 2 Documentation, Release 2.5.1

autoindent function

(Shortest import: from brian2.codegen.templates import autoindent)

brian2.codegen.templates.autoindent(code)

autoindent_postfilter(code)

autoindent_postfilter function

(Shortest import: from brian2.codegen.templates import autoindent_postfilter)

brian2.codegen.templates.autoindent_postfilter(code)

variables_to_array_names(variables[, ...])

variables_to_array_names function

(Shortest import: from brian2.codegen.templates import variables_to_array_names)

brian2.codegen.templates.variables_to_array_names(variables, access_data=True)

translation module

This module translates a series of statements into a language-specific syntactically correct code block that can be inserted
into a template.
It infers whether or not a variable can be declared as constant, etc. It should handle common subexpressions, and so forth.
The input information needed:

• The sequence of statements (a multiline string) in standard mathematical form
• The list of known variables, common subexpressions and functions, and for each variable whether or not it is a
value or an array, and if an array what the dtype is.

• The dtype to use for newly created variables
• The language to translate to

Exported members: analyse_identifiers, get_identifiers_recursively
Classes

LineInfo(**kwds) A helper class, just used to store attributes.

484 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

LineInfo class

(Shortest import: from brian2.codegen.translation import LineInfo)

class brian2.codegen.translation.LineInfo(**kwds)
Bases: object
A helper class, just used to store attributes.

Functions

analyse_identifiers(code, variables[, recur-
sive])

Analyses a code string (sequence of statements) to find all
identifiers by type.

analyse_identifiers function

(Shortest import: from brian2.codegen.translation import analyse_identifiers)

brian2.codegen.translation.analyse_identifiers(code, variables, recursive=False)
Analyses a code string (sequence of statements) to find all identifiers by type.
In a given code block, some variable names (identifiers) must be given as inputs to the code block, and some are
created by the code block. For example, the line:

a = b+c

This could mean to create a new variable a from b and c, or it could mean modify the existing value of a from b or
c, depending on whether a was previously known.

Parameters code : str
The code string, a sequence of statements one per line.

variables : dict of Variable, set of names
Specifiers for the model variables or a set of known names

recursive : bool, optional
Whether to recurse down into subexpressions (defaults to False).

Returns newly_defined : set
A set of variables that are created by the code block.

used_known : set
A set of variables that are used and already known, a subset of the known parameter.

unknown : set
A set of variables which are used by the code block but not defined by it and not previously
known. Should correspond to variables in the external namespace.

get_identifiers_recursively(expressions,
...)

Gets all the identifiers in a list of expressions, recursing
down into subexpressions.

6.7. Subpackages 485

https://docs.python.org/3/library/functions.html#object

Brian 2 Documentation, Release 2.5.1

get_identifiers_recursively function

(Shortest import: from brian2.codegen.translation import get_identifiers_recursively)

brian2.codegen.translation.get_identifiers_recursively(expressions, variables,
include_numbers=False)

Gets all the identifiers in a list of expressions, recursing down into subexpressions.
Parameters expressions : list of str

List of expressions to check.
variables : dict-like

Dictionary of Variable objects
include_numbers : bool, optional

Whether to include number literals in the output. Defaults to False.

is_scalar_expression(expr, variables) Whether the given expression is scalar.

is_scalar_expression function

(Shortest import: from brian2.codegen.translation import is_scalar_expression)

brian2.codegen.translation.is_scalar_expression(expr, variables)
Whether the given expression is scalar.

Parameters expr : str
The expression to check

variables : dict-like
Variable and Function object for all the identifiers used in expr

Returns scalar : bool
Whether expr is a scalar expression

make_statements(code, variables, dtype[, ...]) Turn a series of abstract code statements into Statement
objects, inferring whether each line is a set/declare oper-
ation, whether the variables are constant or not, and han-
dling the cacheing of subexpressions.

make_statements function

(Shortest import: from brian2.codegen.translation import make_statements)

brian2.codegen.translation.make_statements(code, variables, dtype, optimise=True, blockname='')
Turn a series of abstract code statements into Statement objects, inferring whether each line is a set/declare oper-
ation, whether the variables are constant or not, and handling the cacheing of subexpressions.

Parameters code : str
A (multi-line) string of statements.

variables : dict-like

486 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

A dictionary of with Variable and Function objects for every identifier used in the
code.

dtype : dtype
The data type to use for temporary variables

optimise : bool, optional
Whether to optimise expressions, including pulling out loop invariant expressions and
putting them in new scalar constants. Defaults to False, since this function is also used
just to in contexts where we are not interested by this kind of optimisation. For the main
code generation stage, its value is set by the codegen.loop_invariant_optimisations prefer-
ence.

blockname : str, optional
A name for the block (used to name intermediate variables to avoid name clashes when
multiple blocks are used together)

Returns :
——- :
scalar_statements, vector_statements : (list of Statement, list of Statement)

Lists with statements that are to be executed once and statements that are to be executed
once for every neuron/synapse/… (or in a vectorised way)

Notes

If optimise is True, then the scalar_statements may include newly introduced scalar constants that
have been identified as loop-invariant and have therefore been pulled out of the vector statements. The resulting
statements will also use augmented assignments where possible, i.e. a statement such as w = w + 1 will be
replaced by w += 1. Also, statements involving booleans will have additional information added to them (see
Statement for details) describing how the statement can be reformulated as a sequence of if/then statements.
Calls optimise_statements.

Subpackages

generators package

GSL_generator module

GSLCodeGenerators for code that uses the ODE solver provided by the GNU Scientific Library (GSL)
Exported members: GSLCodeGenerator, GSLCPPCodeGenerator, GSLCythonCodeGenerator
Classes

GSLCPPCodeGenerator(variables, ...[, ...])

Methods

6.7. Subpackages 487

https://docs.python.org/3/library/code.html#module-code
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype

Brian 2 Documentation, Release 2.5.1

GSLCPPCodeGenerator class

(Shortest import: from brian2.codegen.generators import GSLCPPCodeGenerator)

class brian2.codegen.generators.GSL_generator.GSLCPPCodeGenerator(variables,
variable_indices,
owner, iterate_all,
codeobj_class,
name,
template_name,
over-
ride_conditional_write=None,
al-
lows_scalar_write=False)

Bases: brian2.codegen.generators.GSL_generator.GSLCodeGenerator

Methods

c_data_type(dtype) Get string version of object dtype that is attached to
Brian variables.

initialize_array(varname, values) Initialize a static array with given floating point values.
unpack_namespace_single(var_obj,
in_vector, ...)

Writes the code necessary to pull single variable out of
the Brian namespace into the generated code.

var_init_lhs(var, type) Get string version of the left hand side of an initializing
expression

var_replace_diff_var_lhs(var, ind)

Details

c_data_type(dtype)
Get string version of object dtype that is attached to Brian variables. c pp_generator already has this function,
but the Cython generator does not, but we need it for GSL code generation.

initialize_array(varname, values)
Initialize a static array with given floating point values. E.g. in C++, when called with arguments array and
[1.0, 3.0, 2.0], this method should return double array[] = {1.0, 3.0, 2.0}.

Parameters varname : str
The name of the array variable that should be initialized

values : list of float
The values that should be assigned to the array

Returns code : str
One or more lines of array initialization code.

unpack_namespace_single(var_obj, in_vector, in_scalar)
Writes the code necessary to pull single variable out of the Brian namespace into the generated code.
The code created is significantly different between cpp and cython, so I decided to not make this function
general over all target languages (i.e. in contrast to most other functions that only have syntactical differences)

488 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

var_init_lhs(var, type)
Get string version of the left hand side of an initializing expression

Parameters var : str
type : str

Returns code : str
For cpp returns type + var, while for cython just var

var_replace_diff_var_lhs(var, ind)

GSLCodeGenerator(variables, ...[, ...]) GSL code generator.

GSLCodeGenerator class

(Shortest import: from brian2.codegen.generators import GSLCodeGenerator)

class brian2.codegen.generators.GSL_generator.GSLCodeGenerator(variables,
variable_indices,
owner, iterate_all,
codeobj_class, name,
template_name, over-
ride_conditional_write=None,
al-
lows_scalar_write=False)

Bases: object
GSL code generator.

Notes

Approach is to first let the already existing code generator for a target language do the bulk of the translating from
abstract_code to actual code. This generated code is slightly adapted to render it GSL compatible. The most critical
part here is that the vector_code that is normally contained in a loop in the `main()` is moved to the function
`_GSL_func` that is sent to the GSL integrator. The variables used in the vector_code are added to a struct
named `dataholder` and their values are set from the Brian namespace just before the scalar code block.

6.7. Subpackages 489

https://docs.python.org/3/library/functions.html#object

Brian 2 Documentation, Release 2.5.1

Methods

add_gsl_variables_as_non_scalar(diff_vars)Add _gsl variables as non-scalar.
add_meta_variables(options)

c_data_type(dtype) Get string version of object dtype that is attached to
Brian variables.

diff_var_to_replace(diff_vars) Add differential variable-related strings that need to be
replaced to go from normal brian to GSL code

find_differential_variables(code) Find the variables that were tagged _gsl_{var}_f{ind}
and return var, ind pairs.

find_function_names() Return a list of used function names in the
self.variables dictionary

find_undefined_variables(statements) Find identifiers that are not in self.variables
dictionary.

find_used_variables(statements,
other_variables)

Find all the variables used in the right hand side of the
given expressions.

get_dimension_code(diff_num) Generate code for function that sets the dimension of
the ODE system.

initialize_array(varname, values) Initialize a static array with given floating point values.
is_constant_and_cpp_standalone(var_obj) Check whether self.cpp_standalone and variable is

Constant.
is_cpp_standalone() Check whether we're running with cpp_standalone.
make_function_code(lines) Add lines of GSL translated vector code to 'non-

changing' _GSL_func code.
scale_array_code(diff_vars, method_options) Return code for definition of _GSL_scale_array

in generated code.
to_replace_vector_vars(variables_in_vector) Create dictionary containing key, value pairs with to

be replaced text to translate from conventional Brian
to GSL.

translate(code, dtype) Translates an abstract code block into the target lan-
guage.

translate_scalar_code(code_lines, ...) Translate scalar code: if calculated variables are used
in the vector_code their value is added to the variable
in the _dataholder.

translate_vector_code(code_lines,
to_replace)

Translate vector code to GSL compatible code by sub-
stituting fragments of code.

unpack_namespace(variables_in_vector, ...[, ...]) Write code that unpacks Brian namespace to
cython/cpp namespace.

unpack_namespace_single(var_obj,
in_vector, ...)

Writes the code necessary to pull single variable out of
the Brian namespace into the generated code.

var_init_lhs(var, type) Get string version of the left hand side of an initializing
expression

write_dataholder(variables_in_vector) Return string with full code for _dataholder struct.
write_dataholder_single(var_obj) Return string declaring a single variable in the

_dataholder struct.
yvector_code(diff_vars) Generate code for function dealing with GSLs y vec-

tor.

490 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

Details

add_gsl_variables_as_non_scalar(diff_vars)

Add _gsl variables as non-scalar.
In GSLStateUpdater the differential equation variables are substituted with GSL tags that describe the
information needed to translate the conventional Brian code to GSL compatible code. This function tells
Brian that the variables that contain these tags should always be vector variables. If we don’t do this, Brian
renders the tag-variables as scalar if no vector variables are used in the right hand side of the expression.

Parameters diff_vars : dict
dictionary with variables as keys and differential equation index as value

add_meta_variables(options)

c_data_type(dtype)
Get string version of object dtype that is attached to Brian variables. c pp_generator already has this function,
but the Cython generator does not, but we need it for GSL code generation.

diff_var_to_replace(diff_vars)
Add differential variable-related strings that need to be replaced to go from normal brian to GSL code
From the code generated by Brian’s ‘normal’ generators (cpp_generator or cython_generator a few bits of text
need to be replaced to get GSL compatible code. The bits of text related to differential equation variables are
put in the replacer dictionary in this function.

Parameters diff_vars : dict
dictionary with variables as keys and differential equation index as value

Returns to_replace : dict
dictionary with strings that need to be replaced as keys and the strings that will replace
them as values

find_differential_variables(code)
Find the variables that were tagged _gsl_{var}_f{ind} and return var, ind pairs.
GSLStateUpdater tagged differential variables and here we extract the information given in these tags.

Parameters code : list of strings
A list of strings containing gsl tagged variables

Returns diff_vars : dict
A dictionary with variable names as keys and differential equation index as value

find_function_names()

Return a list of used function names in the self.variables dictionary
Functions need to be ignored in the GSL translation process, because the brian generator already sufficiently
dealt with them. However, the brian generator also removes them from the variables dict, so there is no way
to check whether an identifier is a function after the brian translation process. This function is called before
this translation process and the list of function names is stored to be used in the GSL translation.

Returns function_names : list
list of strings that are function names used in the code

6.7. Subpackages 491

Brian 2 Documentation, Release 2.5.1

find_undefined_variables(statements)
Find identifiers that are not in self.variables dictionary.
Brian does not save the _lio_ variables it uses anywhere. This is problematic for our GSL implementa-
tion because we save the lio variables in the _dataholder struct (for which we need the datatype of the
variables). This function adds the left hand side variables that are used in the vector code to the variable
dictionary as AuxiliaryVariables (all we need later is the datatype).

Parameters statements : list
list of statement objects (need to have the dtype attribute)

Notes

I keep self.variables and other_variables separate so I can distinguish what variables are in
the Brian namespace and which ones are defined in the code itself.

find_used_variables(statements, other_variables)
Find all the variables used in the right hand side of the given expressions.

Parameters statements : list
list of statement objects

Returns used_variables : dict
dictionary of variables that are used as variable name (str), Variable pairs.

get_dimension_code(diff_num)
Generate code for function that sets the dimension of the ODE system.
GSL needs to know how many differential variables there are in the ODE system. Since the current approach
is to have the code in the vector loop the same for all simulations, this dimension is set by an external function.
The code for this set_dimension functon is written here. It is assumed the code will be the same for each target
language with the exception of some syntactical differences

Parameters diff_num : int
Number of differential variables that describe the ODE system

Returns set_dimension_code : str
The code describing the target language function in a single string

initialize_array(varname, values)
Initialize a static array with given floating point values. E.g. in C++, when called with arguments array and
[1.0, 3.0, 2.0], this method should return double array[] = {1.0, 3.0, 2.0}.

Parameters varname : str
The name of the array variable that should be initialized

values : list of float
The values that should be assigned to the array

Returns code : str
One or more lines of array initialization code.

492 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

is_constant_and_cpp_standalone(var_obj)
Check whether self.cpp_standalone and variable is Constant.
This check is needed because in the case of using the cpp_standalone device we do not want to apply our
GSL variable conversion (var –> _GSL_dataholder.var), because the cpp_standalone code generation process
involves replacing constants with their actual value (‘freezing’). This results in code that looks like (if for
example var = 1.2): _GSL_dataholder.1.2 = 1.2 and _GSL_dataholder->1.2. To prevent repetitive calls to
get_device() etc. the outcome of is_cpp_standalone is saved.

Parameters var_obj : Variable
instance of brian Variable class describing the variable

Returns is_cpp_standalone : bool
whether the used device is cpp_standalone and the given variable is an instance of Constant

is_cpp_standalone()

Check whether we’re running with cpp_standalone.
Test if get_device() is instance CPPStandaloneDevice.

Returns is_cpp_standalone : bool
whether currently using cpp_standalone device

See also:

is_constant_and_cpp_standalone uses the returned value

make_function_code(lines)
Add lines of GSL translated vector code to ‘non-changing’ _GSL_func code.
Adds nonchanging aspects of GSL _GSL_func code to lines of code written somewhere else (trans-
late_vector_code). Here these lines are put between the non-changing parts of the code and the
target-language specific syntax is added.

Parameters lines : str
Code containing GSL version of equations

Returns function_code : str
code describing _GSL_func that is sent to GSL integrator.

scale_array_code(diff_vars, method_options)
Return code for definition of _GSL_scale_array in generated code.

Parameters diff_vars : dict
dictionary with variable name (str) as key and differential variable index (int) as value

method_options : dict
dictionary containing integrator settings

Returns code : str
full code describing a function returning a array containing doubles with the absolute errors
for each differential variable (according to their assigned index in the GSL StateUpdater)

6.7. Subpackages 493

Brian 2 Documentation, Release 2.5.1

to_replace_vector_vars(variables_in_vector, ignore=frozenset({}))
Create dictionary containing key, value pairs with to be replaced text to translate from conventional Brian to
GSL.

Parameters variables_in_vector : dict
dictionary with variable name (str), Variable pairs of variables occurring in vector code

ignore : set, optional
set of strings with variable names that should be ignored

Returns to_replace : dict
dictionary with strings that need to be replaced i.e. _lio_1 will be _GSL_dataholder._lio_1
(in cython) or _GSL_dataholder->_lio_1 (cpp)

Notes

t will always be added because GSL defines its own t. i.e. for cpp: {‘const t = _ptr_array_defaultclock_t[0];’
: ‘’}

translate(code, dtype)
Translates an abstract code block into the target language.

translate_scalar_code(code_lines, variables_in_scalar, variables_in_vector)
Translate scalar code: if calculated variables are used in the vector_code their value is added to the variable
in the _dataholder.

Parameters code_lines : list
list of strings containing scalar code

variables_in_vector : dict
dictionary with variable name (str), Variable pairs of variables occurring in vector code

variables_in_scalar : dict
dictionary with variable name (str), Variable pairs of variables occurring in scalar code

Returns scalar_code : str
code fragment that should be injected in the main before the loop

translate_vector_code(code_lines, to_replace)
Translate vector code to GSL compatible code by substituting fragments of code.

Parameters code_lines : list
list of strings describing the vector_code

to_replace: dict :
dictionary with to be replaced strings (see to_replace_vector_vars and
to_replace_diff_vars)

Returns vector_code : str
New code that is now to be added to the function that is sent to the GSL integrator

494 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

unpack_namespace(variables_in_vector, variables_in_scalar, ignore=frozenset({}))
Write code that unpacks Brian namespace to cython/cpp namespace.
For vector code this means putting variables in _dataholder (i.e. _GSL_dataholder->var or
_GSL_dataholder.var = …) Note that code is written so a variable could occur both in scalar and vector
code

Parameters variables_in_vector : dict
dictionary with variable name (str), Variable pairs of variables occurring in vector code

variables_in_scalar : dict
dictionary with variable name (str), Variable pairs of variables occurring in
scalar code

ignore : set, optional
set of string names of variables that should be ignored

Returns unpack_namespace_code : str
code fragment unpacking the Brian namespace (setting variables in the _dataholder struct
in case of vector)

unpack_namespace_single(var_obj, in_vector, in_scalar)
Writes the code necessary to pull single variable out of the Brian namespace into the generated code.
The code created is significantly different between cpp and cython, so I decided to not make this function
general over all target languages (i.e. in contrast to most other functions that only have syntactical differences)

var_init_lhs(var, type)
Get string version of the left hand side of an initializing expression

Parameters var : str
type : str

Returns code : str
For cpp returns type + var, while for cython just var

write_dataholder(variables_in_vector)
Return string with full code for _dataholder struct.

Parameters variables_in_vector : dict
dictionary containing variable name as key and Variable as value

Returns code : str
code for _dataholder struct

write_dataholder_single(var_obj)

Return string declaring a single variable in the _dataholder struct.
Parameters var_obj : Variable
Returns code : str

string describing this variable object as required for the _dataholder struct (e.g. dou-
ble* _array_neurongroup_v)

6.7. Subpackages 495

Brian 2 Documentation, Release 2.5.1

yvector_code(diff_vars)
Generate code for function dealing with GSLs y vector.
The values of differential variables have to be transferred from Brian’s namespace to a vector that is given
to GSL. The transferring from Brian –> y and back from y –> Brian after integration happens in separate
functions. The code for these is written here.

Parameters diff_vars : dictionary
Dictionary containing variable names as keys (str) and differential variable index as value

Returns yvector_code : str
The code for the two functions (_fill_y_vector and _empty_y_vector) as sin-
gle string.

GSLCythonCodeGenerator(variables, ...[, ...])

Methods

GSLCythonCodeGenerator class

(Shortest import: from brian2.codegen.generators import GSLCythonCodeGenerator)

class brian2.codegen.generators.GSL_generator.GSLCythonCodeGenerator(variables,
vari-
able_indices,
owner,
iterate_all,
codeobj_class,
name, tem-
plate_name,
over-
ride_conditional_write=None,
al-
lows_scalar_write=False)

Bases: brian2.codegen.generators.GSL_generator.GSLCodeGenerator

Methods

c_data_type(dtype) Get string version of object dtype that is attached to
Brian variables.

get_array_name(var[, access_data])

initialize_array(varname, values) Initialize a static array with given floating point values.
unpack_namespace_single(var_obj,
in_vector, ...)

Writes the code necessary to pull single variable out of
the Brian namespace into the generated code.

var_init_lhs(var, type) Get string version of the left hand side of an initializing
expression

var_replace_diff_var_lhs(var, ind)

496 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

Details

c_data_type(dtype)

Get string version of object dtype that is attached to Brian variables. c pp_generator already has this function,
but the Cython generator does not, but we need it for GSL code generation.

static get_array_name(var, access_data=True)

initialize_array(varname, values)
Initialize a static array with given floating point values. E.g. in C++, when called with arguments array and
[1.0, 3.0, 2.0], this method should return double array[] = {1.0, 3.0, 2.0}.

Parameters varname : str
The name of the array variable that should be initialized

values : list of float
The values that should be assigned to the array

Returns code : str
One or more lines of array initialization code.

unpack_namespace_single(var_obj, in_vector, in_scalar)
Writes the code necessary to pull single variable out of the Brian namespace into the generated code.
The code created is significantly different between cpp and cython, so I decided to not make this function
general over all target languages (i.e. in contrast to most other functions that only have syntactical differences)

var_init_lhs(var, type)
Get string version of the left hand side of an initializing expression

Parameters var : str
type : str

Returns code : str
For cpp returns type + var, while for cython just var

var_replace_diff_var_lhs(var, ind)

Functions

valid_gsl_dir(val) Validate given string to be path containing required GSL
files.

valid_gsl_dir function

(Shortest import: from brian2.codegen.generators.GSL_generator import valid_gsl_dir)

brian2.codegen.generators.GSL_generator.valid_gsl_dir(val)
Validate given string to be path containing required GSL files.

6.7. Subpackages 497

Brian 2 Documentation, Release 2.5.1

base module

Base class for generating code in different programming languages, gives the methods which should be overridden to
implement a new language.
Exported members: CodeGenerator

Classes

CodeGenerator(variables, variable_indices, ...) Base class for all languages.

CodeGenerator class

(Shortest import: from brian2.codegen.generators import CodeGenerator)

class brian2.codegen.generators.base.CodeGenerator(variables, variable_indices, owner,
iterate_all, codeobj_class, name,
template_name,
override_conditional_write=None,
allows_scalar_write=False)

Bases: object
Base class for all languages.
See definition of methods below.
TODO: more details here

498 Chapter 6. brian2 package

https://docs.python.org/3/library/functions.html#object

Brian 2 Documentation, Release 2.5.1

Methods

array_read_write(statements) Helper function, gives the set of ArrayVariables that
are read from and written to in the series of statements.

arrays_helper(statements) Combines the two helper func-
tions array_read_write and
get_conditional_write_vars, and up-
dates the read set.

determine_keywords() A dictionary of values that is made available to the
templated.

get_array_name(var[, access_data]) Get a globally unique name for a ArrayVariable.
get_conditional_write_vars() Helper function, returns a dict of mappings

(varname, condition_var_name) in-
dicating that when varname is written to, it should
only be when condition_var_name is True.

has_repeated_indices(statements) Whether any of the statements potentially uses re-
peated indices (e.g.

translate(code, dtype) Translates an abstract code block into the target lan-
guage.

translate_expression(expr) Translate the given expression string into a string in
the target language, returns a string.

translate_one_statement_sequence(statements)

translate_statement(statement) Translate a single line Statement into the target
language, returns a string.

translate_statement_sequence(...) Translate a sequence of Statement into the target
language, taking care to declare variables, etc.

Details

array_read_write(statements)
Helper function, gives the set of ArrayVariables that are read from and written to in the series of statements.
Returns the pair read, write of sets of variable names.

arrays_helper(statements)
Combines the two helper functionsarray_read_write andget_conditional_write_vars, and
updates the read set.

determine_keywords()

A dictionary of values that is made available to the templated. This is used for example by the CPPCode-
Generator to set up all the supporting code

static get_array_name(var, access_data=True)
Get a globally unique name for a ArrayVariable.

Parameters var : ArrayVariable
The variable for which a name should be found.

access_data : bool, optional
For DynamicArrayVariable objects, specifying True here means the name for the
underlying data is returned. If specifying False, the name of object itself is returned
(e.g. to allow resizing).

6.7. Subpackages 499

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False

Brian 2 Documentation, Release 2.5.1

Returns :
——- :
name : str
A uniqe name for var().

get_conditional_write_vars()

Helper function, returns a dict of mappings (varname, condition_var_name) indicating that when
varname is written to, it should only be when condition_var_name is True.

has_repeated_indices(statements)
Whether any of the statements potentially uses repeated indices (e.g. pre- or postsynaptic indices).

translate(code, dtype)
Translates an abstract code block into the target language.

translate_expression(expr)

Translate the given expression string into a string in the target language, returns a string.
translate_one_statement_sequence(statements, scalar=False)

translate_statement(statement)
Translate a single line Statement into the target language, returns a string.

translate_statement_sequence(scalar_statements, vector_statements)
Translate a sequence of Statement into the target language, taking care to declare variables, etc. if nec-
essary.
Returns a tuple (scalar_code, vector_code, kwds) where scalar_code is a list of the lines
of code executed before the inner loop, vector_code is a list of the lines of code in the inner loop, and
kwds is a dictionary of values that is made available to the template.

cpp_generator module

Exported members: CPPCodeGenerator, c_data_type
Classes

CPPCodeGenerator(*args, **kwds) C++ language

CPPCodeGenerator class

(Shortest import: from brian2.codegen.generators import CPPCodeGenerator)

class brian2.codegen.generators.cpp_generator.CPPCodeGenerator(*args, **kwds)
Bases: brian2.codegen.generators.base.CodeGenerator
C++ language
C++ code templates should provide Jinja2 macros with the following names:
main The main loop.
support_code The support code (function definitions, etc.), compiled in a separate file.
For user-defined functions, there are two keys to provide:

500 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

support_code The function definition which will be added to the support code.
hashdefine_code The #define code added to the main loop.
See TimedArray for an example of these keys.

Attributes

flush_denormals

restrict

Methods

denormals_to_zero_code()

determine_keywords() A dictionary of values that is made available to the
templated.

get_array_name(var[, access_data]) Get a globally unique name for a ArrayVariable.
translate_expression(expr) Translate the given expression string into a string in

the target language, returns a string.
translate_one_statement_sequence(statements)

translate_statement(statement) Translate a single line Statement into the target
language, returns a string.

translate_statement_sequence(sc_statements,
...)

Translate a sequence of Statement into the target
language, taking care to declare variables, etc.

translate_to_declarations(read, write,
indices)
translate_to_read_arrays(read, write, in-
dices)
translate_to_statements(statements, ...)

translate_to_write_arrays(write)

Details

flush_denormals

restrict

denormals_to_zero_code()

determine_keywords()

A dictionary of values that is made available to the templated. This is used for example by the CPPCode-
Generator to set up all the supporting code

6.7. Subpackages 501

Brian 2 Documentation, Release 2.5.1

static get_array_name(var, access_data=True)
Get a globally unique name for a ArrayVariable.

Parameters var : ArrayVariable
The variable for which a name should be found.

access_data : bool, optional
For DynamicArrayVariable objects, specifying True here means the name for the
underlying data is returned. If specifying False, the name of object itself is returned
(e.g. to allow resizing).

Returns :
——- :
name : str
A uniqe name for var().

translate_expression(expr)
Translate the given expression string into a string in the target language, returns a string.

translate_one_statement_sequence(statements, scalar=False)

translate_statement(statement)
Translate a single line Statement into the target language, returns a string.

translate_statement_sequence(sc_statements, ve_statements)
Translate a sequence of Statement into the target language, taking care to declare variables, etc. if nec-
essary.
Returns a tuple (scalar_code, vector_code, kwds) where scalar_code is a list of the lines
of code executed before the inner loop, vector_code is a list of the lines of code in the inner loop, and
kwds is a dictionary of values that is made available to the template.

translate_to_declarations(read, write, indices)

translate_to_read_arrays(read, write, indices)

translate_to_statements(statements, conditional_write_vars)

translate_to_write_arrays(write)

Functions

c_data_type(dtype) Gives the C language specifier for numpy data types.

c_data_type function

(Shortest import: from brian2.codegen.generators import c_data_type)

brian2.codegen.generators.cpp_generator.c_data_type(dtype)

Gives the C language specifier for numpy data types. For example, numpy.int32 maps to int32_t in C.

502 Chapter 6. brian2 package

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False

Brian 2 Documentation, Release 2.5.1

cython_generator module

Exported members: CythonCodeGenerator

Classes

CythonCodeGenerator(*args, **kwds) Cython code generator

CythonCodeGenerator class

(Shortest import: from brian2.codegen.generators import CythonCodeGenerator)

class brian2.codegen.generators.cython_generator.CythonCodeGenerator(*args,
**kwds)

Bases: brian2.codegen.generators.base.CodeGenerator
Cython code generator

Methods

determine_keywords() A dictionary of values that is made available to the
templated.

translate_expression(expr) Translate the given expression string into a string in
the target language, returns a string.

translate_one_statement_sequence(statements)

translate_statement(statement) Translate a single line Statement into the target
language, returns a string.

translate_statement_sequence(sc_statements,
...)

Translate a sequence of Statement into the target
language, taking care to declare variables, etc.

translate_to_read_arrays(read, indices)

translate_to_statements(statements, ...)

translate_to_write_arrays(write)

Details

determine_keywords()

A dictionary of values that is made available to the templated. This is used for example by the CPPCode-
Generator to set up all the supporting code

translate_expression(expr)

Translate the given expression string into a string in the target language, returns a string.
translate_one_statement_sequence(statements, scalar=False)

translate_statement(statement)

Translate a single line Statement into the target language, returns a string.

6.7. Subpackages 503

Brian 2 Documentation, Release 2.5.1

translate_statement_sequence(sc_statements, ve_statements)
Translate a sequence of Statement into the target language, taking care to declare variables, etc. if nec-
essary.
Returns a tuple (scalar_code, vector_code, kwds) where scalar_code is a list of the lines
of code executed before the inner loop, vector_code is a list of the lines of code in the inner loop, and
kwds is a dictionary of values that is made available to the template.

translate_to_read_arrays(read, indices)

translate_to_statements(statements, conditional_write_vars)

translate_to_write_arrays(write)

CythonNodeRenderer([auto_vectorise])

Methods

CythonNodeRenderer class

(Shortest import: from brian2.codegen.generators.cython_generator import CythonN-
odeRenderer)

class brian2.codegen.generators.cython_generator.CythonNodeRenderer(auto_vectorise=None)
Bases: brian2.parsing.rendering.NodeRenderer

Methods

render_BinOp(node)

render_Name(node)

render_NameConstant(node)

Details

render_BinOp(node)

render_Name(node)

render_NameConstant(node)

Functions

get_cpp_dtype(obj)

504 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

get_cpp_dtype function

(Shortest import: from brian2.codegen.generators.cython_generator import
get_cpp_dtype)

brian2.codegen.generators.cython_generator.get_cpp_dtype(obj)

get_numpy_dtype(obj)

get_numpy_dtype function

(Shortest import: from brian2.codegen.generators.cython_generator import
get_numpy_dtype)

brian2.codegen.generators.cython_generator.get_numpy_dtype(obj)

numpy_generator module

Exported members: NumpyCodeGenerator

Classes

NumpyCodeGenerator(variables, ...[, ...]) Numpy language

NumpyCodeGenerator class

(Shortest import: from brian2.codegen.generators import NumpyCodeGenerator)

class brian2.codegen.generators.numpy_generator.NumpyCodeGenerator(variables,
variable_indices,
owner,
iterate_all,
codeobj_class,
name,
template_name,
over-
ride_conditional_write=None,
al-
lows_scalar_write=False)

Bases: brian2.codegen.generators.base.CodeGenerator
Numpy language
Essentially Python but vectorised.

6.7. Subpackages 505

Brian 2 Documentation, Release 2.5.1

Methods

conditional_write(line, stmt, variables, ...)

determine_keywords() A dictionary of values that is made available to the
templated.

read_arrays(read, write, indices, variables, ...)

translate_expression(expr) Translate the given expression string into a string in
the target language, returns a string.

translate_one_statement_sequence(statements)

translate_statement(statement) Translate a single line Statement into the target
language, returns a string.

ufunc_at_vectorisation(statement, vari-
ables, ...)
vectorise_code(statements, variables, ...[, ...])

write_arrays(statements, read, write, ...)

Details

conditional_write(line, stmt, variables, conditional_write_vars, created_vars)

determine_keywords()

A dictionary of values that is made available to the templated. This is used for example by the CPPCode-
Generator to set up all the supporting code

read_arrays(read, write, indices, variables, variable_indices)

translate_expression(expr)
Translate the given expression string into a string in the target language, returns a string.

translate_one_statement_sequence(statements, scalar=False)

translate_statement(statement)

Translate a single line Statement into the target language, returns a string.
ufunc_at_vectorisation(statement, variables, indices, conditional_write_vars, created_vars,

used_variables)

vectorise_code(statements, variables, variable_indices, index='_idx')

write_arrays(statements, read, write, variables, variable_indices)

VectorisationError

506 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

VectorisationError class

(Shortest import: from brian2.codegen.generators.numpy_generator import Vectorisation-
Error)

class brian2.codegen.generators.numpy_generator.VectorisationError

Bases: Exception
Functions

ceil_func(value)

ceil_func function

(Shortest import: from brian2.codegen.generators.numpy_generator import ceil_func)

brian2.codegen.generators.numpy_generator.ceil_func(value)

clip_func(array, a_min, a_max)

clip_func function

(Shortest import: from brian2.codegen.generators.numpy_generator import clip_func)

brian2.codegen.generators.numpy_generator.clip_func(array, a_min, a_max)

floor_func(value)

floor_func function

(Shortest import: from brian2.codegen.generators.numpy_generator import floor_func)

brian2.codegen.generators.numpy_generator.floor_func(value)

int_func(value)

6.7. Subpackages 507

https://docs.python.org/3/library/exceptions.html#Exception

Brian 2 Documentation, Release 2.5.1

int_func function

(Shortest import: from brian2.codegen.generators.numpy_generator import int_func)

brian2.codegen.generators.numpy_generator.int_func(value)

poisson_func(lam, vectorisation_idx)

poisson_func function

(Shortest import: from brian2.codegen.generators.numpy_generator import poisson_func)

brian2.codegen.generators.numpy_generator.poisson_func(lam, vectorisation_idx)

rand_func(vectorisation_idx)

rand_func function

(Shortest import: from brian2.codegen.generators.numpy_generator import rand_func)

brian2.codegen.generators.numpy_generator.rand_func(vectorisation_idx)

randn_func(vectorisation_idx)

randn_func function

(Shortest import: from brian2.codegen.generators.numpy_generator import randn_func)

brian2.codegen.generators.numpy_generator.randn_func(vectorisation_idx)

runtime package

Runtime targets for code generation.

Subpackages

GSLcython_rt package

GSLcython_rt module

Module containing the Cython CodeObject for code generation for integration using the ODE solver provided in the GNU
Scientific Library (GSL)
Exported members: GSLCythonCodeObject, IntegrationError

508 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

Classes

GSLCompileError

GSLCompileError class

(Shortest import: from brian2.codegen.runtime.GSLcython_rt.GSLcython_rt import GSLCom-
pileError)

class brian2.codegen.runtime.GSLcython_rt.GSLcython_rt.GSLCompileError

Bases: Exception

GSLCythonCodeObject(*args, **kw)

Methods

GSLCythonCodeObject class

(Shortest import: from brian2.codegen import GSLCythonCodeObject)

class brian2.codegen.runtime.GSLcython_rt.GSLcython_rt.GSLCythonCodeObject(*args,
**kw)

Bases: brian2.codegen.runtime.cython_rt.cython_rt.CythonCodeObject

Methods

compile()

Details

compile()

IntegrationError Error used to signify that GSL was unable to complete
integration (only works for cython)

6.7. Subpackages 509

https://docs.python.org/3/library/exceptions.html#Exception

Brian 2 Documentation, Release 2.5.1

IntegrationError class

(Shortest import: from brian2.codegen import IntegrationError)

class brian2.codegen.runtime.GSLcython_rt.GSLcython_rt.IntegrationError

Bases: Exception
Error used to signify that GSL was unable to complete integration (only works for cython)

cython_rt package

cython_rt module

Exported members: CythonCodeObject

Classes

CythonCodeObject(*args, **kw) Execute code using Cython.

CythonCodeObject class

(Shortest import: from brian2 import CythonCodeObject)

class brian2.codegen.runtime.cython_rt.cython_rt.CythonCodeObject(*args, **kw)
Bases: brian2.codegen.runtime.numpy_rt.numpy_rt.NumpyCodeObject
Execute code using Cython.

Methods

compile_block(block)

is_available() Whether this target for code generation is available.
run_block(block)

update_namespace() Update the namespace for this timestep.
variables_to_namespace()

Details

compile_block(block)

classmethod is_available()

Whether this target for code generation is available. Should use a minimal example to check whether code
generation works in general.

run_block(block)

510 Chapter 6. brian2 package

https://docs.python.org/3/library/exceptions.html#Exception

Brian 2 Documentation, Release 2.5.1

update_namespace()

Update the namespace for this timestep. Should only deal with variables where the reference changes every
timestep, i.e. where the current reference in namespace is not correct.

variables_to_namespace()

extension_manager module

Cython automatic extension builder/manager
Inspired by IPython’s Cython cell magics, see: https://github.com/ipython/ipython/blob/master/IPython/extensions/
cythonmagic.py
Exported members: cython_extension_manager

Classes

CythonExtensionManager()

Attributes

CythonExtensionManager class

(Shortest import: from brian2.codegen.runtime.cython_rt.extension_manager import
CythonExtensionManager)

class
brian2.codegen.runtime.cython_rt.extension_manager.CythonExtensionManager

Bases: object

Attributes

so_ext The extension suffix for compiled modules.

Methods

create_extension(code[, force, name, ...])

6.7. Subpackages 511

https://github.com/ipython/ipython/blob/master/IPython/extensions/cythonmagic.py
https://github.com/ipython/ipython/blob/master/IPython/extensions/cythonmagic.py
https://docs.python.org/3/library/functions.html#object

Brian 2 Documentation, Release 2.5.1

Details

so_ext

The extension suffix for compiled modules.
create_extension(code, force=False, name=None, define_macros=None, include_dirs=None,

library_dirs=None, runtime_library_dirs=None, extra_compile_args=None,
extra_link_args=None, libraries=None, compiler=None, sources=None,
owner_name='')

Functions

get_cython_cache_dir()

get_cython_cache_dir function

(Shortest import: from brian2.codegen.runtime.cython_rt.extension_manager import
get_cython_cache_dir)

brian2.codegen.runtime.cython_rt.extension_manager.get_cython_cache_dir()

get_cython_extensions()

get_cython_extensions function

(Shortest import: from brian2.codegen.runtime.cython_rt.extension_manager import
get_cython_extensions)

brian2.codegen.runtime.cython_rt.extension_manager.get_cython_extensions()

simplify_path_env_var(path)

simplify_path_env_var function

(Shortest import: from brian2.codegen.runtime.cython_rt.extension_manager import sim-
plify_path_env_var)

brian2.codegen.runtime.cython_rt.extension_manager.simplify_path_env_var(path)

Objects

cython_extension_manager

512 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

cython_extension_manager object

(Shortest import: from brian2.codegen.runtime.cython_rt.extension_manager import
cython_extension_manager)

brian2.codegen.runtime.cython_rt.extension_manager.cython_extension_manager =
<brian2.codegen.runtime.cython_rt.extension_manager.CythonExtensionManager
object>

numpy_rt package

Numpy runtime implementation.

Preferences

Numpy runtime codegen preferences
codegen.runtime.numpy.discard_units = False

Whether to change the namespace of user-specifed functions to remove units.

numpy_rt module

Module providing NumpyCodeObject.
Exported members: NumpyCodeObject

Classes

LazyArange(stop[, start, indices]) A class that can be used as a arange replacement (with
an implied step size of 1) but does not actually create an
array of values until necessary.

LazyArange class

(Shortest import: from brian2.codegen.runtime.numpy_rt.numpy_rt import LazyArange)

class brian2.codegen.runtime.numpy_rt.numpy_rt.LazyArange(stop, start=0, indices=None)
Bases: collections.abc.Iterable
A class that can be used as a arange replacement (with an implied step size of 1) but does not actually create an
array of values until necessary. It is somewhat similar to the range() function in Python 3, but does not use a
generator. It is tailored to a special use case, the _vectorisation_idx variable in numpy templates, and not
meant for general use. The _vectorisation_idx is used for stateless function calls such as rand() and for
the numpy codegen target determines the number of values produced by such a call. This will often be the number
of neurons or synapses, and this class avoids creating a new array of that size at every code object call when all that
is needed is the length of the array.

6.7. Subpackages 513

https://numpy.org/doc/stable/reference/generated/numpy.arange.html#numpy.arange
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://numpy.org/doc/stable/reference/generated/numpy.arange.html#numpy.arange

Brian 2 Documentation, Release 2.5.1

Examples

>>> from brian2.codegen.runtime.numpy_rt.numpy_rt import LazyArange
>>> ar = LazyArange(10)
>>> len(ar)
10
>>> len(ar[:5])
5
>>> type(ar[:5])
<class 'brian2.codegen.runtime.numpy_rt.numpy_rt.LazyArange'>
>>> ar[5]
5
>>> for value in ar[3:7]:
... print(value)
...
3
4
5
6
>>> len(ar[np.array([1, 2, 3])])
3

NumpyCodeObject(*args, **kw) Execute code using Numpy

NumpyCodeObject class

(Shortest import: from brian2 import NumpyCodeObject)

class brian2.codegen.runtime.numpy_rt.numpy_rt.NumpyCodeObject(*args, **kw)
Bases: brian2.codegen.codeobject.CodeObject
Execute code using Numpy
Default for Brian because it works on all platforms.

Methods

compile_block(block)

is_available() Whether this target for code generation is available.
run_block(block)

update_namespace() Update the namespace for this timestep.
variables_to_namespace()

514 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

Details

compile_block(block)

classmethod is_available()

Whether this target for code generation is available. Should use a minimal example to check whether code
generation works in general.

run_block(block)

update_namespace()

Update the namespace for this timestep. Should only deal with variables where the reference changes every
timestep, i.e. where the current reference in namespace is not correct.

variables_to_namespace()

6.7.2 core package

Essential Brian modules, in particular base classes for all kinds of brian objects.

Built-in preferences

Core Brian preferences
core.default_float_dtype = float64

Default dtype for all arrays of scalars (state variables, weights, etc.).
core.default_integer_dtype = int32

Default dtype for all arrays of integer scalars.
core.outdated_dependency_error = True

Whether to raise an error for outdated dependencies (True) or just a warning (False).

base module

All Brian objects should derive from BrianObject.
Exported members: BrianObject, BrianObjectException
Classes

BrianObject(*args, **kw) All Brian objects derive from this class, defines magic
tracking and update.

6.7. Subpackages 515

Brian 2 Documentation, Release 2.5.1

BrianObject class

(Shortest import: from brian2 import BrianObject)

class brian2.core.base.BrianObject(*args, **kw)
Bases: brian2.core.names.Nameable
All Brian objects derive from this class, defines magic tracking and update.
See the documentation for Network for an explanation of which objects get updated in which order.

Parameters dt : Quantity, optional
The time step to be used for the simulation. Cannot be combined with the clock argu-
ment.

clock : Clock, optional
The update clock to be used. If neither a clock, nor the dt argument is specified, the
defaultclock will be used.

when : str, optional
In which scheduling slot to simulate the object during a time step. Defaults to 'start'.
See Scheduling for possible values.

order : int, optional
The priority of this object for operations occurring at the same time step and in the same
scheduling slot. Defaults to 0.

namespace: dict, optional :
A dictionary mapping identifier names to objects. If not given, the namespace will be filled
in at the time of the call of Network.run, with either the values from the namespace
argument of the Network.run method or from the local context, if no such argument
is given.

name : str, optional
A unique name for the object - one will be assigned automatically if not provided (of the
form brianobject_1, etc.).

Notes :
—– :
The set of all `BrianObject` objects is stored in ``BrianObject.__instances__()``. :

516 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

Attributes

_clock The clock used for simulating this object
_creation_stack A string indicating where this object was created

(traceback with any parts of Brian code removed)
_network Used to remember the Network in which this object

has been included before, to raise an error if it is in-
cluded in a new Network

_scope_current_key Global key value for ipython cell restrict magic
_scope_key The scope key is used to determine which objects are

collected by magic
active Whether or not the object should be run.
add_to_magic_network Whether or not the object should be added to a Mag-

icNetwork.
clock The Clock determining when the object should be

updated.
code_objects The list of CodeObject contained within the Bri-

anObject.
contained_objects The list of objects contained within the BrianOb-

ject.
invalidates_magic_network Whether or not MagicNetwork is invalidated when

a new BrianObject of this type is added
name The unique name for this object.
namespace The group-specific namespace
order The order in which objects with the same clock and

when should be updated
updaters The list of Updater that define the runtime be-

haviour of this object.
when The ID string determining when the object should be

updated in Network.run.

Methods

add_dependency(obj) Add an object to the list of dependencies.
after_run() Optional method to do work after a run is finished.
before_run(run_namespace) Optional method to prepare the object before a run.
run()

Details

_clock

The clock used for simulating this object
_creation_stack

A string indicating where this object was created (traceback with any parts of Brian code removed)
_network

Used to remember the Network in which this object has been included before, to raise an error if it is
included in a new Network

6.7. Subpackages 517

Brian 2 Documentation, Release 2.5.1

_scope_current_key

Global key value for ipython cell restrict magic
_scope_key

The scope key is used to determine which objects are collected by magic
active

Whether or not the object should be run.
Inactive objects will not have their updatemethod called in Network.run. Note that setting or unsetting
the active attribute will set or unset it for all contained_objects.

add_to_magic_network

Whether or not the object should be added to a MagicNetwork. Note that all objects in BrianObject.
contained_objects are automatically added when the parent object is added, therefore e.g. Neu-
ronGroup should set add_to_magic_network to True, but it should not be set for all the dependent
objects such as StateUpdater

clock

The Clock determining when the object should be updated.
Note that this cannot be changed after the object is created.

code_objects

The list of CodeObject contained within the BrianObject.
TODO: more details.
Note that this attribute cannot be set directly, you need to modify the underlying list, e.g. obj.
code_objects.extend([A, B]).

contained_objects

The list of objects contained within the BrianObject.
When a BrianObject is added to a Network, its contained objects will be added as well. This allows
for compound objects which contain a mini-network structure.
Note that this attribute cannot be set directly, you need to modify the underlying list, e.g. obj.
contained_objects.extend([A, B]).

invalidates_magic_network

Whether or not MagicNetwork is invalidated when a new BrianObject of this type is added
name

The unique name for this object.
Used when generating code. Should be an acceptable variable name, i.e. starting with a letter character and
followed by alphanumeric characters and _.

namespace

The group-specific namespace
order

The order in which objects with the same clock and when should be updated
updaters

The list of Updater that define the runtime behaviour of this object.
TODO: more details.
Note that this attribute cannot be set directly, you need to modify the underlying list, e.g. obj.updaters.
extend([A, B]).

518 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

when

The ID string determining when the object should be updated in Network.run.
add_dependency(obj)

Add an object to the list of dependencies. Takes care of handling subgroups correctly (i.e., adds its parent
object).

Parameters obj : BrianObject
The object that this object depends on.

after_run()

Optional method to do work after a run is finished.
Called by Network.after_run after the main simulation loop terminated.

before_run(run_namespace)
Optional method to prepare the object before a run.
Called by Network.after_run before the main simulation loop starts.

run()

BrianObjectException(message, brianobj) High level exception that adds extra Brian-specific infor-
mation to exceptions

BrianObjectException class

(Shortest import: from brian2 import BrianObjectException)

class brian2.core.base.BrianObjectException(message, brianobj)
Bases: Exception
High level exception that adds extra Brian-specific information to exceptions
This exception should only be raised at a fairly high level in Brian code to pass information back to the user. It
adds extra information about where a BrianObject was defined to better enable users to locate the source of
problems.

Parameters message : str
Additional error information to add to the original exception.

brianobj : BrianObject
The object that caused the error to happen.

original_exception : Exception
The original exception that was raised.

Functions

brian_object_exception(message, brianobj, ...) Returns a BrianObjectException derived from
the original exception.

6.7. Subpackages 519

https://docs.python.org/3/library/exceptions.html#Exception

Brian 2 Documentation, Release 2.5.1

brian_object_exception function

(Shortest import: from brian2.core.base import brian_object_exception)

brian2.core.base.brian_object_exception(message, brianobj, original_exception)
Returns a BrianObjectException derived from the original exception.
Creates a new class derived from the class of the original exception and BrianObjectException. This allows
exception handling code to respond both to the original exception class and BrianObjectException.
See BrianObjectException for arguments and notes.

device_override(name) Decorates a function/method to allow it to be overridden
by the current Device.

device_override function

(Shortest import: from brian2.core.base import device_override)

brian2.core.base.device_override(name)

Decorates a function/method to allow it to be overridden by the current Device.
The name is the function name in the Device to use as an override if it exists.
The returned function has an additional attribute original_function which is a reference to the original,
undecorated function.

weakproxy_with_fallback(obj) Attempts to create a weakproxy to the object, but falls
back to the object if not possible.

weakproxy_with_fallback function

(Shortest import: from brian2.core.base import weakproxy_with_fallback)

brian2.core.base.weakproxy_with_fallback(obj)
Attempts to create a weakproxy to the object, but falls back to the object if not possible.

clocks module

Clocks for the simulator.
Exported members: Clock, defaultclock
Classes

Clock(*args, **kw) An object that holds the simulation time and the time step.

520 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

Clock class

(Shortest import: from brian2 import Clock)

class brian2.core.clocks.Clock(*args, **kw)
Bases: brian2.groups.group.VariableOwner
An object that holds the simulation time and the time step.

Parameters dt : float
The time step of the simulation as a float

name : str, optional
An explicit name, if not specified gives an automatically generated name

Notes

Clocks are run in the same Network.run iteration if t is the same. The condition for two clocks to be considered
as having the same time is abs(t1-t2)<epsilon*abs(t1), a standard test for equality of floating point
values. The value of epsilon is 1e-14.

Attributes

dt The time step of the simulation in seconds.
dt_ The time step of the simulation as a float (in seconds)
epsilon_dt The relative difference for times (in terms of dt) so that

they are considered identical.

Methods

set_interval(self, start, end) Set the start and end time of the simulation.

Details

dt

The time step of the simulation in seconds.
dt_

The time step of the simulation as a float (in seconds)
epsilon_dt

The relative difference for times (in terms of dt) so that they are considered identical.
set_interval(self, start, end)

Set the start and end time of the simulation.
Sets the start and end value of the clock precisely if possible (using epsilon) or rounding up if not. This assures
that multiple calls to Network.run will not re-run the same time step.

6.7. Subpackages 521

Brian 2 Documentation, Release 2.5.1

Tutorials and examples using this

• Example COBAHH
• Example CUBA

DefaultClockProxy() Method proxy to access the defaultclock of the currently
active device

DefaultClockProxy class

(Shortest import: from brian2.core.clocks import DefaultClockProxy)

class brian2.core.clocks.DefaultClockProxy

Bases: object
Method proxy to access the defaultclock of the currently active device

Functions

check_dt(new_dt, old_dt, target_t) Check that the target time can be represented equally well
with the new dt.

check_dt function

(Shortest import: from brian2.core.clocks import check_dt)

brian2.core.clocks.check_dt(new_dt, old_dt, target_t)
Check that the target time can be represented equally well with the new dt.

Parameters new_dt : float
The new dt value

old_dt : float
The old dt value

target_t : float
The target time

Raises

ValueError If using the new dt value would lead to a difference in the target time of more than Clock.
epsilon_dt times new_dt (by default, 0.01% of the new dt).

522 Chapter 6. brian2 package

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#ValueError

Brian 2 Documentation, Release 2.5.1

Examples

>>> from brian2 import *
>>> check_dt(float(17*ms), float(0.1*ms), float(0*ms)) # For t=0s, every dt is␣
↪→fine
>>> check_dt(float(0.05*ms), float(0.1*ms), float(10*ms)) # t=10*ms can be␣
↪→represented with the new dt
>>> check_dt(float(0.2*ms), float(0.1*ms), float(10.1*ms)) # t=10.1ms cannot be␣
↪→represented with dt=0.2ms
Traceback (most recent call last):
...
ValueError: Cannot set dt from 100. us to 200. us, the time 10.1 ms is not a␣
↪→multiple of 200. us.

Objects

defaultclock The standard clock, used for objects that do not specify
any clock or dt

defaultclock object

(Shortest import: from brian2 import defaultclock)

brian2.core.clocks.defaultclock = <brian2.core.clocks.DefaultClockProxy
object>

The standard clock, used for objects that do not specify any clock or dt

core_preferences module

Definitions, documentation, default values and validation functions for core Brian preferences.
Functions

default_float_dtype_validator(dtype)

default_float_dtype_validator function

(Shortest import: from brian2.core.core_preferences import de-
fault_float_dtype_validator)

brian2.core.core_preferences.default_float_dtype_validator(dtype)

dtype_repr(dtype)

6.7. Subpackages 523

Brian 2 Documentation, Release 2.5.1

dtype_repr function

(Shortest import: from brian2.core.core_preferences import dtype_repr)

brian2.core.core_preferences.dtype_repr(dtype)

functions module

Exported members: DEFAULT_FUNCTIONS, Function, implementation(), declare_types()
Classes

Function(pyfunc[, sympy_func, arg_units, ...]) An abstract specification of a function that can be used as
part of model equations, etc.

Function class

(Shortest import: from brian2 import Function)

class brian2.core.functions.Function(pyfunc, sympy_func=None, arg_units=None,
arg_names=None, return_unit=None, arg_types=None,
return_type=None, stateless=True, auto_vectorise=False)

Bases: object
An abstract specification of a function that can be used as part of model equations, etc.

Parameters pyfunc : function
A Python function that is represented by this Function object.

sympy_func : sympy.Function, optional
A corresponding sympy function (if any). Allows functions to be interpreted by sympy
and potentially make simplifications. For example, sqrt(x**2) could be replaced by
abs(x).

arg_units : list of Unit, optional
If pyfunc does not provide unit information (which typically means that it was not anno-
tated with a check_units() decorator), the units of the arguments have to specified
explicitly using this parameter.

return_unit : Unit or callable, optional
Same as for arg_units: if pyfunc does not provide unit information, this information
has to be provided explictly here. return_unit can either be a specific Unit, if the
function always returns the same unit, or a function of the input units, e.g. a “square”
function would return the square of its input units, i.e. return_unit could be specified
as lambda u: u**2.

arg_types : list of str, optional
Similar to arg_units, but gives the type of the argument rather than its unit. In the
current version of Brian arguments are specified by one of the following strings: ‘boolean’,
‘integer’, ‘float’, ‘any’. If arg_types is not specified, ‘any’ will be assumed. In future
versions, a more refined specification may be possible. Note that any argument with a type
other than float should have no units. If

524 Chapter 6. brian2 package

https://docs.python.org/3/library/functions.html#object

Brian 2 Documentation, Release 2.5.1

return_type : str, optional
Similar to return_unit and arg_types. In addition to ‘boolean’, ‘integer’ and ‘float’
you can also use ‘highest’ which will return the highest type of its arguments. You can also
give a function, as for return_unit. If the return type is not specified, it is assumed
to be ‘float’.

stateless : bool, optional
Whether this function does not have an internal state, i.e. if it always returns the same
output when called with the same arguments. This is true for mathematical functions but
not true for rand(), for example. Defaults to True.

auto_vectorise : bool, optional
Whether the implementations of this function should get an additional argument (not spec-
ified in abstract code) that can be used to determine the number of values that should be
returned (for the numpy target), or an index potentially useful for generating deterministic
values independent of the order of vectorisation (for all other targets). The main use case
are random number functions, e.g. equations refer to rand(), but the generate code will
actually call rand(_vectorisation_idx). Defaults to False.

Notes

If a function should be usable for code generation targets other than Python/numpy, implementations for these target
languages have to be added using the implementation decorator or using the add_implementations
function.

Attributes

implementations Stores implementations for this function in a Func-
tionImplementationContainer

Methods

__call__(*args) Call self as a function.
is_locally_constant(dt) Return whether this function (if interpreted as a func-

tion of time) should be considered constant over a
timestep.

Details

implementations

Stores implementations for this function in a FunctionImplementationContainer
__call__(*args)

Call self as a function.
is_locally_constant(dt)

Return whether this function (if interpreted as a function of time) should be considered constant over a
timestep. This is most importantly used by TimedArray so that linear integration can be used. In its
standard implementation, always returns False.

6.7. Subpackages 525

Brian 2 Documentation, Release 2.5.1

Parameters dt : float
The length of a timestep (without units).

Returns constant : bool
Whether the results of this function can be considered constant over one timestep of length
dt.

FunctionImplementation([name, code, ...]) A simple container object for function implementations.

FunctionImplementation class

(Shortest import: from brian2.core.functions import FunctionImplementation)

class brian2.core.functions.FunctionImplementation(name=None, code=None,
namespace=None, dependencies=None,
availability_check=None,
dynamic=False, compiler_kwds=None)

Bases: object
A simple container object for function implementations.

Parameters name : str, optional
The name of the function in the target language. Should only be specified if the function
has to be renamed for the target language.

code : language-dependent, optional
A language dependent argument specifying the implementation in the target language, e.g.
a code string or a dictionary of code strings.

namespace : dict-like, optional
A dictionary of mappings from names to values that should be added to the namespace of
a CodeObject using the function.

dependencies : dict-like, optional
A mapping of names to Function objects, for additional functions needed by this func-
tion.

availability_check : callable, optional
A function that will be called to check whether the function should be made available (e.g.
depending on whether it is supported by the compiler). The function should do nothing if
the function is available, or raise a NotImplementedErrorwith a message explaining
why it isn’t.

dynamic : bool, optional
Whether this code/namespace is dynamic, i.e. generated for each new context it is
used in. If set to True, code and namespace have to be callable with a Group as
an argument and are expected to return the final code and namespace. Defaults to
False.

526 Chapter 6. brian2 package

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/code.html#module-code
https://docs.python.org/3/library/code.html#module-code
https://docs.python.org/3/library/code.html#module-code

Brian 2 Documentation, Release 2.5.1

Methods

get_code(owner)

get_namespace(owner)

Details

get_code(owner)

get_namespace(owner)

FunctionImplementationCon-
tainer(function)

Helper object to store implementations and give access in
a dictionary-like fashion, using CodeGenerator im-
plementations as a fallback forCodeObject implemen-
tations.

FunctionImplementationContainer class

(Shortest import: from brian2.core.functions import FunctionImplementationContainer)

class brian2.core.functions.FunctionImplementationContainer(function)
Bases: collections.abc.Mapping
Helper object to store implementations and give access in a dictionary-like fashion, using CodeGenerator im-
plementations as a fallback for CodeObject implementations.

Methods

add_dynamic_implementation(target,
code[, ...])

Adds an "dynamic implementation" for this function.

add_implementation(target, code[, ...])

add_numpy_implementation(wrapped_func[,
...])

Add a numpy implementation to a Function.

Details

add_dynamic_implementation(target, code, namespace=None, dependencies=None,
availability_check=None, name=None, compiler_kwds=None)

Adds an “dynamic implementation” for this function. code and namespace arguments are expected to
be callables that will be called in Network.before_run with the owner of the CodeObject as an
argument. This allows to generate code that depends on details of the context it is run in, e.g. the dt of a
clock.

add_implementation(target, code, namespace=None, dependencies=None, availability_check=None,
name=None, compiler_kwds=None)

6.7. Subpackages 527

https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping
https://docs.python.org/3/library/code.html#module-code

Brian 2 Documentation, Release 2.5.1

add_numpy_implementation(wrapped_func, dependencies=None, discard_units=None,
compiler_kwds=None)

Add a numpy implementation to a Function.
Parameters function : Function

The function description for which an implementation should be added.
wrapped_func : callable
The original function (that will be used for the numpy implementation)

dependencies : list of Function, optional
A list of functions this function needs.

discard_units : bool, optional
See implementation().

SymbolicConstant(name, sympy_obj, value) Class for representing constants (e.g.

SymbolicConstant class

(Shortest import: from brian2.core.functions import SymbolicConstant)

class brian2.core.functions.SymbolicConstant(name, sympy_obj, value)
Bases: brian2.core.variables.Constant
Class for representing constants (e.g. pi) that are understood by sympy.

exprel(arg) Represents (exp(x) - 1)/x.

exprel class

(Shortest import: from brian2.core.functions import exprel)

class brian2.core.functions.exprel(arg)
Bases: sympy.core.function.Function
Represents (exp(x) - 1)/x.
The benefit of using exprel(x) over (exp(x) - 1)/x is that the latter is prone to cancellation under finite
precision arithmetic when x is close to zero, and cannot be evaluated when x is equal to zero.

Methods

eval(arg) Returns a canonical form of cls applied to arguments
args.

fdiff([argindex]) Returns the first derivative of this function.

528 Chapter 6. brian2 package

https://docs.sympy.org/dev/modules/core.html#sympy.core.function.Function

Brian 2 Documentation, Release 2.5.1

Details

classmethod eval(arg)

Returns a canonical form of cls applied to arguments args.
fdiff(argindex=1)

Returns the first derivative of this function.

Tutorials and examples using this

• Example COBAHH
• Example IF_curve_Hodgkin_Huxley

• Example advanced/exprel_function
• Example advanced/float_32_64_benchmark

• Example compartmental/hh_with_spikes

• Example compartmental/hodgkin_huxley_1952

• Example compartmental/lfp

• Example frompapers/Wang_Buszaki_1996

Functions

declare_types(**types) Decorator to declare argument and result types for a func-
tion

declare_types function

(Shortest import: from brian2 import declare_types)

brian2.core.functions.declare_types(**types)
Decorator to declare argument and result types for a function
Usage is similar to check_units() except that types must be one of {VALID_ARG_TYPES} and the result
type must be one of {VALID_RETURN_TYPES}. Unspecified argument types are assumed to be 'all' (i.e.
anything is permitted), and an unspecified result type is assumed to be 'float'. Note that the 'highest'
option for result type will give the highest type of its argument, e.g. if the arguments were boolean and integer then
the result would be integer, if the arguments were integer and float it would be float.

implementation(target[, code, namespace, ...]) A simple decorator to extend user-written Python func-
tions to work with code generation in other languages.

6.7. Subpackages 529

Brian 2 Documentation, Release 2.5.1

implementation function

(Shortest import: from brian2 import implementation)

brian2.core.functions.implementation(target, code=None, namespace=None, dependencies=None,
discard_units=None, name=None, **compiler_kwds)

A simple decorator to extend user-written Python functions to work with code generation in other languages.
Parameters target : str

Name of the code generation target (e.g. 'cython') for which to add an implementation.
code : str or dict-like, optional

What kind of code the target language expects is language-specific, e.g. C++ code allows
for a dictionary of code blocks instead of a single string.

namespaces : dict-like, optional
A namespace dictionary (i.e. a mapping of names to values) that should be added to a
CodeObject namespace when using this function.

dependencies : dict-like, optional
A mapping of names to Function objects, for additional functions needed by this func-
tion.

discard_units: bool, optional :
Numpy functions can internally make use of the unit system. However, during a simu-
lation run, state variables are passed around as unitless values for efficiency. If dis-
card_units is set to False, input arguments will have units added to them so that
the function can still use units internally (the units will be stripped away from the return
value as well). Alternatively, if discard_units is set to True, the function will re-
ceive unitless values as its input. The namespace of the function will be altered to make
references to units (e.g. ms) refer to the corresponding floating point values so that no unit
mismatch errors are raised. Note that this system cannot work in all cases, e.g. it does not
work with functions that internally imports values (e.g. does from brian2 import
ms) or access values with units indirectly (e.g. uses brian2.ms instead of ms). If no
value is given, defaults to the preference setting codegen.runtime.numpy.discard_units.

name : str, optional
The name of the function in the target language. Should only be specified if the function
has to be renamed for the target language.

compiler_kwds : dict, optional
Additional keyword arguments will be transferred to the code generation stage, e.g. for
C++-based targets, the code can make use of additional header files by providing a list of
strings as the headers argument.

530 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

Notes

While it is in principle possible to provide a numpy implementation as an argument for this decorator, this is
normally not necessary – the numpy implementation should be provided in the decorated function.
If this decorator is used with other decorators such as check_units() or declare_types(), it should be
the uppermost decorator (that is, the last one to be applied).

Examples

Sample usage:

@implementation('cpp','''
#include<math.h>
inline double usersin(double x)
{

return sin(x);
}
''')

def usersin(x):
return sin(x)

timestep(t, dt) Converts a given time to an integer time step.

timestep function

(Shortest import: from brian2.core.functions import timestep)

brian2.core.functions.timestep(t, dt)
Converts a given time to an integer time step. This function slightly shifts the time before dividing it by dt to make
sure that multiples of dt do not end up in the preceding time step due to floating point issues. This function is used
in the refractoriness calculation.
New in version 2.1.3.

Parameters t : np.ndarray, float, Quantity
The time to convert.

dt : float or Quantity
The length of a simulation time step.

Returns ts : np.ndarray, np.int64
The time step corresponding to the given time.

6.7. Subpackages 531

Brian 2 Documentation, Release 2.5.1

Notes

This function cannot handle infinity values, use big values instead (e.g. a NeuronGroupwill use -1e4*second
as the value of the lastspike variable for neurons that never spiked).

magic module

Exported members: MagicNetwork, magic_network, MagicError, run(), stop(), collect(),
store(), restore(), start_scope()
Classes

MagicError Error that is raised when something goes wrong in Mag-
icNetwork

MagicError class

(Shortest import: from brian2 import MagicError)

class brian2.core.magic.MagicError

Bases: Exception
Error that is raised when something goes wrong in MagicNetwork
See notes to MagicNetwork for more details.

MagicNetwork(*args, **kw) Network that automatically adds all Brian objects

MagicNetwork class

(Shortest import: from brian2 import MagicNetwork)

class brian2.core.magic.MagicNetwork(*args, **kw)
Bases: brian2.core.network.Network
Network that automatically adds all Brian objects
In order to avoid bugs, this class will occasionally raise MagicError when the intent of the user is not clear. See
the notes below for more details on this point. If you persistently see this error, then Brian is not able to safely
guess what you intend to do, and you should use a Network object and call Network.run explicitly.
Note that this class cannot be instantiated by the user, there can be only one instance magic_network of Mag-
icNetwork.
See also:
Network, collect(), run(), stop(), store(), restore()

532 Chapter 6. brian2 package

https://docs.python.org/3/library/exceptions.html#Exception

Brian 2 Documentation, Release 2.5.1

Notes

All Brian objects that are visible at the point of the run() call will be included in the network. This class is
designed to work in the following two major use cases:
1. You create a collection of Brian objects, and call run() to run the simulation. Subsequently, you may call

run() again to run it again for a further duration. In this case, the Network.t time will start at 0 and for
the second call to run() will continue from the end of the previous run.

2. You have a loop in which at each iteration, you create some Brian objects and run a simulation using them.
In this case, time is reset to 0 for each call to run().

In any other case, you will have to explicitly create a Network object yourself and call Network.run on this
object. Brian has a built in system to guess which of the cases above applies and behave correctly. When it is
not possible to safely guess which case you are in, it raises MagicError. The rules for this guessing system are
explained below.
If a simulation consists only of objects that have not been run, it will assume that you want to start a new simulation.
If a simulation only consists of objects that have been simulated in the previous run() call, it will continue that
simulation at the previous time.
If neither of these two situations apply, i.e., the network consists of a mix of previously run objects and new objects,
an error will be raised.
In these checks, “non-invalidating” objects (i.e. objects that have BrianObject.
invalidates_magic_network set to False) are ignored, e.g. creating new monitors is always
possible.

Methods

add(*objs) You cannot add objects directly to MagicNetwork
after_run()

check_dependencies()

get_states([units, format, subexpressions, ...]) See Network.get_states.
remove(*objs) You cannot remove objects directly from Magic-

Network
restore([name, filename, ...]) See Network.restore.
run(duration[, report, report_period, ...]) Runs the simulation for the given duration.
set_states(values[, units, format, level]) See Network.set_states.
store([name, filename, level]) See Network.store.

Details

add(*objs)
You cannot add objects directly to MagicNetwork

after_run()

check_dependencies()

get_states(units=True, format='dict', subexpressions=False, level=0)
See Network.get_states.

6.7. Subpackages 533

Brian 2 Documentation, Release 2.5.1

remove(*objs)
You cannot remove objects directly from MagicNetwork

restore(name='default', filename=None, restore_random_state=False, level=0)
See Network.restore.

run(duration, report=None, report_period=60 * second, namespace=None, level=0)
Runs the simulation for the given duration.

Parameters duration : Quantity
The amount of simulation time to run for.

report : {None, ‘text’, ‘stdout’, ‘stderr’, function}, optional
How to report the progress of the simulation. If None, do not report progress. If 'text'
or 'stdout' is specified, print the progress to stdout. If 'stderr' is specified, print
the progress to stderr. Alternatively, you can specify a callback callable(elapsed,
completed, start, duration)which will be passed the amount of time elapsed
as a Quantity, the fraction completed from 0.0 to 1.0, the start time of the sim-
ulation as a Quantity and the total duration of the simulation (in biological time) as
a Quantity. The function will always be called at the beginning and the end (i.e. for
fractions 0.0 and 1.0), regardless of the report_period.

report_period : Quantity
How frequently (in real time) to report progress.

namespace : dict-like, optional
A namespace that will be used in addition to the group-specific namespaces (if defined).
If not specified, the locals and globals around the run function will be used.

profile : bool, optional
Whether to record profiling information (see Network.profiling_info). Defaults
to None (which will use the value set by set_device, if any).

level : int, optional
How deep to go up the stack frame to look for the locals/global (see namespace argu-
ment). Only used by run functions that call this run function, e.g. MagicNetwork.run
to adjust for the additional nesting.

Notes

The simulation can be stopped by calling Network.stop or the global stop() function.
set_states(values, units=True, format='dict', level=0)

See Network.set_states.
store(name='default', filename=None, level=0)

See Network.store.
Functions

collect([level]) Return the list of BrianObjects that will be simulated
if run() is called.

534 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

collect function

(Shortest import: from brian2 import collect)

brian2.core.magic.collect(level=0)
Return the list of BrianObjects that will be simulated if run() is called.

Parameters level : int, optional
How much further up to go in the stack to find the objects. Needs only to be specified if
collect() is called as part of a function and should be increased by 1 for every level
of nesting. Defaults to 0.

Returns objects : set of BrianObject
The objects that will be simulated.

get_objects_in_namespace(level) Get all the objects in the current namespace that derive
from BrianObject.

get_objects_in_namespace function

(Shortest import: from brian2.core.magic import get_objects_in_namespace)

brian2.core.magic.get_objects_in_namespace(level)
Get all the objects in the current namespace that derive from BrianObject. Used to determine the objects for
the MagicNetwork.

Parameters level : int, optional
How far to go back to get the locals/globals. Each function/method call should add 1 to
this argument, functions/method with a decorator have to add 2.

Returns objects : set
A set with weak references to the BrianObjects in the namespace.

restore([name, filename, restore_random_state]) Restore the state of the network and all included objects.

restore function

(Shortest import: from brian2 import restore)

brian2.core.magic.restore(name='default', filename=None, restore_random_state=False)

Restore the state of the network and all included objects.
Parameters name : str, optional

The name of the snapshot to restore, if not specified uses 'default'.
filename : str, optional

The name of the file fromwhere the state should be restored. If not specified, it is expected
that the state exist in memory (i.e. Network.store was previously called without the
filename argument).

restore_random_state : bool, optional

6.7. Subpackages 535

Brian 2 Documentation, Release 2.5.1

Whether to restore the state of the random number generator. If set to True, going
back to an earlier state of the simulation will continue exactly where it left off, even
if the simulation is stochastic. If set to False (the default), random numbers are in-
dependent between runs (except for explicitly set random seeds), regardless of whether
store()/restore() has been used or not. Note that this also restores numpy’s ran-
dom number generator (since it is used internally by Brian), but it does not restore Python’s
builtin random number generator in the random module.

See Also :
——– :
Network.restore :

run(duration[, report, report_period, ...]) Runs a simulation with all "visible" Brian objects for the
given duration.

run function

(Shortest import: from brian2 import run)

brian2.core.magic.run(duration, report=None, report_period=10 * second, namespace=None, level=0)
Runs a simulation with all “visible” Brian objects for the given duration. Calls collect() to gather all the objects,
the simulation can be stopped by calling the global stop() function.
In order to avoid bugs, this function will occasionally raise MagicError when the intent of the user is not clear.
See the notes to MagicNetwork for more details on this point. If you persistently see this error, then Brian is
not able to safely guess what you intend to do, and you should use a Network object and call Network.run
explicitly.

Parameters duration : Quantity
The amount of simulation time to run for. If the network consists of new objects since the
last time run() was called, the start time will be reset to 0. If run() is called twice or
more without changing the set of objects, the second and subsequent runs will start from
the end time of the previous run. To explicitly reset the time to 0, do magic_network.
t = 0*second.

report : {None, ‘text’, ‘stdout’, ‘stderr’, function}, optional
How to report the progress of the simulation. If None, do not report progress. If 'text'
or 'stdout' is specified, print the progress to stdout. If 'stderr' is specified, print
the progress to stderr. Alternatively, you can specify a callback callable(elapsed,
completed, start, duration)which will be passed the amount of time elapsed
as a Quantity, the fraction completed from 0.0 to 1.0, the start time of the sim-
ulation as a Quantity and the total duration of the simulation (in biological time) as
a Quantity. The function will always be called at the beginning and the end (i.e. for
fractions 0.0 and 1.0), regardless of the report_period.

report_period : Quantity
How frequently (in real time) to report progress.

profile : bool, optional
Whether to record profiling information (see Network.profiling_info). Defaults
to None (which will use the value set by set_device, if any).

namespace : dict-like, optional

536 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

A namespace in which objects which do not define their own namespace will be run. If
not namespace is given, the locals and globals around the run function will be used.

level : int, optional
How deep to go down the stack frame to look for the locals/global (see namespace
argument). Only necessary under particular circumstances, e.g. when calling the run
function as part of a function call or lambda expression. This is used in tests, e.g.:
assert_raises(MagicError, lambda: run(1*ms, level=3)).

Raises

MagicError Error raised when it was not possible for Brian to safely guess the intended use. See MagicNet-
work for more details.

See also:
Network.run, MagicNetwork, collect(), start_scope(), stop()

start_scope() Starts a new scope for magic functions

start_scope function

(Shortest import: from brian2 import start_scope)

brian2.core.magic.start_scope()

Starts a new scope for magic functions
All objects created before this call will no longer be automatically included by the magic functions such as run().

stop() Stops all running simulations.

stop function

(Shortest import: from brian2 import stop)

brian2.core.magic.stop()

Stops all running simulations.
See also:
Network.stop, run(), reinit

store([name, filename]) Store the state of the network and all included objects.

6.7. Subpackages 537

Brian 2 Documentation, Release 2.5.1

store function

(Shortest import: from brian2 import store)

brian2.core.magic.store(name='default', filename=None)
Store the state of the network and all included objects.

Parameters name : str, optional
A name for the snapshot, if not specified uses 'default'.

filename : str, optional
A filename where the state should be stored. If not specified, the state will be stored in
memory.

See also:
Network.store

Objects

magic_network Automatically constructed MagicNetwork of all Brian
objects

magic_network object

(Shortest import: from brian2 import magic_network)

brian2.core.magic.magic_network = MagicNetwork()

Automatically constructed MagicNetwork of all Brian objects

names module

Exported members: Nameable

Classes

Nameable(*args, **kw) Base class to find a unique name for an object

Nameable class

(Shortest import: from brian2 import Nameable)

class brian2.core.names.Nameable(*args, **kw)
Bases: brian2.core.tracking.Trackable
Base class to find a unique name for an object
If you specify a name explicitly, and it has already been taken, a ValueError is raised. You can also specify a
name with a wildcard asterisk in the end, i.e. in the form 'name*'. It will then try name first but if this is already
specified, it will try name_1, name__2`, etc. This is the default mechanism used by most core objects in Brian,
e.g. NeuronGroup uses a default name of 'neurongroup*'.

Parameters name : str

538 Chapter 6. brian2 package

https://docs.python.org/3/library/exceptions.html#ValueError

Brian 2 Documentation, Release 2.5.1

An name for the object, possibly ending in * to specify that variants of this name should be
tried if the name (without the asterisk) is already taken. If (and only if) the name for this
object has already been set, it is also possible to call the initialiser with None for the name
argument. This situation can arise when a class derives from multiple classes that derive
themselves from Nameable (e.g. Group and CodeRunner) and their initialisers are
called explicitely.

Raises

ValueError If the name is already taken.

Attributes

id A unique id for this object.
name The unique name for this object.

Methods

assign_id() Assign a new id to this object.

Details

id

A unique id for this object.
In contrast to names, which may be reused, the id stays unique. This is used in the dependency checking to
not have to deal with the chore of comparing weak references, weak proxies and strong references.

name

The unique name for this object.
Used when generating code. Should be an acceptable variable name, i.e. starting with a letter character and
followed by alphanumeric characters and _.

assign_id()

Assign a new id to this object. Under most circumstances, this method should only be called once at the
creation of the object to generate a unique id. In the case of the MagicNetwork, however, the id should
change when a new, independent set of objects is simulated.

Functions

find_name(name[, names]) Determine a unique name.

6.7. Subpackages 539

https://docs.python.org/3/library/exceptions.html#ValueError

Brian 2 Documentation, Release 2.5.1

find_name function

(Shortest import: from brian2.core.names import find_name)

brian2.core.names.find_name(name, names=None)
Determine a unique name. If the desired name is already taken, will try to use a derived name_1, name_2, etc.

Parameters name : str
The desired name.

names : Iterable, optional
A set of names that are already taken. If not provided, will use the names of all Brian
objects as stored in Nameable.

Returns unique_name : str
A name based on name or name itself, unique with respect to the names in names.

namespace module

Implementation of the namespace system, used to resolve the identifiers in model equations of NeuronGroup and
Synapses

Exported members: get_local_namespace(), DEFAULT_FUNCTIONS, DEFAULT_UNITS, DE-
FAULT_CONSTANTS

Functions

get_local_namespace(level) Get the surrounding namespace.

get_local_namespace function

(Shortest import: from brian2 import get_local_namespace)

brian2.core.namespace.get_local_namespace(level)
Get the surrounding namespace.

Parameters level : int, optional
How far to go back to get the locals/globals. Each function/method call should add 1 to
this argument, functions/method with a decorator have to add 2.

Returns namespace : dict
The locals and globals at the given depth of the stack frame.

540 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

network module

Module defining the Network object, the basis of all simulation runs.

Preferences

Network preferences
core.network.default_schedule = ['start', 'groups', 'thresholds', 'synapses',
'resets', 'end']

Default schedule used for networks that don’t specify a schedule.
Exported members: Network, profiling_summary(), scheduling_summary()
Classes

Network(*objs[, name]) The main simulation controller in Brian

Network class

(Shortest import: from brian2 import Network)

class brian2.core.network.Network(*objs, name='network*')
Bases: brian2.core.names.Nameable
The main simulation controller in Brian
Network handles the running of a simulation. It contains a set of Brian objects that are added with add. The
run method actually runs the simulation. The main run loop, determining which objects get called in what or-
der is described in detail in the notes below. The objects in the Network are accesible via their names, e.g.
net['neurongroup'] would return the NeuronGroup with this name.

Parameters objs : (BrianObject, container), optional
A list of objects to be added to the Network immediately, see add.

name : str, optional
An explicit name, if not specified gives an automatically generated name

See also:
MagicNetwork, run(), stop()

Notes

The main run loop performs the following steps:
1. Prepare the objects if necessary, see prepare.
2. Determine the end time of the simulation as t`+``duration`.
3. Determine which set of clocks to update. This will be the clock with the smallest value of t. If there are

several with the same value, then all objects with these clocks will be updated simultaneously. Set t to the
clock time.

4. If the t value of these clocks is past the end time of the simulation, stop running. If the Network.stop
method or the stop() function have been called, stop running. Set t to the end time of the simulation.

6.7. Subpackages 541

Brian 2 Documentation, Release 2.5.1

5. For each object whose clock is set to one of the clocks from the previous steps, call the update method.
This method will not be called if the active flag is set to False. The order in which the objects are called
is described below.

6. Increase Clock.t by Clock.dt for each of the clocks and return to step 2.
The order in which the objects are updated in step 4 is determined by the Network.schedule and the objects
when and order attributes. The schedule is a list of string names. Each when attribute should be one of
these strings, and the objects will be updated in the order determined by the schedule. The default schedule is
['start', 'groups', 'thresholds', 'synapses', 'resets', 'end']. In addition to the
names provided in the schedule, automatic names starting with before_ and after_ can be used. That means
that all objects with when=='before_start' will be updated first, then those with when=='start',
when=='after_start', when=='before_groups', when=='groups' and so forth. If several ob-
jects have the same when attribute, then the order is determined by the order attribute (lower first).

Attributes

_stored_state Stored state of objects (store/restore)
objects The set of objects in the Network, should not normally

be modified directly.
profiling_info The time spent in executing the various CodeOb-

ject s.
schedule List of when slots in the order they will be updated,

can be modified.
sorted_objects The sorted objects of this network in the order defined

by the schedule.
t Current simulation time in seconds (Quantity)
t_ Current time as a float

542 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

Methods

add(*objs) Add objects to the Network
after_run()

before_run(namespace) Prepares the Network for a run.
check_dependencies()

get_profiling_info() The only reason this is not directly implemented in
profiling_info is to allow devices (e.g.

get_states([units, format, subexpressions, ...]) Return a copy of the current state variable values of
objects in the network.

remove(*objs) Remove an object or sequence of objects from a Net-
work.

restore([name, filename, restore_random_state]) Retore the state of the network and all included ob-
jects.

run(duration[, report, report_period, ...]) Runs the simulation for the given duration.
scheduling_summary() Return a SchedulingSummary object, represent-

ing the scheduling information for all objects included
in the network.

set_states(values[, units, format, level]) Set the state variables of objects in the network.
stop() Stops the network from running, this is reset the next

time Network.run is called.
store([name, filename]) Store the state of the network and all included objects.

Details

_stored_state

Stored state of objects (store/restore)
objects

The set of objects in the Network, should not normally be modified directly. Note that in a MagicNetwork,
this attribute only contains the objects during a run: it is filled in before_run and emptied in after_run

profiling_info

The time spent in executing the various CodeObject s.
A list of (name, time) tuples, containing the name of the CodeObject and the total execution time for
simulations of this object (as a Quantity with unit second). The list is sorted descending with execution
time.
Profiling has to be activated using the profile keyword in run() or Network.run.

schedule

List of when slots in the order they will be updated, can be modified.
See notes on scheduling in Network. Note that additional when slots can be added, but the schedule should
contain at least all of the names in the default schedule: ['start', 'groups', 'thresholds',
'synapses', 'resets', 'end'].
The schedule can also be set to None, resetting it to the default schedule set by the
core.network.default_schedule preference.

6.7. Subpackages 543

Brian 2 Documentation, Release 2.5.1

sorted_objects

The sorted objects of this network in the order defined by the schedule.
Objects are sorted first by their when attribute, and secondly by the order attribute. The order of
the when attribute is defined by the schedule. In addition to the slot names defined in the schedule,
automatic slot names starting with before_ and after_ can be used (e.g. the slots ['groups',
'thresholds'] allow to use ['before_groups', 'groups', 'after_groups', 'be-
fore_thresholds', 'thresholds', 'after_thresholds']).
Final ties are resolved using the objects’ names, leading to an arbitrary but deterministic sorting.

t

Current simulation time in seconds (Quantity)
t_

Current time as a float
add(*objs)

Add objects to the Network
Parameters objs : (BrianObject, container)

The BrianObject or container of Brian objects to be added. Specify multiple objects,
or lists (or other containers) of objects. Containers will be added recursively. If the con-
tainer is a dict then it will add the values from the dictionary but not the keys. If you
want to add the keys, do add(objs.keys()).

after_run()

before_run(namespace)
Prepares the Network for a run.
Objects in theNetwork are sorted into the correct running order, and theirBrianObject.before_run
methods are called.

Parameters run_namespace : dict-like, optional
A namespace in which objects which do not define their own namespace will be run.

check_dependencies()

get_profiling_info()

The only reason this is not directly implemented in profiling_info is to allow devices (e.g. CPPStan-
daloneDevice) to overwrite this.

get_states(units=True, format='dict', subexpressions=False, read_only_variables=True, level=0)
Return a copy of the current state variable values of objects in the network.. The returned arrays are copies of
the actual arrays that store the state variable values, therefore changing the values in the returned dictionary
will not affect the state variables.

Parameters vars : list of str, optional
The names of the variables to extract. If not specified, extract all state variables (except for
internal variables, i.e. names that start with '_'). If the subexpressions argument
is True, the current values of all subexpressions are returned as well.

units : bool, optional
Whether to include the physical units in the return value. Defaults to True.

format : str, optional

544 Chapter 6. brian2 package

https://docs.python.org/3/library/stdtypes.html#dict

Brian 2 Documentation, Release 2.5.1

The output format. Defaults to 'dict'.
subexpressions: bool, optional :
Whether to return subexpressions when no list of variable names is given. Defaults to
False. This argument is ignored if an explicit list of variable names is given in vars.

read_only_variables : bool, optional
Whether to return read-only variables (e.g. the number of neurons, the time, etc.). Setting
it to False will assure that the returned state can later be used with set_states.
Defaults to True.

level : int, optional
How much higher to go up the stack to resolve external variables. Only relevant if extract-
ing subexpressions that refer to external variables.

Returns values : dict
A dictionary mapping object names to the state variables of that object, in the specified
format.

See also:
VariableOwner.get_states

remove(*objs)
Remove an object or sequence of objects from a Network.

Parameters objs : (BrianObject, container)
The BrianObject or container of Brian objects to be removed. Specify multiple ob-
jects, or lists (or other containers) of objects. Containers will be removed recursively.

restore(name='default', filename=None, restore_random_state=False)
Retore the state of the network and all included objects.

Parameters name : str, optional
The name of the snapshot to restore, if not specified uses 'default'.

filename : str, optional
The name of the file fromwhere the state should be restored. If not specified, it is expected
that the state exist in memory (i.e. Network.store was previously called without the
filename argument).

restore_random_state : bool, optional
Whether to restore the state of the random number generator. If set to True, going
back to an earlier state of the simulation will continue exactly where it left off, even
if the simulation is stochastic. If set to False (the default), random numbers are in-
dependent between runs (except for explicitly set random seeds), regardless of whether
store()/restore() has been used or not. Note that this also restores numpy’s ran-
dom number generator (since it is used internally by Brian), but it does not restore Python’s
builtin random number generator in the random module.

run(duration, report=None, report_period=60 * second, namespace=None, level=0)
Runs the simulation for the given duration.

Parameters duration : Quantity
The amount of simulation time to run for.

6.7. Subpackages 545

Brian 2 Documentation, Release 2.5.1

report : {None, ‘text’, ‘stdout’, ‘stderr’, function}, optional
How to report the progress of the simulation. If None, do not report progress. If 'text'
or 'stdout' is specified, print the progress to stdout. If 'stderr' is specified, print
the progress to stderr. Alternatively, you can specify a callback callable(elapsed,
completed, start, duration)which will be passed the amount of time elapsed
as a Quantity, the fraction completed from 0.0 to 1.0, the start time of the sim-
ulation as a Quantity and the total duration of the simulation (in biological time) as
a Quantity. The function will always be called at the beginning and the end (i.e. for
fractions 0.0 and 1.0), regardless of the report_period.

report_period : Quantity
How frequently (in real time) to report progress.

namespace : dict-like, optional
A namespace that will be used in addition to the group-specific namespaces (if defined).
If not specified, the locals and globals around the run function will be used.

profile : bool, optional
Whether to record profiling information (see Network.profiling_info). Defaults
to None (which will use the value set by set_device, if any).

level : int, optional
How deep to go up the stack frame to look for the locals/global (see namespace argu-
ment). Only used by run functions that call this run function, e.g. MagicNetwork.run
to adjust for the additional nesting.

Notes

The simulation can be stopped by calling Network.stop or the global stop() function.
scheduling_summary()

Return a SchedulingSummary object, representing the scheduling information for all objects included
in the network.

Returns summary : SchedulingSummary
Object representing the scheduling information.

set_states(values, units=True, format='dict', level=0)
Set the state variables of objects in the network.

Parameters values : dict
A dictionary mapping object names to objects of format, setting the states of this object.

units : bool, optional
Whether the values include physical units. Defaults to True.

format : str, optional
The format of values. Defaults to 'dict'

level : int, optional
How much higher to go up the stack to _resolve external variables. Only relevant when
using string expressions to set values.

546 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

See also:
Group.set_states

stop()

Stops the network from running, this is reset the next time Network.run is called.
store(name='default', filename=None)

Store the state of the network and all included objects.
Parameters name : str, optional

A name for the snapshot, if not specified uses 'default'.
filename : str, optional
A filename where the state should be stored. If not specified, the state will be stored in
memory.

Notes

The state stored to disk can be restored with the Network.restore function. Note that it will only restore
the internal state of all the objects (including undelivered spikes) – the objects have to exist already and they
need to have the same name as when they were stored. Equations, thresholds, etc. are not stored – this is
therefore not a general mechanism for object serialization. Also, the format of the file is not guaranteed to
work across platforms or versions. If you are interested in storing the state of a network for documentation
or analysis purposes use Network.get_states instead.

Tutorials and examples using this

• Tutorial 3-intro-to-brian-simulations

• Example IF_curve_Hodgkin_Huxley

• Example IF_curve_LIF
• Example advanced/compare_GSL_to_conventional

• Example advanced/stochastic_odes
• Example frompapers/Brunel_Wang_2001

• Example frompapers/Maass_Natschlaeger_Markram_2002

• Example multiprocessing/02_using_standalone

• Example multiprocessing/03_standalone_joblib

• Example standalone/standalone_multiplerun

ProfilingSummary(net[, show]) Class to nicely display the results of profiling.

6.7. Subpackages 547

Brian 2 Documentation, Release 2.5.1

ProfilingSummary class

(Shortest import: from brian2.core.network import ProfilingSummary)

class brian2.core.network.ProfilingSummary(net, show=None)
Bases: object
Class to nicely display the results of profiling. Objects of this class are returned by profiling_summary().

Parameters net : Network
The Network object to profile.

show : int, optional
The number of results to show (the longest results will be shown). If not specified, all
results will be shown.

See also:
Network.profiling_info

SchedulingSummary(objects) Object representing the schedule that is used to simulate
the objects in a network.

SchedulingSummary class

(Shortest import: from brian2.core.network import SchedulingSummary)

class brian2.core.network.SchedulingSummary(objects)
Bases: object
Object representing the schedule that is used to simulate the objects in a network. Objects of this type are returned
by scheduling_summary(), they should not be created manually by the user.

Parameters objects : list of BrianObject
The sorted list of objects that are simulated by the network.

TextReport(stream) Helper object to report simulation progress in
Network.run.

TextReport class

(Shortest import: from brian2.core.network import TextReport)

class brian2.core.network.TextReport(stream)
Bases: object
Helper object to report simulation progress in Network.run.

Parameters stream : file
The stream to write to, commonly sys.stdout or sys.stderr.

548 Chapter 6. brian2 package

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/sys.html#sys.stdout
https://docs.python.org/3/library/sys.html#sys.stderr

Brian 2 Documentation, Release 2.5.1

Methods

__call__(elapsed, completed, start, duration) Call self as a function.

Details

__call__(elapsed, completed, start, duration)
Call self as a function.

Functions

profiling_summary([net, show]) Returns a ProfilingSummary of the profiling info
for a run.

profiling_summary function

(Shortest import: from brian2 import profiling_summary)

brian2.core.network.profiling_summary(net=None, show=None)
Returns a ProfilingSummary of the profiling info for a run. This object can be transformed to a string explic-
itly but on an interactive console simply calling profiling_summary() is enough since it will automatically
convert the ProfilingSummary object.

Parameters net : {Network, None} optional
The Network object to profile, or magic_network if not specified.

show : int
The number of results to show (the longest results will be shown). If not specified, all
results will be shown.

schedule_propagation_offset([net]) Returns the minimal time difference for a post-synaptic
effect after a spike.

schedule_propagation_offset function

(Shortest import: from brian2.core.network import schedule_propagation_offset)

brian2.core.network.schedule_propagation_offset(net=None)
Returns the minimal time difference for a post-synaptic effect after a spike. With the default schedule, this time
difference is 0, since the thresholds slot precedes the synapses slot. For the GeNN device, however, a
post-synaptic effect will occur in the following time step, this function therefore returns one dt.

Parameters net : Network
The network to check (uses the magic network if not specified).

Returns offset : Quantity
The minimum spike propagation delay: 0*ms for the standard schedule but dt for sched-
ules where synapses precedes thresholds.

6.7. Subpackages 549

Brian 2 Documentation, Release 2.5.1

Notes

This function always returns 0*ms or defaultclock.dt – no attempt is made to deal with other clocks.

scheduling_summary([net]) Returns a SchedulingSummary object, representing
the scheduling information for all objects included in the
given Network (or the "magic" network, if none is spec-
ified).

scheduling_summary function

(Shortest import: from brian2 import scheduling_summary)

brian2.core.network.scheduling_summary(net=None)
Returns a SchedulingSummary object, representing the scheduling information for all objects included in the
given Network (or the “magic” network, if none is specified). The returned objects can be printed or converted
to a string to give an ASCII table representation of the schedule. In a Jupyter notebook, the output can be displayed
as a HTML table.

Parameters net : Network, optional
The network for which the scheduling information should be displayed. Defaults to the
“magic” network.

Returns summary : SchedulingSummary
An object that represents the scheduling information.

operations module

Exported members: NetworkOperation, network_operation()
Classes

NetworkOperation(*args, **kw) Object with function that is called every time step.

NetworkOperation class

(Shortest import: from brian2 import NetworkOperation)

class brian2.core.operations.NetworkOperation(*args, **kw)
Bases: brian2.core.base.BrianObject
Object with function that is called every time step.

Parameters function : function
The function to call every time step, should take either no arguments in which case it
is called as function() or one argument, in which case it is called with the current
Clock time (Quantity).

dt : Quantity, optional
The time step to be used for the simulation. Cannot be combined with the clock argu-
ment.

550 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

clock : Clock, optional
The update clock to be used. If neither a clock, nor the dt argument is specified, the
defaultclock will be used.

when : str, optional
In which scheduling slot to execute the operation during a time step. Defaults to
'start'. See Scheduling for possible values.

order : int, optional
The priority of this operation for operations occurring at the same time step and in the
same scheduling slot. Defaults to 0.

See also:
network_operation(), Network, BrianObject

Attributes

function The function to be called each time step

Methods

run()

Details

function

The function to be called each time step
run()

Functions

network_operation([when]) Decorator to make a function get called every time step
of a simulation.

network_operation function

(Shortest import: from brian2 import network_operation)

brian2.core.operations.network_operation(when=None)

Decorator to make a function get called every time step of a simulation.
The function being decorated should either have no arguments, or a single argument which will be called with the
current time t.

Parameters dt : Quantity, optional
The time step to be used for the simulation. Cannot be combined with the clock argu-
ment.

6.7. Subpackages 551

Brian 2 Documentation, Release 2.5.1

clock : Clock, optional
The update clock to be used. If neither a clock, nor the dt argument is specified, the
defaultclock will be used.

when : str, optional
In which scheduling slot to execute the operation during a time step. Defaults to
'start'. See Scheduling for possible values.

order : int, optional
The priority of this operation for operations occurring at the same time step and in the
same scheduling slot. Defaults to 0.

See also:
NetworkOperation, Network, BrianObject

Notes

Converts the function into a NetworkOperation.
If using the form:

@network_operations(when='end')
def f():

...

Then the arguments to network_operation must be keyword arguments.

Examples

Print something each time step: >>> from brian2 import * >>> @network_operation … def f(): …
print(‘something’) … >>> net = Network(f)
Print the time each time step:

>>> @network_operation
... def f(t):
... print('The time is', t)
...
>>> net = Network(f)

Specify a dt, etc.:

>>> @network_operation(dt=0.5*ms, when='end')
... def f():
... print('This will happen at the end of each timestep.')
...
>>> net = Network(f)

552 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

preferences module

Brian global preferences are stored as attributes of a BrianGlobalPreferences object prefs.
Exported members: PreferenceError, BrianPreference, prefs, brian_prefs
Classes

BrianGlobalPreferences() Class of the prefs object.

BrianGlobalPreferences class

(Shortest import: from brian2.core.preferences import BrianGlobalPreferences)

class brian2.core.preferences.BrianGlobalPreferences

Bases: collections.abc.MutableMapping
Class of the prefs object.
Used for getting/setting/validating/registering preference values. All preferences must be registered via regis-
ter_preferences. To get or set a preference, you can either use a dictionary-based or an attribute-based
interface:

prefs['core.default_float_dtype'] = float32
prefs.core.default_float_dtype = float32

Preferences can be read from files, see load_preferences and read_preference_file. Note that
load_preferences is called automatically when Brian has finished importing.

Attributes

as_file Get a Brian preference doc file format string for the
current preferences

defaults_as_file Get a Brian preference doc file format string for the
default preferences

toplevel_categories The toplevel preference categories

Methods

check_all_validated() Checks that all preferences that have been set have
been validated.

do_validation() Validates preferences that have not yet been validated.
eval_pref(value) Evaluate a string preference in the units namespace
get_documentation([basename, link_targets]) Generates a string documenting all preferences with

the given basename.
load_preferences() Load all the preference files, but do not validate them.
read_preference_file(file) Reads a Brian preferences file
register_preferences(prefbasename, ...) Registers a set of preference names, docs and valida-

tion functions.
reset_to_defaults() Resets the parameters to their default values.

6.7. Subpackages 553

https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping

Brian 2 Documentation, Release 2.5.1

Details

as_file

Get a Brian preference doc file format string for the current preferences
defaults_as_file

Get a Brian preference doc file format string for the default preferences
toplevel_categories

The toplevel preference categories
check_all_validated()

Checks that all preferences that have been set have been validated.
Logs a warning if not. Should be called by Network.run or other key Brian functions.

do_validation()

Validates preferences that have not yet been validated.
eval_pref(value)

Evaluate a string preference in the units namespace
get_documentation(basename=None, link_targets=True)

Generates a string documenting all preferences with the given basename. If no basename is given, all
preferences are documented.

load_preferences()

Load all the preference files, but do not validate them.
Preference files are read in the following order:
1. ~/.brian/user_preferences from the user’s home directory
2. ./brian_preferences from the current directory

Files that are missing are ignored. Preferences read at each step override preferences from previous steps.
See also:
read_preference_file

read_preference_file(file)
Reads a Brian preferences file
The file format for Brian preferences is a plain text file of the form:

a.b.c = 1
Comment line
[a]
b.d = 2
[a.b]
e = 3

Blank and comment lines are ignored, all others should be of one of the following two forms:

key = value
[section]

eval is called on the values, so strings should be written as, e.g. '3' rather than 3. The eval is called with
all unit names available. Within a section, the section name is prepended to the key. So in the above example,
it would give the following unvalidated dictionary:

554 Chapter 6. brian2 package

https://docs.python.org/3/library/functions.html#eval

Brian 2 Documentation, Release 2.5.1

{'a.b.c': 1,
'a.b.d': 2,
'a.b.e': 3,
}

Parameters file : file, str
The file object or filename of the preference file.

register_preferences(prefbasename, prefbasedoc, **prefs)
Registers a set of preference names, docs and validation functions.

Parameters prefbasename : str
The base name of the preference.

prefbasedoc : str
Documentation for this base name

**prefs : dict of (name, BrianPreference) pairs
The preference names to be defined. The full preference name will be prefbasename.
name, and the BrianPreference value is used to define the default value, docs, and
validation function.

Raises

PreferenceError If the base name is already registered.

See also:
BrianPreference

reset_to_defaults()

Resets the parameters to their default values.

BrianGlobalPreferencesView(basename,
all_prefs)

A class allowing for accessing preferences in a subcate-
gory.

BrianGlobalPreferencesView class

(Shortest import: from brian2.core.preferences import BrianGlobalPreferencesView)

class brian2.core.preferences.BrianGlobalPreferencesView(basename, all_prefs)
Bases: collections.abc.MutableMapping
A class allowing for accessing preferences in a subcategory. It forwards requests to BrianGlobalPrefer-
ences and provides documentation and autocompletion support for all preferences in the given category. This
object is used to allow accessing preferences via attributes of the prefs object.

Parameters basename : str
The name of the preference category. Has to correspond to a key in
BrianGlobalPreferences.pref_register.

all_prefs : BrianGlobalPreferences

6.7. Subpackages 555

https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping

Brian 2 Documentation, Release 2.5.1

A reference to the main object storing the preferences.

BrianPreference(default, docs[, validator, ...]) Used for defining a Brian preference.

BrianPreference class

(Shortest import: from brian2 import BrianPreference)

class brian2.core.preferences.BrianPreference(default, docs, validator=None,
representor=<built-in function repr>)

Bases: object
Used for defining a Brian preference.

Parameters default : object
The default value.

docs : str
Documentation for the preference value.

validator : func
A function that True or False depending on whether the preference value is valid or not.
If not specified, uses the DefaultValidator for the default value provided (check if
the class is the same, and for Quantity objects, whether the units are consistent).

representor : func
A function that returns a string representation of a valid preference value that can be passed
to eval. By default, uses repr which works in almost all cases.

DefaultValidator(value) Default preference validator

DefaultValidator class

(Shortest import: from brian2.core.preferences import DefaultValidator)

class brian2.core.preferences.DefaultValidator(value)
Bases: object
Default preference validator
Used by BrianPreference as the default validator if none is given. First checks if the provided value is of the
same class as the default value, and then if the default is a Quantity, checks that the units match.

556 Chapter 6. brian2 package

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#eval
https://docs.python.org/3/library/functions.html#repr
https://docs.python.org/3/library/functions.html#object

Brian 2 Documentation, Release 2.5.1

Methods

__call__(value) Call self as a function.

Details

__call__(value)
Call self as a function.

ErrorRaiser()

ErrorRaiser class

(Shortest import: from brian2.core.preferences import ErrorRaiser)

class brian2.core.preferences.ErrorRaiser

Bases: object

PreferenceError Exception relating to the Brian preferences system.

PreferenceError class

(Shortest import: from brian2 import PreferenceError)

class brian2.core.preferences.PreferenceError

Bases: Exception
Exception relating to the Brian preferences system.

Functions

check_preference_name(name) Make sure that a preference name is valid.

check_preference_name function

(Shortest import: from brian2.core.preferences import check_preference_name)

brian2.core.preferences.check_preference_name(name)
Make sure that a preference name is valid. This currently checks that the name does not contain illegal characters
and does not clash with method names such as “keys” or “items”.

Parameters name : str
The name to check.

6.7. Subpackages 557

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#Exception

Brian 2 Documentation, Release 2.5.1

Raises

PreferenceError In case the name is invalid.

parse_preference_name(name) Split a preference name into a base and end name.

parse_preference_name function

(Shortest import: from brian2.core.preferences import parse_preference_name)

brian2.core.preferences.parse_preference_name(name)

Split a preference name into a base and end name.
Parameters name : str

The full name of the preference.
Returns basename : str

The first part of the name up to the final ..
endname : str

The last part of the name from the final . onwards.

Examples

>>> parse_preference_name('core.default_float_dtype')
('core', 'default_float_dtype')
>>> parse_preference_name('codegen.cpp.compiler')
('codegen.cpp', 'compiler')

Objects

brian_prefs

brian_prefs object

(Shortest import: from brian2 import brian_prefs)

brian2.core.preferences.brian_prefs = <brian2.core.preferences.ErrorRaiser
object>

prefs Preference categories:

558 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

prefs object

(Shortest import: from brian2 import prefs)

brian2.core.preferences.prefs = <BrianGlobalPreferences with top-level
categories: "logging", "devices", "GSL", "codegen", "core", "legacy">

Preference categories:
** logging ** Logging system preferences
** devices ** Device preferences
** GSL ** Directory containing GSL code
** codegen ** Code generation preferences
** core ** Core Brian preferences
** legacy ** Preferences to enable legacy behaviour

spikesource module

Exported members: SpikeSource

Classes

SpikeSource() A source of spikes.

SpikeSource class

(Shortest import: from brian2 import SpikeSource)

class brian2.core.spikesource.SpikeSource

Bases: object
A source of spikes.
An object that can be used as a source of spikes for objects such as SpikeMonitor, Synapses, etc.
The defining properties of SpikeSource are that it should have:

• A length that can be extracted with len(obj), where the maximum spike index possible is len(obj)-1.
• An attribute spikes, an array of ints each from 0 to len(obj)-1 with no repeats (but possibly not in
sorted order). This should be updated each time step.

• A clock attribute, this will be used as the default clock for objects with this as a source.
spikes

An array of ints, each from 0 to len(obj)-1 with no repeats (but possibly not in sorted order). Updated
each time step.

clock

The clock on which the spikes will be updated.

6.7. Subpackages 559

https://docs.python.org/3/library/functions.html#object

Brian 2 Documentation, Release 2.5.1

tracking module

Exported members: Trackable

Classes

InstanceFollower() Keep track of all instances of classes derived from
Trackable

InstanceFollower class

(Shortest import: from brian2.core.tracking import InstanceFollower)

class brian2.core.tracking.InstanceFollower

Bases: object
Keep track of all instances of classes derived from Trackable

The variable __instancesets__ is a dictionary with keys which are class objects, and values which are In-
stanceTrackerSet, so __instanceset__[cls] is a set tracking all of the instances of class cls (or a
subclass).

Methods

add(value)

get(cls)

Details

add(value)

get(cls)

InstanceTrackerSet A set of weakref.ref to all existing objects of a cer-
tain class.

InstanceTrackerSet class

(Shortest import: from brian2.core.tracking import InstanceTrackerSet)

class brian2.core.tracking.InstanceTrackerSet

Bases: set
A set of weakref.ref to all existing objects of a certain class.
Should not normally be directly used.

560 Chapter 6. brian2 package

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/weakref.html#weakref.ref
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/weakref.html#weakref.ref

Brian 2 Documentation, Release 2.5.1

Methods

add(value) Adds a weakref.ref to the value
remove(value) Removes the value (which should be a weakref) if

it is in the set

Details

add(value)
Adds a weakref.ref to the value

remove(value)

Removes the value (which should be a weakref) if it is in the set
Sometimes the value will have been removed from the set by clear, so we ignore KeyError in this case.

Trackable(*args, **kw) Classes derived from this will have their instances tracked.

Trackable class

(Shortest import: from brian2 import Trackable)

class brian2.core.tracking.Trackable(*args, **kw)
Bases: object
Classes derived from this will have their instances tracked.
The classmethod __instances__() will return an InstanceTrackerSet of the instances of that
class, and its subclasses.

variables module

Classes used to specify the type of a function, variable or common sub-expression.
Exported members: Variable, Constant, ArrayVariable, DynamicArrayVariable, Subexpression,
AuxiliaryVariable, VariableView, Variables, LinkedVariable, linked_var()
Classes

ArrayVariable(name, owner, size, device[, ...]) An object providing information about a model variable
stored in an array (for example, all state variables).

6.7. Subpackages 561

https://docs.python.org/3/library/weakref.html#weakref.ref
https://docs.python.org/3/library/weakref.html#weakref.ref
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#classmethod

Brian 2 Documentation, Release 2.5.1

ArrayVariable class

(Shortest import: from brian2.core.variables import ArrayVariable)

class brian2.core.variables.ArrayVariable(name, owner, size, device, dimensions=Dimension(),
dtype=None, constant=False, scalar=False,
read_only=False, dynamic=False, unique=False)

Bases: brian2.core.variables.Variable
An object providing information about a model variable stored in an array (for example, all state variables). Most
of the time Variables.add_array should be used instead of instantiating this class directly.

Parameters name : ‘str’
The name of the variable. Note that this refers to the original name in the owning group.
The same variable may be known under other names in other groups (e.g. the variable v
of a NeuronGroup is known as v_post in a Synapse connecting to the group).

dimensions : Dimension, optional
The physical dimensions of the variable

owner : Nameable
The object that “owns” this variable, e.g. the NeuronGroup or Synapses object that
declares the variable in its model equations.

size : int
The size of the array

device : Device
The device responsible for the memory access.

dtype : dtype, optional
The dtype used for storing the variable. If none is given, defaults to
core.default_float_dtype.

constant : bool, optional
Whether the variable’s value is constant during a run. Defaults to False.

scalar : bool, optional
Whether this array is a 1-element array that should be treated like a scalar (e.g. for a single
delay value across synapses). Defaults to False.

read_only : bool, optional
Whether this is a read-only variable, i.e. a variable that is set internally and cannot be
changed by the user. Defaults to False.

unique : bool, optional
Whether the values in this array are all unique. This information is only important for
variables used as indices and does not have to reflect the actual contents of the array but
only the possibility of non-uniqueness (e.g. synaptic indices are always unique but the
corresponding pre- and post-synaptic indices are not). Defaults to False.

562 Chapter 6. brian2 package

https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype

Brian 2 Documentation, Release 2.5.1

Attributes

conditional_write Another variable, on which the write is conditioned
(e.g.

device The Device responsible for memory access.
size The size of this variable.
unique Wether all values in this arrays are necessarily unique

(only relevant for index variables).

Methods

get_addressable_value(name, group) Get the value (without units) of this variable in a form
that can be indexed in the context of a group.

get_addressable_value_with_unit(name,
group)

Get the value (with units) of this variable in a form that
can be indexed in the context of a group.

get_len() Get the length of the value associated with the variable
or 0 for a scalar variable.

get_value() Return the value associated with the variable (without
units).

set_conditional_write(var)

set_value(value) Set the value associated with the variable.

Details

conditional_write

Another variable, on which the write is conditioned (e.g. a variable denoting the absence of refractoriness)
device

The Device responsible for memory access.
size

The size of this variable.
unique

Wether all values in this arrays are necessarily unique (only relevant for index variables).
get_addressable_value(name, group)

Get the value (without units) of this variable in a form that can be indexed in the context of a group. For
example, if a postsynaptic variable x is accessed in a synapse S as S.x_post, the synaptic indexing scheme
can be used.

Parameters name : str
The name of the variable

group : Group
The group providing the context for the indexing. Note that this group is not necessarily
the same as Variable.owner: a variable owned by a NeuronGroup can be indexed
in a different way if accessed via a Synapses object.

Returns variable : object

6.7. Subpackages 563

Brian 2 Documentation, Release 2.5.1

The variable in an indexable form (without units).
get_addressable_value_with_unit(name, group)

Get the value (with units) of this variable in a form that can be indexed in the context of a group. For example,
if a postsynaptic variable x is accessed in a synapse S as S.x_post, the synaptic indexing scheme can be
used.

Parameters name : str
The name of the variable

group : Group
The group providing the context for the indexing. Note that this group is not necessarily
the same as Variable.owner: a variable owned by a NeuronGroup can be indexed
in a different way if accessed via a Synapses object.

Returns variable : object
The variable in an indexable form (with units).

get_len()

Get the length of the value associated with the variable or 0 for a scalar variable.
get_value()

Return the value associated with the variable (without units). This is the way variables are accessed in gen-
erated code.

set_conditional_write(var)

set_value(value)
Set the value associated with the variable.

AuxiliaryVariable(name[, dimensions, dtype,
...])

Variable description for an auxiliary variable (most likely
one that is added automatically to abstract code, e.g.

AuxiliaryVariable class

(Shortest import: from brian2.core.variables import AuxiliaryVariable)

class brian2.core.variables.AuxiliaryVariable(name, dimensions=Dimension(), dtype=None,
scalar=False)

Bases: brian2.core.variables.Variable
Variable description for an auxiliary variable (most likely one that is added automatically to abstract code, e.g.
_cond for a threshold condition), specifying its type and unit for code generation. Most of the time Variables.
add_auxiliary_variable should be used instead of instantiating this class directly.

Parameters name : str
The name of the variable

dimensions : Dimension, optional
The physical dimensions of the variable.

dtype : dtype, optional
The dtype used for storing the variable. If none is given, defaults to
core.default_float_dtype.

564 Chapter 6. brian2 package

https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype

Brian 2 Documentation, Release 2.5.1

scalar : bool, optional
Whether the variable is a scalar value (True) or vector-valued, e.g. defined for every
neuron (False). Defaults to False.

Methods

get_value() Return the value associated with the variable (without
units).

Details

get_value()

Return the value associated with the variable (without units). This is the way variables are accessed in gen-
erated code.

Constant(name, value[, dimensions, owner]) A scalar constant (e.g.

Constant class

(Shortest import: from brian2.core.variables import Constant)

class brian2.core.variables.Constant(name, value, dimensions=Dimension(), owner=None)
Bases: brian2.core.variables.Variable
A scalar constant (e.g. the number of neurons N). Information such as the dtype or whether this variable is a boolean
are directly derived from the value. Most of the time Variables.add_constant should be used instead
of instantiating this class directly.

Parameters name : str
The name of the variable

dimensions : Dimension, optional
The physical dimensions of the variable. Note that the variable itself (as referenced by
value) should never have units attached.

value: reference to the variable value :
The value of the constant.

owner : Nameable, optional
The object that “owns” this variable, for constants that belong to a specific group, e.g. the
N constant for a NeuronGroup. External constants will have None (the default value).

6.7. Subpackages 565

Brian 2 Documentation, Release 2.5.1

Attributes

value The constant's value

Methods

get_value() Return the value associated with the variable (without
units).

Details

value

The constant’s value
get_value()

Return the value associated with the variable (without units). This is the way variables are accessed in gen-
erated code.

DynamicArrayVariable(name, owner, size, de-
vice)

An object providing information about a model variable
stored in a dynamic array (used in Synapses).

DynamicArrayVariable class

(Shortest import: from brian2.core.variables import DynamicArrayVariable)

class brian2.core.variables.DynamicArrayVariable(name, owner, size, device,
dimensions=Dimension(), dtype=None,
constant=False,
needs_reference_update=False,
resize_along_first=False, scalar=False,
read_only=False, unique=False)

Bases: brian2.core.variables.ArrayVariable
An object providing information about a model variable stored in a dynamic array (used in Synapses). Most of
the time Variables.add_dynamic_array should be used instead of instantiating this class directly.

Parameters name : ‘str’
The name of the variable. Note that this refers to the original name in the owning group.
The same variable may be known under other names in other groups (e.g. the variable v
of a NeuronGroup is known as v_post in a Synapse connecting to the group).

dimensions : Dimension, optional
The physical dimensions of the variable.

owner : Nameable
The object that “owns” this variable, e.g. the NeuronGroup or Synapses object that
declares the variable in its model equations.

size : int or tuple of int

566 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

The (initial) size of the variable.
device : Device

The device responsible for the memory access.
dtype : dtype, optional

The dtype used for storing the variable. If none is given, defaults to
core.default_float_dtype.

constant : bool, optional
Whether the variable’s value is constant during a run. Defaults to False.

needs_reference_update : bool, optional
Whether the code objects need a new reference to the underlying data at every time step.
This should be set if the size of the array can be changed by other code objects. Defaults
to False.

scalar : bool, optional
Whether this array is a 1-element array that should be treated like a scalar (e.g. for a single
delay value across synapses). Defaults to False.

read_only : bool, optional
Whether this is a read-only variable, i.e. a variable that is set internally and cannot be
changed by the user. Defaults to False.

unique : bool, optional
Whether the values in this array are all unique. This information is only important for
variables used as indices and does not have to reflect the actual contents of the array but
only the possibility of non-uniqueness (e.g. synaptic indices are always unique but the
corresponding pre- and post-synaptic indices are not). Defaults to False.

Attributes

dimensions

ndim The number of dimensions
needs_reference_update Whether this variable needs an update of the reference

to the underlying data whenever it is passed to a code
object

resize_along_first Whether this array will be only resized along the first
dimension

6.7. Subpackages 567

https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype

Brian 2 Documentation, Release 2.5.1

Methods

resize(new_size) Resize the dynamic array.

Details

dimensions

ndim

The number of dimensions
needs_reference_update

Whether this variable needs an update of the reference to the underlying data whenever it is passed to a code
object

resize_along_first

Whether this array will be only resized along the first dimension
resize(new_size)

Resize the dynamic array. Calls self.device.resize to do the actual resizing.
Parameters new_size : int or tuple of int

The new size.

LinkedVariable(group, name, variable[, index]) A simple helper class to make linking variables explicit.

LinkedVariable class

(Shortest import: from brian2.core.variables import LinkedVariable)

class brian2.core.variables.LinkedVariable(group, name, variable, index=None)
Bases: object
A simple helper class to make linking variables explicit. Users should use linked_var() instead.

Parameters group : Group
The group through which the variable is accessed (not necessarily the same as
variable.owner.

name : str
The name of variable in group (not necessarily the same as variable.
name).

variable : Variable
The variable that should be linked.

index : str or ndarray, optional
An indexing array (or the name of a state variable), providing a mapping from the entries
in the link source to the link target.

Subexpression(name, owner, expr, device[, ...]) An object providing information about a named subex-
pression in a model.

568 Chapter 6. brian2 package

https://docs.python.org/3/library/functions.html#object
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Brian 2 Documentation, Release 2.5.1

Subexpression class

(Shortest import: from brian2.core.variables import Subexpression)

class brian2.core.variables.Subexpression(name, owner, expr, device, dimensions=Dimension(),
dtype=None, scalar=False)

Bases: brian2.core.variables.Variable
An object providing information about a named subexpression in a model. Most of the time Variables.
add_subexpression should be used instead of instantiating this class directly.

Parameters name : str
The name of the subexpression.

dimensions : Dimension, optional
The physical dimensions of the subexpression.

owner : Group
The group to which the expression refers.

expr : str
The subexpression itself.

device : Device
The device responsible for the memory access.

dtype : dtype, optional
The dtype used for the expression. Defaults to core.default_float_dtype.

scalar: bool, optional :
Whether this is an expression only referring to scalar variables. Defaults to False

Attributes

device The Device responsible for memory access
expr The expression defining the subexpression
identifiers The identifiers used in the expression

Methods

get_addressable_value(name, group) Get the value (without units) of this variable in a form
that can be indexed in the context of a group.

get_addressable_value_with_unit(name,
group)

Get the value (with units) of this variable in a form that
can be indexed in the context of a group.

6.7. Subpackages 569

https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype

Brian 2 Documentation, Release 2.5.1

Details

device

The Device responsible for memory access
expr

The expression defining the subexpression
identifiers

The identifiers used in the expression
get_addressable_value(name, group)

Get the value (without units) of this variable in a form that can be indexed in the context of a group. For
example, if a postsynaptic variable x is accessed in a synapse S as S.x_post, the synaptic indexing scheme
can be used.

Parameters name : str
The name of the variable

group : Group
The group providing the context for the indexing. Note that this group is not necessarily
the same as Variable.owner: a variable owned by a NeuronGroup can be indexed
in a different way if accessed via a Synapses object.

Returns variable : object
The variable in an indexable form (without units).

get_addressable_value_with_unit(name, group)
Get the value (with units) of this variable in a form that can be indexed in the context of a group. For example,
if a postsynaptic variable x is accessed in a synapse S as S.x_post, the synaptic indexing scheme can be
used.

Parameters name : str
The name of the variable

group : Group
The group providing the context for the indexing. Note that this group is not necessarily
the same as Variable.owner: a variable owned by a NeuronGroup can be indexed
in a different way if accessed via a Synapses object.

Returns variable : object
The variable in an indexable form (with units).

Variable(name[, dimensions, owner, dtype, ...]) An object providing information about model variables
(including implicit variables such as t or xi).

570 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

Variable class

(Shortest import: from brian2.core.variables import Variable)

class brian2.core.variables.Variable(name, dimensions=Dimension(), owner=None, dtype=None,
scalar=False, constant=False, read_only=False,
dynamic=False, array=False)

Bases: brian2.utils.caching.CacheKey
An object providing information about model variables (including implicit variables such as t or xi). This class
should never be instantiated outside of testing code, use one of its subclasses instead.

Parameters name : ‘str’
The name of the variable. Note that this refers to the original name in the owning group.
The same variable may be known under other names in other groups (e.g. the variable v
of a NeuronGroup is known as v_post in a Synapse connecting to the group).

dimensions : Dimension, optional
The physical dimensions of the variable.

owner : Nameable, optional
The object that “owns” this variable, e.g. the NeuronGroup or Synapses object that
declares the variable in its model equations. Defaults to None (the value used for Vari-
able objects without an owner, e.g. external Constants).

dtype : dtype, optional
The dtype used for storing the variable. Defaults to the preference core.
default_scalar.dtype.

scalar : bool, optional
Whether the variable is a scalar value (True) or vector-valued, e.g. defined for every
neuron (False). Defaults to False.

constant: bool, optional :
Whether the value of this variable can change during a run. Defaults to False.

read_only : bool, optional
Whether this is a read-only variable, i.e. a variable that is set internally and cannot be
changed by the user (this is used for example for the variable N, the number of neurons in
a group). Defaults to False.

array : bool, optional
Whether this variable is an array. Allows for simpler check than testing
isinstance(var, ArrayVariable). Defaults to False.

6.7. Subpackages 571

https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype

Brian 2 Documentation, Release 2.5.1

Attributes

array Whether the variable is an array
constant Whether the variable is constant during a run
dim The variable's dimensions.
dtype The dtype used for storing the variable.
dtype_str String representation of the numpy dtype
dynamic Whether the variable is dynamically sized (only for

non-scalars)
is_boolean

is_integer

name The variable's name.
owner The Group to which this variable belongs.
read_only Whether the variable is read-only
scalar Whether the variable is a scalar
unit The Unit of this variable

Methods

get_addressable_value(name, group) Get the value (without units) of this variable in a form
that can be indexed in the context of a group.

get_addressable_value_with_unit(name,
group)

Get the value (with units) of this variable in a form that
can be indexed in the context of a group.

get_len() Get the length of the value associated with the variable
or 0 for a scalar variable.

get_value() Return the value associated with the variable (without
units).

get_value_with_unit() Return the value associated with the variable (with
units).

set_value(value) Set the value associated with the variable.

Details

array

Whether the variable is an array
constant

Whether the variable is constant during a run
dim

The variable’s dimensions.
dtype

The dtype used for storing the variable.
dtype_str

String representation of the numpy dtype

572 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

dynamic

Whether the variable is dynamically sized (only for non-scalars)
is_boolean

is_integer

name

The variable’s name.
owner

The Group to which this variable belongs.
read_only

Whether the variable is read-only
scalar

Whether the variable is a scalar
unit

The Unit of this variable
get_addressable_value(name, group)

Get the value (without units) of this variable in a form that can be indexed in the context of a group. For
example, if a postsynaptic variable x is accessed in a synapse S as S.x_post, the synaptic indexing scheme
can be used.

Parameters name : str
The name of the variable

group : Group
The group providing the context for the indexing. Note that this group is not necessarily
the same as Variable.owner: a variable owned by a NeuronGroup can be indexed
in a different way if accessed via a Synapses object.

Returns variable : object
The variable in an indexable form (without units).

get_addressable_value_with_unit(name, group)
Get the value (with units) of this variable in a form that can be indexed in the context of a group. For example,
if a postsynaptic variable x is accessed in a synapse S as S.x_post, the synaptic indexing scheme can be
used.

Parameters name : str
The name of the variable

group : Group
The group providing the context for the indexing. Note that this group is not necessarily
the same as Variable.owner: a variable owned by a NeuronGroup can be indexed
in a different way if accessed via a Synapses object.

Returns variable : object
The variable in an indexable form (with units).

get_len()

Get the length of the value associated with the variable or 0 for a scalar variable.

6.7. Subpackages 573

Brian 2 Documentation, Release 2.5.1

get_value()

Return the value associated with the variable (without units). This is the way variables are accessed in gen-
erated code.

get_value_with_unit()

Return the value associated with the variable (with units).
set_value(value)

Set the value associated with the variable.

VariableView(name, variable, group[, dimensions]) A view on a variable that allows to treat it as an numpy
array while allowing special indexing (e.g.

VariableView class

(Shortest import: from brian2.core.variables import VariableView)

class brian2.core.variables.VariableView(name, variable, group, dimensions=None)

Bases: object
A view on a variable that allows to treat it as an numpy array while allowing special indexing (e.g. with strings) in
the context of a Group.

Parameters name : str
The name of the variable (not necessarily the same as variable.name).

variable : Variable
The variable description.

group : Group
The group through which the variable is accessed (not necessarily the same as
variable.owner).

dimensions : Dimension, optional
The physical dimensions to be used for the variable, should be None when a variable is
accessed without units (e.g. when accessing G.var_).

Attributes

dtype

ndim

shape

unit The Unit of this variable

574 Chapter 6. brian2 package

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None

Brian 2 Documentation, Release 2.5.1

Methods

get_item(item[, level, namespace]) Get the value of this variable.
get_subexpression_with_index_array(item,
...)
get_with_expression(code, run_namespace) Gets a variable using a string expression.
get_with_index_array(item)

set_item(item, value[, level, namespace]) Set this variable.
set_with_expression(item, code,
run_namespace)

Sets a variable using a string expression.

set_with_expression_conditional(cond,
code, ...)

Sets a variable using a string expression and string con-
dition.

set_with_index_array(item, value,
check_units)

Details

dtype

ndim

shape

unit

The Unit of this variable
get_item(item, level=0, namespace=None)

Get the value of this variable. Called by __getitem__.
Parameters item : slice, ndarray or string

The index for the setting operation
level : int, optional
How much farther to go up in the stack to find the implicit namespace (if used, see
run_namespace).

namespace : dict-like, optional
An additional namespace that is used for variable lookup (if not defined, the implicit
namespace of local variables is used).

get_subexpression_with_index_array(item, run_namespace)

get_with_expression(code, run_namespace)

Gets a variable using a string expression. Is called by VariableView.get_item for statements such as
print(G.v['g_syn > 0']).

Parameters code : str
An expression that states a condition for elements that should be selected. Can contain
references to indices, such as i or j and to state variables. For example: 'i>3 and
v>0*mV'.

run_namespace : dict-like

6.7. Subpackages 575

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Brian 2 Documentation, Release 2.5.1

An additional namespace that is used for variable lookup (either an explicitly defined
namespace or one taken from the local context).

get_with_index_array(item)

set_item(item, value, level=0, namespace=None)

Set this variable. This function is called by __setitem__ but there is also a situation where it should be
called directly: if the context for string-based expressions is higher up in the stack, this function allows to set
the level argument accordingly.

Parameters item : slice, ndarray or string
The index for the setting operation

value : Quantity, ndarray or number
The value for the setting operation

level : int, optional
How much farther to go up in the stack to find the implicit namespace (if used, see
run_namespace).

namespace : dict-like, optional
An additional namespace that is used for variable lookup (if not defined, the implicit
namespace of local variables is used).

set_with_expression(item, code, run_namespace, check_units=True)
Sets a variable using a string expression. Is called by VariableView.set_item for statements such as
S.var[:, :] = 'exp(-abs(i-j)/space_constant)*nS'

Parameters item : ndarray
The indices for the variable (in the context of this group).

code : str
The code that should be executed to set the variable values. Can contain references to
indices, such as i or j

run_namespace : dict-like, optional
An additional namespace that is used for variable lookup (if not defined, the implicit
namespace of local variables is used).

check_units : bool, optional
Whether to check the units of the expression.

run_namespace : dict-like, optional
An additional namespace that is used for variable lookup (if not defined, the implicit
namespace of local variables is used).

set_with_expression_conditional(cond, code, run_namespace, check_units=True)
Sets a variable using a string expression and string condition. Is called by VariableView.set_item for
statements such as S.var['i!=j'] = 'exp(-abs(i-j)/space_constant)*nS'

Parameters cond : str
The string condition for which the variables should be set.

code : str
The code that should be executed to set the variable values.

576 Chapter 6. brian2 package

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Brian 2 Documentation, Release 2.5.1

run_namespace : dict-like, optional
An additional namespace that is used for variable lookup (if not defined, the implicit
namespace of local variables is used).

check_units : bool, optional
Whether to check the units of the expression.

set_with_index_array(item, value, check_units)

Variables(owner[, default_index]) A container class for storing Variable objects.

Variables class

(Shortest import: from brian2.core.variables import Variables)

class brian2.core.variables.Variables(owner, default_index='_idx')
Bases: collections.abc.Mapping
A container class for storing Variable objects. Instances of this class are used as the Group.variables
attribute and can be accessed as (read-only) dictionaries.

Parameters owner : Nameable
The object (typically a Group) “owning” the variables.

default_index : str, optional
The index to use for the variables (only relevant for ArrayVariable and Dynami-
cArrayVariable). Defaults to '_idx'.

Attributes

indices A dictionary given the index name for every array
name

owner A reference to the Group owning these variables

6.7. Subpackages 577

https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping

Brian 2 Documentation, Release 2.5.1

Methods

add_arange(name, size[, start, dtype, ...]) Add an array, initialized with a range of integers.
add_array(name, size[, dimensions, values, ...]) Add an array (initialized with zeros).
add_arrays(names, size[, dimensions, dtype, ...]) Adds several arrays (initialized with zeros) with the

same attributes (size, units, etc.).
add_auxiliary_variable(name[, dimen-
sions, ...])

Add an auxiliary variable (most likely one that is added
automatically to abstract code, e.g.

add_constant(name, value[, dimensions]) Add a scalar constant (e.g.
add_dynamic_array(name, size[, dimensions,
...])

Add a dynamic array.

add_object(name, obj) Add an arbitrary Python object.
add_reference(name, group[, varname, index]) Add a reference to a variable defined somewhere else

(possibly under a different name).
add_references(group, varnames[, index]) Add all Variable objects from a name to Vari-

able mapping with the same name as in the original
mapping.

add_referred_subexpression(name,
group, ...)
add_subexpression(name, expr[, dimensions,
...])

Add a named subexpression.

create_clock_variables(clock[, prefix]) Convenience function to add the t and dt attributes
of a clock.

Details

indices

A dictionary given the index name for every array name
owner

A reference to the Group owning these variables
add_arange(name, size, start=0, dtype=<class 'numpy.int32'>, constant=True, read_only=True,

unique=True, index=None)
Add an array, initialized with a range of integers.

Parameters name : str
The name of the variable.

size : int
The size of the array.

start : int
The start value of the range.

dtype : dtype, optional
The dtype used for storing the variable. If none is given, defaults to np.int32.

constant : bool, optional
Whether the variable’s value is constant during a run. Defaults to True.

read_only : bool, optional

578 Chapter 6. brian2 package

https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype

Brian 2 Documentation, Release 2.5.1

Whether this is a read-only variable, i.e. a variable that is set internally and cannot be
changed by the user. Defaults to True.

index : str, optional
The index to use for this variable. Defaults to Variables.default_index.

unique : bool, optional
See ArrayVariable. Defaults to True here.

add_array(name, size, dimensions=Dimension(), values=None, dtype=None, constant=False,
read_only=False, scalar=False, unique=False, index=None)

Add an array (initialized with zeros).
Parameters name : str

The name of the variable.
dimensions : Dimension, optional
The physical dimensions of the variable.

size : int
The size of the array.

values : ndarray, optional
The values to initalize the array with. If not specified, the array is initialized to zero.

dtype : dtype, optional
The dtype used for storing the variable. If none is given, defaults to
core.default_float_dtype.

constant : bool, optional
Whether the variable’s value is constant during a run. Defaults to False.

scalar : bool, optional
Whether this is a scalar variable. Defaults to False, if set to True, also implies that
size() equals 1.

read_only : bool, optional
Whether this is a read-only variable, i.e. a variable that is set internally and cannot be
changed by the user. Defaults to False.

index : str, optional
The index to use for this variable. Defaults to Variables.default_index.

unique : bool, optional
See ArrayVariable. Defaults to False.

add_arrays(names, size, dimensions=Dimension(), dtype=None, constant=False, read_only=False,
scalar=False, unique=False, index=None)

Adds several arrays (initialized with zeros) with the same attributes (size, units, etc.).
Parameters names : list of str

The names of the variable.
dimensions : Dimension, optional

6.7. Subpackages 579

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype

Brian 2 Documentation, Release 2.5.1

The physical dimensions of the variable.
size : int
The sizes of the arrays.

dtype : dtype, optional
The dtype used for storing the variables. If none is given, defaults to
core.default_float_dtype.

constant : bool, optional
Whether the variables’ values are constant during a run. Defaults to False.

scalar : bool, optional
Whether these are scalar variables. Defaults to False, if set to True, also implies that
size() equals 1.

read_only : bool, optional
Whether these are read-only variables, i.e. variables that are set internally and cannot be
changed by the user. Defaults to False.

index : str, optional
The index to use for these variables. Defaults to Variables.default_index.

unique : bool, optional
See ArrayVariable. Defaults to False.

add_auxiliary_variable(name, dimensions=Dimension(), dtype=None, scalar=False)
Add an auxiliary variable (most likely one that is added automatically to abstract code, e.g. _cond for a
threshold condition), specifying its type and unit for code generation.

Parameters name : str
The name of the variable

dimensions : Dimension
The physical dimensions of the variable.

dtype : dtype, optional
The dtype used for storing the variable. If none is given, defaults to
core.default_float_dtype.

scalar : bool, optional
Whether the variable is a scalar value (True) or vector-valued, e.g. defined for every
neuron (False). Defaults to False.

add_constant(name, value, dimensions=Dimension())

Add a scalar constant (e.g. the number of neurons N).
Parameters name : str

The name of the variable
value: reference to the variable value :
The value of the constant.

dimensions : Dimension, optional

580 Chapter 6. brian2 package

https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype

Brian 2 Documentation, Release 2.5.1

The physical dimensions of the variable. Note that the variable itself (as referenced by
value) should never have units attached.

add_dynamic_array(name, size, dimensions=Dimension(), values=None, dtype=None, constant=False,
needs_reference_update=False, resize_along_first=False, read_only=False,
unique=False, scalar=False, index=None)

Add a dynamic array.
Parameters name : str

The name of the variable.
dimensions : Dimension, optional
The physical dimensions of the variable.

size : int or tuple of int
The (initital) size of the array.

values : ndarray, optional
The values to initalize the array with. If not specified, the array is initialized to zero.

dtype : dtype, optional
The dtype used for storing the variable. If none is given, defaults to
core.default_float_dtype.

constant : bool, optional
Whether the variable’s value is constant during a run. Defaults to False.

needs_reference_update : bool, optional
Whether the code objects need a new reference to the underlying data at every time step.
This should be set if the size of the array can be changed by other code objects. Defaults
to False.

scalar : bool, optional
Whether this is a scalar variable. Defaults to False, if set to True, also implies that
size() equals 1.

read_only : bool, optional
Whether this is a read-only variable, i.e. a variable that is set internally and cannot be
changed by the user. Defaults to False.

index : str, optional
The index to use for this variable. Defaults to Variables.default_index.

unique : bool, optional
See DynamicArrayVariable. Defaults to False.

add_object(name, obj)
Add an arbitrary Python object. This is only meant for internal use and therefore only names starting with an
underscore are allowed.

Parameters name : str
The name used for this object (has to start with an underscore).

obj : object

6.7. Subpackages 581

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype

Brian 2 Documentation, Release 2.5.1

An arbitrary Python object that needs to be accessed directly from a CodeObject.
add_reference(name, group, varname=None, index=None)

Add a reference to a variable defined somewhere else (possibly under a different name). This is for example
used in Subgroup and Synapses to refer to variables in the respective NeuronGroup.

Parameters name : str
The name of the variable (in this group, possibly a different name from var.name).

group : Group
The group from which var() is referenced

varname : str, optional
The variable to refer to. If not given, defaults to name.

index : str, optional
The index that should be used for this variable (defaults to Variables.
default_index).

add_references(group, varnames, index=None)
Add all Variable objects from a name to Variable mapping with the same name as in the original
mapping.

Parameters group : Group
The group from which the variables are referenced

varnames : iterable of str
The variables that should be referred to in the current group

index : str, optional
The index to use for all the variables (defaults to Variables.default_index)

add_referred_subexpression(name, group, subexpr, index)

add_subexpression(name, expr, dimensions=Dimension(), dtype=None, scalar=False, index=None)
Add a named subexpression.

Parameters name : str
The name of the subexpression.

dimensions : Dimension
The physical dimensions of the subexpression.

expr : str
The subexpression itself.

dtype : dtype, optional
The dtype used for the expression. Defaults to core.default_float_dtype.

scalar : bool, optional
Whether this is an expression only referring to scalar variables. Defaults to False

index : str, optional
The index to use for this variable. Defaults to Variables.default_index.

582 Chapter 6. brian2 package

https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype

Brian 2 Documentation, Release 2.5.1

create_clock_variables(clock, prefix='')
Convenience function to add the t and dt attributes of a clock.

Parameters clock : Clock
The clock that should be used for t and dt.

prefix : str, optional
A prefix for the variable names. Used for example in monitors to not confuse the dynamic
array of recorded times with the current time in the recorded group.

Functions

get_dtype(obj) Helper function to return the numpy.dtype of an ar-
bitrary object.

get_dtype function

(Shortest import: from brian2.core.variables import get_dtype)

brian2.core.variables.get_dtype(obj)
Helper function to return the numpy.dtype of an arbitrary object.

Parameters obj : object
Any object (but typically some kind of number or array).

Returns dtype : numpy.dtype
The type of the given object.

get_dtype_str(val) Returns canonical string representation of the dtype of a
value or dtype

get_dtype_str function

(Shortest import: from brian2.core.variables import get_dtype_str)

brian2.core.variables.get_dtype_str(val)

Returns canonical string representation of the dtype of a value or dtype
Returns dtype_str : str

The numpy dtype name

linked_var(group_or_variable[, name, index]) Represents a link target for setting a linked variable.

6.7. Subpackages 583

https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype

Brian 2 Documentation, Release 2.5.1

linked_var function

(Shortest import: from brian2 import linked_var)

brian2.core.variables.linked_var(group_or_variable, name=None, index=None)
Represents a link target for setting a linked variable.

Parameters group_or_variable : NeuronGroup or VariableView
Either a reference to the target NeuronGroup (e.g. G) or a direct reference to a Vari-
ableView object (e.g. G.v). In case only the group is specified, name has to be
specified as well.

name : str, optional
The name of the target variable, necessary if group_or_variable is a Neuron-
Group.

index : str or ndarray, optional
An indexing array (or the name of a state variable), providing a mapping from the entries
in the link source to the link target.

Examples

>>> from brian2 import *
>>> G1 = NeuronGroup(10, 'dv/dt = -v / (10*ms) : volt')
>>> G2 = NeuronGroup(10, 'v : volt (linked)')
>>> G2.v = linked_var(G1, 'v')
>>> G2.v = linked_var(G1.v) # equivalent

variables_by_owner(variables, owner)

variables_by_owner function

(Shortest import: from brian2.core.variables import variables_by_owner)

brian2.core.variables.variables_by_owner(variables, owner)

6.7.3 devices package

Package providing the “devices” infrastructure.

584 Chapter 6. brian2 package

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Brian 2 Documentation, Release 2.5.1

device module

Module containing the Device base class as well as the RuntimeDevice implementation and some helper functions
to access/set devices.
Exported members: Device, RuntimeDevice, get_device(), set_device(), all_devices,
reinit_devices, reinit_and_delete, reset_device, device, seed()
Classes

CurrentDeviceProxy() Method proxy for access to the currently active device

CurrentDeviceProxy class

(Shortest import: from brian2.devices.device import CurrentDeviceProxy)

class brian2.devices.device.CurrentDeviceProxy

Bases: object
Method proxy for access to the currently active device

Device() Base Device object.

Device class

(Shortest import: from brian2.devices import Device)

class brian2.devices.device.Device

Bases: object
Base Device object.

Attributes

network_schedule The network schedule that this device supports.

6.7. Subpackages 585

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

Brian 2 Documentation, Release 2.5.1

Methods

activate([build_on_run]) Called when this device is set as the current device.
add_array(var) Add an array to this device.
build(**kwds) For standalone projects, called when the project is

ready to be built.
code_object(owner, name, abstract_code, ...)

code_object_class([codeobj_class, fall-
back_pref])

ReturnCodeObject class according to input/default
settings

delete([data, code, directory, force]) Delete code and/or data generated/stored by the de-
vice.

fill_with_array(var, arr) Fill an array with the values given in another array.
get_array_name(var[, access_data]) Return a globally unique name for var().
get_len(array) Return the length of the array.
get_random_state() Return a (pickable) representation of the current ran-

dom number generator state.
init_with_arange(var, start, dtype) Initialize an array with an integer range.
init_with_zeros(var, dtype) Initialize an array with zeros.
insert_code(slot, code) Insert code directly into a given slot in the device.
insert_device_code(slot, code)

reinit() Reinitialize the device.
resize(var, new_size) Resize a DynamicArrayVariable.
resize_along_first(var, new_size)

seed([seed]) Set the seed for the random number generator.
set_random_state(state) Reset the random number generator state

to a previously stored state (see Device.
get_random_state).

spike_queue(source_start, source_end) Create and return a new SpikeQueue for this De-
vice.

Details

network_schedule

The network schedule that this device supports. If the device only supports a specific, fixed schedule, it has to
set this attribute to the respective schedule (see Network.schedule for details). If it supports arbitrary
schedules, it should be set to None (the default).

activate(build_on_run=True, **kwargs)

Called when this device is set as the current device.
add_array(var)

Add an array to this device.
Parameters var : ArrayVariable

The array to add.
build(**kwds)

For standalone projects, called when the project is ready to be built. Does nothing for runtime mode.

586 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

code_object(owner, name, abstract_code, variables, template_name, variable_indices, codeobj_class=None,
template_kwds=None, override_conditional_write=None, compiler_kwds=None)

code_object_class(codeobj_class=None, fallback_pref='codegen.target')
Return CodeObject class according to input/default settings

Parameters codeobj_class : a CodeObject class, optional
If this is keyword is set to None or no arguments are given, this method will return the
default.

fallback_pref : str, optional
String describing which attribute of prefs to access to retrieve the ‘default’ target. Usually
this is codegen.target, but in some cases we want to use object-specific targets such as
codegen.string_expression_target.

Returns codeobj_class : class
The CodeObject class that should be used

delete(data=True, code=True, directory=True, force=False)
Delete code and/or data generated/stored by the device.

Parameters data : bool, optional
Whether to delete the data generated by the simulation (final values of state variables, data
stored in monitors, etc.). Defaults to True.

code : bool, optional
Whether to delete the code generated by the simulation. Includes the numerical values used
for initialization of state variables in assignments not using strings. Defaults to True.

directory : bool, optional
Whether to delete the project directory generated by the simulation. Will not delete direc-
tories that contain files not created by Brian unless the force option is specfied. Defaults
to True.

force : bool, optional
Whether to delete the project directory with all its content, even if it contains files that
were not created by Brian. Useful only when the directory option is set to True as
well. Defaults to False.

fill_with_array(var, arr)
Fill an array with the values given in another array.

Parameters var : ArrayVariable
The array to fill.

arr : ndarray
The array values that should be copied to var().

get_array_name(var, access_data=True)
Return a globally unique name for var().

Parameters access_data : bool, optional
For DynamicArrayVariable objects, specifying True here means the name for the
underlying data is returned. If specifying False, the name of object itself is returned
(e.g. to allow resizing).

6.7. Subpackages 587

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False

Brian 2 Documentation, Release 2.5.1

Returns name : str
The name for var().

get_len(array)
Return the length of the array.

Parameters array : ArrayVariable
The array for which the length is requested.

Returns l : int
The length of the array.

get_random_state()

Return a (pickable) representation of the current random number generator state. Providing the returned
object (e.g. a dict) to Device.set_random_state should restore the random number generator state.

Returns state :
The state of the random number generator in a representation that can be passed as an
argument to Device.set_random_state.

init_with_arange(var, start, dtype)
Initialize an array with an integer range.

Parameters var : ArrayVariable
The array to fill with the integer range.

start : int
The start value for the integer range

dtype : dtype
The data type to use for the array.

init_with_zeros(var, dtype)
Initialize an array with zeros.

Parameters var : ArrayVariable
The array to initialize with zeros.

dtype : dtype
The data type to use for the array.

insert_code(slot, code)
Insert code directly into a given slot in the device. By default does nothing.

insert_device_code(slot, code)

reinit()

Reinitialize the device. For standalone devices, clears all the internal state of the device.
resize(var, new_size)

Resize a DynamicArrayVariable.
Parameters var : DynamicArrayVariable

The variable that should be resized.
new_size : int

588 Chapter 6. brian2 package

https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype

Brian 2 Documentation, Release 2.5.1

The new size of the variable
resize_along_first(var, new_size)

seed(seed=None)
Set the seed for the random number generator.

Parameters seed : int, optional
The seed value for the random number generator, or None (the default) to set a random
seed.

set_random_state(state)
Reset the random number generator state to a previously stored state (seeDevice.get_random_state).

Parameters state :
A random number generator state as provided by Device.get_random_state.

spike_queue(source_start, source_end)
Create and return a new SpikeQueue for this Device.

Parameters source_start : int
The start index of the source group (necessary for subgroups)

source_end : int
The end index of the source group (necessary for subgroups)

Dummy() Dummy object

Dummy class

(Shortest import: from brian2.devices.device import Dummy)

class brian2.devices.device.Dummy

Bases: object
Dummy object

Methods

__call__(*args, **kwds) Call self as a function.

Details

__call__(*args, **kwds)
Call self as a function.

6.7. Subpackages 589

https://docs.python.org/3/library/functions.html#object

Brian 2 Documentation, Release 2.5.1

Tutorials and examples using this

• Example advanced/exprel_function
• Example frompapers/Stimberg_et_al_2018/example_2_gchi_astrocyte

RuntimeDevice() The default device used in Brian, state variables are stored
as numpy arrays in memory.

RuntimeDevice class

(Shortest import: from brian2.devices import RuntimeDevice)

class brian2.devices.device.RuntimeDevice

Bases: brian2.devices.device.Device
The default device used in Brian, state variables are stored as numpy arrays in memory.

Attributes

arrays Mapping from Variable objects to numpy arrays
(or DynamicArray objects).

Methods

add_array(var) Add an array to this device.
fill_with_array(var, arr) Fill an array with the values given in another array.
get_array_name(var[, access_data]) Return a globally unique name for var().
get_random_state() Return a (pickable) representation of the current ran-

dom number generator state.
get_value(var[, access_data])

init_with_arange(var, start, dtype) Initialize an array with an integer range.
init_with_zeros(var, dtype) Initialize an array with zeros.
resize(var, new_size) Resize a DynamicArrayVariable.
resize_along_first(var, new_size)

seed([seed]) Set the seed for the random number generator.
set_random_state(state) Reset the random number generator state

to a previously stored state (see Device.
get_random_state).

set_value(var, value)

spike_queue(source_start, source_end) Create and return a new SpikeQueue for this De-
vice.

590 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

Details

arrays

Mapping from Variable objects to numpy arrays (or DynamicArray objects). Arrays in this dictionary
will disappear as soon as the last reference to the Variable object used as a key is gone

add_array(var)
Add an array to this device.

Parameters var : ArrayVariable
The array to add.

fill_with_array(var, arr)
Fill an array with the values given in another array.

Parameters var : ArrayVariable
The array to fill.

arr : ndarray
The array values that should be copied to var().

get_array_name(var, access_data=True)
Return a globally unique name for var().

Parameters access_data : bool, optional
For DynamicArrayVariable objects, specifying True here means the name for the
underlying data is returned. If specifying False, the name of object itself is returned
(e.g. to allow resizing).

Returns name : str
The name for var().

get_random_state()

Return a (pickable) representation of the current random number generator state. Providing the returned
object (e.g. a dict) to Device.set_random_state should restore the random number generator state.

Returns state :
The state of the random number generator in a representation that can be passed as an
argument to Device.set_random_state.

get_value(var, access_data=True)

init_with_arange(var, start, dtype)
Initialize an array with an integer range.

Parameters var : ArrayVariable
The array to fill with the integer range.

start : int
The start value for the integer range

dtype : dtype
The data type to use for the array.

6.7. Subpackages 591

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype

Brian 2 Documentation, Release 2.5.1

init_with_zeros(var, dtype)
Initialize an array with zeros.

Parameters var : ArrayVariable
The array to initialize with zeros.

dtype : dtype
The data type to use for the array.

resize(var, new_size)

Resize a DynamicArrayVariable.
Parameters var : DynamicArrayVariable

The variable that should be resized.
new_size : int
The new size of the variable

resize_along_first(var, new_size)

seed(seed=None)
Set the seed for the random number generator.

Parameters seed : int, optional
The seed value for the random number generator, or None (the default) to set a random
seed.

set_random_state(state)
Reset the random number generator state to a previously stored state (seeDevice.get_random_state).

Parameters state :
A random number generator state as provided by Device.get_random_state.

set_value(var, value)

spike_queue(source_start, source_end)
Create and return a new SpikeQueue for this Device.

Parameters source_start : int
The start index of the source group (necessary for subgroups)

source_end : int
The end index of the source group (necessary for subgroups)

Tutorials and examples using this

• Example frompapers/Kremer_et_al_2011_barrel_cortex

Functions

auto_target() Automatically chose a code generation target (invoked
when the codegen.target preference is set to 'auto'.

592 Chapter 6. brian2 package

https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype

Brian 2 Documentation, Release 2.5.1

auto_target function

(Shortest import: from brian2.devices.device import auto_target)

brian2.devices.device.auto_target()

Automatically chose a code generation target (invoked when the codegen.target preference is set to 'auto'.
Caches its result so it only does the check once. Prefers cython > numpy.

Returns target : class derived from CodeObject

The target to use

get_device() Gets the actve Device object

get_device function

(Shortest import: from brian2 import get_device)

brian2.devices.device.get_device()

Gets the actve Device object

reinit_and_delete() Calls reinit_devices and additionally deletes the
files left behind by the standalone mode in the temporary
directory.

reinit_and_delete function

(Shortest import: from brian2.devices import reinit_and_delete)

brian2.devices.device.reinit_and_delete()

Calls reinit_devices and additionally deletes the files left behind by the standalone mode in the temporary
directory. Silently suppresses errors that occur while deleting the directory.

reinit_devices() Reinitialize all devices, call Device.activate again
on the current device and reset the preferences.

reinit_devices function

(Shortest import: from brian2.devices import reinit_devices)

brian2.devices.device.reinit_devices()

Reinitialize all devices, call Device.activate again on the current device and reset the preferences. Used as
a “teardown” function in testing, if users want to reset their device (e.g. for multiple standalone runs in a single
script), calling device.reinit() followed by device.activate() should normally be sufficient.

6.7. Subpackages 593

Brian 2 Documentation, Release 2.5.1

Notes

This also resets the defaultclock, i.e. a non-standard dt has to be set again.

reset_device([device]) Reset to a previously used device.

reset_device function

(Shortest import: from brian2.devices import reset_device)

brian2.devices.device.reset_device(device=None)
Reset to a previously used device. Restores also the previously specified build options (see set_device()) for
the device. Mostly useful for internal Brian code and testing on various devices.

Parameters device : Device or str, optional
The device to go back to. If none is specified, go back to the device chosen with
set_device() before the current one.

seed([seed]) Set the seed for the random number generator.

seed function

(Shortest import: from brian2 import seed)

brian2.devices.device.seed(seed=None)
Set the seed for the random number generator.

Parameters seed : int, optional
The seed value for the random number generator, or None (the default) to set a random
seed.

Notes

This function delegates the call to Device.seed of the current device.

set_device(device[, build_on_run]) Set the device used for simulations.

set_device function

(Shortest import: from brian2 import set_device)

brian2.devices.device.set_device(device, build_on_run=True, **kwargs)

Set the device used for simulations.
Parameters device : Device or str

The Device object or the name of the device.
build_on_run : bool, optional

594 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

Whether a call to run() (or Network.run) should directly trigger a Device.
build. This is only relevant for standalone devices and means that a run call directly
triggers the start of a simulation. If the simulation consists of multiple run calls, set
build_on_run to False and call Device.build explicitly. Defaults to True.

kwargs : dict, optional
Only relevant when build_on_run is True: additional arguments that will be given
to the Device.build call.

Objects

active_device The currently active device (set with set_device())

active_device object

(Shortest import: from brian2.devices.device import active_device)

brian2.devices.device.active_device = <brian2.devices.device.RuntimeDevice
object>

The currently active device (set with set_device())

device Proxy object to access methods of the current device

device object

(Shortest import: from brian2 import device)

brian2.devices.device.device = <brian2.devices.device.CurrentDeviceProxy
object>

Proxy object to access methods of the current device

runtime_device The default device used in Brian, state variables are stored
as numpy arrays in memory.

runtime_device object

(Shortest import: from brian2.devices.device import runtime_device)

brian2.devices.device.runtime_device = <brian2.devices.device.RuntimeDevice
object>

The default device used in Brian, state variables are stored as numpy arrays in memory.

6.7. Subpackages 595

Brian 2 Documentation, Release 2.5.1

Subpackages

cpp_standalone package

Package implementing the C++ “standalone” Device and CodeObject.

GSLcodeobject module

Module containing CPPStandalone CodeObject for code generation for integration using the ODE solver provided in the
GNU Scientific Library
Classes

GSLCPPStandaloneCodeObject(*args, **kw)

GSLCPPStandaloneCodeObject class

(Shortest import: from brian2.devices.cpp_standalone import GSLCPPStandaloneCodeOb-
ject)

class brian2.devices.cpp_standalone.GSLcodeobject.GSLCPPStandaloneCodeObject(*args,
**kw)

Bases: brian2.codegen.codeobject.CodeObject

codeobject module

Module implementing the C++ “standalone” CodeObject
Exported members: CPPStandaloneCodeObject

Classes

CPPStandaloneCodeObject(*args, **kw) C++ standalone code object

CPPStandaloneCodeObject class

(Shortest import: from brian2.devices.cpp_standalone import CPPStandaloneCodeObject)

class brian2.devices.cpp_standalone.codeobject.CPPStandaloneCodeObject(*args,
**kw)

Bases: brian2.codegen.codeobject.CodeObject
C++ standalone code object
The code should be a MultiTemplate object with two macros defined, main (for the main loop code) and
support_code for any support code (e.g. function definitions).

596 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

Attributes

before_after_blocks Store whether this code object defines before/after
blocks

Methods

__call__(**kwds) Call self as a function.
compile_block(block)

run_block(block)

Details

before_after_blocks

Store whether this code object defines before/after blocks
__call__(**kwds)

Call self as a function.
compile_block(block)

run_block(block)

Functions

generate_rand_code(rand_func, owner)

generate_rand_code function

(Shortest import: from brian2.devices.cpp_standalone.codeobject import gener-
ate_rand_code)

brian2.devices.cpp_standalone.codeobject.generate_rand_code(rand_func, owner)

openmp_pragma(pragma_type)

6.7. Subpackages 597

Brian 2 Documentation, Release 2.5.1

openmp_pragma function

(Shortest import: from brian2.devices.cpp_standalone.codeobject import openmp_pragma)

brian2.devices.cpp_standalone.codeobject.openmp_pragma(pragma_type)

device module

Module implementing the C++ “standalone” device.
Classes

CPPStandaloneDevice() The Device used for C++ standalone simulations.

CPPStandaloneDevice class

(Shortest import: from brian2.devices.cpp_standalone.device import CPPStandaloneDe-
vice)

class brian2.devices.cpp_standalone.device.CPPStandaloneDevice

Bases: brian2.devices.device.Device
The Device used for C++ standalone simulations.

598 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

Attributes

arange_arrays List of all arrays to be filled with numbers (list of (var,
varname, start) tuples

array_cache Dictionary mapping ArrayVariable objects to
their value or to None if the value (potentially) de-
pends on executed code.

arrays Dictionary mapping ArrayVariable objects to
their globally unique name

build_on_run Whether a run should trigger a build
build_options build options
code_lines Code lines that have been manually added with

device.insert_code() Dictionary mapping
slot names to lists of lines.

dynamic_arrays List of all dynamic arrays Dictionary mapping Dy-
namicArrayVariable objects with 1 dimension
to their globally unique name

dynamic_arrays_2d Dictionary mapping DynamicArrayVariable
objects with 2 dimensions to their globally unique
name

enable_profiling Whether to generate profiling information (stored in
an instance variable to be accessible during CodeOb-
ject generation)

has_been_run Whether the simulation has been run
profiled_codeobjects CodeObjects that use profiling (users can potentially

enable profiling only for a subset of runs)
project_dir The directory which contains the generated code and

results
static_arrays Dict of all static saved arrays
synapses Set of all existing synapses
timers Dictionary storing compile and binary execution times
zero_arrays List of all arrays to be filled with zeros (list of (var,

varname))

Methods

add_array(var) Add an array to this device.
build([directory, compile, run, debug, ...]) Build the project
check_openmp_compatible(nb_threads)

code_object(owner, name, abstract_code, ...)

code_object_class([codeobj_class, fall-
back_pref])

Return CodeObject class (either CPPStan-
daloneCodeObject class or input)

compile_source(directory, compiler, debug,
clean)
copy_source_files(writer, directory)

delete([code, data, directory, force]) Delete code and/or data generated/stored by the de-
vice.

continues on next page

6.7. Subpackages 599

Brian 2 Documentation, Release 2.5.1

Table 1 – continued from previous page
fill_with_array(var, arr) Fill an array with the values given in another array.
freeze(code, ns)

generate_codeobj_source(writer)

generate_main_source(writer)

generate_makefile(writer, compiler, ...)

generate_network_source(writer, compiler)

generate_objects_source(writer, ...)

generate_run_source(writer)

generate_synapses_classes_source(writer)

get_array_filename(var[, basedir]) Return a file name for a variable.
get_array_name(var[, access_data]) Return a globally unique name for var().
get_value(var[, access_data])

init_with_arange(var, start, dtype) Initialize an array with an integer range.
init_with_zeros(var, dtype) Initialize an array with zeros.
insert_code(slot, code) Insert code directly into main.cpp
network_get_profiling_info(net)

network_restore(net, *args, **kwds)

network_run(net, duration[, report, ...])

network_store(net, *args, **kwds)

reinit() Reinitialize the device.
resize(var, new_size) Resize a DynamicArrayVariable.
run(directory, with_output, run_args)

run_function(name[, include_in_parent]) Context manager to divert code into a function
seed([seed]) Set the seed for the random number generator.
spike_queue(source_start, source_end) Create and return a new SpikeQueue for this De-

vice.
static_array(name, arr)

variableview_get_subexpression_with_index_array(...)

variableview_get_with_expression(...[,
...])
variableview_set_with_index_array(...)

write_static_arrays(directory)

600 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

Details

arange_arrays

List of all arrays to be filled with numbers (list of (var, varname, start) tuples
array_cache

Dictionary mapping ArrayVariable objects to their value or to None if the value (potentially) depends
on executed code. This mechanism allows to access state variables in standalone mode if their value is known
at run time

arrays

Dictionary mapping ArrayVariable objects to their globally unique name
build_on_run

Whether a run should trigger a build
build_options

build options
code_lines

Code lines that have beenmanually added with device.insert_code()Dictionarymapping slot names
to lists of lines. Note that the main slot is handled separately as part of main_queue

dynamic_arrays

List of all dynamic arrays Dictionary mapping DynamicArrayVariable objects with 1 dimension to
their globally unique name

dynamic_arrays_2d

Dictionary mapping DynamicArrayVariable objects with 2 dimensions to their globally unique name
enable_profiling

Whether to generate profiling information (stored in an instance variable to be accessible during CodeObject
generation)

has_been_run

Whether the simulation has been run
profiled_codeobjects

CodeObjects that use profiling (users can potentially enable profiling only for a subset of runs)
project_dir

The directory which contains the generated code and results
static_arrays

Dict of all static saved arrays
synapses

Set of all existing synapses
timers

Dictionary storing compile and binary execution times
zero_arrays

List of all arrays to be filled with zeros (list of (var, varname))

6.7. Subpackages 601

Brian 2 Documentation, Release 2.5.1

add_array(var)
Add an array to this device.

Parameters var : ArrayVariable
The array to add.

build(directory='output', compile=True, run=True, debug=False, clean=False, with_output=True,
additional_source_files=None, run_args=None, direct_call=True, **kwds)

Build the project
TODO: more details

Parameters directory : str, optional
The output directory to write the project to, any existing files will be overwritten. If the
given directory name is None, then a temporary directory will be used (used in the test
suite to avoid problems when running several tests in parallel). Defaults to 'output'.

compile : bool, optional
Whether or not to attempt to compile the project. Defaults to True.

run : bool, optional
Whether or not to attempt to run the built project if it successfully builds. Defaults to
True.

debug : bool, optional
Whether to compile in debug mode. Defaults to False.

with_output : bool, optional
Whether or not to show the stdout of the built program when run. Output will be shown
in case of compilation or runtime error. Defaults to True.

clean : bool, optional
Whether or not to clean the project before building. Defaults to False.

additional_source_files : list of str, optional
A list of additional .cpp files to include in the build.

direct_call : bool, optional
Whether this function was called directly. Is used internally to distinguish an automatic
build due to the build_on_run option from a manual device.build call.

check_openmp_compatible(nb_threads)

code_object(owner, name, abstract_code, variables, template_name, variable_indices, codeobj_class=None,
template_kwds=None, override_conditional_write=None, compiler_kwds=None)

code_object_class(codeobj_class=None, fallback_pref=None)
Return CodeObject class (either CPPStandaloneCodeObject class or input)

Parameters codeobj_class : a CodeObject class, optional
If this is keyword is set to None or no arguments are given, this method will return the
default (CPPStandaloneCodeObject class).

fallback_pref : str, optional
For the cpp_standalone device this option is ignored.

602 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

Returns codeobj_class : class
The CodeObject class that should be used

compile_source(directory, compiler, debug, clean)

copy_source_files(writer, directory)

delete(code=True, data=True, directory=True, force=False)
Delete code and/or data generated/stored by the device.

Parameters data : bool, optional
Whether to delete the data generated by the simulation (final values of state variables, data
stored in monitors, etc.). Defaults to True.

code : bool, optional
Whether to delete the code generated by the simulation. Includes the numerical values used
for initialization of state variables in assignments not using strings. Defaults to True.

directory : bool, optional
Whether to delete the project directory generated by the simulation. Will not delete direc-
tories that contain files not created by Brian unless the force option is specfied. Defaults
to True.

force : bool, optional
Whether to delete the project directory with all its content, even if it contains files that
were not created by Brian. Useful only when the directory option is set to True as
well. Defaults to False.

fill_with_array(var, arr)
Fill an array with the values given in another array.

Parameters var : ArrayVariable
The array to fill.

arr : ndarray
The array values that should be copied to var().

freeze(code, ns)

generate_codeobj_source(writer)

generate_main_source(writer)

generate_makefile(writer, compiler, compiler_flags, linker_flags, nb_threads, debug)

generate_network_source(writer, compiler)

generate_objects_source(writer, arange_arrays, synapses, static_array_specs, networks)

generate_run_source(writer)

generate_synapses_classes_source(writer)

6.7. Subpackages 603

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Brian 2 Documentation, Release 2.5.1

get_array_filename(var, basedir='results')
Return a file name for a variable.

Parameters var : ArrayVariable
The variable to get a filename for.

basedir : str
The base directory for the filename, defaults to 'results'.

Returns :
——- :
filename : str
A filename of the form 'results/'+varname+'_'+str(zlib.
crc32(varname)), where varname is the name returned by get_array_name.

Notes

The reason that the filename is not simply 'results/' + varname is that this could lead to file names
that are not unique in file systems that are not case sensitive (e.g. on Windows).

get_array_name(var, access_data=True)
Return a globally unique name for var().

Parameters access_data : bool, optional
For DynamicArrayVariable objects, specifying True here means the name for the
underlying data is returned. If specifying False, the name of object itself is returned
(e.g. to allow resizing).

get_value(var, access_data=True)

init_with_arange(var, start, dtype)
Initialize an array with an integer range.

Parameters var : ArrayVariable
The array to fill with the integer range.

start : int
The start value for the integer range

dtype : dtype
The data type to use for the array.

init_with_zeros(var, dtype)
Initialize an array with zeros.

Parameters var : ArrayVariable
The array to initialize with zeros.

dtype : dtype
The data type to use for the array.

insert_code(slot, code)
Insert code directly into main.cpp

604 Chapter 6. brian2 package

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype

Brian 2 Documentation, Release 2.5.1

network_get_profiling_info(net)

network_restore(net, *args, **kwds)

network_run(net, duration, report=None, report_period=10.0 * second, namespace=None, profile=None,
level=0, **kwds)

network_store(net, *args, **kwds)

reinit()

Reinitialize the device. For standalone devices, clears all the internal state of the device.
resize(var, new_size)

Resize a DynamicArrayVariable.
Parameters var : DynamicArrayVariable

The variable that should be resized.
new_size : int
The new size of the variable

run(directory, with_output, run_args)

run_function(name, include_in_parent=True)
Context manager to divert code into a function
Code that happens within the scope of this context manager will go into the named function.

Parameters name : str
The name of the function to divert code into.

include_in_parent : bool
Whether or not to include a call to the newly defined function in the parent context.

seed(seed=None)
Set the seed for the random number generator.

Parameters seed : int, optional
The seed value for the random number generator, or None (the default) to set a random
seed.

spike_queue(source_start, source_end)
Create and return a new SpikeQueue for this Device.

Parameters source_start : int
The start index of the source group (necessary for subgroups)

source_end : int
The end index of the source group (necessary for subgroups)

static_array(name, arr)

variableview_get_subexpression_with_index_array(variableview, item,
run_namespace=None)

variableview_get_with_expression(variableview, code, run_namespace=None)

6.7. Subpackages 605

Brian 2 Documentation, Release 2.5.1

variableview_set_with_index_array(variableview, item, value, check_units)

write_static_arrays(directory)

CPPWriter(project_dir)

Methods

CPPWriter class

(Shortest import: from brian2.devices.cpp_standalone.device import CPPWriter)

class brian2.devices.cpp_standalone.device.CPPWriter(project_dir)
Bases: object

Methods

write(filename, contents)

Details

write(filename, contents)

RunFunctionContext(name, include_in_parent)

RunFunctionContext class

(Shortest import: from brian2.devices.cpp_standalone.device import RunFunctionContext)

class brian2.devices.cpp_standalone.device.RunFunctionContext(name,
include_in_parent)

Bases: object
Functions

invert_dict(x)

606 Chapter 6. brian2 package

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

Brian 2 Documentation, Release 2.5.1

invert_dict function

(Shortest import: from brian2.devices.cpp_standalone.device import invert_dict)

brian2.devices.cpp_standalone.device.invert_dict(x)

Objects

cpp_standalone_device The Device used for C++ standalone simulations.

cpp_standalone_device object

(Shortest import: from brian2.devices.cpp_standalone import cpp_standalone_device)

brian2.devices.cpp_standalone.device.cpp_standalone_device =
<brian2.devices.cpp_standalone.device.CPPStandaloneDevice object>

The Device used for C++ standalone simulations.

6.7.4 equations package

Module handling equations and “code strings”, expressions or statements, used for example for the reset and threshold
definition of a neuron.
Exported members: Equations, Expression, Statements

codestrings module

Module defining CodeString, a class for a string of code together with information about its namespace. Only serves
as a parent class, its subclasses Expression and Statements are the ones that are actually used.
Exported members: Expression, Statements
Classes

CodeString(code) A class for representing "code strings", i.e. a single
Python expression or a sequence of Python statements.

CodeString class

(Shortest import: from brian2.equations.codestrings import CodeString)

class brian2.equations.codestrings.CodeString(code)

Bases: collections.abc.Hashable
A class for representing “code strings”, i.e. a single Python expression or a sequence of Python statements.

Parameters code : str
The code string, may be an expression or a statement(s) (possibly multi-line).

6.7. Subpackages 607

https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable

Brian 2 Documentation, Release 2.5.1

Attributes

code The code string

Details

code

The code string

Expression([code, sympy_expression]) Class for representing an expression.

Expression class

(Shortest import: from brian2 import Expression)

class brian2.equations.codestrings.Expression(code=None, sympy_expression=None)

Bases: brian2.equations.codestrings.CodeString
Class for representing an expression.

Parameters code : str, optional
The expression. Note that the expression has to be written in a form that is parseable by
sympy. Alternatively, a sympy expression can be provided (in the sympy_expression
argument).

sympy_expression : sympy expression, optional
A sympy expression. Alternatively, a plain string expression can be provided (in the code
argument).

Attributes

stochastic_variables Stochastic variables in this expression

Methods

split_stochastic() Split the expression into a stochastic and non-
stochastic part.

608 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

Details

stochastic_variables

Stochastic variables in this expression
split_stochastic()

Split the expression into a stochastic and non-stochastic part.
Splits the expression into a tuple of one Expression objects f (the non-stochastic part) and a dictionary
mapping stochastic variables to Expression objects. For example, an expression of the form f + g *
xi_1 + h * xi_2 would be returned as: (f, {'xi_1': g, 'xi_2': h}) Note that the
Expression objects for the stochastic parts do not include the stochastic variable itself.

Returns (f, d) : (Expression, dict)
A tuple of an Expression object and a dictionary, the first expression being the non-
stochastic part of the equation and the dictionary mapping stochastic variables (xi or
starting with xi_) to Expression objects. If no stochastic variable is present in the
code string, a tuple (self, None)will be returned with the unchanged Expression
object.

Statements(code) Class for representing statements.

Statements class

(Shortest import: from brian2 import Statements)

class brian2.equations.codestrings.Statements(code)
Bases: brian2.equations.codestrings.CodeString
Class for representing statements.

Parameters code : str
The statement or statements. Several statements can be given as a multi-line string or
separated by semicolons.

Notes

Currently, the implementation of this class does not add anything to CodeString, but it should be used instead
of that class for clarity and to allow for future functionality that is only relevant to statements and not to expressions.

Functions

is_constant_over_dt(expression, variables, ...) Check whether an expression can be considered as con-
stant over a time step.

6.7. Subpackages 609

Brian 2 Documentation, Release 2.5.1

is_constant_over_dt function

(Shortest import: from brian2.equations.codestrings import is_constant_over_dt)

brian2.equations.codestrings.is_constant_over_dt(expression, variables, dt_value)
Checkwhether an expression can be considered as constant over a time step. This is not the case when the expression
either:
1. contains the variable t (except as the argument of a function that can be considered as constant over a time

step, e.g. a TimedArray with a dt equal to or greater than the dt used to evaluate this expression)
2. refers to a stateful function such as rand().

Parameters expression : sympy.Expr
The (sympy) expression to analyze

variables : dict
The variables dictionary.

dt_value : float or None
The length of a timestep (without units), can be None if the time step is not yet known.

Returns is_constant : bool
Whether the expression can be considered to be constant over a time step.

equations module

Differential equations for Brian models.
Exported members: Equations

Classes

EquationError Exception type related to errors in an equation definition.

EquationError class

(Shortest import: from brian2.equations.equations import EquationError)

class brian2.equations.equations.EquationError

Bases: Exception
Exception type related to errors in an equation definition.

Equations(eqns, **kwds) Container that stores equations from which models can be
created.

610 Chapter 6. brian2 package

https://docs.python.org/3/library/exceptions.html#Exception

Brian 2 Documentation, Release 2.5.1

Equations class

(Shortest import: from brian2 import Equations)

class brian2.equations.equations.Equations(eqns, **kwds)
Bases: collections.abc.Hashable, collections.abc.Mapping
Container that stores equations from which models can be created.
String equations can be of any of the following forms:
1. dx/dt = f : unit (flags) (differential equation)
2. x = f : unit (flags) (equation)
3. x : unit (flags) (parameter)

String equations can span several lines and contain Python-style comments starting with #
Parameters eqs : str or list of SingleEquation objects

Amultiline string of equations (see above) – for internal purposes also a list of SingleE-
quation objects can be given. This is done for example when adding new equations to
implement the refractory mechanism. Note that in this case the variable names are not
checked to allow for “internal names”, starting with an underscore.

kwds: keyword arguments :
Keyword arguments can be used to replace variables in the equation string. Arguments
have to be of the form varname=replacement, where varname has to correspond
to a variable name in the given equation. The replacement can be either a string (replacing
a name with a new name, e.g. tau='tau_e') or a value (replacing the variable name
with the value, e.g. tau=tau_e or tau=10*ms).

6.7. Subpackages 611

https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping
https://docs.python.org/3/library/stdtypes.html#str

Brian 2 Documentation, Release 2.5.1

Attributes

_substituted_expressions Cache for equations with the subexpressions substi-
tuted

dependencies Calculate the dependencies of all differential equations
and subexpressions.

diff_eq_expressions A list of (variable name, expression) tuples of all dif-
ferential equations.

diff_eq_names All differential equation names.
dimensions Dictionary of all internal variables and their corre-

sponding physical dimensions.
eq_expressions A list of (variable name, expression) tuples of all equa-

tions.
eq_names All equation names (including subexpressions).
identifier_checks A set of functions that are used to check identifiers

(class attribute).
identifiers Set of all identifiers used in the equations, excluding

the variables defined in the equations
is_stochastic Whether the equations are stochastic.
names All variable names defined in the equations.
ordered A list of all equations, sorted according to the order in

which they should be updated
parameter_names All parameter names.
stochastic_type Returns the type of stochastic differential equations

(additivive or multiplicative).
stochastic_variables

subexpr_names All subexpression names.

Methods

check_flags(allowed_flags[, incompati-
ble_flags])

Check the list of flags.

check_identifier(identifier) Perform all the registered checks.
check_identifiers() Check all identifiers for conformity with the rules.
check_units(group, run_namespace) Check all the units for consistency.
get_substituted_expressions([variables,
...])

Return a list of (varname, expr) tuples, con-
taining all differential equations (and optionally subex-
pressions) with all the subexpression variables substi-
tuted with the respective expressions.

register_identifier_check(func) Register a function for checking identifiers.
substitute(**kwds)

612 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

Details

_substituted_expressions

Cache for equations with the subexpressions substituted
dependencies

Calculate the dependencies of all differential equations and subexpressions.
diff_eq_expressions

A list of (variable name, expression) tuples of all differential equations.
diff_eq_names

All differential equation names.
dimensions

Dictionary of all internal variables and their corresponding physical dimensions.
eq_expressions

A list of (variable name, expression) tuples of all equations.
eq_names

All equation names (including subexpressions).
identifier_checks

A set of functions that are used to check identifiers (class attribute). Functions can be registered with the static
method Equations.register_identifier_check and will be automatically used when checking
identifiers

identifiers

Set of all identifiers used in the equations, excluding the variables defined in the equations
is_stochastic

Whether the equations are stochastic.
names

All variable names defined in the equations.
ordered

A list of all equations, sorted according to the order in which they should be updated
parameter_names

All parameter names.
stochastic_type

Returns the type of stochastic differential equations (additivive or multiplicative). The system is only classified
as additive if all equations have only additive noise (or no noise).

Returns type : str
Either None (no noise variables), 'additive' (factors for all noise variables are in-
dependent of other state variables or time), 'multiplicative' (at least one of the
noise factors depends on other state variables and/or time).

stochastic_variables

subexpr_names

All subexpression names.

6.7. Subpackages 613

Brian 2 Documentation, Release 2.5.1

check_flags(allowed_flags, incompatible_flags=None)
Check the list of flags.

Parameters allowed_flags : dict
A dictionary mapping equation types (PARAMETER, DIFFERENTIAL_EQUATION,
SUBEXPRESSION) to a list of strings (the allowed flags for that equation type)

incompatible_flags : list of tuple
A list of flag combinations that are not allowed for the same equation.

Notes :
—– :
Not specifying allowed flags for an equation type is the same as :
specifying an empty list for it. :

Raises

ValueError If any flags are used that are not allowed.

static check_identifier(identifier)
Perform all the registered checks. Checks can be registered via Equations.
register_identifier_check.

Parameters identifier : str
The identifier that should be checked

Raises

ValueError If any of the registered checks fails.

check_identifiers()

Check all identifiers for conformity with the rules.

Raises

ValueError If an identifier does not conform to the rules.

See also:

Equations.check_identifier The function that is called for each identifier.

check_units(group, run_namespace)

Check all the units for consistency.
Parameters group : Group

The group providing the context
run_namespace : dict-like, optional
An additional namespace that is used for variable lookup (if not defined, the implicit
namespace of local variables is used).

614 Chapter 6. brian2 package

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

Brian 2 Documentation, Release 2.5.1

level : int, optional
How much further to go up in the stack to find the calling frame

Raises

DimensionMismatchError In case of any inconsistencies.

get_substituted_expressions(variables=None, include_subexpressions=False)
Return a list of (varname, expr) tuples, containing all differential equations (and optionally subexpres-
sions) with all the subexpression variables substituted with the respective expressions.

Parameters variables : dict, optional
A mapping of variable names to Variable/Function objects.

include_subexpressions : bool
Whether also to return substituted subexpressions. Defaults to False.

Returns expr_tuples : list of (str, CodeString)
A list of (varname, expr) tuples, where expr is a CodeString object with all
subexpression variables substituted with the respective expression.

static register_identifier_check(func)
Register a function for checking identifiers.

Parameters func : callable
The function has to receive a single argument, the name of the identifier to check, and
raise a ValueError if the identifier violates any rule.

substitute(**kwds)

Tutorials and examples using this

• Example COBAHH
• Example IF_curve_Hodgkin_Huxley

• Example advanced/COBAHH_approximated

• Example advanced/float_32_64_benchmark

• Example frompapers/Clopath_et_al_2010_homeostasis

• Example frompapers/Clopath_et_al_2010_no_homeostasis

• Example frompapers/Destexhe_et_al_1998

• Example frompapers/Diesmann_et_al_1999

• Example frompapers/Hindmarsh_Rose_1984

• Example frompapers/Jansen_Rit_1995_single_column

• Example frompapers/Rossant_et_al_2011bis

SingleEquation(type, varname, dimensions[, ...]) Class for internal use, encapsulates a single equation or
parameter.

6.7. Subpackages 615

Brian 2 Documentation, Release 2.5.1

SingleEquation class

(Shortest import: from brian2.equations.equations import SingleEquation)

class brian2.equations.equations.SingleEquation(type, varname, dimensions, var_type='float',
expr=None, flags=None)

Bases: collections.abc.Hashable, brian2.utils.caching.CacheKey
Class for internal use, encapsulates a single equation or parameter.

Note: This class should never be used directly, it is only useful as part of the Equations class.

Parameters type : {PARAMETER, DIFFERENTIAL_EQUATION, SUBEXPRESSION}
The type of the equation.

varname : str
The variable that is defined by this equation.

dimensions : Dimension
The physical dimensions of the variable

var_type : {FLOAT, INTEGER, BOOLEAN}
The type of the variable (floating point value or boolean).

expr : Expression, optional
The expression defining the variable (or None for parameters).

flags: list of str, optional :
A list of flags that give additional information about this equation. What flags are possible
depends on the type of the equation and the context.

Attributes

identifiers All identifiers in the RHS of this equation.
stochastic_variables Stochastic variables in the RHS of this equation
unit The Unit of this equation.

Details

identifiers

All identifiers in the RHS of this equation.
stochastic_variables

Stochastic variables in the RHS of this equation
unit

The Unit of this equation.

616 Chapter 6. brian2 package

https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable

Brian 2 Documentation, Release 2.5.1

Functions

check_identifier_basic(identifier) Check an identifier (usually resulting from an equation
string provided by the user) for conformity with the rules.

check_identifier_basic function

(Shortest import: from brian2.equations.equations import check_identifier_basic)

brian2.equations.equations.check_identifier_basic(identifier)
Check an identifier (usually resulting from an equation string provided by the user) for conformity with the rules.
The rules are:
1. Only ASCII characters
2. Starts with a character, then mix of alphanumerical characters and underscore
3. Is not a reserved keyword of Python

Parameters identifier : str
The identifier that should be checked

Raises

SyntaxError If the identifier does not conform to the above rules.

check_identifier_constants(identifier) Make sure that identifier names do not clash with function
names.

check_identifier_constants function

(Shortest import: from brian2.equations.equations import check_identifier_constants)

brian2.equations.equations.check_identifier_constants(identifier)
Make sure that identifier names do not clash with function names.

check_identifier_functions(identifier) Make sure that identifier names do not clash with function
names.

check_identifier_functions function

(Shortest import: from brian2.equations.equations import check_identifier_functions)

brian2.equations.equations.check_identifier_functions(identifier)
Make sure that identifier names do not clash with function names.

check_identifier_reserved(identifier) Check that an identifier is not using a reserved special
variable name.

6.7. Subpackages 617

https://docs.python.org/3/library/exceptions.html#SyntaxError

Brian 2 Documentation, Release 2.5.1

check_identifier_reserved function

(Shortest import: from brian2.equations.equations import check_identifier_reserved)

brian2.equations.equations.check_identifier_reserved(identifier)
Check that an identifier is not using a reserved special variable name. The special variables are: ‘t’, ‘dt’, and ‘xi’, as
well as everything starting with xi_.

Parameters identifier: str :
The identifier that should be checked

Raises

SyntaxError If the identifier is a special variable name.

check_identifier_units(identifier) Make sure that identifier names do not clash with unit
names.

check_identifier_units function

(Shortest import: from brian2.equations.equations import check_identifier_units)

brian2.equations.equations.check_identifier_units(identifier)
Make sure that identifier names do not clash with unit names.

check_subexpressions(group, equations, ...) Checks the subexpressions in the equations and raises an
error if a subexpression refers to stateful functions without
being marked as "constant over dt".

check_subexpressions function

(Shortest import: from brian2.equations.equations import check_subexpressions)

brian2.equations.equations.check_subexpressions(group, equations, run_namespace)
Checks the subexpressions in the equations and raises an error if a subexpression refers to stateful functions without
being marked as “constant over dt”.

Parameters group : Group
The group providing the context.

equations : Equations
The equations to check.

run_namespace : dict
The run namespace for resolving variables.

618 Chapter 6. brian2 package

https://docs.python.org/3/library/exceptions.html#SyntaxError

Brian 2 Documentation, Release 2.5.1

Raises

SyntaxError For subexpressions not marked as “constant over dt” that refer to stateful functions.

dimensions_and_type_from_string(unit_string)Returns the physical dimensions that results from evalu-
ating a string like "siemens / metre ** 2", allowing for the
special string "1" to signify dimensionless units, the string
"boolean" for a boolean and "integer" for an integer vari-
able.

dimensions_and_type_from_string function

(Shortest import: from brian2.equations.equations import dimen-
sions_and_type_from_string)

brian2.equations.equations.dimensions_and_type_from_string(unit_string)
Returns the physical dimensions that results from evaluating a string like “siemens / metre ** 2”, allowing for the
special string “1” to signify dimensionless units, the string “boolean” for a boolean and “integer” for an integer
variable.

Parameters unit_string : str
The string that should evaluate to a unit

Returns d, type : (Dimension, {FLOAT, INTEGER or BOOL})
The resulting physical dimensions and the type of the variable.

Raises

ValueError If the string cannot be evaluated to a unit.

extract_constant_subexpressions(eqs)

extract_constant_subexpressions function

(Shortest import: from brian2.equations.equations import ex-
tract_constant_subexpressions)

brian2.equations.equations.extract_constant_subexpressions(eqs)

is_stateful(expression, variables) Whether the given expression refers to stateful functions
(and is therefore not guaranteed to give the same result if
called repetively).

6.7. Subpackages 619

https://docs.python.org/3/library/exceptions.html#SyntaxError
https://docs.python.org/3/library/exceptions.html#ValueError

Brian 2 Documentation, Release 2.5.1

is_stateful function

(Shortest import: from brian2.equations.equations import is_stateful)

brian2.equations.equations.is_stateful(expression, variables)
Whether the given expression refers to stateful functions (and is therefore not guaranteed to give the same result if
called repetively).

Parameters expression : sympy.Expression
The sympy expression to check.

variables : dict
The dictionary mapping variable names to Variable or Function objects.

Returns stateful : bool
True, if the given expression refers to a stateful function like rand() and False oth-
erwise.

parse_string_equations(eqns) Parse a string defining equations.

parse_string_equations function

(Shortest import: from brian2.equations.equations import parse_string_equations)

brian2.equations.equations.parse_string_equations(eqns)
Parse a string defining equations.

Parameters eqns : str
The (possibly multi-line) string defining the equations. See the documentation of the
Equations class for details.

Returns equations : dict
A dictionary mapping variable names to Equations objects

refractory module

Module implementing Brian’s refractory mechanism.
Exported members: add_refractoriness

Functions

add_refractoriness(eqs) Extends a given set of equations with the refractory mech-
anism.

620 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

add_refractoriness function

(Shortest import: from brian2.equations.refractory import add_refractoriness)

brian2.equations.refractory.add_refractoriness(eqs)
Extends a given set of equations with the refractory mechanism. New parameters are added and differential equa-
tions with the “unless refractory” flag are changed so that their right-hand side is 0 when the neuron is refractory
(by multiplication with the not_refractory variable).

Parameters eqs : Equations
The equations without refractory mechanism.

Returns new_eqs : Equations
New equations, with added parameters and changed differential equations having the “un-
less refractory” flag.

check_identifier_refractory(identifier) Check that the identifier is not using a name reserved for
the refractory mechanism.

check_identifier_refractory function

(Shortest import: from brian2.equations.refractory import check_identifier_refractory)

brian2.equations.refractory.check_identifier_refractory(identifier)
Check that the identifier is not using a name reserved for the refractory mechanism. The reserved names are
not_refractory, refractory, refractory_until.

Parameters identifier : str
The identifier to check.

Raises

ValueError If the identifier is a variable name used for the refractory mechanism.

unitcheck module

Utility functions for handling the units in Equations.
Exported members: check_dimensions, check_units_statements
Functions

check_dimensions(expression, dimensions, ...) Compares the physical dimensions of an expression to ex-
pected dimensions in a given namespace.

6.7. Subpackages 621

https://docs.python.org/3/library/exceptions.html#ValueError

Brian 2 Documentation, Release 2.5.1

check_dimensions function

(Shortest import: from brian2.equations.unitcheck import check_dimensions)

brian2.equations.unitcheck.check_dimensions(expression, dimensions, variables)
Compares the physical dimensions of an expression to expected dimensions in a given namespace.

Parameters expression : str
The expression to evaluate.

dimensions : Dimension
The expected physical dimensions for the expression.

variables : dict
Dictionary of all variables (including external constants) used in the expression.

Raises

KeyError In case on of the identifiers cannot be resolved.
DimensionMismatchError If an unit mismatch occurs during the evaluation.

check_units_statements(code, variables) Check the units for a series of statements.

check_units_statements function

(Shortest import: from brian2.equations.unitcheck import check_units_statements)

brian2.equations.unitcheck.check_units_statements(code, variables)
Check the units for a series of statements. Setting a model variable has to use the correct unit. For newly introduced
temporary variables, the unit is determined and used to check the following statements to ensure consistency.

Parameters code : str
The statements as a (multi-line) string

variables : dict of Variable objects
The information about all variables used in code (including Constant objects for ex-
ternal variables)

Raises

KeyError In case on of the identifiers cannot be resolved.
DimensionMismatchError If an unit mismatch occurs during the evaluation.

622 Chapter 6. brian2 package

https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/code.html#module-code
https://docs.python.org/3/library/exceptions.html#KeyError

Brian 2 Documentation, Release 2.5.1

6.7.5 groups package

Package providing groups such as NeuronGroup or PoissonGroup.
Exported members: CodeRunner, Group, VariableOwner, NeuronGroup

group module

This module defines the VariableOwner class, a mix-in class for everything that saves state variables, e.g. Clock or
NeuronGroup, the class Group for objects that in addition to storing state variables also execute code, i.e. objects such
as NeuronGroup or StateMonitor but not Clock, and finally CodeRunner, a class to run code in the context
of a Group.
Exported members: Group, VariableOwner, CodeRunner
Classes

CodeRunner(*args, **kw) A "code runner" that runs a CodeObject every
timestep and keeps a reference to the Group.

CodeRunner class

(Shortest import: from brian2 import CodeRunner)

class brian2.groups.group.CodeRunner(*args, **kw)
Bases: brian2.core.base.BrianObject
A “code runner” that runs a CodeObject every timestep and keeps a reference to the Group. Used in Neu-
ronGroup for Thresholder, Resetter and StateUpdater.
On creation, we try to run the before_run method with an empty additional namespace (see Network.
before_run). If the namespace is already complete this might catch unit mismatches.

Parameters group : Group
The group to which this object belongs.

template : Template
The template that should be used for code generation

code : str, optional
The abstract code that should be executed every time step. The up-
date_abstract_code method might generate this code dynamically before
every run instead.

dt : Quantity, optional
The time step to be used for the simulation. Cannot be combined with the clock argu-
ment.

user_code : str, optional
The abstract code as specified by the user, i.e. without any additions of internal code that
the user not necessarily knows about. This will be used for warnings and error messages.

clock : Clock, optional

6.7. Subpackages 623

Brian 2 Documentation, Release 2.5.1

The update clock to be used. If neither a clock, nor the dt argument is specified, the
defaultclock will be used.

when : str, optional
In which scheduling slot to execute the operation during a time step. Defaults to
'start'. See Scheduling for possible values.

order : int, optional
The priority of this operation for operations occurring at the same time step and in the
same scheduling slot. Defaults to 0.

name : str, optional
The name for this object.

check_units : bool, optional
Whether the units should be checked for consistency before a run. Is activated (True)
by default but should be switched off for state updaters (units are already checked for the
equations and the generated abstract code might have already replaced variables with their
unit-less values)

template_kwds : dict, optional
A dictionary of additional information that is passed to the template.

needed_variables: list of str, optional :
A list of variables that are neither present in the abstract code, nor in the
USES_VARIABLES statement in the template. This is only rarely necessary, an exam-
ple being a StateMonitor where the names of the variables are neither known to the
template nor included in the abstract code statements.

override_conditional_write: list of str, optional :
A list of variable names which are used as conditions (e.g. for refractoriness) which should
be ignored.

codeobj_class : class, optional
The CodeObject class to run code with. If not specified, defaults to the group’s
codeobj_class attribute.

generate_empty_code : bool, optional
Whether to generate a CodeObject if there is no abstract code to execute. Defaults to
True but should be switched off e.g. for a StateUpdater when there is nothing to
do.

Methods

before_run(run_namespace) Optional method to prepare the object before a run.
create_code_objects(run_namespace)

create_default_code_object(run_namespace)

update_abstract_code(run_namespace) Update the abstract code for the code object.

624 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

Details

before_run(run_namespace)

Optional method to prepare the object before a run.
Called by Network.after_run before the main simulation loop starts.

create_code_objects(run_namespace)

create_default_code_object(run_namespace)

update_abstract_code(run_namespace)
Update the abstract code for the code object. Will be called in before_run and should update the
CodeRunner.abstract_code attribute.
Does nothing by default.

Group(*args, **kw)

Methods

Group class

(Shortest import: from brian2 import Group)

class brian2.groups.group.Group(*args, **kw)
Bases: brian2.groups.group.VariableOwner, brian2.core.base.BrianObject

Methods

custom_operation(*args, **kwds)

resolve_all(identifiers, run_namespace[, ...]) Resolve a list of identifiers.
run_regularly(code[, dt, clock, when, ...]) Run abstract code in the group's namespace.
runner(*args, **kwds)

Details

custom_operation(*args, **kwds)

resolve_all(identifiers, run_namespace, user_identifiers=None, additional_variables=None)
Resolve a list of identifiers. Calls Group._resolve for each identifier.

Parameters identifiers : iterable of str
The names to look up.

run_namespace : dict-like, optional
An additional namespace that is used for variable lookup (if not defined, the implicit
namespace of local variables is used).

6.7. Subpackages 625

Brian 2 Documentation, Release 2.5.1

user_identifiers : iterable of str, optional
The names in identifiers that were provided by the user (i.e. are part of user-
specified equations, abstract code, etc.). Will be used to determine when to issue names-
pace conflict warnings. If not specified, will be assumed to be identical to identi-
fiers.

additional_variables : dict-like, optional
An additional mapping of names to Variable objects that will be checked before
Group.variables.

Returns variables : dict of Variable or Function
A mapping from name to Variable/Function object for each of the names given in
identifiers

Raises

KeyError If one of the names in identifier cannot be resolved

run_regularly(code, dt=None, clock=None, when='start', order=0, name=None, codeobj_class=None)
Run abstract code in the group’s namespace. The created CodeRunner object will be automatically added
to the group, it therefore does not need to be added to the network manually. However, a reference to the
object will be returned, which can be used to later remove it from the group or to set it to inactive.

Parameters code : str
The abstract code to run.

dt : Quantity, optional
The time step to use for this custom operation. Cannot be combined with the clock
argument.

clock : Clock, optional
The update clock to use for this operation. If neither a clock nor the dt argument is
specified, defaults to the clock of the group.

when : str, optional
When to run within a time step, defaults to the 'start' slot. See Scheduling for possible
values.

name : str, optional
A unique name, if non is given the name of the group appended with ‘run_regularly’,
‘run_regularly_1’, etc. will be used. If a name is given explicitly, it will be used as given
(i.e. the group name will not be prepended automatically).

codeobj_class : class, optional
The CodeObject class to run code with. If not specified, defaults to the group’s
codeobj_class attribute.

Returns obj : CodeRunner
A reference to the object that will be run.

626 Chapter 6. brian2 package

https://docs.python.org/3/library/exceptions.html#KeyError

Brian 2 Documentation, Release 2.5.1

runner(*args, **kwds)

IndexWrapper(group) Convenience class to allow access to the indices via in-
dexing syntax.

IndexWrapper class

(Shortest import: from brian2.groups.group import IndexWrapper)

class brian2.groups.group.IndexWrapper(group)

Bases: object
Convenience class to allow access to the indices via indexing syntax. This allows for example to get all indices
for synapses originating from neuron 10 by writing synapses.indices[10, :] instead of synapses.
_indices.((10, slice(None)).

Indexing(group[, default_index]) Object responsible for calculating flat index arrays from
arbitrary group- specific indices.

Indexing class

(Shortest import: from brian2.groups.group import Indexing)

class brian2.groups.group.Indexing(group, default_index='_idx')
Bases: object
Object responsible for calculating flat index arrays from arbitrary group- specific indices. Stores strong references to
the necessary variables so that basic indexing (i.e. slicing, integer arrays/values, …) works even when the respective
VariableOwner no longer exists. Note that this object does not handle string indexing.

Methods

__call__([item, index_var]) Return flat indices to index into state variables from
arbitrary group specific indices.

Details

__call__(item=slice(None, None, None), index_var=None)
Return flat indices to index into state variables from arbitrary group specific indices. In the default imple-
mentation, raises an error for multidimensional indices and transforms slices into arrays.

Parameters item : slice, array, int
The indices to translate.

Returns indices : numpy.ndarray
The flat indices corresponding to the indices given in item.

See also:
SynapticIndexing

6.7. Subpackages 627

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Brian 2 Documentation, Release 2.5.1

VariableOwner(*args, **kw) Mix-in class for accessing arrays by attribute.

VariableOwner class

(Shortest import: from brian2 import VariableOwner)

class brian2.groups.group.VariableOwner(*args, **kw)
Bases: brian2.core.names.Nameable
Mix-in class for accessing arrays by attribute.
TODO: Overwrite the __dir__ method to return the state variables # (should make autocompletion work)

Methods

add_attribute(name) Add a new attribute to this group.
check_variable_write(variable) Function that can be overwritten to raise an error if

writing to a variable should not be allowed.
get_states([vars, units, format, ...]) Return a copy of the current state variable values.
set_states(values[, units, format, level]) Set the state variables.
state(name[, use_units, level]) Return the state variable in a way that properly sup-

ports indexing in the context of this group

Details

add_attribute(name)
Add a new attribute to this group. Using this method instead of simply assigning to the new attribute name
is necessary because Brian will raise an error in that case, to avoid bugs passing unnoticed (misspelled state
variable name, un-declared state variable, …).

Parameters name : str
The name of the new attribute

Raises

AttributeError If the name already exists as an attribute or a state variable.

check_variable_write(variable)

Function that can be overwritten to raise an error if writing to a variable should not be allowed. Note that this
does not deal with incorrect writes that are general to all kind of variables (incorrect units, writing to a read-
only variable, etc.). This function is only used for type-specific rules, e.g. for raising an error in Synapses
when writing to a synaptic variable before any connect call.
By default this function does nothing.

Parameters variable : Variable
The variable that the user attempts to set.

628 Chapter 6. brian2 package

https://docs.python.org/3/library/exceptions.html#AttributeError

Brian 2 Documentation, Release 2.5.1

get_states(vars=None, units=True, format='dict', subexpressions=False, read_only_variables=True,
level=0)

Return a copy of the current state variable values. The returned arrays are copies of the actual arrays that
store the state variable values, therefore changing the values in the returned dictionary will not affect the state
variables.

Parameters vars : list of str, optional
The names of the variables to extract. If not specified, extract all state variables (except for
internal variables, i.e. names that start with '_'). If the subexpressions argument
is True, the current values of all subexpressions are returned as well.

units : bool, optional
Whether to include the physical units in the return value. Defaults to True.

format : str, optional
The output format. Defaults to 'dict'.

subexpressions: bool, optional :
Whether to return subexpressions when no list of variable names is given. Defaults to
False. This argument is ignored if an explicit list of variable names is given in vars.

read_only_variables : bool, optional
Whether to return read-only variables (e.g. the number of neurons, the time, etc.). Setting
it to False will assure that the returned state can later be used with set_states.
Defaults to True.

level : int, optional
How much higher to go up the stack to resolve external variables. Only relevant if extract-
ing subexpressions that refer to external variables.

Returns values : dict or specified format
The variables specified in vars, in the specified format.

set_states(values, units=True, format='dict', level=0)
Set the state variables.

Parameters values : depends on format
The values according to format.

units : bool, optional
Whether the values include physical units. Defaults to True.

format : str, optional
The format of values. Defaults to 'dict'

level : int, optional
How much higher to go up the stack to resolve external variables. Only relevant when
using string expressions to set values.

state(name, use_units=True, level=0)
Return the state variable in a way that properly supports indexing in the context of this group

Parameters name : str
The name of the state variable

6.7. Subpackages 629

Brian 2 Documentation, Release 2.5.1

use_units : bool, optional
Whether to use the state variable’s unit.

level : int, optional
How much farther to go down in the stack to find the namespace.

Returns :
——- :
var : VariableView or scalar value
The state variable’s value that can be indexed (for non-scalar values).

Functions

get_dtype(equation[, dtype]) Helper function to interpret the dtype keyword argu-
ment in NeuronGroup etc.

get_dtype function

(Shortest import: from brian2.groups.group import get_dtype)

brian2.groups.group.get_dtype(equation, dtype=None)
Helper function to interpret the dtype keyword argument in NeuronGroup etc.

Parameters equation : SingleEquation
The equation for which a dtype should be returned

dtype : dtype or dict, optional
Either the dtype to be used as a default dtype for all float variables (instead of the
core.default_float_dtype preference) or a dictionary stating the dtype for some variables;
all other variables will use the preference default

Returns d : dtype
The dtype for the variable defined in equation

neurongroup module

This model defines the NeuronGroup, the core of most simulations.
Exported members: NeuronGroup

Classes

NeuronGroup(*args, **kw) A group of neurons.

630 Chapter 6. brian2 package

https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype

Brian 2 Documentation, Release 2.5.1

NeuronGroup class

(Shortest import: from brian2 import NeuronGroup)

class brian2.groups.neurongroup.NeuronGroup(*args, **kw)
Bases: brian2.groups.group.Group, brian2.core.spikesource.SpikeSource
A group of neurons.

Parameters N : int
Number of neurons in the group.

model : str, Equations
The differential equations defining the group

method : (str, function), optional
The numerical integration method. Either a string with the name of a registered method
(e.g. “euler”) or a function that receives an Equations object and returns the cor-
responding abstract code. If no method is specified, a suitable method will be chosen
automatically.

threshold : str, optional
The condition which produces spikes. Should be a single line boolean expression.

reset : str, optional
The (possibly multi-line) string with the code to execute on reset.

refractory : {str, Quantity}, optional
Either the length of the refractory period (e.g. 2*ms), a string expression that evaluates
to the length of the refractory period after each spike (e.g. '(1 + rand())*ms'),
or a string expression evaluating to a boolean value, given the condition under which the
neuron stays refractory after a spike (e.g. 'v > -20*mV')

events : dict, optional
User-defined events in addition to the “spike” event defined by the threshold. Has to
be a mapping of strings (the event name) to strings (the condition) that will be checked.

namespace: dict, optional :
A dictionary mapping identifier names to objects. If not given, the namespace will be filled
in at the time of the call of Network.run, with either the values from the namespace
argument of the Network.run method or from the local context, if no such argument
is given.

dtype : (dtype, dict), optional
The numpy.dtype that will be used to store the values, or a dictionary specifying the
type for variable names. If a value is not provided for a variable (or no value is provided
at all), the preference setting core.default_float_dtype is used.

codeobj_class : class, optional
The CodeObject class to run code with.

dt : Quantity, optional
The time step to be used for the simulation. Cannot be combined with the clock argu-
ment.

6.7. Subpackages 631

https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/stdtypes.html#dict
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype

Brian 2 Documentation, Release 2.5.1

clock : Clock, optional
The update clock to be used. If neither a clock, nor the dt argument is specified, the
defaultclock will be used.

order : int, optional
The priority of of this group for operations occurring at the same time step and in the same
scheduling slot. Defaults to 0.

name : str, optional
A unique name for the group, otherwise use neurongroup_0, etc.

Notes

NeuronGroup contains a StateUpdater, Thresholder and Resetter, and these are run at the ‘groups’,
‘thresholds’ and ‘resets’ slots (i.e. the values of their when attribute take these values). The order attribute
will be passed down to the contained objects but can be set individually by setting the order attribute of the
state_updater, thresholder and resetter attributes, respectively.

Attributes

_refractory The refractory condition or timespan
event_codes Code that is triggered on events (e.g.
events Events supported by this group
method_choice The state update method selected by the user
resetter Reset neurons which have spiked (or perform arbitrary

actions for user-defined events)
spikes The spikes returned by the most recent thresholding

operation.
state_updater Performs numerical integration step
subexpression_updater Update the "constant over a time step" subexpressions
thresholder Checks the spike threshold (or abitrary user-defined

events)
user_equations The original equations as specified by the user (i.e.

Methods

before_run([run_namespace]) Optional method to prepare the object before a run.
run_on_event(event, code[, when, order]) Run code triggered by a custom-defined event (see

NeuronGroup documentation for the specification
of events).The created Resetter object will be au-
tomatically added to the group, it therefore does not
need to be added to the network manually.

set_event_schedule(event[, when, order]) Change the scheduling slot for checking the condition
of an event.

state(name[, use_units, level]) Return the state variable in a way that properly sup-
ports indexing in the context of this group

632 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

Details

_refractory

The refractory condition or timespan
event_codes

Code that is triggered on events (e.g. reset)
events

Events supported by this group
method_choice

The state update method selected by the user
resetter

Reset neurons which have spiked (or perform arbitrary actions for user-defined events)
spikes

The spikes returned by the most recent thresholding operation.
state_updater

Performs numerical integration step
subexpression_updater

Update the “constant over a time step” subexpressions
thresholder

Checks the spike threshold (or abitrary user-defined events)
user_equations

The original equations as specified by the user (i.e. without the multiplied int(not_refractory) term
for equations marked as (unless refractory))

before_run(run_namespace=None)
Optional method to prepare the object before a run.
Called by Network.after_run before the main simulation loop starts.

run_on_event(event, code, when='after_resets', order=None)
Run code triggered by a custom-defined event (see NeuronGroup documentation for the specification of
events).The created Resetter object will be automatically added to the group, it therefore does not need
to be added to the network manually. However, a reference to the object will be returned, which can be used
to later remove it from the group or to set it to inactive.

Parameters event : str
The name of the event that should trigger the code

code : str
The code that should be executed

when : str, optional
The scheduling slot that should be used to execute the code. Defaults to 'af-
ter_resets'. See Scheduling for possible values.

order : int, optional
The order for operations in the same scheduling slot. Defaults to the order of the Neu-
ronGroup.

6.7. Subpackages 633

Brian 2 Documentation, Release 2.5.1

Returns obj : Resetter
A reference to the object that will be run.

set_event_schedule(event, when='after_thresholds', order=None)
Change the scheduling slot for checking the condition of an event.

Parameters event : str
The name of the event for which the scheduling should be changed

when : str, optional
The scheduling slot that should be used to check the condition. Defaults to 'af-
ter_thresholds'. See Scheduling for possible values.

order : int, optional
The order for operations in the same scheduling slot. Defaults to the order of the Neu-
ronGroup.

state(name, use_units=True, level=0)
Return the state variable in a way that properly supports indexing in the context of this group

Parameters name : str
The name of the state variable

use_units : bool, optional
Whether to use the state variable’s unit.

level : int, optional
How much farther to go down in the stack to find the namespace.

Returns :
——- :
var : VariableView or scalar value
The state variable’s value that can be indexed (for non-scalar values).

Tutorials and examples using this

• Tutorial 1-intro-to-brian-neurons
• Tutorial 2-intro-to-brian-synapses
• Tutorial 3-intro-to-brian-simulations

• Example COBAHH
• Example CUBA
• Example IF_curve_Hodgkin_Huxley

• Example IF_curve_LIF
• Example adaptive_threshold
• Example advanced/COBAHH_approximated

• Example advanced/Ornstein_Uhlenbeck

• Example advanced/compare_GSL_to_conventional

634 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

• Example advanced/custom_events

• Example advanced/exprel_function
• Example advanced/float_32_64_benchmark

• Example advanced/modelfitting_sbi

• Example advanced/opencv_movie

• Example advanced/stochastic_odes
• Example compartmental/bipolar_with_inputs

• Example compartmental/bipolar_with_inputs2

• Example compartmental/lfp

• Example frompapers/Brette_2004

• Example frompapers/Brette_Gerstner_2005

• Example frompapers/Brette_Guigon_2003

• Example frompapers/Brunel_2000

• Example frompapers/Brunel_Hakim_1999

• Example frompapers/Brunel_Wang_2001

• Example frompapers/Clopath_et_al_2010_homeostasis

• Example frompapers/Clopath_et_al_2010_no_homeostasis

• Example frompapers/Diesmann_et_al_1999

• Example frompapers/Graupner_Brunel_2012

• Example frompapers/Hindmarsh_Rose_1984

• Example frompapers/Izhikevich_2003

• Example frompapers/Izhikevich_2007

• Example frompapers/Jansen_Rit_1995_single_column

• Example frompapers/Kremer_et_al_2011_barrel_cortex

• Example frompapers/Maass_Natschlaeger_Markram_2002

• Example frompapers/Morris_Lecar_1981

• Example frompapers/Naud_et_al_2008_adex_firing_patterns

• Example frompapers/Platkiewicz_Brette_2011

• Example frompapers/Rossant_et_al_2011bis

• Example frompapers/Rothman_Manis_2003

• Example frompapers/Stimberg_et_al_2018/example_1_COBA

• Example frompapers/Stimberg_et_al_2018/example_2_gchi_astrocyte

• Example frompapers/Stimberg_et_al_2018/example_3_io_synapse

• Example frompapers/Stimberg_et_al_2018/example_4_rsmean

• Example frompapers/Stimberg_et_al_2018/example_4_synrel

• Example frompapers/Stimberg_et_al_2018/example_5_astro_ring

6.7. Subpackages 635

Brian 2 Documentation, Release 2.5.1

• Example frompapers/Stimberg_et_al_2018/example_6_COBA_with_astro

• Example frompapers/Sturzl_et_al_2000

• Example frompapers/Touboul_Brette_2008

• Example frompapers/Tsodyks_Pawelzik_Markram_1998

• Example frompapers/Tsodyks_Uziel_Markram_2000

• Example frompapers/Vogels_et_al_2011

• Example frompapers/Wang_Buszaki_1996

• Example multiprocessing/01_using_cython

• Example multiprocessing/02_using_standalone

• Example multiprocessing/03_standalone_joblib

• Example non_reliability
• Example phase_locking
• Example reliability
• Example standalone/STDP_standalone

• Example standalone/cuba_openmp

• Example standalone/simple_case

• Example standalone/simple_case_build

• Example standalone/standalone_multiplerun

• Example synapses/STDP

• Example synapses/continuous_interaction
• Example synapses/efficient_gaussian_connectivity

• Example synapses/gapjunctions
• Example synapses/jeffress
• Example synapses/licklider
• Example synapses/nonlinear
• Example synapses/spatial_connections
• Example synapses/spike_based_homeostasis

• Example synapses/state_variables
• Example synapses/synapses

Resetter(*args, **kw) The CodeRunner that applies the reset statement(s) to
the state variables of neurons that have spiked in this
timestep.

636 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

Resetter class

(Shortest import: from brian2.groups.neurongroup import Resetter)

class brian2.groups.neurongroup.Resetter(*args, **kw)
Bases: brian2.groups.group.CodeRunner
The CodeRunner that applies the reset statement(s) to the state variables of neurons that have spiked in this
timestep.

Methods

update_abstract_code(run_namespace) Update the abstract code for the code object.

Details

update_abstract_code(run_namespace)
Update the abstract code for the code object. Will be called in before_run and should update the
CodeRunner.abstract_code attribute.
Does nothing by default.

StateUpdater(*args, **kw) The CodeRunner that updates the state variables of a
NeuronGroup at every timestep.

StateUpdater class

(Shortest import: from brian2.groups.neurongroup import StateUpdater)

class brian2.groups.neurongroup.StateUpdater(*args, **kw)
Bases: brian2.groups.group.CodeRunner
The CodeRunner that updates the state variables of a NeuronGroup at every timestep.

Methods

update_abstract_code(run_namespace) Update the abstract code for the code object.

Details

update_abstract_code(run_namespace)
Update the abstract code for the code object. Will be called in before_run and should update the
CodeRunner.abstract_code attribute.
Does nothing by default.

SubexpressionUpdater(*args, **kw) The CodeRunner that updates the state variables stor-
ing the values of subexpressions that have been marked as
"constant over dt".

6.7. Subpackages 637

Brian 2 Documentation, Release 2.5.1

SubexpressionUpdater class

(Shortest import: from brian2.groups.neurongroup import SubexpressionUpdater)

class brian2.groups.neurongroup.SubexpressionUpdater(*args, **kw)
Bases: brian2.groups.group.CodeRunner
The CodeRunner that updates the state variables storing the values of subexpressions that have been marked as
“constant over dt”.

Thresholder(*args, **kw) The CodeRunner that applies the threshold condi-
tion to the state variables of a NeuronGroup at
every timestep and sets its spikes and refrac-
tory_until attributes.

Thresholder class

(Shortest import: from brian2.groups.neurongroup import Thresholder)

class brian2.groups.neurongroup.Thresholder(*args, **kw)
Bases: brian2.groups.group.CodeRunner
The CodeRunner that applies the threshold condition to the state variables of a NeuronGroup at every timestep
and sets its spikes and refractory_until attributes.

Methods

update_abstract_code(run_namespace) Update the abstract code for the code object.

Details

update_abstract_code(run_namespace)
Update the abstract code for the code object. Will be called in before_run and should update the
CodeRunner.abstract_code attribute.
Does nothing by default.

Functions

check_identifier_pre_post(identifier) Do not allow names ending in _pre or _post to avoid
confusion.

638 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

check_identifier_pre_post function

(Shortest import: from brian2.groups.neurongroup import check_identifier_pre_post)

brian2.groups.neurongroup.check_identifier_pre_post(identifier)
Do not allow names ending in _pre or _post to avoid confusion.

to_start_stop(item, N) Helper function to transform a single number, a slice or
an array of contiguous indices to a start and stop value.

to_start_stop function

(Shortest import: from brian2.groups.neurongroup import to_start_stop)

brian2.groups.neurongroup.to_start_stop(item, N)
Helper function to transform a single number, a slice or an array of contiguous indices to a start and stop value.
This is used to allow for some flexibility in the syntax of specifying subgroups in NeuronGroup and Spatial-
Neuron.

Parameters item : slice, int or sequence
The slice, index, or sequence of indices to use. Note that a sequence of indices has to be
a sorted ascending sequence of subsequent integers.

N : int
The total number of elements in the group.

Returns start : int
The start value of the slice.

stop : int
The stop value of the slice.

Examples

>>> from brian2.groups.neurongroup import to_start_stop
>>> to_start_stop(slice(3, 6), 10)
(3, 6)
>>> to_start_stop(slice(3, None), 10)
(3, 10)
>>> to_start_stop(5, 10)
(5, 6)
>>> to_start_stop([3, 4, 5], 10)
(3, 6)
>>> to_start_stop([3, 5, 7], 10)
Traceback (most recent call last):

...
IndexError: Subgroups can only be constructed using contiguous indices.

6.7. Subpackages 639

Brian 2 Documentation, Release 2.5.1

subgroup module

Exported members: Subgroup

Classes

Subgroup(*args, **kw) Subgroup of any Group

Subgroup class

(Shortest import: from brian2 import Subgroup)

class brian2.groups.subgroup.Subgroup(*args, **kw)
Bases: brian2.groups.group.Group, brian2.core.spikesource.SpikeSource
Subgroup of any Group

Parameters source : SpikeSource
The source object to subgroup.

start, stop : int
Select only spikes with indices from start to stop-1.

name : str, optional
A unique name for the group, or use source.name+'_subgroup_0', etc.

Attributes

spikes

Details

spikes

6.7.6 importexport package

Package providing import/export support.
Exported members: ImportExport

640 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

dictlike module

Module providing DictImportExport and PandasImportExport (requiring a working installation of pandas).
Classes

DictImportExport() An importer/exporter for variables in format of dict of
numpy arrays.

DictImportExport class

(Shortest import: from brian2.importexport import DictImportExport)

class brian2.importexport.dictlike.DictImportExport

Bases: brian2.importexport.importexport.ImportExport
An importer/exporter for variables in format of dict of numpy arrays.

Attributes

name Abstract property giving a method name.

Methods

export_data(group, variables[, units, level]) Asbtract static export data method with two obligatory
parameters.

import_data(group, data[, units, level]) Import and set state variables.

Details

name

static export_data(group, variables, units=True, level=0)
Asbtract static export data method with two obligatory parameters. It should return a copy of the current
state variable values. The returned arrays are copies of the actual arrays that store the state variable values,
therefore changing the values in the returned dictionary will not affect the state variables.

Parameters group : Group
Group object.

variables : list of str
The names of the variables to extract.

static import_data(group, data, units=True, level=0)
Import and set state variables.

Parameters group : Group
Group object.

data : dict_like

6.7. Subpackages 641

Brian 2 Documentation, Release 2.5.1

Data to import with variable names.

PandasImportExport() An importer/exporter for variables in pandas DataFrame
format.

PandasImportExport class

(Shortest import: from brian2.importexport import PandasImportExport)

class brian2.importexport.dictlike.PandasImportExport

Bases: brian2.importexport.importexport.ImportExport
An importer/exporter for variables in pandas DataFrame format.

Attributes

name Abstract property giving a method name.

Methods

export_data(group, variables[, units, level]) Asbtract static export data method with two obligatory
parameters.

import_data(group, data[, units, level]) Import and set state variables.

Details

name

static export_data(group, variables, units=True, level=0)
Asbtract static export data method with two obligatory parameters. It should return a copy of the current
state variable values. The returned arrays are copies of the actual arrays that store the state variable values,
therefore changing the values in the returned dictionary will not affect the state variables.

Parameters group : Group
Group object.

variables : list of str
The names of the variables to extract.

static import_data(group, data, units=True, level=0)
Import and set state variables.

Parameters group : Group
Group object.

data : dict_like
Data to import with variable names.

642 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

importexport module

Module defining the ImportExport class that enables getting state variable data in and out of groups in various formats
(see Group.get_states and Group.set_states).
Classes

ImportExport() Class for registering new import/export methods (via
static methods).

ImportExport class

(Shortest import: from brian2 import ImportExport)

class brian2.importexport.importexport.ImportExport

Bases: object
Class for registering new import/export methods (via static methods). Also the base class that should
be extended for such methods (ImportExport.export_data, ImportExport.import_data, and
ImportExport.name have to be overwritten).
See also:
VariableOwner.get_states, VariableOwner.set_states

Attributes

methods A dictionary mapping import/export methods names
to ImportExport objects

name Abstract property giving a method name.

Methods

export_data(group, variables) Asbtract static export data method with two obligatory
parameters.

import_data(group, data) Import and set state variables.
register(importerexporter) Register a import/export method.

Details

methods

A dictionary mapping import/export methods names to ImportExport objects
name

Abstract property giving a method name.
abstract static export_data(group, variables)

Asbtract static export data method with two obligatory parameters. It should return a copy of the current
state variable values. The returned arrays are copies of the actual arrays that store the state variable values,
therefore changing the values in the returned dictionary will not affect the state variables.

6.7. Subpackages 643

https://docs.python.org/3/library/functions.html#object

Brian 2 Documentation, Release 2.5.1

Parameters group : Group
Group object.

variables : list of str
The names of the variables to extract.

abstract static import_data(group, data)
Import and set state variables.

Parameters group : Group
Group object.

data : dict_like
Data to import with variable names.

static register(importerexporter)
Register a import/export method. Registered methods can be referred to via their name.

Parameters importerexporter : ImportExport
The importerexporter object, e.g. an DictImportExport.

6.7.7 input package

Classes for providing external input to a network.
Exported members: BinomialFunction, PoissonGroup, PoissonInput, SpikeGeneratorGroup,
TimedArray

binomial module

Implementation of BinomialFunction
Exported members: BinomialFunction

Classes

BinomialFunction(n, p[, approximate, name]) A function that generates samples from a binomial distri-
bution.

BinomialFunction class

(Shortest import: from brian2 import BinomialFunction)

class brian2.input.binomial.BinomialFunction(n, p, approximate=True, name='_binomial*')

Bases: brian2.core.functions.Function, brian2.core.names.Nameable
A function that generates samples from a binomial distribution.

Parameters n : int
Number of samples

p : float
Probablility

644 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

approximate : bool, optional
Whether to approximate the binomial with a normal distribution if np > 5∧n(1−p) > 5.
Defaults to True.

Attributes

implementations Container for implementing functions for different
targets This container can be extended by other code-
generation targets/devices The key has to be the name
of the target, the value a function that takes three pa-
rameters (n, p, use_normal) and returns a tuple of
(code, dependencies)

Details

implementations

Container for implementing functions for different targets This container can be extended by other code-
generation targets/devices The key has to be the name of the target, the value a function that takes three
parameters (n, p, use_normal) and returns a tuple of (code, dependencies)

poissongroup module

Implementation of PoissonGroup.
Exported members: PoissonGroup

Classes

PoissonGroup(*args, **kw) Poisson spike source

PoissonGroup class

(Shortest import: from brian2 import PoissonGroup)

class brian2.input.poissongroup.PoissonGroup(*args, **kw)
Bases: brian2.groups.group.Group, brian2.core.spikesource.SpikeSource
Poisson spike source

Parameters N : int
Number of neurons

rates : Quantity, str
Single rate, array of rates of length N, or a string expression evaluating to a rate. This
string expression will be evaluated at every time step, it can therefore be time-dependent
(e.g. refer to a TimedArray).

dt : Quantity, optional
The time step to be used for the simulation. Cannot be combined with the clock argu-
ment.

6.7. Subpackages 645

Brian 2 Documentation, Release 2.5.1

clock : Clock, optional
The update clock to be used. If neither a clock, nor the dt argument is specified, the
defaultclock will be used.

when : str, optional
When to run within a time step, defaults to the 'thresholds' slot. See Scheduling for
possible values.

order : int, optional
The priority of of this group for operations occurring at the same time step and in the same
scheduling slot. Defaults to 0.

name : str, optional
Unique name, or use poissongroup, poissongroup_1, etc.

Attributes

spikes The spikes returned by the most recent thresholding
operation.

Methods

before_run([run_namespace]) Optional method to prepare the object before a run.

Details

spikes

The spikes returned by the most recent thresholding operation.
before_run(run_namespace=None)

Optional method to prepare the object before a run.
Called by Network.after_run before the main simulation loop starts.

Tutorials and examples using this

• Tutorial 3-intro-to-brian-simulations

• Example adaptive_threshold
• Example advanced/custom_events

• Example frompapers/Stimberg_et_al_2018/example_4_rsmean

• Example frompapers/Stimberg_et_al_2018/example_4_synrel

• Example standalone/STDP_standalone

• Example standalone/standalone_multiplerun

• Example synapses/STDP

• Example synapses/spike_based_homeostasis

646 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

poissoninput module

Implementation of PoissonInput.
Exported members: PoissonInput

Classes

PoissonInput(target, target_var, N, rate, weight) Adds independent Poisson input to a target variable of a
Group.

PoissonInput class

(Shortest import: from brian2 import PoissonInput)

class brian2.input.poissoninput.PoissonInput(target, target_var, N, rate, weight, when='synapses',
order=0)

Bases: brian2.groups.group.CodeRunner
Adds independent Poisson input to a target variable of a Group. For large numbers of inputs, this is much more
efficient than creating a PoissonGroup. The synaptic events are generated randomly during the simulation and
are not preloaded and stored in memory. All the inputs must target the same variable, have the same frequency and
same synaptic weight. All neurons in the target Group receive independent realizations of Poisson spike trains.

Parameters target : Group
The group that is targeted by this input.

target_var : str
The variable of target that is targeted by this input.

N : int
The number of inputs

rate : Quantity
The rate of each of the inputs

weight : str or Quantity
Either a string expression (that can be interpreted in the context of target) or a Quan-
tity that will be added for every event to the target_var of target. The unit has
to match the unit of target_var

when : str, optional
When to update the target variable during a time step. Defaults to thesynapses schedul-
ing slot. See Scheduling for possible values.

order : int, optional
The priority of of the update compared to other operations occurring at the same time
step and in the same scheduling slot. Defaults to 0.

6.7. Subpackages 647

Brian 2 Documentation, Release 2.5.1

Attributes

N The number of inputs
rate The rate of each input
target_var The targetted variable
weight The synaptic weight

Methods

before_run(run_namespace) Optional method to prepare the object before a run.

Details

N

The number of inputs
rate

The rate of each input
target_var

The targetted variable
weight

The synaptic weight
before_run(run_namespace)

Optional method to prepare the object before a run.
Called by Network.after_run before the main simulation loop starts.

Tutorials and examples using this

• Example frompapers/Brunel_2000

• Example frompapers/Brunel_Wang_2001

• Example frompapers/Rossant_et_al_2011bis

spikegeneratorgroup module

Module defining SpikeGeneratorGroup.
Exported members: SpikeGeneratorGroup

Classes

SpikeGeneratorGroup(N, indices, times[, dt, ...]) A group emitting spikes at given times.

648 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

SpikeGeneratorGroup class

(Shortest import: from brian2 import SpikeGeneratorGroup)

class brian2.input.spikegeneratorgroup.SpikeGeneratorGroup(N, indices, times, dt=None,
clock=None, period=0 *
second, when='thresholds',
order=0, sorted=False,
name='spikegeneratorgroup*',
codeobj_class=None)

Bases: brian2.groups.group.Group, brian2.groups.group.CodeRunner, brian2.core.
spikesource.SpikeSource

A group emitting spikes at given times.
Parameters N : int

The number of “neurons” in this group
indices : array of integers

The indices of the spiking cells
times : Quantity

The spike times for the cells given in indices. Has to have the same length as in-
dices.

period : Quantity, optional
If this is specified, it will repeat spikes with this period. A period of 0s means not repeating
spikes.

dt : Quantity, optional
The time step to be used for the simulation. Cannot be combined with the clock argu-
ment.

clock : Clock, optional
The update clock to be used. If neither a clock, nor the dt argument is specified, the
defaultclock will be used.

when : str, optional
When to run within a time step, defaults to the 'thresholds' slot. See Scheduling for
possible values.

order : int, optional
The priority of of this group for operations occurring at the same time step and in the same
scheduling slot. Defaults to 0.

sorted : bool, optional
Whether the given indices and times are already sorted. Set to True if your events are
already sorted (first by spike time, then by index), this can save significant time at con-
struction if your arrays contain large numbers of spikes. Defaults to False.

6.7. Subpackages 649

Brian 2 Documentation, Release 2.5.1

Notes

• If sorted is set to True, the given arrays will not be copied (only affects runtime mode)..

Attributes

_neuron_index Array of spiking neuron indices.
_previous_dt Remember the dt we used the last time when we

checked the spike bins to not repeat the work for mul-
tiple runs with the same dt

_spike_time Array of spiking neuron times.
_spikes_changed "Dirty flag" that will be set when spikes are changed

after the before_run check
spikes The spikes returned by the most recent thresholding

operation.

Methods

before_run(run_namespace) Optional method to prepare the object before a run.
set_spikes(indices, times[, period, sorted]) Change the spikes that this group will generate.

Details

_neuron_index

Array of spiking neuron indices.
_previous_dt

Remember the dt we used the last time when we checked the spike bins to not repeat the work for multiple
runs with the same dt

_spike_time

Array of spiking neuron times.
_spikes_changed

“Dirty flag” that will be set when spikes are changed after the before_run check
spikes

The spikes returned by the most recent thresholding operation.
before_run(run_namespace)

Optional method to prepare the object before a run.
Called by Network.after_run before the main simulation loop starts.

set_spikes(indices, times, period=0 * second, sorted=False)
Change the spikes that this group will generate.
This can be used to set the input for a second run of a model based on the output of a first run (if the input
for the second run is already known before the first run, then all the information should simply be included in
the initial SpikeGeneratorGroup initializer call, instead).

Parameters indices : array of integers

650 Chapter 6. brian2 package

https://docs.python.org/3/library/functions.html#sorted

Brian 2 Documentation, Release 2.5.1

The indices of the spiking cells
times : Quantity
The spike times for the cells given in indices. Has to have the same length as in-
dices.

period : Quantity, optional
If this is specified, it will repeat spikes with this period. A period of 0s means not repeating
spikes.

sorted : bool, optional
Whether the given indices and times are already sorted. Set to True if your events are
already sorted (first by spike time, then by index), this can save significant time at con-
struction if your arrays contain large numbers of spikes. Defaults to False.

Tutorials and examples using this

• Tutorial 3-intro-to-brian-simulations

• Example frompapers/Diesmann_et_al_1999

• Example frompapers/Izhikevich_2007

• Example frompapers/Maass_Natschlaeger_Markram_2002

• Example frompapers/Stimberg_et_al_2018/example_3_io_synapse

• Example frompapers/Tsodyks_Pawelzik_Markram_1998

• Example frompapers/Tsodyks_Uziel_Markram_2000

timedarray module

Implementation of TimedArray.
Exported members: TimedArray

Classes

TimedArray(values, dt[, name]) A function of time built from an array of values.

TimedArray class

(Shortest import: from brian2 import TimedArray)

class brian2.input.timedarray.TimedArray(values, dt, name=None)

Bases: brian2.core.functions.Function, brian2.core.names.Nameable, brian2.
utils.caching.CacheKey

A function of time built from an array of values. The returned object can be used as a function, including in
model equations etc. The resulting function has to be called as funcion_name(t) if the provided value array
is one-dimensional and as function_name(t, i) if it is two-dimensional.

Parameters values : ndarray or Quantity

6.7. Subpackages 651

Brian 2 Documentation, Release 2.5.1

An array of values providing the values at various points in time. This array can either be
one- or two-dimensional. If it is two-dimensional it’s first dimension should be the time.

dt : Quantity
The time distance between values in the values array.

name : str, optional
A unique name for this object, see Nameable for details. Defaults to '_timedar-
ray*'.

Notes

For time values corresponding to elements outside of the range of values provided, the first respectively last
element is returned.

Examples

>>> from brian2 import *
>>> ta = TimedArray([1, 2, 3, 4] * mV, dt=0.1*ms)
>>> print(ta(0.3*ms))
4. mV
>>> G = NeuronGroup(1, 'v = ta(t) : volt')
>>> mon = StateMonitor(G, 'v', record=True)
>>> net = Network(G, mon)
>>> net.run(1*ms)
...
>>> print(mon[0].v)
[1. 2. 3. 4. 4. 4. 4. 4. 4. 4.] mV
>>> ta2d = TimedArray([[1, 2], [3, 4], [5, 6]]*mV, dt=0.1*ms)
>>> G = NeuronGroup(4, 'v = ta2d(t, i%2) : volt')
>>> mon = StateMonitor(G, 'v', record=True)
>>> net = Network(G, mon)
>>> net.run(0.2*ms)
...
>>> print(mon.v[:])
[[1. 3.]
[2. 4.]
[1. 3.]
[2. 4.]] mV

Attributes

implementations Container for implementing functions for different
targets This container can be extended by other code-
generation targets/devices The key has to be the name
of the target, the value is a tuple of functions, the first
for a 1d array, the second for a 2d array.

652 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

Methods

is_locally_constant(dt) Return whether this function (if interpreted as a func-
tion of time) should be considered constant over a
timestep.

Details

implementations

Container for implementing functions for different targets This container can be extended by other codegen-
eration targets/devices The key has to be the name of the target, the value is a tuple of functions, the first for
a 1d array, the second for a 2d array. The functions have to take three parameters: (values, dt, name), i.e.
the array values, their physical dimensions, the dt of the TimedArray, and the name of the TimedArray. The
functions have to return a function that takes the owner argument (out of which they can get the context’s
dt as owner.clock.dt_) and returns the code.

is_locally_constant(dt)
Return whether this function (if interpreted as a function of time) should be considered constant over a
timestep. This is most importantly used by TimedArray so that linear integration can be used. In its
standard implementation, always returns False.

Parameters dt : float
The length of a timestep (without units).

Returns constant : bool
Whether the results of this function can be considered constant over one timestep of length
dt.

Tutorials and examples using this

• Tutorial 3-intro-to-brian-simulations

• Example advanced/COBAHH_approximated

• Example frompapers/Brunel_Wang_2001

• Example frompapers/Jansen_Rit_1995_single_column

• Example frompapers/Stimberg_et_al_2018/example_4_synrel

• Example frompapers/Stimberg_et_al_2018/example_6_COBA_with_astro

• Example frompapers/Sturzl_et_al_2000

• Example synapses/jeffress
• Example synapses/spike_based_homeostasis

6.7. Subpackages 653

Brian 2 Documentation, Release 2.5.1

6.7.8 memory package

dynamicarray module

TODO: rewrite this (verbatim from Brian 1.x), more efficiency
Exported members: DynamicArray, DynamicArray1D
Classes

DynamicArray(shape[, dtype, factor, ...]) An N-dimensional dynamic array class

DynamicArray class

(Shortest import: from brian2.memory.dynamicarray import DynamicArray)

class brian2.memory.dynamicarray.DynamicArray(shape, dtype=<class 'float'>, factor=2,
use_numpy_resize=False, refcheck=True)

Bases: object
An N-dimensional dynamic array class
The array can be resized in any dimension, and the class will handle allocating a new block of data and copying
when necessary.

Warning: The data will NOT be contiguous for >1D arrays. To ensure this, you will either need to use 1D
arrays, or to copy the data, or use the shrink method with the current size (although note that in both cases you
negate the memory and efficiency benefits of the dynamic array).

Initialisation arguments:
shape, dtype The shape and dtype of the array to initialise, as in Numpy. For 1D arrays, shape can be a single

int, for ND arrays it should be a tuple.
factor The resizing factor (see notes below). Larger values tend to lead to more wasted memory, but more

computationally efficient code.
use_numpy_resize, refcheck Normally, when you resize the array it creates a new array and copies the

data. Sometimes, it is possible to resize an array without a copy, and if this option is set it will attempt to do
this. However, this can cause memory problems if you are not careful so the option is off by default. You
need to ensure that you do not create slices of the array so that no references to the memory exist other than
the main array object. If you are sure you know what you’re doing, you can switch this reference check off.
Note that resizing in this way is only done if you resize in the first dimension.

The array is initialised with zeros. The data is stored in the attribute data which is a Numpy array.
Some numpy methods are implemented and can work directly on the array object, including len(arr), arr[.
..] and arr[...]=.... In other cases, use the data attribute.

654 Chapter 6. brian2 package

https://docs.python.org/3/library/functions.html#object

Brian 2 Documentation, Release 2.5.1

Notes

The dynamic array returns a data attribute which is a view on the larger _data attribute. When a resize operation
is performed, and a specific dimension is enlarged beyond the size in the _data attribute, the size is increased to
the larger of cursize*factor and newsize. This ensures that the amortized cost of increasing the size of
the array is O(1).

Examples

>>> x = DynamicArray((2, 3), dtype=int)
>>> x[:] = 1
>>> x.resize((3, 3))
>>> x[:] += 1
>>> x.resize((3, 4))
>>> x[:] += 1
>>> x.resize((4, 4))
>>> x[:] += 1
>>> x.data[:] = x.data**2
>>> x.data
array([[16, 16, 16, 4],

[16, 16, 16, 4],
[9, 9, 9, 4],
[1, 1, 1, 1]])

Methods

resize(newshape) Resizes the data to the new shape, which can be a dif-
ferent size to the current data, but should have the same
rank, i.e. same number of dimensions.

resize_along_first(newshape)

shrink(newshape) Reduces the data to the given shape, which should be
smaller than the current shape.

Details

resize(newshape)
Resizes the data to the new shape, which can be a different size to the current data, but should have the same
rank, i.e. same number of dimensions.

resize_along_first(newshape)

shrink(newshape)

Reduces the data to the given shape, which should be smaller than the current shape. resize() can also
be used with smaller values, but it will not shrink the allocated memory, whereas shrink will reallocate
the memory. This method should only be used infrequently, as if it is used frequently it will negate the
computational efficiency benefits of the DynamicArray.

DynamicArray1D(shape[, dtype, factor, ...]) Version of DynamicArray with specialised resize
method designed to be more efficient.

6.7. Subpackages 655

Brian 2 Documentation, Release 2.5.1

DynamicArray1D class

(Shortest import: from brian2.memory.dynamicarray import DynamicArray1D)

class brian2.memory.dynamicarray.DynamicArray1D(shape, dtype=<class 'float'>, factor=2,
use_numpy_resize=False, refcheck=True)

Bases: brian2.memory.dynamicarray.DynamicArray
Version of DynamicArray with specialised resize method designed to be more efficient.

Methods

resize(newshape) Resizes the data to the new shape, which can be a dif-
ferent size to the current data, but should have the same
rank, i.e. same number of dimensions.

Details

resize(newshape)

Resizes the data to the new shape, which can be a different size to the current data, but should have the same
rank, i.e. same number of dimensions.

Functions

getslices(shape[, from_start])

getslices function

(Shortest import: from brian2.memory.dynamicarray import getslices)

brian2.memory.dynamicarray.getslices(shape, from_start=True)

6.7.9 monitors package

Base package for all monitors, i.e. objects to record activity during a simulation run.
Exported members: SpikeMonitor, EventMonitor, StateMonitor, PopulationRateMonitor

ratemonitor module

Module defining PopulationRateMonitor.
Exported members: PopulationRateMonitor

Classes

PopulationRateMonitor(*args, **kw) Record instantaneous firing rates, averaged across neu-
rons from a NeuronGroup or other spike source.

656 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

PopulationRateMonitor class

(Shortest import: from brian2 import PopulationRateMonitor)

class brian2.monitors.ratemonitor.PopulationRateMonitor(*args, **kw)
Bases: brian2.groups.group.Group, brian2.groups.group.CodeRunner
Record instantaneous firing rates, averaged across neurons from a NeuronGroup or other spike source.

Parameters source : (NeuronGroup, SpikeSource)
The source of spikes to record.

name : str, optional
A unique name for the object, otherwise will use source.
name+'_ratemonitor_0', etc.

codeobj_class : class, optional
The CodeObject class to run code with.

dtype : dtype, optional
The dtype to use to store the rate variable. Defaults to float64, i.e. double precision.

Notes :
—– :
Currently, this monitor can only monitor the instantaneous firing rates at :
each time step of the source clock. Any binning/smoothing of the firing :
rates has to be done manually afterwards. :

Attributes

source The group we are recording from

Methods

reinit() Clears all recorded rates
resize(new_size)

smooth_rate(self[, window, width]) Return a smooth version of the population rate.

6.7. Subpackages 657

https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float64

Brian 2 Documentation, Release 2.5.1

Details

source

The group we are recording from
reinit()

Clears all recorded rates
resize(new_size)

smooth_rate(self, window='gaussian', width=None)

Return a smooth version of the population rate.
Parameters window : str, ndarray

The window to use for smoothing. Can be a string to chose a predefined window('flat'
for a rectangular, and 'gaussian' for a Gaussian-shaped window). In this case the
width of the window is determined by the width argument. Note that for the Gaussian
window, the width parameter specifies the standard deviation of the Gaussian, the width
of the actual window is 4*width + dt (rounded to the nearest dt). For the flat window,
the width is rounded to the nearest odd multiple of dt to avoid shifting the rate in time.
Alternatively, an arbitrary window can be given as a numpy array (with an odd number of
elements). In this case, the width in units of time depends on the dt of the simulation, and
no width argument can be specified. The given window will be automatically normalized
to a sum of 1.

width : Quantity, optional
The width of the window in seconds (for a predefined window).

Returns rate : Quantity
The population rate in Hz, smoothed with the given window. Note that the rates are
smoothed and not re-binned, i.e. the length of the returned array is the same as the length
of the rate attribute and can be plotted against the PopulationRateMonitor ‘s t
attribute.

Tutorials and examples using this

• Example frompapers/Brunel_2000

• Example frompapers/Brunel_Hakim_1999

• Example frompapers/Brunel_Wang_2001

• Example synapses/spike_based_homeostasis

spikemonitor module

Module defining EventMonitor and SpikeMonitor.
Exported members: EventMonitor, SpikeMonitor
Classes

EventMonitor(*args, **kw) Record events from a NeuronGroup or another event
source.

658 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

EventMonitor class

(Shortest import: from brian2 import EventMonitor)

class brian2.monitors.spikemonitor.EventMonitor(*args, **kw)
Bases: brian2.groups.group.Group, brian2.groups.group.CodeRunner
Record events from a NeuronGroup or another event source.
The recorded events can be accessed in various ways: the attributes i and t store all the indices and event
times, respectively. Alternatively, you can get a dictionary mapping neuron indices to event trains, by calling
the event_trains method.

Parameters source : NeuronGroup, SpikeSource
The source of events to record.

event : str
The name of the event to record

variables : str or sequence of str, optional
Which variables to record at the time of the event (in addition to the index of the neuron).
Can be the name of a variable or a list of names.

record : bool, optional
Whether or not to record each event in i and t (the count will always be recorded).
Defaults to True.

when : str, optional
When to record the events, by default records events in the same slot where the event is
emitted. See Scheduling for possible values.

order : int, optional
The priority of of this group for operations occurring at the same time step and in the
same scheduling slot. Defaults to the order where the event is emitted + 1, i.e. it will be
recorded directly afterwards.

name : str, optional
A unique name for the object, otherwise will use source.
name+'_eventmonitor_0', etc.

codeobj_class : class, optional
The CodeObject class to run code with.

See also:
SpikeMonitor

6.7. Subpackages 659

Brian 2 Documentation, Release 2.5.1

Attributes

count The array of event counts (length = size of target
group)

event The event that we are listening to
it Returns the pair (i, t).
it_ Returns the pair (i, t_).
num_events Returns the total number of recorded events.
record Whether to record times and indices of events
record_variables The additional variables that will be recorded
source The source we are recording from

Methods

all_values() Return a dictionary mapping recorded variable names
(including t) to a dictionary mapping neuron indices
to arrays of variable values at the time of the events
(sorted by time).

event_trains() Return a dictionary mapping neuron indices to arrays
of event times.

reinit() Clears all recorded spikes
resize(new_size)

values(var) Return a dictionary mapping neuron indices to arrays
of variable values at the time of the events (sorted by
time).

Details

count

The array of event counts (length = size of target group)
event

The event that we are listening to
it

Returns the pair (i, t).
it_

Returns the pair (i, t_).
num_events

Returns the total number of recorded events.
record

Whether to record times and indices of events
record_variables

The additional variables that will be recorded

660 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

source

The source we are recording from
all_values()

Return a dictionary mapping recorded variable names (including t) to a dictionary mapping neuron indices
to arrays of variable values at the time of the events (sorted by time). This is equivalent to (but more efficient
than) calling values for each variable and storing the result in a dictionary.

Returns all_values : dict
Dictionary mapping variable names to dictionaries which themselves are mapping neuron
indicies to arrays of variable values at the time of the events.

Examples

>>> from brian2 import *
>>> G = NeuronGroup(2, '''counter1 : integer
... counter2 : integer
... max_value : integer''',
... threshold='counter1 >= max_value',
... reset='counter1 = 0')
>>> G.run_regularly('counter1 += 1; counter2 += 1')
CodeRunner(...)
>>> G.max_value = [50, 100]
>>> mon = EventMonitor(G, event='spike', variables='counter2')
>>> run(10*ms)
>>> all_values = mon.all_values()
>>> print(all_values['counter2'][0])
[50 100]
>>> print(all_values['t'][1])
[9.9] ms

event_trains()

Return a dictionary mapping neuron indices to arrays of event times. Equivalent to calling values('t').
Returns event_trains : dict

Dictionary that stores an array with the event times for each neuron index.
See also:
SpikeMonitor.spike_trains

reinit()

Clears all recorded spikes
resize(new_size)

values(var)
Return a dictionary mapping neuron indices to arrays of variable values at the time of the events (sorted by
time).

Parameters var : str
The name of the variable.

Returns values : dict
Dictionary mapping each neuron index to an array of variable values at the time of the
events

6.7. Subpackages 661

Brian 2 Documentation, Release 2.5.1

Examples

>>> from brian2 import *
>>> G = NeuronGroup(2, '''counter1 : integer
... counter2 : integer
... max_value : integer''',
... threshold='counter1 >= max_value',
... reset='counter1 = 0')
>>> G.run_regularly('counter1 += 1; counter2 += 1')
CodeRunner(...)
>>> G.max_value = [50, 100]
>>> mon = EventMonitor(G, event='spike', variables='counter2')
>>> run(10*ms)
>>> counter2_values = mon.values('counter2')
>>> print(counter2_values[0])
[50 100]
>>> print(counter2_values[1])
[100]

Tutorials and examples using this

• Example advanced/custom_events

SpikeMonitor(*args, **kw) Record spikes from a NeuronGroup or other spike
source.

SpikeMonitor class

(Shortest import: from brian2 import SpikeMonitor)

class brian2.monitors.spikemonitor.SpikeMonitor(*args, **kw)
Bases: brian2.monitors.spikemonitor.EventMonitor
Record spikes from a NeuronGroup or other spike source.
The recorded spikes can be accessed in various ways (see Examples below): the attributes i and t store all the
indices and spike times, respectively. Alternatively, you can get a dictionary mapping neuron indices to spike trains,
by calling the spike_trainsmethod. If you record additional variables with the variables argument, these
variables can be accessed by their name (see Examples).

Parameters source : (NeuronGroup, SpikeSource)
The source of spikes to record.

variables : str or sequence of str, optional
Which variables to record at the time of the spike (in addition to the index of the neuron).
Can be the name of a variable or a list of names.

record : bool, optional
Whether or not to record each spike in i and t (the count will always be recorded).
Defaults to True.

when : str, optional

662 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

When to record the events, by default records events in the same slot where the event is
emitted. See Scheduling for possible values.

order : int, optional
The priority of of this group for operations occurring at the same time step and in the
same scheduling slot. Defaults to the order where the event is emitted + 1, i.e. it will be
recorded directly afterwards.

name : str, optional
A unique name for the object, otherwise will use source.
name+'_spikemonitor_0', etc.

codeobj_class : class, optional
The CodeObject class to run code with.

Examples

>>> from brian2 import *
>>> spikes = SpikeGeneratorGroup(3, [0, 1, 2], [0, 1, 2]*ms)
>>> spike_mon = SpikeMonitor(spikes)
>>> net = Network(spikes, spike_mon)
>>> net.run(3*ms)
>>> print(spike_mon.i[:])
[0 1 2]
>>> print(spike_mon.t[:])
[0. 1. 2.] ms
>>> print(spike_mon.t_[:])
[0. 0.001 0.002]
>>> from brian2 import *
>>> G = NeuronGroup(2, '''counter1 : integer
... counter2 : integer
... max_value : integer''',
... threshold='counter1 >= max_value',
... reset='counter1 = 0')
>>> G.run_regularly('counter1 += 1; counter2 += 1')
CodeRunner(...)
>>> G.max_value = [50, 100]
>>> mon = SpikeMonitor(G, variables='counter2')
>>> net = Network(G, mon)
>>> net.run(10*ms)
>>> print(mon.i[:])
[0 0 1]
>>> print(mon.counter2[:])
[50 100 100]

6.7. Subpackages 663

Brian 2 Documentation, Release 2.5.1

Attributes

count The array of spike counts (length = size of target
group)

num_spikes Returns the total number of recorded spikes.

Methods

all_values() Return a dictionary mapping recorded variable names
(including t) to a dictionary mapping neuron indices
to arrays of variable values at the time of the spikes
(sorted by time).

spike_trains() Return a dictionary mapping neuron indices to arrays
of spike times.

values(var) Return a dictionary mapping neuron indices to arrays
of variable values at the time of the spikes (sorted by
time).

Details

count

The array of spike counts (length = size of target group)
num_spikes

Returns the total number of recorded spikes.
all_values()

Return a dictionary mapping recorded variable names (including t) to a dictionary mapping neuron indices
to arrays of variable values at the time of the spikes (sorted by time). This is equivalent to (but more efficient
than) calling values for each variable and storing the result in a dictionary.

Returns all_values : dict
Dictionary mapping variable names to dictionaries which themselves are mapping neuron
indicies to arrays of variable values at the time of the spikes.

Examples

>>> from brian2 import *
>>> G = NeuronGroup(2, '''counter1 : integer
... counter2 : integer
... max_value : integer''',
... threshold='counter1 >= max_value',
... reset='counter1 = 0')
>>> G.run_regularly('counter1 += 1; counter2 += 1')
CodeRunner(...)
>>> G.max_value = [50, 100]
>>> mon = SpikeMonitor(G, variables='counter2')
>>> run(10*ms)
>>> all_values = mon.all_values()
>>> print(all_values['counter2'][0])

(continues on next page)

664 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
[50 100]
>>> print(all_values['t'][1])
[9.9] ms

spike_trains()

Return a dictionary mapping neuron indices to arrays of spike times.
Returns spike_trains : dict

Dictionary that stores an array with the spike times for each neuron index.

Examples

>>> from brian2 import *
>>> spikes = SpikeGeneratorGroup(3, [0, 1, 2], [0, 1, 2]*ms)
>>> spike_mon = SpikeMonitor(spikes)
>>> run(3*ms)
>>> spike_trains = spike_mon.spike_trains()
>>> spike_trains[1]
array([1.]) * msecond

values(var)
Return a dictionary mapping neuron indices to arrays of variable values at the time of the spikes (sorted by
time).

Parameters var : str
The name of the variable.

Returns values : dict
Dictionary mapping each neuron index to an array of variable values at the time of the
spikes.

Examples

>>> from brian2 import *
>>> G = NeuronGroup(2, '''counter1 : integer
... counter2 : integer
... max_value : integer''',
... threshold='counter1 >= max_value',
... reset='counter1 = 0')
>>> G.run_regularly('counter1 += 1; counter2 += 1')
CodeRunner(...)
>>> G.max_value = [50, 100]
>>> mon = SpikeMonitor(G, variables='counter2')
>>> run(10*ms)
>>> counter2_values = mon.values('counter2')
>>> print(counter2_values[0])
[50 100]
>>> print(counter2_values[1])
[100]

6.7. Subpackages 665

Brian 2 Documentation, Release 2.5.1

Tutorials and examples using this

• Tutorial 1-intro-to-brian-neurons
• Tutorial 3-intro-to-brian-simulations

• Example CUBA
• Example IF_curve_Hodgkin_Huxley

• Example IF_curve_LIF
• Example adaptive_threshold
• Example advanced/custom_events

• Example advanced/modelfitting_sbi

• Example advanced/opencv_movie

• Example compartmental/hh_with_spikes

• Example frompapers/Brette_2004

• Example frompapers/Brette_2012/Fig5A

• Example frompapers/Brette_Gerstner_2005

• Example frompapers/Brette_Guigon_2003

• Example frompapers/Brunel_2000

• Example frompapers/Brunel_Hakim_1999

• Example frompapers/Brunel_Wang_2001

• Example frompapers/Diesmann_et_al_1999

• Example frompapers/Izhikevich_2003

• Example frompapers/Izhikevich_2007

• Example frompapers/Maass_Natschlaeger_Markram_2002

• Example frompapers/Platkiewicz_Brette_2011

• Example frompapers/Rossant_et_al_2011bis

• Example frompapers/Stimberg_et_al_2018/example_1_COBA

• Example frompapers/Stimberg_et_al_2018/example_6_COBA_with_astro

• Example frompapers/Sturzl_et_al_2000

• Example frompapers/Touboul_Brette_2008

• Example frompapers/Tsodyks_Pawelzik_Markram_1998

• Example frompapers/Tsodyks_Uziel_Markram_2000

• Example frompapers/Vogels_et_al_2011

• Example non_reliability
• Example phase_locking
• Example reliability
• Example standalone/STDP_standalone

• Example standalone/cuba_openmp

666 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

• Example standalone/standalone_multiplerun

• Example synapses/STDP

• Example synapses/jeffress
• Example synapses/licklider

statemonitor module

Exported members: StateMonitor

Classes

StateMonitor(*args, **kw) Record values of state variables during a run

StateMonitor class

(Shortest import: from brian2 import StateMonitor)

class brian2.monitors.statemonitor.StateMonitor(*args, **kw)
Bases: brian2.groups.group.Group, brian2.groups.group.CodeRunner
Record values of state variables during a run
To extract recorded values after a run, use the t attribute for the array of times at which values were recorded,
and variable name attribute for the values. The values will have shape (len(indices), len(t)), where
indices are the array indices which were recorded. When indexing the StateMonitor directly, the returned
object can be used to get the recorded values for the specified indices, i.e. the indexing semantic refers to the
indices in source, not to the relative indices of the recorded values. For example, when recording only neurons
with even numbers, mon[[0, 2]].v will return the values for neurons 0 and 2, whereas mon.v[[0, 2]]
will return the values for the first and third recorded neurons, i.e. for neurons 0 and 4.

Parameters source : Group
Which object to record values from.

variables : str, sequence of str, True
Which variables to record, or True to record all variables (note that this may use a great
deal of memory).

record : bool, sequence of ints
Which indices to record, nothing is recorded for False, everything is recorded for True
(warning: may use a great deal of memory), or a specified subset of indices.

dt : Quantity, optional
The time step to be used for the monitor. Cannot be combined with the clock argument.

clock : Clock, optional
The update clock to be used. If neither a clock, nor the dt argument is specified, the clock
of the source() will be used.

when : str, optional
At which point during a time step the values should be recorded. Defaults to 'start'.
See Scheduling for possible values.

6.7. Subpackages 667

Brian 2 Documentation, Release 2.5.1

order : int, optional
The priority of of this group for operations occurring at the same time step and in the same
scheduling slot. Defaults to 0.

name : str, optional
A unique name for the object, otherwise will use source.
name+'statemonitor_0', etc.

codeobj_class : CodeObject, optional
The CodeObject class to create.

Notes

Since this monitor by default records in the 'start' time slot, recordings of the membrane potential in integrate-
and-fire models may look unexpected: the recorded membrane potential trace will never be above threshold in an
integrate-and-fire model, because the reset statement will have been applied already. Set the when keyword to a
different value if this is not what you want.
Note that record=True only works in runtime mode for synaptic variables. This is because the actual array
of indices has to be calculated and this is not possible in standalone mode, where the synapses have not been
created yet at this stage. Consider using an explicit array of indices instead, i.e. something like record=np.
arange(n_synapses).

Examples

Record all variables, first 5 indices:

eqs = '''
dV/dt = (2-V)/(10*ms) : 1
'''
threshold = 'V>1'
reset = 'V = 0'
G = NeuronGroup(100, eqs, threshold=threshold, reset=reset)
G.V = rand(len(G))
M = StateMonitor(G, True, record=range(5))
run(100*ms)
plot(M.t, M.V.T)
show()

Attributes

record The array of recorded indices
record_variables The variables to record

668 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

Methods

record_single_timestep() Records a single time step.
reinit()

resize(new_size)

Details

record

The array of recorded indices
record_variables

The variables to record
record_single_timestep()

Records a single time step. Useful for recording the values at the end of the simulation – otherwise a State-
Monitor will not record the last simulated values since its when attribute defaults to 'start', i.e. the
last recording is at the beginning of the last time step.

Notes

This function will only work if the StateMonitor has been already run, but a run with a length of 0*ms
does suffice.

Examples

>>> from brian2 import *
>>> G = NeuronGroup(1, 'dv/dt = -v/(5*ms) : 1')
>>> G.v = 1
>>> mon = StateMonitor(G, 'v', record=True)
>>> run(0.5*ms)
>>> print(np.array_str(mon.v[:], precision=3))
[[1. 0.98 0.961 0.942 0.923]]
>>> print(mon.t[:])
[0. 100. 200. 300. 400.] us
>>> print(np.array_str(G.v[:], precision=3)) # last value had not been␣
↪→recorded
[0.905]
>>> mon.record_single_timestep()
>>> print(mon.t[:])
[0. 100. 200. 300. 400. 500.] us
>>> print(np.array_str(mon.v[:], precision=3))
[[1. 0.98 0.961 0.942 0.923 0.905]]

reinit()

resize(new_size)

6.7. Subpackages 669

Brian 2 Documentation, Release 2.5.1

Tutorials and examples using this

• Tutorial 1-intro-to-brian-neurons
• Tutorial 2-intro-to-brian-synapses
• Tutorial 3-intro-to-brian-simulations

• Example COBAHH
• Example adaptive_threshold
• Example advanced/COBAHH_approximated

• Example advanced/Ornstein_Uhlenbeck

• Example advanced/compare_GSL_to_conventional

• Example advanced/custom_events

• Example advanced/modelfitting_sbi

• Example advanced/stochastic_odes
• Example compartmental/bipolar_cell

• Example compartmental/bipolar_with_inputs

• Example compartmental/bipolar_with_inputs2

• Example compartmental/hh_with_spikes

• Example compartmental/hodgkin_huxley_1952

• Example compartmental/infinite_cable

• Example compartmental/lfp

• Example compartmental/spike_initiation

• Example frompapers/Brette_2012/Fig1

• Example frompapers/Brette_2012/Fig3AB

• Example frompapers/Brette_2012/Fig3CF

• Example frompapers/Brette_2012/Fig4

• Example frompapers/Brette_2012/Fig5A

• Example frompapers/Brette_Gerstner_2005

• Example frompapers/Brette_Guigon_2003

• Example frompapers/Clopath_et_al_2010_homeostasis

• Example frompapers/Destexhe_et_al_1998

• Example frompapers/Hindmarsh_Rose_1984

• Example frompapers/Izhikevich_2003

• Example frompapers/Izhikevich_2007

• Example frompapers/Jansen_Rit_1995_single_column

• Example frompapers/Morris_Lecar_1981

• Example frompapers/Naud_et_al_2008_adex_firing_patterns

• Example frompapers/Platkiewicz_Brette_2011

670 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

• Example frompapers/Rossant_et_al_2011bis

• Example frompapers/Rothman_Manis_2003

• Example frompapers/Stimberg_et_al_2018/example_1_COBA

• Example frompapers/Stimberg_et_al_2018/example_2_gchi_astrocyte

• Example frompapers/Stimberg_et_al_2018/example_3_io_synapse

• Example frompapers/Stimberg_et_al_2018/example_4_rsmean

• Example frompapers/Stimberg_et_al_2018/example_4_synrel

• Example frompapers/Stimberg_et_al_2018/example_5_astro_ring

• Example frompapers/Touboul_Brette_2008

• Example frompapers/Tsodyks_Pawelzik_Markram_1998

• Example frompapers/Tsodyks_Uziel_Markram_2000

• Example frompapers/Wang_Buszaki_1996

• Example multiprocessing/01_using_cython

• Example multiprocessing/02_using_standalone

• Example multiprocessing/03_standalone_joblib

• Example phase_locking
• Example standalone/STDP_standalone

• Example standalone/simple_case

• Example standalone/simple_case_build

• Example synapses/STDP

• Example synapses/continuous_interaction
• Example synapses/gapjunctions
• Example synapses/jeffress
• Example synapses/nonlinear
• Example synapses/spike_based_homeostasis

• Example synapses/synapses

StateMonitorView(monitor, item)

StateMonitorView class

(Shortest import: from brian2.monitors.statemonitor import StateMonitorView)

class brian2.monitors.statemonitor.StateMonitorView(monitor, item)
Bases: object

6.7. Subpackages 671

https://docs.python.org/3/library/functions.html#object

Brian 2 Documentation, Release 2.5.1

6.7.10 parsing package

bast module

Brian AST representation
This is a standard Python AST representation with additional information added.
Exported members: brian_ast, BrianASTRenderer, dtype_hierarchy
Classes

BrianASTRenderer(variables[, copy_variables]) This class is modelled after NodeRenderer - see there
for details.

BrianASTRenderer class

(Shortest import: from brian2.parsing.bast import BrianASTRenderer)

class brian2.parsing.bast.BrianASTRenderer(variables, copy_variables=True)
Bases: object
This class is modelled after NodeRenderer - see there for details.

Methods

render_BinOp(node)

render_BoolOp(node)

render_Call(node)

render_Compare(node)

render_Constant(node)

render_Name(node)

render_NameConstant(node)

render_Num(node)

render_UnaryOp(node)

render_node(node)

672 Chapter 6. brian2 package

https://docs.python.org/3/library/functions.html#object

Brian 2 Documentation, Release 2.5.1

Details

render_BinOp(node)

render_BoolOp(node)

render_Call(node)

render_Compare(node)

render_Constant(node)

render_Name(node)

render_NameConstant(node)

render_Num(node)

render_UnaryOp(node)

render_node(node)

Functions

brian_ast(expr, variables) Returns an AST tree representation with additional infor-
mation

brian_ast function

(Shortest import: from brian2.parsing.bast import brian_ast)

brian2.parsing.bast.brian_ast(expr, variables)
Returns an AST tree representation with additional information
Each node will be a standard Python ast node with the following additional attributes:
dtype One of 'boolean', 'integer' or 'float', referring to the data type of the value of this node.
scalar Either True or False if the node uses any vector-valued variables.
complexity An integer representation of the computational complexity of the node. This is a very rough

representation used for things like 2*(x+y) is less complex than 2*x+2*y and exp(x) is more complex
than 2*x but shouldn’t be relied on for fine distinctions between expressions.

Parameters expr : str
The expression to convert into an AST representation

variables : dict
The dictionary of Variable objects used in the expression.

brian_dtype_from_dtype(dtype) Returns 'boolean', 'integer' or 'float'

6.7. Subpackages 673

Brian 2 Documentation, Release 2.5.1

brian_dtype_from_dtype function

(Shortest import: from brian2.parsing.bast import brian_dtype_from_dtype)

brian2.parsing.bast.brian_dtype_from_dtype(dtype)
Returns ‘boolean’, ‘integer’ or ‘float’

brian_dtype_from_value(value) Returns 'boolean', 'integer' or 'float'

brian_dtype_from_value function

(Shortest import: from brian2.parsing.bast import brian_dtype_from_value)

brian2.parsing.bast.brian_dtype_from_value(value)

Returns ‘boolean’, ‘integer’ or ‘float’

is_boolean(value)

is_boolean function

(Shortest import: from brian2.parsing.bast import is_boolean)

brian2.parsing.bast.is_boolean(value)

is_boolean_dtype(obj)

is_boolean_dtype function

(Shortest import: from brian2.parsing.bast import is_boolean_dtype)

brian2.parsing.bast.is_boolean_dtype(obj)

is_float(value)

is_float function

(Shortest import: from brian2.parsing.bast import is_float)

brian2.parsing.bast.is_float(value)

is_float_dtype(obj)

674 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

is_float_dtype function

(Shortest import: from brian2.parsing.bast import is_float_dtype)

brian2.parsing.bast.is_float_dtype(obj)

is_integer(value)

is_integer function

(Shortest import: from brian2.parsing.bast import is_integer)

brian2.parsing.bast.is_integer(value)

is_integer_dtype(obj)

is_integer_dtype function

(Shortest import: from brian2.parsing.bast import is_integer_dtype)

brian2.parsing.bast.is_integer_dtype(obj)

dependencies module

Exported members: abstract_code_dependencies

Functions

abstract_code_dependencies(code[, ...]) Analyses identifiers used in abstract code blocks

abstract_code_dependencies function

(Shortest import: from brian2.parsing.dependencies import abstract_code_dependencies)

brian2.parsing.dependencies.abstract_code_dependencies(code, known_vars=None,
known_funcs=None)

Analyses identifiers used in abstract code blocks
Parameters code : str

The abstract code block.
known_vars : set

The set of known variable names.
known_funcs : set

The set of known function names.
Returns results : namedtuple with the following fields

6.7. Subpackages 675

Brian 2 Documentation, Release 2.5.1

all The set of all identifiers that appear in this code block, including functions.
read The set of values that are read, excluding functions.
write The set of all values that are written to.
funcs The set of all function names.
known_all The set of all identifiers that appear in this code block and are known.
known_read The set of known values that are read, excluding functions.
known_write The set of known values that are written to.
known_funcs The set of known functions that are used.
unknown_read The set of all unknown variables whose values are read. Equal to
read-known_vars.

unknown_write The set of all unknown variables written to. Equal to
write-known_vars.

unknown_funcs The set of all unknown function names, equal to
funcs-known_funcs.

undefined_read The set of all unknown variables whose values are read before they
are written to. If this set is nonempty it usually indicates an error, since a variable that
is read should either have been defined in the code block (in which case it will appear
in newly_defined) or already be known.

newly_defined The set of all variable names which are newly defined in this abstract
code block.

get_read_write_funcs(parsed_code)

get_read_write_funcs function

(Shortest import: from brian2.parsing.dependencies import get_read_write_funcs)

brian2.parsing.dependencies.get_read_write_funcs(parsed_code)

expressions module

AST parsing based analysis of expressions
Exported members: parse_expression_dimensions

Functions

is_boolean_expression(expr, variables) Determines if an expression is of boolean type or not

676 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

is_boolean_expression function

(Shortest import: from brian2.parsing.expressions import is_boolean_expression)

brian2.parsing.expressions.is_boolean_expression(expr, variables)
Determines if an expression is of boolean type or not

Parameters expr : str
The expression to test

variables : dict-like of Variable
The variables used in the expression.

Returns isbool : bool
Whether or not the expression is boolean.

Raises

SyntaxError If the expression ought to be boolean but is not, for example x<y and z where z is not a
boolean variable.

Notes

We test the following cases recursively on the abstract syntax tree:
• The node is a boolean operation. If all the subnodes are boolean expressions we return True, otherwise we
raise the SyntaxError.

• The node is a function call, we return True or False depending on whether the function description has
the _returns_bool attribute set.

• The node is a variable name, we return True or False depending on whether is_boolean attribute is
set or if the name is True or False.

• The node is a comparison, we return True.
• The node is a unary operation, we return True if the operation is not, otherwise False.
• Otherwise we return False.

parse_expression_dimensions(expr, vari-
ables)

Returns the unit value of an expression, and checks its
validity

parse_expression_dimensions function

(Shortest import: from brian2.parsing.expressions import parse_expression_dimensions)

brian2.parsing.expressions.parse_expression_dimensions(expr, variables, orig_expr=None)
Returns the unit value of an expression, and checks its validity

Parameters expr : str
The expression to check.

variables : dict

6.7. Subpackages 677

https://docs.python.org/3/library/exceptions.html#SyntaxError

Brian 2 Documentation, Release 2.5.1

Dictionary of all variables used in the expr (including Constant objects for external
variables)

Returns unit : Quantity
The output unit of the expression

Raises

SyntaxError If the expression cannot be parsed, or if it usesa**b forb anything other than a constant number.
DimensionMismatchError If any part of the expression is dimensionally inconsistent.

functions module

Exported members: AbstractCodeFunction, abstract_code_from_function, ex-
tract_abstract_code_functions, substitute_abstract_code_functions
Classes

AbstractCodeFunction(name, args, code, ...) The information defining an abstract code function

AbstractCodeFunction class

(Shortest import: from brian2.parsing.functions import AbstractCodeFunction)

class brian2.parsing.functions.AbstractCodeFunction(name, args, code, return_expr)
Bases: object
The information defining an abstract code function
Has attributes corresponding to initialisation parameters

Parameters name : str
The function name.

args : list of str
The arguments to the function.

code : str
The abstract code string consisting of the body of the function less the return statement.

return_expr : str or None
The expression returned, or None if there is nothing returned.

FunctionRewriter(func[, numcalls]) Inlines a function call using temporary variables

678 Chapter 6. brian2 package

https://docs.python.org/3/library/exceptions.html#SyntaxError
https://docs.python.org/3/library/functions.html#object

Brian 2 Documentation, Release 2.5.1

FunctionRewriter class

(Shortest import: from brian2.parsing.functions import FunctionRewriter)

class brian2.parsing.functions.FunctionRewriter(func, numcalls=0)
Bases: ast.NodeTransformer
Inlines a function call using temporary variables
numcalls is the number of times the function rewriter has been called so far, this is used to make sure that when
recursively inlining there is no name aliasing. The substitute_abstract_code_functions ensures that this is kept up
to date between recursive runs.
The pre attribute is the set of lines to be inserted above the currently being processed line, i.e. the inline code.
The visit method returns the current line processed so that the function call is replaced with the output of the
inlining.

Methods

visit_Call(node)

Details

visit_Call(node)

VarRewriter(pre) Rewrites all variable names in names by prepending pre

VarRewriter class

(Shortest import: from brian2.parsing.functions import VarRewriter)

class brian2.parsing.functions.VarRewriter(pre)
Bases: ast.NodeTransformer
Rewrites all variable names in names by prepending pre

Methods

visit_Call(node)

visit_Name(node)

6.7. Subpackages 679

https://docs.python.org/3/library/ast.html#ast.NodeTransformer
https://docs.python.org/3/library/ast.html#ast.NodeTransformer

Brian 2 Documentation, Release 2.5.1

Details

visit_Call(node)

visit_Name(node)

Functions

abstract_code_from_function(func) Converts the body of the function to abstract code

abstract_code_from_function function

(Shortest import: from brian2.parsing.functions import abstract_code_from_function)

brian2.parsing.functions.abstract_code_from_function(func)

Converts the body of the function to abstract code
Parameters func : function, str or ast.FunctionDef

The function object to convert. Note that the arguments to the function are ignored.
Returns func : AbstractCodeFunction

The corresponding abstract code function

Raises

SyntaxError If unsupported features are used such as if statements or indexing.

extract_abstract_code_functions(code) Returns a set of abstract code functions from function
definitions.

extract_abstract_code_functions function

(Shortest import: from brian2.parsing.functions import ex-
tract_abstract_code_functions)

brian2.parsing.functions.extract_abstract_code_functions(code)
Returns a set of abstract code functions from function definitions.
Returns all functions defined at the top level and ignores any other code in the string.

Parameters code : str
The code string defining some functions.

Returns funcs : dict
A mapping (name, func) for func an AbstractCodeFunction.

substitute_abstract_code_functions(code,
funcs)

Performs inline substitution of all the functions in the
code

680 Chapter 6. brian2 package

https://docs.python.org/3/library/exceptions.html#SyntaxError

Brian 2 Documentation, Release 2.5.1

substitute_abstract_code_functions function

(Shortest import: from brian2.parsing.functions import substi-
tute_abstract_code_functions)

brian2.parsing.functions.substitute_abstract_code_functions(code, funcs)
Performs inline substitution of all the functions in the code

Parameters code : str
The abstract code to make inline substitutions into.

funcs : list, dict or set of AbstractCodeFunction
The function substitutions to use, note in the case of a dict, the keys are ignored and the
function name is used.

Returns code : str
The code with inline substitutions performed.

rendering module

Exported members: NodeRenderer, NumpyNodeRenderer, CPPNodeRenderer, SympyNodeRenderer,
get_node_value

Classes

CPPNodeRenderer([auto_vectorise])

Methods

CPPNodeRenderer class

(Shortest import: from brian2.parsing.rendering import CPPNodeRenderer)

class brian2.parsing.rendering.CPPNodeRenderer(auto_vectorise=None)
Bases: brian2.parsing.rendering.NodeRenderer

Methods

render_Assign(node)

render_BinOp(node)

render_Name(node)

render_NameConstant(node)

6.7. Subpackages 681

Brian 2 Documentation, Release 2.5.1

Details

render_Assign(node)

render_BinOp(node)

render_Name(node)

render_NameConstant(node)

NodeRenderer([auto_vectorise])

Methods

NodeRenderer class

(Shortest import: from brian2.parsing.rendering import NodeRenderer)

class brian2.parsing.rendering.NodeRenderer(auto_vectorise=None)
Bases: object

682 Chapter 6. brian2 package

https://docs.python.org/3/library/functions.html#object

Brian 2 Documentation, Release 2.5.1

Methods

render_Assign(node)

render_AugAssign(node)

render_BinOp(node)

render_BinOp_parentheses(left, right, op)

render_BoolOp(node)

render_Call(node)

render_Compare(node)

render_Constant(node)

render_Name(node)

render_NameConstant(node)

render_Num(node)

render_UnaryOp(node)

render_code(code)

render_element_parentheses(node) Render an element with parentheses around it or leave
them away for numbers, names and function calls.

render_expr(expr[, strip])

render_func(node)

render_node(node)

Details

render_Assign(node)

render_AugAssign(node)

render_BinOp(node)

render_BinOp_parentheses(left, right, op)

render_BoolOp(node)

render_Call(node)

render_Compare(node)

6.7. Subpackages 683

Brian 2 Documentation, Release 2.5.1

render_Constant(node)

render_Name(node)

render_NameConstant(node)

render_Num(node)

render_UnaryOp(node)

render_code(code)

render_element_parentheses(node)

Render an element with parentheses around it or leave them away for numbers, names and function calls.
render_expr(expr, strip=True)

render_func(node)

render_node(node)

NumpyNodeRenderer([auto_vectorise])

Methods

NumpyNodeRenderer class

(Shortest import: from brian2.parsing.rendering import NumpyNodeRenderer)

class brian2.parsing.rendering.NumpyNodeRenderer(auto_vectorise=None)
Bases: brian2.parsing.rendering.NodeRenderer

Methods

render_UnaryOp(node)

Details

render_UnaryOp(node)

SympyNodeRenderer([auto_vectorise])

Methods

684 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

SympyNodeRenderer class

(Shortest import: from brian2.parsing.rendering import SympyNodeRenderer)

class brian2.parsing.rendering.SympyNodeRenderer(auto_vectorise=None)
Bases: brian2.parsing.rendering.NodeRenderer

Methods

render_BinOp(node)

render_BoolOp(node)

render_Call(node)

render_Compare(node)

render_Name(node)

render_NameConstant(node)

render_Num(node)

render_UnaryOp(node)

render_func(node)

Details

render_BinOp(node)

render_BoolOp(node)

render_Call(node)

render_Compare(node)

render_Name(node)

render_NameConstant(node)

render_Num(node)

render_UnaryOp(node)

render_func(node)

Functions

get_node_value(node) Helper function to mask differences between Python ver-
sions

6.7. Subpackages 685

Brian 2 Documentation, Release 2.5.1

get_node_value function

(Shortest import: from brian2.parsing.rendering import get_node_value)

brian2.parsing.rendering.get_node_value(node)
Helper function to mask differences between Python versions

statements module

Functions

parse_statement(code) Parses a single line of code into "var op expr".

parse_statement function

(Shortest import: from brian2.parsing.statements import parse_statement)

brian2.parsing.statements.parse_statement(code)
Parses a single line of code into “var op expr”.

Parameters code : str
A string containing a single statement of the form var op expr # comment, where
the # comment part is optional.

Returns var, op, expr, comment : str, str, str, str
The four parts of the statement.

Examples

>>> parse_statement('v = -65*mV # reset the membrane potential')
('v', '=', '-65*mV', 'reset the membrane potential')
>>> parse_statement('v += dt*(-v/tau)')
('v', '+=', 'dt*(-v/tau)', '')

sympytools module

Utility functions for parsing expressions and statements.
Classes

CustomSympyPrinter([settings]) Printer that overrides the printing of some basic sympy
objects.

686 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

CustomSympyPrinter class

(Shortest import: from brian2.parsing.sympytools import CustomSympyPrinter)

class brian2.parsing.sympytools.CustomSympyPrinter(settings=None)
Bases: sympy.printing.str.StrPrinter
Printer that overrides the printing of some basic sympy objects. E.g. print “a and b” instead of “And(a, b)”.

Functions

check_expression_for_multiple_stateful_functions(...)

check_expression_for_multiple_stateful_functions function

(Shortest import: from brian2.parsing.sympytools import check_expression_for_multiple_stateful_functions)

brian2.parsing.sympytools.check_expression_for_multiple_stateful_functions(expr,
vari-
ables)

expression_complexity(expr[, complexity]) Returns the complexity of an expression (either string or
sympy)

expression_complexity function

(Shortest import: from brian2.parsing.sympytools import expression_complexity)

brian2.parsing.sympytools.expression_complexity(expr, complexity=None)
Returns the complexity of an expression (either string or sympy)
The complexity is defined as 1 for each arithmetic operation except divide which is 2, and all other operations are
20. This can be overridden using the complexity argument.
Note: calling this on a statement rather than an expression is likely to lead to errors.

Parameters expr: `sympy.Expr` or str :
The expression.

complexity: None or dict (optional) :
A dictionary mapping expression names to their complexity, to overwrite default be-
haviour.

Returns complexity: int :
The complexity of the expression.

str_to_sympy(expr[, variables]) Parses a string into a sympy expression.

6.7. Subpackages 687

https://docs.sympy.org/dev/modules/printing.html#sympy.printing.str.StrPrinter

Brian 2 Documentation, Release 2.5.1

str_to_sympy function

(Shortest import: from brian2.parsing.sympytools import str_to_sympy)

brian2.parsing.sympytools.str_to_sympy(expr, variables=None)
Parses a string into a sympy expression. There are two reasons for not using sympify directly: 1) sympify does a
from sympy import *, adding all functions to its namespace. This leads to issues when trying to use sympy
function names as variable names. For example, both beta and factor – quite reasonable names for variables
– are sympy functions, using them as variables would lead to a parsing error. 2) We want to use a common syntax
across expressions and statements, e.g. we want to allow to use and (instead of &) and function names like ceil
(instead of ceiling).

Parameters expr : str
The string expression to parse.

variables : dict, optional
Dictionary mapping variable/function names in the expr to their respective Vari-
able/Function objects.

Returns s_expr :
A sympy expression

Raises

SyntaxError In case of any problems during parsing.

sympy_to_str(sympy_expr) Converts a sympy expression into a string.

sympy_to_str function

(Shortest import: from brian2.parsing.sympytools import sympy_to_str)

brian2.parsing.sympytools.sympy_to_str(sympy_expr)
Converts a sympy expression into a string. This could be as easy as str(sympy_exp) but it is possible that
the sympy expression contains functions like Abs (for example, if an expression such as sqrt(x**2) appeared
somewhere). We do want to re-translate Abs into abs in this case.

Parameters sympy_expr : sympy.core.expr.Expr
The expression that should be converted to a string.

Returns :
str_expr : str

A string representing the sympy expression.
Objects

PRINTER Printer that overrides the printing of some basic sympy
objects.

688 Chapter 6. brian2 package

https://docs.python.org/3/library/exceptions.html#SyntaxError

Brian 2 Documentation, Release 2.5.1

PRINTER object

(Shortest import: from brian2.parsing.sympytools import PRINTER)

brian2.parsing.sympytools.PRINTER =
<brian2.parsing.sympytools.CustomSympyPrinter object>

Printer that overrides the printing of some basic sympy objects. E.g. print “a and b” instead of “And(a, b)”.

6.7.11 random package

6.7.12 spatialneuron package

Exported members: Morphology, Soma, Cylinder, Section, SpatialNeuron

morphology module

Neuronal morphology module. This module defines classes to load and build neuronal morphologies.
Exported members: Morphology, Section, Cylinder, Soma
Classes

Children(owner) Helper class to represent the children (sub trees) of a sec-
tion.

Children class

(Shortest import: from brian2.spatialneuron.morphology import Children)

class brian2.spatialneuron.morphology.Children(owner)
Bases: object
Helper class to represent the children (sub trees) of a section. Can be used like a dictionary (mapping names to
Morphology objects), but iterates over the values (sub trees) instead of over the keys (names).

Methods

add(name, subtree[, automatic_name]) Add a new child to the morphology.
name(child) Return the given name (i.e.
remove(name) Remove a subtree from this morphology.

6.7. Subpackages 689

https://docs.python.org/3/library/functions.html#object

Brian 2 Documentation, Release 2.5.1

Details

add(name, subtree, automatic_name=False)

Add a new child to the morphology.
Parameters name : str

The name (e.g. "axon", "soma") to use for this sub tree.
subtree : Morphology
The subtree to link as a child.

automatic_name : bool, optional
Whether to chose a new name automatically, if a subtree of the same name already exists
(uses e.g. "dend2" instead "dend"). Defaults to False and will raise an error instead.

name(child)
Return the given name (i.e. not the automatic name such as 1) for a child subtree.

Parameters child : Morphology
Returns name : str

The given name for the child.
remove(name)

Remove a subtree from this morphology.
Parameters name : str

The name of the sub tree to remove.

Cylinder(**kwds) A cylindrical section.

Cylinder class

(Shortest import: from brian2 import Cylinder)

class brian2.spatialneuron.morphology.Cylinder(**kwds)
Bases: brian2.spatialneuron.morphology.Section
A cylindrical section. For sections with more complex geometry (varying length and/or diameter of each compart-
ment), use the Section class.

Parameters diameter : Quantity
The diameter of the cylinder.

n : int, optional
The number of compartments in this section. Defaults to 1.

length : Quantity, optional
The length of the cylinder. Cannot be combined with the specification of coordinates.

x : Quantity, optional

690 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

A sequence of two values, the start and the end point of the cylinder. The coordinates
are interpreted as relative to the end point of the parent compartment (if any), so in most
cases the start point should be 0*um. The common exception is a cylinder connecting to
a Soma, here the start point can be used to make the cylinder start at the surface of the
sphere instead of at its center. You can specify all of x, y, or z to specify a morphology
in 3D, or only one or two out of them to specify a morphology in 1D or 2D.

y : Quantity, optional
See x

z : Quantity, optional
See x

type : str, optional
The type (e.g. "axon") of this Cylinder.

Attributes

area The membrane surface area of each compartment in
this section.

diameter The diameter at the middle of each compartment in
this section.

end_diameter The diameter at the end of each compartment in this
section.

r_length_1 The geometry-dependent term to calculate the con-
ductance between the start and the midpoint of each
compartment.

r_length_2 The geometry-dependent term to calculate the con-
ductance between the midpoint and the end of each
compartment.

start_diameter The diameter at the start of each compartment in this
section.

volume The volume of each compartment in this section.

6.7. Subpackages 691

Brian 2 Documentation, Release 2.5.1

Methods

copy_section() Create a copy of the current section (attributes of this
section only, not re-creating the parent/children rela-
tion)

Details

area

The membrane surface area of each compartment in this section. The surface area of each compartment is
calculated as πdl, where l is the length of the compartment, and d is its diameter. Note that this surface area
does not contain the area of the two disks at the two sides of the cylinder.

diameter

The diameter at the middle of each compartment in this section.
end_diameter

The diameter at the end of each compartment in this section.
r_length_1

The geometry-dependent term to calculate the conductance between the start and the midpoint of each com-
partment. Dividing this value by the Intracellular resistivity gives the conductance.

r_length_2

The geometry-dependent term to calculate the conductance between the midpoint and the end of each com-
partment. Dividing this value by the Intracellular resistivity gives the conductance.

start_diameter

The diameter at the start of each compartment in this section.
volume

The volume of each compartment in this section. The volume of each compartment is calculated as π d
2

2
l ,

where l is the length of the compartment, and d is its diameter.
copy_section()

Create a copy of the current section (attributes of this section only, not re-creating the parent/children relation)
Returns copy : Morphology

A copy of this section (without the links to the parent/children)

Tutorials and examples using this

• Example compartmental/bipolar_cell

• Example compartmental/bipolar_with_inputs

• Example compartmental/bipolar_with_inputs2

• Example compartmental/cylinder

• Example compartmental/hh_with_spikes

• Example compartmental/hodgkin_huxley_1952

• Example compartmental/infinite_cable

692 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

• Example compartmental/lfp

• Example compartmental/morphotest

• Example compartmental/rall

• Example compartmental/spike_initiation

• Example frompapers/Brette_2012/Fig1

• Example frompapers/Brette_2012/Fig3AB

• Example frompapers/Brette_2012/Fig3CF

• Example frompapers/Brette_2012/Fig5A

• Example frompapers/Destexhe_et_al_1998

Morphology(**kwds) Neuronal morphology (tree structure).

Morphology class

(Shortest import: from brian2 import Morphology)

class brian2.spatialneuron.morphology.Morphology(**kwds)
Bases: object
Neuronal morphology (tree structure).
The data structure is a tree where each node is an un-branched section consisting of a number of connected com-
partments, each one defined by its geometrical properties (length, area, diameter, position).

Notes

You cannot create objects of this class, create a Soma, a Section, or a Cylinder instead.

Attributes

area The membrane surface area of each compartment in
this section.

children The children (as a Children object) of this section.
coordinates Array with all coordinates at the start- and end-points

of each compartment in this section.
coordinates_ Array with all coordinates (as unitless floating point

numbers) at the start- and end-points of each compart-
ment in this section.

diameter The diameter at the middle of each compartment in
this section.

distance The total distance between the midpoint of each com-
partment and the root of the morphology.

end_distance The distance to the root of the morphology at the end
of this section.

end_x The x coordinate at the end of each compartment.
continues on next page

6.7. Subpackages 693

https://docs.python.org/3/library/functions.html#object

Brian 2 Documentation, Release 2.5.1

Table 2 – continued from previous page
end_x_ The x coordinate (as a unitless floating point number)

at the end of each compartment.
end_y The y coordinate at the end of each compartment.
end_y_ The y coordinate (as a unitless floating point number)

at the end of each compartment.
end_z The z coordinate at the end of each compartment.
end_z_ The z coordinate (as a unitless floating point number)

at the end of each compartment.
length The length of each compartment in this section.
n The number of compartments in this section.
parent The parent section of this section.
r_length_1 The geometry-dependent term to calculate the con-

ductance between the start and the midpoint of each
compartment.

r_length_2 The geometry-dependent term to calculate the con-
ductance between the midpoint and the end of each
compartment.

start_x The x coordinate at the beginning of each compart-
ment.

start_x_ The x coordinate (as a unitless floating point number)
at the beginning of each compartment.

start_y The y coordinate at the beginning of each compart-
ment.

start_y_ The y coordinate (as a unitless floating point number)
at the beginning of each compartment.

start_z The z coordinate at the beginning of each compart-
ment.

start_z_ The z coordinate (as a unitless floating point number)
at the beginning of each compartment.

total_compartments The total number of compartments in this subtree (i.e.
total_sections The total number of sections in this subtree.
volume The volume of each compartment in this section.
x The x coordinate at the midpoint of each compart-

ment.
x_ The x coordinate (as a unitless floating point number)

at the midpoint of each compartment.
y The y coordinate at the midpoint of each compart-

ment.
y_ The y coordinate (as a unitless floating point number)

at the midpoint of each compartment.
z The y coordinate at the midpoint of each compart-

ment.
z_ The z coordinate (as a unitless floating point number)

at the midpoint of each compartment.

694 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

Methods

copy_section() Create a copy of the current section (attributes of this
section only, not re-creating the parent/children rela-
tion)

from_file(filename[, spherical_soma]) Convencience method to load a morphology from a
given file.

from_points(points[, spherical_soma]) Create a morphology from a sequence of points
(similar to the SWC format, see Morphology.
from_swc_file).

from_swc_file(filename[, spherical_soma]) Load a morphology from a SWC file.
generate_coordinates([section_randomness,
...])

Create a new Morphology, with coordinates filled
in place where the previous morphology did not have
any.

topology() Return a representation of the topology

Details

area

The membrane surface area of each compartment in this section.
children

The children (as a Children object) of this section.
coordinates

Array with all coordinates at the start- and end-points of each compartment in this section. The array has size
(n + 1) × 3, where n is the number of compartments in this section. Each row is one point (start point of
first compartment, end point of first compartment, end point of second compartment, …), with the columns
being the x, y, and z coordinates. Returns None for morphologies without coordinates.

coordinates_

Arraywith all coordinates (as unitless floating point numbers) at the start- and end-points of each compartment
in this section. The array has size (n + 1) × 3, where n is the number of compartments in this section.
Each row is one point (start point of first compartment, end point of first compartment, end point of second
compartment, …), with the columns being the x, y, and z coordinates. Returns None for morphologies
without coordinates.

diameter

The diameter at the middle of each compartment in this section.
distance

The total distance between the midpoint of each compartment and the root of the morphology.
end_distance

The distance to the root of the morphology at the end of this section.
end_x

The x coordinate at the end of each compartment. Returns None for morphologies without coordinates.
end_x_

The x coordinate (as a unitless floating point number) at the end of each compartment. Returns None for
morphologies without coordinates.

6.7. Subpackages 695

Brian 2 Documentation, Release 2.5.1

end_y

The y coordinate at the end of each compartment. Returns None for morphologies without coordinates.
end_y_

The y coordinate (as a unitless floating point number) at the end of each compartment. Returns None for
morphologies without coordinates.

end_z

The z coordinate at the end of each compartment. Returns None for morphologies without coordinates.
end_z_

The z coordinate (as a unitless floating point number) at the end of each compartment. Returns None for
morphologies without coordinates.

length

The length of each compartment in this section.
n

The number of compartments in this section.
parent

The parent section of this section.
r_length_1

The geometry-dependent term to calculate the conductance between the start and the midpoint of each com-
partment. Dividing this value by the Intracellular resistivity gives the conductance.

r_length_2

The geometry-dependent term to calculate the conductance between the midpoint and the end of each com-
partment. Dividing this value by the Intracellular resistivity gives the conductance.

start_x

The x coordinate at the beginning of each compartment. ReturnsNone formorphologies without coordinates.
start_x_

The x coordinate (as a unitless floating point number) at the beginning of each compartment. Returns None
for morphologies without coordinates.

start_y

The y coordinate at the beginning of each compartment. ReturnsNone formorphologies without coordinates.
start_y_

The y coordinate (as a unitless floating point number) at the beginning of each compartment. Returns None
for morphologies without coordinates.

start_z

The z coordinate at the beginning of each compartment. ReturnsNone for morphologies without coordinates.
start_z_

The z coordinate (as a unitless floating point number) at the beginning of each compartment. Returns None
for morphologies without coordinates.

total_compartments

The total number of compartments in this subtree (i.e. the number of compartments in this section plus all
the compartments in the sections deeper in the tree).

total_sections

The total number of sections in this subtree.

696 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

volume

The volume of each compartment in this section.
x

The x coordinate at the midpoint of each compartment. Returns None for morphologies without coordinates.
x_

The x coordinate (as a unitless floating point number) at the midpoint of each compartment. Returns None
for morphologies without coordinates.

y

The y coordinate at the midpoint of each compartment. Returns None for morphologies without coordinates.
y_

The y coordinate (as a unitless floating point number) at the midpoint of each compartment. Returns None
for morphologies without coordinates.

z

The y coordinate at the midpoint of each compartment. Returns None for morphologies without coordinates.
z_

The z coordinate (as a unitless floating point number) at the midpoint of each compartment. Returns None
for morphologies without coordinates.

abstract copy_section()

Create a copy of the current section (attributes of this section only, not re-creating the parent/children relation)
Returns copy : Morphology

A copy of this section (without the links to the parent/children)
static from_file(filename, spherical_soma=True)

Convencience method to load a morphology from a given file. At the moment, only SWC files are supported,
calling this function is therefore equivalent to calling Morphology.from_swc_file directly.

Parameters filename : str
The name of a file storing a morphology.

spherical_soma : bool, optional
Whether to model the soma as a sphere.

Returns :
——- :
morphology : Morphology
The morphology stored in the given file.

static from_points(points, spherical_soma=True)

Create a morphology from a sequence of points (similar to the SWC format, see Morphology.
from_swc_file). Each point has to be a 7-tuple: (index, name, x, y, z, diameter,
parent)

Note that the values should not use units, but are instead all taken to be in micrometers.
Parameters points : sequence of 7-tuples

The points of the morphology.
spherical_soma : bool, optional

6.7. Subpackages 697

Brian 2 Documentation, Release 2.5.1

Whether to model a soma as a sphere.
Returns :
——- :
morphology : Morphology

Notes

This format closely follows the SWC format (see Morphology.from_swc_file) with two differences:
the type should be a string (e.g. 'soma') instead of an integer and the 6-th element should be the diameter
and not the radius.

static from_swc_file(filename, spherical_soma=True)
Load a morphology from a SWC file. A large database of morphologies in this format can be found at http:
//neuromorpho.org
The format consists of an optional header of lines starting with # (ignored), followed by a sequence of points,
each described in a line following the format:

index type x y z radius parent

index is an integer label (starting at 1) that identifies the current point and increases by one each line. type
is an integer representing the type of the neural segment. The only type that changes the interpretation by
Brian is the type 1 which signals a soma. Types 2 (axon), 3 (dendrite), and 4 (apical dendrite) are used to
give corresponding names to the respective sections. All other types are ignored. x, y, and z are the cartesian
coordinates at each point and r is its radius. parent refers to the index of the parent point or is -1 for the
root point.

Parameters filename : str
The name of the SWC file.

spherical_soma : bool, optional
Whether to model the soma as a sphere.

Returns morpho : Morphology
The morphology stored in the given file.

generate_coordinates(section_randomness=0.0, compartment_randomness=0.0,
overwrite_existing=False)

Create a new Morphology, with coordinates filled in place where the previous morphology did not have
any. This is mostly useful for plotting a morphology, it does not affect its electrical properties.

Parameters section_randomness : float, optional
The randomness when deciding the direction vector for each new section. The given num-
ber is the β parameter of an exponential distribution (in degrees) which will be used to
determine the deviation from the direction of the parent section. If the given value equals
0 (the default), then a deterministic algorithm will be used instead.

compartment_randomness : float, optional
The randomness when deciding the direction vector for each compartment within a section.
The given number is the β parameter of an exponential distribution (in degrees) which will
be used to determine the deviation from the main direction of the current section. If the
given value equals 0 (the default), then all compartments will be along a straight line.

698 Chapter 6. brian2 package

http://neuromorpho.org
http://neuromorpho.org

Brian 2 Documentation, Release 2.5.1

overwrite_existing : bool, optional
Whether to overwrite existing coordinates in the morphology. This is by default set to
False, meaning that only sections that do not currently have any coordinates set will get
new coordinates. This allows to conveniently generate a morphology that can be plotted
for a morphology that is based on points but also has artificially added sections (the most
common case: an axon added to a reconstructed morphology). If set to True, all sections
will get new coordinates. This can be useful to either get a schematic representation of
the morphology (with section_randomness and compartment_randomness
both 0) or to simply generate a new random variation of a morphology (which will still be
electrically equivalent, of course).

Returns morpho_with_coordinates : Morphology
The same morphology, but with coordinates

topology()

Return a representation of the topology
Returns topology : Topology

An object representing the topology (can be converted to a string by using str(...) or
simply by printing it with print.)

Tutorials and examples using this

• Example compartmental/bipolar_cell

• Example compartmental/bipolar_with_inputs

• Example compartmental/bipolar_with_inputs2

• Example compartmental/cylinder

• Example compartmental/infinite_cable

• Example compartmental/morphotest

• Example compartmental/rall

• Example compartmental/spike_initiation

• Example frompapers/Brette_2012/Fig1

• Example frompapers/Brette_2012/Fig3AB

• Example frompapers/Brette_2012/Fig3CF

• Example frompapers/Brette_2012/Fig4

• Example frompapers/Brette_2012/Fig5A

MorphologyIndexWrapper(morphology) A simpler version of IndexWrapper, not allowing for
string indexing (Morphology is not a Group).

6.7. Subpackages 699

https://docs.python.org/3/library/functions.html#print

Brian 2 Documentation, Release 2.5.1

MorphologyIndexWrapper class

(Shortest import: from brian2.spatialneuron.morphology import MorphologyIndexWrapper)

class brian2.spatialneuron.morphology.MorphologyIndexWrapper(morphology)
Bases: object
A simpler version of IndexWrapper, not allowing for string indexing (Morphology is not a Group). It allows
to use morphology.indices[...] instead of morphology[...]._indices().

Node(index, comp_name, x, y, z, diameter, ...)

Attributes

Node class

(Shortest import: from brian2.spatialneuron.morphology import Node)

class brian2.spatialneuron.morphology.Node(index, comp_name, x, y, z, diameter, parent, children)
Bases: tuple

Attributes

children Alias for field number 7
comp_name Alias for field number 1
diameter Alias for field number 5
index Alias for field number 0
parent Alias for field number 6
x Alias for field number 2
y Alias for field number 3
z Alias for field number 4

Details

children

Alias for field number 7
comp_name

Alias for field number 1
diameter

Alias for field number 5
index

Alias for field number 0
parent

Alias for field number 6

700 Chapter 6. brian2 package

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#tuple

Brian 2 Documentation, Release 2.5.1

x

Alias for field number 2
y

Alias for field number 3
z

Alias for field number 4

Section(**kwds) A section (unbranched structure), described as a sequence
of truncated cones with potentially varying diameters and
lengths per compartment.

Section class

(Shortest import: from brian2 import Section)

class brian2.spatialneuron.morphology.Section(**kwds)

Bases: brian2.spatialneuron.morphology.Morphology
A section (unbranched structure), described as a sequence of truncated cones with potentially varying diameters
and lengths per compartment.

Parameters diameter : Quantity
Either a single value (the constant diameter along the whole section), or a value of length
n+1. When n+1 values are given, they will be interpreted as the diameters at the start
of the first compartment and the diameters at the end of each compartment (which is
equivalent to: the diameter at the start of each compartment and the diameter at the end
of the last compartment.

n : int, optional
The number of compartments in this section. Defaults to 1.

length : Quantity, optional
Either a single value (the total length of the section), or a value of length n, the length of
each individual compartment. Cannot be combined with the specification of coordinates.

x : Quantity, optional
n+1 values, specifying the x coordinates of the start point of the first compartment and the
end-points of all compartments (which is equivalent to: the start point of all compartments
and the end point of the last compartment). The coordinates are interpreted as relative to
the end point of the parent compartment (if any), so in most cases the start point should
be 0*um. The common exception is a cylinder connecting to a Soma, here the start point
can be used to make the cylinder start at the surface of the sphere instead of at its center.
You can specify all of x, y, or z to specify a morphology in 3D, or only one or two out of
them to specify a morphology in 1D or 2D.

y : Quantity, optional
See x

z : Quantity, optional
See x

type : str, optional

6.7. Subpackages 701

Brian 2 Documentation, Release 2.5.1

The type (e.g. "axon") of this Section.

Attributes

area The membrane surface area of each compartment in
this section.

diameter The diameter at the middle of each compartment in
this section.

distance The total distance between the midpoint of each com-
partment and the root of the morphology.

end_diameter The diameter at the end of each compartment in this
section.

end_distance The distance to the root of the morphology at the end
of this section.

end_x_ The x coordinate (as a unitless floating point number)
at the end of each compartment.

end_y_ The y coordinate (as a unitless floating point number)
at the end of each compartment.

end_z_ The z coordinate (as a unitless floating point number)
at the end of each compartment.

length The length of each compartment in this section.
r_length_1 The geometry-dependent term to calculate the con-

ductance between the start and the midpoint of each
compartment.

r_length_2 The geometry-dependent term to calculate the con-
ductance between the midpoint and the end of each
compartment.

start_diameter The diameter at the start of each compartment in this
section.

start_x_ The x coordinate (as a unitless floating point number)
at the beginning of each compartment.

start_y_ The y coordinate (as a unitless floating point number)
at the beginning of each compartment.

start_z_ The z coordinate (as a unitless floating point number)
at the beginning of each compartment.

volume The volume of each compartment in this section.
x_ The x coordinate (as a unitless floating point number)

at the midpoint of each compartment.
y_ The y coordinate (as a unitless floating point number)

at the midpoint of each compartment.
z_ The z coordinate (as a unitless floating point number)

at the midpoint of each compartment.

702 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

Methods

copy_section() Create a copy of the current section (attributes of this
section only, not re-creating the parent/children rela-
tion)

Details

area

The membrane surface area of each compartment in this section. The surface area of each compartment is
calculated as π

2 (d1 + d2)
√

(d1−d2)2

4 + l2), where l is the length of the compartment, and d1 and d2 are the
diameter at the start and end of the compartment, respectively. Note that this surface area does not contain
the area of the two disks at the two sides of the truncated cone.

diameter

The diameter at the middle of each compartment in this section.
distance

The total distance between the midpoint of each compartment and the root of the morphology.
end_diameter

The diameter at the end of each compartment in this section.
end_distance

The distance to the root of the morphology at the end of this section.
end_x_

The x coordinate (as a unitless floating point number) at the end of each compartment. Returns None for
morphologies without coordinates.

end_y_

The y coordinate (as a unitless floating point number) at the end of each compartment. Returns None for
morphologies without coordinates.

end_z_

The z coordinate (as a unitless floating point number) at the end of each compartment. Returns None for
morphologies without coordinates.

length

The length of each compartment in this section.
r_length_1

The geometry-dependent term to calculate the conductance between the start and the midpoint of each com-
partment. Dividing this value by the Intracellular resistivity gives the conductance.

r_length_2

The geometry-dependent term to calculate the conductance between the midpoint and the end of each com-
partment. Dividing this value by the Intracellular resistivity gives the conductance.

start_diameter

The diameter at the start of each compartment in this section.

6.7. Subpackages 703

Brian 2 Documentation, Release 2.5.1

start_x_

The x coordinate (as a unitless floating point number) at the beginning of each compartment. Returns None
for morphologies without coordinates.

start_y_

The y coordinate (as a unitless floating point number) at the beginning of each compartment. Returns None
for morphologies without coordinates.

start_z_

The z coordinate (as a unitless floating point number) at the beginning of each compartment. Returns None
for morphologies without coordinates.

volume

The volume of each compartment in this section. The volume of each compartment is calculated as π
12 l(d

2
1+

d1d2 + d22), where l is the length of the compartment, and d1 and d2 are the diameter at the start and end of
the compartment, respectively.

x_

The x coordinate (as a unitless floating point number) at the midpoint of each compartment. Returns None
for morphologies without coordinates.

y_

The y coordinate (as a unitless floating point number) at the midpoint of each compartment. Returns None
for morphologies without coordinates.

z_

The z coordinate (as a unitless floating point number) at the midpoint of each compartment. Returns None
for morphologies without coordinates.

copy_section()

Create a copy of the current section (attributes of this section only, not re-creating the parent/children relation)
Returns copy : Morphology

A copy of this section (without the links to the parent/children)

Tutorials and examples using this

• Example frompapers/Brette_2012/Fig4

Soma(**kwds) A spherical, iso-potential soma.

Soma class

(Shortest import: from brian2 import Soma)

class brian2.spatialneuron.morphology.Soma(**kwds)
Bases: brian2.spatialneuron.morphology.Morphology
A spherical, iso-potential soma.

Parameters diameter : Quantity
Diameter of the sphere.

x : Quantity, optional

704 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

The x coordinate of the position of the soma.
y : Quantity, optional

The y coordinate of the position of the soma.
z : Quantity, optional

The z coordinate of the position of the soma.
type : str, optional

The type of this section, defaults to 'soma'.

Attributes

area The membrane surface area of this section (as an array
of length 1).

diameter The diameter of this section (as an array of length 1).
distance The total distance between the midpoint of this section

and the root of the morphology.
end_distance The distance to the root of the morphology at the end

of this section.
end_x_ The x-coordinate of the current section (as an array of

length 1).
end_y_ The y-coordinate of the current section (as an array of

length 1).
end_z_ The z-coordinate of the current section (as an array of

length 1).
length The "length" (equal to diameter) of this section (as

an array of length 1).
r_length_1 The geometry-dependent term to calculate the con-

ductance between the start and the midpoint of each
compartment.

r_length_2 The geometry-dependent term to calculate the con-
ductance between the midpoint and the end of each
compartment.

start_x_ The x-coordinate of the current section (as an array of
length 1).

start_y_ The y-coordinate of the current section (as an array of
length 1).

start_z_ The z-coordinate of the current section (as an array of
length 1).

volume The volume of this section (as an array of length 1).
x_ The x-coordinate of the current section (as an array of

length 1).
y_ The y-coordinate of the current section (as an array of

length 1).
z_ The z-coordinate of the current section (as an array of

length 1).

6.7. Subpackages 705

Brian 2 Documentation, Release 2.5.1

Methods

copy_section() Create a copy of the current section (attributes of this
section only, not re-creating the parent/children rela-
tion)

Details

area

The membrane surface area of this section (as an array of length 1).
diameter

The diameter of this section (as an array of length 1).
distance

The total distance between the midpoint of this section and the root of the morphology. The Soma is most
likely the root of the morphology, and therefore the distance is 0.

end_distance

The distance to the root of the morphology at the end of this section. Note that since a Soma is modeled as a
point (see docs of x, etc.), it does not add anything to the total distance, e.g. a section connecting to a Soma
has a distance of 0 um at its start.

end_x_

The x-coordinate of the current section (as an array of length 1). Note that a Soma is modelled as a “point”
with finite surface/volume, equivalent to that of a sphere with the given diameter. It’s start-, midpoint-,
and end-coordinates are therefore identical.

end_y_

The y-coordinate of the current section (as an array of length 1). Note that a Soma is modelled as a “point”
with finite surface/volume, equivalent to that of a sphere with the given diameter. It’s start-, midpoint-,
and end-coordinates are therefore identical.

end_z_

The z-coordinate of the current section (as an array of length 1). Note that a Soma is modelled as a “point”
with finite surface/volume, equivalent to that of a sphere with the given diameter. It’s start-, midpoint-,
and end-coordinates are therefore identical.

length

The “length” (equal to diameter) of this section (as an array of length 1).
r_length_1

The geometry-dependent term to calculate the conductance between the start and the midpoint of each com-
partment. Returns a fixed (high) value for a Soma, corresponding to a section with very low intracellular
resistance.

r_length_2

The geometry-dependent term to calculate the conductance between the midpoint and the end of each com-
partment. Returns a fixed (high) value for a Soma, corresponding to a section with very low intracellular
resistance.

start_x_

The x-coordinate of the current section (as an array of length 1). Note that a Soma is modelled as a “point”
with finite surface/volume, equivalent to that of a sphere with the given diameter. It’s start-, midpoint-,
and end-coordinates are therefore identical.

706 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

start_y_

The y-coordinate of the current section (as an array of length 1). Note that a Soma is modelled as a “point”
with finite surface/volume, equivalent to that of a sphere with the given diameter. It’s start-, midpoint-,
and end-coordinates are therefore identical.

start_z_

The z-coordinate of the current section (as an array of length 1). Note that a Soma is modelled as a “point”
with finite surface/volume, equivalent to that of a sphere with the given diameter. It’s start-, midpoint-,
and end-coordinates are therefore identical.

volume

The volume of this section (as an array of length 1).
x_

The x-coordinate of the current section (as an array of length 1). Note that a Soma is modelled as a “point”
with finite surface/volume, equivalent to that of a sphere with the given diameter. It’s start-, midpoint-,
and end-coordinates are therefore identical.

y_

The y-coordinate of the current section (as an array of length 1). Note that a Soma is modelled as a “point”
with finite surface/volume, equivalent to that of a sphere with the given diameter. It’s start-, midpoint-,
and end-coordinates are therefore identical.

z_

The z-coordinate of the current section (as an array of length 1). Note that a Soma is modelled as a “point”
with finite surface/volume, equivalent to that of a sphere with the given diameter. It’s start-, midpoint-,
and end-coordinates are therefore identical.

copy_section()

Create a copy of the current section (attributes of this section only, not re-creating the parent/children relation)
Returns copy : Morphology

A copy of this section (without the links to the parent/children)

Tutorials and examples using this

• Example compartmental/bipolar_cell

• Example compartmental/bipolar_with_inputs

• Example compartmental/bipolar_with_inputs2

• Example compartmental/morphotest

• Example compartmental/spike_initiation

• Example frompapers/Brette_2012/Fig1

• Example frompapers/Brette_2012/Fig3AB

• Example frompapers/Brette_2012/Fig3CF

• Example frompapers/Brette_2012/Fig4

• Example frompapers/Brette_2012/Fig5A

SubMorphology(morphology, i, j) A view on a subset of a section in a morphology.

6.7. Subpackages 707

Brian 2 Documentation, Release 2.5.1

SubMorphology class

(Shortest import: from brian2.spatialneuron.morphology import SubMorphology)

class brian2.spatialneuron.morphology.SubMorphology(morphology, i, j)
Bases: object
A view on a subset of a section in a morphology.

708 Chapter 6. brian2 package

https://docs.python.org/3/library/functions.html#object

Brian 2 Documentation, Release 2.5.1

Attributes

area The membrane surface area of each compartment in
this sub-section.

diameter The diameter at the middle of each compartment in
this sub-section.

distance The total distance between the midpoint of each com-
partment in this sub-section and the root of the mor-
phology.

end_x The x coordinate at the end of each compartment in
this sub-section.

end_x_ The x coordinate (as a unitless floating point number)
at the end of each compartment in this sub-section.

end_y The y coordinate at the end of each compartment in
this sub-section.

end_y_ The y coordinate (as a unitless floating point number)
at the end of each compartment in this sub-section.

end_z The z coordinate at the end of each compartment in
this sub-section.

end_z_ The z coordinate (as a unitless floating point number)
at the end of each compartment in this sub-section.

length The length of each compartment in this sub-section.
n The number of compartments in this sub-section.
n_sections The number of sections in this sub-section (always 1).
r_length_1 The geometry-dependent term to calculate the con-

ductance between the start and the midpoint of each
compartment in this sub-section.

r_length_2 The geometry-dependent term to calculate the con-
ductance between the midpoint and the end of each
compartment in this sub-section.

start_x The x coordinate at the beginning of each compart-
ment in this sub-section.

start_x_ The x coordinate (as a unitless floating point num-
ber) at the beginning of each compartment in this sub-
section.

start_y The y coordinate at the beginning of each compart-
ment in this sub-section.

start_y_ The y coordinate (as a unitless floating point num-
ber) at the beginning of each compartment in this sub-
section.

start_z The x coordinate at the beginning of each compart-
ment in this sub-section.

start_z_ The z coordinate (as a unitless floating point num-
ber) at the beginning of each compartment in this sub-
section.

volume The volume of each compartment in this sub-section.
x The x coordinate at the midpoint of each compartment

in this sub-section.
x_ The x coordinate (as a unitless floating point num-

ber) at the midpoint of each compartment in this sub-
section.

y The y coordinate at the midpoint of each compartment
in this sub-section.

y_ The y coordinate (as a unitless floating point num-
ber) at the midpoint of each compartment in this sub-
section.

z The z coordinate at the midpoint of each compartment
in this sub-section.

z_ The z coordinate (as a unitless floating point num-
ber) at the midpoint of each compartment in this sub-
section.

6.7. Subpackages 709

Brian 2 Documentation, Release 2.5.1

Details

area

The membrane surface area of each compartment in this sub-section.
diameter

The diameter at the middle of each compartment in this sub-section.
distance

The total distance between the midpoint of each compartment in this sub-section and the root of the mor-
phology.

end_x

The x coordinate at the end of each compartment in this sub-section. Returns None for morphologies without
coordinates.

end_x_

The x coordinate (as a unitless floating point number) at the end of each compartment in this sub-section.
Returns None for morphologies without coordinates.

end_y

The y coordinate at the end of each compartment in this sub-section. Returns None for morphologies without
coordinates.

end_y_

The y coordinate (as a unitless floating point number) at the end of each compartment in this sub-section.
Returns None for morphologies without coordinates.

end_z

The z coordinate at the end of each compartment in this sub-section. Returns None for morphologies without
coordinates.

end_z_

The z coordinate (as a unitless floating point number) at the end of each compartment in this sub-section.
Returns None for morphologies without coordinates.

length

The length of each compartment in this sub-section.
n

The number of compartments in this sub-section.
n_sections

The number of sections in this sub-section (always 1).
r_length_1

The geometry-dependent term to calculate the conductance between the start and the midpoint of each com-
partment in this sub-section. Dividing this value by the Intracellular resistivity gives the conductance.

r_length_2

The geometry-dependent term to calculate the conductance between the midpoint and the end of each com-
partment in this sub-section. Dividing this value by the Intracellular resistivity gives the conductance.

start_x

The x coordinate at the beginning of each compartment in this sub-section. Returns None for morphologies
without coordinates.

710 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

start_x_

The x coordinate (as a unitless floating point number) at the beginning of each compartment in this sub-
section. Returns None for morphologies without coordinates.

start_y

The y coordinate at the beginning of each compartment in this sub-section. Returns None for morphologies
without coordinates.

start_y_

The y coordinate (as a unitless floating point number) at the beginning of each compartment in this sub-
section. Returns None for morphologies without coordinates.

start_z

The x coordinate at the beginning of each compartment in this sub-section. Returns None for morphologies
without coordinates.

start_z_

The z coordinate (as a unitless floating point number) at the beginning of each compartment in this sub-section.
Returns None for morphologies without coordinates.

volume

The volume of each compartment in this sub-section.
x

The x coordinate at the midpoint of each compartment in this sub-section. Returns None for morphologies
without coordinates.

x_

The x coordinate (as a unitless floating point number) at the midpoint of each compartment in this sub-section.
Returns None for morphologies without coordinates.

y

The y coordinate at the midpoint of each compartment in this sub-section. Returns None for morphologies
without coordinates.

y_

The y coordinate (as a unitless floating point number) at the midpoint of each compartment in this sub-section.
Returns None for morphologies without coordinates.

z

The z coordinate at the midpoint of each compartment in this sub-section. Returns None for morphologies
without coordinates.

z_

The z coordinate (as a unitless floating point number) at the midpoint of each compartment in this sub-section.
Returns None for morphologies without coordinates.

Topology(morphology) A representation of the topology of a Morphology.

6.7. Subpackages 711

Brian 2 Documentation, Release 2.5.1

Topology class

(Shortest import: from brian2.spatialneuron.morphology import Topology)

class brian2.spatialneuron.morphology.Topology(morphology)
Bases: object
A representation of the topology of a Morphology. Has a useful string representation, inspired by NEURON’s
topology function.

spatialneuron module

Compartmental models. This module defines the SpatialNeuron class, which defines multicompartmental models.
Exported members: SpatialNeuron

Classes

FlatMorphology(morphology) Container object to store the flattened representation of a
morphology.

FlatMorphology class

(Shortest import: from brian2.spatialneuron.spatialneuron import FlatMorphology)

class brian2.spatialneuron.spatialneuron.FlatMorphology(morphology)
Bases: object
Container object to store the flattened representation of a morphology. Note that all values are stored as numpy
arrays without unit information (i.e. in base units).

SpatialNeuron(*args, **kw) A single neuron with a morphology and possibly many
compartments.

SpatialNeuron class

(Shortest import: from brian2 import SpatialNeuron)

class brian2.spatialneuron.spatialneuron.SpatialNeuron(*args, **kw)
Bases: brian2.groups.neurongroup.NeuronGroup
A single neuron with a morphology and possibly many compartments.

Parameters morphology : Morphology
The morphology of the neuron.

model : str, Equations
The equations defining the group.

method : str, function, optional

712 Chapter 6. brian2 package

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

Brian 2 Documentation, Release 2.5.1

The numerical integration method. Either a string with the name of a registered method
(e.g. “euler”) or a function that receives an Equations object and returns the cor-
responding abstract code. If no method is specified, a suitable method will be chosen
automatically.

threshold : str, optional
The condition which produces spikes. Should be a single line boolean expression.

threshold_location : (int, Morphology), optional
Compartment where the threshold condition applies, specified as an integer (compartment
index) or a Morphology object corresponding to the compartment (e.g. morpho.
axon[10*um]). If unspecified, the threshold condition applies at all compartments.

Cm : Quantity, optional
Specific capacitance in uF/cm**2 (default 0.9). It can be accessed and modified later as
a state variable. In particular, its value can differ in different compartments.

Ri : Quantity, optional
Intracellular resistivity in ohm.cm (default 150). It can be accessed as a shared state vari-
able, but modified only before the first run. It is uniform across the neuron.

reset : str, optional
The (possibly multi-line) string with the code to execute on reset.

events : dict, optional
User-defined events in addition to the “spike” event defined by the threshold. Has to
be a mapping of strings (the event name) to strings (the condition) that will be checked.

refractory : {str, Quantity}, optional
Either the length of the refractory period (e.g. 2*ms), a string expression that evaluates
to the length of the refractory period after each spike (e.g. '(1 + rand())*ms'),
or a string expression evaluating to a boolean value, given the condition under which the
neuron stays refractory after a spike (e.g. 'v > -20*mV')

namespace : dict, optional
A dictionary mapping identifier names to objects. If not given, the namespace will be filled
in at the time of the call of Network.run, with either the values from the namespace
argument of the Network.run method or from the local context, if no such argument
is given.

dtype : (dtype, dict), optional
The numpy.dtype that will be used to store the values, or a dictionary specifying the
type for variable names. If a value is not provided for a variable (or no value is provided
at all), the preference setting core.default_float_dtype is used.

dt : Quantity, optional
The time step to be used for the simulation. Cannot be combined with the clock argu-
ment.

clock : Clock, optional
The update clock to be used. If neither a clock, nor the dt argument is specified, the
defaultclock will be used.

order : int, optional

6.7. Subpackages 713

https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/stdtypes.html#dict
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype

Brian 2 Documentation, Release 2.5.1

The priority of of this group for operations occurring at the same time step and in the same
scheduling slot. Defaults to 0.

name : str, optional
A unique name for the group, otherwise use spatialneuron_0, etc.

Attributes

user_equations The original equations as specified by the user (i.e.

Methods

spatialneuron_attribute(neuron, name) Selects a subtree from SpatialNeuron neuron and
returns a SpatialSubgroup.

spatialneuron_segment(neuron, item) Selects a segment from SpatialNeuron neuron,
where item is a slice of either compartment indexes
or distances.

Details

user_equations

The original equations as specified by the user (i.e. before inserting point-currents into the membrane equa-
tion, before adding all the internally used variables and constants, etc.).

static spatialneuron_attribute(neuron, name)
Selects a subtree from SpatialNeuron neuron and returns a SpatialSubgroup. If it does not exist,
returns the Group attribute.

static spatialneuron_segment(neuron, item)
Selects a segment from SpatialNeuron neuron, where item is a slice of either compartment indexes or
distances. Note a: segment is not a SpatialNeuron, only a Group.

Tutorials and examples using this

• Example compartmental/bipolar_cell

• Example compartmental/bipolar_with_inputs

• Example compartmental/bipolar_with_inputs2

• Example compartmental/cylinder

• Example compartmental/hh_with_spikes

• Example compartmental/hodgkin_huxley_1952

• Example compartmental/infinite_cable

• Example compartmental/lfp

• Example compartmental/morphotest

• Example compartmental/rall

714 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

• Example compartmental/spike_initiation

• Example frompapers/Brette_2012/Fig1

• Example frompapers/Brette_2012/Fig3AB

• Example frompapers/Brette_2012/Fig3CF

• Example frompapers/Brette_2012/Fig4

• Example frompapers/Brette_2012/Fig5A

• Example frompapers/Destexhe_et_al_1998

SpatialStateUpdater(*args, **kw) The CodeRunner that updates the state variables of a
SpatialNeuron at every timestep.

SpatialStateUpdater class

(Shortest import: from brian2.spatialneuron.spatialneuron import SpatialStateUpdater)

class brian2.spatialneuron.spatialneuron.SpatialStateUpdater(*args, **kw)
Bases: brian2.groups.group.CodeRunner, brian2.groups.group.Group
The CodeRunner that updates the state variables of a SpatialNeuron at every timestep.

Methods

before_run(run_namespace) Optional method to prepare the object before a run.

Details

before_run(run_namespace)
Optional method to prepare the object before a run.
Called by Network.after_run before the main simulation loop starts.

SpatialSubgroup(*args, **kw) A subgroup of a SpatialNeuron.

SpatialSubgroup class

(Shortest import: from brian2.spatialneuron.spatialneuron import SpatialSubgroup)

class brian2.spatialneuron.spatialneuron.SpatialSubgroup(*args, **kw)
Bases: brian2.groups.subgroup.Subgroup
A subgroup of a SpatialNeuron.

Parameters source : int
First compartment.

stop : int
Ending compartment, not included (as in slices).

6.7. Subpackages 715

Brian 2 Documentation, Release 2.5.1

morphology : Morphology
Morphology corresponding to the subgroup (not the full morphology).

name : str, optional
Name of the subgroup.

6.7.13 stateupdaters package

Module for transforming model equations into “abstract code” that can be then be further translated into executable code
by the codegen module.
Exported members: StateUpdateMethod, linear, exact, independent, milstein, heun, euler, rk2,
rk4, ExplicitStateUpdater, exponential_euler, gsl_rk2, gsl_rk4, gsl_rkf45, gsl_rkck,
gsl_rk8pd

GSL module

Module containg the StateUpdateMethod for integration using the ODE solver provided in the GNU Scientific Library
(GSL)
Exported members: gsl_rk2, gsl_rk4, gsl_rkf45, gsl_rkck, gsl_rk8pd
Classes

GSLContainer(method_options, integrator[, ...]) Class that contains information (equation- or integrator-
related) required for later code generation

GSLContainer class

(Shortest import: from brian2.stateupdaters.GSL import GSLContainer)

class brian2.stateupdaters.GSL.GSLContainer(method_options, integrator, abstract_code=None,
needed_variables=[], variable_flags=[])

Bases: object
Class that contains information (equation- or integrator-related) required for later code generation

Methods

__call__(obj) Transfer the code object class saved in self to the ob-
ject sent as an argument.

get_codeobj_class() Return codeobject class based on target language and
device.

716 Chapter 6. brian2 package

https://docs.python.org/3/library/functions.html#object

Brian 2 Documentation, Release 2.5.1

Details

__call__(obj)

Transfer the code object class saved in self to the object sent as an argument.
This method is returned when calling GSLStateUpdater. This class inherits from StateUp-
dateMethod which orignally only returns abstract code. However, with GSL this returns a method because
more is needed than just the abstract code: the state updater requires its own CodeObject that is different
from the other NeuronGroup objects. This method adds this CodeObject to the StateUpdater
object (and also adds the variables ‘t’, ‘dt’, and other variables that are needed in the GSLCodeGenerator.

Parameters obj : GSLStateUpdater
the object that the codeobj_class and other variables need to be transferred to

Returns abstract_code : str
The abstract code (translated equations), that is returned conventionally by brian and used
for later code generation in the CodeGenerator.translate method.

get_codeobj_class()

Return codeobject class based on target language and device.
Choose which version of the GSL CodeObject to use. If `isinstance(device, CPPStan-
daloneDevice)`, then we want the GSLCPPStandaloneCodeObject. Otherwise the return value
is based on prefs.codegen.target.

Returns code_object : class
The respective CodeObject class (i.e. either GSLCythonCodeObject or
GSLCPPStandaloneCodeObject).

GSLStateUpdater(integrator) A statupdater that rewrites the differential equations so
that the GSL generator knows how to write the code in
the target language.

GSLStateUpdater class

(Shortest import: from brian2.stateupdaters.GSL import GSLStateUpdater)

class brian2.stateupdaters.GSL.GSLStateUpdater(integrator)
Bases: brian2.stateupdaters.base.StateUpdateMethod
A statupdater that rewrites the differential equations so that the GSL generator knows how to write the code in the
target language.
New in version 2.1.

6.7. Subpackages 717

Brian 2 Documentation, Release 2.5.1

Methods

__call__(equations[, variables, method_options]) Translate equations to abstract_code.

Details

__call__(equations, variables=None, method_options=None)
Translate equations to abstract_code.

Parameters equations : Equations
object containing the equations that describe the ODE systemTransferClass(self)

variables : dict
dictionary containing str, Variable pairs

Returns method : callable
Method that needs to be called with StateUpdater to add CodeObject class and some
other variables so these can be sent to the CodeGenerator

Objects

gsl_rk2 A statupdater that rewrites the differential equations so
that the GSL generator knows how to write the code in
the target language.

gsl_rk2 object

(Shortest import: from brian2 import gsl_rk2)

brian2.stateupdaters.GSL.gsl_rk2 = <brian2.stateupdaters.GSL.GSLStateUpdater
object>

A statupdater that rewrites the differential equations so that the GSL generator knows how to write the code in the
target language.
New in version 2.1.

gsl_rk4 A statupdater that rewrites the differential equations so
that the GSL generator knows how to write the code in
the target language.

gsl_rk4 object

(Shortest import: from brian2 import gsl_rk4)

brian2.stateupdaters.GSL.gsl_rk4 = <brian2.stateupdaters.GSL.GSLStateUpdater
object>

A statupdater that rewrites the differential equations so that the GSL generator knows how to write the code in the
target language.
New in version 2.1.

718 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

gsl_rk8pd A statupdater that rewrites the differential equations so
that the GSL generator knows how to write the code in
the target language.

gsl_rk8pd object

(Shortest import: from brian2 import gsl_rk8pd)

brian2.stateupdaters.GSL.gsl_rk8pd = <brian2.stateupdaters.GSL.GSLStateUpdater
object>

A statupdater that rewrites the differential equations so that the GSL generator knows how to write the code in the
target language.
New in version 2.1.

gsl_rkck A statupdater that rewrites the differential equations so
that the GSL generator knows how to write the code in
the target language.

gsl_rkck object

(Shortest import: from brian2 import gsl_rkck)

brian2.stateupdaters.GSL.gsl_rkck = <brian2.stateupdaters.GSL.GSLStateUpdater
object>

A statupdater that rewrites the differential equations so that the GSL generator knows how to write the code in the
target language.
New in version 2.1.

gsl_rkf45 A statupdater that rewrites the differential equations so
that the GSL generator knows how to write the code in
the target language.

gsl_rkf45 object

(Shortest import: from brian2 import gsl_rkf45)

brian2.stateupdaters.GSL.gsl_rkf45 = <brian2.stateupdaters.GSL.GSLStateUpdater
object>

A statupdater that rewrites the differential equations so that the GSL generator knows how to write the code in the
target language.
New in version 2.1.

6.7. Subpackages 719

Brian 2 Documentation, Release 2.5.1

base module

This module defines the StateUpdateMethod class that acts as a base class for all stateupdaters and allows to register
stateupdaters so that it is able to return a suitable stateupdater object for a given set of equations. This is used for example
in NeuronGroup when no state updater is given explicitly.
Exported members: StateUpdateMethod

Classes

StateUpdateMethod()

Methods

StateUpdateMethod class

(Shortest import: from brian2 import StateUpdateMethod)

class brian2.stateupdaters.base.StateUpdateMethod

Bases: object

Methods

__call__(equations[, variables, method_options]) Generate abstract code from equations.
apply_stateupdater(equations, variables,
method)

Applies a given state updater to equations.

register(name, stateupdater) Register a state updater.

Details

abstract __call__(equations, variables=None, method_options=None)
Generate abstract code from equations. The method also gets the the variables because some state up-
daters have to check whether variable names reflect other state variables (which can change from timestep
to timestep) or are external values (which stay constant during a run) For convenience, this arguments are
optional – this allows to directly see what code a state updater generates for a set of equations by simply
writing euler(eqs), for example.

Parameters equations : Equations
The model equations.

variables : dict, optional
The Variable objects for the model variables.

method_options : dict, optional
Additional options specific to the state updater.

Returns :
——- :
code : str

720 Chapter 6. brian2 package

https://docs.python.org/3/library/functions.html#object

Brian 2 Documentation, Release 2.5.1

The abstract code performing a state update step.
static apply_stateupdater(equations, variables, method, method_options=None, group_name=None)

Applies a given state updater to equations. If a method is given, the state updater with the given name is
used or if is a callable, then it is used directly. If a method is a list of names, all the methods will be tried
until one that doesn’t raise an UnsupportedEquationsException is found.

Parameters equations : Equations
The model equations.

variables : dict
The dictionary of Variable objects, describing the internal model variables.

method : {callable, str, list of str}
A callable usable as a state updater, the name of a registered state updater or a list of names
of state updaters.

Returns abstract_code : str
The code integrating the given equations.

static register(name, stateupdater)
Register a state updater. Registered state updaters can be referred to via their name.

Parameters name : str
A short name for the state updater (e.g. 'euler')

stateupdater : StateUpdaterMethod
The state updater object, e.g. an ExplicitStateUpdater.

UnsupportedEquationsException

UnsupportedEquationsException class

(Shortest import: from brian2.stateupdaters.base import UnsupportedEquationsException)

class brian2.stateupdaters.base.UnsupportedEquationsException

Bases: Exception
Functions

extract_method_options(method_options, ...) Helper function to check method_options against
options understood by this state updater, and setting de-
fault values for all unspecified options.

6.7. Subpackages 721

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#Exception

Brian 2 Documentation, Release 2.5.1

extract_method_options function

(Shortest import: from brian2.stateupdaters.base import extract_method_options)

brian2.stateupdaters.base.extract_method_options(method_options, default_options)
Helper function to check method_options against options understood by this state updater, and setting default
values for all unspecified options.

Parameters method_options : dict or None
The options that the user specified for the state update.

default_options : dict
The default option values for this state updater (each admissible option needs to be present
in this dictionary). To specify that a state updater does not take any options, provide an
empty dictionary as the argument.

Returns options : dict
The final dictionary with all the options either at their default or at the user-specified value.

Raises

KeyError If the user specifies an option that is not understood by this state updater.

Examples

>>> options = extract_method_options({'a': True}, default_options={'b': False, 'c
↪→': False})
Traceback (most recent call last):
...
KeyError: 'method_options specifies "a", but this is not an option for this state␣
↪→updater. Avalaible options are: "b", "c".'
>>> options = extract_method_options({'a': True}, default_options={})
Traceback (most recent call last):
...
KeyError: 'method_options specifies "a", but this is not an option for this state␣
↪→updater. This state updater does not accept any options.'
>>> options = extract_method_options({'a': True}, default_options={'a': False, 'b
↪→': False})
>>> sorted(options.items())
[('a', True), ('b', False)]

exact module

Exact integration for linear equations.
Exported members: linear, exact, independent
Classes

IndependentStateUpdater() A state update for equations that do not depend on other
state variables, i.e. 1-dimensional differential equations.

722 Chapter 6. brian2 package

https://docs.python.org/3/library/exceptions.html#KeyError

Brian 2 Documentation, Release 2.5.1

IndependentStateUpdater class

(Shortest import: from brian2.stateupdaters.exact import IndependentStateUpdater)

class brian2.stateupdaters.exact.IndependentStateUpdater

Bases: brian2.stateupdaters.base.StateUpdateMethod
A state update for equations that do not depend on other state variables, i.e. 1-dimensional differential equations.
The individual equations are solved by sympy.
Deprecated since version 2.1: This method might be removed from future versions of Brian.

Methods

__call__(equations[, variables, method_options]) Generate abstract code from equations.

Details

__call__(equations, variables=None, method_options=None)

Generate abstract code from equations. The method also gets the the variables because some state up-
daters have to check whether variable names reflect other state variables (which can change from timestep
to timestep) or are external values (which stay constant during a run) For convenience, this arguments are
optional – this allows to directly see what code a state updater generates for a set of equations by simply
writing euler(eqs), for example.

Parameters equations : Equations
The model equations.

variables : dict, optional
The Variable objects for the model variables.

method_options : dict, optional
Additional options specific to the state updater.

Returns :
——- :
code : str
The abstract code performing a state update step.

LinearStateUpdater() A state updater for linear equations.

6.7. Subpackages 723

Brian 2 Documentation, Release 2.5.1

LinearStateUpdater class

(Shortest import: from brian2.stateupdaters.exact import LinearStateUpdater)

class brian2.stateupdaters.exact.LinearStateUpdater

Bases: brian2.stateupdaters.base.StateUpdateMethod
A state updater for linear equations. Derives a state updater step from the analytical solution given by sympy. Uses
the matrix exponential (which is only implemented for diagonalizable matrices in sympy).

Methods

__call__(equations[, variables, method_options]) Generate abstract code from equations.

Details

__call__(equations, variables=None, method_options=None)
Generate abstract code from equations. The method also gets the the variables because some state up-
daters have to check whether variable names reflect other state variables (which can change from timestep
to timestep) or are external values (which stay constant during a run) For convenience, this arguments are
optional – this allows to directly see what code a state updater generates for a set of equations by simply
writing euler(eqs), for example.

Parameters equations : Equations
The model equations.

variables : dict, optional
The Variable objects for the model variables.

method_options : dict, optional
Additional options specific to the state updater.

Returns :
——- :
code : str
The abstract code performing a state update step.

Functions

get_linear_system(eqs, variables) Convert equations into a linear system using sympy.

724 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

get_linear_system function

(Shortest import: from brian2.stateupdaters.exact import get_linear_system)

brian2.stateupdaters.exact.get_linear_system(eqs, variables)
Convert equations into a linear system using sympy.

Parameters eqs : Equations
The model equations.

Returns (diff_eq_names, coefficients, constants) : (list of str, sympy.Matrix, sympy.
Matrix)

A tuple containing the variable names (diff_eq_names) corresponding to the rows
of the matrix coefficients and the vector constants, representing the system of
equations in the form M * X + B

Raises

ValueError If the equations cannot be converted into an M * X + B form.

Objects

exact A state updater for linear equations.

exact object

(Shortest import: from brian2 import exact)

brian2.stateupdaters.exact.exact = LinearStateUpdater()

A state updater for linear equations. Derives a state updater step from the analytical solution given by sympy. Uses
the matrix exponential (which is only implemented for diagonalizable matrices in sympy).

independent A state update for equations that do not depend on other
state variables, i.e. 1-dimensional differential equations.

independent object

(Shortest import: from brian2 import independent)

brian2.stateupdaters.exact.independent =
<brian2.stateupdaters.exact.IndependentStateUpdater object>

A state update for equations that do not depend on other state variables, i.e. 1-dimensional differential equations.
The individual equations are solved by sympy.
Deprecated since version 2.1: This method might be removed from future versions of Brian.

linear A state updater for linear equations.

6.7. Subpackages 725

https://docs.python.org/3/library/exceptions.html#ValueError

Brian 2 Documentation, Release 2.5.1

linear object

(Shortest import: from brian2 import linear)

brian2.stateupdaters.exact.linear = LinearStateUpdater()

A state updater for linear equations. Derives a state updater step from the analytical solution given by sympy. Uses
the matrix exponential (which is only implemented for diagonalizable matrices in sympy).

explicit module

Numerical integration functions.
Exported members: milstein, heun, euler, rk2, rk4, ExplicitStateUpdater
Classes

ExplicitStateUpdater(description[, ...]) An object that can be used for defining state updaters via
a simple description (see below).

ExplicitStateUpdater class

(Shortest import: from brian2 import ExplicitStateUpdater)

class brian2.stateupdaters.explicit.ExplicitStateUpdater(description, stochastic=None,
custom_check=None)

Bases: brian2.stateupdaters.base.StateUpdateMethod
An object that can be used for defining state updaters via a simple description (see below). Resulting instances
can be passed to the method argument of the NeuronGroup constructor. As other state updater functions
the ExplicitStateUpdater objects are callable, returning abstract code when called with an Equations
object.
A description of an explicit state updater consists of a (multi-line) string, containing assignments to variables and
a final “x_new = …”, stating the integration result for a single timestep. The assignments can be used to define an
arbitrary number of intermediate results and can refer to f(x, t) (the function being integrated, as a function
of x, the previous value of the state variable and t, the time) and dt, the size of the timestep.
For example, to define a Runge-Kutta 4 integrator (already provided as rk4), use:

k1 = dt*f(x,t)
k2 = dt*f(x+k1/2,t+dt/2)
k3 = dt*f(x+k2/2,t+dt/2)
k4 = dt*f(x+k3,t+dt)
x_new = x+(k1+2*k2+2*k3+k4)/6

Note that for stochastic equations, the function f only corresponds to the non-stochastic part of the equation. The
additional function g corresponds to the stochastic part that has to be multiplied with the stochastic variable xi (a
standard normal random variable – if the algorithm needs a random variable with a different variance/mean you
have to multiply/add it accordingly). Equations with more than one stochastic variable do not have to be treated
differently, the part referring to g is repeated for all stochastic variables automatically.
Stochastic integrators can also make reference to dW (a normal distributed random number with variance dt) and
g(x, t), the stochastic part of an equation. A stochastic state updater could therefore use a description like:

726 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

x_new = x + dt*f(x,t) + g(x, t) * dW

For simplicity, the same syntax is used for state updaters that only support additive noise, even though g(x, t)
does not depend on x or t in that case.
There a some restrictions on the complexity of the expressions (but most can be worked around by using interme-
diate results as in the above Runge- Kutta example): Every statement can only contain the functions f and g once;
The expressions have to be linear in the functions, e.g. you can use dt*f(x, t) but not f(x, t)**2.

Parameters description : str
A state updater description (see above).

stochastic : {None, ‘additive’, ‘multiplicative’}
What kind of stochastic equations this state updater supports: None means no support of
stochastic equations, 'additive'means only equations with additive noise and 'mul-
tiplicative' means supporting arbitrary stochastic equations.

Raises

ValueError If the parsing of the description failed.

See also:
euler, rk2, rk4, milstein

Notes

Since clocks are updated after the state update, the time t used in the state update step is still at its previous
value. Enumerating the states and discrete times, x_new = x + dt*f(x, t) is therefore understood as
xi+1 = xi + dtf(xi, ti), yielding the correct forward Euler integration. If the integrator has to refer to the time at
the end of the timestep, simply use t + dt instead of t.

Attributes

DESCRIPTION A complete state updater description
EXPRESSION A single expression
OUTPUT The last line of a state updater description
STATEMENT An assignment statement
TEMP_VAR Legal names for temporary variables

6.7. Subpackages 727

https://docs.python.org/3/library/exceptions.html#ValueError

Brian 2 Documentation, Release 2.5.1

Methods

DESCRIPTION A complete state updater description
EXPRESSION A single expression
OUTPUT The last line of a state updater description
STATEMENT An assignment statement
TEMP_VAR Legal names for temporary variables
__call__(eqs[, variables, method_options]) Apply a state updater description to model equations.
replace_func(x, t, expr, temp_vars, eq_symbols) Used to replace a single occurance of f(x, t) or

g(x, t): expr is the non-stochastic (in the case of
f) or stochastic part (g) of the expression defining the
right-hand-side of the differential equation describing
var().

Details

DESCRIPTION = {[Group:({~{'x_new'} W:(A-Z_a-z, 0-9A-Z_a-z) Suppress:('=')
rest of line})]... Group:({Suppress:('x_new') Suppress:('=') rest of
line})}

A complete state updater description
EXPRESSION = rest of line

A single expression
OUTPUT = Group:({Suppress:('x_new') Suppress:('=') rest of line})

The last line of a state updater description
STATEMENT = Group:({~{'x_new'} W:(A-Z_a-z, 0-9A-Z_a-z) Suppress:('=') rest
of line})

An assignment statement
TEMP_VAR = {~{'x_new'} W:(A-Z_a-z, 0-9A-Z_a-z)}

Legal names for temporary variables
DESCRIPTION()→ ParserElement

Requires all given ParseExpression s to be found in the given order. Expressions may be separated by
whitespace. May be constructed using the '+' operator. May also be constructed using the '-' operator,
which will suppress backtracking.
Example:

integer = Word(nums)
name_expr = Word(alphas)[1, ...]

expr = And([integer("id"), name_expr("name"), integer("age")])
more easily written as:
expr = integer("id") + name_expr("name") + integer("age")

EXPRESSION()→ ParserElement
Token for matching strings that match a given regular expression. Defined with string specifying the regular
expression in a form recognized by the stdlib Python re module. If the given regex contains named groups
(defined using (?P<name>...)), these will be preserved as named ParseResults.
If instead of the Python stdlib remodule you wish to use a different REmodule (such as the regexmodule),
you can do so by building your Regex object with a compiled RE that was compiled using regex.

728 Chapter 6. brian2 package

https://docs.python.org/3/library/re.html

Brian 2 Documentation, Release 2.5.1

Example:

realnum = Regex(r"[+-]?\d+\.\d*")
ref: https://stackoverflow.com/questions/267399/how-do-you-match-only-valid-
↪→roman-numerals-with-a-regular-expression
roman = Regex(r"M{0,4}(CM|CD|D?{0,3})(XC|XL|L?X{0,3})(IX|IV|V?I{0,3})")

named fields in a regex will be returned as named results
date = Regex(r'(?P<year>\d{4})-(?P<month>\d\d?)-(?P<day>\d\d?)')

the Regex class will accept re's compiled using the regex module
import regex
parser = pp.Regex(regex.compile(r'[0-9]'))

OUTPUT()→ ParserElement
Converter to return the matched tokens as a list - useful for returning tokens of ZeroOrMore and OneOr-
More expressions.
The optional aslist argument when set to True will return the parsed tokens as a Python list instead of a
pyparsing ParseResults.
Example:

ident = Word(alphas)
num = Word(nums)
term = ident | num
func = ident + Opt(delimited_list(term))
print(func.parse_string("fn a, b, 100"))
-> ['fn', 'a', 'b', '100']

func = ident + Group(Opt(delimited_list(term)))
print(func.parse_string("fn a, b, 100"))
-> ['fn', ['a', 'b', '100']]

STATEMENT()→ ParserElement
Converter to return the matched tokens as a list - useful for returning tokens of ZeroOrMore and OneOr-
More expressions.
The optional aslist argument when set to True will return the parsed tokens as a Python list instead of a
pyparsing ParseResults.
Example:

ident = Word(alphas)
num = Word(nums)
term = ident | num
func = ident + Opt(delimited_list(term))
print(func.parse_string("fn a, b, 100"))
-> ['fn', 'a', 'b', '100']

func = ident + Group(Opt(delimited_list(term)))
print(func.parse_string("fn a, b, 100"))
-> ['fn', ['a', 'b', '100']]

TEMP_VAR()→ ParserElement
Requires all given ParseExpression s to be found in the given order. Expressions may be separated by
whitespace. May be constructed using the '+' operator. May also be constructed using the '-' operator,
which will suppress backtracking.

6.7. Subpackages 729

Brian 2 Documentation, Release 2.5.1

Example:

integer = Word(nums)
name_expr = Word(alphas)[1, ...]

expr = And([integer("id"), name_expr("name"), integer("age")])
more easily written as:
expr = integer("id") + name_expr("name") + integer("age")

__call__(eqs, variables=None, method_options=None)
Apply a state updater description to model equations.

Parameters eqs : Equations
The equations describing the model

variables: dict-like, optional :
The Variable objects for the model. Ignored by the explicit state updater.

method_options : dict, optional
Additional options to the state updater (not used at the moment for the explicit state up-
daters).

Examples

>>> from brian2 import *
>>> eqs = Equations('dv/dt = -v / tau : volt')
>>> print(euler(eqs))
_v = -dt*v/tau + v
v = _v
>>> print(rk4(eqs))
__k_1_v = -dt*v/tau
__k_2_v = -dt*(__k_1_v/2 + v)/tau
__k_3_v = -dt*(__k_2_v/2 + v)/tau
__k_4_v = -dt*(__k_3_v + v)/tau
_v = __k_1_v/6 + __k_2_v/3 + __k_3_v/3 + __k_4_v/6 + v
v = _v

replace_func(x, t, expr, temp_vars, eq_symbols, stochastic_variable=None)
Used to replace a single occurance of f(x, t) or g(x, t): expr is the non-stochastic (in the case of
f) or stochastic part (g) of the expression defining the right-hand-side of the differential equation describing
var(). It replaces the variable var()with the value given as x and t by the value given for t. Intermediate
variables will be replaced with the appropriate replacements as well.
For example, in the rk2 integrator, the second step involves the calculation of f(k/2 + x, dt/2 +
t). If var() is v and expr is -v / tau, this will result in -(_k_v/2 + v)/tau.
Note that this deals with only one state variable var(), given as an argument to the surrounding _gener-
ate_RHS function.

Functions

diagonal_noise(equations, variables) Checks whether we deal with diagonal noise, i.e. one in-
dependent noise variable per variable.

730 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

diagonal_noise function

(Shortest import: from brian2.stateupdaters.explicit import diagonal_noise)

brian2.stateupdaters.explicit.diagonal_noise(equations, variables)
Checks whether we deal with diagonal noise, i.e. one independent noise variable per variable.

Raises

UnsupportedEquationsException If the noise is not diagonal.

split_expression(expr) Split an expression into a part containing the function f
and another one containing the function g.

split_expression function

(Shortest import: from brian2.stateupdaters.explicit import split_expression)

brian2.stateupdaters.explicit.split_expression(expr)

Split an expression into a part containing the function f and another one containing the function g. Returns a tuple
of the two expressions (as sympy expressions).

Parameters expr : str
An expression containing references to functions f and g.

Returns (non_stochastic, stochastic) : tuple of sympy expressions
A pair of expressions representing the non-stochastic (containing function-independent
terms and terms involving f) and the stochastic part of the expression (terms involving g
and/or dW).

Examples

>>> split_expression('dt * __f(__x, __t)')
(dt*__f(__x, __t), None)
>>> split_expression('dt * __f(__x, __t) + __dW * __g(__x, __t)')
(dt*__f(__x, __t), __dW*__g(__x, __t))
>>> split_expression('1/(2*sqrt(dt))*(__g_support - __g(__x, __t))*(sqrt(__dW))')
(0, sqrt(__dW)*__g_support/(2*sqrt(dt)) - sqrt(__dW)*__g(__x, __t)/(2*sqrt(dt)))

Objects

euler Forward Euler state updater

6.7. Subpackages 731

Brian 2 Documentation, Release 2.5.1

euler object

(Shortest import: from brian2 import euler)

brian2.stateupdaters.explicit.euler = ExplicitStateUpdater('''x_new =
__dW*__g(__x, __t) + __x + dt*__f(__x, __t)''', stochastic='additive')

Forward Euler state updater

heun Stochastic Heun method (for multiplicative Stratonovic
SDEs with non-diagonal diffusion matrix)

heun object

(Shortest import: from brian2 import heun)

brian2.stateupdaters.explicit.heun = ExplicitStateUpdater('''__x_support =
__dW*__g(__x, __t) + __x __g_support = __g(__x_support, __t + dt) x_new =
0.5*__dW*(__g_support + __g(__x, __t)) + __x + dt*__f(__x, __t)''',
stochastic='multiplicative')

Stochastic Heun method (for multiplicative Stratonovic SDEs with non-diagonal diffusion matrix)

milstein Derivative-free Milstein method

milstein object

(Shortest import: from brian2 import milstein)

brian2.stateupdaters.explicit.milstein = ExplicitStateUpdater('''__x_support =
__x + dt**0.5*__g(__x, __t) + dt*__f(__x, __t) __g_support = __g(__x_support,
__t) __k = __dW**2*(__g_support - __g(__x, __t))/(2*dt**0.5) x_new =
__dW*__g(__x, __t) + __k + __x + dt*__f(__x, __t)''',
stochastic='multiplicative')

Derivative-free Milstein method

rk2 Second order Runge-Kutta method (midpoint method)

rk2 object

(Shortest import: from brian2 import rk2)

brian2.stateupdaters.explicit.rk2 = ExplicitStateUpdater('''__k = dt*__f(__x,
__t) x_new = __x + dt*__f(__k/2 + __x, __t + dt/2)''', stochastic=None)

Second order Runge-Kutta method (midpoint method)

rk4 Classical Runge-Kutta method (RK4)

732 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

rk4 object

(Shortest import: from brian2 import rk4)

brian2.stateupdaters.explicit.rk4 = ExplicitStateUpdater('''__k_1 =
dt*__f(__x, __t) __k_2 = dt*__f(__k_1/2 + __x, __t + dt/2) __k_3 =
dt*__f(__k_2/2 + __x, __t + dt/2) __k_4 = dt*__f(__k_3 + __x, __t + dt) x_new =
__k_1/6 + __k_2/3 + __k_3/3 + __k_4/6 + __x''', stochastic=None)

Classical Runge-Kutta method (RK4)

exponential_euler module

Exported members: exponential_euler

Classes

ExponentialEulerStateUpdater() A state updater for conditionally linear equations, i.e.
equations where each variable only depends linearly on
itself (but possibly non-linearly on other variables).

ExponentialEulerStateUpdater class

(Shortest import: from brian2.stateupdaters.exponential_euler import ExponentialEuler-
StateUpdater)

class brian2.stateupdaters.exponential_euler.ExponentialEulerStateUpdater

Bases: brian2.stateupdaters.base.StateUpdateMethod
A state updater for conditionally linear equations, i.e. equations where each variable only depends linearly on
itself (but possibly non-linearly on other variables). Typical Hodgkin-Huxley equations fall into this category, it is
therefore the default integration method used in the GENESIS simulator, for example.

Methods

__call__(equations[, variables, method_options]) Generate abstract code from equations.

Details

__call__(equations, variables=None, method_options=None)
Generate abstract code from equations. The method also gets the the variables because some state up-
daters have to check whether variable names reflect other state variables (which can change from timestep
to timestep) or are external values (which stay constant during a run) For convenience, this arguments are
optional – this allows to directly see what code a state updater generates for a set of equations by simply
writing euler(eqs), for example.

Parameters equations : Equations
The model equations.

variables : dict, optional
The Variable objects for the model variables.

6.7. Subpackages 733

Brian 2 Documentation, Release 2.5.1

method_options : dict, optional
Additional options specific to the state updater.

Returns :
——- :
code : str
The abstract code performing a state update step.

Functions

get_conditionally_linear_system(eqs[,
variables])

Convert equations into a linear system using sympy.

get_conditionally_linear_system function

(Shortest import: from brian2.stateupdaters.exponential_euler import
get_conditionally_linear_system)

brian2.stateupdaters.exponential_euler.get_conditionally_linear_system(eqs, vari-
ables=None)

Convert equations into a linear system using sympy.
Parameters eqs : Equations

The model equations.
Returns coefficients : dict of (sympy expression, sympy expression) tuples

For every variable x, a tuple (M, B) containing the coefficients M and B (as sympy ex-
pressions) for M * x + B

Raises

ValueError If one of the equations cannot be converted into a M * x + B form.

Examples

>>> from brian2 import Equations
>>> eqs = Equations('''
... dv/dt = (-v + w**2.0) / tau : 1
... dw/dt = -w / tau : 1
... ''')
>>> system = get_conditionally_linear_system(eqs)
>>> print(system['v'])
(-1/tau, w**2.0/tau)
>>> print(system['w'])
(-1/tau, 0)

Objects

exponential_euler A state updater for conditionally linear equations, i.e.
equations where each variable only depends linearly on
itself (but possibly non-linearly on other variables).

734 Chapter 6. brian2 package

https://docs.python.org/3/library/exceptions.html#ValueError

Brian 2 Documentation, Release 2.5.1

exponential_euler object

(Shortest import: from brian2 import exponential_euler)

brian2.stateupdaters.exponential_euler.exponential_euler =
<brian2.stateupdaters.exponential_euler.ExponentialEulerStateUpdater object>

A state updater for conditionally linear equations, i.e. equations where each variable only depends linearly on
itself (but possibly non-linearly on other variables). Typical Hodgkin-Huxley equations fall into this category, it is
therefore the default integration method used in the GENESIS simulator, for example.

6.7.14 synapses package

Package providing synapse support.
Exported members: Synapses

parse_synaptic_generator_syntax module

Exported members: parse_synapse_generator

Functions

handle_range(*args, **kwds) Checks the arguments/keywords for the range iterator

handle_range function

(Shortest import: from brian2.synapses.parse_synaptic_generator_syntax import han-
dle_range)

brian2.synapses.parse_synaptic_generator_syntax.handle_range(*args, **kwds)
Checks the arguments/keywords for the range iterator
Should have 1-3 positional arguments.
Returns a dict with keys low, high, step. Default values are low=0, step=1.

handle_sample(*args, **kwds) Checks the arguments/keywords for the sample iterator

handle_sample function

(Shortest import: from brian2.synapses.parse_synaptic_generator_syntax import han-
dle_sample)

brian2.synapses.parse_synaptic_generator_syntax.handle_sample(*args, **kwds)
Checks the arguments/keywords for the sample iterator
Should have 1-3 positional arguments and 1 keyword argument (either p or size).
Returns a dict with keys low, high, step, sample_size, p, size. Default values are low=0,
step=1`. Sample size will be either ``'random' or 'fixed'. In the first case, p will have
a value and size will be None (and vice versa for the second case).

6.7. Subpackages 735

Brian 2 Documentation, Release 2.5.1

parse_synapse_generator(expr) Returns a parsed form of a synapse generator expression.

parse_synapse_generator function

(Shortest import: from brian2.synapses.parse_synaptic_generator_syntax import
parse_synapse_generator)

brian2.synapses.parse_synaptic_generator_syntax.parse_synapse_generator(expr)
Returns a parsed form of a synapse generator expression.
The general form is:
element for inner_variable in iterator_func(...)

or
element for inner_variable in iterator_func(...) if if_expression

Returns a dictionary with keys:
original_expression The original expression as a string.
element As above, a string expression.
inner_variable A variable name, as above.
iterator_func String. Either range or sample.
if_expression String expression or None.
iterator_kwds Dictionary of key/value pairs representing the keywords. See handle_range and han-

dle_sample.

spikequeue module

The spike queue class stores future synaptic events produced by a given presynaptic neuron group (or postsynaptic for
backward propagation in STDP).
Exported members: SpikeQueue

Classes

SpikeQueue(source_start, source_end) Data structure saving the spikes and taking care of delays.

SpikeQueue class

(Shortest import: from brian2.synapses.spikequeue import SpikeQueue)

class brian2.synapses.spikequeue.SpikeQueue(source_start, source_end)
Bases: object
Data structure saving the spikes and taking care of delays.

Parameters source_start : int
The start of the source indices (for subgroups)

source_end : int

736 Chapter 6. brian2 package

https://docs.python.org/3/library/functions.html#object

Brian 2 Documentation, Release 2.5.1

The end of the source indices (for subgroups)
Notes :
—– :
Data structure :
A spike queue is implemented as a 2D array `X` that is circular in the time :
direction (rows) and dynamic in the events direction (columns). The :
row index corresponding to the current timestep is `currentime`. :
Each element contains the target synapse index. :
Offsets :
Offsets are used to solve the problem of inserting multiple synaptic events :
with the same delay. This is difficult to vectorise. If there are n synaptic :
events with the same delay, these events are given an offset between 0 and :
n-1, corresponding to their relative position in the data structure. :

Attributes

_dt The dt used for storing the spikes (will be set in pre-
pare)

_source_end The end of the source indices (for subgroups)
_source_start The start of the source indices (for subgroups)
currenttime The current time (in time steps)
n number of events in each time step

Methods

advance() Advances by one timestep
peek() Returns the all the synaptic events corresponding to

the current time, as an array of synapse indexes.
prepare(delays, dt, synapse_sources) Prepare the data structures
push(sources) Push spikes to the queue.

Details

_dt

The dt used for storing the spikes (will be set in prepare)
_source_end

The end of the source indices (for subgroups)
_source_start

The start of the source indices (for subgroups)

6.7. Subpackages 737

Brian 2 Documentation, Release 2.5.1

currenttime

The current time (in time steps)
n

number of events in each time step
advance()

Advances by one timestep
peek()

Returns the all the synaptic events corresponding to the current time, as an array of synapse indexes.
prepare(delays, dt, synapse_sources)

Prepare the data structures
This is called every time the network is run. The size of the of the data structure (number of rows) is adjusted
to fit the maximum delay in delays, if necessary. A flag is set if delays are homogeneous, in which case
insertion will use a faster method implemented in insert_homogeneous.

push(sources)
Push spikes to the queue.

Parameters sources : ndarray of int
The indices of the neurons that spiked.

synapses module

Module providing the Synapses class and related helper classes/functions.
Exported members: Synapses

Classes

StateUpdater(*args, **kw) The CodeRunner that updates the state variables of a
Synapses at every timestep.

StateUpdater class

(Shortest import: from brian2.synapses.synapses import StateUpdater)

class brian2.synapses.synapses.StateUpdater(*args, **kw)
Bases: brian2.groups.group.CodeRunner
The CodeRunner that updates the state variables of a Synapses at every timestep.

738 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

Methods

update_abstract_code(run_namespace) Update the abstract code for the code object.

Details

update_abstract_code(run_namespace)
Update the abstract code for the code object. Will be called in before_run and should update the
CodeRunner.abstract_code attribute.
Does nothing by default.

SummedVariableUpdater(*args, **kw) The CodeRunner that updates a value in the target
group with the sum over values in the Synapses object.

SummedVariableUpdater class

(Shortest import: from brian2.synapses.synapses import SummedVariableUpdater)

class brian2.synapses.synapses.SummedVariableUpdater(*args, **kw)
Bases: brian2.groups.group.CodeRunner
The CodeRunner that updates a value in the target group with the sum over values in the Synapses object.

Methods

before_run(run_namespace) Optional method to prepare the object before a run.

Details

before_run(run_namespace)

Optional method to prepare the object before a run.
Called by Network.after_run before the main simulation loop starts.

Synapses(*args, **kw) Class representing synaptic connections.

Synapses class

(Shortest import: from brian2 import Synapses)

class brian2.synapses.synapses.Synapses(*args, **kw)
Bases: brian2.groups.group.Group
Class representing synaptic connections.
Creating a new Synapses object does by default not create any synapses, you have to call the Synapses.
connect method for that.

6.7. Subpackages 739

Brian 2 Documentation, Release 2.5.1

Parameters source : SpikeSource
The source of spikes, e.g. a NeuronGroup.

target : Group, optional
The target of the spikes, typically a NeuronGroup. If none is given, the same as
source()

model : str, Equations, optional
The model equations for the synapses.

on_pre : str, dict, optional
The code that will be executed after every pre-synaptic spike. Can be either a single
(possibly multi-line) string, or a dictionary mapping pathway names to code strings. In the
first case, the pathway will be called pre and made available as an attribute of the same
name. In the latter case, the given names will be used as the pathway/attribute names.
Each pathway has its own code and its own delays.

pre : str, dict, optional
Deprecated. Use on_pre instead.

on_post : str, dict, optional
The code that will be executed after every post-synaptic spike. Same conventions as for
on_pre`, the default name for the pathway is post.

post : str, dict, optional
Deprecated. Use on_post instead.

delay : Quantity, dict, optional
The delay for the “pre” pathway (same for all synapses) or a dictionary mapping pathway
names to delays. If a delay is specified in this way for a pathway, it is stored as a single
scalar value. It can still be changed afterwards, but only to a single scalar value. If you want
to have delays that vary across synapses, do not use the keyword argument, but instead set
the delays via the attribute of the pathway, e.g. S.pre.delay = ... (or S.delay
= ... as an abbreviation), S.post.delay = ..., etc.

on_event : str or dict, optional
Define the events which trigger the pre and post pathways. By default, both pathways are
triggered by the 'spike' event, i.e. the event that is triggered by the threshold
condition in the connected groups.

multisynaptic_index : str, optional
The name of a variable (which will be automatically created) that stores the “synapse
number”. This number enumerates all synapses between the same source and target so
that they can be distinguished. For models where each source-target pair has only a single
connection, this number only wastes memory (it would always default to 0), it is therefore
not stored by default. Defaults to None (no variable).

namespace : dict, optional
A dictionary mapping identifier names to objects. If not given, the namespace will be filled
in at the time of the call of Network.run, with either the values from the namespace
argument of the Network.run method or from the local context, if no such argument
is given.

dtype : dtype, dict, optional

740 Chapter 6. brian2 package

https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype

Brian 2 Documentation, Release 2.5.1

The numpy.dtype that will be used to store the values, or a dictionary specifying the
type for variable names. If a value is not provided for a variable (or no value is provided
at all), the preference setting core.default_float_dtype is used.

codeobj_class : class, optional
The CodeObject class to use to run code.

dt : Quantity, optional
The time step to be used for the update of the state variables. Cannot be combined with
the clock argument.

clock : Clock, optional
The update clock to be used. If neither a clock, nor the dt argument is specified, the
defaultclock will be used.

order : int, optional
The priority of of this group for operations occurring at the same time step and in the same
scheduling slot. Defaults to 0.

method : str, StateUpdateMethod, optional
The numerical integration method to use. If none is given, an appropriate one is automat-
ically determined.

name : str, optional
The name for this object. If none is given, a unique name of the form synapses,
synapses_1, etc. will be automatically chosen.

Attributes

N_incoming_post The number of incoming synapses for each neuron in
the post-synaptic group.

N_outgoing_pre The number of outgoing synapses for each neuron in
the pre-synaptic group.

_connect_called remember whether connect was called to raise an er-
ror if an assignment to a synaptic variable is attempted
without a preceding connect.

_pathways List of all SynapticPathway objects
_registered_variables Set of Variable objects that should be resized when

the number of synapses changes
_synaptic_updaters List of names of all updaters, e.g.
delay The presynaptic delay (if a pre-synaptic pathway ex-

ists).
delay_ The presynaptic delay without unit information (if

apre-synaptic pathway exists).
events "Events" for all the pathways
state_updater Performs numerical integration step
subexpression_updater Update the "constant over a time step" subexpressions
summed_updaters "Summed variable" mechanism -- sum over all

synapses of a pre-/postsynaptic target

6.7. Subpackages 741

https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype

Brian 2 Documentation, Release 2.5.1

Methods

before_run(run_namespace) Optional method to prepare the object before a run.
check_variable_write(variable) Checks that Synapses.connect has been called

before setting a synaptic variable.
connect([condition, i, j, p, n, ...]) Add synapses.
register_variable(variable) Register a DynamicArray to be automatically re-

sized when the size of the indices change.
unregister_variable(variable) Unregister a DynamicArray from the automatic re-

sizing mechanism.
verify_dependencies(eq, eq_type, deps, ...) Helper function to verify that event-driven equations

do not depend on clock-driven equations and the other
way round.

Details

N_incoming_post

The number of incoming synapses for each neuron in the post-synaptic group.
N_outgoing_pre

The number of outgoing synapses for each neuron in the pre-synaptic group.
_connect_called

remember whether connect was called to raise an error if an assignment to a synaptic variable is attempted
without a preceding connect.

_pathways

List of all SynapticPathway objects
_registered_variables

Set of Variable objects that should be resized when the number of synapses changes
_synaptic_updaters

List of names of all updaters, e.g. [‘pre’, ‘post’]
delay

The presynaptic delay (if a pre-synaptic pathway exists).
delay_

The presynaptic delay without unit information (if apre-synaptic pathway exists).
events

“Events” for all the pathways
state_updater

Performs numerical integration step
subexpression_updater

Update the “constant over a time step” subexpressions
summed_updaters

“Summed variable” mechanism – sum over all synapses of a pre-/postsynaptic target

742 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

before_run(run_namespace)
Optional method to prepare the object before a run.
Called by Network.after_run before the main simulation loop starts.

check_variable_write(variable)

Checks that Synapses.connect has been called before setting a synaptic variable.
Parameters variable : Variable

The variable that the user attempts to set.

Raises

TypeError If Synapses.connect has not been called yet.

connect(condition=None, i=None, j=None, p=1.0, n=1, skip_if_invalid=False, namespace=None, level=0)
Add synapses.
See Synapses for details.

Parameters condition : str, bool, optional
A boolean or string expression that evaluates to a boolean. The expression can depend on
indices i and j and on pre- and post-synaptic variables. Can be combined with arguments
n, and p but not i or j.

i : int, ndarray of int, str, optional
The presynaptic neuron indices It can be an index or array of indices if combined with the
j argument, or it can be a string generator expression.

j : int, ndarray of int, str, optional
The postsynaptic neuron indices. It can be an index or array of indices if combined with
the i argument, or it can be a string generator expression.

p : float, str, optional
The probability to create n synapses wherever the condition evaluates to true. Cannot
be used with generator syntax for j.

n : int, str, optional
The number of synapses to create per pre/post connection pair. Defaults to 1.

skip_if_invalid : bool, optional
If set to True, rather than raising an error if you try to create an invalid/out of range pair
(i, j) it will just quietly skip those synapses.

namespace : dict-like, optional
A namespace that will be used in addition to the group-specific namespaces (if defined).
If not specified, the locals and globals around the run function will be used.

level : int, optional
How deep to go up the stack frame to look for the locals/global (see namespace argu-
ment).

6.7. Subpackages 743

https://docs.python.org/3/library/exceptions.html#TypeError

Brian 2 Documentation, Release 2.5.1

Examples

>>> from brian2 import *
>>> import numpy as np
>>> G = NeuronGroup(10, 'dv/dt = -v / tau : 1', threshold='v>1', reset='v=0')
>>> S = Synapses(G, G, 'w:1', on_pre='v+=w')
>>> S.connect(condition='i != j') # all-to-all but no self-connections
>>> S.connect(i=0, j=0) # connect neuron 0 to itself
>>> S.connect(i=np.array([1, 2]), j=np.array([2, 1])) # connect 1->2 and 2->1
>>> S.connect() # connect all-to-all
>>> S.connect(condition='i != j', p=0.1) # Connect neurons with 10%␣
↪→probability, exclude self-connections
>>> S.connect(j='i', n=2) # Connect all neurons to themselves with 2 synapses
>>> S.connect(j='k for k in range(i+1)') # Connect neuron i to all j with 0<=j
↪→<=i
>>> S.connect(j='i+(-1)**k for k in range(2) if i>0 and i<N_pre-1') # connect␣
↪→neuron i to its neighbours if it has both neighbours
>>> S.connect(j='k for k in sample(N_post, p=i*1.0/(N_pre-1))') # neuron i␣
↪→connects to j with probability i/(N-1)
>>> S.connect(j='k for k in sample(N_post, size=i//2)') # Each neuron␣
↪→connects to i//2 other neurons (chosen randomly)

register_variable(variable)
Register a DynamicArray to be automatically resized when the size of the indices change. Called auto-
matically when a SynapticArrayVariable specifier is created.

unregister_variable(variable)
Unregister a DynamicArray from the automatic resizing mechanism.

static verify_dependencies(eq, eq_type, deps, should_not_depend_on,
should_not_depend_on_name)

Helper function to verify that event-driven equations do not depend on clock-driven equations and the other
way round.

Parameters eq : SingleEquation
The equation to verify

eq_type : str
The type of the equation (for the error message)

deps : list
A list of dependencies

should_not_depend_on : list
A list of equations to verify against the dependencies

should_not_depend_on_name : str
The name of the list of equations (for the error message)

744 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

Raises

:exc:EquationError If the given equation depends on something in the other set of equations.

Tutorials and examples using this

• Tutorial 1-intro-to-brian-neurons
• Tutorial 2-intro-to-brian-synapses
• Tutorial 3-intro-to-brian-simulations

• Example COBAHH
• Example CUBA
• Example adaptive_threshold
• Example advanced/custom_events

• Example advanced/float_32_64_benchmark

• Example compartmental/bipolar_with_inputs

• Example compartmental/bipolar_with_inputs2

• Example compartmental/lfp

• Example frompapers/Brette_2012/Fig5A

• Example frompapers/Brunel_2000

• Example frompapers/Brunel_Hakim_1999

• Example frompapers/Brunel_Wang_2001

• Example frompapers/Clopath_et_al_2010_homeostasis

• Example frompapers/Clopath_et_al_2010_no_homeostasis

• Example frompapers/Diesmann_et_al_1999

• Example frompapers/Graupner_Brunel_2012

• Example frompapers/Izhikevich_2003

• Example frompapers/Izhikevich_2007

• Example frompapers/Kremer_et_al_2011_barrel_cortex

• Example frompapers/Maass_Natschlaeger_Markram_2002

• Example frompapers/Stimberg_et_al_2018/example_1_COBA

• Example frompapers/Stimberg_et_al_2018/example_2_gchi_astrocyte

• Example frompapers/Stimberg_et_al_2018/example_3_io_synapse

• Example frompapers/Stimberg_et_al_2018/example_4_rsmean

• Example frompapers/Stimberg_et_al_2018/example_4_synrel

• Example frompapers/Stimberg_et_al_2018/example_5_astro_ring

• Example frompapers/Stimberg_et_al_2018/example_6_COBA_with_astro

• Example frompapers/Sturzl_et_al_2000

6.7. Subpackages 745

Brian 2 Documentation, Release 2.5.1

• Example frompapers/Tsodyks_Pawelzik_Markram_1998

• Example frompapers/Tsodyks_Uziel_Markram_2000

• Example frompapers/Vogels_et_al_2011

• Example standalone/STDP_standalone

• Example standalone/cuba_openmp

• Example standalone/standalone_multiplerun

• Example synapses/STDP

• Example synapses/continuous_interaction
• Example synapses/efficient_gaussian_connectivity

• Example synapses/gapjunctions
• Example synapses/jeffress
• Example synapses/licklider
• Example synapses/nonlinear
• Example synapses/spatial_connections
• Example synapses/spike_based_homeostasis

• Example synapses/state_variables
• Example synapses/synapses

SynapticIndexing(synapses)

Methods

SynapticIndexing class

(Shortest import: from brian2.synapses.synapses import SynapticIndexing)

class brian2.synapses.synapses.SynapticIndexing(synapses)
Bases: object

Methods

__call__([index, index_var]) Returns synaptic indices for index, which can be a
tuple of indices (including arrays and slices), a single
index or a string.

746 Chapter 6. brian2 package

https://docs.python.org/3/library/functions.html#object

Brian 2 Documentation, Release 2.5.1

Details

__call__(index=None, index_var='_idx')
Returns synaptic indices for index, which can be a tuple of indices (including arrays and slices), a single
index or a string.

SynapticPathway(*args, **kw) The CodeRunner that applies the pre/post state-
ment(s) to the state variables of synapses where the pre-
/postsynaptic group spiked in this time step.

SynapticPathway class

(Shortest import: from brian2.synapses.synapses import SynapticPathway)

class brian2.synapses.synapses.SynapticPathway(*args, **kw)
Bases: brian2.groups.group.CodeRunner, brian2.groups.group.Group
The CodeRunner that applies the pre/post statement(s) to the state variables of synapses where the pre-
/postsynaptic group spiked in this time step.

Parameters synapses : Synapses
Reference to the main Synapses object

prepost : {‘pre’, ‘post’}
Whether this object should react to pre- or postsynaptic spikes

objname : str, optional
The name to use for the object, will be appendend to the name of synapses to create a
name in the sense of Nameable. If None is provided (the default), prepost will be
used.

delay : Quantity, optional
A scalar delay (same delay for all synapses) for this pathway. If not given, delays are
expected to vary between synapses.

Attributes

_initialise_queue_codeobj The CodeObject initalising the SpikeQueue at
the begin of a run

queue The SpikeQueue

6.7. Subpackages 747

Brian 2 Documentation, Release 2.5.1

Methods

before_run(run_namespace) Optional method to prepare the object before a run.
check_variable_write(variable) Function that can be overwritten to raise an error if

writing to a variable should not be allowed.
create_code_objects(run_namespace)

initialise_queue()

push_spikes()

update_abstract_code([run_namespace,
level])

Update the abstract code for the code object.

Details

_initialise_queue_codeobj

The CodeObject initalising the SpikeQueue at the begin of a run
queue

The SpikeQueue
before_run(run_namespace)

Optional method to prepare the object before a run.
Called by Network.after_run before the main simulation loop starts.

check_variable_write(variable)
Function that can be overwritten to raise an error if writing to a variable should not be allowed. Note that this
does not deal with incorrect writes that are general to all kind of variables (incorrect units, writing to a read-
only variable, etc.). This function is only used for type-specific rules, e.g. for raising an error in Synapses
when writing to a synaptic variable before any connect call.
By default this function does nothing.

Parameters variable : Variable
The variable that the user attempts to set.

create_code_objects(run_namespace)

initialise_queue()

push_spikes()

update_abstract_code(run_namespace=None, level=0)
Update the abstract code for the code object. Will be called in before_run and should update the
CodeRunner.abstract_code attribute.
Does nothing by default.

SynapticSubgroup(synapses, indices) A simple subgroup of Synapses that can be used for
indexing.

748 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

SynapticSubgroup class

(Shortest import: from brian2.synapses.synapses import SynapticSubgroup)

class brian2.synapses.synapses.SynapticSubgroup(synapses, indices)
Bases: object
A simple subgroup of Synapses that can be used for indexing.

Parameters indices : ndarray of int
The synaptic indices represented by this subgroup.

synaptic_pre : DynamicArrayVariable
References to all pre-synaptic indices. Only used to throw an error when new synapses
where added after creating this object.

Functions

find_synapses(index, synaptic_neuron)

find_synapses function

(Shortest import: from brian2.synapses.synapses import find_synapses)

brian2.synapses.synapses.find_synapses(index, synaptic_neuron)

slice_to_test(x) Returns a testing function corresponding to whether an
index is in slice x.

slice_to_test function

(Shortest import: from brian2.synapses.synapses import slice_to_test)

brian2.synapses.synapses.slice_to_test(x)
Returns a testing function corresponding to whether an index is in slice x. x can also be an int.

6.7.15 units package

The unit system.
Exported members: pamp, namp, uamp, mamp, amp, kamp, Mamp, Gamp, Tamp, kelvin, kilogram, pmetre,
nmetre, umetre, mmetre, metre, kmetre, Mmetre, Gmetre, Tmetre, pmeter, nmeter, umeter, mme-
ter, meter… (218 more members)

6.7. Subpackages 749

https://docs.python.org/3/library/functions.html#object
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Brian 2 Documentation, Release 2.5.1

allunits module

THIS FILE IS AUTOMATICALLY GENERATED BY A STATIC CODE GENERATION TOOL DO NOT EDIT BY
HAND
Instead edit the template:

dev/tools/static_codegen/units_template.py
Exported members: metre, meter, kilogram, second, amp, ampere, kelvin, mole, mol, candle, kilo-
gramme, gram, gramme, molar, radian, steradian, hertz, newton, pascal, joule, watt, coulomb,
volt, farad, ohm… (2045 more members)
Objects

celsius A dummy object to raise errors when celsius is used.

celsius object

(Shortest import: from brian2.units.allunits import celsius)

brian2.units.allunits.celsius = <brian2.units.allunits._Celsius object>

A dummy object to raise errors when celsius is used. The use of celsius can lead to ambiguities when mixed
with temperatures in kelvin, so its use is no longer supported. See github issue #817 for details.

constants module

A module providing some physical units as Quantity objects. Note that these units are not imported by wildcard
imports (e.g. from brian2 import *), they have to be imported explicitly. You can use import ... as ...
to import them with shorter names, e.g.:

from brian2.units.constants import faraday_constant as F

The available constants are:

Constant Symbol(s) Brian name Value
Avogadro constant NA, L avogadro_constant 6.022140857× 1023mol−1

Boltzmann constant k boltzmann_constant 1.38064852× 10−23 J K−1

Electric constant ϵ0 electric_constant 8.854187817× 10−12 Fm−1

Electron mass me electron_mass 9.10938356× 10−31 kg
Elementary charge e elementary_charge 1.6021766208× 10−19 C
Faraday constant F faraday_constant 96485.33289Cmol−1

Gas constant R gas_constant 8.3144598 Jmol−1 K−1

Magnetic constant µ0 magnetic_constant 12.566370614× 10−7NA−2

Molar mass constant Mu molar_mass_constant 1× 10−3 kgmol−1

0°C zero_celsius 273.15K

750 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

fundamentalunits module

Defines physical units and quantities

Quantity Unit Symbol
Length metre m
Mass kilogram kg
Time second s
Electric current ampere A
Temperature kelvin K
Quantity of substance mole mol
Luminosity candle cd

Exported members: DimensionMismatchError, get_or_create_dimension(), get_dimensions(),
is_dimensionless(), have_same_dimensions(), in_unit(), in_best_unit(), Quantity,
Unit, register_new_unit(), check_units(), is_scalar_type(), get_unit()
Classes

Dimension(dims) Stores the indices of the 7 basic SI unit dimension (length,
mass, etc.).

Dimension class

(Shortest import: from brian2.units.fundamentalunits import Dimension)

class brian2.units.fundamentalunits.Dimension(dims)
Bases: object
Stores the indices of the 7 basic SI unit dimension (length, mass, etc.).
Provides a subset of arithmetic operations appropriate to dimensions: multiplication, division and powers, and
equality testing.

Parameters dims : sequence of float
The dimension indices of the 7 basic SI unit dimensions.

Notes

Users shouldn’t use this class directly, it is used internally in Quantity and Unit. Even internally, never use
Dimension(...) to create a new instance, use get_or_create_dimension() instead. This function
makes sure that only one Dimension instance exists for every combination of indices, allowing for a very fast
dimensionality check with is.

6.7. Subpackages 751

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#float

Brian 2 Documentation, Release 2.5.1

Attributes

dim Returns the Dimension object itself.
is_dimensionless Whether this Dimension is dimensionless.

Methods

get_dimension(d) Return a specific dimension.

Details

dim

Returns the Dimension object itself. This can be useful, because it allows to check for the dimension of
an object by checking its dim attribute – this will return a Dimension object for Quantity, Unit and
Dimension.

is_dimensionless

Whether this Dimension is dimensionless.

Notes

Normally, instead one should check dimension for being identical to DIMENSIONLESS.
get_dimension(d)

Return a specific dimension.
Parameters d : str

A string identifying the SI basic unit dimension. Can be either a description like “length”
or a basic unit like “m” or “metre”.

Returns dim : float
The dimensionality of the dimension d.

DimensionMismatchError(description, *dims) Exception class for attempted operations with inconsis-
tent dimensions.

DimensionMismatchError class

(Shortest import: from brian2 import DimensionMismatchError)

class brian2.units.fundamentalunits.DimensionMismatchError(description, *dims)
Bases: Exception
Exception class for attempted operations with inconsistent dimensions.
For example, 3*mvolt + 2*amp raises this exception. The purpose of this class is to help catch errors based
on incorrect units. The exception will print a representation of the dimensions of the two inconsistent objects that
were operated on.

Parameters description : str

752 Chapter 6. brian2 package

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#Exception

Brian 2 Documentation, Release 2.5.1

A description of the type of operation being performed, e.g. Addition, Multiplication, etc.
dims : Dimension

The physical dimensions of the objects involved in the operation, any number of them is
possible

Tutorials and examples using this

• Tutorial 1-intro-to-brian-neurons

Quantity(arr[, dim, dtype, copy, force_quantity]) A number with an associated physical dimension.

Quantity class

(Shortest import: from brian2 import Quantity)

class brian2.units.fundamentalunits.Quantity(arr, dim=None, dtype=None, copy=False,
force_quantity=False)

Bases: numpy.ndarray, object
A number with an associated physical dimension. In most cases, it is not necessary to create a Quantity object by
hand, instead use multiplication and division of numbers with the constant unit names second, kilogram, etc.
See also:
Unit

Notes

The Quantity class defines arithmetic operations which check for consistency of dimensions and raise the Di-
mensionMismatchError exception if they are inconsistent. It also defines default and other representations for a
number for printing purposes.
See the documentation on the Unit class for more details about the available unit names like mvolt, etc.
Casting rules

The rules that define the casting operations for Quantity object are:
1. Quantity op Quantity = Quantity Performs dimension checking if appropriate
2. (Scalar or Array) op Quantity = Quantity Assumes that the scalar or array is dimensionless

There is one exception to the above rule, the number 0 is interpreted as having “any dimension”.

6.7. Subpackages 753

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#object

Brian 2 Documentation, Release 2.5.1

Examples

>>> from brian2 import *
>>> I = 3 * amp # I is a Quantity object
>>> R = 2 * ohm # same for R
>>> I * R
6. * volt
>>> (I * R).in_unit(mvolt)
'6000. mV'
>>> (I * R) / mvolt
6000.0
>>> X = I + R
Traceback (most recent call last):

...
DimensionMismatchError: Addition, dimensions were (A) (m^2 kg s^-3 A^-2)
>>> Is = np.array([1, 2, 3]) * amp
>>> Is * R
array([2., 4., 6.]) * volt
>>> np.asarray(Is * R) # gets rid of units
array([2., 4., 6.])

Attributes

dimensions The physical dimensions of this quantity.
is_dimensionless Whether this is a dimensionless quantity.
dim The physical dimensions of this quantity.

Methods

with_dimensions(value, *args, **keywords) Create a Quantity object with dim.
has_same_dimensions(other) Return whether this object has the same dimensions as

another.
in_unit(u[, precision, python_code]) Represent the quantity in a given unit.
in_best_unit([precision, python_code]) Represent the quantity in the "best" unit.

Details

dimensions

The physical dimensions of this quantity.
is_dimensionless

Whether this is a dimensionless quantity.
dim

static with_dimensions(value, *args, **keywords)
Create a Quantity object with dim.

Parameters value : {array_like, number}
The value of the dimension

754 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

args : {Dimension, sequence of float}
Either a single argument (a Dimension) or a sequence of 7 values.

kwds :
Keywords defining the dim, see Dimension for details.

Returns q : Quantity
A Quantity object with the given dim

Examples

All of these define an equivalent Quantity object:

>>> from brian2 import *
>>> Quantity.with_dimensions(2, get_or_create_dimension(length=1))
2. * metre
>>> Quantity.with_dimensions(2, length=1)
2. * metre
>>> 2 * metre
2. * metre

has_same_dimensions(other)
Return whether this object has the same dimensions as another.

Parameters other : {Quantity, array-like, number}
The object to compare the dimensions against.

Returns same : bool
True if other has the same dimensions.

in_unit(u, precision=None, python_code=False)
Represent the quantity in a given unit. If python_code is True, this will return valid python code, i.e. a
string like 5.0 * um ** 2 instead of 5.0 um^2

Parameters u : {Quantity, Unit}
The unit in which to show the quantity.

precision : int, optional
The number of digits of precision (in the given unit, see Examples). If no value is given,
numpy’s get_printoptions() value is used.

python_code : bool, optional
Whether to return valid python code (True) or a human readable string (False, the
default).

Returns s : str
String representation of the object in unit u.

See also:
in_unit()

6.7. Subpackages 755

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Brian 2 Documentation, Release 2.5.1

Examples

>>> from brian2.units import *
>>> from brian2.units.stdunits import *
>>> x = 25.123456 * mV
>>> x.in_unit(volt)
'0.02512346 V'
>>> x.in_unit(volt, 3)
'0.025 V'
>>> x.in_unit(mV, 3)
'25.123 mV'

in_best_unit(precision=None, python_code=False, *regs)
Represent the quantity in the “best” unit.

Parameters python_code : bool, optional
If set to False (the default), will return a string like 5.0 um^2 which is not a valid
Python expression. If set to True, it will return 5.0 * um ** 2 instead.

precision : int, optional
The number of digits of precision (in the best unit, see Examples). If no value is given,
numpy’s get_printoptions() value is used.

regs : UnitRegistry objects
The registries where to search for units. If none are given, the standard, user-defined and
additional registries are searched in that order.

Returns representation : str
A string representation of this Quantity.

See also:
in_best_unit()

Examples

>>> from brian2.units import *

>>> x = 0.00123456 * volt

>>> x.in_best_unit()
'1.23456 mV'

>>> x.in_best_unit(3)
'1.235 mV'

756 Chapter 6. brian2 package

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Brian 2 Documentation, Release 2.5.1

Tutorials and examples using this

• Example frompapers/Destexhe_et_al_1998

• Example frompapers/Platkiewicz_Brette_2011

• Example frompapers/Stimberg_et_al_2018/example_1_COBA

Unit(arr[, dim, scale, name, dispname, ...]) A physical unit.

Unit class

(Shortest import: from brian2 import Unit)

class brian2.units.fundamentalunits.Unit(arr, dim=None, scale=0, name=None, dispname=None,
latexname=None, iscompound=False, dtype=None,
copy=False)

Bases: brian2.units.fundamentalunits.Quantity
A physical unit.
Normally, you do not need to worry about the implementation of units. They are derived from the
Quantity object with some additional information (name and string representation).
Basically, a unit is just a number with given dimensions, e.g. mvolt = 0.001 with the dimensions of
voltage. The units module defines a large number of standard units, and you can also define your own
(see below).
The unit class also keeps track of various things that were used to define it so as to generate a nice string
representation of it. See below.
When creating scaled units, you can use the following prefixes:

Factor Name Prefix
10^24 yotta Y
10^21 zetta Z
10^18 exa E
10^15 peta P
10^12 tera T
10^9 giga G
10^6 mega M
10^3 kilo k
10^2 hecto h
10^1 deka da
1
10^-1 deci d
10^-2 centi c
10^-3 milli m
10^-6 micro u (mu in SI)
10^-9 nano n
10^-12 pico p
10^-15 femto f
10^-18 atto a
10^-21 zepto z
10^-24 yocto y

6.7. Subpackages 757

Brian 2 Documentation, Release 2.5.1

Defining your own
It can be useful to define your own units for printing purposes. So for example, to define the newton
metre, you write

>>> from brian2 import *
>>> from brian2.units.allunits import newton
>>> Nm = newton * metre

You can then do

>>> (1*Nm).in_unit(Nm)
'1. N m'

New “compound units”, i.e. units that are composed of other units will be automatically registered and
from then on used for display. For example, imagine you define total conductance for a membrane, and
the total area of that membrane:

>>> conductance = 10.*nS
>>> area = 20000*um**2

If you now ask for the conductance density, you will get an “ugly” display in basic SI dimensions, as
Brian does not know of a corresponding unit:

>>> conductance/area
0.5 * metre ** -4 * kilogram ** -1 * second ** 3 * amp ** 2

By using an appropriate unit once, it will be registered and from then on used for display when appro-
priate:

>>> usiemens/cm**2
usiemens / (cmetre ** 2)
>>> conductance/area # same as before, but now Brian knows about uS/cm^2
50. * usiemens / (cmetre ** 2)

Note that user-defined units cannot override the standard units (volt, second, etc.) that are prede-
fined by Brian. For example, the unit Nm has the dimensions “length²·mass/time²”, and therefore the
same dimensions as the standard unit joule. The latter will be used for display purposes:

>>> 3*joule
3. * joule
>>> 3*Nm
3. * joule

758 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

Attributes

_dispname The display name of this unit.
_latexname A LaTeX expression for the name of this unit.
_name The full name of this unit.
dim The Dimensions of this unit
dispname The display name of the unit
iscompound Whether this unit is a combination of other units.
latexname The LaTeX name of the unit
name The name of the unit
scale The scale for this unit (as the integer exponent of 10),

i.e. a scale of 3 means 10^3, e.g.

Methods

create(dim, name, dispname[, latexname, scale]) Create a new named unit.
create_scaled_unit(baseunit, scalefactor) Create a scaled unit from a base unit.
set_display_name(name) Sets the display name for the unit.
set_latex_name(name) Sets the LaTeX name for the unit.
set_name(name) Sets the name for the unit.

Details

_dispname

The display name of this unit.
_latexname

A LaTeX expression for the name of this unit.
_name

The full name of this unit.
dim

The Dimensions of this unit
dispname

The display name of the unit
iscompound

Whether this unit is a combination of other units.
latexname

The LaTeX name of the unit
name

The name of the unit
scale

The scale for this unit (as the integer exponent of 10), i.e. a scale of 3 means 10^3, e.g. for a “k” prefix.

6.7. Subpackages 759

Brian 2 Documentation, Release 2.5.1

static create(dim, name, dispname, latexname=None, scale=0)
Create a new named unit.

Parameters dim : Dimension
The dimensions of the unit.

name : str
The full name of the unit, e.g. 'volt'

dispname : str
The display name, e.g. 'V'

latexname : str, optional
The name as a LaTeX expression (math mode is assumed, do not add $ signs or similar),
e.g. '\omega'. If no latexname is specified, dispname will be used.

scale : int, optional
The scale of this unit as an exponent of 10, e.g. -3 for a unit that is 1/1000 of the base
scale. Defaults to 0 (i.e. a base unit).

Returns u : Unit
The new unit.

static create_scaled_unit(baseunit, scalefactor)
Create a scaled unit from a base unit.

Parameters baseunit : Unit
The unit of which to create a scaled version, e.g. volt, amp.

scalefactor : str
The scaling factor, e.g. "m" for mvolt, mamp

Returns u : Unit
The new unit.

set_display_name(name)
Sets the display name for the unit.
Deprecated since version 2.1: Create a new unit with Unit.create instead.

set_latex_name(name)

Sets the LaTeX name for the unit.
Deprecated since version 2.1: Create a new unit with Unit.create instead.

set_name(name)

Sets the name for the unit.
Deprecated since version 2.1: Create a new unit with Unit.create instead.

UnitRegistry() Stores known units for printing in best units.

760 Chapter 6. brian2 package

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Brian 2 Documentation, Release 2.5.1

UnitRegistry class

(Shortest import: from brian2.units.fundamentalunits import UnitRegistry)

class brian2.units.fundamentalunits.UnitRegistry

Bases: object
Stores known units for printing in best units.
All a user needs to do is to use the register_new_unit() function.
Default registries:
The units module defines three registries, the standard units, user units, and additional units. Finding best units
is done by first checking standard, then user, then additional. New user units are added by using the regis-
ter_new_unit() function.
Standard units includes all the basic non-compound unit names built in to the module, including volt, amp, etc.
Additional units defines some compound units like newton metre (Nm) etc.

Methods

add(u) Add a unit to the registry
__getitem__(x) Returns the best unit for quantity x

Details

add(u)
Add a unit to the registry

__getitem__(x)
Returns the best unit for quantity x
The algorithm is to consider the value:
m=abs(x/u)
for all matching units u. We select the unit where this ratio is the closest to 10 (if it is an array with sev-
eral values, we select the unit where the deviations from that are the smallest. More precisely, the unit that
minimizes the sum of (log10(m)-1)**2 over all entries).

Functions

check_units(**au) Decorator to check units of arguments passed to a func-
tion

6.7. Subpackages 761

https://docs.python.org/3/library/functions.html#object

Brian 2 Documentation, Release 2.5.1

check_units function

(Shortest import: from brian2 import check_units)

brian2.units.fundamentalunits.check_units(**au)
Decorator to check units of arguments passed to a function

Raises

DimensionMismatchError In case the input arguments or the return value do not have the expected dimen-
sions.

TypeError If an input argument or return value was expected to be a boolean but is not.

Notes

This decorator will destroy the signature of the original function, and replace it with the signature (*args,
**kwds). Other decorators will do the same thing, and this decorator critically needs to know the signature of
the function it is acting on, so it is important that it is the first decorator to act on a function. It cannot be used in
combination with another decorator that also needs to know the signature of the function.
Note that the bool type is “strict”, i.e. it expects a proper boolean value and does not accept 0 or 1. This is not
the case the other way round, declaring an argument or return value as “1” does allow for a True or False value.

Examples

>>> from brian2.units import *
>>> @check_units(I=amp, R=ohm, wibble=metre, result=volt)
... def getvoltage(I, R, **k):
... return I*R

You don’t have to check the units of every variable in the function, and you can define what the units should be for
variables that aren’t explicitly named in the definition of the function. For example, the code above checks that the
variable wibble should be a length, so writing

>>> getvoltage(1*amp, 1*ohm, wibble=1)
Traceback (most recent call last):
...
DimensionMismatchError: Function "getvoltage" variable "wibble" has wrong␣
↪→dimensions, dimensions were (1) (m)

fails, but

>>> getvoltage(1*amp, 1*ohm, wibble=1*metre)
1. * volt

passes. String arguments or None are not checked

>>> getvoltage(1*amp, 1*ohm, wibble='hello')
1. * volt

By using the special name result, you can check the return value of the function.
You can also use 1 or bool as a special value to check for a unitless number or a boolean value, respectively:

762 Chapter 6. brian2 package

https://docs.python.org/3/library/exceptions.html#TypeError

Brian 2 Documentation, Release 2.5.1

>>> @check_units(value=1, absolute=bool, result=bool)
... def is_high(value, absolute=False):
... if absolute:
... return abs(value) >= 5
... else:
... return value >= 5

This will then again raise an error if the argument if not of the expected type:

>>> is_high(7)
True
>>> is_high(-7, True)
True
>>> is_high(3, 4)
Traceback (most recent call last):
...
TypeError: Function "is_high" expected a boolean value for argument "absolute"␣
↪→but got 4.

If the return unit depends on the unit of an argument, you can also pass a function that takes the units of all the
arguments as its inputs (in the order specified in the function header):

>>> @check_units(result=lambda d: d**2)
... def square(value):
... return value**2

If several arguments take arbitrary units but they have to be consistent among each other, you can state the name
of another argument as a string to state that it uses the same unit as that argument.

>>> @check_units(summand_1=None, summand_2='summand_1')
... def multiply_sum(multiplicand, summand_1, summand_2):
... "Calculates multiplicand*(summand_1 + summand_2)"
... return multiplicand*(summand_1 + summand_2)
>>> multiply_sum(3, 4*mV, 5*mV)
27. * mvolt
>>> multiply_sum(3*nA, 4*mV, 5*mV)
27. * pwatt
>>> multiply_sum(3*nA, 4*mV, 5*nA)
Traceback (most recent call last):
...
brian2.units.fundamentalunits.DimensionMismatchError: Function 'multiply_sum'␣
↪→expected the same arguments for arguments 'summand_1', 'summand_2', but␣
↪→argument 'summand_1' has unit V, while argument 'summand_2' has unit A.

fail_for_dimension_mismatch(obj1[, obj2,
...])

Compare the dimensions of two objects.

6.7. Subpackages 763

Brian 2 Documentation, Release 2.5.1

fail_for_dimension_mismatch function

(Shortest import: from brian2.units.fundamentalunits import
fail_for_dimension_mismatch)

brian2.units.fundamentalunits.fail_for_dimension_mismatch(obj1, obj2=None,
error_message=None,
**error_quantities)

Compare the dimensions of two objects.
Parameters obj1, obj2 : {array-like, Quantity}

The object to compare. If obj2 is None, assume it to be dimensionless
error_message : str, optional

An error message that is used in the DimensionMismatchError
error_quantities : dict mapping str to Quantity, optional

Quantities in this dictionary will be converted using the _short_str helper method
and inserted into the error_message (which should have placeholders with the cor-
responding names). The reason for doing this in a somewhat complicated way instead of
directly including all the details in error_messsage is that converting large quantity
arrays to strings can be rather costly and we don’t want to do it if no error occured.

Returns dim1, dim2 : Dimension, Dimension
The physical dimensions of the two arguments (so that later code does not need to get the
dimensions again).

Raises

DimensionMismatchError If the dimensions of obj1 and obj2 do not match (or, if obj2 is None, in
case obj1 is not dimensionsless).

Notes

Implements special checking for 0, treating it as having “any dimensions”.

get_dimensions(obj) Return the dimensions of any object that has them.

get_dimensions function

(Shortest import: from brian2 import get_dimensions)

brian2.units.fundamentalunits.get_dimensions(obj)
Return the dimensions of any object that has them.
Slightly more general than Quantity.dimensions because it will return DIMENSIONLESS if the object is
of number type but not a Quantity (e.g. a float or int).

Parameters obj : object
The object to check.

Returns dim : Dimension

764 Chapter 6. brian2 package

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object

Brian 2 Documentation, Release 2.5.1

The physical dimensions of the obj.

get_or_create_dimension(*args, **kwds) Create a new Dimension object or get a reference to an
existing one.

get_or_create_dimension function

(Shortest import: from brian2 import get_or_create_dimension)

brian2.units.fundamentalunits.get_or_create_dimension(*args, **kwds)
Create a new Dimension object or get a reference to an existing one. This function takes care of only creating new
objects if they were not created before and otherwise returning a reference to an existing object. This allows to
compare dimensions very efficiently using is.

Parameters args : sequence of float
A sequence with the indices of the 7 elements of an SI dimension.

kwds : keyword arguments
a sequence of keyword=value pairs where the keywords are the names of the SI di-
mensions, or the standard unit.

Notes

The 7 units are (in order):
Length, Mass, Time, Electric Current, Temperature, Quantity of Substance, Luminosity
and can be referred to either by these names or their SI unit names, e.g. length, metre, and m all refer to the same
thing here.

Examples

The following are all definitions of the dimensions of force

>>> from brian2 import *
>>> get_or_create_dimension(length=1, mass=1, time=-2)
metre * kilogram * second ** -2
>>> get_or_create_dimension(m=1, kg=1, s=-2)
metre * kilogram * second ** -2
>>> get_or_create_dimension([1, 1, -2, 0, 0, 0, 0])
metre * kilogram * second ** -2

get_unit(d) Find an unscaled unit (e.g.

6.7. Subpackages 765

https://docs.python.org/3/library/functions.html#float

Brian 2 Documentation, Release 2.5.1

get_unit function

(Shortest import: from brian2 import get_unit)

brian2.units.fundamentalunits.get_unit(d)
Find an unscaled unit (e.g. volt but not mvolt) for a Dimension.

Parameters d : Dimension
The dimension to find a unit for.

Returns u : Unit
A registered unscaled Unit for the dimensions d, or a new Unit if no unit was found.

get_unit_for_display(d) Return a string representation of an appropriate unscaled
unit or '1' for a dimensionless quantity.

get_unit_for_display function

(Shortest import: from brian2.units.fundamentalunits import get_unit_for_display)

brian2.units.fundamentalunits.get_unit_for_display(d)
Return a string representation of an appropriate unscaled unit or '1' for a dimensionless quantity.

Parameters d : Dimension or int
The dimension to find a unit for.

Returns s : str
A string representation of the respective unit or the string '1'.

have_same_dimensions(obj1, obj2) Test if two values have the same dimensions.

have_same_dimensions function

(Shortest import: from brian2 import have_same_dimensions)

brian2.units.fundamentalunits.have_same_dimensions(obj1, obj2)
Test if two values have the same dimensions.

Parameters obj1, obj2 : {Quantity, array-like, number}
The values of which to compare the dimensions.

Returns same : bool
True if obj1 and obj2 have the same dimensions.

in_best_unit(x[, precision]) Represent the value in the "best" unit.

766 Chapter 6. brian2 package

https://docs.python.org/3/library/functions.html#bool

Brian 2 Documentation, Release 2.5.1

in_best_unit function

(Shortest import: from brian2 import in_best_unit)

brian2.units.fundamentalunits.in_best_unit(x, precision=None)
Represent the value in the “best” unit.

Parameters x : {Quantity, array-like, number}
The value to display

precision : int, optional
The number of digits of precision (in the best unit, see Examples). If no value is given,
numpy’s get_printoptions() value is used.

Returns representation : str
A string representation of this Quantity.

See also:
Quantity.in_best_unit

Examples

>>> from brian2.units import *
>>> in_best_unit(0.00123456 * volt)
'1.23456 mV'
>>> in_best_unit(0.00123456 * volt, 2)
'1.23 mV'
>>> in_best_unit(0.123456)
'0.123456'
>>> in_best_unit(0.123456, 2)
'0.12'

in_unit(x, u[, precision]) Display a value in a certain unit with a given precision.

in_unit function

(Shortest import: from brian2 import in_unit)

brian2.units.fundamentalunits.in_unit(x, u, precision=None)
Display a value in a certain unit with a given precision.

Parameters x : {Quantity, array-like, number}
The value to display

u : {Quantity, Unit}
The unit to display the value x in.

precision : int, optional
The number of digits of precision (in the given unit, see Examples). If no value is given,
numpy’s get_printoptions() value is used.

Returns s : str

6.7. Subpackages 767

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Brian 2 Documentation, Release 2.5.1

A string representation of x in units of u.
See also:
Quantity.in_unit

Examples

>>> from brian2 import *
>>> in_unit(3 * volt, mvolt)
'3000. mV'
>>> in_unit(123123 * msecond, second, 2)
'123.12 s'
>>> in_unit(10 * uA/cm**2, nA/um**2)
'1.00000000e-04 nA/(um^2)'
>>> in_unit(10 * mV, ohm * amp)
'0.01 ohm A'
>>> in_unit(10 * nS, ohm)
...
Traceback (most recent call last):

...
DimensionMismatchError: Non-matching unit for method "in_unit",
dimensions were (m^-2 kg^-1 s^3 A^2) (m^2 kg s^-3 A^-2)

is_dimensionless(obj) Test if a value is dimensionless or not.

is_dimensionless function

(Shortest import: from brian2 import is_dimensionless)

brian2.units.fundamentalunits.is_dimensionless(obj)
Test if a value is dimensionless or not.

Parameters obj : object
The object to check.

Returns dimensionless : bool
True if obj is dimensionless.

is_scalar_type(obj) Tells you if the object is a 1d number type.

is_scalar_type function

(Shortest import: from brian2 import is_scalar_type)

brian2.units.fundamentalunits.is_scalar_type(obj)
Tells you if the object is a 1d number type.

Parameters obj : object
The object to check.

Returns scalar : bool

768 Chapter 6. brian2 package

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool

Brian 2 Documentation, Release 2.5.1

True if obj is a scalar that can be interpreted as a dimensionless Quantity.

quantity_with_dimensions(floatval, dims) Create a new Quantity with the given dimensions.

quantity_with_dimensions function

(Shortest import: from brian2.units.fundamentalunits import quantity_with_dimensions)

brian2.units.fundamentalunits.quantity_with_dimensions(floatval, dims)
Create a new Quantity with the given dimensions. Calls get_or_create_dimensions with the dimen-
sion tuple of the dims argument to make sure that unpickling (which calls this function) does not accidentally
create new Dimension objects which should instead refer to existing ones.

Parameters floatval : float
The floating point value of the quantity.

dims : Dimension
The physical dimensions of the quantity.

Returns q : Quantity
A quantity with the given dimensions.

See also:
get_or_create_dimensions

Examples

>>> from brian2 import *
>>> quantity_with_dimensions(0.001, volt.dim)
1. * mvolt

register_new_unit(u) Register a new unit for automatic displaying of quantities

register_new_unit function

(Shortest import: from brian2 import register_new_unit)

brian2.units.fundamentalunits.register_new_unit(u)

Register a new unit for automatic displaying of quantities
Parameters u : Unit

The unit that should be registered.

6.7. Subpackages 769

https://docs.python.org/3/library/functions.html#float

Brian 2 Documentation, Release 2.5.1

Examples

>>> from brian2 import *
>>> 2.0*farad/metre**2
2. * metre ** -4 * kilogram ** -1 * second ** 4 * amp ** 2
>>> register_new_unit(pfarad / mmetre**2)
>>> 2.0*farad/metre**2
2000000. * pfarad / (mmetre ** 2)

wrap_function_change_dimensions(func, ...) Returns a new function that wraps the given function
func so that it changes the dimensions of its input.

wrap_function_change_dimensions function

(Shortest import: from brian2.units.fundamentalunits import
wrap_function_change_dimensions)

brian2.units.fundamentalunits.wrap_function_change_dimensions(func,
change_dim_func)

Returns a new function that wraps the given function func so that it changes the dimensions of its input. Quantities
are transformed to unitless numpy arrays before calling func, the output is a quantity with the original dimensions
passed through the function change_dim_func. A typical use would be a sqrt function that uses lambda
d: d ** 0.5 as change_dim_func.
These transformations apply only to the very first argument, all other arguments are ignored/untouched.

wrap_function_dimensionless(func) Returns a new function that wraps the given function
func so that it raises a DimensionMismatchError if the
function is called on a quantity with dimensions (exclud-
ing dimensionless quantities).

wrap_function_dimensionless function

(Shortest import: from brian2.units.fundamentalunits import
wrap_function_dimensionless)

brian2.units.fundamentalunits.wrap_function_dimensionless(func)
Returns a new function that wraps the given function func so that it raises a DimensionMismatchError if the
function is called on a quantity with dimensions (excluding dimensionless quantities). Quantities are transformed
to unitless numpy arrays before calling func.
These checks/transformations apply only to the very first argument, all other arguments are ignored/untouched.

wrap_function_keep_dimensions(func) Returns a new function that wraps the given function
func so that it keeps the dimensions of its input.

770 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

wrap_function_keep_dimensions function

(Shortest import: from brian2.units.fundamentalunits import
wrap_function_keep_dimensions)

brian2.units.fundamentalunits.wrap_function_keep_dimensions(func)

Returns a new function that wraps the given function func so that it keeps the dimensions of its input. Quantities
are transformed to unitless numpy arrays before calling func, the output is a quantity with the original dimensions
re-attached.
These transformations apply only to the very first argument, all other arguments are ignored/untouched, allowing
to work functions like sum to work as expected with additional axis etc. arguments.

wrap_function_remove_dimensions(func) Returns a new function that wraps the given function
func so that it removes any dimensions from its input.

wrap_function_remove_dimensions function

(Shortest import: from brian2.units.fundamentalunits import
wrap_function_remove_dimensions)

brian2.units.fundamentalunits.wrap_function_remove_dimensions(func)
Returns a new function that wraps the given function func so that it removes any dimensions from its input. Useful
for functions that are returning integers (indices) or booleans, irrespective of the datatype contained in the array.
These transformations apply only to the very first argument, all other arguments are ignored/untouched.

Objects

DIMENSIONLESS The singleton object for dimensionless Dimensions.

DIMENSIONLESS object

(Shortest import: from brian2.units.fundamentalunits import DIMENSIONLESS)

brian2.units.fundamentalunits.DIMENSIONLESS = Dimension()

The singleton object for dimensionless Dimensions.

additional_unit_register UnitRegistry containing additional units (new-
ton*metre, farad / metre, ...)

additional_unit_register object

(Shortest import: from brian2.units.fundamentalunits import additional_unit_register)

brian2.units.fundamentalunits.additional_unit_register =
<brian2.units.fundamentalunits.UnitRegistry object>

UnitRegistry containing additional units (newton*metre, farad / metre, …)

standard_unit_register UnitRegistry containing all the standard units (me-
tre, kilogram, um2...)

6.7. Subpackages 771

Brian 2 Documentation, Release 2.5.1

standard_unit_register object

(Shortest import: from brian2.units.fundamentalunits import standard_unit_register)

brian2.units.fundamentalunits.standard_unit_register =
<brian2.units.fundamentalunits.UnitRegistry object>

UnitRegistry containing all the standard units (metre, kilogram, um2…)

user_unit_register UnitRegistry containing all units defined by the user

user_unit_register object

(Shortest import: from brian2.units.fundamentalunits import user_unit_register)

brian2.units.fundamentalunits.user_unit_register =
<brian2.units.fundamentalunits.UnitRegistry object>

UnitRegistry containing all units defined by the user

stdunits module

Optional short unit names
This module defines the following short unit names:
mV, mA, uA (micro_amp), nA, pA, mF, uF, nF, nS, mS, uS, ms, Hz, kHz, MHz, cm, cm2, cm3, mm, mm2, mm3, um,
um2, um3
Exported members: mV, mA, uA, nA, pA, pF, uF, nF, nS, uS, mS, ms, us, Hz, kHz, MHz, cm, cm2, cm3, mm, mm2,
mm3, um, um2, um3… (3 more members)

unitsafefunctions module

Unit-aware replacements for numpy functions.
Exported members: log(), log10(), exp(), expm1(), log1p(), exprel(), sin(), cos(), tan(), arc-
sin(), arccos(), arctan(), sinh(), cosh(), tanh(), arcsinh(), arccosh(), arctanh(), diag-
onal(), ravel(), trace(), dot(), where(), ones_like(), zeros_like()… (2 more members)
Functions

arange([start,] stop[, step,][, dtype]) Return evenly spaced values within a given interval.

arange function

(Shortest import: from brian2 import arange)

brian2.units.unitsafefunctions.arange([start], stop[, step], dtype=None)
Return evenly spaced values within a given interval.
Values are generated within the half-open interval [start, stop) (in other words, the interval including
start but excluding stop()). For integer arguments the function is equivalent to the Python built-in range
function, but returns an ndarray rather than a list.

772 Chapter 6. brian2 package

https://docs.python.org/3/library/stdtypes.html#range

Brian 2 Documentation, Release 2.5.1

When using a non-integer step, such as 0.1, the results will often not be consistent. It is better to use numpy.
linspace for these cases.

Parameters start : number, optional
Start of interval. The interval includes this value. The default start value is 0.

stop : number
End of interval. The interval does not include this value, except in some cases where
step() is not an integer and floating point round-off affects the length of out.

step : number, optional
Spacing between values. For any output out, this is the distance between two adjacent
values, out[i+1] - out[i]. The default step size is 1. If step() is specified as a
position argument, start must also be given.

dtype : dtype
The type of the output array. If dtype is not given, infer the data type from the other
input arguments.

Returns arange : ndarray
Array of evenly spaced values.
For floating point arguments, the length of the result is ceil((stop - start)/
step). Because of floating point overflow, this rule may result in the last element of
out being greater than stop().

See also:

numpy.linspace Evenly spaced numbers with careful handling of endpoints.
numpy.ogrid Arrays of evenly spaced numbers in N-dimensions.
numpy.mgrid Grid-shaped arrays of evenly spaced numbers in N-dimensions.

Examples

>>> np.arange(3)
array([0, 1, 2])
>>> np.arange(3.0)
array([0., 1., 2.])
>>> np.arange(3,7)
array([3, 4, 5, 6])
>>> np.arange(3,7,2)
array([3, 5])

arccos(x, /[, out, where, casting, order, ...]) Trigonometric inverse cosine, element-wise.

6.7. Subpackages 773

https://numpy.org/doc/stable/reference/generated/numpy.linspace.html#numpy.linspace
https://numpy.org/doc/stable/reference/generated/numpy.linspace.html#numpy.linspace
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://numpy.org/doc/stable/reference/generated/numpy.linspace.html#numpy.linspace
https://numpy.org/doc/stable/reference/generated/numpy.ogrid.html#numpy.ogrid
https://numpy.org/doc/stable/reference/generated/numpy.mgrid.html#numpy.mgrid

Brian 2 Documentation, Release 2.5.1

arccos function

(Shortest import: from brian2 import arccos)

brian2.units.unitsafefunctions.arccos(x, /, out=None, *, where=True, casting='same_kind',
order='K', dtype=None, subok=True[, signature, extobj])

Trigonometric inverse cosine, element-wise.
The inverse of cos() so that, if y = cos(x), then x = arccos(y).

Parameters x : array_like
x-coordinate on the unit circle. For real arguments, the domain is [-1, 1].

out : ndarray, None, or tuple of ndarray and None, optional
A location into which the result is stored. If provided, it must have a shape that the in-
puts broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple
(possible only as a keyword argument) must have length equal to the number of outputs.

where : array_like, optional
This condition is broadcast over the input. At locations where the condition is True, the
out array will be set to the ufunc result. Elsewhere, the out array will retain its origi-
nal value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs :
For other keyword-only arguments, see the ufunc docs.

Returns angle : ndarray
The angle of the ray intersecting the unit circle at the given x-coordinate in radians [0, pi].
This is a scalar if x is a scalar.

See also:
cos(), arctan(), arcsin(), emath.arccos

Notes

arccos() is a multivalued function: for each x there are infinitely many numbers z such that cos(z) = x.
The convention is to return the angle z whose real part lies in [0, pi].
For real-valued input data types, arccos() always returns real output. For each value that cannot be expressed
as a real number or infinity, it yields nan and sets the invalid floating point error flag.
For complex-valued input, arccos() is a complex analytic function that has branch cuts [-inf, -1] and
[1, inf] and is continuous from above on the former and from below on the latter.
The inverse cos() is also known as acos or cos^-1.

774 Chapter 6. brian2 package

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Brian 2 Documentation, Release 2.5.1

References

M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, 10th printing, 1964, pp. 79. http:
//www.math.sfu.ca/~cbm/aands/

Examples

We expect the arccos of 1 to be 0, and of -1 to be pi:

>>> np.arccos([1, -1])
array([0. , 3.14159265])

Plot arccos:

>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-1, 1, num=100)
>>> plt.plot(x, np.arccos(x))
>>> plt.axis('tight')
>>> plt.show()

arccosh(x, /[, out, where, casting, order, ...]) Inverse hyperbolic cosine, element-wise.

arccosh function

(Shortest import: from brian2 import arccosh)

brian2.units.unitsafefunctions.arccosh(x, /, out=None, *, where=True, casting='same_kind',
order='K', dtype=None, subok=True[, signature, extobj])

Inverse hyperbolic cosine, element-wise.
Parameters x : array_like

Input array.
out : ndarray, None, or tuple of ndarray and None, optional

A location into which the result is stored. If provided, it must have a shape that the in-
puts broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple
(possible only as a keyword argument) must have length equal to the number of outputs.

where : array_like, optional
This condition is broadcast over the input. At locations where the condition is True, the
out array will be set to the ufunc result. Elsewhere, the out array will retain its origi-
nal value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs :
For other keyword-only arguments, see the ufunc docs.

Returns arccosh : ndarray
Array of the same shape as x. This is a scalar if x is a scalar.

See also:
cosh(), arcsinh(), sinh(), arctanh(), tanh()

6.7. Subpackages 775

http://www.math.sfu.ca/~cbm/aands/
http://www.math.sfu.ca/~cbm/aands/
https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Brian 2 Documentation, Release 2.5.1

Notes

arccosh() is a multivalued function: for each x there are infinitely many numbers z such that cosh(z) = x.
The convention is to return the z whose imaginary part lies in [-pi, pi] and the real part in [0, inf].
For real-valued input data types, arccosh() always returns real output. For each value that cannot be expressed
as a real number or infinity, it yields nan and sets the invalid floating point error flag.
For complex-valued input, arccosh() is a complex analytical function that has a branch cut [-inf, 1] and
is continuous from above on it.

References

[R13], [R14]

Examples

>>> np.arccosh([np.e, 10.0])
array([1.65745445, 2.99322285])
>>> np.arccosh(1)
0.0

arcsin(x, /[, out, where, casting, order, ...]) Inverse sine, element-wise.

arcsin function

(Shortest import: from brian2 import arcsin)

brian2.units.unitsafefunctions.arcsin(x, /, out=None, *, where=True, casting='same_kind',
order='K', dtype=None, subok=True[, signature, extobj])

Inverse sine, element-wise.
Parameters x : array_like

y-coordinate on the unit circle.
out : ndarray, None, or tuple of ndarray and None, optional

A location into which the result is stored. If provided, it must have a shape that the in-
puts broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple
(possible only as a keyword argument) must have length equal to the number of outputs.

where : array_like, optional
This condition is broadcast over the input. At locations where the condition is True, the
out array will be set to the ufunc result. Elsewhere, the out array will retain its origi-
nal value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs :
For other keyword-only arguments, see the ufunc docs.

Returns angle : ndarray
The inverse sine of each element in x, in radians and in the closed interval [-pi/2,
pi/2]. This is a scalar if x is a scalar.

776 Chapter 6. brian2 package

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Brian 2 Documentation, Release 2.5.1

See also:
sin(), cos(), arccos(), tan(), arctan(), arctan2, emath.arcsin

Notes

arcsin() is a multivalued function: for each x there are infinitely many numbers z such that sin(z) = x. The
convention is to return the angle z whose real part lies in [-pi/2, pi/2].
For real-valued input data types, arcsin always returns real output. For each value that cannot be expressed as a
real number or infinity, it yields nan and sets the invalid floating point error flag.
For complex-valued input, arcsin() is a complex analytic function that has, by convention, the branch cuts [-inf,
-1] and [1, inf] and is continuous from above on the former and from below on the latter.
The inverse sine is also known as asin or sin^{-1}.

References

Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions, 10th printing, New York: Dover, 1964,
pp. 79ff. http://www.math.sfu.ca/~cbm/aands/

Examples

>>> np.arcsin(1) # pi/2
1.5707963267948966
>>> np.arcsin(-1) # -pi/2
-1.5707963267948966
>>> np.arcsin(0)
0.0

arcsinh(x, /[, out, where, casting, order, ...]) Inverse hyperbolic sine element-wise.

arcsinh function

(Shortest import: from brian2 import arcsinh)

brian2.units.unitsafefunctions.arcsinh(x, /, out=None, *, where=True, casting='same_kind',
order='K', dtype=None, subok=True[, signature, extobj])

Inverse hyperbolic sine element-wise.
Parameters x : array_like

Input array.
out : ndarray, None, or tuple of ndarray and None, optional

A location into which the result is stored. If provided, it must have a shape that the in-
puts broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple
(possible only as a keyword argument) must have length equal to the number of outputs.

where : array_like, optional

6.7. Subpackages 777

http://www.math.sfu.ca/~cbm/aands/

Brian 2 Documentation, Release 2.5.1

This condition is broadcast over the input. At locations where the condition is True, the
out array will be set to the ufunc result. Elsewhere, the out array will retain its origi-
nal value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs :
For other keyword-only arguments, see the ufunc docs.

Returns out : ndarray or scalar
Array of the same shape as x. This is a scalar if x is a scalar.

Notes

arcsinh() is a multivalued function: for each x there are infinitely many numbers z such that sinh(z) = x.
The convention is to return the z whose imaginary part lies in [-pi/2, pi/2].
For real-valued input data types, arcsinh() always returns real output. For each value that cannot be expressed
as a real number or infinity, it returns nan and sets the invalid floating point error flag.
For complex-valued input, arccos() is a complex analytical function that has branch cuts [1j, infj] and
[-1j, -infj] and is continuous from the right on the former and from the left on the latter.
The inverse hyperbolic sine is also known as asinh or sinh^-1.

References

[R15], [R16]

Examples

>>> np.arcsinh(np.array([np.e, 10.0]))
array([1.72538256, 2.99822295])

arctan(x, /[, out, where, casting, order, ...]) Trigonometric inverse tangent, element-wise.

arctan function

(Shortest import: from brian2 import arctan)

brian2.units.unitsafefunctions.arctan(x, /, out=None, *, where=True, casting='same_kind',
order='K', dtype=None, subok=True[, signature, extobj])

Trigonometric inverse tangent, element-wise.
The inverse of tan, so that if y = tan(x) then x = arctan(y).

Parameters x : array_like
out : ndarray, None, or tuple of ndarray and None, optional

A location into which the result is stored. If provided, it must have a shape that the in-
puts broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple
(possible only as a keyword argument) must have length equal to the number of outputs.

where : array_like, optional

778 Chapter 6. brian2 package

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Brian 2 Documentation, Release 2.5.1

This condition is broadcast over the input. At locations where the condition is True, the
out array will be set to the ufunc result. Elsewhere, the out array will retain its origi-
nal value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs :
For other keyword-only arguments, see the ufunc docs.

Returns out : ndarray or scalar
Out has the same shape as x. Its real part is in [-pi/2, pi/2] (arctan(+/-inf)
returns +/-pi/2). This is a scalar if x is a scalar.

See also:

arctan2 The “four quadrant” arctan of the angle formed by (x, y) and the positive x-axis.
angle() Argument of complex values.

Notes

arctan() is a multi-valued function: for each x there are infinitely many numbers z such that tan(z) = x. The
convention is to return the angle z whose real part lies in [-pi/2, pi/2].
For real-valued input data types, arctan() always returns real output. For each value that cannot be expressed
as a real number or infinity, it yields nan and sets the invalid floating point error flag.
For complex-valued input, arctan() is a complex analytic function that has [1j, infj] and [-1j, -infj]
as branch cuts, and is continuous from the left on the former and from the right on the latter.
The inverse tangent is also known as atan or tan^{-1}.

References

Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions, 10th printing, New York: Dover, 1964,
pp. 79. http://www.math.sfu.ca/~cbm/aands/

Examples

We expect the arctan of 0 to be 0, and of 1 to be pi/4:

>>> np.arctan([0, 1])
array([0. , 0.78539816])

>>> np.pi/4
0.78539816339744828

Plot arctan:

>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-10, 10)
>>> plt.plot(x, np.arctan(x))
>>> plt.axis('tight')
>>> plt.show()

6.7. Subpackages 779

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs
http://www.math.sfu.ca/~cbm/aands/

Brian 2 Documentation, Release 2.5.1

arctanh(x, /[, out, where, casting, order, ...]) Inverse hyperbolic tangent element-wise.

arctanh function

(Shortest import: from brian2 import arctanh)

brian2.units.unitsafefunctions.arctanh(x, /, out=None, *, where=True, casting='same_kind',
order='K', dtype=None, subok=True[, signature, extobj])

Inverse hyperbolic tangent element-wise.
Parameters x : array_like

Input array.
out : ndarray, None, or tuple of ndarray and None, optional

A location into which the result is stored. If provided, it must have a shape that the in-
puts broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple
(possible only as a keyword argument) must have length equal to the number of outputs.

where : array_like, optional
This condition is broadcast over the input. At locations where the condition is True, the
out array will be set to the ufunc result. Elsewhere, the out array will retain its origi-
nal value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs :
For other keyword-only arguments, see the ufunc docs.

Returns out : ndarray or scalar
Array of the same shape as x. This is a scalar if x is a scalar.

See also:
emath.arctanh

Notes

arctanh() is a multivalued function: for each x there are infinitely many numbers z such that tanh(z) = x.
The convention is to return the z whose imaginary part lies in [-pi/2, pi/2].
For real-valued input data types, arctanh() always returns real output. For each value that cannot be expressed
as a real number or infinity, it yields nan and sets the invalid floating point error flag.
For complex-valued input, arctanh() is a complex analytical function that has branch cuts [-1, -inf] and
[1, inf] and is continuous from above on the former and from below on the latter.
The inverse hyperbolic tangent is also known as atanh or tanh^-1.

780 Chapter 6. brian2 package

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Brian 2 Documentation, Release 2.5.1

References

[R17], [R18]

Examples

>>> np.arctanh([0, -0.5])
array([0. , -0.54930614])

cos(x, /[, out, where, casting, order, ...]) Cosine element-wise.

cos function

(Shortest import: from brian2 import cos)

brian2.units.unitsafefunctions.cos(x, /, out=None, *, where=True, casting='same_kind', order='K',
dtype=None, subok=True[, signature, extobj])

Cosine element-wise.
Parameters x : array_like

Input array in radians.
out : ndarray, None, or tuple of ndarray and None, optional

A location into which the result is stored. If provided, it must have a shape that the in-
puts broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple
(possible only as a keyword argument) must have length equal to the number of outputs.

where : array_like, optional
This condition is broadcast over the input. At locations where the condition is True, the
out array will be set to the ufunc result. Elsewhere, the out array will retain its origi-
nal value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs :
For other keyword-only arguments, see the ufunc docs.

Returns y : ndarray
The corresponding cosine values. This is a scalar if x is a scalar.

Notes

If out is provided, the function writes the result into it, and returns a reference to out. (See Examples)

6.7. Subpackages 781

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Brian 2 Documentation, Release 2.5.1

References

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972.

Examples

>>> np.cos(np.array([0, np.pi/2, np.pi]))
array([1.00000000e+00, 6.12303177e-17, -1.00000000e+00])
>>>
>>> # Example of providing the optional output parameter
>>> out1 = np.array([0], dtype='d')
>>> out2 = np.cos([0.1], out1)
>>> out2 is out1
True
>>>
>>> # Example of ValueError due to provision of shape mis-matched `out`
>>> np.cos(np.zeros((3,3)),np.zeros((2,2)))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: operands could not be broadcast together with shapes (3,3) (2,2)

cosh(x, /[, out, where, casting, order, ...]) Hyperbolic cosine, element-wise.

cosh function

(Shortest import: from brian2 import cosh)

brian2.units.unitsafefunctions.cosh(x, /, out=None, *, where=True, casting='same_kind', order='K',
dtype=None, subok=True[, signature, extobj])

Hyperbolic cosine, element-wise.
Equivalent to 1/2 * (np.exp(x) + np.exp(-x)) and np.cos(1j*x).

Parameters x : array_like
Input array.

out : ndarray, None, or tuple of ndarray and None, optional
A location into which the result is stored. If provided, it must have a shape that the in-
puts broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple
(possible only as a keyword argument) must have length equal to the number of outputs.

where : array_like, optional
This condition is broadcast over the input. At locations where the condition is True, the
out array will be set to the ufunc result. Elsewhere, the out array will retain its origi-
nal value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs :
For other keyword-only arguments, see the ufunc docs.

Returns out : ndarray or scalar
Output array of same shape as x. This is a scalar if x is a scalar.

782 Chapter 6. brian2 package

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Brian 2 Documentation, Release 2.5.1

Examples

>>> np.cosh(0)
1.0

The hyperbolic cosine describes the shape of a hanging cable:

>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-4, 4, 1000)
>>> plt.plot(x, np.cosh(x))
>>> plt.show()

diagonal(a[, offset, axis1, axis2]) Return specified diagonals.

diagonal function

(Shortest import: from brian2 import diagonal)

brian2.units.unitsafefunctions.diagonal(a, offset=0, axis1=0, axis2=1)
Return specified diagonals.
If a is 2-D, returns the diagonal of a with the given offset, i.e., the collection of elements of the form a[i,
i+offset]. If a has more than two dimensions, then the axes specified by axis1 and axis2 are used to
determine the 2-D sub-array whose diagonal is returned. The shape of the resulting array can be determined by
removing axis1 and axis2 and appending an index to the right equal to the size of the resulting diagonals.
In versions of NumPy prior to 1.7, this function always returned a new, independent array containing a copy of the
values in the diagonal.
In NumPy 1.7 and 1.8, it continues to return a copy of the diagonal, but depending on this fact is deprecated.
Writing to the resulting array continues to work as it used to, but a FutureWarning is issued.
Starting in NumPy 1.9 it returns a read-only view on the original array. Attempting to write to the resulting array
will produce an error.
In some future release, it will return a read/write view and writing to the returned array will alter your original
array. The returned array will have the same type as the input array.
If you don’t write to the array returned by this function, then you can just ignore all of the above.
If you depend on the current behavior, then we suggest copying the returned array explicitly, i.e., use np.
diagonal(a).copy() instead of just np.diagonal(a). This will work with both past and future versions
of NumPy.

Parameters a : array_like
Array from which the diagonals are taken.

offset : int, optional
Offset of the diagonal from the main diagonal. Can be positive or negative. Defaults to
main diagonal (0).

axis1 : int, optional
Axis to be used as the first axis of the 2-D sub-arrays from which the diagonals should be
taken. Defaults to first axis (0).

axis2 : int, optional

6.7. Subpackages 783

Brian 2 Documentation, Release 2.5.1

Axis to be used as the second axis of the 2-D sub-arrays from which the diagonals should
be taken. Defaults to second axis (1).

Returns array_of_diagonals : ndarray
If a is 2-D, then a 1-D array containing the diagonal and of the same type as a is returned
unless a is a matrix, in which case a 1-D array rather than a (2-D) matrix is returned
in order to maintain backward compatibility.
If a.ndim > 2, then the dimensions specified by axis1 and axis2 are removed, and
a new axis inserted at the end corresponding to the diagonal.

Raises

ValueError If the dimension of a is less than 2.

See also:

diag() MATLAB work-a-like for 1-D and 2-D arrays.
diagflat() Create diagonal arrays.
trace() Sum along diagonals.

Examples

>>> a = np.arange(4).reshape(2,2)
>>> a
array([[0, 1],

[2, 3]])
>>> a.diagonal()
array([0, 3])
>>> a.diagonal(1)
array([1])

A 3-D example:

>>> a = np.arange(8).reshape(2,2,2); a
array([[[0, 1],

[2, 3]],
[[4, 5],
[6, 7]]])

>>> a.diagonal(0, # Main diagonals of two arrays created by skipping
... 0, # across the outer(left)-most axis last and
... 1) # the "middle" (row) axis first.
array([[0, 6],

[1, 7]])

The sub-arrays whose main diagonals we just obtained; note that each corresponds to fixing the right-most (column)
axis, and that the diagonals are “packed” in rows.

>>> a[:,:,0] # main diagonal is [0 6]
array([[0, 2],

[4, 6]])
>>> a[:,:,1] # main diagonal is [1 7]
array([[1, 3],

[5, 7]])

784 Chapter 6. brian2 package

https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix
https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix
https://docs.python.org/3/library/exceptions.html#ValueError

Brian 2 Documentation, Release 2.5.1

The anti-diagonal can be obtained by reversing the order of elements using either numpy.flipud or numpy.
fliplr.

>>> a = np.arange(9).reshape(3, 3)
>>> a
array([[0, 1, 2],

[3, 4, 5],
[6, 7, 8]])

>>> np.fliplr(a).diagonal() # Horizontal flip
array([2, 4, 6])
>>> np.flipud(a).diagonal() # Vertical flip
array([6, 4, 2])

Note that the order in which the diagonal is retrieved varies depending on the flip function.

dot(a, b[, out]) Dot product of two arrays.

dot function

(Shortest import: from brian2 import dot)

brian2.units.unitsafefunctions.dot(a, b, out=None)
Dot product of two arrays. Specifically,

• If both a and b are 1-D arrays, it is inner product of vectors (without complex conjugation).
• If both a and b are 2-D arrays, it is matrix multiplication, but using matmul() or a @ b is preferred.
• If either a or b is 0-D (scalar), it is equivalent to multiply() and using numpy.multiply(a, b) or
a * b is preferred.

• If a is an N-D array and b is a 1-D array, it is a sum product over the last axis of a and b.
• If a is an N-D array and b is an M-D array (where M>=2), it is a sum product over the last axis of a and the
second-to-last axis of b:

dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m])

Parameters a : array_like
First argument.

b : array_like
Second argument.

out : ndarray, optional
Output argument. This must have the exact kind that would be returned if it was not used.
In particular, it must have the right type, must be C-contiguous, and its dtype must be the
dtype that would be returned for dot(a,b). This is a performance feature. Therefore,
if these conditions are not met, an exception is raised, instead of attempting to be flexible.

Returns output : ndarray
Returns the dot product of a and b. If a and b are both scalars or both 1-D arrays then a
scalar is returned; otherwise an array is returned. If out is given, then it is returned.

6.7. Subpackages 785

https://numpy.org/doc/stable/reference/generated/numpy.flipud.html#numpy.flipud
https://numpy.org/doc/stable/reference/generated/numpy.fliplr.html#numpy.fliplr
https://numpy.org/doc/stable/reference/generated/numpy.fliplr.html#numpy.fliplr

Brian 2 Documentation, Release 2.5.1

Raises

ValueError If the last dimension of a is not the same size as the second-to-last dimension of b.

See also:

vdot() Complex-conjugating dot product.
tensordot() Sum products over arbitrary axes.
einsum() Einstein summation convention.
matmul ‘@’ operator as method with out parameter.

Examples

>>> np.dot(3, 4)
12

Neither argument is complex-conjugated:

>>> np.dot([2j, 3j], [2j, 3j])
(-13+0j)

For 2-D arrays it is the matrix product:

>>> a = [[1, 0], [0, 1]]
>>> b = [[4, 1], [2, 2]]
>>> np.dot(a, b)
array([[4, 1],

[2, 2]])

>>> a = np.arange(3*4*5*6).reshape((3,4,5,6))
>>> b = np.arange(3*4*5*6)[::-1].reshape((5,4,6,3))
>>> np.dot(a, b)[2,3,2,1,2,2]
499128
>>> sum(a[2,3,2,:] * b[1,2,:,2])
499128

exp(x, /[, out, where, casting, order, ...]) Calculate the exponential of all elements in the input ar-
ray.

exp function

(Shortest import: from brian2 import exp)

brian2.units.unitsafefunctions.exp(x, /, out=None, *, where=True, casting='same_kind', order='K',
dtype=None, subok=True[, signature, extobj])

Calculate the exponential of all elements in the input array.
Parameters x : array_like

Input values.
out : ndarray, None, or tuple of ndarray and None, optional

786 Chapter 6. brian2 package

https://docs.python.org/3/library/exceptions.html#ValueError

Brian 2 Documentation, Release 2.5.1

A location into which the result is stored. If provided, it must have a shape that the in-
puts broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple
(possible only as a keyword argument) must have length equal to the number of outputs.

where : array_like, optional
This condition is broadcast over the input. At locations where the condition is True, the
out array will be set to the ufunc result. Elsewhere, the out array will retain its origi-
nal value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs :
For other keyword-only arguments, see the ufunc docs.

Returns out : ndarray or scalar
Output array, element-wise exponential of x. This is a scalar if x is a scalar.

See also:

expm1() Calculate exp(x) - 1 for all elements in the array.
exp2 Calculate 2**x for all elements in the array.

Notes

The irrational number e is also known as Euler’s number. It is approximately 2.718281, and is the base of the
natural logarithm, ln (this means that, if x = ln y = loge y, then ex = y. For real input, exp(x) is always
positive.
For complex arguments, x = a + ib, we can write ex = eaeib. The first term, ea, is already known (it is the real
argument, described above). The second term, eib, is cos b + i sin b, a function with magnitude 1 and a periodic
phase.

References

[R19], [R20]

Examples

Plot the magnitude and phase of exp(x) in the complex plane:

>>> import matplotlib.pyplot as plt

>>> x = np.linspace(-2*np.pi, 2*np.pi, 100)
>>> xx = x + 1j * x[:, np.newaxis] # a + ib over complex plane
>>> out = np.exp(xx)

>>> plt.subplot(121)
>>> plt.imshow(np.abs(out),
... extent=[-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi], cmap='gray')
>>> plt.title('Magnitude of exp(x)')

6.7. Subpackages 787

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Brian 2 Documentation, Release 2.5.1

>>> plt.subplot(122)
>>> plt.imshow(np.angle(out),
... extent=[-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi], cmap='hsv')
>>> plt.title('Phase (angle) of exp(x)')
>>> plt.show()

linspace(start, stop[, num, endpoint, ...]) Return evenly spaced numbers over a specified interval.

linspace function

(Shortest import: from brian2 import linspace)

brian2.units.unitsafefunctions.linspace(start, stop, num=50, endpoint=True, retstep=False,
dtype=None, axis=0)

Return evenly spaced numbers over a specified interval.
Returns num evenly spaced samples, calculated over the interval [start, stop()].
The endpoint of the interval can optionally be excluded.
Changed in version 1.16.0: Non-scalar start and stop() are now supported.

Parameters start : array_like
The starting value of the sequence.

stop : array_like
The end value of the sequence, unlessendpoint is set to False. In that case, the sequence
consists of all but the last ofnum + 1 evenly spaced samples, so thatstop() is excluded.
Note that the step size changes when endpoint is False.

num : int, optional
Number of samples to generate. Default is 50. Must be non-negative.

endpoint : bool, optional
If True, stop() is the last sample. Otherwise, it is not included. Default is True.

retstep : bool, optional
If True, return (samples, step()), where step() is the spacing between samples.

dtype : dtype, optional
The type of the output array. If dtype is not given, infer the data type from the other
input arguments.
New in version 1.9.0.

axis : int, optional
The axis in the result to store the samples. Relevant only if start or stop are array-like. By
default (0), the samples will be along a new axis inserted at the beginning. Use -1 to get
an axis at the end.
New in version 1.16.0.

Returns samples : ndarray

788 Chapter 6. brian2 package

https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype

Brian 2 Documentation, Release 2.5.1

There are num equally spaced samples in the closed interval [start, stop] or the
half-open interval [start, stop) (depending on whether endpoint is True or
False).

step : float, optional
Only returned if retstep is True
Size of spacing between samples.

See also:

arange() Similar to linspace(), but uses a step size (instead of the number of samples).
geomspace() Similar to linspace(), but with numbers spaced evenly on a log scale (a geometric progres-

sion).
logspace() Similar to geomspace(), but with the end points specified as logarithms.

Examples

>>> np.linspace(2.0, 3.0, num=5)
array([2. , 2.25, 2.5 , 2.75, 3.])
>>> np.linspace(2.0, 3.0, num=5, endpoint=False)
array([2. , 2.2, 2.4, 2.6, 2.8])
>>> np.linspace(2.0, 3.0, num=5, retstep=True)
(array([2. , 2.25, 2.5 , 2.75, 3.]), 0.25)

Graphical illustration:

>>> import matplotlib.pyplot as plt
>>> N = 8
>>> y = np.zeros(N)
>>> x1 = np.linspace(0, 10, N, endpoint=True)
>>> x2 = np.linspace(0, 10, N, endpoint=False)
>>> plt.plot(x1, y, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.plot(x2, y + 0.5, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.ylim([-0.5, 1])
(-0.5, 1)
>>> plt.show()

log(x, /[, out, where, casting, order, ...]) Natural logarithm, element-wise.

log function

(Shortest import: from brian2 import log)

brian2.units.unitsafefunctions.log(x, /, out=None, *, where=True, casting='same_kind', order='K',
dtype=None, subok=True[, signature, extobj])

Natural logarithm, element-wise.
The natural logarithm log() is the inverse of the exponential function, so that log(exp(x)) = x. The natural
logarithm is logarithm in base e.

Parameters x : array_like

6.7. Subpackages 789

Brian 2 Documentation, Release 2.5.1

Input value.
out : ndarray, None, or tuple of ndarray and None, optional

A location into which the result is stored. If provided, it must have a shape that the in-
puts broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple
(possible only as a keyword argument) must have length equal to the number of outputs.

where : array_like, optional
This condition is broadcast over the input. At locations where the condition is True, the
out array will be set to the ufunc result. Elsewhere, the out array will retain its origi-
nal value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs :
For other keyword-only arguments, see the ufunc docs.

Returns y : ndarray
The natural logarithm of x, element-wise. This is a scalar if x is a scalar.

See also:
log10(), log2, log1p(), emath.log

Notes

Logarithm is a multivalued function: for each x there is an infinite number of z such that exp(z) = x. The
convention is to return the z whose imaginary part lies in [-pi, pi].
For real-valued input data types, log() always returns real output. For each value that cannot be expressed as a
real number or infinity, it yields nan and sets the invalid floating point error flag.
For complex-valued input, log() is a complex analytical function that has a branch cut [-inf, 0] and is
continuous from above on it. log() handles the floating-point negative zero as an infinitesimal negative number,
conforming to the C99 standard.

References

[R21], [R22]

Examples

>>> np.log([1, np.e, np.e**2, 0])
array([0., 1., 2., -Inf])

ravel(a[, order]) Return a contiguous flattened array.

790 Chapter 6. brian2 package

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Brian 2 Documentation, Release 2.5.1

ravel function

(Shortest import: from brian2 import ravel)

brian2.units.unitsafefunctions.ravel(a, order='C')
Return a contiguous flattened array.
A 1-D array, containing the elements of the input, is returned. A copy is made only if needed.
As of NumPy 1.10, the returned array will have the same type as the input array. (for example, a masked array
will be returned for a masked array input)

Parameters a : array_like
Input array. The elements in a are read in the order specified by order, and packed as a
1-D array.

order : {‘C’,’F’, ‘A’, ‘K’}, optional
The elements of a are read using this index order. ‘C’ means to index the elements in
row-major, C-style order, with the last axis index changing fastest, back to the first axis
index changing slowest. ‘F’ means to index the elements in column-major, Fortran-style
order, with the first index changing fastest, and the last index changing slowest. Note that
the ‘C’ and ‘F’ options take no account of the memory layout of the underlying array, and
only refer to the order of axis indexing. ‘A’ means to read the elements in Fortran-like
index order if a is Fortran contiguous in memory, C-like order otherwise. ‘K’ means to
read the elements in the order they occur in memory, except for reversing the data when
strides are negative. By default, ‘C’ index order is used.

Returns y : array_like
y is an array of the same subtype as a, with shape (a.size,). Note that matrices are
special cased for backward compatibility, if a is a matrix, then y is a 1-D ndarray.

See also:

ndarray.flat 1-D iterator over an array.
ndarray.flatten 1-D array copy of the elements of an array in row-major order.
ndarray.reshape Change the shape of an array without changing its data.

Notes

In row-major, C-style order, in two dimensions, the row index varies the slowest, and the column index the quickest.
This can be generalized to multiple dimensions, where row-major order implies that the index along the first axis
varies slowest, and the index along the last quickest. The opposite holds for column-major, Fortran-style index
ordering.
When a view is desired in as many cases as possible, arr.reshape(-1) may be preferable.

6.7. Subpackages 791

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flat.html#numpy.ndarray.flat
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flatten.html#numpy.ndarray.flatten
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.reshape.html#numpy.ndarray.reshape

Brian 2 Documentation, Release 2.5.1

Examples

It is equivalent to reshape(-1, order=order).

>>> x = np.array([[1, 2, 3], [4, 5, 6]])
>>> np.ravel(x)
array([1, 2, 3, 4, 5, 6])

>>> x.reshape(-1)
array([1, 2, 3, 4, 5, 6])

>>> np.ravel(x, order='F')
array([1, 4, 2, 5, 3, 6])

When order is ‘A’, it will preserve the array’s ‘C’ or ‘F’ ordering:

>>> np.ravel(x.T)
array([1, 4, 2, 5, 3, 6])
>>> np.ravel(x.T, order='A')
array([1, 2, 3, 4, 5, 6])

When order is ‘K’, it will preserve orderings that are neither ‘C’ nor ‘F’, but won’t reverse axes:

>>> a = np.arange(3)[::-1]; a
array([2, 1, 0])
>>> a.ravel(order='C')
array([2, 1, 0])
>>> a.ravel(order='K')
array([2, 1, 0])

>>> a = np.arange(12).reshape(2,3,2).swapaxes(1,2); a
array([[[0, 2, 4],

[1, 3, 5]],
[[6, 8, 10],
[7, 9, 11]]])

>>> a.ravel(order='C')
array([0, 2, 4, 1, 3, 5, 6, 8, 10, 7, 9, 11])
>>> a.ravel(order='K')
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])

sin(x, /[, out, where, casting, order, ...]) Trigonometric sine, element-wise.

sin function

(Shortest import: from brian2 import sin)

brian2.units.unitsafefunctions.sin(x, /, out=None, *, where=True, casting='same_kind', order='K',
dtype=None, subok=True[, signature, extobj])

Trigonometric sine, element-wise.
Parameters x : array_like

Angle, in radians (2π rad equals 360 degrees).
out : ndarray, None, or tuple of ndarray and None, optional

792 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

A location into which the result is stored. If provided, it must have a shape that the in-
puts broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple
(possible only as a keyword argument) must have length equal to the number of outputs.

where : array_like, optional
This condition is broadcast over the input. At locations where the condition is True, the
out array will be set to the ufunc result. Elsewhere, the out array will retain its origi-
nal value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs :
For other keyword-only arguments, see the ufunc docs.

Returns y : array_like
The sine of each element of x. This is a scalar if x is a scalar.

See also:
arcsin(), sinh(), cos()

Notes

The sine is one of the fundamental functions of trigonometry (the mathematical study of triangles). Consider a
circle of radius 1 centered on the origin. A ray comes in from the +x axis, makes an angle at the origin (measured
counter-clockwise from that axis), and departs from the origin. The y coordinate of the outgoing ray’s intersection
with the unit circle is the sine of that angle. It ranges from -1 for x = 3π/2 to +1 for π/2. The function has zeroes
where the angle is a multiple of π. Sines of angles between π and 2π are negative. The numerous properties of the
sine and related functions are included in any standard trigonometry text.

Examples

Print sine of one angle:

>>> np.sin(np.pi/2.)
1.0

Print sines of an array of angles given in degrees:

>>> np.sin(np.array((0., 30., 45., 60., 90.)) * np.pi / 180.)
array([0. , 0.5 , 0.70710678, 0.8660254 , 1.])

Plot the sine function:

>>> import matplotlib.pylab as plt
>>> x = np.linspace(-np.pi, np.pi, 201)
>>> plt.plot(x, np.sin(x))
>>> plt.xlabel('Angle [rad]')
>>> plt.ylabel('sin(x)')
>>> plt.axis('tight')
>>> plt.show()

sinh(x, /[, out, where, casting, order, ...]) Hyperbolic sine, element-wise.

6.7. Subpackages 793

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Brian 2 Documentation, Release 2.5.1

sinh function

(Shortest import: from brian2 import sinh)

brian2.units.unitsafefunctions.sinh(x, /, out=None, *, where=True, casting='same_kind', order='K',
dtype=None, subok=True[, signature, extobj])

Hyperbolic sine, element-wise.
Equivalent to 1/2 * (np.exp(x) - np.exp(-x)) or -1j * np.sin(1j*x).

Parameters x : array_like
Input array.

out : ndarray, None, or tuple of ndarray and None, optional
A location into which the result is stored. If provided, it must have a shape that the in-
puts broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple
(possible only as a keyword argument) must have length equal to the number of outputs.

where : array_like, optional
This condition is broadcast over the input. At locations where the condition is True, the
out array will be set to the ufunc result. Elsewhere, the out array will retain its origi-
nal value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs :
For other keyword-only arguments, see the ufunc docs.

Returns y : ndarray
The corresponding hyperbolic sine values. This is a scalar if x is a scalar.

Notes

If out is provided, the function writes the result into it, and returns a reference to out. (See Examples)

References

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972, pg. 83.

Examples

>>> np.sinh(0)
0.0
>>> np.sinh(np.pi*1j/2)
1j
>>> np.sinh(np.pi*1j) # (exact value is 0)
1.2246063538223773e-016j
>>> # Discrepancy due to vagaries of floating point arithmetic.

>>> # Example of providing the optional output parameter
>>> out1 = np.array([0], dtype='d')
>>> out2 = np.sinh([0.1], out1)

(continues on next page)

794 Chapter 6. brian2 package

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
>>> out2 is out1
True

>>> # Example of ValueError due to provision of shape mis-matched `out`
>>> np.sinh(np.zeros((3,3)),np.zeros((2,2)))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: operands could not be broadcast together with shapes (3,3) (2,2)

tan(x, /[, out, where, casting, order, ...]) Compute tangent element-wise.

tan function

(Shortest import: from brian2 import tan)

brian2.units.unitsafefunctions.tan(x, /, out=None, *, where=True, casting='same_kind', order='K',
dtype=None, subok=True[, signature, extobj])

Compute tangent element-wise.
Equivalent to np.sin(x)/np.cos(x) element-wise.

Parameters x : array_like
Input array.

out : ndarray, None, or tuple of ndarray and None, optional
A location into which the result is stored. If provided, it must have a shape that the in-
puts broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple
(possible only as a keyword argument) must have length equal to the number of outputs.

where : array_like, optional
This condition is broadcast over the input. At locations where the condition is True, the
out array will be set to the ufunc result. Elsewhere, the out array will retain its origi-
nal value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs :
For other keyword-only arguments, see the ufunc docs.

Returns y : ndarray
The corresponding tangent values. This is a scalar if x is a scalar.

Notes

If out is provided, the function writes the result into it, and returns a reference to out. (See Examples)

6.7. Subpackages 795

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Brian 2 Documentation, Release 2.5.1

References

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972.

Examples

>>> from math import pi
>>> np.tan(np.array([-pi,pi/2,pi]))
array([1.22460635e-16, 1.63317787e+16, -1.22460635e-16])
>>>
>>> # Example of providing the optional output parameter illustrating
>>> # that what is returned is a reference to said parameter
>>> out1 = np.array([0], dtype='d')
>>> out2 = np.cos([0.1], out1)
>>> out2 is out1
True
>>>
>>> # Example of ValueError due to provision of shape mis-matched `out`
>>> np.cos(np.zeros((3,3)),np.zeros((2,2)))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: operands could not be broadcast together with shapes (3,3) (2,2)

tanh(x, /[, out, where, casting, order, ...]) Compute hyperbolic tangent element-wise.

tanh function

(Shortest import: from brian2 import tanh)

brian2.units.unitsafefunctions.tanh(x, /, out=None, *, where=True, casting='same_kind', order='K',
dtype=None, subok=True[, signature, extobj])

Compute hyperbolic tangent element-wise.
Equivalent to np.sinh(x)/np.cosh(x) or -1j * np.tan(1j*x).

Parameters x : array_like
Input array.

out : ndarray, None, or tuple of ndarray and None, optional
A location into which the result is stored. If provided, it must have a shape that the in-
puts broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple
(possible only as a keyword argument) must have length equal to the number of outputs.

where : array_like, optional
This condition is broadcast over the input. At locations where the condition is True, the
out array will be set to the ufunc result. Elsewhere, the out array will retain its origi-
nal value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs :
For other keyword-only arguments, see the ufunc docs.

Returns y : ndarray

796 Chapter 6. brian2 package

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Brian 2 Documentation, Release 2.5.1

The corresponding hyperbolic tangent values. This is a scalar if x is a scalar.

Notes

If out is provided, the function writes the result into it, and returns a reference to out. (See Examples)

References

[R23], [R24]

Examples

>>> np.tanh((0, np.pi*1j, np.pi*1j/2))
array([0. +0.00000000e+00j, 0. -1.22460635e-16j, 0. +1.63317787e+16j])

>>> # Example of providing the optional output parameter illustrating
>>> # that what is returned is a reference to said parameter
>>> out1 = np.array([0], dtype='d')
>>> out2 = np.tanh([0.1], out1)
>>> out2 is out1
True

>>> # Example of ValueError due to provision of shape mis-matched `out`
>>> np.tanh(np.zeros((3,3)),np.zeros((2,2)))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: operands could not be broadcast together with shapes (3,3) (2,2)

trace(a[, offset, axis1, axis2, dtype, out]) Return the sum along diagonals of the array.

trace function

(Shortest import: from brian2 import trace)

brian2.units.unitsafefunctions.trace(a, offset=0, axis1=0, axis2=1, dtype=None, out=None)
Return the sum along diagonals of the array.
If a is 2-D, the sum along its diagonal with the given offset is returned, i.e., the sum of elements a[i,i+offset]
for all i.
If a has more than two dimensions, then the axes specified by axis1 and axis2 are used to determine the 2-D sub-
arrays whose traces are returned. The shape of the resulting array is the same as that of a with axis1 and axis2
removed.

Parameters a : array_like
Input array, from which the diagonals are taken.

offset : int, optional
Offset of the diagonal from the main diagonal. Can be both positive and negative. Defaults
to 0.

axis1, axis2 : int, optional

6.7. Subpackages 797

Brian 2 Documentation, Release 2.5.1

Axes to be used as the first and second axis of the 2-D sub-arrays from which the diagonals
should be taken. Defaults are the first two axes of a.

dtype : dtype, optional
Determines the data-type of the returned array and of the accumulator where the elements
are summed. If dtype has the value None and a is of integer type of precision less than
the default integer precision, then the default integer precision is used. Otherwise, the
precision is the same as that of a.

out : ndarray, optional
Array into which the output is placed. Its type is preserved and it must be of the right
shape to hold the output.

Returns sum_along_diagonals : ndarray
If a is 2-D, the sum along the diagonal is returned. If a has larger dimensions, then an
array of sums along diagonals is returned.

See also:
diag(), diagonal(), diagflat()

Examples

>>> np.trace(np.eye(3))
3.0
>>> a = np.arange(8).reshape((2,2,2))
>>> np.trace(a)
array([6, 8])

>>> a = np.arange(24).reshape((2,2,2,3))
>>> np.trace(a).shape
(2, 3)

where(condition, [x, y]) Return elements chosen from x or y depending on con-
dition.

where function

(Shortest import: from brian2 import where)

brian2.units.unitsafefunctions.where(condition[, x, y])
Return elements chosen from x or y depending on condition.

Note: When only condition is provided, this function is a shorthand for np.asarray(condition).
nonzero(). Using nonzero() directly should be preferred, as it behaves correctly for subclasses. The rest of
this documentation covers only the case where all three arguments are provided.

Parameters condition : array_like, bool
Where True, yield x, otherwise yield y.

x, y : array_like

798 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

Values from which to choose. x, y and condition need to be broadcastable to some
shape.

Returns out : ndarray
An array with elements from x where condition is True, and elements from y else-
where.

See also:
choose()

nonzero() The function that is called when x and y are omitted

Notes

If all the arrays are 1-D, where() is equivalent to:

[xv if c else yv
for c, xv, yv in zip(condition, x, y)]

Examples

>>> a = np.arange(10)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.where(a < 5, a, 10*a)
array([0, 1, 2, 3, 4, 50, 60, 70, 80, 90])

This can be used on multidimensional arrays too:

>>> np.where([[True, False], [True, True]],
... [[1, 2], [3, 4]],
... [[9, 8], [7, 6]])
array([[1, 8],

[3, 4]])

The shapes of x, y, and the condition are broadcast together:

>>> x, y = np.ogrid[:3, :4]
>>> np.where(x < y, x, 10 + y) # both x and 10+y are broadcast
array([[10, 0, 0, 0],

[10, 11, 1, 1],
[10, 11, 12, 2]])

>>> a = np.array([[0, 1, 2],
... [0, 2, 4],
... [0, 3, 6]])
>>> np.where(a < 4, a, -1) # -1 is broadcast
array([[0, 1, 2],

[0, 2, -1],
[0, 3, -1]])

wrap_function_to_method(func) Wraps a function so that it calls the correspondingmethod
on the Quantities object (if called with a Quantities object
as the first argument).

6.7. Subpackages 799

Brian 2 Documentation, Release 2.5.1

wrap_function_to_method function

(Shortest import: from brian2.units.unitsafefunctions import wrap_function_to_method)

brian2.units.unitsafefunctions.wrap_function_to_method(func)
Wraps a function so that it calls the corresponding method on the Quantities object (if called with a Quantities
object as the first argument). All other arguments are left untouched.

6.7.16 utils package

Utility functions for Brian.
Exported members: get_logger(), BrianLogger, std_silent

arrays module

Helper module containing functions that operate on numpy arrays.
Functions

calc_repeats(delay) Calculates offsets corresponding to an array, where re-
peated values are subsequently numbered, i.e. if there n
identical values, the returned array will have values from
0 to n-1 at their positions.

calc_repeats function

(Shortest import: from brian2.utils.arrays import calc_repeats)

brian2.utils.arrays.calc_repeats(delay)
Calculates offsets corresponding to an array, where repeated values are subsequently numbered, i.e. if there n
identical values, the returned array will have values from 0 to n-1 at their positions. The code is complex because
tricks are needed for vectorisation.
This function is used in the Python SpikeQueue to calculate the offset array for the insertion of spikes with their
respective delays into the queue and in the numpy code for synapse creation to calculate how many synapses for
each source-target pair exist.

Examples

>>> import numpy as np
>>> print(calc_repeats(np.array([7, 5, 7, 3, 7, 5])))
[0 0 1 0 2 1]

800 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

caching module

Module to support caching of function results to memory (used to cache results of parsing, generation of state update
code, etc.). Provides the cached decorator.
Classes

CacheKey() Mixin class for objects that will be used as keys for
caching (e.g.

CacheKey class

(Shortest import: from brian2.utils.caching import CacheKey)

class brian2.utils.caching.CacheKey

Bases: object
Mixin class for objects that will be used as keys for caching (e.g. Variable objects) and have to define a certain
“identity” with respect to caching. This “identity” is different from standard Python hashing and equality checking:
a Variable for example would be considered “identical” for caching purposes regardless which object (e.g.
NeuronGroup) it belongs to (because this does not matter for parsing, creating abstract code, etc.) but this of
course matters for the values it refers to and therefore for comparison of equality to other variables.
Classes that mix in the CacheKey class should re-define the _cache_irrelevant_attributes attribute
to note all the attributes that should be ignored. The property _state_tuplewill refer to a tuple of all attributes
that were not excluded in such a way; this tuple will be used as the key for caching purposes.

Attributes

_cache_irrelevant_attributes Set of attributes that should not be considered for
caching of state update code, etc.

Details

_cache_irrelevant_attributes

Set of attributes that should not be considered for caching of state update code, etc.
Functions

cached(func) Decorator to cache a function so that it will not be re-
evaluated when called with the same arguments.

6.7. Subpackages 801

https://docs.python.org/3/library/functions.html#object

Brian 2 Documentation, Release 2.5.1

cached function

(Shortest import: from brian2.utils.caching import cached)

brian2.utils.caching.cached(func)
Decorator to cache a function so that it will not be re-evaluated when called with the same arguments. Uses the
_hashable function to make arguments usable as a dictionary key even though they mutable (lists, dictionaries,
etc.).

Parameters func : function
The function to decorate.

Returns decorated : function
The decorated function.

Notes

This is not a general-purpose caching decorator in any way comparable to functools.lru_cache or joblib’s
caching functions. It is very simplistic (no maximum cache size, no normalization of calls, e.g. foo(3) and
foo(x=3) are not considered equivalent function calls) and makes very specific assumptions for our use case.
Most importantly, Variable objects are considered to be identical when they refer to the same object, even
though the actually stored values might have changed.

environment module

Utility functions to get information about the environment Brian is running in.
Functions

running_from_ipython() Check whether we are currently running under ipython.

running_from_ipython function

(Shortest import: from brian2.utils.environment import running_from_ipython)

brian2.utils.environment.running_from_ipython()

Check whether we are currently running under ipython.
Returns ipython : bool

Whether running under ipython or not.

filelock module

A platform independent file lock that supports the with-statement.
Exported members: Timeout, BaseFileLock, WindowsFileLock, UnixFileLock, SoftFileLock,
FileLock

Classes

BaseFileLock(lock_file[, timeout]) Implements the base class of a file lock.

802 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

BaseFileLock class

(Shortest import: from brian2.utils.filelock import BaseFileLock)

class brian2.utils.filelock.BaseFileLock(lock_file, timeout=- 1)
Bases: object
Implements the base class of a file lock.

Attributes

is_locked True, if the object holds the file lock.
lock_file The path to the lock file.
timeout You can set a default timeout for the filelock.

Methods

acquire([timeout, poll_intervall]) Acquires the file lock or fails with a Timeout error.
release([force]) Releases the file lock.

Details

is_locked

True, if the object holds the file lock.
Changed in version 2.0.0: This was previously a method and is now a property.

lock_file

The path to the lock file.
timeout

You can set a default timeout for the filelock. It will be used as fallback value in the acquire method, if no
timeout value (None) is given.
If you want to disable the timeout, set it to a negative value.
A timeout of 0 means, that there is exactly one attempt to acquire the file lock.
New in version 2.0.0.

acquire(timeout=None, poll_intervall=0.05)
Acquires the file lock or fails with a Timeout error.

You can use this method in the context manager (recommended)
with lock.acquire():

pass

Or use an equivalent try-finally construct:
lock.acquire()
try:

pass
finally:

lock.release()

6.7. Subpackages 803

https://docs.python.org/3/library/functions.html#object

Brian 2 Documentation, Release 2.5.1

Parameters
• timeout (float) – The maximum time waited for the file lock. If timeout < 0, there
is no timeout and this method will block until the lock could be acquired. If timeout is
None, the default timeout is used.

• poll_intervall (float) – We check once in poll_intervall seconds if we can acquire
the file lock.

Raises Timeout – if the lock could not be acquired in timeout seconds.

Changed in version 2.0.0: This method returns now a proxy object instead of self, so that it can be used in a
with statement without side effects.

release(force=False)

Releases the file lock.
Please note, that the lock is only completly released, if the lock counter is 0.
Also note, that the lock file itself is not automatically deleted.

Parameters force (bool) – If true, the lock counter is ignored and the lock is released in every
case.

FileLock Alias for the lock, which should be used for the current
platform.

FileLock class

(Shortest import: from brian2.utils.filelock import FileLock)

brian2.utils.filelock.FileLock

Alias for the lock, which should be used for the current platform. On Windows, this is an alias for Windows-
FileLock, on Unix for UnixFileLock and otherwise for SoftFileLock.

SoftFileLock(lock_file[, timeout]) Simply watches the existence of the lock file.

SoftFileLock class

(Shortest import: from brian2.utils.filelock import SoftFileLock)

class brian2.utils.filelock.SoftFileLock(lock_file, timeout=- 1)
Bases: brian2.utils.filelock.BaseFileLock
Simply watches the existence of the lock file.

Timeout(lock_file) Raised when the lock could not be acquired in timeout
seconds.

804 Chapter 6. brian2 package

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

Brian 2 Documentation, Release 2.5.1

Timeout class

(Shortest import: from brian2.utils.filelock import Timeout)

class brian2.utils.filelock.Timeout(lock_file)
Bases: TimeoutError
Raised when the lock could not be acquired in timeout seconds.

Attributes

lock_file The path of the file lock.

Details

lock_file

The path of the file lock.

UnixFileLock(lock_file[, timeout]) Uses the fcntl.flock() to hard lock the lock file on
unix systems.

UnixFileLock class

(Shortest import: from brian2.utils.filelock import UnixFileLock)

class brian2.utils.filelock.UnixFileLock(lock_file, timeout=- 1)
Bases: brian2.utils.filelock.BaseFileLock
Uses the fcntl.flock() to hard lock the lock file on unix systems.

WindowsFileLock(lock_file[, timeout]) Uses the msvcrt.locking() function to hard lock
the lock file on windows systems.

WindowsFileLock class

(Shortest import: from brian2.utils.filelock import WindowsFileLock)

class brian2.utils.filelock.WindowsFileLock(lock_file, timeout=- 1)

Bases: brian2.utils.filelock.BaseFileLock
Uses the msvcrt.locking() function to hard lock the lock file on windows systems.

Functions

logger() Returns the logger instance used in this module.

6.7. Subpackages 805

https://docs.python.org/3/library/exceptions.html#TimeoutError
https://docs.python.org/3/library/fcntl.html#fcntl.flock
https://docs.python.org/3/library/fcntl.html#fcntl.flock
https://docs.python.org/3/library/msvcrt.html#msvcrt.locking
https://docs.python.org/3/library/msvcrt.html#msvcrt.locking

Brian 2 Documentation, Release 2.5.1

logger function

(Shortest import: from brian2.utils.filelock import logger)

brian2.utils.filelock.logger()

Returns the logger instance used in this module.

filetools module

File system tools
Exported members: ensure_directory, ensure_directory_of_file, in_directory,
copy_directory

Classes

in_directory(new_dir) Safely temporarily work in a subdirectory

in_directory class

(Shortest import: from brian2.utils.filetools import in_directory)

class brian2.utils.filetools.in_directory(new_dir)
Bases: object
Safely temporarily work in a subdirectory
Usage:

with in_directory(directory):
... do stuff here

Guarantees that the code in the with block will be executed in directory, and that after the block is completed we
return to the original directory.

Functions

copy_directory(source, target) Copies directory source to target.

copy_directory function

(Shortest import: from brian2.utils.filetools import copy_directory)

brian2.utils.filetools.copy_directory(source, target)
Copies directory source to target.

ensure_directory(d) Ensures that a given directory exists (creates it if neces-
sary)

806 Chapter 6. brian2 package

https://docs.python.org/3/library/functions.html#object

Brian 2 Documentation, Release 2.5.1

ensure_directory function

(Shortest import: from brian2.utils.filetools import ensure_directory)

brian2.utils.filetools.ensure_directory(d)
Ensures that a given directory exists (creates it if necessary)

ensure_directory_of_file(f) Ensures that a directory exists for filename to go in (cre-
ates if necessary), and returns the directory path.

ensure_directory_of_file function

(Shortest import: from brian2.utils.filetools import ensure_directory_of_file)

brian2.utils.filetools.ensure_directory_of_file(f)

Ensures that a directory exists for filename to go in (creates if necessary), and returns the directory path.

logger module

Brian’s logging module.

Preferences

Logging system preferences
logging.console_log_level = 'INFO'

What log level to use for the log written to the console.
Has to be one of CRITICAL, ERROR, WARNING, INFO, DEBUG or DIAGNOSTIC.

logging.delete_log_on_exit = True
Whether to delete the log and script file on exit.
If set to True (the default), log files (and the copy of the main script) will be deleted after the brian process
has exited, unless an uncaught exception occurred. If set to False, all log files will be kept.

logging.display_brian_error_message = True
Whether to display a text for uncaught errors, mentioning the location of the log file, the mailing list and the
github issues.
Defaults to True.

logging.file_log = True
Whether to log to a file or not.
If set to True (the default), logging information will be written to a file. The log level can be set via the
logging.file_log_level preference.

logging.file_log_level = 'DEBUG'
What log level to use for the log written to the log file.
In case file logging is activated (see logging.file_log), which log level should be used for logging. Has to be
one of CRITICAL, ERROR, WARNING, INFO, DEBUG or DIAGNOSTIC.

6.7. Subpackages 807

Brian 2 Documentation, Release 2.5.1

logging.file_log_max_size = 10000000
The maximum size for the debug log before it will be rotated.
If set to any value > 0, the debug log will be rotated once this size is reached. Rotating the log means that
the old debug log will be moved into a file in the same directory but with suffix ".1" and the a new log
file will be created with the same pathname as the original file. Only one backup is kept; if a file with suffix
".1" already exists when rotating, it will be overwritten. If set to 0, no log rotation will be applied. The
default setting rotates the log file after 10MB.

logging.save_script = True
Whether to save a copy of the script that is run.
If set to True (the default), a copy of the currently run script is saved to a temporary location. It is deleted
after a successful run (unless logging.delete_log_on_exit is False) but is kept after an uncaught exception
occured. This can be helpful for debugging, in particular when several simulations are running in parallel.

logging.std_redirection = True
Whether or not to redirect stdout/stderr to null at certain places.
This silences a lot of annoying compiler output, but will also hide error messages making it harder to debug
problems. You can always temporarily switch it off when debugging. If logging.std_redirection_to_file is set
to True as well, then the output is saved to a file and if an error occurs the name of this file will be printed.

logging.std_redirection_to_file = True
Whether to redirect stdout/stderr to a file.
If both logging.std_redirection and this preference are set to True, all standard output/error
(most importantly output from the compiler) will be stored in files and if an error occurs the name of this
file will be printed. If logging.std_redirection is True and this preference is False, then all standard out-
put/error will be completely suppressed, i.e. neither be displayed nor stored in a file.
The value of this preference is ignore if logging.std_redirection is set to False.

Exported members: get_logger(), BrianLogger, std_silent
Classes

BrianLogger(name) Convenience object for logging.

BrianLogger class

(Shortest import: from brian2 import BrianLogger)

class brian2.utils.logger.BrianLogger(name)

Bases: object
Convenience object for logging. Call get_logger() to get an instance of this class.

Parameters name : str
The name used for logging, normally the name of the module.

808 Chapter 6. brian2 package

https://docs.python.org/3/library/functions.html#object

Brian 2 Documentation, Release 2.5.1

Attributes

_log_messages Class attribute for remembering log messages that
should only be displayed once

_pid The pid of the process that initialized the logger – used
to switch off file logging in multiprocessing contexts

console_handler The logging.StreamHandler responsible for
logging to the console

exception_occured Class attribute to remember whether any exception oc-
cured

file_handler The logging.FileHandler responsible for log-
ging to the temporary log file

tmp_log The name of the temporary log file (by default deleted
after the run if no exception occurred), if any

tmp_script The name of the temporary copy of the main script
file (by default deleted after the run if no exception
occurred), if any

Methods

debug(msg[, name_suffix, once]) Log a debug message.
diagnostic(msg[, name_suffix, once]) Log a diagnostic message.
error(msg[, name_suffix, once]) Log an error message.
info(msg[, name_suffix, once]) Log an info message.
initialize() Initialize Brian's logging system.
log_level_debug() Set the log level to "debug".
log_level_diagnostic() Set the log level to "diagnostic".
log_level_error() Set the log level to "error".
log_level_info() Set the log level to "info".
log_level_warn() Set the log level to "warn".
suppress_hierarchy(name[, filter_log_file]) Suppress all log messages in a given hiearchy.
suppress_name(name[, filter_log_file]) Suppress all log messages with a given name.
warn(msg[, name_suffix, once]) Log a warn message.

Details

_log_messages

Class attribute for remembering log messages that should only be displayed once
_pid

The pid of the process that initialized the logger – used to switch off file logging in multiprocessing contexts
console_handler

The logging.StreamHandler responsible for logging to the console
exception_occured

Class attribute to remember whether any exception occured
file_handler

The logging.FileHandler responsible for logging to the temporary log file

6.7. Subpackages 809

https://docs.python.org/3/library/logging.handlers.html#logging.StreamHandler
https://docs.python.org/3/library/logging.handlers.html#logging.FileHandler
https://docs.python.org/3/library/logging.handlers.html#logging.StreamHandler
https://docs.python.org/3/library/logging.handlers.html#logging.FileHandler

Brian 2 Documentation, Release 2.5.1

tmp_log

The name of the temporary log file (by default deleted after the run if no exception occurred), if any
tmp_script

The name of the temporary copy of the main script file (by default deleted after the run if no exception
occurred), if any

debug(msg, name_suffix=None, once=False)
Log a debug message.

Parameters msg : str
The message to log.

name_suffix : str, optional
A suffix to add to the name, e.g. a class or function name.

once : bool, optional
Whether this message should be logged only once and not repeated if sent another time.

diagnostic(msg, name_suffix=None, once=False)
Log a diagnostic message.

Parameters msg : str
The message to log.

name_suffix : str, optional
A suffix to add to the name, e.g. a class or function name.

once : bool, optional
Whether this message should be logged only once and not repeated if sent another time.

error(msg, name_suffix=None, once=False)
Log an error message.

Parameters msg : str
The message to log.

name_suffix : str, optional
A suffix to add to the name, e.g. a class or function name.

once : bool, optional
Whether this message should be logged only once and not repeated if sent another time.

info(msg, name_suffix=None, once=False)
Log an info message.

Parameters msg : str
The message to log.

name_suffix : str, optional
A suffix to add to the name, e.g. a class or function name.

once : bool, optional
Whether this message should be logged only once and not repeated if sent another time.

810 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

static initialize()

Initialize Brian’s logging system. This function will be called automatically when Brian is imported.
static log_level_debug()

Set the log level to “debug”.
static log_level_diagnostic()

Set the log level to “diagnostic”.
static log_level_error()

Set the log level to “error”.
static log_level_info()

Set the log level to “info”.
static log_level_warn()

Set the log level to “warn”.
static suppress_hierarchy(name, filter_log_file=False)

Suppress all log messages in a given hiearchy.
Parameters name : str

Suppress all log messages in the given name hierarchy. For example, specifying
'brian2' suppresses all messages logged by Brian, specifying 'brian2.codegen'
suppresses all messages generated by the code generation modules.

filter_log_file : bool, optional
Whether to suppress the messages also in the log file. Defaults to False meaning that
suppressed messages are not displayed on the console but are still saved to the log file.

static suppress_name(name, filter_log_file=False)
Suppress all log messages with a given name.

Parameters name : str
Suppress all log messages ending in the given name. For example, specifying
'resolution_conflict' would suppress messages with names such as brian2.
equations.codestrings.CodeString.resolution_conflict or
brian2.equations.equations.Equations.resolution_conflict.

filter_log_file : bool, optional
Whether to suppress the messages also in the log file. Defaults to False meaning that
suppressed messages are not displayed on the console but are still saved to the log file.

warn(msg, name_suffix=None, once=False)
Log a warn message.

Parameters msg : str
The message to log.

name_suffix : str, optional
A suffix to add to the name, e.g. a class or function name.

once : bool, optional
Whether this message should be logged only once and not repeated if sent another time.

6.7. Subpackages 811

Brian 2 Documentation, Release 2.5.1

Tutorials and examples using this

• Example frompapers/Rossant_et_al_2011bis

HierarchyFilter(name) A class for suppressing all log messages in a subtree of the
name hierarchy.

HierarchyFilter class

(Shortest import: from brian2.utils.logger import HierarchyFilter)

class brian2.utils.logger.HierarchyFilter(name)
Bases: object
A class for suppressing all log messages in a subtree of the name hierarchy. Does exactly the opposite as the
logging.Filter class, which allows messages in a certain name hierarchy to pass.

Parameters name : str
The name hiearchy to suppress. See BrianLogger.suppress_hierarchy for
details.

Methods

filter(record) Filter out all messages in a subtree of the name hier-
archy.

Details

filter(record)
Filter out all messages in a subtree of the name hierarchy.

LogCapture(log_list[, log_level]) A class for capturing log warnings.

LogCapture class

(Shortest import: from brian2.utils.logger import LogCapture)

class brian2.utils.logger.LogCapture(log_list, log_level=30)
Bases: logging.Handler
A class for capturing log warnings. This class is used by catch_logs to allow testing in a similar way as with
warnings.catch_warnings.

812 Chapter 6. brian2 package

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/logging.html#logging.Filter
https://docs.python.org/3/library/logging.html#logging.Handler
https://docs.python.org/3/library/warnings.html#warnings.catch_warnings

Brian 2 Documentation, Release 2.5.1

Methods

emit(record) Do whatever it takes to actually log the specified log-
ging record.

install() Install this handler to catch all warnings.
uninstall() Uninstall this handler and re-connect the previously in-

stalled handlers.

Details

emit(record)
Do whatever it takes to actually log the specified logging record.
This version is intended to be implemented by subclasses and so raises a NotImplementedError.

install()

Install this handler to catch all warnings. Temporarily disconnect all other handlers.
uninstall()

Uninstall this handler and re-connect the previously installed handlers.

NameFilter(name) A class for suppressing log messages ending with a certain
name.

NameFilter class

(Shortest import: from brian2.utils.logger import NameFilter)

class brian2.utils.logger.NameFilter(name)
Bases: object
A class for suppressing log messages ending with a certain name.

Parameters name : str
The name to suppress. See BrianLogger.suppress_name for details.

Methods

filter(record) Filter out all messages ending with a certain name.

Details

filter(record)
Filter out all messages ending with a certain name.

catch_logs([log_level]) A context manager for catching log messages.

6.7. Subpackages 813

https://docs.python.org/3/library/functions.html#object

Brian 2 Documentation, Release 2.5.1

catch_logs class

(Shortest import: from brian2.utils.logger import catch_logs)

class brian2.utils.logger.catch_logs(log_level=30)
Bases: object
A context manager for catching log messages. Use this for testing the messages that are logged. Defaults to catching
warning/error messages and this is probably the only real use case for testing. Note that while this context manager
is active, all log messages are suppressed. Using this context manager returns a list of (log level, name, message)
tuples.

Parameters log_level : int or str, optional
The log level above which messages are caught.

Examples

>>> logger = get_logger('brian2.logtest')
>>> logger.warn('An uncaught warning')
WARNING brian2.logtest: An uncaught warning
>>> with catch_logs() as l:
... logger.warn('a caught warning')
... print('l contains: %s' % l)
...
l contains: [('WARNING', 'brian2.logtest', 'a caught warning')]

std_silent([alwaysprint]) Context manager that temporarily silences stdout and
stderr but keeps the output saved in a temporary file and
writes it if an exception is raised.

std_silent class

(Shortest import: from brian2 import std_silent)

class brian2.utils.logger.std_silent(alwaysprint=False)
Bases: object
Context manager that temporarily silences stdout and stderr but keeps the output saved in a temporary file and
writes it if an exception is raised.

Attributes

dest_stderr

dest_stdout

814 Chapter 6. brian2 package

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

Brian 2 Documentation, Release 2.5.1

Methods

close()

Details

dest_stderr = None

dest_stdout = None

classmethod close()

Functions

brian_excepthook(exc_type, exc_obj, exc_tb) Display a message mentioning the debug log in case of an
uncaught exception.

brian_excepthook function

(Shortest import: from brian2.utils.logger import brian_excepthook)

brian2.utils.logger.brian_excepthook(exc_type, exc_obj, exc_tb)
Display a message mentioning the debug log in case of an uncaught exception.

clean_up_logging() Shutdown the logging system and delete the debug log file
if no error occured.

clean_up_logging function

(Shortest import: from brian2.utils.logger import clean_up_logging)

brian2.utils.logger.clean_up_logging()

Shutdown the logging system and delete the debug log file if no error occured.

get_logger([module_name]) Get an object that can be used for logging.

get_logger function

(Shortest import: from brian2 import get_logger)

brian2.utils.logger.get_logger(module_name='brian2')

Get an object that can be used for logging.
Parameters module_name : str

The name used for logging, should normally be the module name as returned by
__name__.

Returns logger : BrianLogger

6.7. Subpackages 815

Brian 2 Documentation, Release 2.5.1

log_level_validator(log_level)

log_level_validator function

(Shortest import: from brian2.utils.logger import log_level_validator)

brian2.utils.logger.log_level_validator(log_level)

stringtools module

A collection of tools for string formatting tasks.
Exported members: indent, deindent, word_substitute, replace,
get_identifiers, strip_empty_lines, stripped_deindented_lines,
strip_empty_leading_and_trailing_lines, code_representation, SpellChecker
Classes

SpellChecker(words[, alphabet]) A simple spell checker that will be used to suggest the
correct name if the user made a typo (e.g.

SpellChecker class

(Shortest import: from brian2.utils.stringtools import SpellChecker)

class brian2.utils.stringtools.SpellChecker(words, alpha-
bet='abcdefghijklmnopqrstuvwxyz0123456789_')

Bases: object
A simple spell checker that will be used to suggest the correct name if the user made a typo (e.g. for state variable
names).

Parameters words : iterable of str
The known words

alphabet : iterable of str, optional
The allowed characters. Defaults to the characters allowed for identifiers, i.e. ascii char-
acters, digits and the underscore.

Methods

edits1(word)

known(words)

known_edits2(word)

suggest(word)

816 Chapter 6. brian2 package

https://docs.python.org/3/library/functions.html#object

Brian 2 Documentation, Release 2.5.1

Details

edits1(word)

known(words)

known_edits2(word)

suggest(word)

Functions

code_representation(code) Returns a string representation for several different for-
mats of code

code_representation function

(Shortest import: from brian2.utils.stringtools import code_representation)

brian2.utils.stringtools.code_representation(code)
Returns a string representation for several different formats of code
Formats covered include: - A single string - A list of statements/strings - A dict of strings - A dict of lists of
statements/strings

deindent(text[, numtabs, spacespertab, ...]) Returns a copy of the string with the common indentation
removed.

deindent function

(Shortest import: from brian2.utils.stringtools import deindent)

brian2.utils.stringtools.deindent(text, numtabs=None, spacespertab=4, docstring=False)
Returns a copy of the string with the common indentation removed.
Note that all tab characters are replaced with spacespertab spaces.
If the docstring flag is set, the first line is treated differently and is assumed to be already correctly tabulated.
If the numtabs option is given, the amount of indentation to remove is given explicitly and not the common
indentation.

Examples

Normal strings, e.g. function definitions:

>>> multiline = ''' def f(x):
... return x**2'''
>>> print(multiline)

def f(x):
return x**2

>>> print(deindent(multiline))
def f(x):

(continues on next page)

6.7. Subpackages 817

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
return x**2

>>> print(deindent(multiline, docstring=True))
def f(x):

return x**2
>>> print(deindent(multiline, numtabs=1, spacespertab=2))
def f(x):

return x**2

Docstrings:

>>> docstring = '''First docstring line.
... This line determines the indentation.'''
>>> print(docstring)
First docstring line.

This line determines the indentation.
>>> print(deindent(docstring, docstring=True))
First docstring line.
This line determines the indentation.

get_identifiers(expr[, include_numbers]) Return all the identifiers in a given string expr, that is
everything that matches a programming language variable
like expression, which is here implemented as the regexp
\b[A-Za-z_][A-Za-z0-9_]*\b.

get_identifiers function

(Shortest import: from brian2.utils.stringtools import get_identifiers)

brian2.utils.stringtools.get_identifiers(expr, include_numbers=False)
Return all the identifiers in a given string expr, that is everything that matches a programming language variable
like expression, which is here implemented as the regexp \b[A-Za-z_][A-Za-z0-9_]*\b.

Parameters expr : str
The string to analyze

include_numbers : bool, optional
Whether to include number literals in the output. Defaults to False.

Returns identifiers : set
A set of all the identifiers (and, optionally, numbers) in expr.

Examples

>>> expr = '3-a*_b+c5+8+f(A - .3e-10, tau_2)*17'
>>> ids = get_identifiers(expr)
>>> print(sorted(list(ids)))
['A', '_b', 'a', 'c5', 'f', 'tau_2']
>>> ids = get_identifiers(expr, include_numbers=True)
>>> print(sorted(list(ids)))
['.3e-10', '17', '3', '8', 'A', '_b', 'a', 'c5', 'f', 'tau_2']

818 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

indent(text[, numtabs, spacespertab, tab]) Indents a given multiline string.

indent function

(Shortest import: from brian2.utils.stringtools import indent)

brian2.utils.stringtools.indent(text, numtabs=1, spacespertab=4, tab=None)
Indents a given multiline string.
By default, indentation is done using spaces rather than tab characters. To use tab characters, specify the tab
character explictly, e.g.:

indent(text, tab=' ')

Note that in this case spacespertab is ignored.

Examples

>>> multiline = '''def f(x):
... return x*x'''
>>> print(multiline)
def f(x):

return x*x
>>> print(indent(multiline))

def f(x):
return x*x

>>> print(indent(multiline, numtabs=2))
def f(x):

return x*x
>>> print(indent(multiline, spacespertab=2))
def f(x):

return x*x
>>> print(indent(multiline, tab='####'))
####def f(x):
return x*x

replace(s, substitutions) Applies a dictionary of substitutions.

replace function

(Shortest import: from brian2.utils.stringtools import replace)

brian2.utils.stringtools.replace(s, substitutions)
Applies a dictionary of substitutions. Simpler than word_substitute, it does not attempt to only replace words

strip_empty_leading_and_trailing_lines(s)Removes all empty leading and trailing lines in the multi-
line string s.

6.7. Subpackages 819

Brian 2 Documentation, Release 2.5.1

strip_empty_leading_and_trailing_lines function

(Shortest import: from brian2.utils.stringtools import strip_empty_leading_and_trailing_lines)

brian2.utils.stringtools.strip_empty_leading_and_trailing_lines(s)

Removes all empty leading and trailing lines in the multi-line string s.

strip_empty_lines(s) Removes all empty lines from the multi-line string s.

strip_empty_lines function

(Shortest import: from brian2.utils.stringtools import strip_empty_lines)

brian2.utils.stringtools.strip_empty_lines(s)

Removes all empty lines from the multi-line string s.

Examples

>>> multiline = '''A string with
...
... an empty line.'''
>>> print(strip_empty_lines(multiline))
A string with
an empty line.

stripped_deindented_lines(code) Returns a list of the lines in a multi-line string, dein-
dented.

stripped_deindented_lines function

(Shortest import: from brian2.utils.stringtools import stripped_deindented_lines)

brian2.utils.stringtools.stripped_deindented_lines(code)
Returns a list of the lines in a multi-line string, deindented.

word_substitute(expr, substitutions) Applies a dict of word substitutions.

word_substitute function

(Shortest import: from brian2.utils.stringtools import word_substitute)

brian2.utils.stringtools.word_substitute(expr, substitutions)
Applies a dict of word substitutions.
The dict substitutions consists of pairs (word, rep) where each word word appearing in expr is
replaced by rep. Here a ‘word’ means anything matching the regexp \bword\b.

820 Chapter 6. brian2 package

Brian 2 Documentation, Release 2.5.1

Examples

>>> expr = 'a*_b+c5+8+f(A)'
>>> print(word_substitute(expr, {'a':'banana', 'f':'func'}))
banana*_b+c5+8+func(A)

topsort module

Exported members: topsort

Functions

topsort(graph) Topologically sort a graph

topsort function

(Shortest import: from brian2.utils.topsort import topsort)

brian2.utils.topsort.topsort(graph)
Topologically sort a graph
The graph should be of the form {node: [list of nodes], ...}.

6.7. Subpackages 821

Brian 2 Documentation, Release 2.5.1

822 Chapter 6. brian2 package

CHAPTER

SEVEN

DEVELOPER’S GUIDE

This section is intended as a guide to how Brian functions internally for people developing Brian itself, or extensions to
Brian. It may also be of some interest to others wishing to better understand how Brian works internally.
If you use VS code as your development environment, it will offer to automatically build a Brian development Docker con-
tainer when you open the repository, with all the required dependencies installed and configured. Further documentation
for this approach can be found in the .devcontainer directory.

7.1 Coding guidelines

The basic principles of developing Brian are:
1. For the user, the emphasis is on making the package flexible, readable and easy to use. See the paper “The Brian

simulator” in Frontiers in Neuroscience for more details.
2. For the developer, the emphasis is on keeping the package maintainable by a small number of people. To this end,

we use stable, well maintained, existing open source packages whenever possible, rather than writing our own code.

7.1.1 Development workflow

Brian development is done in a git repository on github. Continuous integration testing is provided by GitHub Actions,
code coverage is measured with coveralls.io.

The repository structure

Brian’s repository structure is very simple, as we are normally not supporting older versions with bugfixes or other com-
plicated things. The master branch of the repository is the basis for releases, a release is nothing more than adding a
tag to the branch, creating the tarball, etc. The master branch should always be in a deployable state, i.e. one should be
able to use it as the base for everyday work without worrying about random breakages due to updates. To ensure this, no
commit ever goes into the master branch without passing the test suite before (see below). The only exception to this rule
is if a commit not touches any code files, e.g. additions to the README file or to the documentation (but even in this
case, care should be taken that the documentation is still built correctly).
For every feature that a developer works on, a new branch should be opened (normally based on the master branch), with
a descriptive name (e.g. add-numba-support). For developers that are members of “brian-team”, the branch should
ideally be created in the main repository. This way, one can easily get an overview over what the “core team” is currently
working on. Developers who are not members of the team should fork the repository and work in their own repository
(if working on multiple issues/features, also using branches).

823

https://code.visualstudio.com/
https://www.docker.com/
https://github.com/brian-team/brian2/blob/master/.devcontainer/README.md
https://git-scm.com/
https://github.com/
https://github.com/features/actions
https://coveralls.io/

Brian 2 Documentation, Release 2.5.1

Implementing a feature/fixing a bug

Every new feature or bug fix should be done in a dedicated branch and have an issue in the issue database. For bugs, it is
important to not only fix the bug but also to introduce a new test case (see Testing) that makes sure that the bug will not
ever be reintroduced by other changes. It is often a good idea to first define the test cases (that should fail) and then work
on the fix so that the tests pass. As soon as the feature/fix is complete or as soon as specific feedback on the code is needed,
open a “pull request” to merge the changes from your branch into master. In this pull request, others can comment on
the code and make suggestions for improvements. New commits to the respective branch automatically appear in the pull
request which makes it a great tool for iterative code review. Even more useful, GitHub Actions will automatically run
the test suite on the result of the merge. As a reviewer, always wait for the result of this test (it can take up to 30 minutes
or so until it appears) before doing the merge and never merge when a test fails. As soon as the reviewer (someone from
the core team and not the author of the feature/fix) decides that the branch is ready to merge, he/she can merge the pull
request and optionally delete the corresponding branch (but it will be hidden by default, anyway).

Useful links

• The Brian repository: https://github.com/brian-team/brian2
• GitHub Actions tests for Brian: https://github.com/brian-team/brian2/actions
• Code Coverage for Brian: https://coveralls.io/github/brian-team/brian2
• The Pro Git book: https://git-scm.com/book/en/v2
• github’s documentation on pull requests: https://help.github.com/articles/using-pull-requests

7.1.2 Coding conventions

General recommendations

Syntax is chosen as much as possible from the user point of view, to reflect the concepts as directly as possible. Ideally,
a Brian script should be readable by someone who doesn’t know Python or Brian, although this isn’t always possible.
Function, class and keyword argument names should be explicit rather than abbreviated and consistent across Brian. See
Romain’s paper On the design of script languages for neural simulators for a discussion.
We use the PEP-8 coding conventions for our code. This in particular includes the following conventions:

• Use 4 spaces instead of tabs per indentation level
• Use spaces after commas and around the following binary operators: assignment (=), augmented assignment (+=,
-= etc.), comparisons (==, <, >, !=, <>, <=, >=, in, not in, is, is not), Booleans (and, or, not).

• Do not use spaces around the equals sign in keyword arguments or when specifying default values. Neither put
spaces immediately inside parentheses, brackets or braces, immediately before the open parenthesis that starts the
argument list of a function call, or immediately before the open parenthesis that starts an indexing or slicing.

• Avoid using a backslash for continuing lines whenever possible, instead use Python’s implicit line joining inside
parentheses, brackets and braces.

• imports should be on different lines (e.g. do not use import sys, os) and should be grouped in the following
order, using blank lines between each group:
1. standard library imports
2. third-party library imports (e.g. numpy, scipy, sympy, …)
3. brian imports

824 Chapter 7. Developer’s guide

https://github.com/brian-team/brian2
https://github.com/brian-team/brian2/actions
https://coveralls.io/github/brian-team/brian2
https://git-scm.com/book/en/v2
https://help.github.com/articles/using-pull-requests
http://briansimulator.org/WordPress/wp-content/uploads/2012/05/On-the-design-of-script-languages-for-neural-simulation.pdf
https://www.python.org/dev/peps/pep-0008/

Brian 2 Documentation, Release 2.5.1

• Use absolute imports for everything outside of “your” package, e.g. if you are working in brian2.equations,
import functions from the stringtools modules via from brian2.utils.stringtools import ..
.. Use the full path when importing, e.g. do from brian2.units.fundamentalunits import
seconds instead of from brian2 import seconds.

• Use “new-style” relative imports for everything in “your” package, e.g. in brian2.codegen.functions.py
import the Function class as from .specifiers import Function.

• Do not use wildcard imports (from brian2 import *), instead import only the identifiers you need, e.g.
from brian2 import NeuronGroup, Synapses. For packages like numpy that are used a lot, use
import numpy as np. But note that the user should still be able to do something like from brian2
import * (and this style can also be freely used in examples and tests, for example). Modules always have to use
the __all__ mechanism to specify what is being made available with a wildcard import. As an exception from
this rule, the main brian2/__init__.py may use wildcard imports.

String formatting

In general, we use Python f-strings instead of the .format method or the % operator to format strings. For example,
rather use:

raise KeyError(f"Unknown variable '{var}'") # ✓✓✓

instead of:

raise KeyError("Unknown variable '{}'".format(var)) # �
raise KeyError("Unknown variable %s" % var) # �

There are some corner cases where it still makes sense to use either of these, though. The formatmethod can be useful
when processing several strings instead of single literals:

formatted = []
for s in strings:

formatted.append(s.format(**values))

The % operator, or string concatenation, can be used when dealing with strings that contain curly braces, which would
become difficult to read as an f-string:

latex_code = r'\begin{equation}%s\end{equation}' % equation # OK
latex_code = r'\begin{equation}' + equation + r'\end{equation}' # OK

Python does not make a difference between single quotation marks and double quotation marks. For consistency, try to
follow the following rules:

• docstrings should always be enclosed in triple double quotes, following PEP 257.
• User-facing text (e.g. error messages) should use double quotes, and single quotes for marking words within the
string. Example: "Missing 'threshold' argument"

• General strings with internal meaning (e.g. dictionary keys) should use single quotation marks. Example:
events['spike']

• Use your own judgement for other strings, e.g. generated code. If you need to use single or double quoteswithin the
string, use the other quote type to avoid having to resort to backslashes. Example: include = f'#include
"{header_file}"'

7.1. Coding guidelines 825

https://docs.python.org/3/reference/lexical_analysis.html#formatted-string-literals
https://docs.python.org/3/library/stdtypes.html#str.format
https://www.python.org/dev/peps/pep-0257/

Brian 2 Documentation, Release 2.5.1

Commits only changing the style

Please do not make commits that only change the code style in a file, even though many files do not completely follow the
rules mentioned earlier. However, if you are commiting edits to a file for different reasons, please do follow this style for
your changes and, if necessary, change the surrounding code to fit the style (within reason).
We sometimes do make big commits updating the style in our code, which can make using tools like git blame
more difficult, since many lines affected by such commits. We add the references to such commits to a file .
git-blame-ignore-revs in the main directory, and you can tell git blame to ignore these commits with:

git config blame.ignoreRevsFile .git-blame-ignore-revs

7.1.3 Representing Brian objects

__repr__ and __str__

Every class should specify or inherit useful __repr__ and __str__ methods. The __repr__ method should give
the “official” representation of the object; if possible, this should be a valid Python expression, ideally allowing for
eval(repr(x)) == x. The __str__ method on the other hand, gives an “informal” representation of the object.
This can be anything that is helpful but does not have to be Python code. For example:

>>> import numpy as np
>>> ar = np.array([1, 2, 3]) * mV
>>> print(ar) # uses __str__
[1. 2. 3.] mV
>>> ar # uses __repr__
array([1., 2., 3.]) * mvolt

If the representation returned by __repr__ is not Python code, it should be enclosed in <...>, e.g. a Synapses
representation might be <Synapses object with 64 synapses>.
If you don’t want to make the distinction between __repr__ and __str__, simply define only a __repr__ function,
it will be used instead of __str__ automatically (no need to write __str__ = __repr__). Finally, if you include
the class name in the representation (which you should in most cases), use self.__class__.__name__ instead of
spelling out the name explicitly – this way it will automatically work correctly for subclasses. It will also prevent you from
forgetting to update the class name in the representation if you decide to rename the class.

LaTeX representations with sympy

Brian objects dealing with mathematical expressions and equations often internally use sympy. Sympy’s latex function
does a nice job of converting expressions into LaTeX code, using fractions, root symbols, etc. as well as converting greek
variable names into corresponding symbols and handling sub- and superscripts. For the conversion of variable names to
work, they should use an underscore for subscripts and two underscores for superscripts:

>>> from sympy import latex, Symbol
>>> tau_1__e = Symbol('tau_1__e')
>>> print(latex(tau_1__e))
\tau^{e}_{1}

Sympy’s printer supports formatting arbitrary objects, all they have to do is to implement a _latex method (no trailing
underscore). For most Brian objects, this is unnecessary as they will never be formatted with sympy’s LaTeX printer. For
some core objects, in particular the units, is is useful, however, as it can be reused in LaTeX representations for ipython
(see below). Note that the _latex method should not return $ or \begin{equation} (sympy’s method includes a
mode argument that wraps the output automatically).

826 Chapter 7. Developer’s guide

https://docs.sympy.org/dev/modules/printing.html#sympy.printing.latex.latex

Brian 2 Documentation, Release 2.5.1

Representations for ipython

“Old” ipython console

In particular for representations involing arrays or lists, it can be useful to break up the representation into chunks, or
indent parts of the representation. This is supported by the ipython console’s “pretty printer”. To make this work for
a class, add a _repr_pretty_(self, p, cycle) (note the single underscores) method. You can find more
information in the ipython documentation .

“New” ipython console (qtconsole and notebook)

The new ipython consoles, the qtconsole and the ipython notebook support a much richer set of representations for objects.
As Brian deals a lot with mathematical objects, in particular the LaTeX and to a lesser extent the HTML formatting
capabilities of the ipython notebook are interesting. To support LaTeX representation, implement a _repr_latex_
method returning the LaTeX code (including $, \begin{equation} or similar). If the object already has a _latex
method (see LaTeX representations with sympy above), this can be as simple as:

def _repr_latex_(self):
return sympy.latex(self, mode='inline') # wraps the expression in $.. $

The LaTeX rendering only supports a single mathematical block. For complex objects, e.g. NeuronGroup it might
be useful to have a richer representation. This can be achieved by returning HTML code from _repr_html_ – this
HTML code is processed by MathJax so it can include literal LaTeX code that will be transformed before it is rendered
as HTML. An object containing two equations could therefore be represented with a method like this:

def _repr_html_(self):
return '''
<h3> Equation 1 </h3>
{eq_1}
<h3> Equation 2 </h3>
{eq_2}'''.format(eq_1=sympy.latex(self.eq_1, mode='equation'),

eq_2=sympy.latex(self.eq_2, mode='equation'))

7.1.4 Defensive programming

One idea for Brian 2 is to make it so that it’s more likely that errors are raised rather than silently causing weird bugs.
Some ideas in this line:
Synapses.source should be stored internally as a weakref Synapses._source, and Synapses.source should be a computed
attribute that dereferences this weakref. Like this, if the source object isn’t kept by the user, Synapses won’t store a
reference to it, and so won’t stop it from being deallocated.
We should write an automated test that takes a piece of correct code like:

NeuronGroup(N, eqs, reset='V>Vt')

and tries replacing all arguments by nonsense arguments, it should always raise an error in this case (forcing us to write
code to validate the inputs). For example, you could create a new NonsenseObject class, and do this:

nonsense = NonsenseObject()
NeuronGroup(nonsense, eqs, reset='V>Vt')
NeuronGroup(N, nonsense, reset='V>Vt')
NeuronGroup(N, eqs, nonsense)

7.1. Coding guidelines 827

http://ipython.org/ipython-doc/dev/api/generated/IPython.lib.pretty.html#extending

Brian 2 Documentation, Release 2.5.1

In general, the idea should be to make it hard for something incorrect to run without raising an error, preferably at the
point where the user makes the error and not in some obscure way several lines later.
The preferred way to validate inputs is one that handles types in a Pythonic way. For example, instead of doing something
like:

if not isinstance(arg, (float, int)):
raise TypeError(...)

Do something like:

arg = float(arg)

(or use try/except to raise a more specific error). In contrast to the isinstance check it does not make any assumptions
about the type except for its ability to be converted to a float.
This approach is particular useful for numpy arrays:

arr = np.asarray(arg)

(or np.asanyarray if you want to allow for array subclasses like arrays with units or masked arrays). This approach
has also the nice advantage that it allows all “array-like” arguments, e.g. a list of numbers.

7.1.5 Documentation

It is very important to maintain documentation. We use the Sphinx documentation generator tools. The documentation
is all hand written. Sphinx source files are stored in the docs_sphinx folder. The HTML files can be generated via
the script dev/tools/docs/build_html_brian2.py and end up in the docs folder.
Most of the documentation is stored directly in the Sphinx source text files, but reference documentation for important
Brian classes and functions are kept in the documentation strings of those classes themselves. This is automatically
pulled from these classes for the reference manual section of the documentation. The idea is to keep the definitive
reference documentation near the code that it documents, serving as both a comment for the code itself, and to keep the
documentation up to date with the code.
The reference documentation includes all classes, functions and other objects that are defined in the modules and only
documents them in the module where they were defined. This makes it possible to document a class like Quantity
only in brian2.units.fundamentalunits and not additionally in brian2.units and brian2. This mech-
anism relies on the __module__ attribute, in some cases, in particular when wrapping a function with a decorator (e.g.
check_units), this attribute has to be set manually:

foo.__module__ = __name__

Without this manual setting, the function might not be documented at all or in the wrong module.
In addition to the reference, all the examples in the examples folder are automatically included in the documentation.
Note that you can directly link to github issues using :issue:`issue number`, e.g. writing :issue:`33` links
to a github issue about running benchmarks for Brian 2: #33. This feature should rarely be used in themain documentation,
reserve its use for release notes and important known bugs.

828 Chapter 7. Developer’s guide

http://www.sphinx-doc.org/en/stable/
https://github.com/brian-team/brian2/issues/33

Brian 2 Documentation, Release 2.5.1

Docstrings

Every module, class, method or function has to start with a docstring, unless it is a private or special method (i.e. starting
with _ or __) and it is obvious what it does. For example, there is normally no need to document __str__ with “Return
a string representation.”.
For the docstring format, we use the our own sphinx extension (in brian2/sphinxext) based on numpydoc, allowing
to write docstrings that are well readable both in sourcecode as well as in the rendered HTML. We generally follow the
format used by numpy
When the docstring uses variable, class or function names, these should be enclosed in single backticks. Class and func-
tion/method names will be automatically linked to the corresponding documentation. For classes imported in the main
brian2 package, you do not have to add the package name, e.g. writing `NeuronGroup` is enough. For other classes,
you have to give the full path, e.g. `brian2.units.fundamentalunits.UnitRegistry`. If it is clear from
the context where the class is (e.g. within the documentation of UnitRegistry), consider using the ~ abbreviation:
`~brian2.units.fundamentalunits.UnitRegistry` displays only the class name: UnitRegistry.
Note that you do not have to enclose the exception name in a “Raises” or “Warns” section, or the class/method/function
name in a “See Also” section in backticks, they will be automatically linked (putting backticks there will lead to incorrect
display or an error message),
Inline source fragments should be enclosed in double backticks.
Class docstrings follow the same conventions as method docstrings and should document the __init__ method, the
__init__ method itself does not need a docstring.

Documenting functions and methods

The docstring for a function/method should start with a one-line description of what the function does, without referring
to the function name or the names of variables. Use a “command style” for this summary, e.g. “Return the result.” instead
of “Returns the result.” If the signature of the function cannot be automatically extracted because of an decorator (e.g.
check_units()), place a signature in the very first row of the docstring, before the one-line description.
For methods, do not document the self parameter, nor give information about the method being static or a class method
(this information will be automatically added to the documentation).

Documenting classes

Class docstrings should use the same “Parameters” and “Returns” sections as method and function docstrings for doc-
umenting the __init__ constructor. If a class docstring does not have any “Attributes” or “Methods” section, these
sections will be automatically generated with all documented (i.e. having a docstring), public (i.e. not starting with _)
attributes respectively methods of the class. Alternatively, you can provide these sections manually. This is useful for
example in the Quantity class, which would otherwise include the documentation of many ndarray methods, or
when you want to include documentation for functions like __getitem__ which would otherwise not be documented.
When specifying these sections, you only have to state the names of documented methods/attributes but you can also
provide direct documentation. For example:

Attributes

foo
bar
baz

This is a description.

7.1. Coding guidelines 829

https://pypi.python.org/pypi/numpydoc/
https://numpydoc.readthedocs.io/en/latest/format.html#docstring-standard
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Brian 2 Documentation, Release 2.5.1

This can be used for example for class or instance attributes which do not have “classical” docstrings. However, you can
also use a special syntax: When defining class attributes in the class body or instance attributes in __init__ you can
use the following variants (here shown for instance attributes):

def __init__(a, b, c):
#: The docstring for the instance attribute a.
#: Can also span multiple lines
self.a = a

self.b = b #: The docstring for self.b (only one line).

self.c = c
'The docstring for self.c, directly *after* its definition'

Long example of a function docstring

This is a very long docstring, showing all the possible sections. Most of the time no See Also, Notes or References section
is needed:

def foo(var1, var2, long_var_name='hi') :
"""
A one-line summary that does not use variable names or the function name.

Several sentences providing an extended description. Refer to
variables using back-ticks, e.g. `var1`.

Parameters

var1 : array_like

Array_like means all those objects -- lists, nested lists, etc. --
that can be converted to an array. We can also refer to
variables like `var1`.

var2 : int
The type above can either refer to an actual Python type
(e.g. ``int``), or describe the type of the variable in more
detail, e.g. ``(N,) ndarray`` or ``array_like``.

Long_variable_name : {'hi', 'ho'}, optional
Choices in brackets, default first when optional.

Returns

describe : type

Explanation
output : type

Explanation
tuple : type

Explanation
items : type

even more explaining

Raises

BadException

Because you shouldn't have done that.

See Also

(continues on next page)

830 Chapter 7. Developer’s guide

Brian 2 Documentation, Release 2.5.1

(continued from previous page)

otherfunc : relationship (optional)
newfunc : Relationship (optional), which could be fairly long, in which

case the line wraps here.
thirdfunc, fourthfunc, fifthfunc

Notes

Notes about the implementation algorithm (if needed).

This can have multiple paragraphs.

You may include some math:

.. math:: X(e^{j\omega }) = x(n)e^{ - j\omega n}

And even use a greek symbol like :math:`omega` inline.

References

Cite the relevant literature, e.g. [1]_. You may also cite these
references in the notes section above.

.. [1] O. McNoleg, "The integration of GIS, remote sensing,
expert systems and adaptive co-kriging for environmental habitat
modelling of the Highland Haggis using object-oriented, fuzzy-logic
and neural-network techniques," Computers & Geosciences, vol. 22,
pp. 585-588, 1996.

Examples

These are written in doctest format, and should illustrate how to
use the function.

>>> a=[1,2,3]
>>> print([x + 3 for x in a])
[4, 5, 6]
>>> print("a\nb")
a
b

"""

pass

7.1.6 Logging

For a description of logging from the users point of view, see Logging.
Logging in Brian is based on the logging module in Python’s standard library.
Every brian module that needs logging should start with the following line, using the get_logger() function to get
an instance of BrianLogger:

logger = get_logger(__name__)

7.1. Coding guidelines 831

https://docs.python.org/3/library/logging.html#module-logging

Brian 2 Documentation, Release 2.5.1

In the code, logging can then be done via:

logger.diagnostic('A diagnostic message')
logger.debug('A debug message')
logger.info('An info message')
logger.warn('A warning message')
logger.error('An error message')

If a module logs similar messages in different places or if it might be useful to be able to suppress a subset of messages in
a module, add an additional specifier to the logging command, specifying the class or function name, or a method name
including the class name (do not include the module name, it will be automatically added as a prefix):

logger.debug('A debug message', 'CodeString')
logger.debug('A debug message', 'NeuronGroup.update')
logger.debug('A debug message', 'reinit')

If you want to log a message only once, e.g. in a function that is called repeatedly, set the optional once keyword to
True:

logger.debug('Will only be shown once', once=True)
logger.debug('Will only be shown once', once=True)

The output of debugging looks like this in the log file:

2012-10-02 14:41:41,484 DEBUG brian2.equations.equations.CodeString: A debug␣
↪→message

and like this on the console (if the log level is set to “debug”):

DEBUG A debug message [brian2.equations.equations.CodeString]

Log level recommendations

diagnostic Low-level messages that are not of any interest to the normal user but useful for debugging Brian itself. A
typical example is the source code generated by the code generation module.

debug Messages that are possibly helpful for debugging the user’s code. For example, this shows which objects were
included in the network, which clocks the network uses and when simulations start and stop.

info Messages which are not strictly necessary, but are potentially helpful for the user. In particular, this will show mes-
sages about the chosen state updater and other information that might help the user to achieve better performance
and/or accuracy in the simulations (e.g. using (event-driven) in synaptic equations, avoiding incompatible
dt values between TimedArray and the NeuronGroup using it, …)

warn Messages that alert the user to a potential mistake in the code, e.g. two possible resolutions for an identifier in an
equation. In such cases, the warning message should include clear information how to change the code to make
the situation unambigous and therefore make the warning message disappear. It can also be used to make the user
aware that he/she is using an experimental feature, an unsupported compiler or similar. In this case, normally the
once=True option should be used to raise this warning only once. As a rule of thumb, “common” scripts like
the examples provided in the examples folder should normally not lead to any warnings.

error This log level is not used currently in Brian, an exception should be raised instead. It might be useful in “meta-
code”, running scripts and catching any errors that occur.

The default log level shown to the user is info. As a general rule, all messages that the user sees in the de-
fault configuration (i.e., info and warn level) should be avoidable by simple changes in the user code, e.g. the
renaming of variables, explicitly specifying a state updater instead of relying on the automatic system, adding
(clock-driven)/(event-driven) to synaptic equations, etc.

832 Chapter 7. Developer’s guide

Brian 2 Documentation, Release 2.5.1

Testing log messages

It is possible to test whether code emits an expected log message using the catch_logs context manager. This is nor-
mally not necessary for debug and info messages, but should be part of the unit tests for warning messages (catch_logs
by default only catches warning and error messages):

with catch_logs() as logs:
code that is expected to trigger a warning
...
assert len(logs) == 1
logs contains tuples of (log level, name, message)
assert logs[0][0] == 'WARNING' and logs[0][1].endswith('warning_type')

7.1.7 Testing

Brian uses the pytest package for its testing framework.

Running the test suite

The pytest tool automatically finds tests in the code. However, to deal with the different code generation targets, and
correctly set up tests for standalone mode, it is recommended to use Brian’s builtin test function that calls pytest appro-
priately:

>>> import brian2
>>> brian2.test()

By default, this runs the test suite for all available (runtime) code generation targets. If you only want to test a specific
target, provide it as an argument:

>>> brian2.test('numpy')

If you want to test several targets, use a list of targets:

>>> brian2.test(['cython'])

In addition to the tests specific to a code generation target, the test suite will also run a set of independent tests (e.g. parsing
of equations, unit system, utility functions, etc.). To exclude these tests, set the test_codegen_independent
argument to False. Not all available tests are run by default, tests that take a long time are excluded. To include these,
set long_tests to True.
To run the C++ standalone tests, you have to set the test_standalone argument to the name of a standalone device.
If you provide an empty argument for the runtime code generation targets, you will only run the standalone tests:

>>> brian2.test([], test_standalone='cpp_standalone')

7.1. Coding guidelines 833

https://docs.pytest.org/

Brian 2 Documentation, Release 2.5.1

Writing tests

Generally speaking, we aim for a 100% code coverage by the test suite. Less coverage means that some code paths are
never executed so there’s no way of knowing whether a code change broke something in that path.

Unit tests

The most basic tests are unit tests, tests that test one kind of functionality or feature. To write a new unit test, add a
function called test_... to one of the test_... files in the brian2.tests package. Test files should roughly
correspond to packages, test functions should roughly correspond to tests for one function/method/feature. In the test
functions, use assertions that will raise an AssertionError when they are violated, e.g.:

G = NeuronGroup(42, model='dv/dt = -v / (10*ms) : 1')
assert len(G) == 42

When comparing arrays, use the array_equal() function from numpy.testing.utils which takes care of
comparing types, shapes and content and gives a nicer error message in case the assertion fails. Never make tests depend
on external factors like random numbers – tests should always give the same result when run on the same codebase. You
should not only test the expected outcome for the correct use of functions and classes but also that errors are raised when
expected. For that you can use pytest’s raises function with which you can define a block of code that should raise an
exception of a certain type:

with pytest.raises(DimensionMismatchError):
3*volt + 5*second

You can also check whether expected warnings are raised, see the documentation of the logging mechanism for details
For simple functions, doctests (see below) are a great alternative to writing classical unit tests.
By default, all tests are executed for all selected runtime code generation targets (see Running the test suite above). This
is not useful for all tests, some basic tests that for example test equation syntax or the use of physical units do not depend
on code generation and need therefore not to be repeated. To execute such tests only once, they can be annotated with a
codegen_independent marker, using the mark decorator:

import pytest
from brian2 import NeuronGroup

@pytest.mark.codegen_independent
def test_simple():

Test that the length of a NeuronGroup is correct
group = NeuronGroup(5, '')
assert len(group) == 5

Tests that are not “codegen-independent” are by default only executed for the runtimes device, i.e. not for the
cpp_standalone device, for example. However, many of those tests follow a common pattern that is compatible
with standalone devices as well: they set up a network, run it, and check the state of the network afterwards. Such
tests can be marked as standalone_compatible, using the mark decorator in the same way as for code-
gen_independent tests.:

import pytest
from numpy.testing.utils import assert_equal
from brian2 import *

@pytest.mark.standalone_compatible
def test_simple_run():

(continues on next page)

834 Chapter 7. Developer’s guide

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
Check that parameter values of a neuron don't change after a run
group = NeuronGroup(5, 'v : volt')
group.v = 'i*mV'
run(1*ms)
assert_equal(group.v[:], np.arange(5)*mV)

Tests that have more than a single run function but are otherwise compatible with standalone mode (e.g. they don’t
need access to the number of synapses or results of the simulation before the end of the simulation), can be marked as
standalone_compatible and multiple_runs. They then have to use an explicit device.build(...)
call of the form shown below:

import pytest
from numpy.testing.utils import assert_equal
from brian2 import *

@pytest.mark.standalone_compatible
@pytest.mark.multiple_runs
def test_multiple_runs():

Check that multiple runs advance the clock as expected
group = NeuronGroup(5, 'v : volt')
mon = StateMonitor(group, 'v', record=True)
run(1 * ms)
run(1 * ms)
device.build(direct_call=False, **device.build_options)
assert_equal(defaultclock.t, 2 * ms)
assert_equal(mon.t[0], 0 * ms)
assert_equal(mon.t[-1], 2 * ms - defaultclock.dt)

Tests can also be written specifically for a standalone device (they then have to include the set_device call
and possibly the build call explicitly). In this case tests have to be annotated with the name of the device (e.g.
'cpp_standalone') and with 'standalone_only' to exclude this test from the runtime tests. Such code
would look like this for a single run() call, i.e. using the automatic “build on run” feature:

import pytest
from brian2 import *

@pytest.mark.cpp_standalone
@pytest.mark.standalone_only
def test_cpp_standalone():

set_device('cpp_standalone', directory=None)
set up simulation
run simulation
run(...)
check simulation results

If the code uses more than one run() statement, it needs an explicit build call:

import pytest
from brian2 import *

@pytest.mark.cpp_standalone
@pytest.mark.standalone_only
def test_cpp_standalone():

set_device('cpp_standalone', build_on_run=False)
set up simulation
run simulation

(continues on next page)

7.1. Coding guidelines 835

Brian 2 Documentation, Release 2.5.1

(continued from previous page)
run(...)
do something
run again
run(...)
device.build(directory=None)
check simulation results

Summary

@pytest.mark marker Executed for
devices

explicit use of device

codegen_independent independent of
devices

none

none Runtime
targets

none

standalone_compatible Runtime and
standalone

none

standalone_compatible,
multiple_runs

Runtime and
standalone

device.build(direct_call=False,
**device.build_options)

cpp_standalone, stan-
dalone_only

C++ stan-
dalone device

set_device('cpp_standalone')...device.
build(directory=None)

my_device, stan-
dalone_only

“My device” set_device('my_device') ... device.
build(directory=None)

Doctests

Doctests are executable documentation. In the Examples block of a class or function documentation, simply write code
copied from an interactive Python session (to do this from ipython, use %doctestmode), e.g.:

>>> from brian2.utils.stringtools import word_substitute
>>> expr = 'a*_b+c5+8+f(A)'
>>> print(word_substitute(expr, {'a':'banana', 'f':'func'}))
banana*_b+c5+8+func(A)

During testing, the actual output will be compared to the expected output and an error will be raised if they don’t match.
Note that this comparison is strict, e.g. trailing whitespace is not ignored. There are various ways of working around some
problems that arise because of this expected exactness (e.g. the stacktrace of a raised exception will never be identical
because it contains file names), see the doctest documentation for details.
Doctests can (and should) not only be used in docstrings, but also in the hand-written documentation, making sure that
the examples actually work. To turn a code example into a doc test, use the .. doctest:: directive, see Equations for
examples written as doctests. For all doctests, everything that is available after from brian2 import * can be used
directly. For everything else, add import statements to the doctest code or – if you do not want the import statements
to appear in the document – add them in a .. testsetup:: block. See the documentation for Sphinx’s doctest
extension for more details.
Doctests are a great way of testing things as they not only make sure that the code does what it is supposed to do but also
that the documentation is up to date!

836 Chapter 7. Developer’s guide

https://docs.python.org/2/library/doctest.html
http://www.sphinx-doc.org/en/stable/ext/doctest.html
http://www.sphinx-doc.org/en/stable/ext/doctest.html

Brian 2 Documentation, Release 2.5.1

Correctness tests

[These do not exist yet for brian2]. Unit tests test a specific function or feature in isolation. In addition, we want to have
tests where a complex piece of code (e.g. a complete simulation) is tested. Even if it is sometimes impossible to really
check whether the result is correct (e.g. in the case of the spiking activity of a complex network), a useful check is also
whether the result is consistent. For example, the spiking activity should be the same when using code generation for
Python or C++. Or, a network could be pickled before running and then the result of the run could be compared to a
second run that starts from the unpickled network.

7.2 Units

7.2.1 Casting rules

In Brian 1, a distinction is made between scalars and numpy arrays (including scalar arrays): Scalars could be multiplied
with a unit, resulting in a Quantity object whereas the multiplication of an array with a unit resulted in a (unitless) array.
Accordingly, scalars were considered as dimensionless quantities for the purpose of unit checking (e.g.. 1 + 1 * mV raised
an error) whereas arrays were not (e.g. array(1) + 1 * mV resulted in 1.001 without any errors). Brian 2 no longer makes
this distinction and treats both scalars and arrays as dimensionless for unit checking and make all operations involving
quantities return a quantity.:

>>> 1 + 1*second
Traceback (most recent call last):
...
DimensionMismatchError: Cannot calculate 1. s + 1, units do not match (units are␣
↪→second and 1).

>>> np.array([1]) + 1*second
Traceback (most recent call last):
...
DimensionMismatchError: Cannot calculate 1. s + [1], units do not match (units are␣
↪→second and 1).

>>> 1*second + 1*second
2. * second
>>> np.array([1])*second + 1*second
array([2.]) * second

As one exception from this rule, a scalar or array 0 is considered as having “any unit”, i.e. 0 + 1 * second will
result in 1 * second without a dimension mismatch error and 0 == 0 * mV will evaluate to True. This seems
reasonable from a mathematical viewpoint and makes some sources of error disappear. For example, the Python builtin
sum (not numpy’s version) adds the value of the optional argument start, which defaults to 0, to its main argument.
Without this exception, sum([1 * mV, 2 * mV]) would therefore raise an error.
The above rules also apply to all comparisons (e.g. == or <) with one further exception: inf and -inf also have “any
unit”, therefore an expression like v <= inf will never raise an exception (and always return True).

7.2. Units 837

Brian 2 Documentation, Release 2.5.1

7.2.2 Functions and units

ndarray methods

All methods that make sense on quantities should work, i.e. they check for the correct units of their arguments and return
quantities with units were appropriate. Most of the methods are overwritten using thin function wrappers:
wrap_function_keep_dimension: Strips away the units before giving the array to the method of ndarray,

then reattaches the unit to the result (examples: sum, mean, max)
wrap_function_change_dimension: Changes the dimensions in a simple way that is independent of function

arguments, the shape of the array, etc. (examples: sqrt, var, power)
wrap_function_dimensionless: Raises an error if the method is called on a quantity with dimensions (i.e. it

works on dimensionless quantities).
List of methods
all, any, argmax, argsort, clip, compress, conj, conjugate, copy, cumsum, diagonal, dot, dump,
dumps, fill, flatten, getfield, item, itemset, max, mean, min, newbyteorder, nonzero, prod,
ptp, put, ravel, repeat, reshape, round, searchsorted, setasflat, setfield, setflags, sort,
squeeze, std, sum, take, tolist, trace, transpose, var, view
Notes

• Methods directly working on the internal data buffer (setfield, getfield, newbyteorder) ignore the
dimensions of the quantity.

• The type of a quantity cannot be int, therefore astype does not quite work when trying to convert the array into
integers.

• choose is only defined for integer arrays and therefore does not work
• tostring and tofile only return/save the pure array data without the unit (but you can use dump or dumps
to pickle a quantity array)

• resize does not work: ValueError: cannot resize this array: it does not own its
data

• cumprod would result in different dimensions for different elements and is therefore forbidden
• item returns a pure Python float by definition
• itemset does not check for units

Numpy ufuncs

All of the standard numpy ufuncs (functions that operate element-wise on numpy arrays) are supported, meaning that
they check for correct units and return appropriate arrays. These functions are often called implicitly, for example when
using operators like < or **.
Math operations: add, subtract, multiply, divide, logaddexp, logaddexp2, true_divide,

floor_divide, negative, power, remainder, mod, fmod, absolute, rint, sign, conj, con-
jugate, exp, exp2, log, log2, log10, expm1, log1p, sqrt, square, reciprocal, ones_like

Trigonometric functions: sin, cos, tan, arcsin, arccos, arctan, arctan2, hypot, sinh, cosh, tanh,
arcsinh, arccosh, arctanh, deg2rad, rad2deg

Bitwise functions: bitwise_and, bitwise_or, bitwise_xor, invert, left_shift, right_shift
Comparison functions: greater, greater_equal, less, less_equal, not_equal, equal, logi-

cal_and, logical_or, logical_xor, logical_not, maximum, minimum

838 Chapter 7. Developer’s guide

http://docs.scipy.org/doc/numpy/reference/ufuncs.html

Brian 2 Documentation, Release 2.5.1

Floating functions: isreal, iscomplex, isfinite, isinf, isnan, floor, ceil, trunc, fmod
Not taken care of yet: signbit, copysign, nextafter, modf, ldexp, frexp
Notes

• Everything involving log or exp, as well as trigonometric functions only works on dimensionless array (for arc-
tan2 and hypot this is questionable, though)

• Unit arrays can only be raised to a scalar power, not to an array of exponents as this would lead to differing
dimensions across entries. For simplicity, this is enforced even for dimensionless quantities.

• Bitwise functions never works on quantities (numpy will by itself throw a TypeError because they are floats not
integers).

• All comparisons only work for matching dimensions (with the exception of always allowing comparisons to 0) and
return a pure boolean array.

• All logical functions treat quantities as boolean values in the same way as floats are treated as boolean: Any non-zero
value is True.

Numpy functions

Many numpy functions are functional versions of ndarray methods (e.g. mean, sum, clip). They therefore work
automatically when called on quantities, as numpy propagates the call to the respective method.
There are some functions in numpy that do not propagate their call to the corresponding method (because they use
np.asarray instead of np.asanyarray, which might actually be a bug in numpy): trace, diagonal, ravel, dot. For
these, wrapped functions in unitsafefunctions.py are provided.
Wrapped numpy functions in unitsafefunctions.py
These functions are thin wrappers around the numpy functions to correctly check for units and return quantities when
appropriate:
log, exp, sin, cos, tan, arcsin, arccos, arctan, sinh, cosh, tanh, arcsinh, arccosh, arctanh,
diagonal, ravel, trace, dot
numpy functions that work unchanged
This includes all functional counterparts of the methods mentioned above (with the exceptions mentioned above). Some
other functions also work correctly, as they are only using functions/methods that work with quantities:

• linspace, diff, digitize1

• trim_zeros, fliplr, flipud, roll, rot90, shuffle
• corrcoeff1

numpy functions that return a pure numpy array instead of quantities
• arange

• cov

• random.permutation

• histogram, histogram2d
• cross, inner, outer
• where

numpy functions that do something wrong
1 But does not care about the units of its input.

7.2. Units 839

Brian 2 Documentation, Release 2.5.1

• insert, delete (return a quantity array but without units)
• correlate (returns a quantity with wrong units)
• histogramdd (raises a DimensionMismatchError)

other unsupported functions Functions in numpy’s subpackages such as linalg are not supported and will either not
work with units, or remove units from their inputs.

User-defined functions and units

For performance and simplicity reasons, code within the Brian core does not use Quantity objects but unitless numpy
arrays instead. See Adding support for new functions for details on how to make use user-defined functions with Brian’s
unit system.

7.3 Equations and namespaces

7.3.1 Equation parsing

Parsing is done via pyparsing, for now find the grammar at the top of the brian2.equations.equations file.

7.3.2 Variables

Each Brian object that saves state variables (e.g. NeuronGroup, Synapses, StateMonitor) has a variables
attribute, a dictionary mapping variable names to Variable objects (in fact a Variables object, not a simple dictio-
nary). Variable objects contain information about the variable (name, dtype, units) as well as access to the variable’s
value via a get_value method. Some will also allow setting the values via a corresponding set_value method.
These objects can therefore act as proxies to the variables’ “contents”.
Variable objects provide the “abstract namespace” corresponding to a chunk of “abstract code”, they are all that is
needed to check for syntactic correctness, unit consistency, etc.

7.3.3 Namespaces

The namespace attribute of a group can contain information about the external (variable or function) names used
in the equations. It specifies a group-specific namespace used for resolving names in that group. At run time, this
namespace is combined with a “run namespace”. This namespace is either explicitly provided to the Network.run
method, or the implicit namespace consisting of the locals and globals around the point where the run function is called is
used. This namespace is then passed down to all the objects via Network.before_fun which calls all the individual
BrianObject.before_run methods with this namespace.

840 Chapter 7. Developer’s guide

https://pythonhosted.org/pyparsing/pyparsing-module.html

Brian 2 Documentation, Release 2.5.1

7.4 Variables and indices

7.4.1 Introduction

To be able to generate the proper code out of abstract code statements, the code generation process has to have access to
information about the variables (their type, size, etc.) as well as to the indices that should be used for indexing arrays (e.g.
a state variable of a NeuronGroup will be indexed differently in the NeuronGroup state updater and in synaptic
propagation code). Most of this information is stored in the variables attribute of a VariableOwner (this in-
cludes NeuronGroup, Synapses, PoissonGroup and everything else that has state variables). The variables
attribute can be accessed as a (read-only) dictionary, mapping variable names to Variable objects storing the infor-
mation about the respective variable. However, it is not a simple dictionary but an instance of the Variables class.
Let’s have a look at its content for a simple example:

>>> tau = 10*ms
>>> G = NeuronGroup(10, 'dv/dt = -v / tau : volt')
>>> for name, var in sorted(G.variables.items()):
... print('%s : %s' % (name, var))
...
N : <Constant(dimensions=Dimension(), dtype=int64, scalar=True, constant=True, read_
↪→only=True)>
dt : <ArrayVariable(dimensions=second, dtype=float, scalar=True, constant=True, read_
↪→only=True)>
i : <ArrayVariable(dimensions=Dimension(), dtype=int32, scalar=False, constant=True,␣
↪→read_only=True)>
t : <ArrayVariable(dimensions=second, dtype=float64, scalar=True, constant=False,␣
↪→read_only=True)>
t_in_timesteps : <ArrayVariable(dimensions=Dimension(), dtype=int64, scalar=True,␣
↪→constant=False, read_only=True)>
v : <ArrayVariable(dimensions=metre ** 2 * kilogram * second ** -3 * amp ** -1, ␣
↪→dtype=float64, scalar=False, constant=False, read_only=False)>

The state variable v we specified for the NeuronGroup is represented as an ArrayVariable, all the other variables
were added automatically. There’s another array i, the neuronal indices (simply an array of integers from 0 to 9), that is
used for string expressions involving neuronal indices. The constant N represents the total number of neurons. At the first
sight it might be surprising that t, the current time of the clock and dt, its timestep, are ArrayVariable objects as
well. This is because those values can change during a run (for t) or between runs (for dt), and storing them as arrays
with a single value (note the scalar=True) is the easiest way to share this value – all code accessing it only needs a
reference to the array and can access its only element.
The information stored in the Variable objects is used to do various checks on the level of the abstract code, i.e. before
any programming language code is generated. Here are some examples of errors that are caught this way:

>>> G.v = 3*ms # G.variables['v'].unit is volt
Traceback (most recent call last):
...
DimensionMismatchError: v should be set with a value with units volt, but got 3. ms␣
↪→(unit is second).
>>> G.N = 5 # G.variables['N'] is read-only
Traceback (most recent call last):
...
TypeError: Variable N is read-only

7.4. Variables and indices 841

Brian 2 Documentation, Release 2.5.1

7.4.2 Creating variables

Each variable that should be accessible as a state variable and/or should be available for use in abstract code has to be
created as a Variable. For this, first a Variables container with a reference to the group has to be created, individual
variables can then be added using the various add_... methods:

self.variables = Variables(self)
self.variables.add_array('an_array', unit=volt, size=100)
self.variables.add_constant('N', unit=Unit(1), value=self._N, dtype=np.int32)
self.variables.create_clock_variables(self.clock)

As an additional argument, array variables can be specified with a specific index (see Indices below).

7.4.3 References

For each variable, only one Variable object exists even if it is used in different contexts. Let’s consider the following
example:

>>> G = NeuronGroup(5, 'dv/dt = -v / tau : volt', threshold='v > 1', reset='v = 0',
... name='neurons')
>>> subG = G[2:]
>>> S = Synapses(G, G, on_pre='v+=1*mV', name='synapses')
>>> S.connect()

All allow an access to the state variable v (note the different shapes, these arise from the different indices used, see below):

>>> G.v
<neurons.v: array([0., 0., 0., 0., 0.]) * volt>
>>> subG.v
<neurons_subgroup.v: array([0., 0., 0.]) * volt>
>>> S.v
<synapses.v: array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) * volt>

In all of these cases, the Variables object stores references to the same ArrayVariable object:

>>> id(G.variables['v'])
108610960
>>> id(subG.variables['v'])
108610960
>>> id(S.variables['v'])
108610960

Such a reference can be added using Variables.add_reference, note that the name used for the reference is not
necessarily the same as in the original group, e.g. in the above example S.variables also stores references to v under
the names v_pre and v_post.

842 Chapter 7. Developer’s guide

Brian 2 Documentation, Release 2.5.1

7.4.4 Indices

In subgroups and especially in synapses, the transformation of abstract code into executable code is not straightforward
because it can involve variables from different contexts. Here is a simple example:

>>> G = NeuronGroup(5, 'dv/dt = -v / tau : volt', threshold='v > 1', reset='v = 0')
>>> S = Synapses(G, G, 'w : volt', on_pre='v+=w')

The seemingly trivial operationv+=w involves the variablev of theNeuronGroup and the variablew of theSynapses
object which have to be indexed in the appropriate way. Since this statement is executed in the context of S, the variable
indices stored there are relevant:

>>> S.variables.indices['w']
'_idx'
>>> S.variables.indices['v']
'_postsynaptic_idx'

The index _idx has a special meaning and always refers to the “natural” index for a group (e.g. all neurons for a
NeuronGroup, all synapses for a Synapses object, etc.). All other indices have to refer to existing arrays:

>>> S.variables['_postsynaptic_idx']
<DynamicArrayVariable(dimensions=Dimension(), dtype=<class 'numpy.int32'>,␣
↪→scalar=False, constant=True, read_only=True)>

In this case, _postsynaptic_idx refers to a dynamic array that stores the postsynaptic targets for each synapse
(since it is an array itself, it also has an index. It is defined for each synapse so its index is _idx – in fact there is currently
no support for an additional level of indirection in Brian: a variable representing an index has to have _idx as its own
index). Using this index information, the following C++ code (slightly simplified) is generated:

for(int _spiking_synapse_idx=0;
_spiking_synapse_idx<_num_spiking_synapses;
_spiking_synapse_idx++)

{
const int _idx = _spiking_synapses[_spiking_synapse_idx];
const int _postsynaptic_idx = _ptr_array_synapses__synaptic_post[_idx];
const double w = _ptr_array_synapses_w[_idx];
double v = _ptr_array_neurongroup_v[_postsynaptic_idx];
v += w;
_ptr_array_neurongroup_v[_postsynaptic_idx] = v;

}

In this case, the “natural” index _idx iterates over all the synapses that received a spike (this is defined in the template)
and _postsynaptic_idx refers to the postsynaptic targets for these synapses. The variables w and v are then pulled
out of their respective arrays with these indices so that the statement v += w; does the right thing.

7.4.5 Getting and setting state variables

When a state variable is accessed (e.g. using G.v), the group does not return a reference to the underlying array itself but
instead to a VariableView object. This is because a state variable can be accessed in different contexts and indexing it
with a number/array (e.g. obj.v[0]) or a string (e.g. obj.v['i>3']) can refer to different values in the underlying
array depending on whether the object is the NeuronGroup, a Subgroup or a Synapses object.
The __setitem__ and __getitem__ methods in VariableView delegate to VariableView.set_item
and VariableView.get_item respectively (which can also be called directly under special circumstances). They
analyze the arguments (is the index a number, a slice or a string? Is the target value an array or a string expression?) and
delegate the actual retrieval/setting of the values to a specific method:

7.4. Variables and indices 843

Brian 2 Documentation, Release 2.5.1

• Getting with a numerical (or slice) index (e.g. G.v[0]): VariableView.get_with_index_array
• Getting with a string index (e.g. G.v['i>3']): VariableView.get_with_expression
• Setting with a numerical (or slice) index and a numerical target value (e.g. G.v[5:] = -70*mV):
VariableView.set_with_index_array

• Setting with a numerical (or slice) index and a string expression value (e.g. G.v[5:] = (-70+i)*mV):
VariableView.set_with_expression

• Setting with a string index and a string expression value (e.g. G.v['i>5'] = (-70+i)*mV):
VariableView.set_with_expression_conditional

These methods are annotated with the device_override decorator and can therefore be implemented in a different
way in certain devices. The standalone device, for example, overrides the all the getting functions and the setting with
index arrays. Note that for standalone devices, the “setter” methods do not actually set the values but only note them down
for later code generation.

7.4.6 Additional variables and indices

The variables stored in the variables attribute of a VariableOwner can be used everywhere (e.g. in the state
updater, in the threshold, the reset, etc.). Objects that depend on these variables, e.g. the Thresholder of a Neu-
ronGroup add additional variables, in particular AuxiliaryVariables that are automatically added to the abstract
code: a threshold condition v > 1 is converted into the statement _cond = v > 1; to specify the meaning of the
variable _cond for the code generation stage (in particular, C++ code generation needs to know the data type) an Aux-
iliaryVariable object is created.
In some rare cases, a specific variable_indices dictionary is provided that overrides the indices for variables stored
in the variables attribute. This is necessary for synapse creation because the meaning of the variables changes in this
context: an expression v>0 does not refer to the v variable of all the connected postsynaptic variables, as it does under
other circumstances in the context of a Synapses object, but to the v variable of all possible targets.

7.5 Preferences system

Each preference looks like codegen.c.compiler, i.e. dotted names. Each preference has to be registered and
validated. The idea is that registering all preferences ensures that misspellings of a preference value by a user causes an
error, e.g. if they wrote codgen.c.compiler it would raise an error. Validation means that the value is checked for
validity, so codegen.c.compiler = 'gcc' would be allowed, but codegen.c.compiler = 'hcc' would
cause an error.
An additional requirement is that the preferences system allows for extension modules to define their own preferences,
including extending the existing core brian preferences. For example, an extension might want to define extension.*
but it might also want to define a new language for codegen, e.g. codegen.lisp.*. However, extensions cannot add
preferences to an existing category.

844 Chapter 7. Developer’s guide

Brian 2 Documentation, Release 2.5.1

7.5.1 Accessing and setting preferences

Preferences can be accessed and set either keyword-based or attribute-based. To set/get the value for the preference
example mentioned before, the following are equivalent:

prefs['codegen.c.compiler'] = 'gcc'
prefs.codegen.c.compiler = 'gcc'

if prefs['codegen.c.compiler'] == 'gcc':
...

if prefs.codegen.c.compiler == 'gcc':
...

Using the attribute-based form can be particulary useful for interactive work, e.g. in ipython, as it offers autocompletion
and documentation. In ipython, prefs.codegen.c? would display a docstring with all the preferences available in
the codegen.c category.

7.5.2 Preference files

Preferences are stored in a hierarchy of files, with the following order (each step overrides the values in the previous step
but no error is raised if one is missing):

• The global defaults are stored in the installation directory.
• The user default are stored in ~/.brian/preferences (which works on Windows as well as Linux).
• The file brian_preferences in the current directory.

7.5.3 Registration

Registration of preferences is performed by a call to BrianGlobalPreferences.register_preferences,
e.g.:

register_preferences(
'codegen.c',
'Code generation preferences for the C language',
'compiler'= BrianPreference(

validator=is_compiler,
docs='...',
default='gcc'),

...
)

The first argument 'codegen.c' is the base name, and every preference of the form codegen.c.* has to be reg-
istered by this function (preferences in subcategories such as codegen.c.somethingelse.* have to be specified
separately). In other words, by calling register_preferences, a module takes ownership of all the preferences
with one particular base name. The second argument is a descriptive text explaining what this category is about. The
preferences themselves are provided as keyword arguments, each set to a BrianPreference object.

7.5. Preferences system 845

Brian 2 Documentation, Release 2.5.1

7.5.4 Validation functions

A validation function takes a value for the preference and returns True (if the value is a valid value) or False. If no
validation function is specified, a default validator is used that compares the value against the default value: Both should
belong to the same class (e.g. int or str) and, in the case of a Quantity have the same unit.

7.5.5 Validation

Setting the value of a preference with a registered base name instantly triggers validation. Trying to set an unregistered
preference using keyword or attribute access raises an error. The only exception from this rule is when the preferences
are read from configuration files (see below). Since this happens before the user has the chance to import extensions that
potentially define new preferences, this uses a special function (_set_preference). In this case,for base names that
are not yet registered, validation occurs when the base name is registered. If, at the time that Network.run is called,
there are unregistered preferences set, a PreferenceError is raised.

7.5.6 File format

The preference files are of the following form:

a.b.c = 1
Comment line
[a]
b.d = 2
[a.b]
b.e = 3

This would set preferences a.b.c=1, a.b.d=2 and a.b.e=3.

7.5.7 Built-in preferences

Brian itself defines the following preferences:

GSL

Directory containing GSL code
GSL.directory = None Set path to directory containing GSL header files (gsl_odeiv2.h etc.) If this directory is

already in Python’s include (e.g. because of conda installation), this path can be set to None.

codegen

Code generation preferences
codegen.loop_invariant_optimisations = True

Whether to pull out scalar expressions out of the statements, so that they are only evaluated once instead of
once for every neuron/synapse/… Can be switched off, e.g. because it complicates the code (and the same
optimisation is already performed by the compiler) or because the code generation target does not deal well
with it. Defaults to True.

codegen.max_cache_dir_size = 1000

846 Chapter 7. Developer’s guide

Brian 2 Documentation, Release 2.5.1

The size of a directory (in MB) with cached code for Cython that triggers a warning. Set to 0 to never get a
warning.

codegen.string_expression_target = 'numpy'
Default target for the evaluation of string expressions (e.g. when indexing state variables). Should normally
not be changed from the default numpy target, because the overhead of compiling code is not worth the speed
gain for simple expressions.
Accepts the same arguments as codegen.target, except for 'auto'

codegen.target = 'auto'
Default target for code generation.
Can be a string, in which case it should be one of:

• 'auto' the default, automatically chose the best code generation target available.
• 'cython', uses the Cython package to generate C++ code. Needs a working installation of Cython
and a C++ compiler.

• 'numpy' works on all platforms and doesn’t need a C compiler but is often less efficient.
Or it can be a CodeObject class.

codegen.cpp
C++ compilation preferences
codegen.cpp.compiler = ''

Compiler to use (uses default if empty). Should be 'unix' or 'msvc'.
To specify a specific compiler binary on unix systems, set the CXX environment variable instead.

codegen.cpp.define_macros = []
List of macros to define; each macro is defined using a 2-tuple, where ‘value’ is either the string to define it
to or None to define it without a particular value (equivalent of “#define FOO” in source or -DFOO on Unix
C compiler command line).

codegen.cpp.extra_compile_args = None
Extra arguments to pass to compiler (if None, use either extra_compile_args_gcc or ex-
tra_compile_args_msvc).

codegen.cpp.extra_compile_args_gcc = ['-w', '-O3', '-ffast-math',
'-fno-finite-math-only', '-march=native', '-std=c++11']

Extra compile arguments to pass to GCC compiler
codegen.cpp.extra_compile_args_msvc = ['/Ox', '/w', '', '/MP']

Extra compile arguments to pass to MSVC compiler (the default /arch: flag is determined based on the
processor architecture)

codegen.cpp.extra_link_args = []
Any extra platform- and compiler-specific information to use when linking object files together.

codegen.cpp.headers = []
A list of strings specifying header files to use when compiling the code. The list might look like [“<vec-
tor>”,“‘my_header’”]. Note that the header strings need to be in a form than can be pasted at the end of a
#include statement in the C++ code.

codegen.cpp.include_dirs = ['/path/to/your/Python/environment/include']

7.5. Preferences system 847

Brian 2 Documentation, Release 2.5.1

Include directories to use. The default value is $prefix/include (or $prefix/Library/
include on Windows), where $prefix is Python’s site-specific directory prefix as returned by sys.
prefix. This will make compilation use library files installed into a conda environment.

codegen.cpp.libraries = []
List of library names (not filenames or paths) to link against.

codegen.cpp.library_dirs = ['/path/to/your/Python/environment/lib']
List of directories to search for C/C++ libraries at link time. The default value is $prefix/lib (or
$prefix/Library/lib on Windows), where $prefix is Python’s site-specific directory prefix as
returned by sys.prefix. This will make compilation use library files installed into a conda environment.

codegen.cpp.msvc_architecture = ''
MSVC architecture name (or use system architectue by default).
Could take values such as x86, amd64, etc.

codegen.cpp.msvc_vars_location = ''
Location of the MSVC command line tool (or search for best by default).

codegen.cpp.runtime_library_dirs = ['/path/to/your/Python/environment/lib']
List of directories to search for C/C++ libraries at run time. The default value is $prefix/lib (not used
onWindows), where $prefix is Python’s site-specific directory prefix as returned by sys.prefix. This
will make compilation use library files installed into a conda environment.

codegen.generators
Codegen generator preferences (see subcategories for individual languages)
codegen.generators.cpp
C++ codegen preferences
codegen.generators.cpp.flush_denormals = False

Adds code to flush denormals to zero.
The code is gcc and architecture specific, so may not compile on all platforms. The code, for reference is:

#define CSR_FLUSH_TO_ZERO (1 << 15)
unsigned csr = __builtin_ia32_stmxcsr();
csr |= CSR_FLUSH_TO_ZERO;
__builtin_ia32_ldmxcsr(csr);

Found at http://stackoverflow.com/questions/2487653/avoiding-denormal-values-in-c.
codegen.generators.cpp.restrict_keyword = '__restrict'

The keyword used for the given compiler to declare pointers as restricted.
This keyword is different on different compilers, the default works for gcc and MSVS.

codegen.runtime
Runtime codegen preferences (see subcategories for individual targets)
codegen.runtime.cython
Cython runtime codegen preferences
codegen.runtime.cython.cache_dir = None

848 Chapter 7. Developer’s guide

https://docs.python.org/3/library/sys.html#sys.prefix
https://docs.python.org/3/library/sys.html#sys.prefix
https://docs.python.org/3/library/sys.html#sys.prefix
https://docs.python.org/3/library/sys.html#sys.prefix
http://stackoverflow.com/questions/2487653/avoiding-denormal-values-in-c

Brian 2 Documentation, Release 2.5.1

Location of the cache directory for Cython files. By default, will be stored in a brian_extensions
subdirectory where Cython inline stores its temporary files (the result of get_cython_cache_dir()).

codegen.runtime.cython.delete_source_files = True
Whether to delete source files after compiling. The Cython source files can take a significant amount of disk
space, and are not used anymore when the compiled library file exists. They are therefore deleted by default,
but keeping them around can be useful for debugging.

codegen.runtime.cython.multiprocess_safe = True
Whether to use a lock file to prevent simultaneous write access to cython .pyx and .so files.

codegen.runtime.numpy
Numpy runtime codegen preferences
codegen.runtime.numpy.discard_units = False

Whether to change the namespace of user-specifed functions to remove units.

core

Core Brian preferences
core.default_float_dtype = float64

Default dtype for all arrays of scalars (state variables, weights, etc.).
core.default_integer_dtype = int32

Default dtype for all arrays of integer scalars.
core.outdated_dependency_error = True

Whether to raise an error for outdated dependencies (True) or just a warning (False).
core.network
Network preferences
core.network.default_schedule = ['start', 'groups', 'thresholds', 'synapses',
'resets', 'end']

Default schedule used for networks that don’t specify a schedule.

devices

Device preferences
devices.cpp_standalone
C++ standalone preferences
devices.cpp_standalone.extra_make_args_unix = ['-j']

Additional flags to pass to the GNUmake command on Linux/OS-X. Defaults to “-j” for parallel compilation.
devices.cpp_standalone.extra_make_args_windows = []

Additional flags to pass to the nmake command on Windows. By default, no additional flags are passed.
devices.cpp_standalone.make_cmd_unix = 'make'

7.5. Preferences system 849

Brian 2 Documentation, Release 2.5.1

The make command used to compile the standalone project. Defaults to the standard GNU make commane
“make”.

devices.cpp_standalone.openmp_spatialneuron_strategy = None
DEPRECATED. Previously used to chose the strategy to parallelize the solution of the three tridiagonal
systems for multicompartmental neurons. Now, its value is ignored.

devices.cpp_standalone.openmp_threads = 0
The number of threads to use if OpenMP is turned on. By default, this value is set to 0 and the C++ code
is generated without any reference to OpenMP. If greater than 0, then the corresponding number of threads
are used to launch the simulation.

devices.cpp_standalone.run_cmd_unix = './main'
The command used to run the compiled standalone project. Defaults to executing the compiled binary with
“./main”. Must be a single binary as string or a list of command arguments (e.g. [“./binary”, “–key”, “value”]).

devices.cpp_standalone.run_environment_variables = {'LD_BIND_NOW': '1'}

Dictionary of environment variables and their values that will be set during the execution of the standalone
code.

legacy

Preferences to enable legacy behaviour
legacy.refractory_timing = False

Whether to use the semantics for checking the refractoriness condition that were in place up until (including)
version 2.1.2. In that implementation, refractory periods that were multiples of dt could lead to a varying
number of refractory timesteps due to the nature of floating point comparisons). This preference is only
provided for exact reproducibility of previously obtained results, new simulations should use the improved
mechanismwhich uses amore robustmechanism to convert refractoriness into timesteps. Defaults toFalse.

logging

Logging system preferences
logging.console_log_level = 'INFO'

What log level to use for the log written to the console.
Has to be one of CRITICAL, ERROR, WARNING, INFO, DEBUG or DIAGNOSTIC.

logging.delete_log_on_exit = True
Whether to delete the log and script file on exit.
If set to True (the default), log files (and the copy of the main script) will be deleted after the brian process
has exited, unless an uncaught exception occurred. If set to False, all log files will be kept.

logging.display_brian_error_message = True
Whether to display a text for uncaught errors, mentioning the location of the log file, the mailing list and the
github issues.
Defaults to True.

logging.file_log = True

850 Chapter 7. Developer’s guide

Brian 2 Documentation, Release 2.5.1

Whether to log to a file or not.
If set to True (the default), logging information will be written to a file. The log level can be set via the
logging.file_log_level preference.

logging.file_log_level = 'DEBUG'
What log level to use for the log written to the log file.
In case file logging is activated (see logging.file_log), which log level should be used for logging. Has to be
one of CRITICAL, ERROR, WARNING, INFO, DEBUG or DIAGNOSTIC.

logging.file_log_max_size = 10000000
The maximum size for the debug log before it will be rotated.
If set to any value > 0, the debug log will be rotated once this size is reached. Rotating the log means that
the old debug log will be moved into a file in the same directory but with suffix ".1" and the a new log
file will be created with the same pathname as the original file. Only one backup is kept; if a file with suffix
".1" already exists when rotating, it will be overwritten. If set to 0, no log rotation will be applied. The
default setting rotates the log file after 10MB.

logging.save_script = True
Whether to save a copy of the script that is run.
If set to True (the default), a copy of the currently run script is saved to a temporary location. It is deleted
after a successful run (unless logging.delete_log_on_exit is False) but is kept after an uncaught exception
occured. This can be helpful for debugging, in particular when several simulations are running in parallel.

logging.std_redirection = True
Whether or not to redirect stdout/stderr to null at certain places.
This silences a lot of annoying compiler output, but will also hide error messages making it harder to debug
problems. You can always temporarily switch it off when debugging. If logging.std_redirection_to_file is set
to True as well, then the output is saved to a file and if an error occurs the name of this file will be printed.

logging.std_redirection_to_file = True
Whether to redirect stdout/stderr to a file.
If both logging.std_redirection and this preference are set to True, all standard output/error
(most importantly output from the compiler) will be stored in files and if an error occurs the name of this
file will be printed. If logging.std_redirection is True and this preference is False, then all standard out-
put/error will be completely suppressed, i.e. neither be displayed nor stored in a file.
The value of this preference is ignore if logging.std_redirection is set to False.

7.6 Adding support for new functions

For a description of Brian’s function system from the user point of view, see Functions.
The default functions available in Brian are stored in the DEFAULT_FUNCTIONS dictionary. New Function objects
can be added to this dictionary to make them available to all Brian code, independent of its namespace.
To add a new implementation for a code generation target, a FunctionImplementation can be added to the
Function.implementations dictionary. The key for this dictionary has to be either a CodeGenerator class
object, or a CodeObject class object. The CodeGenerator of a CodeObject (e.g. CPPCodeGenerator for
CPPStandaloneCodeObject) is used as a fallback if no implementation specific to the CodeObject class exists.

7.6. Adding support for new functions 851

Brian 2 Documentation, Release 2.5.1

If a function is already provided for the target language (e.g. it is part of a library imported by default), using the same
name, all that is needed is to add an empty FunctionImplementation object to mark the function as implemented.
For example, exp is a standard function in C++:

DEFAULT_FUNCTIONS['exp'].implementations[CPPCodeGenerator] = FunctionImplementation()

Some functions are implemented but have a different name in the target language. In this case, the FunctionImple-
mentation object only has to specify the new name:

DEFAULT_FUNCTIONS['arcsin'].implementations[CPPCodeGenerator] =␣
↪→FunctionImplementation('asin')

Finally, the function might not exist in the target language at all, in this case the code for the function has to be provided,
the exact form of this code is language-specific. In the case of C++, it’s a dictionary of code blocks:

clip_code = {'support_code': '''
double _clip(const float value, const float a_min, const float a_max)
{

if (value < a_min)
return a_min;

if (value > a_max)
return a_max;

return value;
}
'''}

DEFAULT_FUNCTIONS['clip'].implementations[CPPCodeGenerator] = FunctionImplementation(
↪→'_clip',

␣
↪→code=clip_code)

7.7 Code generation

The generation of a code snippet is done by a CodeGenerator class. The templates are stored in the CodeObject.
templater attribute, which is typically implemented as a subdirectory of templates. The compilation and running of
code is done by a CodeObject. See the sections below for each of these.

7.7.1 Code path

The following gives an outline of the key steps that happen for the code generation associated to a NeuronGroup
StateUpdater. The items in grey are Brian core functions and methods and do not need to be implemented to create
a new code generation target or device. The parts in yellow are used when creating a new device. The parts in green relate
to generating code snippets from abstract code blocks. The parts in blue relate to creating new templates which these
snippets are inserted into. The parts in red relate to creating new runtime behaviour (compiling and running generated
code).

852 Chapter 7. Developer’s guide

Brian 2 Documentation, Release 2.5.1

In brief, what happens can be summarised as follows. Network.run will call BrianObject.before_run on
each of the objects in the network. Objects such as StateUpdater, which is a subclass of CodeRunner use this
spot to generate and compile their code. The process for doing this is to first create the abstract code block, done in the
StateUpdater.update_abstract_code method. Then, a CodeObject is created with this code block. In
doing so, Brian will call out to the currently active Device to get the CodeObject and CodeGenerator classes
associated to the device, and this hierarchy of calls gives several hooks which can be changed to implement new targets.

7.7.2 Code generation

To implement a new language, or variant of an existing language, derive a class from CodeGenerator. Good examples
to look at are the NumpyCodeGenerator, CPPCodeGenerator and CythonCodeGenerator classes in the
brian2.codegen.generators package. Each CodeGenerator has a class_name attribute which is a string
used by the user to refer to this code generator (for example, when defining function implementations).
The derived CodeGenerator class should implement the methods marked as NotImplemented in the base Code-
Generator class. CodeGenerator also has several handy utility methods to make it easier to write these, see the
existing examples to get an idea of how these work.

7.7.3 Syntax translation

One aspect of writing a new language is that sometimes you need to translate from Python syntax into the syntax of
another language. You are free to do this however you like, but we recommend using a NodeRenderer class which
allows you to iterate over the abstract syntax tree of an expression. See examples in brian2.parsing.rendering.

7.7. Code generation 853

Brian 2 Documentation, Release 2.5.1

7.7.4 Templates

In addition to snippet generation, you need to create templates for the new language. See the templates directories
in brian2.codegen.runtime.* for examples of these. They are written in the Jinja2 templating system. The
location of these templates is set as the CodeObject.templater attribute. Examples such as CPPCodeObject
show how this is done.

Template structure

Languages typically define a common_group template that is the base for all other templates. This template sets up
the basic code structure that will be reused by all code objects, e.g. by defining a function header and body, and adding
standard imports/includes. This template defines several blocks, in particular a maincode clock containing the actual
code that is specific to each code object. The specific templates such as reset then derive from the common_group
base template and override the maincode block. The base template can also define additional blocks that are sometimes
but not always overwritten. For example, the common_group.cpp template of the C++ standalone code generator
defines an extra_headers block that can be overwritten by child templates to include additional header files needed
for the code in maincode.

Template keywords

Templates also specify additional information necessary for the code generation process as Jinja comments ({# ...
#}). The following keywords are recognized by Brian:
USES_VARIABLES Lists variable names that are used by the template, even if they are not referred to in user code.
WRITES_TO_READ_ONLY_VARIABLES Lists read-only variables that are modified by the template. Normally, read-

only variables are not considered to change during code execution, but e.g. synapse creation requires changes to
synaptic indices that are considered read-only otherwise.

ALLOWS_SCALAR_WRITE The presence of this keyword means that in this template, writing to scalar variables is
permitted. Writing to scalar variables is not permitted by default, because it can be ambiguous in contexts that
do not involve all neurons/synapses. For example, should the statement scalar_variable += 1 in a reset
statement update the variable once or once for every spiking neuron?

ITERATE_ALL Lists indices that are iterated over completely. For example, during the state update or threshold step,
the template iterates over all neurons with the standard index _idx. When executing the reset statements on the
other hand, not all neurons are concerned. This is only used for the numpy code generation target, where it allows
avoiding expensive unnecessary indexing.

7.7.5 Code objects

To allow the final code block to be compiled and run, derive a class from CodeObject. This class should implement
the placeholder methods defined in the base class. The class should also have attributes templater (which should be
a Templater object pointing to the directory where the templates are stored) generator_class (which should
be the CodeGenerator class), and class_name (which should be a string the user can use to refer to this code
generation target.

854 Chapter 7. Developer’s guide

Brian 2 Documentation, Release 2.5.1

7.7.6 Default functions

You will typically want to implement the default functions such as the trigonometric, exponential and rand functions.
We usually put these implementations either in the same module as the CodeGenerator class or the CodeObject
class depending on whether they are language-specific or runtime target specific. See those modules for examples of
implementing these functions.

7.7.7 Code guide

• brian2.codegen: everything related to code generation
• brian2.codegen.generators: snippet generation, including the CodeGenerator classes and default
function implementations.

• brian2.codegen.runtime: templates, compilation and running of code, including CodeObject and de-
fault function implementations.

• brian2.core.functions, brian2.core.variables: these define the values that variable names can
have.

• brian2.parsing: tools for parsing expressions, etc.
• brian2.parsing.rendering: AST tools for rendering expressions in Python into different languages.
• brian2.utils: various tools for string manipulation, file management, etc.

7.7.8 Additional information

For some additional (older, but still accurate) notes on code generation:

Older notes on code generation

The following is an outline of how the Brian 2 code generation system works, with indicators as to which packages to
look at and which bits of code to read for a clearer understanding.
We illustrate the global process with an example, the creation and running of a single NeuronGroup object:

• Parse the equations, add refractoriness to them: this isn’t really part of code generation.
• Allocate memory for the state variables.
• Create Thresholder, Resetter and StateUpdater objects.

– Determine all the variable and function names used in the respective abstract code blocks and templates
– Determine the abstract namespace, i.e. determine a Variable or Function object for each name.
– Create a CodeObject based on the abstract code, template and abstract namespace. This will generate
code in the target language and the namespace in which the code will be executed.

• At runtime, each object calls CodeObject.__call__ to execute the code.

7.7. Code generation 855

Brian 2 Documentation, Release 2.5.1

Stages of code generation

Equations to abstract code

In the case of Equations, the set of equations are combined with a numerical integration method to generate an abstract
code block (see below) which represents the integration code for a single time step.
An example of this would be converting the following equations:

eqs = '''
dv/dt = (v0-v)/tau : volt (unless refractory)
v0 : volt
'''
group = NeuronGroup(N, eqs, threshold='v>10*mV',

reset='v=0*mV', refractory=5*ms)

into the following abstract code using the exponential_euler method (which is selected automatically):

not_refractory = 1*((t - lastspike) > 0.005000)
_BA_v = -v0
_v = -_BA_v + (_BA_v + v)*exp(-dt*not_refractory/tau)
v = _v

The code for this stage can be seen in NeuronGroup.__init__, StateUpdater.__init__, and
StateUpdater.update_abstract_code (in brian2.groups.neurongroup), and the StateUp-
dateMethod classes defined in the brian2.stateupdaters package.
For more details, see State update.

Abstract code

‘Abstract code’ is just a multi-line string representing a block of code which should be executed for each item (e.g. each
neuron, each synapse). Each item is independent of the others in abstract code. This allows us to later generate code
either for vectorised languages (like numpy in Python) or using loops (e.g. in C++).
Abstract code is parsed according to Python syntax, with certain language constructs excluded. For example, there cannot
be any conditional or looping statements at the moment, although support for this is in principle possible and may be added
later. Essentially, all that is allowed at the moment is a sequence of arithmetical a = b*c style statements.
Abstract code is provided directly by the user for threshold and reset statements in NeuronGroup and for pre/post
spiking events in Synapses.

Abstract code to snippet

We convert abstract code into a ‘snippet’, which is a small segment of code which is syntactically correct in the target
language, although it may not be runnable on its own (that’s handled by insertion into a ‘template’ later). This is handled
by the CodeGenerator object in brian2.codegen.generators. In the case of converting into python/numpy
code this typically doesn’t involve any changes to the code at all because the original code is in Python syntax. For
conversion to C++, we have to do some syntactic transformations (e.g. a**b is converted to pow(a, b)), and add
declarations for certain variables (e.g. converting x=y*z into const double x = y*z;).
An example of a snippet in C++ for the equations above:

856 Chapter 7. Developer’s guide

Brian 2 Documentation, Release 2.5.1

const double v0 = _ptr_array_neurongroup_v0[_neuron_idx];
const double lastspike = _ptr_array_neurongroup_lastspike[_neuron_idx];
bool not_refractory = _ptr_array_neurongroup_not_refractory[_neuron_idx];
double v = _ptr_array_neurongroup_v[_neuron_idx];
not_refractory = 1 * (t - lastspike > 0.0050000000000000001);
const double _BA_v = -(v0);
const double _v = -(_BA_v) + (_BA_v + v) * exp(-(dt) * not_refractory / tau);
v = _v;
_ptr_array_neurongroup_not_refractory[_neuron_idx] = not_refractory;
_ptr_array_neurongroup_v[_neuron_idx] = v;

The code path that includes snippet generation will be discussed in more detail below, since it involves the concepts of
namespaces and variables which we haven’t covered yet.

Snippet to code block

The final stage in the generation of a runnable code block is the insertion of a snippet into a template. These use the Jinja2
template specification language. This is handled in brian2.codegen.templates.
An example of a template for Python thresholding:

USES_VARIABLES { not_refractory, lastspike, t }
{% for line in code_lines %}
{{line}}
{% endfor %}
_return_values, = _cond.nonzero()
Set the neuron to refractory
not_refractory[_return_values] = False
lastspike[_return_values] = t

and the output code from the example equations above:

USES_VARIABLES { not_refractory, lastspike, t }
v = _array_neurongroup_v
_cond = v > 10 * mV
_return_values, = _cond.nonzero()
Set the neuron to refractory
not_refractory[_return_values] = False
lastspike[_return_values] = t

Code block to executing code

A code block represents runnable code. Brian operates in two different regimes, either in runtime or standalone mode.
In runtime mode, memory allocation and overall simulation control is handled by Python and numpy, and code objects
operate on this memory when called directly by Brian. This is the typical way that Brian is used, and it allows for a rapid
development cycle. However, we also support a standalone mode in which an entire project workspace is generated for a
target language or device by Brian, which can then be compiled and run independently of Brian. Each mode has different
templates, and does different things with the outputted code blocks. For runtime mode, in Python/numpy code is executed
by simply calling the exec statement on the code block in a given namespace. In standalone mode, the templates will
typically each be saved into different files.

7.7. Code generation 857

Brian 2 Documentation, Release 2.5.1

Key concepts

Namespaces

In general, a namespace is simply a mapping/dict from names to values. In Brian we use the term ‘namespace’ in two
ways: the high level “abstract namespace” maps names to objects based on the Variables or Function class. In
the above example, v maps to an ArrayVariable object, tau to a Constant object, etc. This namespace has all
the information that is needed for checking the consistency of units, to determine which variables are boolean or scalar,
etc. During the CodeObject creation, this abstract namespace is converted into the final namespace in which the code
will be executed. In this namespace, v maps to the numpy array storing the state variable values (without units) and tau
maps to a concrete value (again, without units). See Equations and namespaces for more details.

Variable

Variable objects contain information about the variable they correspond to, including details like the data type, whether
it is a single value or an array, etc.
See brian2.core.variables and, e.g. Group._create_variables, NeuronGroup.
_create_variables.

Templates

Templates are stored in Jinja2 format. They come in one of two forms, either they are a single template if code generation
only needs to output a single block of code, or they define multiple Jinja macros, each of which is a separate code block.
The CodeObject should define what type of template it wants, and the names of the macros to define. For examples,
see the templates in the directories in brian2/codegen/runtime. See brian2.codegen.templates for
more details.

Code guide

This section includes a guide to the various relevant packages and subpackages involved in the code generation process.
codegen Stores the majority of all code generation related code.

codegen.functions Code related to including functions - built-in and user-defined - in generated code.
codegen.generators Each CodeGenerator is defined in a module here.
codegen.runtime Each runtime CodeObject and its templates are defined in a package here.

core

core.variables The Variable types are defined here.
equations Everything related to Equations.
groups All Group related stuff is in here. The Group.resolve methods are responsible for determining the

abstract namespace.
parsing Various tools using Python’s ast module to parse user-specified code. Includes syntax translation to various

languages in parsing.rendering.
stateupdaters Everything related to generating abstract code blocks from integration methods is here.

858 Chapter 7. Developer’s guide

Brian 2 Documentation, Release 2.5.1

7.8 Standalone implementation

• Array cache

This – currently very incomplete – document describes some of the implementation details of Standalone code generation.

7.8.1 Array cache

As described in standalone variables, in standalone mode Python code does not usually have access to state variables
and synaptic indices, since the code necessary to initialize/create them has not been run yet. Concretely, accessing a
state variable (or other variables like synaptic indices), will call ArrayVariable.get_value which delegates to
CPPStandaloneDevice.get_value. After a run, this will read the corresponding file from the disk and return
the values. The user can therefore use the same code to analyze the results as for runtime mode. Before a run, this
file does not exist, but CPPStandaloneDevice.get_value has another mechanism to return values: the “array
cache”. This cache is a simple dictionary, stored in CPPStandaloneDevice.array_cache, mapping Array-
Variable objects to their respective values. If the requested object is present in this cache, its values can be accessed
even before the simulation is run. Values are added to this cache, whenever simulation code sets variables with con-
crete values. Methods such as CPPStandaloneDevice.fill_with_array or CPPStandaloneDevice.
init_with_zeros write the provided values into the array cache so that they can be retrieved later. Conversely,
CPPStandaloneDevice.code_object will delete any existing information in array_cache for variables that
are changed by a code object, i.e. invalidate any previously stored values:

>>> set_device('cpp_standalone')
>>> G = NeuronGroup(10, 'v : volt')
>>> v_var = G.variables['v']
>>> print(device.array_cache[v_var]) # CPPStandaloneDevice.init_with_zeros stored␣
↪→initial zero values
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
>>> G.v = -70*mV
>>> print(device.array_cache[v_var]) # CPPStandaloneDevice.fill_with_array updated␣
↪→the values
[-0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07]
>>> G.v = '-70*mV + i*2*mV'
>>> print(device.array_cache[v_var]) # Array cache for v has been invalidated
None
>>> set_device('runtime') # Reset device to avoid problems in other doctests

7.9 Multi-threading with OpenMP

The following is an outline of how to make C++ standalone templates compatible with OpenMP, and therefore make
them work in a multi-threaded environment. This should be considered as an extension to Code generation, that has to be
read first. The C++ standalone mode of Brian is compatible with OpenMP, and therefore simulations can be launched by
users with one or with multiple threads. Therefore, when adding new templates, the developers need to make sure that
those templates are properly handling the situation if launched with OpenMP.

7.8. Standalone implementation 859

Brian 2 Documentation, Release 2.5.1

7.9.1 Key concepts

All the simulations performed with the C++ standalone mode can be launched with multi-threading, and make use of
multiple cores on the same machine. Basically, all the Brian operations that can easily be performed in parallel, such
as computing the equations for NeuronGroup, Synapses, and so on can and should be split among several threads.
The network construction, so far, is still performed only by one single thread, and all created objects are shared by all the
threads.

7.9.2 Use of #pragma flags

In OpenMP, all the parallelism is handled thanks to extra comments, added in the main C++ code, under the form:

#pragma omp ...

But to avoid any dependencies in the code that is generated by Brian when OpenMP is not activated, we are using functions
that will only add those comments, during code generation, when such a multi-threading mode is turned on. By default,
nothing will be inserted.

Translations of the #pragma commands

All the translations from openmp_pragma() calls in the C++ templates are handled in the file devices/
cpp_standalone/codeobject.py In this function, you can see that all calls with various string inputs will gen-
erate #pragma statements inserted into the C++ templates during code generation. For example:

{{ openmp_pragma('static') }}

will be transformed, during code generation, into:

#pragma omp for schedule(static)

You can find the list of all the translations in the core of the openmp_pragma() function, and if some extra translations
are needed, they should be added here.

Execution of the OpenMP code

In this section, we are explaining the main ideas behind the OpenMPmode of Brian, and how the simulation is executed in
such a parallel context. As can be seen in devices/cpp_standalone/templates/main.cpp, the appropriate
number of threads, defined by the user, is fixed at the beginning of the main function in the C++ code with:

{{ openmp_pragma('set_num_threads') }}

equivalent to (thanks to the openmp_pragam() function defined above): nothing if OpenMP is turned off (default),
and to:

omp_set_dynamic(0);
omp_set_num_threads(nb_threads);

otherwise. When OpenMP creates a parallel context, this is the number of threads that will be used. As said, network
creation is performed without any calls to OpenMP, on one single thread. Each template that wants to use parallelism
has to add {{ openmp_pragma{('parallel')}} to create a general block that will be executed in parallel or
{{ openmp_pragma{('parallel-static')}} to execute a single loop in parallel.

860 Chapter 7. Developer’s guide

Brian 2 Documentation, Release 2.5.1

7.9.3 How to make your template use OpenMP parallelism

To design a parallel template, such as for example devices/cpp_standalone/templates/common_group.
cpp, you can see that as soon as you have loops that can safely be split across nodes, you just need to add an openmp
command in front of those loops:

{{openmp_pragma('parallel-static')}}
for(int _idx=0; _idx<N; _idx++)
{

...
}

By doing so, OpenMP will take care of splitting the indices and each thread will loop only on a subset of indices, sharing
the load. By default, the scheduling use for splitting the indices is static, meaning that each node will get the same number
of indices: this is the faster scheduling in OpenMP, and it makes sense for NeuronGroup or Synapses because oper-
ations are the same for all indices. By having a look at examples of templates such as devices/cpp_standalone/
templates/statemonitor.cpp, you can see that you can merge portions of code executed by only one node and
portions executed in parallel. In this template, for example, only one node is recording the time and extending the size of
the arrays to store the recorded values:

{{_dynamic_t}}.push_back(_clock_t);

// Resize the dynamic arrays
{{_recorded}}.resize(_new_size, _num_indices);

But then, values are written in the arrays by all the nodes:

{{ openmp_pragma('parallel-static') }}
for (int _i = 0; _i < _num_indices; _i++)
{

....
}

In general, operations that manipulate global data structures, e.g. that use push_back for a std::vector, should
only be executed by a single thread.

7.9.4 Synaptic propagation in parallel

General ideas

With OpenMP, synaptic propagation is also multi-threaded. Therefore, we have to modify the SynapticPath-
way objects, handling spike propagation. As can be seen in devices/cpp_standalone/templates/
synapses_classes.cpp, such an object, created during run time, will be able to get the number of threads decided
by the user:

_nb_threads = {{ openmp_pragma('get_num_threads') }};

By doing so, a SynapticPathway, instead of handling only one SpikeQueue, will be divided into _nb_threads
SpikeQueues, each of them handling a subset of the total number of connections. All the calls toSynapticPathway
object are performed from within parallel blocks in the synapses and synapses_push_spikes template,
we have to take this parallel context into account. This is why all the function of the SynapticPathway object are
taking care of the node number:

7.9. Multi-threading with OpenMP 861

Brian 2 Documentation, Release 2.5.1

void push(int *spikes, unsigned int nspikes)
{

queue[{{ openmp_pragma('get_thread_num') }}]->push(spikes, nspikes);
}

Such a method for the SynapticPathway will make sure that when spikes are propagated, all the threads will propa-
gate them to their connections. By default, again, if OpenMP is turned off, the queue vector has size 1.

Preparation of the SynapticPathway

Here we are explaining the implementation of the prepare() method for SynapticPathway:

{{ openmp_pragma('parallel') }}
{

unsigned int length;
if ({{ openmp_pragma('get_thread_num') }} == _nb_threads - 1)

length = n_synapses - (unsigned int) {{ openmp_pragma('get_thread_num') }}*n_
↪→synapses/_nb_threads;

else
length = (unsigned int) n_synapses/_nb_threads;

unsigned int padding = {{ openmp_pragma('get_thread_num') }}*(n_synapses/_nb_
↪→threads);

queue[{{ openmp_pragma('get_thread_num') }}]->openmp_padding = padding;
queue[{{ openmp_pragma('get_thread_num') }}]->prepare(&real_delays[padding], &

↪→sources[padding], length, _dt);
}

Basically, each threads is getting an equal number of synapses (except the last one, that will get the remaining ones, if the
number is not a multiple of n_threads), and the queues are receiving a padding integer telling them what part of the
synapses belongs to each queue. After that, the parallel context is destroyed, and network creation can continue. Note
that this could have been done without a parallel context, in a sequential manner, but this is just speeding up everything.

Selection of the spikes

Here we are explaining the implementation of the peek() method for SynapticPathway. This is an example of
concurrent access to data structures that are not well handled in parallel, such as std::vector. When peek() is
called, we need to return a vector of all the neuron spiking at that particular time. Therefore, we need to ask every queue
of the SynapticPathway what are the id of the spiking neurons, and concatenate them. Because those ids are stored
in vectors with various shapes, we need to loop over nodes to perform this concatenate, in a sequential manner:

{{ openmp_pragma('static-ordered') }}
for(int _thread=0; _thread < {{ openmp_pragma('get_num_threads') }}; _thread++)
{

{{ openmp_pragma('ordered') }}
{

if (_thread == 0)
all_peek.clear();

all_peek.insert(all_peek.end(), queue[_thread]->peek()->begin(), queue[_
↪→thread]->peek()->end());

}
}

862 Chapter 7. Developer’s guide

Brian 2 Documentation, Release 2.5.1

The loop, with the keyword ‘static-ordered’, is therefore performed such that node 0 enters it first, then node 1, and so
on. Only one node at a time is executing the block statement. This is needed because vector manipulations can not be
performed in a multi-threaded manner. At the end of the loop, all_peek is now a vector where all sub queues have
written the id of spiking cells, and therefore this is the list of all spiking cells within the SynapticPathway.

7.9.5 Compilation of the code

One extra file needs to be modified, in order for OpenMP implementation to work. This is the makefile devices/
cpp_standalone/templates/makefile. As one can simply see, the CFLAGS are dynamically modified dur-
ing code generation thanks to:

{{ openmp_pragma('compilation') }}

If OpenMP is activated, this will add the following dependencies:

-fopenmp

such that if OpenMP is turned off, nothing, in the generated code, does depend on it.

7.10 Devices

This document describes how to implement a new Device for Brian. This is a somewhat complicated process, and you
should first be familiar with devices from the user point of view (Computational methods and efficiency) as well as the
code generation system (Code generation).
We wrote Brian’s devices system to allow for two major use cases, although it can potentially be extended beyond this.
The two use cases are:

1. Runtime mode. In this mode, everything is managed by Python, including memory management (using numpy
by default) and running the simulation. Actual computational work can be carried out in several different ways,
including numpy or Cython.

2. Standalone mode. In this mode, running a Brian script leads to generating an entire source code project tree which
can be compiled and run independently of Brian or Python.

Runtime mode is handled by RuntimeDevice and is already implemented, so here I will mainly discuss standalone
devices. A good way to understand these devices is to look at the implementation of CPPStandaloneDevice (the
only one implemented in the core of Brian). In many cases, the simplest way to implement a new standalone device would
be to derive a class from CPPStandaloneDevice and overwrite just a few methods.

7.10.1 Memory management

Memory is managed primarily via the Device.add_array, Device.get_value and Device.set_value
methods. When a new array is created, the add_array method is called, and when trying to access this memory the
other two are called. The RuntimeDevice uses numpy to manage the memory and returns the underlying arrays in
these methods. The CPPStandaloneDevice just stores a dictionary of array names but doesn’t allocate any memory.
This information is later used to generate code that will allocate the memory, etc.

7.10. Devices 863

Brian 2 Documentation, Release 2.5.1

7.10.2 Code objects

As in the case of runtime code generation, computational work is done by a collection of CodeObject s. In CPP-
StandaloneDevice, each code object is converted into a pair of .cpp and .h files, and this is probably a fairly
typical way to do it.

7.10.3 Building

The method Device.build is used to generate the project. This can be implemented any way you like, although
looking at CPPStandaloneDevice.build is probably a good way to get an idea of how to do it.

7.10.4 Device override methods

Several functions and methods in Brian are decorated with the device_override decorator. This mechanism allows
a standalone device to override the behaviour of any of these functions by implementing a method with the name pro-
vided to device_override. For example, the CPPStandaloneDevice uses this to override Network.run as
CPPStandaloneDevice.network_run.

7.10.5 Other methods

There are some other methods to implement, including initialising arrays, creating spike queues for synaptic propagation.
Take a look at the source code for these.

7.11 Solving differential equations with the GNU Scientific Library

Conventionally, Brian generates its own code performing Numerical integration according to the chosen algorithm (see
the section on Code generation). Another option is to let the differential equation solvers defined in the GNU Scientific
Library (GSL) solve the given equations. In addition to offering a few extra integration methods, the GSL integrator
comes with the option of having an adaptable timestep. The latter functionality can have benefits for the speed with
which large simulations can be run. This is because it allows the use of larger timesteps for the overhead loops in Python,
without losing the accuracy of the numerical integration at points where small timesteps are necessary. In addition, a
major benefit of using the ODE solvers from GSL is that an estimation is performed on how wrong the current solution is,
so that simulations can be performed with some confidence on accuracy. (Note however that the confidence of accuracy
is based on estimation!)

7.11.1 StateUpdateMethod

Translation of equations to abstract code

The first part of Brian’s code generation is the translation of equations to what we call ‘abstract code’. In the case of Brian’s
stateupdaters so far, this abstract code describes the calculations that need to be done to update differential variables
depending on their equations as is explained in the section on State update. In the case of preparing the equations for
GSL integration this is a bit different. Instead of writing down the computations that have to be done to reach the new
value of the variable after a time step, the equations have to be described in a way that GSL understands. The differential
equations have to be defined in a function and the function is given to GSL. This is best explained with an example. If we
have the following equations (taken from the adaptive threshold example):

864 Chapter 7. Developer’s guide

https://www.gnu.org/software/gsl/doc/html/ode-initval.html
https://www.gnu.org/software/gsl/doc/html/ode-initval.html

Brian 2 Documentation, Release 2.5.1

dv/dt = -v/(10*ms) : volt
dvt/dt = (10*mV - vt)/(15*ms) : volt

We would describe the equations to GSL as follows:

v = y[0]
vt = y[1]
f[0] = -v/(10e-3)
f[1] = (10e-3 - vt)

Each differential variable gets an index. Its value at any time is saved in the y-array and the derivatives are saved in the
f-array. However, doing this translation in the stateupdater would mean that Brian has to deal with variable descriptions
that contain array accessing: something that for example sympy doesn’t do. Because we still want to use Brian’s existing
parsing and checking mechanisms, we needed to find a way to describe the abstract code with only ‘normal’ variable
names. Our solution is to replace the y[0], f[0], etc. with a ‘normal’ variable name that is later replaced just before
the final code generation (in the GSLCodeGenerator). It has a tag and all the information needed to write the final
code. As an example, the GSL abstract code for the above equations would be:

v = _gsl_y0
vt = _gsl_y1
_gsl_f0 = -v/(10e-3)
_gsl_f1 = (10e-3 - vt)

In the GSLCodeGenerator these tags get replaced by the actual accessing of the arrays.

Return value of the StateUpdateMethod

So far, for each each code generation language (numpy, cython) there was just one set of rules of how to translate ab-
stract code to real code, described in its respective CodeObject and CodeGenerator. If the target language is set
to Cython, the stateupdater will use the CythonCodeObject, just like other objects such as the StateMonitor.
However, to achieve the above decribed translations of the abstract code generated by the StateUpdateMethod, we
need a special CythonCodeObject for the stateupdater alone (which at its turn can contain the special CodeGen-
erator), and this CodeObject should be selected based on the chosen StateUpdateMethod.
In order to achieve CodeObject selection based on the chosen stateupdater, the StateUpdateMethod returns a
class that can be called with an object, and the appropriate CodeObject is added as an attribute to the given object.
The return value of this callable is the abstract code describing the equations in a language that makes sense to the
GSLCodeGenerator.

7.11.2 GSLCodeObject

Each target language has its own GSLCodeObject that is derived from the already existing code object of its language.
There are only minimal changes to the already existing code object:

• Overwrite stateupate template: a new version of the stateupdate template is given (stateupdate.
cpp for C++ standalone and stateupdate.pyx for cython).

• Have a GSL specific generator_class: GSLCythonCodeGenerator
• Add the attribute original_generator_class: the conventional target-language generator is used to do
the bulk of the translation to get from abstract code to language-specific code.

This defining of GSL-specific code objects also allowed us to catch compilation errors so we can give the user some infor-
mation on that it might be GSL-related (overwriting the compile() method in the case of cython). In the case of the
C++ CodeObject such overriding wasn’t really possible so compilation errors in this case might be quite undescriptive.

7.11. Solving differential equations with the GNU Scientific Library 865

Brian 2 Documentation, Release 2.5.1

7.11.3 GSLCodeGenerator

This is where the magic happens. Roughly 1000 lines of code define the translation of abstract code to code that uses the
GNU Scientific Library’s ODE solvers to achieve state updates.
Upon a call to run(), the code objects necessary for the simulation get made. The code for this is described in the
device. Part of making the code objects is generating the code that describes the code objects. This starts with a call
to translate, which in the case of GSL brings us to the GSLCodeGenerator.translate(). This method is
built up as follows:

• Some GSL-specific preparatory work:
– Check whether the equations contain variable names that are reserved for the GSL code.
– Add the ‘gsl tags’ (see section on StateUpdateMethod) to the variables known to Brian as non-scalars. This is
necessary to ensure that all equations containing ‘gsl tags’ are considered vector equations, and thus added to
Brian’s vector code.

– Add GSL integrator meta variables as official Brian variables, so these are also taken into account upon
translation. The meta variables that are possible are described in the user manual (e.g. GSL’s step taken in a
single overhead step ‘_step_count’).

– Save function names. The original generators delete the function names from the variables dictionary once
they are processed. However, we need to know later in the GSL part of the code generation whether a certain
encountered variable name refers to a function or not.

• Brian’s general preparatory work. This piece of code is directly copied from the base CodeGenerator and is thus
similar to what is done normally.

• A call to original_generator.translate() to get the abstract code translated into code that is target-
language specific.

• A lot of statements to translate the target-language specific code to GSL-target-language specific code, described
in more detail below.

The biggest difference between conventional Brian code andGSL code is that the stateupdate-decribing lines are contained
directly in the main() or in a separate function, respectively. In both cases, the equations describing the system refer
to parameters that are in the Brian namespace (e.g. “dv/dt = -v/tau” needs access to “tau”). How can we access Brian’s
namespace in this separate function that is needed with GSL?
To explain the solution we first need some background information on this ‘separate function’ that is given to the GSL
integrators: _GSL_func. This function always gets three arguments:

• double t: the current time. This is relevant when the equations are dependent on time.
• const double _GSL_y[]’: an array containing the current values of the differential variables (const because
the cannot be changed by _GSL_func itself).

• double f[]: an array containing the derivatives of the differential variables (i.e. the equations describing the
differential system).

• void * params: a pointer.
The pointer can be a pointer to whatever you want, and can thus point to a data structure containing the system parameters
(such as tau). To achieve a structure containing all the parameters of the system, a considerable amount of code has to be
added/changed to that generated by conventional Brian:

• The data structure, _GSL_dataholder, has to be defined with all variables needed in the vector code. For this reason,
also the datatype of each variable is required.

– This is done in the method GSLCodeGenerator.write_dataholder

866 Chapter 7. Developer’s guide

Brian 2 Documentation, Release 2.5.1

• Instead of referring to the variables by their name only (e.g. dv/dt = -v/tau), the variables have to be accessed
as part of the data structure (e.g. dv/dt = -v/_GSL_dataholder->tau in the case of cpp). Also, as
mentioned earlier, we want to translate the ‘gsl tags’ to what they should be in the final code (e.g. _gsl_f0 to
f[0]).
– This is done in the method GSLCodeGenerator.translate_vector_code. It works based on the
to_replace dictionary (generated in the methods GSLCodeGenerator.diff_var_to_replace and
GSLCodeGenerator.to_replace_vector_vars) that simply contains the old variables as keys
and new variables as values, and is given to the word_replace function.

• The values of the variables in the data structure have to be set to the values of the variables in the Brian namespace.
– This is done in the method GSLCodeGenerator.unpack_namespace, and for the
‘scalar’ variables that require calculation first it is done in the method GSLCodeGenerator.
translate_scalar_code.

In addition, a few more ‘support’ functions are generated for the GSL script:
• int _set_dimension(size_t * dimension): sets the dimension of the system. Required for GSL.
• double* _assign_memory_y(): allocates the right amount of memory for the y array (also according to
the dimension of the system).

• int _fill_y_vector(_dataholder* _GSL_dataholder, double* _GSL_y, int _idx):
pulls out the values for each differential variable out of the ‘Brian’ array into the y-vector. This happens in the
vector loop (e.g. y[0] = _GSL_dataholder->_ptr_array_neurongroup_v[_idx]; for C++).

• int _empty_y_vector(_dataholder* _GSL_dataholder, double* _GSL_y, int _idx):
the opposite of _fill_y_vector. Pulls final numerical solutions from the y array and gives it back to Brian’s names-
pace.

• double* _set_GSL_scale_array(): sets the array bound for each differential vari-
able, for which the values are based on method_options['absolute_error'] and
method_options['absolute_error_per_variable'].

All of this is written in support functions so that the vector code in themain() can stay almost constant for any simulation.

7.11.4 Stateupdate templates

There is many extra things that need to be done for each simulation when using GSL compared to conventional Brian
stateupdaters. These are summarized in this section.
Things that need to be done for every type of simulation (either before, in or after main()):

• Cython-only: define the structs and functions that we will be using in cython language.
• Prepare the gsl_odeiv2_system: give function pointer, set dimension, give pointer to _GSL_dataholder
as params.

• Allocate the driver (name for the struct that contains the info necessary to perform GSL integration)
• Define dt.

Things that need to be done every loop iteration for every type of simulation:
• Define t and t1 (t + dt).
• Transfer the values in the Brian arrays to the y-array that will be given to GSL.
• Set _GSL_dataholder._idx (in case we need to access array variables in _GSL_func).
• Initialize the driver (reset counters, set dt_start).

7.11. Solving differential equations with the GNU Scientific Library 867

Brian 2 Documentation, Release 2.5.1

• Apply driver (either with adaptable- or fixed time step).
• Optionally save certain meta-variables
• Transfer values from GSL’s y-vector to Brian arrays

868 Chapter 7. Developer’s guide

CHAPTER

EIGHT

INDICES AND TABLES

• genindex
• modindex
• search

869

Brian 2 Documentation, Release 2.5.1

870 Chapter 8. Indices and tables

BIBLIOGRAPHY

[R13] M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, 10th printing, 1964, pp. 86. http://
www.math.sfu.ca/~cbm/aands/

[R14] Wikipedia, “Inverse hyperbolic function”, https://en.wikipedia.org/wiki/Arccosh
[R15] M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, 10th printing, 1964, pp. 86. http://

www.math.sfu.ca/~cbm/aands/
[R16] Wikipedia, “Inverse hyperbolic function”, https://en.wikipedia.org/wiki/Arcsinh
[R17] M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, 10th printing, 1964, pp. 86. http://

www.math.sfu.ca/~cbm/aands/
[R18] Wikipedia, “Inverse hyperbolic function”, https://en.wikipedia.org/wiki/Arctanh
[R19] Wikipedia, “Exponential function”, https://en.wikipedia.org/wiki/Exponential_function
[R20] M.Abramovitz and I. A. Stegun, “Handbook ofMathematical Functions with Formulas, Graphs, andMathematical

Tables,” Dover, 1964, p. 69, http://www.math.sfu.ca/~cbm/aands/page_69.htm
[R21] M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, 10th printing, 1964, pp. 67. http://

www.math.sfu.ca/~cbm/aands/
[R22] Wikipedia, “Logarithm”. https://en.wikipedia.org/wiki/Logarithm
[R23] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972, pg. 83.

http://www.math.sfu.ca/~cbm/aands/
[R24] Wikipedia, “Hyperbolic function”, https://en.wikipedia.org/wiki/Hyperbolic_function

871

http://www.math.sfu.ca/~cbm/aands/
http://www.math.sfu.ca/~cbm/aands/
https://en.wikipedia.org/wiki/Arccosh
http://www.math.sfu.ca/~cbm/aands/
http://www.math.sfu.ca/~cbm/aands/
https://en.wikipedia.org/wiki/Arcsinh
http://www.math.sfu.ca/~cbm/aands/
http://www.math.sfu.ca/~cbm/aands/
https://en.wikipedia.org/wiki/Arctanh
https://en.wikipedia.org/wiki/Exponential_function
http://www.math.sfu.ca/~cbm/aands/page_69.htm
http://www.math.sfu.ca/~cbm/aands/
http://www.math.sfu.ca/~cbm/aands/
https://en.wikipedia.org/wiki/Logarithm
http://www.math.sfu.ca/~cbm/aands/
https://en.wikipedia.org/wiki/Hyperbolic_function

Brian 2 Documentation, Release 2.5.1

872 Bibliography

PYTHON MODULE INDEX

_
brian2.__init__, 461
brian2._version, 462

c
brian2.codegen, 466
brian2.codegen._prefs, 466
brian2.codegen.codeobject, 467
brian2.codegen.cpp_prefs, 471
brian2.codegen.generators, 487
brian2.codegen.generators.base, 498
brian2.codegen.generators.cpp_generator,

500
brian2.codegen.generators.cython_generator,

503
brian2.codegen.generators.GSL_generator,

487
brian2.codegen.generators.numpy_generator,

505
brian2.codegen.get_cpu_flags, 473
brian2.codegen.optimisation, 474
brian2.codegen.permutation_analysis, 478
brian2.codegen.runtime, 508
brian2.codegen.runtime.cython_rt, 510
brian2.codegen.runtime.cython_rt.cython_rt,

510
brian2.codegen.runtime.cython_rt.extension_manager,

511
brian2.codegen.runtime.GSLcython_rt, 508
brian2.codegen.runtime.GSLcython_rt.GSLcython_rt,

508
brian2.codegen.runtime.numpy_rt, 513
brian2.codegen.runtime.numpy_rt.numpy_rt,

513
brian2.codegen.statements, 479
brian2.codegen.targets, 480
brian2.codegen.templates, 480
brian2.codegen.translation, 484
brian2.core, 515
brian2.core.base, 515
brian2.core.clocks, 520
brian2.core.core_preferences, 523

brian2.core.functions, 524
brian2.core.magic, 532
brian2.core.names, 538
brian2.core.namespace, 540
brian2.core.network, 541
brian2.core.operations, 550
brian2.core.preferences, 553
brian2.core.spikesource, 559
brian2.core.tracking, 560
brian2.core.variables, 561

d
brian2.devices, 584
brian2.devices.cpp_standalone, 596
brian2.devices.cpp_standalone.codeobject,

596
brian2.devices.cpp_standalone.device,

598
brian2.devices.cpp_standalone.GSLcodeobject,

596
brian2.devices.device, 585

e
brian2.equations, 607
brian2.equations.codestrings, 607
brian2.equations.equations, 610
brian2.equations.refractory, 620
brian2.equations.unitcheck, 621

g
brian2.groups, 623
brian2.groups.group, 623
brian2.groups.neurongroup, 630
brian2.groups.subgroup, 640

h
brian2.hears, 462

i
brian2.importexport, 640
brian2.importexport.dictlike, 641
brian2.importexport.importexport, 643

873

Brian 2 Documentation, Release 2.5.1

brian2.input, 644
brian2.input.binomial, 644
brian2.input.poissongroup, 645
brian2.input.poissoninput, 647
brian2.input.spikegeneratorgroup, 648
brian2.input.timedarray, 651

m
brian2.memory.dynamicarray, 654
brian2.monitors, 656
brian2.monitors.ratemonitor, 656
brian2.monitors.spikemonitor, 658
brian2.monitors.statemonitor, 667

n
brian2.numpy_, 465

o
brian2.only, 465

p
brian2.parsing.bast, 672
brian2.parsing.dependencies, 675
brian2.parsing.expressions, 676
brian2.parsing.functions, 678
brian2.parsing.rendering, 681
brian2.parsing.statements, 686
brian2.parsing.sympytools, 686

s
brian2.spatialneuron, 689
brian2.spatialneuron.morphology, 689
brian2.spatialneuron.spatialneuron, 712
brian2.stateupdaters, 716
brian2.stateupdaters.base, 720
brian2.stateupdaters.exact, 722
brian2.stateupdaters.explicit, 726
brian2.stateupdaters.exponential_euler,

733
brian2.stateupdaters.GSL, 716
brian2.synapses, 735
brian2.synapses.parse_synaptic_generator_syntax,

735
brian2.synapses.spikequeue, 736
brian2.synapses.synapses, 738

u
brian2.units, 749
brian2.units.allunits, 750
brian2.units.constants, 750
brian2.units.fundamentalunits, 751
brian2.units.stdunits, 772
brian2.units.unitsafefunctions, 772
brian2.utils, 800

brian2.utils.arrays, 800
brian2.utils.caching, 801
brian2.utils.environment, 802
brian2.utils.filelock, 802
brian2.utils.filetools, 806
brian2.utils.logger, 807
brian2.utils.stringtools, 816
brian2.utils.topsort, 821

874 Python Module Index

INDEX

Symbols
__call__() (brian2.codegen.codeobject.CodeObject

method), 468
__call__() (brian2.codegen.cpp_prefs.C99Check

method), 472
__call__() (brian2.codegen.templates.CodeObjectTemplate

method), 481
__call__() (brian2.core.functions.Function method),

525
__call__() (brian2.core.network.TextReport method),

549
__call__() (brian2.core.preferences.DefaultValidator

method), 557
__call__() (brian2.devices.cpp_standalone.codeobject.CPPStandaloneCodeObject

method), 597
__call__() (brian2.devices.device.Dummy method),

589
__call__() (brian2.groups.group.Indexing method),

627
__call__() (brian2.stateupdaters.GSL.GSLContainer

method), 717
__call__() (brian2.stateupdaters.GSL.GSLStateUpdater

method), 718
__call__() (brian2.stateupdaters.base.StateUpdateMethod

method), 720
__call__() (brian2.stateupdaters.exact.IndependentStateUpdater

method), 723
__call__() (brian2.stateupdaters.exact.LinearStateUpdater

method), 724
__call__() (brian2.stateupdaters.explicit.ExplicitStateUpdater

method), 730
__call__() (brian2.stateupdaters.exponential_euler.ExponentialEulerStateUpdater

method), 733
__call__() (brian2.synapses.synapses.SynapticIndexing

method), 747
__getitem__() (brian2.units.fundamentalunits.UnitRegistry

method), 761
_cache_irrelevant_attributes

(brian2.utils.caching.CacheKey attribute),
801

_clock (brian2.core.base.BrianObject attribute), 517
_connect_called (brian2.synapses.synapses.Synapses

attribute), 742
_creation_stack (brian2.core.base.BrianObject at-

tribute), 517
_dispname (brian2.units.fundamentalunits.Unit at-

tribute), 759
_dt (brian2.synapses.spikequeue.SpikeQueue attribute),

737
_initialise_queue_codeobj

(brian2.synapses.synapses.SynapticPathway
attribute), 748

_latexname (brian2.units.fundamentalunits.Unit
attribute), 759

_log_messages (brian2.utils.logger.BrianLogger
attribute), 809

_name (brian2.units.fundamentalunits.Unit attribute), 759
_network (brian2.core.base.BrianObject attribute), 517
_neuron_index (brian2.input.spikegeneratorgroup.SpikeGeneratorGroup

attribute), 650
_pathways (brian2.synapses.synapses.Synapses at-

tribute), 742
_pid (brian2.utils.logger.BrianLogger attribute), 809
_previous_dt (brian2.input.spikegeneratorgroup.SpikeGeneratorGroup

attribute), 650
_refractory (brian2.groups.neurongroup.NeuronGroup

attribute), 633
_registered_variables

(brian2.synapses.synapses.Synapses attribute),
742

_scope_current_key (brian2.core.base.BrianObject
attribute), 517

_scope_key (brian2.core.base.BrianObject attribute),
518

_source_end (brian2.synapses.spikequeue.SpikeQueue
attribute), 737

_source_start (brian2.synapses.spikequeue.SpikeQueue
attribute), 737

_spike_time (brian2.input.spikegeneratorgroup.SpikeGeneratorGroup
attribute), 650

_spikes_changed (brian2.input.spikegeneratorgroup.SpikeGeneratorGroup
attribute), 650

_stored_state (brian2.core.network.Network at-
tribute), 543

875

Brian 2 Documentation, Release 2.5.1

_substituted_expressions
(brian2.equations.equations.Equations attribute),
613

_synaptic_updaters
(brian2.synapses.synapses.Synapses attribute),
742

A
abstract_code_dependencies() (in module

brian2.parsing.dependencies), 675
abstract_code_from_function() (in module

brian2.parsing.functions), 680
AbstractCodeFunction (class in

brian2.parsing.functions), 678
acquire() (brian2.utils.filelock.BaseFileLock method),

803
activate() (brian2.devices.device.Device method), 586
active (brian2.core.base.BrianObject attribute), 518
active_device (in module brian2.devices.device), 595
add() (brian2.core.magic.MagicNetwork method), 533
add() (brian2.core.network.Network method), 544
add() (brian2.core.tracking.InstanceFollower method),

560
add() (brian2.core.tracking.InstanceTrackerSet method),

561
add() (brian2.spatialneuron.morphology.Children

method), 690
add() (brian2.units.fundamentalunits.UnitRegistry

method), 761
add_arange() (brian2.core.variables.Variables

method), 578
add_array() (brian2.core.variables.Variables method),

579
add_array() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice

method), 601
add_array() (brian2.devices.device.Device method),

586
add_array() (brian2.devices.device.RuntimeDevice

method), 591
add_arrays() (brian2.core.variables.Variables

method), 579
add_attribute() (brian2.groups.group.VariableOwner

method), 628
add_auxiliary_variable()

(brian2.core.variables.Variables method),
580

add_constant() (brian2.core.variables.Variables
method), 580

add_dependency() (brian2.core.base.BrianObject
method), 519

add_dynamic_array()
(brian2.core.variables.Variables method),
581

add_dynamic_implementation()

(brian2.core.functions.FunctionImplementationContainer
method), 527

add_gsl_variables_as_non_scalar()
(brian2.codegen.generators.GSL_generator.GSLCodeGenerator
method), 491

add_implementation()
(brian2.core.functions.FunctionImplementationContainer
method), 527

add_meta_variables()
(brian2.codegen.generators.GSL_generator.GSLCodeGenerator
method), 491

add_numpy_implementation()
(brian2.core.functions.FunctionImplementationContainer
method), 527

add_object() (brian2.core.variables.Variables
method), 581

add_reference() (brian2.core.variables.Variables
method), 582

add_references() (brian2.core.variables.Variables
method), 582

add_referred_subexpression()
(brian2.core.variables.Variables method),
582

add_refractoriness() (in module
brian2.equations.refractory), 621

add_subexpression()
(brian2.core.variables.Variables method),
582

add_to_magic_network
(brian2.core.base.BrianObject attribute), 518

additional_unit_register (in module
brian2.units.fundamentalunits), 771

advance() (brian2.synapses.spikequeue.SpikeQueue
method), 738

after_run() (brian2.codegen.codeobject.CodeObject
method), 468

after_run() (brian2.core.base.BrianObject method),
519

after_run() (brian2.core.magic.MagicNetwork
method), 533

after_run() (brian2.core.network.Network method),
544

all_values() (brian2.monitors.spikemonitor.EventMonitor
method), 661

all_values() (brian2.monitors.spikemonitor.SpikeMonitor
method), 664

allows_scalar_write
(brian2.codegen.templates.CodeObjectTemplate
attribute), 481

analyse_identifiers() (in module
brian2.codegen.translation), 485

apply_stateupdater()
(brian2.stateupdaters.base.StateUpdateMethod
static method), 721

876 Index

Brian 2 Documentation, Release 2.5.1

arange() (in module brian2.units.unitsafefunctions), 772
arange_arrays (brian2.devices.cpp_standalone.device.CPPStandaloneDevice

attribute), 601
arccos() (in module brian2.units.unitsafefunctions), 774
arccosh() (in module brian2.units.unitsafefunctions),

775
arcsin() (in module brian2.units.unitsafefunctions), 776
arcsinh() (in module brian2.units.unitsafefunctions),

777
arctan() (in module brian2.units.unitsafefunctions), 778
arctanh() (in module brian2.units.unitsafefunctions),

780
area (brian2.spatialneuron.morphology.Cylinder at-

tribute), 692
area (brian2.spatialneuron.morphology.Morphology at-

tribute), 695
area (brian2.spatialneuron.morphology.Section attribute),

703
area (brian2.spatialneuron.morphology.Soma attribute),

706
area (brian2.spatialneuron.morphology.SubMorphology

attribute), 710
ArithmeticSimplifier (class in

brian2.codegen.optimisation), 474
array (brian2.core.variables.Variable attribute), 572
array_cache (brian2.devices.cpp_standalone.device.CPPStandaloneDevice

attribute), 601
array_read_write()

(brian2.codegen.generators.base.CodeGenerator
method), 499

arrays (brian2.devices.cpp_standalone.device.CPPStandaloneDevice
attribute), 601

arrays (brian2.devices.device.RuntimeDevice attribute),
591

arrays_helper() (brian2.codegen.generators.base.CodeGenerator
method), 499

ArrayVariable (class in brian2.core.variables), 562
as_file (brian2.core.preferences.BrianGlobalPreferences

attribute), 554
assign_id() (brian2.core.names.Nameable method),

539
auto_target() (in module brian2.devices.device), 593
autoindent() (in module brian2.codegen.templates),

484
autoindent_postfilter() (in module

brian2.codegen.templates), 484
AuxiliaryVariable (class in brian2.core.variables),

564

B
BaseFileLock (class in brian2.utils.filelock), 803
before_after_blocks

(brian2.devices.cpp_standalone.codeobject.CPPStandaloneCodeObject
attribute), 597

before_run() (brian2.codegen.codeobject.CodeObject
method), 468

before_run() (brian2.core.base.BrianObject method),
519

before_run() (brian2.core.network.Network method),
544

before_run() (brian2.groups.group.CodeRunner
method), 625

before_run() (brian2.groups.neurongroup.NeuronGroup
method), 633

before_run() (brian2.input.poissongroup.PoissonGroup
method), 646

before_run() (brian2.input.poissoninput.PoissonInput
method), 648

before_run() (brian2.input.spikegeneratorgroup.SpikeGeneratorGroup
method), 650

before_run() (brian2.spatialneuron.spatialneuron.SpatialStateUpdater
method), 715

before_run() (brian2.synapses.synapses.SummedVariableUpdater
method), 739

before_run() (brian2.synapses.synapses.Synapses
method), 742

before_run() (brian2.synapses.synapses.SynapticPathway
method), 748

BinomialFunction (class in brian2.input.binomial),
644

brian2.__init__
module, 461

brian2._version
module, 462

brian2.codegen
module, 466

brian2.codegen._prefs
module, 466

brian2.codegen.codeobject
module, 467

brian2.codegen.cpp_prefs
module, 471

brian2.codegen.generators
module, 487

brian2.codegen.generators.base
module, 498

brian2.codegen.generators.cpp_generator
module, 500

brian2.codegen.generators.cython_generator
module, 503

brian2.codegen.generators.GSL_generator
module, 487

brian2.codegen.generators.numpy_generator
module, 505

brian2.codegen.get_cpu_flags
module, 473

brian2.codegen.optimisation
module, 474

Index 877

Brian 2 Documentation, Release 2.5.1

brian2.codegen.permutation_analysis
module, 478

brian2.codegen.runtime
module, 508

brian2.codegen.runtime.cython_rt
module, 510

brian2.codegen.runtime.cython_rt.cython_rt
module, 510

brian2.codegen.runtime.cython_rt.extension_manager
module, 511

brian2.codegen.runtime.GSLcython_rt
module, 508

brian2.codegen.runtime.GSLcython_rt.GSLcython_rt
module, 508

brian2.codegen.runtime.numpy_rt
module, 513

brian2.codegen.runtime.numpy_rt.numpy_rt
module, 513

brian2.codegen.statements
module, 479

brian2.codegen.targets
module, 480

brian2.codegen.templates
module, 480

brian2.codegen.translation
module, 484

brian2.core
module, 515

brian2.core.base
module, 515

brian2.core.clocks
module, 520

brian2.core.core_preferences
module, 523

brian2.core.functions
module, 524

brian2.core.magic
module, 532

brian2.core.names
module, 538

brian2.core.namespace
module, 540

brian2.core.network
module, 541

brian2.core.operations
module, 550

brian2.core.preferences
module, 553

brian2.core.spikesource
module, 559

brian2.core.tracking
module, 560

brian2.core.variables
module, 561

brian2.devices
module, 584

brian2.devices.cpp_standalone
module, 596

brian2.devices.cpp_standalone.codeobject
module, 596

brian2.devices.cpp_standalone.device
module, 598

brian2.devices.cpp_standalone.GSLcodeobject
module, 596

brian2.devices.device
module, 585

brian2.equations
module, 607

brian2.equations.codestrings
module, 607

brian2.equations.equations
module, 610

brian2.equations.refractory
module, 620

brian2.equations.unitcheck
module, 621

brian2.groups
module, 623

brian2.groups.group
module, 623

brian2.groups.neurongroup
module, 630

brian2.groups.subgroup
module, 640

brian2.hears
module, 462

brian2.importexport
module, 640

brian2.importexport.dictlike
module, 641

brian2.importexport.importexport
module, 643

brian2.input
module, 644

brian2.input.binomial
module, 644

brian2.input.poissongroup
module, 645

brian2.input.poissoninput
module, 647

brian2.input.spikegeneratorgroup
module, 648

brian2.input.timedarray
module, 651

brian2.memory.dynamicarray
module, 654

brian2.monitors
module, 656

878 Index

Brian 2 Documentation, Release 2.5.1

brian2.monitors.ratemonitor
module, 656

brian2.monitors.spikemonitor
module, 658

brian2.monitors.statemonitor
module, 667

brian2.numpy_
module, 465

brian2.only
module, 465

brian2.parsing.bast
module, 672

brian2.parsing.dependencies
module, 675

brian2.parsing.expressions
module, 676

brian2.parsing.functions
module, 678

brian2.parsing.rendering
module, 681

brian2.parsing.statements
module, 686

brian2.parsing.sympytools
module, 686

brian2.spatialneuron
module, 689

brian2.spatialneuron.morphology
module, 689

brian2.spatialneuron.spatialneuron
module, 712

brian2.stateupdaters
module, 716

brian2.stateupdaters.base
module, 720

brian2.stateupdaters.exact
module, 722

brian2.stateupdaters.explicit
module, 726

brian2.stateupdaters.exponential_euler
module, 733

brian2.stateupdaters.GSL
module, 716

brian2.synapses
module, 735

brian2.synapses.parse_synaptic_generator_syntax
module, 735

brian2.synapses.spikequeue
module, 736

brian2.synapses.synapses
module, 738

brian2.units
module, 749

brian2.units.allunits
module, 750

brian2.units.constants
module, 750

brian2.units.fundamentalunits
module, 751

brian2.units.stdunits
module, 772

brian2.units.unitsafefunctions
module, 772

brian2.utils
module, 800

brian2.utils.arrays
module, 800

brian2.utils.caching
module, 801

brian2.utils.environment
module, 802

brian2.utils.filelock
module, 802

brian2.utils.filetools
module, 806

brian2.utils.logger
module, 807

brian2.utils.stringtools
module, 816

brian2.utils.topsort
module, 821

brian_ast() (in module brian2.parsing.bast), 673
brian_dtype_from_dtype() (in module

brian2.parsing.bast), 674
brian_dtype_from_value() (in module

brian2.parsing.bast), 674
brian_excepthook() (in module brian2.utils.logger),

815
brian_object_exception() (in module

brian2.core.base), 520
brian_prefs (in module brian2.core.preferences), 558
BrianASTRenderer (class in brian2.parsing.bast), 672
BrianGlobalPreferences (class in

brian2.core.preferences), 553
BrianGlobalPreferencesView (class in

brian2.core.preferences), 555
BrianLogger (class in brian2.utils.logger), 808
BrianObject (class in brian2.core.base), 516
BrianObjectException (class in brian2.core.base),

519
BrianPreference (class in brian2.core.preferences),

556
BridgeSound (class in brian2.hears), 462
build() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice

method), 602
build() (brian2.devices.device.Device method), 586
build_on_run (brian2.devices.cpp_standalone.device.CPPStandaloneDevice

attribute), 601

Index 879

Brian 2 Documentation, Release 2.5.1

build_options (brian2.devices.cpp_standalone.device.CPPStandaloneDevice
attribute), 601

C
C99Check (class in brian2.codegen.cpp_prefs), 472
c_data_type() (brian2.codegen.generators.GSL_generator.GSLCodeGenerator

method), 491
c_data_type() (brian2.codegen.generators.GSL_generator.GSLCPPCodeGenerator

method), 488
c_data_type() (brian2.codegen.generators.GSL_generator.GSLCythonCodeGenerator

method), 497
c_data_type() (in module

brian2.codegen.generators.cpp_generator),
502

cached() (in module brian2.utils.caching), 802
CacheKey (class in brian2.utils.caching), 801
calc_repeats() (in module brian2.utils.arrays), 800
cancel_identical_terms() (in module

brian2.codegen.optimisation), 476
catch_logs (class in brian2.utils.logger), 814
ceil_func() (in module

brian2.codegen.generators.numpy_generator),
507

celsius (in module brian2.units.allunits), 750
check_all_validated()

(brian2.core.preferences.BrianGlobalPreferences
method), 554

check_cache() (in module brian2.__init__), 461
check_compiler_kwds() (in module

brian2.codegen.codeobject), 469
check_dependencies()

(brian2.core.magic.MagicNetwork method),
533

check_dependencies()
(brian2.core.network.Network method), 544

check_dimensions() (in module
brian2.equations.unitcheck), 622

check_dt() (in module brian2.core.clocks), 522
check_expression_for_multiple_stateful_functions()

(in module brian2.parsing.sympytools), 687
check_flags() (brian2.equations.equations.Equations

method), 613
check_for_order_independence() (in module

brian2.codegen.permutation_analysis), 479
check_identifier()

(brian2.equations.equations.Equations static
method), 614

check_identifier_basic() (in module
brian2.equations.equations), 617

check_identifier_constants() (in module
brian2.equations.equations), 617

check_identifier_functions() (in module
brian2.equations.equations), 617

check_identifier_pre_post() (in module
brian2.groups.neurongroup), 639

check_identifier_refractory() (in module
brian2.equations.refractory), 621

check_identifier_reserved() (in module
brian2.equations.equations), 618

check_identifier_units() (in module
brian2.equations.equations), 618

check_identifiers()
(brian2.equations.equations.Equations method),
614

check_openmp_compatible()
(brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 602

check_preference_name() (in module
brian2.core.preferences), 557

check_subexpressions() (in module
brian2.equations.equations), 618

check_units() (brian2.equations.equations.Equations
method), 614

check_units() (in module
brian2.units.fundamentalunits), 762

check_units_statements() (in module
brian2.equations.unitcheck), 622

check_variable_write()
(brian2.groups.group.VariableOwner method),
628

check_variable_write()
(brian2.synapses.synapses.Synapses method),
743

check_variable_write()
(brian2.synapses.synapses.SynapticPathway
method), 748

children (brian2.spatialneuron.morphology.Morphology
attribute), 695

children (brian2.spatialneuron.morphology.Node
attribute), 700

Children (class in brian2.spatialneuron.morphology),
689

class_name (brian2.codegen.codeobject.CodeObject at-
tribute), 468

clean_up_logging() (in module brian2.utils.logger),
815

clear_cache() (in module brian2.__init__), 461
clip_func() (in module

brian2.codegen.generators.numpy_generator),
507

clock (brian2.core.base.BrianObject attribute), 518
clock (brian2.core.spikesource.SpikeSource attribute),

559
Clock (class in brian2.core.clocks), 521
close() (brian2.utils.logger.std_silent class method), 815
code (brian2.equations.codestrings.CodeString attribute),

608

880 Index

Brian 2 Documentation, Release 2.5.1

code_lines (brian2.devices.cpp_standalone.device.CPPStandaloneDevice
attribute), 601

code_object() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 602

code_object() (brian2.devices.device.Device method),
586

code_object_class()
(brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 602

code_object_class() (brian2.devices.device.Device
method), 587

code_objects (brian2.core.base.BrianObject attribute),
518

code_representation() (in module
brian2.utils.stringtools), 817

CodeGenerator (class in
brian2.codegen.generators.base), 498

CodeObject (class in brian2.codegen.codeobject), 467
CodeObjectTemplate (class in

brian2.codegen.templates), 481
CodeRunner (class in brian2.groups.group), 623
CodeString (class in brian2.equations.codestrings), 607
collect() (in module brian2.codegen.optimisation), 476
collect() (in module brian2.core.magic), 535
collect_commutative() (in module

brian2.codegen.optimisation), 477
comp_name (brian2.spatialneuron.morphology.Node at-

tribute), 700
compile() (brian2.codegen.codeobject.CodeObject

method), 468
compile() (brian2.codegen.runtime.GSLcython_rt.GSLcython_rt.GSLCythonCodeObject

method), 509
compile_block() (brian2.codegen.codeobject.CodeObject

method), 468
compile_block() (brian2.codegen.runtime.cython_rt.cython_rt.CythonCodeObject

method), 510
compile_block() (brian2.codegen.runtime.numpy_rt.numpy_rt.NumpyCodeObject

method), 515
compile_block() (brian2.devices.cpp_standalone.codeobject.CPPStandaloneCodeObject

method), 597
compile_source() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice

method), 603
compiler_supports_c99() (in module

brian2.codegen.cpp_prefs), 473
conditional_write

(brian2.core.variables.ArrayVariable attribute),
563

conditional_write()
(brian2.codegen.generators.numpy_generator.NumpyCodeGenerator
method), 506

connect() (brian2.synapses.synapses.Synapses method),
743

console_handler (brian2.utils.logger.BrianLogger at-
tribute), 809

constant (brian2.core.variables.Variable attribute), 572
Constant (class in brian2.core.variables), 565
constant_or_scalar() (in module

brian2.codegen.codeobject), 469
contained_objects (brian2.core.base.BrianObject

attribute), 518
convert_unit_b1_to_b2() (in module

brian2.hears), 464
convert_unit_b2_to_b1() (in module

brian2.hears), 464
coordinates (brian2.spatialneuron.morphology.Morphology

attribute), 695
coordinates_ (brian2.spatialneuron.morphology.Morphology

attribute), 695
copy_directory() (in module brian2.utils.filetools),

806
copy_section() (brian2.spatialneuron.morphology.Cylinder

method), 692
copy_section() (brian2.spatialneuron.morphology.Morphology

method), 697
copy_section() (brian2.spatialneuron.morphology.Section

method), 704
copy_section() (brian2.spatialneuron.morphology.Soma

method), 707
copy_source_files()

(brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 603

cos() (in module brian2.units.unitsafefunctions), 781
cosh() (in module brian2.units.unitsafefunctions), 782
count (brian2.monitors.spikemonitor.EventMonitor

attribute), 660
count (brian2.monitors.spikemonitor.SpikeMonitor

attribute), 664
cpp_standalone_device (in module

brian2.devices.cpp_standalone.device), 607
CPPCodeGenerator (class in

brian2.codegen.generators.cpp_generator),
500

CPPNodeRenderer (class in brian2.parsing.rendering),
681

CPPStandaloneCodeObject (class in
brian2.devices.cpp_standalone.codeobject),
596

CPPStandaloneDevice (class in
brian2.devices.cpp_standalone.device), 598

CPPWriter (class in brian2.devices.cpp_standalone.device),
606

create() (brian2.units.fundamentalunits.Unit static
method), 759

create_clock_variables()
(brian2.core.variables.Variables method),
582

create_code_objects()
(brian2.groups.group.CodeRunner method),

Index 881

Brian 2 Documentation, Release 2.5.1

625
create_code_objects()

(brian2.synapses.synapses.SynapticPathway
method), 748

create_default_code_object()
(brian2.groups.group.CodeRunner method),
625

create_extension()
(brian2.codegen.runtime.cython_rt.extension_manager.CythonExtensionManager
method), 512

create_runner_codeobj() (in module
brian2.codegen.codeobject), 470

create_scaled_unit()
(brian2.units.fundamentalunits.Unit static
method), 760

CurrentDeviceProxy (class in
brian2.devices.device), 585

currenttime (brian2.synapses.spikequeue.SpikeQueue
attribute), 737

custom_operation() (brian2.groups.group.Group
method), 625

CustomSympyPrinter (class in
brian2.parsing.sympytools), 687

Cylinder (class in brian2.spatialneuron.morphology),
690

cython_extension_manager (in module
brian2.codegen.runtime.cython_rt.extension_manager),
513

CythonCodeGenerator (class in
brian2.codegen.generators.cython_generator),
503

CythonCodeObject (class in
brian2.codegen.runtime.cython_rt.cython_rt),
510

CythonExtensionManager (class in
brian2.codegen.runtime.cython_rt.extension_manager),
511

CythonNodeRenderer (class in
brian2.codegen.generators.cython_generator),
504

D
debug() (brian2.utils.logger.BrianLogger method), 810
declare_types() (in module brian2.core.functions),

529
default_float_dtype_validator() (in module

brian2.core.core_preferences), 523
defaultclock (in module brian2.core.clocks), 523
DefaultClockProxy (class in brian2.core.clocks), 522
defaults_as_file (brian2.core.preferences.BrianGlobalPreferences

attribute), 554
DefaultValidator (class in brian2.core.preferences),

556
deindent() (in module brian2.utils.stringtools), 817

delay (brian2.synapses.synapses.Synapses attribute), 742
delay_ (brian2.synapses.synapses.Synapses attribute),

742
delete() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice

method), 603
delete() (brian2.devices.device.Device method), 587
denormals_to_zero_code()

(brian2.codegen.generators.cpp_generator.CPPCodeGenerator
method), 501

dependencies (brian2.equations.equations.Equations
attribute), 613

derive() (brian2.codegen.templates.Templater method),
483

DESCRIPTION (brian2.stateupdaters.explicit.ExplicitStateUpdater
attribute), 728

DESCRIPTION() (brian2.stateupdaters.explicit.ExplicitStateUpdater
method), 728

dest_stderr (brian2.utils.logger.std_silent attribute),
815

dest_stdout (brian2.utils.logger.std_silent attribute),
815

determine_keywords()
(brian2.codegen.generators.base.CodeGenerator
method), 499

determine_keywords()
(brian2.codegen.generators.cpp_generator.CPPCodeGenerator
method), 501

determine_keywords()
(brian2.codegen.generators.cython_generator.CythonCodeGenerator
method), 503

determine_keywords()
(brian2.codegen.generators.numpy_generator.NumpyCodeGenerator
method), 506

device (brian2.core.variables.ArrayVariable attribute),
563

device (brian2.core.variables.Subexpression attribute),
570

Device (class in brian2.devices.device), 585
device (in module brian2.devices.device), 595
device_override() (in module brian2.core.base),

520
diagnostic() (brian2.utils.logger.BrianLogger

method), 810
diagonal() (in module brian2.units.unitsafefunctions),

783
diagonal_noise() (in module

brian2.stateupdaters.explicit), 731
diameter (brian2.spatialneuron.morphology.Cylinder

attribute), 692
diameter (brian2.spatialneuron.morphology.Morphology

attribute), 695
diameter (brian2.spatialneuron.morphology.Node

attribute), 700
diameter (brian2.spatialneuron.morphology.Section at-

882 Index

Brian 2 Documentation, Release 2.5.1

tribute), 703
diameter (brian2.spatialneuron.morphology.Soma at-

tribute), 706
diameter (brian2.spatialneuron.morphology.SubMorphology

attribute), 710
DictImportExport (class in

brian2.importexport.dictlike), 641
diff_eq_expressions

(brian2.equations.equations.Equations attribute),
613

diff_eq_names (brian2.equations.equations.Equations
attribute), 613

diff_var_to_replace()
(brian2.codegen.generators.GSL_generator.GSLCodeGenerator
method), 491

dim (brian2.core.variables.Variable attribute), 572
dim (brian2.units.fundamentalunits.Dimension attribute),

752
dim (brian2.units.fundamentalunits.Quantity attribute),

754
dim (brian2.units.fundamentalunits.Unit attribute), 759
Dimension (class in brian2.units.fundamentalunits), 751
DIMENSIONLESS (in module

brian2.units.fundamentalunits), 771
DimensionMismatchError (class in

brian2.units.fundamentalunits), 752
dimensions (brian2.core.variables.DynamicArrayVariable

attribute), 568
dimensions (brian2.equations.equations.Equations at-

tribute), 613
dimensions (brian2.units.fundamentalunits.Quantity at-

tribute), 754
dimensions_and_type_from_string() (in

module brian2.equations.equations), 619
dispname (brian2.units.fundamentalunits.Unit attribute),

759
distance (brian2.spatialneuron.morphology.Morphology

attribute), 695
distance (brian2.spatialneuron.morphology.Section at-

tribute), 703
distance (brian2.spatialneuron.morphology.Soma at-

tribute), 706
distance (brian2.spatialneuron.morphology.SubMorphology

attribute), 710
do_validation() (brian2.core.preferences.BrianGlobalPreferences

method), 554
dot() (in module brian2.units.unitsafefunctions), 785
dt (brian2.core.clocks.Clock attribute), 521
dt_ (brian2.core.clocks.Clock attribute), 521
dtype (brian2.core.variables.Variable attribute), 572
dtype (brian2.core.variables.VariableView attribute), 575
dtype_repr() (in module

brian2.core.core_preferences), 524
dtype_str (brian2.core.variables.Variable attribute),

572
Dummy (class in brian2.devices.device), 589
dynamic (brian2.core.variables.Variable attribute), 572
dynamic_arrays (brian2.devices.cpp_standalone.device.CPPStandaloneDevice

attribute), 601
dynamic_arrays_2d

(brian2.devices.cpp_standalone.device.CPPStandaloneDevice
attribute), 601

DynamicArray (class in brian2.memory.dynamicarray),
654

DynamicArray1D (class in
brian2.memory.dynamicarray), 656

DynamicArrayVariable (class in
brian2.core.variables), 566

E
edits1() (brian2.utils.stringtools.SpellChecker method),

817
emit() (brian2.utils.logger.LogCapture method), 813
enable_profiling (brian2.devices.cpp_standalone.device.CPPStandaloneDevice

attribute), 601
end_diameter (brian2.spatialneuron.morphology.Cylinder

attribute), 692
end_diameter (brian2.spatialneuron.morphology.Section

attribute), 703
end_distance (brian2.spatialneuron.morphology.Morphology

attribute), 695
end_distance (brian2.spatialneuron.morphology.Section

attribute), 703
end_distance (brian2.spatialneuron.morphology.Soma

attribute), 706
end_x (brian2.spatialneuron.morphology.Morphology at-

tribute), 695
end_x (brian2.spatialneuron.morphology.SubMorphology

attribute), 710
end_x_ (brian2.spatialneuron.morphology.Morphology

attribute), 695
end_x_ (brian2.spatialneuron.morphology.Section at-

tribute), 703
end_x_ (brian2.spatialneuron.morphology.Soma at-

tribute), 706
end_x_ (brian2.spatialneuron.morphology.SubMorphology

attribute), 710
end_y (brian2.spatialneuron.morphology.Morphology at-

tribute), 695
end_y (brian2.spatialneuron.morphology.SubMorphology

attribute), 710
end_y_ (brian2.spatialneuron.morphology.Morphology

attribute), 696
end_y_ (brian2.spatialneuron.morphology.Section at-

tribute), 703
end_y_ (brian2.spatialneuron.morphology.Soma at-

tribute), 706

Index 883

Brian 2 Documentation, Release 2.5.1

end_y_ (brian2.spatialneuron.morphology.SubMorphology
attribute), 710

end_z (brian2.spatialneuron.morphology.Morphology at-
tribute), 696

end_z (brian2.spatialneuron.morphology.SubMorphology
attribute), 710

end_z_ (brian2.spatialneuron.morphology.Morphology
attribute), 696

end_z_ (brian2.spatialneuron.morphology.Section at-
tribute), 703

end_z_ (brian2.spatialneuron.morphology.Soma at-
tribute), 706

end_z_ (brian2.spatialneuron.morphology.SubMorphology
attribute), 710

ensure_directory() (in module
brian2.utils.filetools), 807

ensure_directory_of_file() (in module
brian2.utils.filetools), 807

epsilon_dt (brian2.core.clocks.Clock attribute), 521
eq_expressions (brian2.equations.equations.Equations

attribute), 613
eq_names (brian2.equations.equations.Equations at-

tribute), 613
EquationError (class in brian2.equations.equations),

610
Equations (class in brian2.equations.equations), 611
error() (brian2.utils.logger.BrianLogger method), 810
ErrorRaiser (class in brian2.core.preferences), 557
euler (in module brian2.stateupdaters.explicit), 732
eval() (brian2.core.functions.exprel class method), 529
eval_pref() (brian2.core.preferences.BrianGlobalPreferences

method), 554
evaluate_expr() (in module

brian2.codegen.optimisation), 477
event (brian2.monitors.spikemonitor.EventMonitor

attribute), 660
event_codes (brian2.groups.neurongroup.NeuronGroup

attribute), 633
event_trains() (brian2.monitors.spikemonitor.EventMonitor

method), 661
EventMonitor (class in brian2.monitors.spikemonitor),

659
events (brian2.groups.neurongroup.NeuronGroup

attribute), 633
events (brian2.synapses.synapses.Synapses attribute),

742
exact (in module brian2.stateupdaters.exact), 725
exception_occured (brian2.utils.logger.BrianLogger

attribute), 809
exp() (in module brian2.units.unitsafefunctions), 786
ExplicitStateUpdater (class in

brian2.stateupdaters.explicit), 726
exponential_euler (in module

brian2.stateupdaters.exponential_euler), 735

ExponentialEulerStateUpdater (class in
brian2.stateupdaters.exponential_euler), 733

export_data() (brian2.importexport.dictlike.DictImportExport
static method), 641

export_data() (brian2.importexport.dictlike.PandasImportExport
static method), 642

export_data() (brian2.importexport.importexport.ImportExport
static method), 643

expr (brian2.core.variables.Subexpression attribute), 570
exprel (class in brian2.core.functions), 528
EXPRESSION (brian2.stateupdaters.explicit.ExplicitStateUpdater

attribute), 728
Expression (class in brian2.equations.codestrings), 608
EXPRESSION() (brian2.stateupdaters.explicit.ExplicitStateUpdater

method), 728
expression_complexity() (in module

brian2.codegen.optimisation), 477
expression_complexity() (in module

brian2.parsing.sympytools), 687
extract_abstract_code_functions() (in

module brian2.parsing.functions), 680
extract_constant_subexpressions() (in

module brian2.equations.equations), 619
extract_method_options() (in module

brian2.stateupdaters.base), 722

F
fail_for_dimension_mismatch() (in module

brian2.units.fundamentalunits), 764
fdiff() (brian2.core.functions.exprel method), 529
file_handler (brian2.utils.logger.BrianLogger at-

tribute), 809
FileLock (in module brian2.utils.filelock), 804
fill_with_array()

(brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 603

fill_with_array() (brian2.devices.device.Device
method), 587

fill_with_array()
(brian2.devices.device.RuntimeDevice method),
591

filter() (brian2.utils.logger.HierarchyFilter method),
812

filter() (brian2.utils.logger.NameFilter method), 813
FilterbankGroup (class in brian2.hears), 463
find_differential_variables()

(brian2.codegen.generators.GSL_generator.GSLCodeGenerator
method), 491

find_function_names()
(brian2.codegen.generators.GSL_generator.GSLCodeGenerator
method), 491

find_name() (in module brian2.core.names), 540
find_synapses() (in module

brian2.synapses.synapses), 749

884 Index

Brian 2 Documentation, Release 2.5.1

find_undefined_variables()
(brian2.codegen.generators.GSL_generator.GSLCodeGenerator
method), 491

find_used_variables()
(brian2.codegen.generators.GSL_generator.GSLCodeGenerator
method), 492

FlatMorphology (class in
brian2.spatialneuron.spatialneuron), 712

floor_func() (in module
brian2.codegen.generators.numpy_generator),
507

flush_denormals (brian2.codegen.generators.cpp_generator.CPPCodeGenerator
attribute), 501

freeze() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 603

from_file() (brian2.spatialneuron.morphology.Morphology
static method), 697

from_points() (brian2.spatialneuron.morphology.Morphology
static method), 697

from_swc_file() (brian2.spatialneuron.morphology.Morphology
static method), 698

function (brian2.core.operations.NetworkOperation at-
tribute), 551

Function (class in brian2.core.functions), 524
FunctionImplementation (class in

brian2.core.functions), 526
FunctionImplementationContainer (class in

brian2.core.functions), 527
FunctionRewriter (class in

brian2.parsing.functions), 679

G
generate_codeobj_source()

(brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 603

generate_coordinates()
(brian2.spatialneuron.morphology.Morphology
method), 698

generate_main_source()
(brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 603

generate_makefile()
(brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 603

generate_network_source()
(brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 603

generate_objects_source()
(brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 603

generate_rand_code() (in module
brian2.devices.cpp_standalone.codeobject),
597

generate_run_source()

(brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 603

generate_synapses_classes_source()
(brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 603

generator_class (brian2.codegen.codeobject.CodeObject
attribute), 468

get() (brian2.core.tracking.InstanceFollower method),
560

get_addressable_value()
(brian2.core.variables.ArrayVariable method),
563

get_addressable_value()
(brian2.core.variables.Subexpression method),
570

get_addressable_value()
(brian2.core.variables.Variable method), 573

get_addressable_value_with_unit()
(brian2.core.variables.ArrayVariable method),
564

get_addressable_value_with_unit()
(brian2.core.variables.Subexpression method),
570

get_addressable_value_with_unit()
(brian2.core.variables.Variable method), 573

get_array_filename()
(brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 603

get_array_name() (brian2.codegen.generators.base.CodeGenerator
static method), 499

get_array_name() (brian2.codegen.generators.cpp_generator.CPPCodeGenerator
static method), 501

get_array_name() (brian2.codegen.generators.GSL_generator.GSLCythonCodeGenerator
static method), 497

get_array_name() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 604

get_array_name() (brian2.devices.device.Device
method), 587

get_array_name() (brian2.devices.device.RuntimeDevice
method), 591

get_code() (brian2.core.functions.FunctionImplementation
method), 527

get_codeobj_class()
(brian2.stateupdaters.GSL.GSLContainer
method), 717

get_compiler_and_args() (in module
brian2.codegen.cpp_prefs), 473

get_conditional_write_vars()
(brian2.codegen.generators.base.CodeGenerator
method), 500

get_conditionally_linear_system() (in
module brian2.stateupdaters.exponential_euler),
734

get_cpp_dtype() (in module

Index 885

Brian 2 Documentation, Release 2.5.1

brian2.codegen.generators.cython_generator),
505

get_cython_cache_dir() (in module
brian2.codegen.runtime.cython_rt.extension_manager),
512

get_cython_extensions() (in module
brian2.codegen.runtime.cython_rt.extension_manager),
512

get_device() (in module brian2.devices.device), 593
get_dimension() (brian2.units.fundamentalunits.Dimension

method), 752
get_dimension_code()

(brian2.codegen.generators.GSL_generator.GSLCodeGenerator
method), 492

get_dimensions() (in module
brian2.units.fundamentalunits), 764

get_documentation()
(brian2.core.preferences.BrianGlobalPreferences
method), 554

get_dtype() (in module brian2.core.variables), 583
get_dtype() (in module brian2.groups.group), 630
get_dtype_str() (in module brian2.core.variables),

583
get_identifiers() (in module

brian2.utils.stringtools), 818
get_identifiers_recursively() (in module

brian2.codegen.translation), 486
get_item() (brian2.core.variables.VariableView

method), 575
get_len() (brian2.core.variables.ArrayVariable

method), 564
get_len() (brian2.core.variables.Variable method),

573
get_len() (brian2.devices.device.Device method), 588
get_linear_system() (in module

brian2.stateupdaters.exact), 725
get_local_namespace() (in module

brian2.core.namespace), 540
get_logger() (in module brian2.utils.logger), 815
get_msvc_env() (in module

brian2.codegen.cpp_prefs), 473
get_namespace() (brian2.core.functions.FunctionImplementation

method), 527
get_node_value() (in module

brian2.parsing.rendering), 686
get_numpy_dtype() (in module

brian2.codegen.generators.cython_generator),
505

get_objects_in_namespace() (in module
brian2.core.magic), 535

get_or_create_dimension() (in module
brian2.units.fundamentalunits), 765

get_profiling_info()
(brian2.core.network.Network method), 544

get_random_state() (brian2.devices.device.Device
method), 588

get_random_state()
(brian2.devices.device.RuntimeDevice method),
591

get_read_write_funcs() (in module
brian2.parsing.dependencies), 676

get_states() (brian2.core.magic.MagicNetwork
method), 533

get_states() (brian2.core.network.Network method),
544

get_states() (brian2.groups.group.VariableOwner
method), 628

get_subexpression_with_index_array()
(brian2.core.variables.VariableView method),
575

get_substituted_expressions()
(brian2.equations.equations.Equations method),
615

get_template() (brian2.codegen.templates.LazyTemplateLoader
method), 482

get_unit() (in module brian2.units.fundamentalunits),
766

get_unit_for_display() (in module
brian2.units.fundamentalunits), 766

get_value() (brian2.core.variables.ArrayVariable
method), 564

get_value() (brian2.core.variables.AuxiliaryVariable
method), 565

get_value() (brian2.core.variables.Constant method),
566

get_value() (brian2.core.variables.Variable method),
573

get_value() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 604

get_value() (brian2.devices.device.RuntimeDevice
method), 591

get_value_with_unit()
(brian2.core.variables.Variable method), 574

get_versions() (in module brian2._version), 462
get_with_expression()

(brian2.core.variables.VariableView method),
575

get_with_index_array()
(brian2.core.variables.VariableView method),
576

getslices() (in module
brian2.memory.dynamicarray), 656

Group (class in brian2.groups.group), 625
gsl_rk2 (in module brian2.stateupdaters.GSL), 718
gsl_rk4 (in module brian2.stateupdaters.GSL), 718
gsl_rk8pd (in module brian2.stateupdaters.GSL), 719
gsl_rkck (in module brian2.stateupdaters.GSL), 719
gsl_rkf45 (in module brian2.stateupdaters.GSL), 719

886 Index

Brian 2 Documentation, Release 2.5.1

GSLCodeGenerator (class in
brian2.codegen.generators.GSL_generator),
489

GSLCompileError (class in
brian2.codegen.runtime.GSLcython_rt.GSLcython_rt),
509

GSLContainer (class in brian2.stateupdaters.GSL), 716
GSLCPPCodeGenerator (class in

brian2.codegen.generators.GSL_generator),
488

GSLCPPStandaloneCodeObject (class in
brian2.devices.cpp_standalone.GSLcodeobject),
596

GSLCythonCodeGenerator (class in
brian2.codegen.generators.GSL_generator),
496

GSLCythonCodeObject (class in
brian2.codegen.runtime.GSLcython_rt.GSLcython_rt),
509

GSLStateUpdater (class in brian2.stateupdaters.GSL),
717

H
handle_range() (in module

brian2.synapses.parse_synaptic_generator_syntax),
735

handle_sample() (in module
brian2.synapses.parse_synaptic_generator_syntax),
735

has_been_run (brian2.devices.cpp_standalone.device.CPPStandaloneDevice
attribute), 601

has_flag() (in module brian2.codegen.cpp_prefs), 473
has_repeated_indices()

(brian2.codegen.generators.base.CodeGenerator
method), 500

has_same_dimensions()
(brian2.units.fundamentalunits.Quantity
method), 755

have_same_dimensions() (in module
brian2.units.fundamentalunits), 766

heun (in module brian2.stateupdaters.explicit), 732
HierarchyFilter (class in brian2.utils.logger), 812

I
id (brian2.core.names.Nameable attribute), 539
identifier_checks

(brian2.equations.equations.Equations attribute),
613

identifiers (brian2.core.variables.Subexpression at-
tribute), 570

identifiers (brian2.equations.equations.Equations at-
tribute), 613

identifiers (brian2.equations.equations.SingleEquation
attribute), 616

implementation() (in module brian2.core.functions),
530

implementations (brian2.core.functions.Function at-
tribute), 525

implementations (brian2.input.binomial.BinomialFunction
attribute), 645

implementations (brian2.input.timedarray.TimedArray
attribute), 653

import_data() (brian2.importexport.dictlike.DictImportExport
static method), 641

import_data() (brian2.importexport.dictlike.PandasImportExport
static method), 642

import_data() (brian2.importexport.importexport.ImportExport
static method), 644

ImportExport (class in
brian2.importexport.importexport), 643

in_best_unit() (brian2.units.fundamentalunits.Quantity
method), 756

in_best_unit() (in module
brian2.units.fundamentalunits), 767

in_directory (class in brian2.utils.filetools), 806
in_unit() (brian2.units.fundamentalunits.Quantity

method), 755
in_unit() (in module brian2.units.fundamentalunits),

767
indent() (in module brian2.utils.stringtools), 819
independent (in module brian2.stateupdaters.exact),

725
IndependentStateUpdater (class in

brian2.stateupdaters.exact), 723
index (brian2.spatialneuron.morphology.Node attribute),

700
Indexing (class in brian2.groups.group), 627
IndexWrapper (class in brian2.groups.group), 627
indices (brian2.core.variables.Variables attribute), 578
info() (brian2.utils.logger.BrianLogger method), 810
init_with_arange()

(brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 604

init_with_arange() (brian2.devices.device.Device
method), 588

init_with_arange()
(brian2.devices.device.RuntimeDevice method),
591

init_with_zeros()
(brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 604

init_with_zeros() (brian2.devices.device.Device
method), 588

init_with_zeros()
(brian2.devices.device.RuntimeDevice method),
591

initialise_queue()
(brian2.synapses.synapses.SynapticPathway

Index 887

Brian 2 Documentation, Release 2.5.1

method), 748
initialize() (brian2.utils.logger.BrianLogger static

method), 810
initialize_array()

(brian2.codegen.generators.GSL_generator.GSLCodeGenerator
method), 492

initialize_array()
(brian2.codegen.generators.GSL_generator.GSLCPPCodeGenerator
method), 488

initialize_array()
(brian2.codegen.generators.GSL_generator.GSLCythonCodeGenerator
method), 497

insert_code() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 604

insert_code() (brian2.devices.device.Device method),
588

insert_device_code()
(brian2.devices.device.Device method), 588

install() (brian2.utils.logger.LogCapture method), 813
InstanceFollower (class in brian2.core.tracking),

560
InstanceTrackerSet (class in brian2.core.tracking),

560
int_func() (in module

brian2.codegen.generators.numpy_generator),
508

IntegrationError (class in
brian2.codegen.runtime.GSLcython_rt.GSLcython_rt),
510

invalidates_magic_network
(brian2.core.base.BrianObject attribute), 518

invert_dict() (in module
brian2.devices.cpp_standalone.device), 607

is_available() (brian2.codegen.codeobject.CodeObject
class method), 468

is_available() (brian2.codegen.runtime.cython_rt.cython_rt.CythonCodeObject
class method), 510

is_available() (brian2.codegen.runtime.numpy_rt.numpy_rt.NumpyCodeObject
class method), 515

is_boolean (brian2.core.variables.Variable attribute),
573

is_boolean() (in module brian2.parsing.bast), 674
is_boolean_dtype() (in module

brian2.parsing.bast), 674
is_boolean_expression() (in module

brian2.parsing.expressions), 677
is_constant_and_cpp_standalone()

(brian2.codegen.generators.GSL_generator.GSLCodeGenerator
method), 492

is_constant_over_dt() (in module
brian2.equations.codestrings), 610

is_cpp_standalone()
(brian2.codegen.generators.GSL_generator.GSLCodeGenerator
method), 493

is_dimensionless (brian2.units.fundamentalunits.Dimension
attribute), 752

is_dimensionless (brian2.units.fundamentalunits.Quantity
attribute), 754

is_dimensionless() (in module
brian2.units.fundamentalunits), 768

is_float() (in module brian2.parsing.bast), 674
is_float_dtype() (in module brian2.parsing.bast),

675
is_integer (brian2.core.variables.Variable attribute),

573
is_integer() (in module brian2.parsing.bast), 675
is_integer_dtype() (in module

brian2.parsing.bast), 675
is_locally_constant()

(brian2.core.functions.Function method), 525
is_locally_constant()

(brian2.input.timedarray.TimedArray method),
653

is_locked (brian2.utils.filelock.BaseFileLock attribute),
803

is_scalar_expression() (in module
brian2.codegen.translation), 486

is_scalar_type() (in module
brian2.units.fundamentalunits), 768

is_stateful() (in module
brian2.equations.equations), 620

is_stochastic (brian2.equations.equations.Equations
attribute), 613

iscompound (brian2.units.fundamentalunits.Unit
attribute), 759

it (brian2.monitors.spikemonitor.EventMonitor attribute),
660

it_ (brian2.monitors.spikemonitor.EventMonitor at-
tribute), 660

iterate_all (brian2.codegen.templates.CodeObjectTemplate
attribute), 481

K
known() (brian2.utils.stringtools.SpellChecker method),

817
known_edits2() (brian2.utils.stringtools.SpellChecker

method), 817

L
latexname (brian2.units.fundamentalunits.Unit at-

tribute), 759
LazyArange (class in

brian2.codegen.runtime.numpy_rt.numpy_rt),
513

LazyTemplateLoader (class in
brian2.codegen.templates), 482

length (brian2.spatialneuron.morphology.Morphology
attribute), 696

888 Index

Brian 2 Documentation, Release 2.5.1

length (brian2.spatialneuron.morphology.Section at-
tribute), 703

length (brian2.spatialneuron.morphology.Soma at-
tribute), 706

length (brian2.spatialneuron.morphology.SubMorphology
attribute), 710

linear (in module brian2.stateupdaters.exact), 726
LinearStateUpdater (class in

brian2.stateupdaters.exact), 724
LineInfo (class in brian2.codegen.translation), 485
linked_var() (in module brian2.core.variables), 584
LinkedVariable (class in brian2.core.variables), 568
linspace() (in module brian2.units.unitsafefunctions),

788
load_preferences()

(brian2.core.preferences.BrianGlobalPreferences
method), 554

lock_file (brian2.utils.filelock.BaseFileLock attribute),
803

lock_file (brian2.utils.filelock.Timeout attribute), 805
log() (in module brian2.units.unitsafefunctions), 789
log_level_debug() (brian2.utils.logger.BrianLogger

static method), 811
log_level_diagnostic()

(brian2.utils.logger.BrianLogger static method),
811

log_level_error() (brian2.utils.logger.BrianLogger
static method), 811

log_level_info() (brian2.utils.logger.BrianLogger
static method), 811

log_level_validator() (in module
brian2.utils.logger), 816

log_level_warn() (brian2.utils.logger.BrianLogger
static method), 811

LogCapture (class in brian2.utils.logger), 812
logger() (in module brian2.utils.filelock), 806

M
magic_network (in module brian2.core.magic), 538
MagicError (class in brian2.core.magic), 532
MagicNetwork (class in brian2.core.magic), 532
make_function_code()

(brian2.codegen.generators.GSL_generator.GSLCodeGenerator
method), 493

make_statements() (in module
brian2.codegen.translation), 486

method_choice (brian2.groups.neurongroup.NeuronGroup
attribute), 633

methods (brian2.importexport.importexport.ImportExport
attribute), 643

milstein (in module brian2.stateupdaters.explicit), 732
modify_arg() (in module brian2.hears), 464
module

brian2.__init__, 461

brian2._version, 462
brian2.codegen, 466
brian2.codegen._prefs, 466
brian2.codegen.codeobject, 467
brian2.codegen.cpp_prefs, 471
brian2.codegen.generators, 487
brian2.codegen.generators.base, 498
brian2.codegen.generators.cpp_generator,

500
brian2.codegen.generators.cython_generator,

503
brian2.codegen.generators.GSL_generator,

487
brian2.codegen.generators.numpy_generator,

505
brian2.codegen.get_cpu_flags, 473
brian2.codegen.optimisation, 474
brian2.codegen.permutation_analysis,

478
brian2.codegen.runtime, 508
brian2.codegen.runtime.cython_rt,

510
brian2.codegen.runtime.cython_rt.cython_rt,

510
brian2.codegen.runtime.cython_rt.extension_manager,

511
brian2.codegen.runtime.GSLcython_rt,

508
brian2.codegen.runtime.GSLcython_rt.GSLcython_rt,

508
brian2.codegen.runtime.numpy_rt, 513
brian2.codegen.runtime.numpy_rt.numpy_rt,

513
brian2.codegen.statements, 479
brian2.codegen.targets, 480
brian2.codegen.templates, 480
brian2.codegen.translation, 484
brian2.core, 515
brian2.core.base, 515
brian2.core.clocks, 520
brian2.core.core_preferences, 523
brian2.core.functions, 524
brian2.core.magic, 532
brian2.core.names, 538
brian2.core.namespace, 540
brian2.core.network, 541
brian2.core.operations, 550
brian2.core.preferences, 553
brian2.core.spikesource, 559
brian2.core.tracking, 560
brian2.core.variables, 561
brian2.devices, 584
brian2.devices.cpp_standalone, 596

Index 889

Brian 2 Documentation, Release 2.5.1

brian2.devices.cpp_standalone.codeobject,
596

brian2.devices.cpp_standalone.device,
598

brian2.devices.cpp_standalone.GSLcodeobject,
596

brian2.devices.device, 585
brian2.equations, 607
brian2.equations.codestrings, 607
brian2.equations.equations, 610
brian2.equations.refractory, 620
brian2.equations.unitcheck, 621
brian2.groups, 623
brian2.groups.group, 623
brian2.groups.neurongroup, 630
brian2.groups.subgroup, 640
brian2.hears, 462
brian2.importexport, 640
brian2.importexport.dictlike, 641
brian2.importexport.importexport,

643
brian2.input, 644
brian2.input.binomial, 644
brian2.input.poissongroup, 645
brian2.input.poissoninput, 647
brian2.input.spikegeneratorgroup,

648
brian2.input.timedarray, 651
brian2.memory.dynamicarray, 654
brian2.monitors, 656
brian2.monitors.ratemonitor, 656
brian2.monitors.spikemonitor, 658
brian2.monitors.statemonitor, 667
brian2.numpy_, 465
brian2.only, 465
brian2.parsing.bast, 672
brian2.parsing.dependencies, 675
brian2.parsing.expressions, 676
brian2.parsing.functions, 678
brian2.parsing.rendering, 681
brian2.parsing.statements, 686
brian2.parsing.sympytools, 686
brian2.spatialneuron, 689
brian2.spatialneuron.morphology, 689
brian2.spatialneuron.spatialneuron,

712
brian2.stateupdaters, 716
brian2.stateupdaters.base, 720
brian2.stateupdaters.exact, 722
brian2.stateupdaters.explicit, 726
brian2.stateupdaters.exponential_euler,

733
brian2.stateupdaters.GSL, 716
brian2.synapses, 735

brian2.synapses.parse_synaptic_generator_syntax,
735

brian2.synapses.spikequeue, 736
brian2.synapses.synapses, 738
brian2.units, 749
brian2.units.allunits, 750
brian2.units.constants, 750
brian2.units.fundamentalunits, 751
brian2.units.stdunits, 772
brian2.units.unitsafefunctions, 772
brian2.utils, 800
brian2.utils.arrays, 800
brian2.utils.caching, 801
brian2.utils.environment, 802
brian2.utils.filelock, 802
brian2.utils.filetools, 806
brian2.utils.logger, 807
brian2.utils.stringtools, 816
brian2.utils.topsort, 821

Morphology (class in brian2.spatialneuron.morphology),
693

MorphologyIndexWrapper (class in
brian2.spatialneuron.morphology), 700

MultiTemplate (class in brian2.codegen.templates),
482

N
N (brian2.input.poissoninput.PoissonInput attribute), 648
n (brian2.spatialneuron.morphology.Morphology attribute),

696
n (brian2.spatialneuron.morphology.SubMorphology

attribute), 710
n (brian2.synapses.spikequeue.SpikeQueue attribute), 738
N_incoming_post (brian2.synapses.synapses.Synapses

attribute), 742
N_outgoing_pre (brian2.synapses.synapses.Synapses

attribute), 742
n_sections (brian2.spatialneuron.morphology.SubMorphology

attribute), 710
name (brian2.core.base.BrianObject attribute), 518
name (brian2.core.names.Nameable attribute), 539
name (brian2.core.variables.Variable attribute), 573
name (brian2.importexport.dictlike.DictImportExport at-

tribute), 641
name (brian2.importexport.dictlike.PandasImportExport

attribute), 642
name (brian2.importexport.importexport.ImportExport at-

tribute), 643
name (brian2.units.fundamentalunits.Unit attribute), 759
name() (brian2.spatialneuron.morphology.Children

method), 690
Nameable (class in brian2.core.names), 538
NameFilter (class in brian2.utils.logger), 813

890 Index

Brian 2 Documentation, Release 2.5.1

names (brian2.equations.equations.Equations attribute),
613

namespace (brian2.core.base.BrianObject attribute), 518
ndim (brian2.core.variables.DynamicArrayVariable

attribute), 568
ndim (brian2.core.variables.VariableView attribute), 575
needs_reference_update

(brian2.core.variables.DynamicArrayVariable
attribute), 568

Network (class in brian2.core.network), 541
network_get_profiling_info()

(brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 604

network_operation() (in module
brian2.core.operations), 551

network_restore()
(brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 605

network_run() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 605

network_schedule (brian2.devices.device.Device at-
tribute), 586

network_store() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 605

NetworkOperation (class in brian2.core.operations),
550

NeuronGroup (class in brian2.groups.neurongroup), 631
Node (class in brian2.spatialneuron.morphology), 700
NodeRenderer (class in brian2.parsing.rendering), 682
num_events (brian2.monitors.spikemonitor.EventMonitor

attribute), 660
num_spikes (brian2.monitors.spikemonitor.SpikeMonitor

attribute), 664
NumpyCodeGenerator (class in

brian2.codegen.generators.numpy_generator),
505

NumpyCodeObject (class in
brian2.codegen.runtime.numpy_rt.numpy_rt),
514

NumpyNodeRenderer (class in
brian2.parsing.rendering), 684

O
objects (brian2.core.network.Network attribute), 543
openmp_pragma() (in module

brian2.devices.cpp_standalone.codeobject),
598

optimise_statements() (in module
brian2.codegen.optimisation), 477

order (brian2.core.base.BrianObject attribute), 518
OrderDependenceError (class in

brian2.codegen.permutation_analysis), 479
ordered (brian2.equations.equations.Equations at-

tribute), 613

OUTPUT (brian2.stateupdaters.explicit.ExplicitStateUpdater
attribute), 728

OUTPUT() (brian2.stateupdaters.explicit.ExplicitStateUpdater
method), 729

owner (brian2.core.variables.Variable attribute), 573
owner (brian2.core.variables.Variables attribute), 578

P
PandasImportExport (class in

brian2.importexport.dictlike), 642
parameter_names (brian2.equations.equations.Equations

attribute), 613
parent (brian2.spatialneuron.morphology.Morphology

attribute), 696
parent (brian2.spatialneuron.morphology.Node at-

tribute), 700
parse_expression_dimensions() (in module

brian2.parsing.expressions), 677
parse_preference_name() (in module

brian2.core.preferences), 558
parse_statement() (in module

brian2.parsing.statements), 686
parse_string_equations() (in module

brian2.equations.equations), 620
parse_synapse_generator() (in module

brian2.synapses.parse_synaptic_generator_syntax),
736

peek() (brian2.synapses.spikequeue.SpikeQueue
method), 738

poisson_func() (in module
brian2.codegen.generators.numpy_generator),
508

PoissonGroup (class in brian2.input.poissongroup), 645
PoissonInput (class in brian2.input.poissoninput), 647
PopulationRateMonitor (class in

brian2.monitors.ratemonitor), 657
PreferenceError (class in brian2.core.preferences),

557
prefs (in module brian2.core.preferences), 559
prepare() (brian2.synapses.spikequeue.SpikeQueue

method), 738
PRINTER (in module brian2.parsing.sympytools), 689
profiled_codeobjects

(brian2.devices.cpp_standalone.device.CPPStandaloneDevice
attribute), 601

profiling_info (brian2.core.network.Network
attribute), 543

profiling_summary() (in module
brian2.core.network), 549

ProfilingSummary (class in brian2.core.network),
548

project_dir (brian2.devices.cpp_standalone.device.CPPStandaloneDevice
attribute), 601

Index 891

Brian 2 Documentation, Release 2.5.1

push() (brian2.synapses.spikequeue.SpikeQueue
method), 738

push_spikes() (brian2.synapses.synapses.SynapticPathway
method), 748

Q
Quantity (class in brian2.units.fundamentalunits), 753
quantity_with_dimensions() (in module

brian2.units.fundamentalunits), 769
queue (brian2.synapses.synapses.SynapticPathway

attribute), 748

R
r_length_1 (brian2.spatialneuron.morphology.Cylinder

attribute), 692
r_length_1 (brian2.spatialneuron.morphology.Morphology

attribute), 696
r_length_1 (brian2.spatialneuron.morphology.Section

attribute), 703
r_length_1 (brian2.spatialneuron.morphology.Soma

attribute), 706
r_length_1 (brian2.spatialneuron.morphology.SubMorphology

attribute), 710
r_length_2 (brian2.spatialneuron.morphology.Cylinder

attribute), 692
r_length_2 (brian2.spatialneuron.morphology.Morphology

attribute), 696
r_length_2 (brian2.spatialneuron.morphology.Section

attribute), 703
r_length_2 (brian2.spatialneuron.morphology.Soma

attribute), 706
r_length_2 (brian2.spatialneuron.morphology.SubMorphology

attribute), 710
rand_func() (in module

brian2.codegen.generators.numpy_generator),
508

randn_func() (in module
brian2.codegen.generators.numpy_generator),
508

rate (brian2.input.poissoninput.PoissonInput attribute),
648

ravel() (in module brian2.units.unitsafefunctions), 791
read_arrays() (brian2.codegen.generators.numpy_generator.NumpyCodeGenerator

method), 506
read_only (brian2.core.variables.Variable attribute),

573
read_preference_file()

(brian2.core.preferences.BrianGlobalPreferences
method), 554

record (brian2.monitors.spikemonitor.EventMonitor at-
tribute), 660

record (brian2.monitors.statemonitor.StateMonitor
attribute), 669

record_single_timestep()
(brian2.monitors.statemonitor.StateMonitor
method), 669

record_variables (brian2.monitors.spikemonitor.EventMonitor
attribute), 660

record_variables (brian2.monitors.statemonitor.StateMonitor
attribute), 669

reduced_node() (in module
brian2.codegen.optimisation), 478

register() (brian2.importexport.importexport.ImportExport
static method), 644

register() (brian2.stateupdaters.base.StateUpdateMethod
static method), 721

register_identifier_check()
(brian2.equations.equations.Equations static
method), 615

register_new_unit() (in module
brian2.units.fundamentalunits), 769

register_preferences()
(brian2.core.preferences.BrianGlobalPreferences
method), 555

register_variable()
(brian2.synapses.synapses.Synapses method),
744

reinit() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 605

reinit() (brian2.devices.device.Device method), 588
reinit() (brian2.hears.FilterbankGroup method), 463
reinit() (brian2.monitors.ratemonitor.PopulationRateMonitor

method), 658
reinit() (brian2.monitors.spikemonitor.EventMonitor

method), 661
reinit() (brian2.monitors.statemonitor.StateMonitor

method), 669
reinit_and_delete() (in module

brian2.devices.device), 593
reinit_devices() (in module brian2.devices.device),

593
release() (brian2.utils.filelock.BaseFileLock method),

804
remove() (brian2.core.magic.MagicNetwork method),

533
remove() (brian2.core.network.Network method), 545
remove() (brian2.core.tracking.InstanceTrackerSet

method), 561
remove() (brian2.spatialneuron.morphology.Children

method), 690
render_Assign() (brian2.parsing.rendering.CPPNodeRenderer

method), 682
render_Assign() (brian2.parsing.rendering.NodeRenderer

method), 683
render_AugAssign()

(brian2.parsing.rendering.NodeRenderer
method), 683

892 Index

Brian 2 Documentation, Release 2.5.1

render_BinOp() (brian2.codegen.generators.cython_generator.CythonNodeRenderer
method), 504

render_BinOp() (brian2.codegen.optimisation.ArithmeticSimplifier
method), 474

render_BinOp() (brian2.parsing.bast.BrianASTRenderer
method), 673

render_BinOp() (brian2.parsing.rendering.CPPNodeRenderer
method), 682

render_BinOp() (brian2.parsing.rendering.NodeRenderer
method), 683

render_BinOp() (brian2.parsing.rendering.SympyNodeRenderer
method), 685

render_BinOp_parentheses()
(brian2.parsing.rendering.NodeRenderer
method), 683

render_BoolOp() (brian2.parsing.bast.BrianASTRenderer
method), 673

render_BoolOp() (brian2.parsing.rendering.NodeRenderer
method), 683

render_BoolOp() (brian2.parsing.rendering.SympyNodeRenderer
method), 685

render_Call() (brian2.parsing.bast.BrianASTRenderer
method), 673

render_Call() (brian2.parsing.rendering.NodeRenderer
method), 683

render_Call() (brian2.parsing.rendering.SympyNodeRenderer
method), 685

render_code() (brian2.parsing.rendering.NodeRenderer
method), 684

render_Compare() (brian2.parsing.bast.BrianASTRenderer
method), 673

render_Compare() (brian2.parsing.rendering.NodeRenderer
method), 683

render_Compare() (brian2.parsing.rendering.SympyNodeRenderer
method), 685

render_Constant()
(brian2.parsing.bast.BrianASTRenderer method),
673

render_Constant()
(brian2.parsing.rendering.NodeRenderer
method), 683

render_element_parentheses()
(brian2.parsing.rendering.NodeRenderer
method), 684

render_expr() (brian2.codegen.optimisation.Simplifier
method), 475

render_expr() (brian2.parsing.rendering.NodeRenderer
method), 684

render_func() (brian2.parsing.rendering.NodeRenderer
method), 684

render_func() (brian2.parsing.rendering.SympyNodeRenderer
method), 685

render_Name() (brian2.codegen.generators.cython_generator.CythonNodeRenderer
method), 504

render_Name() (brian2.parsing.bast.BrianASTRenderer
method), 673

render_Name() (brian2.parsing.rendering.CPPNodeRenderer
method), 682

render_Name() (brian2.parsing.rendering.NodeRenderer
method), 684

render_Name() (brian2.parsing.rendering.SympyNodeRenderer
method), 685

render_NameConstant()
(brian2.codegen.generators.cython_generator.CythonNodeRenderer
method), 504

render_NameConstant()
(brian2.parsing.bast.BrianASTRenderer method),
673

render_NameConstant()
(brian2.parsing.rendering.CPPNodeRenderer
method), 682

render_NameConstant()
(brian2.parsing.rendering.NodeRenderer
method), 684

render_NameConstant()
(brian2.parsing.rendering.SympyNodeRenderer
method), 685

render_node() (brian2.codegen.optimisation.ArithmeticSimplifier
method), 474

render_node() (brian2.codegen.optimisation.Simplifier
method), 475

render_node() (brian2.parsing.bast.BrianASTRenderer
method), 673

render_node() (brian2.parsing.rendering.NodeRenderer
method), 684

render_Num() (brian2.parsing.bast.BrianASTRenderer
method), 673

render_Num() (brian2.parsing.rendering.NodeRenderer
method), 684

render_Num() (brian2.parsing.rendering.SympyNodeRenderer
method), 685

render_UnaryOp() (brian2.parsing.bast.BrianASTRenderer
method), 673

render_UnaryOp() (brian2.parsing.rendering.NodeRenderer
method), 684

render_UnaryOp() (brian2.parsing.rendering.NumpyNodeRenderer
method), 684

render_UnaryOp() (brian2.parsing.rendering.SympyNodeRenderer
method), 685

replace() (in module brian2.utils.stringtools), 819
replace_func() (brian2.stateupdaters.explicit.ExplicitStateUpdater

method), 730
reset_device() (in module brian2.devices.device),

594
reset_to_defaults()

(brian2.core.preferences.BrianGlobalPreferences
method), 555

resetter (brian2.groups.neurongroup.NeuronGroup at-

Index 893

Brian 2 Documentation, Release 2.5.1

tribute), 633
Resetter (class in brian2.groups.neurongroup), 637
resize() (brian2.core.variables.DynamicArrayVariable

method), 568
resize() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice

method), 605
resize() (brian2.devices.device.Device method), 588
resize() (brian2.devices.device.RuntimeDevice

method), 592
resize() (brian2.memory.dynamicarray.DynamicArray

method), 655
resize() (brian2.memory.dynamicarray.DynamicArray1D

method), 656
resize() (brian2.monitors.ratemonitor.PopulationRateMonitor

method), 658
resize() (brian2.monitors.spikemonitor.EventMonitor

method), 661
resize() (brian2.monitors.statemonitor.StateMonitor

method), 669
resize_along_first

(brian2.core.variables.DynamicArrayVariable
attribute), 568

resize_along_first()
(brian2.devices.device.Device method), 589

resize_along_first()
(brian2.devices.device.RuntimeDevice method),
592

resize_along_first()
(brian2.memory.dynamicarray.DynamicArray
method), 655

resolve_all() (brian2.groups.group.Group method),
625

restore() (brian2.core.magic.MagicNetwork method),
534

restore() (brian2.core.network.Network method), 545
restore() (in module brian2.core.magic), 535
restore_initial_state() (in module

brian2.only), 466
restrict (brian2.codegen.generators.cpp_generator.CPPCodeGenerator

attribute), 501
rk2 (in module brian2.stateupdaters.explicit), 732
rk4 (in module brian2.stateupdaters.explicit), 733
run() (brian2.codegen.codeobject.CodeObject method),

468
run() (brian2.core.base.BrianObject method), 519
run() (brian2.core.magic.MagicNetwork method), 534
run() (brian2.core.network.Network method), 545
run() (brian2.core.operations.NetworkOperation

method), 551
run() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice

method), 605
run() (in module brian2.core.magic), 536
run_block() (brian2.codegen.codeobject.CodeObject

method), 469

run_block() (brian2.codegen.runtime.cython_rt.cython_rt.CythonCodeObject
method), 510

run_block() (brian2.codegen.runtime.numpy_rt.numpy_rt.NumpyCodeObject
method), 515

run_block() (brian2.devices.cpp_standalone.codeobject.CPPStandaloneCodeObject
method), 597

run_function() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 605

run_on_event() (brian2.groups.neurongroup.NeuronGroup
method), 633

run_regularly() (brian2.groups.group.Group
method), 626

RunFunctionContext (class in
brian2.devices.cpp_standalone.device), 606

runner() (brian2.groups.group.Group method), 626
running_from_ipython() (in module

brian2.utils.environment), 802
runtime_device (in module brian2.devices.device),

595
RuntimeDevice (class in brian2.devices.device), 590

S
scalar (brian2.core.variables.Variable attribute), 573
scale (brian2.units.fundamentalunits.Unit attribute), 759
scale_array_code()

(brian2.codegen.generators.GSL_generator.GSLCodeGenerator
method), 493

schedule (brian2.core.network.Network attribute), 543
schedule_propagation_offset() (in module

brian2.core.network), 549
scheduling_summary()

(brian2.core.network.Network method), 546
scheduling_summary() (in module

brian2.core.network), 550
SchedulingSummary (class in brian2.core.network),

548
Section (class in brian2.spatialneuron.morphology), 701
seed() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice

method), 605
seed() (brian2.devices.device.Device method), 589
seed() (brian2.devices.device.RuntimeDevice method),

592
seed() (in module brian2.devices.device), 594
set_conditional_write()

(brian2.core.variables.ArrayVariable method),
564

set_device() (in module brian2.devices.device), 594
set_display_name()

(brian2.units.fundamentalunits.Unit method),
760

set_event_schedule()
(brian2.groups.neurongroup.NeuronGroup
method), 634

894 Index

Brian 2 Documentation, Release 2.5.1

set_interval() (brian2.core.clocks.Clock method),
521

set_item() (brian2.core.variables.VariableView
method), 576

set_latex_name() (brian2.units.fundamentalunits.Unit
method), 760

set_name() (brian2.units.fundamentalunits.Unit
method), 760

set_random_state() (brian2.devices.device.Device
method), 589

set_random_state()
(brian2.devices.device.RuntimeDevice method),
592

set_spikes() (brian2.input.spikegeneratorgroup.SpikeGeneratorGroup
method), 650

set_states() (brian2.core.magic.MagicNetwork
method), 534

set_states() (brian2.core.network.Network method),
546

set_states() (brian2.groups.group.VariableOwner
method), 629

set_value() (brian2.core.variables.ArrayVariable
method), 564

set_value() (brian2.core.variables.Variable method),
574

set_value() (brian2.devices.device.RuntimeDevice
method), 592

set_with_expression()
(brian2.core.variables.VariableView method),
576

set_with_expression_conditional()
(brian2.core.variables.VariableView method),
576

set_with_index_array()
(brian2.core.variables.VariableView method),
577

shape (brian2.core.variables.VariableView attribute), 575
shrink() (brian2.memory.dynamicarray.DynamicArray

method), 655
Simplifier (class in brian2.codegen.optimisation), 475
simplify_path_env_var() (in module

brian2.codegen.runtime.cython_rt.extension_manager),
512

sin() (in module brian2.units.unitsafefunctions), 792
SingleEquation (class in brian2.equations.equations),

616
sinh() (in module brian2.units.unitsafefunctions), 794
size (brian2.core.variables.ArrayVariable attribute), 563
slice() (brian2.hears.BridgeSound method), 463
slice_to_test() (in module

brian2.synapses.synapses), 749
smooth_rate() (brian2.monitors.ratemonitor.PopulationRateMonitor

method), 658
so_ext (brian2.codegen.runtime.cython_rt.extension_manager.CythonExtensionManager

attribute), 512
SoftFileLock (class in brian2.utils.filelock), 804
Soma (class in brian2.spatialneuron.morphology), 704
sorted_objects (brian2.core.network.Network

attribute), 543
Sound (in module brian2.hears), 463
source (brian2.monitors.ratemonitor.PopulationRateMonitor

attribute), 658
source (brian2.monitors.spikemonitor.EventMonitor at-

tribute), 660
SpatialNeuron (class in

brian2.spatialneuron.spatialneuron), 712
spatialneuron_attribute()

(brian2.spatialneuron.spatialneuron.SpatialNeuron
static method), 714

spatialneuron_segment()
(brian2.spatialneuron.spatialneuron.SpatialNeuron
static method), 714

SpatialStateUpdater (class in
brian2.spatialneuron.spatialneuron), 715

SpatialSubgroup (class in
brian2.spatialneuron.spatialneuron), 715

SpellChecker (class in brian2.utils.stringtools), 816
spike_queue() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice

method), 605
spike_queue() (brian2.devices.device.Device method),

589
spike_queue() (brian2.devices.device.RuntimeDevice

method), 592
spike_trains() (brian2.monitors.spikemonitor.SpikeMonitor

method), 665
SpikeGeneratorGroup (class in

brian2.input.spikegeneratorgroup), 649
SpikeMonitor (class in brian2.monitors.spikemonitor),

662
SpikeQueue (class in brian2.synapses.spikequeue), 736
spikes (brian2.core.spikesource.SpikeSource attribute),

559
spikes (brian2.groups.neurongroup.NeuronGroup

attribute), 633
spikes (brian2.groups.subgroup.Subgroup attribute), 640
spikes (brian2.input.poissongroup.PoissonGroup at-

tribute), 646
spikes (brian2.input.spikegeneratorgroup.SpikeGeneratorGroup

attribute), 650
SpikeSource (class in brian2.core.spikesource), 559
split_expression() (in module

brian2.stateupdaters.explicit), 731
split_stochastic()

(brian2.equations.codestrings.Expression
method), 609

standard_unit_register (in module
brian2.units.fundamentalunits), 772

start_diameter (brian2.spatialneuron.morphology.Cylinder

Index 895

Brian 2 Documentation, Release 2.5.1

attribute), 692
start_diameter (brian2.spatialneuron.morphology.Section

attribute), 703
start_scope() (in module brian2.core.magic), 537
start_x (brian2.spatialneuron.morphology.Morphology

attribute), 696
start_x (brian2.spatialneuron.morphology.SubMorphology

attribute), 710
start_x_ (brian2.spatialneuron.morphology.Morphology

attribute), 696
start_x_ (brian2.spatialneuron.morphology.Section at-

tribute), 703
start_x_ (brian2.spatialneuron.morphology.Soma at-

tribute), 706
start_x_ (brian2.spatialneuron.morphology.SubMorphology

attribute), 710
start_y (brian2.spatialneuron.morphology.Morphology

attribute), 696
start_y (brian2.spatialneuron.morphology.SubMorphology

attribute), 711
start_y_ (brian2.spatialneuron.morphology.Morphology

attribute), 696
start_y_ (brian2.spatialneuron.morphology.Section at-

tribute), 704
start_y_ (brian2.spatialneuron.morphology.Soma at-

tribute), 706
start_y_ (brian2.spatialneuron.morphology.SubMorphology

attribute), 711
start_z (brian2.spatialneuron.morphology.Morphology

attribute), 696
start_z (brian2.spatialneuron.morphology.SubMorphology

attribute), 711
start_z_ (brian2.spatialneuron.morphology.Morphology

attribute), 696
start_z_ (brian2.spatialneuron.morphology.Section at-

tribute), 704
start_z_ (brian2.spatialneuron.morphology.Soma at-

tribute), 707
start_z_ (brian2.spatialneuron.morphology.SubMorphology

attribute), 711
state() (brian2.groups.group.VariableOwner method),

629
state() (brian2.groups.neurongroup.NeuronGroup

method), 634
state_updater (brian2.groups.neurongroup.NeuronGroup

attribute), 633
state_updater (brian2.synapses.synapses.Synapses at-

tribute), 742
STATEMENT (brian2.stateupdaters.explicit.ExplicitStateUpdater

attribute), 728
Statement (class in brian2.codegen.statements), 479
STATEMENT() (brian2.stateupdaters.explicit.ExplicitStateUpdater

method), 729
Statements (class in brian2.equations.codestrings), 609

StateMonitor (class in brian2.monitors.statemonitor),
667

StateMonitorView (class in
brian2.monitors.statemonitor), 671

StateUpdateMethod (class in
brian2.stateupdaters.base), 720

StateUpdater (class in brian2.groups.neurongroup),
637

StateUpdater (class in brian2.synapses.synapses), 738
static_array() (brian2.devices.cpp_standalone.device.CPPStandaloneDevice

method), 605
static_arrays (brian2.devices.cpp_standalone.device.CPPStandaloneDevice

attribute), 601
std_silent (class in brian2.utils.logger), 814
stochastic_type (brian2.equations.equations.Equations

attribute), 613
stochastic_variables

(brian2.equations.codestrings.Expression at-
tribute), 609

stochastic_variables
(brian2.equations.equations.Equations attribute),
613

stochastic_variables
(brian2.equations.equations.SingleEquation
attribute), 616

stop() (brian2.core.network.Network method), 547
stop() (in module brian2.core.magic), 537
store() (brian2.core.magic.MagicNetwork method), 534
store() (brian2.core.network.Network method), 547
store() (in module brian2.core.magic), 538
str_to_sympy() (in module

brian2.parsing.sympytools), 688
strip_empty_leading_and_trailing_lines()

(in module brian2.utils.stringtools), 820
strip_empty_lines() (in module

brian2.utils.stringtools), 820
stripped_deindented_lines() (in module

brian2.utils.stringtools), 820
subexpr_names (brian2.equations.equations.Equations

attribute), 613
Subexpression (class in brian2.core.variables), 569
subexpression_updater

(brian2.groups.neurongroup.NeuronGroup
attribute), 633

subexpression_updater
(brian2.synapses.synapses.Synapses attribute),
742

SubexpressionUpdater (class in
brian2.groups.neurongroup), 638

Subgroup (class in brian2.groups.subgroup), 640
SubMorphology (class in

brian2.spatialneuron.morphology), 708
substitute() (brian2.equations.equations.Equations

method), 615

896 Index

Brian 2 Documentation, Release 2.5.1

substitute_abstract_code_functions() (in
module brian2.parsing.functions), 681

suggest() (brian2.utils.stringtools.SpellChecker
method), 817

summed_updaters (brian2.synapses.synapses.Synapses
attribute), 742

SummedVariableUpdater (class in
brian2.synapses.synapses), 739

suppress_hierarchy()
(brian2.utils.logger.BrianLogger static method),
811

suppress_name() (brian2.utils.logger.BrianLogger
static method), 811

SymbolicConstant (class in brian2.core.functions),
528

sympy_to_str() (in module
brian2.parsing.sympytools), 688

SympyNodeRenderer (class in
brian2.parsing.rendering), 685

synapses (brian2.devices.cpp_standalone.device.CPPStandaloneDevice
attribute), 601

Synapses (class in brian2.synapses.synapses), 739
SynapticIndexing (class in

brian2.synapses.synapses), 746
SynapticPathway (class in brian2.synapses.synapses),

747
SynapticSubgroup (class in

brian2.synapses.synapses), 749

T
t (brian2.core.network.Network attribute), 544
t_ (brian2.core.network.Network attribute), 544
tan() (in module brian2.units.unitsafefunctions), 795
tanh() (in module brian2.units.unitsafefunctions), 796
target_var (brian2.input.poissoninput.PoissonInput at-

tribute), 648
TEMP_VAR (brian2.stateupdaters.explicit.ExplicitStateUpdater

attribute), 728
TEMP_VAR() (brian2.stateupdaters.explicit.ExplicitStateUpdater

method), 729
Templater (class in brian2.codegen.templates), 483
TextReport (class in brian2.core.network), 548
thresholder (brian2.groups.neurongroup.NeuronGroup

attribute), 633
Thresholder (class in brian2.groups.neurongroup), 638
TimedArray (class in brian2.input.timedarray), 651
timeout (brian2.utils.filelock.BaseFileLock attribute),

803
Timeout (class in brian2.utils.filelock), 805
timers (brian2.devices.cpp_standalone.device.CPPStandaloneDevice

attribute), 601
timestep() (in module brian2.core.functions), 531
tmp_log (brian2.utils.logger.BrianLogger attribute), 809

tmp_script (brian2.utils.logger.BrianLogger attribute),
810

to_replace_vector_vars()
(brian2.codegen.generators.GSL_generator.GSLCodeGenerator
method), 493

to_start_stop() (in module
brian2.groups.neurongroup), 639

toplevel_categories
(brian2.core.preferences.BrianGlobalPreferences
attribute), 554

Topology (class in brian2.spatialneuron.morphology),
712

topology() (brian2.spatialneuron.morphology.Morphology
method), 699

topsort() (in module brian2.utils.topsort), 821
total_compartments

(brian2.spatialneuron.morphology.Morphology
attribute), 696

total_sections (brian2.spatialneuron.morphology.Morphology
attribute), 696

trace() (in module brian2.units.unitsafefunctions), 797
Trackable (class in brian2.core.tracking), 561
translate() (brian2.codegen.generators.base.CodeGenerator

method), 500
translate() (brian2.codegen.generators.GSL_generator.GSLCodeGenerator

method), 494
translate_expression()

(brian2.codegen.generators.base.CodeGenerator
method), 500

translate_expression()
(brian2.codegen.generators.cpp_generator.CPPCodeGenerator
method), 502

translate_expression()
(brian2.codegen.generators.cython_generator.CythonCodeGenerator
method), 503

translate_expression()
(brian2.codegen.generators.numpy_generator.NumpyCodeGenerator
method), 506

translate_one_statement_sequence()
(brian2.codegen.generators.base.CodeGenerator
method), 500

translate_one_statement_sequence()
(brian2.codegen.generators.cpp_generator.CPPCodeGenerator
method), 502

translate_one_statement_sequence()
(brian2.codegen.generators.cython_generator.CythonCodeGenerator
method), 503

translate_one_statement_sequence()
(brian2.codegen.generators.numpy_generator.NumpyCodeGenerator
method), 506

translate_scalar_code()
(brian2.codegen.generators.GSL_generator.GSLCodeGenerator
method), 494

translate_statement()

Index 897

Brian 2 Documentation, Release 2.5.1

(brian2.codegen.generators.base.CodeGenerator
method), 500

translate_statement()
(brian2.codegen.generators.cpp_generator.CPPCodeGenerator
method), 502

translate_statement()
(brian2.codegen.generators.cython_generator.CythonCodeGenerator
method), 503

translate_statement()
(brian2.codegen.generators.numpy_generator.NumpyCodeGenerator
method), 506

translate_statement_sequence()
(brian2.codegen.generators.base.CodeGenerator
method), 500

translate_statement_sequence()
(brian2.codegen.generators.cpp_generator.CPPCodeGenerator
method), 502

translate_statement_sequence()
(brian2.codegen.generators.cython_generator.CythonCodeGenerator
method), 503

translate_to_declarations()
(brian2.codegen.generators.cpp_generator.CPPCodeGenerator
method), 502

translate_to_read_arrays()
(brian2.codegen.generators.cpp_generator.CPPCodeGenerator
method), 502

translate_to_read_arrays()
(brian2.codegen.generators.cython_generator.CythonCodeGenerator
method), 504

translate_to_statements()
(brian2.codegen.generators.cpp_generator.CPPCodeGenerator
method), 502

translate_to_statements()
(brian2.codegen.generators.cython_generator.CythonCodeGenerator
method), 504

translate_to_write_arrays()
(brian2.codegen.generators.cpp_generator.CPPCodeGenerator
method), 502

translate_to_write_arrays()
(brian2.codegen.generators.cython_generator.CythonCodeGenerator
method), 504

translate_vector_code()
(brian2.codegen.generators.GSL_generator.GSLCodeGenerator
method), 494

U
ufunc_at_vectorisation()

(brian2.codegen.generators.numpy_generator.NumpyCodeGenerator
method), 506

uninstall() (brian2.utils.logger.LogCapture method),
813

unique (brian2.core.variables.ArrayVariable attribute),
563

unit (brian2.core.variables.Variable attribute), 573

unit (brian2.core.variables.VariableView attribute), 575
unit (brian2.equations.equations.SingleEquation at-

tribute), 616
Unit (class in brian2.units.fundamentalunits), 757
UnitRegistry (class in brian2.units.fundamentalunits),

761
UnixFileLock (class in brian2.utils.filelock), 805
unpack_namespace()

(brian2.codegen.generators.GSL_generator.GSLCodeGenerator
method), 494

unpack_namespace_single()
(brian2.codegen.generators.GSL_generator.GSLCodeGenerator
method), 495

unpack_namespace_single()
(brian2.codegen.generators.GSL_generator.GSLCPPCodeGenerator
method), 488

unpack_namespace_single()
(brian2.codegen.generators.GSL_generator.GSLCythonCodeGenerator
method), 497

unregister_variable()
(brian2.synapses.synapses.Synapses method),
744

UnsupportedEquationsException (class in
brian2.stateupdaters.base), 721

update_abstract_code()
(brian2.groups.group.CodeRunner method),
625

update_abstract_code()
(brian2.groups.neurongroup.Resetter method),
637

update_abstract_code()
(brian2.groups.neurongroup.StateUpdater
method), 637

update_abstract_code()
(brian2.groups.neurongroup.Thresholder
method), 638

update_abstract_code()
(brian2.synapses.synapses.StateUpdater method),
739

update_abstract_code()
(brian2.synapses.synapses.SynapticPathway
method), 748

update_namespace()
(brian2.codegen.codeobject.CodeObject method),
469

update_namespace()
(brian2.codegen.runtime.cython_rt.cython_rt.CythonCodeObject
method), 510

update_namespace()
(brian2.codegen.runtime.numpy_rt.numpy_rt.NumpyCodeObject
method), 515

updaters (brian2.core.base.BrianObject attribute), 518
user_equations (brian2.groups.neurongroup.NeuronGroup

attribute), 633

898 Index

Brian 2 Documentation, Release 2.5.1

user_equations (brian2.spatialneuron.spatialneuron.SpatialNeuron
attribute), 714

user_unit_register (in module
brian2.units.fundamentalunits), 772

V
valid_gsl_dir() (in module

brian2.codegen.generators.GSL_generator),
497

value (brian2.core.variables.Constant attribute), 566
values() (brian2.monitors.spikemonitor.EventMonitor

method), 661
values() (brian2.monitors.spikemonitor.SpikeMonitor

method), 665
var_init_lhs() (brian2.codegen.generators.GSL_generator.GSLCodeGenerator

method), 495
var_init_lhs() (brian2.codegen.generators.GSL_generator.GSLCPPCodeGenerator

method), 488
var_init_lhs() (brian2.codegen.generators.GSL_generator.GSLCythonCodeGenerator

method), 497
var_replace_diff_var_lhs()

(brian2.codegen.generators.GSL_generator.GSLCPPCodeGenerator
method), 489

var_replace_diff_var_lhs()
(brian2.codegen.generators.GSL_generator.GSLCythonCodeGenerator
method), 497

Variable (class in brian2.core.variables), 571
VariableOwner (class in brian2.groups.group), 628
variables (brian2.codegen.templates.CodeObjectTemplate

attribute), 481
Variables (class in brian2.core.variables), 577
variables_by_owner() (in module

brian2.core.variables), 584
variables_to_array_names() (in module

brian2.codegen.templates), 484
variables_to_namespace()

(brian2.codegen.runtime.cython_rt.cython_rt.CythonCodeObject
method), 511

variables_to_namespace()
(brian2.codegen.runtime.numpy_rt.numpy_rt.NumpyCodeObject
method), 515

VariableView (class in brian2.core.variables), 574
variableview_get_subexpression_with_index_array()

(brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 605

variableview_get_with_expression()
(brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 605

variableview_set_with_index_array()
(brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 605

VarRewriter (class in brian2.parsing.functions), 679
VectorisationError (class in

brian2.codegen.generators.numpy_generator),

507
vectorise_code() (brian2.codegen.generators.numpy_generator.NumpyCodeGenerator

method), 506
verify_dependencies()

(brian2.synapses.synapses.Synapses static
method), 744

visit_Call() (brian2.parsing.functions.FunctionRewriter
method), 679

visit_Call() (brian2.parsing.functions.VarRewriter
method), 680

visit_Name() (brian2.parsing.functions.VarRewriter
method), 680

volume (brian2.spatialneuron.morphology.Cylinder at-
tribute), 692

volume (brian2.spatialneuron.morphology.Morphology
attribute), 696

volume (brian2.spatialneuron.morphology.Section at-
tribute), 704

volume (brian2.spatialneuron.morphology.Soma at-
tribute), 707

volume (brian2.spatialneuron.morphology.SubMorphology
attribute), 711

W
warn() (brian2.utils.logger.BrianLogger method), 811
weakproxy_with_fallback() (in module

brian2.core.base), 520
weight (brian2.input.poissoninput.PoissonInput attribute),

648
when (brian2.core.base.BrianObject attribute), 519
where() (in module brian2.units.unitsafefunctions), 798
WindowsFileLock (class in brian2.utils.filelock), 805
with_dimensions()

(brian2.units.fundamentalunits.Quantity static
method), 754

word_substitute() (in module
brian2.utils.stringtools), 820

wrap_function_change_dimensions() (in
module brian2.units.fundamentalunits), 770

wrap_function_dimensionless() (in module
brian2.units.fundamentalunits), 770

wrap_function_keep_dimensions() (in module
brian2.units.fundamentalunits), 771

wrap_function_remove_dimensions() (in
module brian2.units.fundamentalunits), 771

wrap_function_to_method() (in module
brian2.units.unitsafefunctions), 800

wrap_units() (in module brian2.hears), 465
wrap_units_class() (in module brian2.hears), 465
wrap_units_property() (in module brian2.hears),

465
WrappedSound (in module brian2.hears), 464
write() (brian2.devices.cpp_standalone.device.CPPWriter

method), 606

Index 899

Brian 2 Documentation, Release 2.5.1

write_arrays() (brian2.codegen.generators.numpy_generator.NumpyCodeGenerator
method), 506

write_dataholder()
(brian2.codegen.generators.GSL_generator.GSLCodeGenerator
method), 495

write_dataholder_single()
(brian2.codegen.generators.GSL_generator.GSLCodeGenerator
method), 495

write_static_arrays()
(brian2.devices.cpp_standalone.device.CPPStandaloneDevice
method), 606

writes_read_only (brian2.codegen.templates.CodeObjectTemplate
attribute), 481

X
x (brian2.spatialneuron.morphology.Morphology attribute),

697
x (brian2.spatialneuron.morphology.Node attribute), 700
x (brian2.spatialneuron.morphology.SubMorphology

attribute), 711
x_ (brian2.spatialneuron.morphology.Morphology at-

tribute), 697
x_ (brian2.spatialneuron.morphology.Section attribute),

704
x_ (brian2.spatialneuron.morphology.Soma attribute), 707
x_ (brian2.spatialneuron.morphology.SubMorphology at-

tribute), 711

Y
y (brian2.spatialneuron.morphology.Morphology attribute),

697
y (brian2.spatialneuron.morphology.Node attribute), 701
y (brian2.spatialneuron.morphology.SubMorphology

attribute), 711
y_ (brian2.spatialneuron.morphology.Morphology at-

tribute), 697
y_ (brian2.spatialneuron.morphology.Section attribute),

704
y_ (brian2.spatialneuron.morphology.Soma attribute), 707
y_ (brian2.spatialneuron.morphology.SubMorphology at-

tribute), 711
yvector_code() (brian2.codegen.generators.GSL_generator.GSLCodeGenerator

method), 495

Z
z (brian2.spatialneuron.morphology.Morphology attribute),

697
z (brian2.spatialneuron.morphology.Node attribute), 701
z (brian2.spatialneuron.morphology.SubMorphology

attribute), 711
z_ (brian2.spatialneuron.morphology.Morphology at-

tribute), 697
z_ (brian2.spatialneuron.morphology.Section attribute),

704

z_ (brian2.spatialneuron.morphology.Soma attribute), 707
z_ (brian2.spatialneuron.morphology.SubMorphology at-

tribute), 711
zero_arrays (brian2.devices.cpp_standalone.device.CPPStandaloneDevice

attribute), 601

900 Index

	Introduction
	Installation
	Standard install
	Updating an existing installation
	Requirements for C++ code generation
	Development install
	Installing other useful packages
	Testing Brian

	Running Brian scripts
	Jupyter notebook
	IPython shell
	Python interpreter
	Integrated development environment (IDE)

	Release notes
	Brian 2.5.1
	New features
	Selected improvements and bug fixes
	Infrastructure and documentation improvements
	Contributions

	Brian 2.5.0.3
	Brian 2.5.0.2
	Brian 2.5.0.1
	Brian 2.5
	New features
	Selected improvements and bug fixes
	Backward-incompatible changes
	Infrastructure and documentation improvements
	Contributions

	Brian 2.4.1
	Selected improvements and bug fixes
	Infrastructure and documentation improvements
	Contributions

	Brian 2.4
	Selected improvements and bug fixes
	Contributions

	Brian 2.3
	New features
	Selected improvements and bug fixes
	Backward-incompatible changes
	Infrastructure and documentation improvements
	Contributions

	Brian 2.2.2.1
	Selected improvements and bug fixes
	Contributions

	Brian 2.2.1
	Selected improvements and bug fixes
	Dependency and packaging changes
	Contributions

	Brian 2.2
	Selected improvements and bug fixes
	Backward-incompatible changes
	Documentation improvements
	Contributions

	Brian 2.1.3.1
	Brian 2.1.3
	Selected improvements and bug fixes
	Backward-incompatible changes
	Infrastructure and documentation improvements
	Contributions

	Brian 2.1.2
	Brian 2.1.1
	Brian 2.1
	New features
	Selected improvements and bug fixes
	Backward-incompatible changes and deprecations
	Infrastructure and documentation improvements
	Contributions

	Brian 2.0.2.1
	Brian 2.0.2
	New features
	Selected improvements and bug fixes
	Backwards-incompatible changes
	Changes to default settings
	Contributions

	Brian 2.0.1
	Improvements and bug fixes
	Contributions

	Brian 2.0 (changes since 1.4)
	Major new features
	New features
	Backwards incompatible changes
	Behind the scenes changes
	Contributions

	Brian 2.0 (changes since 2.0rc3)
	New features
	Improvements and bug fixes
	Infrastructure and documentation improvements
	Contributions

	Brian 2.0rc3
	New features
	Improvements and bug fixes
	Contributions

	Brian 2.0rc1
	Improvements and bug fixes
	Contributions

	Brian 2.0rc
	Major new features
	Improvements and bug fixes
	Important backwards-incompatible changes
	Infrastructure improvements
	Contributions

	Brian 2.0b4
	Major new features
	Improvemements and bug fixes
	Important backwards-incompatible changes
	Infrastructure improvements
	Contributions

	Brian 2.0b3
	Major new features
	Improvements
	Important bug fixes
	Infrastructure improvements
	Contributions

	Brian 2.0b2
	Major new features
	Improvements
	Infrastructure and documentation improvements
	Important bug fixes
	Contributions

	Brian 2.0beta
	Major new features
	Syntax changes
	Improvements
	Bug fixes
	Contributions

	Changes for Brian 1 users
	Physical units
	Unported packages
	Replacement packages
	Removed classes/functions and their replacements
	List of detailed instructions
	Detailed Brian 1 to Brian 2 conversion notes
	Neural models (Brian 1 –> 2 conversion)
	Threshold and Reset
	Refractoriness
	Subgroups
	Linked Variables
	Synapses (Brian 1 –> 2 conversion)
	Converting Brian 1’s Connection class
	Creating synapses and setting weights
	Weight matrices
	Connections defined by functions
	Delays
	Modulation
	Structure
	Converting Brian 1’s Synapses class
	Synaptic models
	Lumped variables (summed variables)
	Creating synapses
	Multiple pathways
	Monitoring synaptic variables
	Inputs (Brian 1 –> 2 conversion)
	Poisson Input
	Spike generation
	Arbitrary time-dependent input (TimedArray)
	Monitors (Brian 1 –> 2 conversion)
	Monitoring spiking activity
	Monitoring variables
	Networks and clocks (Brian 1 –> 2 conversion)
	Clocks and timesteps
	Networks
	Explicit network
	“Magic” network
	External constants
	Preferences (Brian 1 –> 2 conversion)
	Setting preferences
	Configuration file
	Preference name changes
	Multicompartmental models (Brian 1 –> 2 conversion)
	Library models (Brian 1 –> 2 conversion)
	Neuron models
	Perfect integrator
	Leaky integrate-and-fire neuron
	Exponential integrate-and-fire neuron
	Quadratic integrate-and-fire neuron
	Izhikevich neuron
	Adaptive exponential integrate-and-fire neuron (“Brette-Gerstner model”)
	Ionic currents
	Synapses
	Current-based synapses
	Conductance-based synapses
	Brian Hears

	Known issues
	Cannot find msvcr90d.dll
	“AttributeError: MSVCCompiler instance has no attribute ‘compiler_cxx’”
	“Missing compiler_cxx fix for MSVCCompiler”
	Problems with numerical integration
	Jupyter notebooks and C++ standalone mode progress reporting
	Parallel Brian simulations with C++ standalone
	Parallel Brian simulations with Cython on machines with NFS (e.g. a computing cluster)
	Slow C++ standalone simulations
	Cython fails with compilation error on OS X: error: use of undeclared identifier 'isinf'
	CMD windows open when running Brian on Windows with the Spyder 3 IDE

	Support
	Which version of Brian am I using?

	Compatibility and reproducibility
	Supported Python and numpy versions
	General policy
	Syntax deprecations
	Random numbers
	Python errors

	Contributor Covenant Code of Conduct
	Our Pledge
	Our Standards
	Our Responsibilities
	Scope
	Enforcement
	Attribution

	Tutorials
	Introduction to Brian part 1: Neurons
	Units system
	A simple model
	Adding spikes
	Refractoriness
	Multiple neurons
	Parameters
	Stochastic neurons
	End of tutorial

	Introduction to Brian part 2: Synapses
	The simplest Synapse
	Adding a weight
	Introducing a delay
	More complex connectivity
	More complex synapse models: STDP
	End of tutorial

	Introduction to Brian part 3: Simulations
	Multiple runs
	Changing things during a run
	Adding input

	User’s guide
	Importing Brian
	Precise control over importing
	Dependency checks

	Physical units
	Using units
	Removing units
	Temperatures
	Constants
	Importing units
	In-place operations on quantities

	Models and neuron groups
	Model equations
	Noise
	Threshold and reset
	Refractoriness
	State variables
	Subgroups
	Shared variables
	Storing state variables
	Linked variables
	Time scaling of noise

	Numerical integration
	Method choice
	Technical notes
	GSL stateupdaters

	Equations
	Equation strings
	Arithmetic operations and functions
	External variables
	Flags
	List of special symbols
	Event-driven equations
	Equation objects
	Examples of Equation objects

	Refractoriness
	Defining the refractory period
	Defining model behaviour during refractoriness
	Arbitrary refractoriness

	Synapses
	Defining synaptic models
	Model syntax
	Event-driven updates
	Pre and post codes

	Creating synapses
	Conditional
	Probabilistic
	One-to-one

	Accessing synaptic variables
	Delays
	Monitoring synaptic variables
	Synaptic connection/weight matrices
	Creating synapses with the generator syntax
	Summed variables
	Creating multi-synapses
	Multiple pathways
	Numerical integration
	Differential equation flags
	Explicit event-driven updates

	Technical notes
	How connection arguments are interpreted
	Efficiency considerations

	Input stimuli
	Poisson inputs
	Spike generation
	Explicit equations
	Timed arrays
	Regular operations
	More on Poisson inputs
	Setting rates for Poisson inputs
	Efficient Poisson inputs via PoissonInput

	Arbitrary Python code (network operations)

	Recording during a simulation
	Recording spikes
	Recording variables at spike time
	Recording variables continuously
	Recording population rates
	Getting all data
	Recording values for a subset of the run
	Freeing up memory in long recordings
	Recording random subsets of neurons

	Running a simulation
	Networks
	Setting the simulation time step
	Progress reporting
	Continuing/repeating simulations
	Multiple magic runs
	Changing the simulation time step
	Profiling
	Scheduling
	Store/restore

	Multicompartment models
	Creating a neuron morphology
	Schematic morphologies
	Adding coordinates

	Complex morphologies

	Creating a spatially extended neuron
	Synaptic inputs
	Detecting spikes
	Subgroups

	Computational methods and efficiency
	Runtime code generation
	Caching

	Standalone code generation
	Single run call
	Multiple run calls
	Multiple builds
	Limitations
	Variables
	Multi-threading with OpenMP
	Custom code injection
	Customizing the build process
	Cleaning up after a run

	Compiler settings

	Converting from integrated form to ODEs
	How to plot functions

	Advanced guide
	Functions
	Default functions
	User-provided functions
	Python code generation
	Other code generation targets
	Dependencies between functions
	Additional compiler arguments
	Arrays vs. scalar values in user-provided functions
	Functions with context-dependent return values
	Additional namespace
	Data types
	External source files

	Preferences
	Accessing and setting preferences
	Preference files
	List of preferences
	GSL
	codegen
	core
	devices
	legacy
	logging

	Logging
	Logging and multiprocessing
	Showing/hiding log messages
	Preferences

	Namespaces
	Custom progress reporting
	Progress reporting
	Examples of custom reporting

	Random numbers
	Seeding and reproducibility
	Runtime mode
	Standalone mode

	Custom events
	Overview
	Details
	Defining an event
	Recording events
	Triggering NeuronGroup code
	Triggering synaptic pathways
	Scheduling

	State update
	Explicit state update
	Choice of state updaters
	Implicit state updates
	Backward Euler

	How Brian works
	Clock-driven versus event-driven
	Code overview
	Syntax layer
	Computational engine

	Interfacing with external code

	Examples
	Example: COBAHH
	Example: CUBA
	Example: IF_curve_Hodgkin_Huxley
	Example: IF_curve_LIF
	Example: adaptive_threshold
	Example: non_reliability
	Example: phase_locking
	Example: reliability
	advanced
	Example: COBAHH_approximated
	Example: Ornstein_Uhlenbeck
	Example: compare_GSL_to_conventional
	Example: custom_events
	Example: exprel_function
	Example: float_32_64_benchmark
	Example: modelfitting_sbi
	Model fitting with simulation-based inference

	Example: opencv_movie
	Example: stochastic_odes

	compartmental
	Example: bipolar_cell
	Example: bipolar_with_inputs
	Example: bipolar_with_inputs2
	Example: cylinder
	Example: hh_with_spikes
	Example: hodgkin_huxley_1952
	Example: infinite_cable
	Example: lfp
	Example: morphotest
	Example: rall
	Example: spike_initiation

	frompapers
	Example: Brette_2004
	Phase locking in leaky integrate-and-fire model

	Example: Brette_Gerstner_2005
	Example: Brette_Guigon_2003
	Reliability of spike timing

	Example: Brunel_2000
	Example: Brunel_Hakim_1999
	Example: Brunel_Wang_2001
	Sample-specific persistent activity

	Example: Clopath_et_al_2010_homeostasis
	Example: Clopath_et_al_2010_no_homeostasis
	Example: Destexhe_et_al_1998
	Notes

	Example: Diesmann_et_al_1999
	Synfire chains

	Example: Graupner_Brunel_2012
	Example: Hindmarsh_Rose_1984
	Example: Izhikevich_2003
	Example: Izhikevich_2007
	Example: Jansen_Rit_1995_single_column
	Example: Kremer_et_al_2011_barrel_cortex
	Example: Maass_Natschlaeger_Markram_2002
	Example: Morris_Lecar_1981
	Example: Naud_et_al_2008_adex_firing_patterns
	Firing patterns in the adaptive exponential integrate-and-fire model

	Example: Platkiewicz_Brette_2011
	Slope-threshold relationship with noisy inputs, in the adaptive threshold model

	Example: Rossant_et_al_2011bis
	Distributed synchrony example
	Example: Rothman_Manis_2003
	Cochlear neuron model of Rothman & Manis

	Example: Sturzl_et_al_2000
	Example: Touboul_Brette_2008
	Chaos in the AdEx model

	Example: Tsodyks_Pawelzik_Markram_1998
	Example: Tsodyks_Uziel_Markram_2000
	Example: Vogels_et_al_2011
	Inhibitory synaptic plasticity in a recurrent network model

	Example: Wang_Buszaki_1996
	Wang-Buszaki model

	frompapers/Brette_2012
	Example: Fig1
	Example: Fig3AB
	Example: Fig3CF
	Example: Fig4
	Example: Fig5A
	Example: params
	README.txt

	frompapers/Stimberg_et_al_2018
	Example: example_1_COBA
	Example: example_2_gchi_astrocyte
	Example: example_3_io_synapse
	Example: example_4_rsmean
	Example: example_4_synrel
	Example: example_5_astro_ring
	Example: example_6_COBA_with_astro
	Example: plot_utils
	README.md
	figures.mplstyle

	multiprocessing
	Example: 01_using_cython
	Example: 02_using_standalone
	Example: 03_standalone_joblib

	standalone
	Example: STDP_standalone
	Example: cuba_openmp
	Example: simple_case
	Example: simple_case_build
	Example: standalone_multiplerun

	synapses
	Example: STDP
	Example: continuous_interaction
	Synaptic model with continuous interaction

	Example: efficient_gaussian_connectivity
	Example: gapjunctions
	Example: jeffress
	Example: licklider
	Example: nonlinear
	Example: spatial_connections
	Example: spike_based_homeostasis
	Example: state_variables
	Example: synapses

	brian2 package
	check_cache function
	clear_cache function
	_version module
	get_versions function

	hears module
	BridgeSound class
	FilterbankGroup class
	Sound class
	WrappedSound class
	convert_unit_b1_to_b2 function
	convert_unit_b2_to_b1 function
	modify_arg function
	wrap_units function
	wrap_units_class function
	wrap_units_property function

	numpy_ module
	only module
	restore_initial_state function

	Subpackages
	codegen package
	_prefs module
	Preferences

	codeobject module
	CodeObject class
	check_compiler_kwds function
	constant_or_scalar function
	create_runner_codeobj function

	cpp_prefs module
	Preferences
	C99Check class
	compiler_supports_c99 function
	get_compiler_and_args function
	get_msvc_env function
	has_flag function

	get_cpu_flags module
	optimisation module
	ArithmeticSimplifier class
	Simplifier class
	cancel_identical_terms function
	collect function
	collect_commutative function
	evaluate_expr function
	expression_complexity function
	optimise_statements function
	reduced_node function

	permutation_analysis module
	OrderDependenceError class
	check_for_order_independence function

	statements module
	Statement class

	targets module
	templates module
	CodeObjectTemplate class
	LazyTemplateLoader class
	MultiTemplate class
	Templater class
	autoindent function
	autoindent_postfilter function
	variables_to_array_names function

	translation module
	LineInfo class
	analyse_identifiers function
	get_identifiers_recursively function
	is_scalar_expression function
	make_statements function

	Subpackages
	generators package
	GSL_generator module
	GSLCPPCodeGenerator class
	GSLCodeGenerator class
	GSLCythonCodeGenerator class
	valid_gsl_dir function
	base module
	CodeGenerator class
	cpp_generator module
	CPPCodeGenerator class
	c_data_type function
	cython_generator module
	CythonCodeGenerator class
	CythonNodeRenderer class
	get_cpp_dtype function
	get_numpy_dtype function
	numpy_generator module
	NumpyCodeGenerator class
	VectorisationError class
	ceil_func function
	clip_func function
	floor_func function
	int_func function
	poisson_func function
	rand_func function
	randn_func function

	runtime package
	Subpackages
	GSLcython_rt package
	GSLcython_rt module
	GSLCompileError class
	GSLCythonCodeObject class
	IntegrationError class
	cython_rt package
	cython_rt module
	CythonCodeObject class
	extension_manager module
	CythonExtensionManager class
	get_cython_cache_dir function
	get_cython_extensions function
	simplify_path_env_var function
	cython_extension_manager object
	numpy_rt package
	Preferences
	numpy_rt module
	LazyArange class
	NumpyCodeObject class

	core package
	Built-in preferences
	base module
	BrianObject class
	BrianObjectException class
	brian_object_exception function
	device_override function
	weakproxy_with_fallback function

	clocks module
	Clock class
	Tutorials and examples using this

	DefaultClockProxy class
	check_dt function
	defaultclock object

	core_preferences module
	default_float_dtype_validator function
	dtype_repr function

	functions module
	Function class
	FunctionImplementation class
	FunctionImplementationContainer class
	SymbolicConstant class
	exprel class
	Tutorials and examples using this

	declare_types function
	implementation function
	timestep function

	magic module
	MagicError class
	MagicNetwork class
	collect function
	get_objects_in_namespace function
	restore function
	run function
	start_scope function
	stop function
	store function
	magic_network object

	names module
	Nameable class
	find_name function

	namespace module
	get_local_namespace function

	network module
	Preferences
	Network class
	Tutorials and examples using this

	ProfilingSummary class
	SchedulingSummary class
	TextReport class
	profiling_summary function
	schedule_propagation_offset function
	scheduling_summary function

	operations module
	NetworkOperation class
	network_operation function

	preferences module
	BrianGlobalPreferences class
	BrianGlobalPreferencesView class
	BrianPreference class
	DefaultValidator class
	ErrorRaiser class
	PreferenceError class
	check_preference_name function
	parse_preference_name function
	brian_prefs object
	prefs object

	spikesource module
	SpikeSource class

	tracking module
	InstanceFollower class
	InstanceTrackerSet class
	Trackable class

	variables module
	ArrayVariable class
	AuxiliaryVariable class
	Constant class
	DynamicArrayVariable class
	LinkedVariable class
	Subexpression class
	Variable class
	VariableView class
	Variables class
	get_dtype function
	get_dtype_str function
	linked_var function
	variables_by_owner function

	devices package
	device module
	CurrentDeviceProxy class
	Device class
	Dummy class
	Tutorials and examples using this

	RuntimeDevice class
	Tutorials and examples using this

	auto_target function
	get_device function
	reinit_and_delete function
	reinit_devices function
	reset_device function
	seed function
	set_device function
	active_device object
	device object
	runtime_device object

	Subpackages
	cpp_standalone package
	GSLcodeobject module
	GSLCPPStandaloneCodeObject class
	codeobject module
	CPPStandaloneCodeObject class
	generate_rand_code function
	openmp_pragma function
	device module
	CPPStandaloneDevice class
	CPPWriter class
	RunFunctionContext class
	invert_dict function
	cpp_standalone_device object

	equations package
	codestrings module
	CodeString class
	Expression class
	Statements class
	is_constant_over_dt function

	equations module
	EquationError class
	Equations class
	Tutorials and examples using this

	SingleEquation class
	check_identifier_basic function
	check_identifier_constants function
	check_identifier_functions function
	check_identifier_reserved function
	check_identifier_units function
	check_subexpressions function
	dimensions_and_type_from_string function
	extract_constant_subexpressions function
	is_stateful function
	parse_string_equations function

	refractory module
	add_refractoriness function
	check_identifier_refractory function

	unitcheck module
	check_dimensions function
	check_units_statements function

	groups package
	group module
	CodeRunner class
	Group class
	IndexWrapper class
	Indexing class
	VariableOwner class
	get_dtype function

	neurongroup module
	NeuronGroup class
	Tutorials and examples using this

	Resetter class
	StateUpdater class
	SubexpressionUpdater class
	Thresholder class
	check_identifier_pre_post function
	to_start_stop function

	subgroup module
	Subgroup class

	importexport package
	dictlike module
	DictImportExport class
	PandasImportExport class

	importexport module
	ImportExport class

	input package
	binomial module
	BinomialFunction class

	poissongroup module
	PoissonGroup class
	Tutorials and examples using this

	poissoninput module
	PoissonInput class
	Tutorials and examples using this

	spikegeneratorgroup module
	SpikeGeneratorGroup class
	Tutorials and examples using this

	timedarray module
	TimedArray class
	Tutorials and examples using this

	memory package
	dynamicarray module
	DynamicArray class
	DynamicArray1D class
	getslices function

	monitors package
	ratemonitor module
	PopulationRateMonitor class
	Tutorials and examples using this

	spikemonitor module
	EventMonitor class
	Tutorials and examples using this

	SpikeMonitor class
	Tutorials and examples using this

	statemonitor module
	StateMonitor class
	Tutorials and examples using this

	StateMonitorView class

	parsing package
	bast module
	BrianASTRenderer class
	brian_ast function
	brian_dtype_from_dtype function
	brian_dtype_from_value function
	is_boolean function
	is_boolean_dtype function
	is_float function
	is_float_dtype function
	is_integer function
	is_integer_dtype function

	dependencies module
	abstract_code_dependencies function
	get_read_write_funcs function

	expressions module
	is_boolean_expression function
	parse_expression_dimensions function

	functions module
	AbstractCodeFunction class
	FunctionRewriter class
	VarRewriter class
	abstract_code_from_function function
	extract_abstract_code_functions function
	substitute_abstract_code_functions function

	rendering module
	CPPNodeRenderer class
	NodeRenderer class
	NumpyNodeRenderer class
	SympyNodeRenderer class
	get_node_value function

	statements module
	parse_statement function

	sympytools module
	CustomSympyPrinter class
	check_expression_for_multiple_stateful_functions function
	expression_complexity function
	str_to_sympy function
	sympy_to_str function
	PRINTER object

	random package
	spatialneuron package
	morphology module
	Children class
	Cylinder class
	Tutorials and examples using this

	Morphology class
	Tutorials and examples using this

	MorphologyIndexWrapper class
	Node class
	Section class
	Tutorials and examples using this

	Soma class
	Tutorials and examples using this

	SubMorphology class
	Topology class

	spatialneuron module
	FlatMorphology class
	SpatialNeuron class
	Tutorials and examples using this

	SpatialStateUpdater class
	SpatialSubgroup class

	stateupdaters package
	GSL module
	GSLContainer class
	GSLStateUpdater class
	gsl_rk2 object
	gsl_rk4 object
	gsl_rk8pd object
	gsl_rkck object
	gsl_rkf45 object

	base module
	StateUpdateMethod class
	UnsupportedEquationsException class
	extract_method_options function

	exact module
	IndependentStateUpdater class
	LinearStateUpdater class
	get_linear_system function
	exact object
	independent object
	linear object

	explicit module
	ExplicitStateUpdater class
	diagonal_noise function
	split_expression function
	euler object
	heun object
	milstein object
	rk2 object
	rk4 object

	exponential_euler module
	ExponentialEulerStateUpdater class
	get_conditionally_linear_system function
	exponential_euler object

	synapses package
	parse_synaptic_generator_syntax module
	handle_range function
	handle_sample function
	parse_synapse_generator function

	spikequeue module
	SpikeQueue class

	synapses module
	StateUpdater class
	SummedVariableUpdater class
	Synapses class
	Tutorials and examples using this

	SynapticIndexing class
	SynapticPathway class
	SynapticSubgroup class
	find_synapses function
	slice_to_test function

	units package
	allunits module
	celsius object

	constants module
	fundamentalunits module
	Dimension class
	DimensionMismatchError class
	Tutorials and examples using this

	Quantity class
	Tutorials and examples using this

	Unit class
	UnitRegistry class
	check_units function
	fail_for_dimension_mismatch function
	get_dimensions function
	get_or_create_dimension function
	get_unit function
	get_unit_for_display function
	have_same_dimensions function
	in_best_unit function
	in_unit function
	is_dimensionless function
	is_scalar_type function
	quantity_with_dimensions function
	register_new_unit function
	wrap_function_change_dimensions function
	wrap_function_dimensionless function
	wrap_function_keep_dimensions function
	wrap_function_remove_dimensions function
	DIMENSIONLESS object
	additional_unit_register object
	standard_unit_register object
	user_unit_register object

	stdunits module
	unitsafefunctions module
	arange function
	arccos function
	arccosh function
	arcsin function
	arcsinh function
	arctan function
	arctanh function
	cos function
	cosh function
	diagonal function
	dot function
	exp function
	linspace function
	log function
	ravel function
	sin function
	sinh function
	tan function
	tanh function
	trace function
	where function
	wrap_function_to_method function

	utils package
	arrays module
	calc_repeats function

	caching module
	CacheKey class
	cached function

	environment module
	running_from_ipython function

	filelock module
	BaseFileLock class
	FileLock class
	SoftFileLock class
	Timeout class
	UnixFileLock class
	WindowsFileLock class
	logger function

	filetools module
	in_directory class
	copy_directory function
	ensure_directory function
	ensure_directory_of_file function

	logger module
	Preferences
	BrianLogger class
	Tutorials and examples using this

	HierarchyFilter class
	LogCapture class
	NameFilter class
	catch_logs class
	std_silent class
	brian_excepthook function
	clean_up_logging function
	get_logger function
	log_level_validator function

	stringtools module
	SpellChecker class
	code_representation function
	deindent function
	get_identifiers function
	indent function
	replace function
	strip_empty_leading_and_trailing_lines function
	strip_empty_lines function
	stripped_deindented_lines function
	word_substitute function

	topsort module
	topsort function

	Developer’s guide
	Coding guidelines
	Development workflow
	The repository structure
	Implementing a feature/fixing a bug
	Useful links

	Coding conventions
	General recommendations
	String formatting
	Commits only changing the style

	Representing Brian objects
	__repr__ and __str__
	LaTeX representations with sympy
	Representations for ipython
	“Old” ipython console
	“New” ipython console (qtconsole and notebook)

	Defensive programming
	Documentation
	Docstrings
	Documenting functions and methods
	Documenting classes
	Long example of a function docstring

	Logging
	Log level recommendations
	Testing log messages

	Testing
	Running the test suite
	Writing tests
	Unit tests
	Summary

	Doctests
	Correctness tests

	Units
	Casting rules
	Functions and units
	ndarray methods
	Numpy ufuncs
	Numpy functions
	User-defined functions and units

	Equations and namespaces
	Equation parsing
	Variables
	Namespaces

	Variables and indices
	Introduction
	Creating variables
	References
	Indices
	Getting and setting state variables
	Additional variables and indices

	Preferences system
	Accessing and setting preferences
	Preference files
	Registration
	Validation functions
	Validation
	File format
	Built-in preferences
	GSL
	codegen
	core
	devices
	legacy
	logging

	Adding support for new functions
	Code generation
	Code path
	Code generation
	Syntax translation
	Templates
	Template structure
	Template keywords

	Code objects
	Default functions
	Code guide
	Additional information
	Older notes on code generation
	Stages of code generation
	Equations to abstract code
	Abstract code
	Abstract code to snippet
	Snippet to code block
	Code block to executing code

	Key concepts
	Namespaces
	Variable
	Templates

	Code guide

	Standalone implementation
	Array cache

	Multi-threading with OpenMP
	Key concepts
	Use of #pragma flags
	Translations of the #pragma commands
	Execution of the OpenMP code

	How to make your template use OpenMP parallelism
	Synaptic propagation in parallel
	General ideas
	Preparation of the SynapticPathway
	Selection of the spikes

	Compilation of the code

	Devices
	Memory management
	Code objects
	Building
	Device override methods
	Other methods

	Solving differential equations with the GNU Scientific Library
	StateUpdateMethod
	Translation of equations to abstract code
	Return value of the StateUpdateMethod

	GSLCodeObject
	GSLCodeGenerator
	Stateupdate templates

	Indices and tables
	Bibliography
	Python Module Index
	Index

